The Japan Soci ety of Mechanical Engineers

355

Analysis of Uniform-Strength Shape by the

Growth-Strain Method*
(Application to the Problems of Steady-State
Vibration)

Hideyuki AZEGAMI**, Tadashi OGIHARA***
and Akiyasu TAKAMI**

The growth-strain method, developed using the finite-element calculation of the
deforming of shapes produced by swelling and contracting of itself, was previously
proposed as a shape optimization method. The present report describes an application
of the growth-strain method to the problems of steady-state vibration. In particular,
free vibration with a normal mode and vibrational response to a harmonic excitation
are considered. A difference of the implementation of the method for these vibration
problems from that for static problems lies in analyzing the stress distribution at the
deformation in the normal mode or in the amplitude of the vibrational response.
Numerical examinations are carried out on simple beam structures. In these examina-
tions, the growth-strain method shows a feasibility even in the optimization of struc-
tures under dynamic circumstances.
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1. Introduction

In the previous report”’, one of the authors
proposed a general-purpose method to analyze uni-
form strength shapes using the finite-element method,
and obtained successful results to static elastic prob-
lems. In this report, we call the method the growth-
strain method.

The focus in the following article will be on the
application of the growth-strain method to the prob-
lems of steady-state vibration. In particuar, free
vibration with a normal mode and a vibrational
response to harmonic excitation are considered. Our
attention is on the analysis of uniform strength shape
which is, to be exact, different from the analysis®~®
of optimum shape with maximum natural frequency
or minimum mass. The relation to these previous
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works will be discussed in anorher report.
2. Growth-Strain Method

The growth-strain method is concisely formulated as
follows™,
2.1 Generation law of bulk strain

Let us consider the shape deformation of a solid
body by swelling and contracting of itself. The defor-
mation can be performed by generation of bulk strain
positively and/or negatively in all parts of a body, and
so we consider the generation law of the bulk strain.

Let us assume that the generation law of the bulk
strain is given as a function of a growth parameter
and consider what is appropriate to the growth
parameter. To uniformize the strength of a solid body,
it is proper to consider the uniform distribution of the
strength parameter which is given, for example, by
the Mises stress in the case of the Mises criterion or
the maximum principal stress in the case of the
maximum principal stress criterion. The strength
parameter generally has the property of decreasing
with increasing volume. Consequently, we assume that
the strength parameter is employed for the growth
parameter and that the bulk strain tensor &% is gener-
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ated in proportion with the deflection of the growth
parameter p to its basic value fo :

E%=Mhau ( 1 )

The tensor J,; is the Kronecker delta. The constant %
is called the growth rate with which the magnitude of
bulk strain at a growth deformation process is deter-
mined. The basic value po is a design constant given as
an objective value of p. Substituting the volume aver-
age of p into po, it is expected that the mass change is
repressed, because the integral of %6y in the volume
becomes zero. On the other hand, substituting the
maximum value of p into p, it is expected that the
mass monotonously decreases, because &% is always
negative.
2.2 Growth deformation analysis

The deformation to be generated by the bulk
strain can be determined using the condition of the
minimum strain energy. To distinguish the stress and
strain at the deformation from those generated by
acting external forces, we call the stress and strain
the growth stress and the growth strain.

The strain energy U¢(uf) caused by the bulk
strain € in a solid body with volume V° at the
natural state is given as a function of growth displace-
ment uf :

Uc(uxg)=%_/;a(Eg‘—eg‘)Dmt(621—621)0"/0 (2)

where the growth strain & satisfies the equation of
compatibility :

63=~%(uﬁj+uf.f) (3)

and Dy is the stiffness tensor. The summation con-
vention and the notation ( ) ;=& )/ox? are em-
ployed in the tensor expression, where x{ is the coordi-
nate at the natural state.

The growth displacement «f is determined from
the minimum condition of U%(wf) :

SU(uf)=| (e§—ef)DiyndesidV°=0 (4)
vo

where & denotes the virtual variation satisfying a
boundary condition for the shape restriction. Using
matrix expression, Eq. (4) becomes

[ 8 IDNNave= [ 8(e9 DN ave

(5)
The notation ( )T is the transposed.

Now, using the finite-element method, the growth
strain vector {€(x?)}. at x? in each element is expres-
sed with the nodal growth displacement vector
{uf)e:

{e%(xM}e=[B(x9)]e{u }e (6)
where [B(x?]. is the stress-nodal displacement
matrix. Expanding these element matrix [ B(z{)]. and
vectors {e°(z?)}, {«°}. into the entire matrix [B(xf)]
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and vectors {¢(xf)}, {#°} with every nodal compo-
nent, superposing these expanded expressions for Eq.
(6) and substituting them into Eq. (5), we obtain

5(uY [ [BGOVIDIBEIAV(u’)

=5(u®) [ [BGAV DNV (7)

Consequently, the governig equation of the growth
deformation is obtained by

[KNu°]={g} (8)
where the stiffness matrix [K] and the equivalent
nodal force vector {g} generated by the bulk strain are
given by

[K1= [, (B [DIB&A]dV? (9)

(g} = [, [BGAY (DNt aV® (10)

2.3 Procedure

The scheme of the growth-strain method is, as
shown in Fig. 1, to iterate the two analytical steps of
the stress analysis and the growth analysis using the
finite-element method. The beginning and termination
are with the stress analysis. Deformation and stress
distribution under a mechanical boundary condition
are evaluated in the stress analysis. The growth defor-
mation is analyzed in the growth analysis under a
boundary condition of shape restriction coming from
the design strategy.

The convergence of the shape can be confirmed by
comparing stress distributions before and after the
growth analysis. The mesh refinement should be done
after the growth deformation, if necessary.

3. Application to Problems of Steady-State Vibra-
tion

Typical problems of the steady-state vibration
are given by a free vibration specified with each
natural mode and a response to harmonic excitation.
The characteristic common to them is the existence of
the condition for the maximum deformation which is
unique and independent of time. With change of the
shape, this deformation continuously changes while
maintaining its uniqueness and the independence of
time. Consequently, it is considered to be optimal that

Stress Analysis
Growth Analysis

Fig. 1 Growth-strain method
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the strength of the solid body would be uniformized by
the growth analysis of the distribution of the strength
parameter at the maximum deformation.

The three basic problems are provided as shown
in Fig. 2. Cases 1 and 2 are for free vibration with a
normal mode. In Case 1, a cantilever beam with
nonstructural mass at the top is assumed. A free beam
with nonstructural mass at both ends is assumed in
Case 2. The response problem to harmonic excitation
is treated in Case 3, where the same cantilever beam
an in Case 1 is excited by harmonic shear loading at
the top at a frequency lying between the 1st and 2nd
natural frequencies. In all cases, the plane-stress
condition is assumed, and the nonstructural mass and
shear loading are assumed to be applied uniformly on
these end-surfaces and do not change their total
values.

The growth parameter p employed was the Mises
stress ¢. The volume average of ¢ was substituted
into po. A value of 0.05 was assigned to the growth
rate &. The eight-noded isoparametric elements were
used. A mesh refinement to rearrange the inner nodes
at a regular interval along the direction of width was
performed in every case. In Case 3, before the re-
arrangement of the inner nodes, the nodes on the

Mo/2

Mo/2

Case 1: cantilever beam
with nonstructural mass
M, at top in free vibration
with normal mode

(a) (b)

Case 2: free beam with
nonstructural mass M, at
bott ends in free vibration
with normal mode
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surface was rearranged at a regular interval along the
surface.

To check the computational details, we show the
basic equations used in the analyses here. The mass
matrix [M] and the stiffness matrix [K] with size N
X N are obtained by the standard procedure of the
finite-element method. Neglecting damping, their
matrices are related with the natural angular fre-
quency £2, and the normal mode {®-} of the »-th mode
vibration :

(—IMI+[KD{o.}=[0} (11

{0} (M) ®;}=06y (12)
The amplitude vector {U} of displacement response to
a harmonic excitation force with the amplitude vector
{F} and frequency w is approximately given in terms
of - and {®,} summing up from the 1st to the m-th
mode (m<N), including rigid-body modes, if exis-

tent :
(W)=EFELF) (13)
[R]={0®,}{o:}" (14)

where [R] is called the residue matrix. In Cases 1 and
2, the distribution of the strength parameter was
evaluated at the deformation in the normal mode {®-}.
The response to the harmonic excitaion in Case 3 was

Fcos2nft

2 Mo

%

A\ DN

(c) Case 3: cantilever beam
with nonstructural mass
M, at top under harmonic
shear loading at top with

frequency f

Fig. 2 Problems; left and right figures show boundary conditions for stress analysis and
growth analysis, respectively ; width=6 m, length=60 m, Mo=initial beam mass,
F=6MN/m, f=500 Hz; Young’s modulus E =210 GPa, Poisson’s ratio v=0.3,

density 0=7.8%x10°kg/m®
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given by Eq. (13), in which m=>5 was assumed and the
4th-mode of longitudinal mode was included.

The results are shown in Figs. 3 and 4 for Case 1,
and in Figs. 5 and 6 for Case 2. Figures 3 and 5 are for
the 1st mode, and Figs. 4 and 6 are for the 2nd mode.
In each case, the change of mass was repressed by
using the volume average of strength parameter for po
in Eq. (1). From the results of the maximum value of
strength parameter obtained from iteration of the
growth analysis, it is indicated that the strength

. H
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(a) meshes, mode shapes and contours of Mises stress
normalized with volume average

monotonously increased and converged to a certain
value. In these problems, the natural frequencies in-
creased monotonously and converged with respect to
iteration of the growth analysis.

The results in the Case 3 of harmonic excitation
are shown in Fig. 7. In this case, the each natural
frequency changes with variation of shape, so that the
contribution ratios of each mode to the response
changes with the iteration of the growth analysis. As
a result, the change of natural frequencies was not

2 T T T T
§  Oove/gave)ni ]
/[lllunt ]
/ Riut/Riijni
g 1 P:: M7 M —
\ gmax/gmaxin |

- -

0 1 1 1 1
0 10 20 30 40 50

Iteration number n

(b) convergence rates to initial values: maximum
Mises stress omax evaluated at Gaussian points,
volume average of Mises stress Gave, mass M, natu-
ral frequency £ of 1st mode (fi,n=61.6 Hz) and self
-residue R:: at center point 7 on top surface

Fig. 3 Results with 1st mode in Case 1.

1T

n=0 n=5)

(a) meshes, mode shapes and contours of Mises stress
normalized with volume average

2 T T T 1
L ,2/]2’“/ Oave/Goveni
8 o
B (3 e
5! R\ RifRum  NM/Mm -j
i Omax/gmax i
0 1 1 1 1

0 10 20 30

Iteration number n

(b) convergence rates to initial values: maximum
Mises stress omex evaluated at Gaussian points,
volume average of Mises stress dave, mass M, natu-
ral frequency f2 of 2nd mode (f2.i»;=615.2 Hz) and
self-residue R.; at center point 7 on top surface

Fig. 4 Results with 2nd mode in Case 1
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monotonous. However, the maximum value of the
strength parameter, the mass and the deflection at the
center of top surface monotonously converged. The
maximum value of the strength parameter with which
the strength is determined was reduced to 13% of the
initial value.

4. Conclusions

In the present report, a mothod for appplication
of the growth strain method® to the problems of
steady-state vibration was described. The growth
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(a) meshes, mode shapes and contours of Mises stress
normalized with volume average
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parameter with which the bulk strain is generated was
assumed to be given with the strength parameter such
as the Mises stress, and evaluated at the maximum
deformation in steady-state vibration. From numeri-
cal examination on simple beam structures, we
obtained the results that the maximum value of the
strength parameter and the natural frequency monoto-
nously converged in the free vibration with each
normal mode, and that in the response to harmonic
excitation, while the natural frequencies did not vary
monotonously, the maximum value of the strength

Oave/ Gave jni |

JRURY]

8 o
3 1 M/Mini
o Omax/ 0 max ni
0 1 1 1 1
0 10 20 30 40 50

Iteration number n

(b) convergence rates to initial values: maximum
Mises stress omax evaluated at Gaussian points,
volume average of Mises stress oave, mass M, natu-
ral frequency /i of 1st mode and self-residue R;: at
center point 7 o top surface

Fig. 5 Results with 1st mode in Case 2
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(a) meshes, mode shapes and contours of Mises stress
normalized with volume average
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(b) convergence rates to initial values: maximum
Mises stress omax evaluated at Gaussian points,
volume average of Mises stress dave, mass M, natu-
ral frequency f. of 2nd mode and self-residue R.: at
center point 7 on top surface

Fig. 6 Results with 2nd mode in Case 2

JSME International Journal

Series III, Vol. 34, No. 3, 1991

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

360

13

ima
" s

JanEaa;
I
| Lokt

L

FIERS RSy

[T

(a) meshes, response shapes and contours of Mises
stress normalized with volume average
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(b) convergence rates to initial value : maximum Mises
stress Omax evaluated at Gaussian points, volume
average of Mises stress cave, mass M, natural fre-
quency fr of »-th mode and amplitude of dis-
placememt U at center point on top surface
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Frequency (Hz)

(c¢) self-transfer function at center point on top surface

Fig. 7 Results in Case 3
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parameter with which the strength is determined
steadily converged.

(1)

(2)

(3)

(4)
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