実環境数値モデルとFDTD並列計算による大規模電磁波シミュレーション

Large-Scale EM Wave Simulation by Realistic Numerical Model Using FDTD Parallel Computation

1. まえがき
近年、携帯電話、無線LAN、GPS、ETCなど電波を使用した様々なデバイスは、我々の生活に欠かせないものになっています。このような電波デバイスは、今後も増加する傾向があるため、電波の規制周波数帯による裁量の影響や周波数帯の制約など、電波の規制の悪化が懸念される問題視されている。この問題を解決するためにFDTD(Finite-Difference Time-Domain)法による電磁波シミュレーションが盛んに行われているが、これまでの研究では簡易モデルを用いたシミュレーションがほとんどであり[1][2][3]。解析精度に問題があった。
一方、電波による環境および経電気設備などの被害が増大しており、社会問題となっている。電波により発生する電磁波電磁防波対策として検討されるべきであるため、これまでにFDTD法による電磁波シミュレーションの解析が盛んに行われている。しかしながら、2次元平面モデルによる解析[4]、3次元平面モデルによる3次元解析[5]、ビル1棟のみによる3次元解析[6]など、実際の地形を考慮した実環境シミュレーションが行われておらず、現実的な解析結果が得られていない。

以上のように、屋内において電磁波の伝搬状況を実環境モデルで解析できるが、既存の電波デバイスの設計条件を考慮した新規電波デバイスの設計が可能である。そこで本研究では、より実環境に近い解析を行うため、(1) ステレオカメラによる実環境電磁波シミュレーションと、(2) 国土地理院の等高線図による実環境数値モデルの構築を行い、(3) 実際の建築物を用いてFDTD並列計算による実環境シミュレーションを行う。

2. FDTD法のための実環境数値モデル構築

2.1 FDTD法の基本原理
FDTD法は、マックスウェルの方程式を空間および時間の2次精度中心差分で差分化フーリエ変換し、時間毎に解析空間内の電磁波を計算する手法である。簡易なアルゴリズムと時刻領域の解析が可能であるが、特徴がある。

FDTD法では、分析領域を格子状（セル）に分割し、各セル上電磁波の各成分を配置する。例えば、電界E_zは$E_z(i + \frac{1}{2}, j, k)$、磁界$H_z$は$H_z(i, j + \frac{1}{2}, k + \frac{1}{2})$のように新たに$1/2$セルずれた点で配する。時刻毎に同じように、電界と磁界をE_z, H_zのように1/2時間ずれた時間で定義する。このように、時間および時間領域電磁波を定義し、2次精度中心差分によりマックスウェルの方程式を差分化フーリエ変換し、電磁波の各成分を時間ステップ毎に全体解析領域で計算していく。

1. 仙台高等専門学校、Sendai National College of Technology
2. 福島大学、Tohoku University

2.2 ステレオカメラによる実環境数値モデルの構築
本研究では、ステレオカメラを用いた3次元計測により得られた3次元雲モデルをもとに、FDTD法の変数値を構築する。手元では任意方向に位置した物体に対応するために、物体の内外判定を平面の方程式で行う。

数値モデル構築の手順は、(1) 物体の位置座標を入力し、(2) 特徴点の座標をもとに物体を構成するすべての面の方程式を求める、(3) 算出した面の方程式に不等号を組み合わせることにより物体の内部を表す式式を作成し、(4) 物体の内部に位置するセルにその物体の電気定数ε, μ, σを与える。

2.3 等高線図による屋外数値モデルの構築
国土地理院が公開している等高線図からFDTD法の地形数値モデルを構築する。以下に構築の手順を示す。
(1) 解析対象とする等高線図とその範囲内の最大点を入力し、(2) 最高点から下降方向に各等高線の標高を決定する。ここで、頂点が複数ある場合、すなわち頂上に下降したときに下降方向に等高線が存在する場合は、一時的に等高線の標高値から除外する。それ以外の等高線の標高値を決定した後、除去していた等高線の標高値を決定する。各地点の標高は、頂点の標高と、頂点の等高線との間で等高線の最短距離から計算できる。
(3) 以上の結果から等高線の標高値をともに、等高線以外の空間の標高値を補間により求め、(4) すべての地点の標高をもとに各セルに電気定数ε, μ, σを与える。

3. 実環境数値モデルを用いたFDTD並列計算による電磁波シミュレーション

3.1 解析環境
波長に比べて大規模な領域の電磁波伝搬を解析するためし、ここでは、Intel Xeonプロセッサ2基と32GBメモリを搭載したマルチコアPC (MacPro MA970/A)を用いている。配列化はMPI (mpich2-1.2.7)で実装する。

3.2 オフィス環境における電磁波伝搬解析

2.2節で示した手順により、実際のオフィス環境として研究室内の数値モデルを構築する。モデル化する研究室の大きさは、$x = 4.5 m, y = 4.5 m, z = 3.0 m$とし、室内にはPCなどの直方体の物体が25個、テーブル7個、イス5脚、棚2個などが存在する。ここでは空間は真空とし、室内的物体の電気定数はすべて$\varepsilon = 3.0, \sigma = 10^{-2}$S/mとしている。図1にセルサイズを0.01 mとして構築したFDTD法の数値モデルを示す。図1より、本手法によりFDTD法の数値モデルが構築できることを確認した。図1の数値モデルを用いてFDTD法による電磁波伝搬解析を行う、解析空間は4.5×4.5×3.0 mとし、上下と側面に10セル分の厚さのコンクリート壁を設けた。
図1：オフィス環境の数値モデル構築例

図2：数値モデルの精度による観測波形の相違

図3：山岳部の数値モデル構築例

図4：山岳部における電磁波の伝搬散乱

構築した図3の地形数値モデルを用いてFDTD法による電波伝搬散乱解析を行う。解析領域の大きさは625×625×625 mであり、セルサイズはΔx=Δy=Δz=0.01 m、Δt=10^{-11} sとした。壁には ε_r=6.0、σ=10^{-2} S/m、室内の透壁には ε_r=3.0、σ=10^{-2} S/mを与え、(1) 空間内に物体が存在しないとき、(2) テーブルのみモデル化したとき、(3) すべての物体をモデル化したときの3条件で解析を行った。

図2に図1の数値モデルを用いてFDTD法により解析した結果を示す。図2は、波源を(2.0, 4.0, 1.8)に設置した場合の、波源からx方向に2.0 m離れた観測点における電界E_xの波形である。図2より、室内モデルの精度により解析結果に違いが生じていることがわかる。例えば、9ns付近の電界E_yをみてみると、(1)モデルを使用しなかった場合のE_yが0.015 V/mであるのに対し、(2) テーブルのみと (3) すべての物体をモデル化した場合では、テーブルやPCなどによる反射波のためそれぞれ0.02 V/m、0.01 V/mが得られている。今回の解析から、数値モデルの精度を上げることにより、解析した電磁界応答も現実に近くなることを確認した。

4. むすび

本研究では、実環境モデルを用いたFDTD並列計算による電磁波シミュレーションを行った。構築した室内数値モデルと地形数値モデルを用いて、実際の環境下での電波伝搬散乱解析を行い、実環境モデルを用いることにより現実的な解析結果が得られることを示した。今後は、様々な環境下での検証と実験との比較、GPUなどによる高速化、解析結果の可視化等を行う予定である。

参考文献