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A Study on the Vortex Oscillator
{(2nd Report: Oscillatory Phenomena Occurring in a Confined

Vortex Oscillator)*

By Shoji TAKAGI**, Yuji YOKQOYA***

A vortex oscillator, which has a double input vortex chamber and two
conduit-capacity systems, is studied theoretically and experimentally.
An oscillator with a single conduit-capacity system is also examined. A
mathematical model of this type of oscillator is presented and its
validity is examined by experiments. The stability of the equilibrium
state of the system is discussed. Higher modes of oscillation occur in
the system under certain conditions when the compressibility of the
working fluid is relatively large. The frequency of the higher mode
coincides with the natural frequency of the same mode of the conduit-
capacity system of the oscillator. Relaxation oscillations occur under
certain conditions also. The experimental data were found to be in good
agreement with theoretical predictions.

the valve may be represented by

1. Introduction

In a previous papeézh we have proposed
a mathematical model of a fluidic oscillator
which consists of a vortex valve with double
inputs and two conduit-capacity systems ( i.
e. a confined vortex oscillator ), on the
assumption that the compressibility of the

Poe=F(Qus, Qoo evverrremvereerecmncnvasnennans (1)

It has been discussed in detail in the
previous paper2 that this representation
matches well with a mathematical model for
an oscillator with a vortex valve shown in
Fig.l. The method of the measurement is the
same as the one explained in the previous

working fluid could be ignored. The validity
of the model has been examined by experiments.
On the other hand, oscillatory phenomena
which can not be predicted by the above
mentioned model may occur in systems with
gases as the working fluids. These oscilla-
tions are studied in this paper. First we A
discuss a mathematical model of a system in
which the compressibility of the fluid is
taken into account. Next we make analyses
using the mathematical model and examine the
validity of the model by experiments.

paper. Air was used as the working fluid.

2. Mathematical model of
oscillator

L

2.1 Steady state characteristics
of vortex valve

Figure 1 shows a test vortex valve.
The fluid enters the vortex chamber through
two input ports A, B and flows out of the 750
orifice D into the atmosphere. Experimental
results of steady state characteristics of
this valve are shown in Fig.2. The pressures
at the periphery of the vortex chamber Pyg
(which were measured at C in Fig.l) are
plotted against the flow rate &1g at one of
the two input ports of the valve for several
values of the flow rate ggg at the other port.
It is seen that P,g depends on §1g and §og.
Namely, the steady state characteristics of

Fig.l Shape and dimensions of test vortex
valve
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Fig.2 Steady state characteristics of the
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Though the function f in the right hand
side of Eq.(l) can be discussed qualitatively
in a theoretical manner, it is determined by
the use of the experimental results here.

Let us now assume the relation between flow
rate §g out of the outlet orifice and P,g in
the form of

Qe=Qus+Qos=CAgVZPos/ 0rvvvvverresreeeeenens (2)

where (' is the dischage coefficient, 4, is
the opening area of the orifice, and p is

the density of air. The dischage coefficient
¢ is plotted against Q;,/@gs in Fig.3 for
four different values of ggg. This figure
shows that the coefficient C may be determin-
ed as a function of @15/@95. Thus Eq.(2)

reduces to

Pos=F(Qu:/Qy5) (Qua+Qas)* (4, j=1,2; i=j,

where F(Qis/st) [=p/24§02] means a function
of Q7s/Qjs, and is symmetric with respect to
the plane @75=42s.

2.2 Fundamental equations

A schematic diagram of the vortex oscil-
lator investigated in this paper is shown in
Fig.4, in which @7p is the constant flow rate
into the capacity (4=1,2), Pp; is the pressure
in the capacity, V; is the volume of the
capacity, @y; is the flow rate at the capacity
end, P; is the pressure at the valve end, Kj
is the bulk modulus of air in the capacity, @
is the flow rate at the valve end, B is the
reciprocal of resistance factor in the inlet
passage [see Eq.(7)], P, is the pressure at
the periphery of the vortex chamber, 4 is the
cross sectional area of the conduit, 7; is the
length of the conduit, and the subscripts 1
and 2 correspond to the left side conduit-
capacity system and the right side one
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outlet orifice
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Fig.4 Schematic diagram of the confined
vortex oscillator
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respectively.

We derive fundamental equations of the
system on the basis of the following assump-
tions: (i) @4, is kept constant. (ii) The
characteristics of the vortex valve in
operation are the same as the steady state
ones. (iii) Motion of the fluid in the
conduits follows the one-dimensional wave
equation without friction.

The pressure ?i and the flow rate Qi at
a certain position in the conduit may be given

by
Bi=Pu+2. {1:(t—xe/¢) +ai(t+2:/¢))

Qi=Quot+ri(t—2:/c) —pa(t+ai/C) -oon (4-b)

where ?{0 and @io are constants, Y77 and Ygg
are wave functions, Ze=pe/d, ¢ is the velocity
of wave propagation, and ¢ is the time.
Boundary conditions at both ends of conduits
are

Bi=Pv:, Q:i=Qv:

BPi=P, Q:=Q
The pressure change in the capacity is
expressed as

Pyi=(£:/ V) (Qio—Qpy) reerreeerererersunnanns (6)
where a dot ° indicates differentiation with
respect to t. Let us express the relation
between §; and (P;-Fp) as follows:

Qi=B(Pi—Pp) «+rereeervemmcinenininurnineannne (7)

The characteristics of the vortex valve is
written as

Po=f(Q, Q) cevrrvrecesscrerernentuiniiuonininnns (8)

Equation (8) represents the characteristic
curved surface of the vortex valve in the

three-dimensional coordinate system (Q7,92,
Pp), and it has the following propertieéz.

E71>0 Q1>ds
E’>0 Q<Q }..... (9)
2 172
where E7=(3f/3Q7) and Ep=(0f/9Qg) (see Fig.2).
Equations (4)(8) are the fundamental

equations describing the operation of the
oscillator.

when

when

3. Analyses of the mathematical model

3.1 Stability of the system

The equilibrium state of the system is
obtained by setting terms differentiated with
respect to t and the wave functions in the
fundamental equations equal to zero. Then
the flow rates are given by Qi=Qvi=Qio (=1,
2). Linearizing the fundamental equations
about the equilibrium state, and assuming
that the deviations of all quantities from
the equilibrium state are proportional to
eS?, we obtain the eigen value equation as

{(Zc'f; D) (Z:4D2)—E\E;} (14+Cis)(1
+Cos)e 1+ 4 ((Ze— D) (Ze—D2)
—E\E3} (1—Ci5) (1—Cos)e=F1t72)8
+ ((Ze+ D) (Z:—D:) + E E2} (14 Cis) (1
—¢25) e+ ((Ze— D) (Ze+ De)

+ E1Ez} (1—Cis) (14 Caos)e2"04=0 .-+ (10)

where C;=ZoVi/k;, E4=(3f/3Q;)Q,=q =
i=leVilKg, & 1/87=010,Q2=R 30>
Di=E;+1/B, T4=li/c, and 1=1,2. 0-%27v20
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It is difficult to discuss generally
the stability of the system from Eq.(10).
Here the stability is discussed for the cases
in which the oscillator has a special
configuration or operational conditions.

First the stability is investigated when
Q10=Q20. A relation E7=E9>0 holds in this
case from the previous discussion®. This
relation leads to the conclusion that all
eigen values of Eq.(10) exist in the left
half of the s-plane; that is, when @70=920,
the oscillator can not operate no matter
what geometrical construction it may have.

Next the stability is discussed for the
system in which one of the two conduits is
sufficiently short by comparison with the
other one, i.e. 77»ly. Then expanding e¢*T28
in the form of Taylor series and taking only
the first two terms of the series (i.e. %728
=1#7,8), we can derive the following
equations from Eq.(10),

14-G(5)e2T10=0 +vverrrrvnininnnuieninneens (11-a)
_(A=Cs)(Fi+Fys+Fy) :
G(s)= (1+4Ci3) (G1s*+ Gas+Gs) (-5

where,
Fi1=2.Coto(Z:—Dy),

Fo=(Co413) (Z:Dy—(D1D;—E\Es)},

Fs=Z:(Z.~Dy), Gi=Z.Cor:(Z,+Dy),
Ge=(Co+172) (ZoDe+ (D1De—E\Ey)},
GS=Zc(Zc+Dl)

Equation (ll.a) can also be derived from the
fundamental equations by neglecting the
compressibility of the fluid in the shorter
conduit. If all roots of Eq.(ll.a) locate

in the left half of the s-plane, the system
is stable. We neglect the resistant factor
in the inlet passage of the valve for the

sake of the convenience of analyses. Then

the quantity 1/8 is equal to zero. The
stability of the system is examined by

Nyquist criterion®. Putting s=jw', where j=
-1, in Eq.(11l.a), and paying attention to

the point where a vector G(juw')e-2Jw'T1 ig

led by rotating the vector G(jw') by the angle
2w'Ty in the clockwise direction, we can
derive some properties of the system necessary
to evaluate the stability as follows:

(A) The starting and ‘terminating points
of a vector locus G(jw') are G(0)=(Z -EJ)/(Z
+EJ) and G(®)=-(Z -E])/(ZG+EJ)’ respectively.
And their positions relative to the unit
circle are determined easily; that is, (i)
when E7>0, both G(0) and G(®) exist in the
unit circle, and (ii) when F7<0, both G(0)
and G(~) exist outside the unit circle (see
Fig.5).

(B) The location of the vector locus
relative to the unit circle can be obtained
by examining |G(jw’)!. That is,

(i) G(jw") exists in the unit circle

when E7>0.
(ii) G(jw') exists outside the unit circle
when E7<0.
In both cases G(jw') is tangent to the unit
circle at w'=/1/Cz72.

(C) It is easily seen from Eq.(1l.b)

that G(s)e~2T18 has two poles in the right

half s-plane if
(ZoHEDEQ<D  viiiiiiiiiiinneneea o (12)

Under other conditions, Eq.(11.b) has no pole

in the right half s-plane. From Eq.(9), E7
and E9 are not negative simultaneously.
Hence, Eq.(12) is rewritten as follows:

E1>O, E‘2<O or ZC,+E1<0 sesseneeesa(13)

(D) The vector locus G(jw') can be drawn
qualitatively as in Fig.5.

The results obtained in (A)Vv(D) lead
to the conclusions concerning the stability
of the system in which 77>>lg. They are
summarized as follows: (I) When both E; and
Eqg are positive, the system is stable, namely
the system does not operate. <(II) When EF7 is
negative, namely when @79<@2¢ [see Eq.(9)],
the eigen value equation (11l.a) has one
statically unstable root or more and an
infinite number of dynamically unstable roots.
This means that a small deviation from the
equilibrium state induces a diverging oscil-
lation in an infinite number of modes. (III)
When Eg is negative, namely when Q70>@2p, the
system has two unstable roots. Considering
that the characteristic roots always take the
form of complex conjugate in the s-plane, we
can conclude that in this case the system
oscillates with only one frequency or the
equilibrium state falls into instability in
a nonoscillatory fashion.

3.2 Stability of oscillator with
a single capacity

This section is concerned with an oscil-
lator with a single conduit-capacity system,
for instance, an oscillator in which the
constant rate of flow @y, is delivered
directly to the right side inlet of the valve
in Fig.4. Hereafter, we call this type of
oscillator a single-capacity-oscillator,
and the oscillator treated in the previous
section a double-capacity-oscillator.

Here we put Eg=Do=T»=0 in Eq.(11),
the eigen value equation becomes
(Ze=D)(1—Cis)
(Ze+Dy) (1+Cis)

The stability can be also discussed by
the use of Nyquist criterion. The results
obtained are summarized as follows: (I'")
When D7>0, the system is stable. (II') When
D;<0, the system has one statically unstable
root and an infinite number of dynamically
unstable roots (here, friction loss in the

then

1+ 72T () eerenns (14)

=1 { Glo)| GO)
0

(i) Ze-Ey > 0 (i) Ze~E <0

, Ey >0
J

oo \co
N

(i) Ze+ E] >0

(iv) Zc+E; <0

£ <0

Fig.5 Vector loci of G(jw')
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conduits is ignored). This type of oscilla-
tor can operate only if D;<0.

4. Experiments and discussion

4.1 Experimental apparatus and method
of experiment

The arrangement of an experimental setup
is schematically shown in Fig.6. The constant
flow rates 70 and g2p delivered to the
capacity were regulated with the valves V; and
V9 and were measured by rotameters F; and Fj.
Pressure drops across the orifices 04 and 03
were set so large that both @70 and §2p were
kept nearly constant. Oscillations were
measured by pressure transducers at several
points in the conduits. The diameters of the
conduits df were 6 and 10 mm, and the length
l; was varied from 0.5 to 30 m,

4.2 Experimental results and discussion

Experimental results concerning both
the double- and single~capacity-oscillators
are presented here. First the results of
the experiment with the double-capacity-
oscillator are described.

The analytical conclusion described in
section 3.1; that is, the oscillator can not
operate if @70=920, has been verified by the
experiment. Figure 7 shows three examples
of measured wave forms. In this figure pp7,
ppg and p7 are pressure fluctuations at the
both capacities and at the valve side end of
the conduit 1 (i.e. the left side one in

(c) Q10=817cm3/s, Qop=46Tcm’ /s

Fig.6). The measured frequency f is plotted (df=10mm, 17=5m, 15=0.5m, V7=3.91, Vg=21)
against the conduit length 77 in Fig.8. The :

dot~dash-lines show the calculated frequencies Fig.7 Examples of the wave forms for the
which are frequencies of the small diverging double-capacity-oscillator obtained
oscillations about the equilibrium state from the experiments

obtained from Eq.(ll.a). The solid lines
show the numerical solutions for the funda-
mental equations where a lumped parameter
system is used instead of Egs.(4.a)(4.b) to
describe the motion of fluid in the conduits.
Lumping of the equation of motion of fluid
in the conduits was made in the following
way. The longer conduit was divided into
four equal-length sections. The fluid in
each section was assumed to move as a solid
body, and the equivalent capacity equal to 20
the volume of the section was connected to

|
h
. . o
the end of each section. The shorter conduit .o 1st mode
8

was regarded as one section. Friction force
10

0] 2 4 )
T:tank, Vg4:valve, Fy:rotameter, b m

Oj:orifice, PT:pressure transducer, b =81 3 - 3
Atamplifier, R:oscillograph (b) QJO 817cm /s, Q20—467cm /s

[¢3)
3

(df=10mm, 19=0.5m, V7=3.91, Vg=21)

Fig.8 Frequencies of the oscillation for
the double-capacity-oscillator

Fig.6 Schematic diagram of the experimental
apparatus
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proportional to velocity in each section was end of the conduit 1, and the phase angle §
taken into consideration. It is seen from is shown with reference to the value at the
Fig.8(a) that a number of sustained oscil- valve side end of the conduit 1. The
lations were observed when Q79<@gy. Fre- positions z/71=0 and z/7=1 (I=17+lg) mean the
quencies of these oscillations coincided positions of the capacity side end of the

with the natural frequencies of the 2nd, 3rd,
and 4th modes of the conduit-capacity system

of the oscillator. Hereafter, the sustained

oscillation is called the lst, or the 2nd, or
+++ mode in order of frequency as shown in R, 300
Fig.8(a). The oscillations indicated by the 200
marks @ corresponding to the lst mode of the

grem?
)
(&]
 E——

numerical ones are the relaxation oscillations 400
different from the lst mode of the above

mentioned nutural oscillation. The B 300
analytical result (II) in section 3.1 states 200
that a small deviation from the equilibrium

state of the system can induce a diverging AOOT

oscillation with an infinite number of modes b 300

when @70<@20 as far as friction forces in the v2 j__,-——____,__—\\_,,_—~‘~_d,—
conduits are ignored. Figure 8(a) shows that 200

in the actual case with friction forces these
small divergent oscillations grow into a N

finite number of periodic oscillations by the "2% u/\\
effect of the nonlinearity of the system.

On the other hand, the system can oscillate
at only one frequency at most when §70>Q20
[see (III) in section 3.1]. Only one sustain-
ed oscillation was observed for a certain
operational condition as in Fig.8(b) in this
case, and the imaginary part of the unstable 2

roots of Eq.(1l.a) was equal to zero. This

means that the solution diverging in a non- Q, 0

oscillatory fashion from the equilibrium state

grows up to be a periodic oscillation by the -2

effect of the nonlinearity of the system. P—?ﬂi?g**

It is seen from the figure that the observed

values are in good agreement with the theoret- (a) Q10=467cm3/s, Q20=817cm3/8
ically predicted ones when Q79<Qgp [see Fig.
8(a)]. However, there is some difference
between the observed and the theoretical
values when §79>Q9) [see Fig.8(b)]. This D 120
difference may be understood as follows: vi
Figures 9(a) and 9(b) are wave forms of the

140

gscm?

numerical solutlons for the model when Q7p= 100
467 and Qgp=817 cm /s and for the model @7p=

817 and Qg9=467 cm®/s, respectively. The 140
flow rates g7 and @ in the both inlet P, 120
passages of the valve are of the same order of 00

magnitude and are in a phase opposite to each

other when @70<@2¢p. This means that the fluid

in the both inlet passages moves as a solid 140
body. Hence, the frequencies of higher modes
in Fig.8(a) may coincide with the natural
frequencies of the conduit-capacity system
mentioned above. On the other hand, the
variation of 7 is considerably larger than 100

d2, and @7 and ¢ oscillate in the same phase oy Y I .
during half the period and in an opposite Q = :%p, “/N\\/V/ L/\\\VK/JM\JA\N
phase during the other half of the period 0

when @7p>Q20. It may be concluded that the
effect of flow in the vortex chamber on
oscillations is more complicated when §70>¢20

than when Q79<Q2p. Therefore, the difference 1 1 r '
between the measured and the theoretical L\fj
P

o, 120

N

frequencies in Fig.8(b) may be caused by the G 0
assumption that the characteristics of the
vortex valve in operation are the same as
the steady state ones. The characteristics O1s

in operation deviate increasingly from the ) Q10=8170m3/3, Q20=467cm3/s
steady state ones as frequency of oscilla-

tions increased?, Figure 10 shows the (dp=10mm, 17=5m, 19=0.5m, V7=3.91, Vg=21)

amplitude of pressure fluctuation p; along Fig.9 Wave forms for the double~capacity-

the conduit, where the amplitude [p,| is oscillator obtained with a digital
normalized by the value p, at the valve side

-1

computer
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conduits 1 and 2, respectively. The solid
lines @ s @ and@ correspond to the points A,
B and C in Fig.8. The values |p.| and 6 were
ST obtained from the fundamental fréquency
, \\((j component of t@e mea§ured wave form. The

\ broken lines() . C) correspond to the 2nd
and 3rd modes of the natural vibration of
the conduit-capacity system of the oscil-
lator. The experimental results of the
double-capacity-oscillator have been describ-
ed in the above. The results of the single~
capacity-~oscillator are given in the follow-
ing paragraph.

Examples of the measured wave forms are
shown in Fig.ll. Measured frequency f for
various values of the capacity volume V7 is
plotted against the conduit length 77 in Fig.
I T 12, The solid lines indicate numerical
: frequencies which were obtained from the
fundamental equations, where the lumped pa-
rameter system was also used instead of Egs.
(4.a)(4.b). The broken lines show the
calculated frequencies corresponding to the
typical relaxation oscillation in an extreme
case where the mass effect of the fluid in
the conduit is ignored. All the observed
oscillations in Fig.12(a) over the range of
lengths 77 shown in the figure were the
relaxation oscillations and the measured

1B/pl

0 02 04 06 08
z/1

(b) Phase lag
(df=10mm, V1=3.9 , V=21, 17=5m, 19=0.51)

Curve: @) Q7p=467em®/s, Q9p=8licm?/s,
the second mode
C)Q10=467cm3/s, Qo0=817cm®/s,
the third mode
® Qi0=817cm®/s, Qgp=46Tcm®/s

Fig.10 Pressure fluctuation distribution
along the conduit

Py

100 g/cm?

R, 15
Vi b
N el 02 |
v i
- o| 05 |
[ 1.0
1 ° el 20 H
N 8 flel 39 |
g I 9 ggo
p1 > S 8°g990 05°390
8 LA,
- 5 L
. o P,
o - s 1,055n991
Vi : L ) -'QO:l
0 lc 10 20 0 30
(b) 17=12 m rm
(dp=6mm, V1=21, Q10=400cm®/s, Qgp=666cm®/s) (b)  dy=6 mm 3
- 3 =
Fig.1l1l Examples of the waveforms for the (Q10—4000m /s, 920 =666cm”/s)
single-capacity-oscillator obtained Fig.12 Frequencies of the oscillation for
from the experiments the single-capacity-oscillator
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frequencies are in good agreement with the
analytically predicted ones. It is seen
from Fig.12(b) that a sudden change of modes
occurs when 17=7 m. This phenomenon can be
understood as follows: When the compress-
ibility and the mass of the fluid in the
conduit are ignored, the stability condition
becomes D=E7+np>0 from the previous paper?,
where 11 is the coefficient of the conduit
friction resistance. There exists a critical
conduit length I, at which the system becomes
stable, i.e. D=0, even if E;<0. The
relaxation oscillations occur if the length
17 is smaller than 7,, and no oscillation
occurs if 77>l,. Howevere, when E4<0, higher
modes of oscillation occur in a real system
having the compressibility and the mass of
the fluid even if 77>7,. The calculated

value of 7, shown in Fig.12(b) with a dot-
dash line agrees with the measured and
numerical results. The higher modes obtained
from the numerical calculations were almost
independent of the values of V7.

5. Conclusions

The oscillatory phenomena occurring in
a confined type vortex oscillator have been
examined theoretically and experimentally.
The results obtained from the experiments are
in good agreement with the results predicted
theoretically.

The authors wish to express their
gratitude to Prof. Tadaya Ito, Nagoya Univ.,
for valuable discussion.
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