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Proposal of a New Crack Model Considering the Discontinuity in the Cracked

Plane and Its Application to the Evaluation of Crack Parameter*

by Katsuhiko WATANABE** and Hideyuki AZEGAMI***

A new crack model which enables us to evaluate crack parameters
crack energy density and its distribution,

such as
COD and COA wunder arbitrary load

history is proposed and the availability of the proposed model is demonstrated

through finite element analyses of elasto

follows;

-plastic crack.

The contents are as

(1) A crack model considering the discontinuity in the cracked plane is intro-
duced and the constitutive equation for a plane with discontinuity is formu~

lated on an elasto-plastic case.

(2) The finite element formulation of the model is carried out by

a plane element.

(3) An elasto-plastic crack expressed by the

introducing

proposed model under monotonic

loading is analyzed by finite element method and the availability of the model
is verified through the evaluation of crack energy density.

Key Words : Fracture, DWA Crack Model, Discontinuity in Cracked Plane,
Crack Parameter, Crack Energy Density, Finite Element Analysis

1. Introduction

In the analysis of a crack problem
based on usual continuum model, the singu-
larities of stress and strain appear at a
crack tip. At a crack tip in an actual
material, however, the situation is dif-
ferent and necessary condition to be con-
tinuum is usually not satisfied because of
discontinuous deformation. The Dugdale
model® is regarded as a model of first~
order approximation to express this dis-
continuous deformation, but it can not
assert itself as a crack model with gener-

ality because, in the model, the non-linea-

rity is limited to that of ideal plastic-
- ity and plastic deformation is admitted
only in the plane containing a crack.

' By the way, the authors discussed on
the Dugdale model before and showed that
the model can be rated as a crack model in
which the plane containing a crackis deem—
ed an ideally rigid-plastic body of which
the constitutive law is given by arelation
between out—of-plane stress component and
corresponding out—of-plane relative dis-
placement and the other part except the
plane containing a crack is deemed a usual
linear elastic body (in this paper, stress

© component acting on the upper and ~lower
surfaces of the plane and corresponding
relative displacement on the surfaces are
called out-of-plane stress component and
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out-of-plane relative displacement respec—
tively). And it was pointed out that, when
the model is thus rated, it can be a model
which enables us to follow the deformation
every moment with the variation of applied
load @,

When the Dugdale model is grasped as
described above, it is planned, as a natu—
ral extension of the model, to analyze a
crack problem by applying the constitutive
equations suitable to the problem given by
a relation between out-of-plane stress com~
ponent and out-of-plane relative displace-
ment to the plane containing crack front
(not restricted to the plane containing a
crack) and by a relation between stress
and strain to the part except the plane.
In this paper, such a crack model is newly
proposed as a general crack model which ex~
presses the discontinuous deformation
around a crack tip as first-order approxi-
mation and it is tried to apply this model
to the evaluations of crack parameters.
First, the authors present a new crack
model and show how to give the constitutive
equation and how to formulate the model
for finite element analysis. Next, we carry
out the finite element analysis of an
elasto-plastic cracked panel under mono-
tonously increasing load by the new model
and show the availability of the model
through the evaluations of crack energy
density and J -integral.

2. Proposal of a Crack Model

Considering the Discontinuity
in the Plane Containing Crack
Front

In this chapter, a new crack model is
presented and it is shown how the crack
parameters are defined in this model. The
formulation of a constitutive equation es-
pecially for an elasto-plastic problem and
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the finite element formulation of
model are also shown here.

the new

2.1 DWA model and crack parameters

Around a crack tip tip in an actual
material, usually the continuity of defor-
mation does mot hold because of concen-
trated slip deformations or other reasons.
Then, we propose a general crack model
shown in the following as the model which
enables us to express the situation above
around a crack tip as first-order approxi-
mation.

In Fig.1(a) which shows the state of
a cracked body before deformation (timer
=0), we divide the cracked body into two
parts, that is, the plane containing the
crack (shown by the solid line in front of
crack tip in the figure) and the part ex-~
cept the plane above, and we comsider that
the latter behaves as a usual continuum
and the former is stretched as shown in
Figs.1(a) and (b) after deformation (time
r=t) (Fig.1(b) shows the state where the
plane is stretched and the crack extends
until its length becomes 4 ). When the
constitutive equation for the latter is
8iven by a relation between stress and
strain and that for the former is given by
a relation between out-of~plane stress
component .0~: and out-of-plane relative
displacement .dx; defined by

LOnl = (022 023, C121  seese sesersnane vecenes ..( 1 )
LanJ = Lazz, 5:1. 31“ ciessersesrsraneantan ( 2)
referring to Fig.1(c), this model becomes

a crack model which enables us to analyze
a crack problem under an arbitrary applied
load. It goes without saying that the con-
stitutive equationssuitable to the phenom-
enon should be adopted. Here, the Dugdale
model is, as described before, a  crack
model in which the plane containing acrack
is deemed an ideally rigid-plastic body
and the part except the plane is deemed a
linear elastic body ®@, therefore, the pro-
posed model can assert itself as the most

generalized model of Dugdale model. Then,
in this paper, we call this model DWA
(Dugdale-Watanabe-Azegami) model for sim-

plification of description. The plane con-
taining a crack is considered here as the
plane considering the discontinuity, but,
as we can imagine an arbitrary plane con—
taining crack front as the plane consider-
ing the discontinuity, we carry out the
formulation in the following sections
keeping in mind such a case.

The definitions of crack parameters
in this crack model are given as shown in
the following.

Crack energy density is defined as "the
quantity expressed per unit area in  the
plane containing a crack of the work done
during deformation at a point in the plane
containing a crack before deformation'®~®,
Therefore, when the strain energy plane
density Wume is defined by

Woiane =deplune. dWoiane™= L Ony (dsn} """"" (3)

the crack energy density in the state where
the crack extends until its length becomes

e

1397
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Fig.1 Crack model considering

the discontinuity of displacement

4 (Fig.1(d), time r=t) is given by
6'(t, Xg)=dep:-n-(t, Xn) coresssncnaneansan (4)

and it distributes in Xi-direction. Espe-
cially, in case of an elasto-plastic prob-
lem, as the increment of out-of-plane rela-
tive displacement is divided into the elas~
tic component {48} and the plastic one(das),
‘it is expressed as

{dSn)={dog}+ (d58)

and the elastic and plastic contributions
to crack energy density are, respectively,
given by

€t X)= [dWiiane, dWitina=  an1{d5%)

et ( 5§ )

cerressensn (§)
gp(t' Xl)’—"deD’lane, de’llnn= I.OHJ(dag)
cesrnanennae(7)
Crack opening displacement COD is

relative dis-
and its value at

defined as the out-of-plane
placement at crack tip,
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time r=¢, using &t X)) distributing in
the plane containing the crack, isgiven by

COD(‘)=6::(I‘, A) sveereceerenenes ressererenenss (8)

even after the crack has started to grow
(Fig.1(d)). Crack opening angle COA, which
is taken as a parameter for stable crack
growth, is given, based on itsdefinition®,
by

4t

=1 3::(14‘4‘,0)"32:(! a)
A= e

at time r=¢! (Fig.1(d)), where 4t and Jda
are, respectively, the increments of time
and crack length corresponding to each
other.

2.2 Constitutive equation in an
elasto-plastic problem

DWA model can be applied under an
arbitrary constitutive equation, and the
constitutive equation in an elasto-plastic
problem is concretely formulated here.

To the part dealt with as acontinuum,
a usual constitutive equation based on the
incremental theory can be applied, whichis
given by the relation between increments
of stress and strain as

{%}z[b_,:} D,‘:':]{ZEE:} (elastic)
or {dai}=[D*Nde.)

------------ (10)
{_g-::._}= [_g%:. %]{;sz} (elasto~plastic)

or ‘ddl.} = [D'] (dEL}

Here, .doey and o déws are the increments of

stress and strain components in the plane
parallel to the plane containing a crack,
vdeny is the increment of strain component
in the plane perpendicular to the plane
containing a crack and they are given by

vdoy = vdos, dosa, dorsy 0 eeeereeerecenn. (12)

LdEtJ = .,a’eu, dEu, d?’an ............... (13)

LdEnJ = LdEu, d}’n' d)’lzJ BRI (14)
Hereafter, we call vdowy, .des and deny

in-plane stress, in-plane strain and out-
of-plane strain respectively.

The constitutive equation for the
pPlane admitting the discontinuity of dis-
placement is given in the following manner.
To elastic deformation, we apply Hooke's
law in which a linear relation between out-
of-plane stress and out-of-plane relative
displacement is assumed. On the assumption
that the material is isotropic in the
plane, when one of two elastic constants
is given by Poisson's ratio v which is
non-dimentional, we obtain the relation

{dos)=[D%n}{dSn) (elastic)
—ll__—z”; 0 0
[D-:"]=1€v 0 % 0]  ceeeenvenn (15)
0 ol

where [Dfa] and £ shall be
stiffness matrix to elastic

called plane
deformation

and plane Young's modulus. Here, the rela-
tion of Eq.(15) agrees with the constitu-

tive equation of so-called joint element
in finite element method . By the way,
in-plane stress .0 and in-plane strain

L€ in the plane keep their physical mean-
ings, since the continuity of displacement
component in the plane is kept. Itis only
out-of-plane strain .&€s, that has lost the
meaning because of out-of-plane relative
displacement. Therefore, eliminating . de,,
in Eqs.(10) and (15), the relation among
all stress components, in-plane strain com-
ponents and out-of-plane relative displace-
ments is obtained by

Vo=l Bl e
(Ax)=—[Dsa]' (D2, r=% (elastic)
or {do}=[De](F7*){des)
=[DN(des) e (16)
where [I] is third-degree unit matrix.

It is noted that, as the strain energy re-
lated to in-plane stress and in-plane
strain is zero, the stiffness correspond-
ing to them becomes zero in Eq.(16). How-
ever, in-plane stress components have in~
fluence upon yield criterion, and, by con-
sidering them, it becomes possible to give
yield criterion by a functionm of all stress
components. In this paper, we assume that
the yield criterion of the plane admitting
the discontinuity is given by the same one
as that of continuum part, that is, by

f(du)=c

To elasto-plastic deformation, the
constitutive equation is given as shown in
the following. We consider that the incre-
ment of plastic out-of-plane relative dig-
placement [d62) is given, by using a plastic
potential fu(oy), as

fn] - of
ds} ={———~ } o = {—
( g } o0n Cdf 'f L Ony ad,.} (18)
where ¢ is a proportional constant and

00 )aon s = . 3 a0z, 3( )/ 8023, 3 M 3oiay -
Moreover, we define the increment of plas-
tic strain energy plane density dWg#y. by

AWhane= L 0ns {d52)

and equivalent out-of-plane plane stress g
and its increment d&» by

ot ons don={Ze} Ldon,
............ (20)

function of
density and

o

Here, assuming that f» 1is a
“plastic strain energy plane
taking an expression

CAfa=d8E  ceorirrrnriic i, (21)
into consideration, it can be said that
the value of A’ given by

dGn _ 5

—'—d&‘:_H .......................................... (22)
should exist uniquely from the relations

of Eqs.(18)n(21), where d§Z and H' arve the
quantities which shall becalled the incre-
ment of the equivalentplastic out-of-plane
relative displacement and the relative dis-
placement hardening rate respectively. On
the other hand, using the relations of
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Eqs.(5), (15) and (18), the relation
(don) = (Dn) don) ~ (D3, L2} e o 23)

is obtained and, by using the relations of
Eqs.(20)(23), ¢&df. in Eq.(23) is given by

—L%‘{’IJ_[D—:N]{dan] (24)
5dfn= R veesees
e fn __rre 1[0
7+ 0wl 3]

Moreover, substituting Eq.(24) into Eq.
(23), we obtain

{don)=[D8a){d8 )

_ [ljg"]{ng:} ng:.: (D3]

[ﬁﬁn] = [D-:n

[t

Ao 0w 32

(elasto-plastic) wmveeieen (25)

The relation among the increments of all
Stress components, in-plane stress compo-
nents and out-of-plane relative displace-
ments is given by

(Goet= B B
(H8)=~[D%.] (D8]
[H2)=[D4 ][ 15,]
°F [do)=[D*}[H*){de.)
=[D*Wdes} e, (26)

by eliminating {des} from Eqs.(11) and (12)
in the same manner as in case of elastic
deformation. .
When we formulate the comstitutive
equations as mentioned above, two material
constants expressed by £ and H’ are newly

)

(elasto-plastic)
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efxing rate H’ of continuum and differ from
E and A’ only by the dimention of length.
Hence, we shall call the model in which

the relation
_E_H

T e, 27

holds the conformable model especially,
where % becomes a material constant with
the dimension of length. The value of &

should be determined so as to be as suit-
able to actual behavior in the plane admit-
ting the discontinuity as possible, and this
will be discussed in another paper. Here,

the usual continuum crack model corresponds
to the DWA model in the limit when f-q,

and in this case, the relative displacement
840 , the stress at the erack tip oy—ce

and the distribution of ecrack energy den-
sities except at the crack tip  becomes
zero. Moreover, the Dugdale model corre-
sponds to the nonconformable DWA model at
the time when E/£-¢ and H'/H'» in the
plane containing a crack and the continuum
part is dealt with as a linear elastic
body. Table 1 presents the results of [A4],
[A%] and [A%] in Eq.(26) for the conform-
able DWA model under the condition that the
yield criterion and the flow rule of the
continuum part are given by Mises' one and
associated one respectively. Here, [BL]

[A%] and [A%)] under plane strain state
are given by adding the condition that omn

=0u=0 and removing the rows _and the
columns concerned with (033, Ovs, G23) and (&ss,

73, 8233) in the expressions of three-dimen-
sional stress case in Table 1, and the
following definitions are adopted in  two-
dimensional problem.

required in addition to the material con; LOUS LONL, LOnI™ L0, Giag  weeeeseesens (28)

stants of continuum, and those correspon - - Sias e,

to Young's modulus EF and the strain hard- LEUS vl W Ony= L da, Sua 29
Table t [A] matrix for conformable DWA model in case of Mises' yield criterion

and associated flow rule being applied to the continuum part

Ao A 0 Az A2 0 Si18:+4:(Si+S5%) S:5:+A:(Si+ 5 S.S,

[[?:,]=—[0 0 oJ .[f?:.}=§l<—c 00 0|+ ASiSi=4iS:S,  AS1Se=e$sS,  A.5.5.
§ 0 0 0 ¢ 0 0 0 AxSxSs“/lest /llSJS&“/l:S:S! VI{ISSSI .
= A0 0 —-A(Si+S)) S.S, 525, 1 5:5: §.5% .S

[17,‘.’,.]=71§—(G 04 0 [+l 4SS, —(SI+ASH  ass | -1 58 58 5.8

"\ Lo o a A1S: S, ASSe  —(SHASDH) $:$i S8 Ssil /.
E 220=v) 2 =V

=Ty A= 12y =1 1-v

S|=G(/{|0‘fx+/lzo';z+/lzﬂ;1), Sz=G</{zdf1+/{xU;z+/120'5:), SJ=G(1120'|'1+/120;:+/‘10;3),
Té S:=2G0zs, Ss=2Gao, Ss=2Gaoz, S=%52H'+Sxd;x+Szd;2+S3U;;+25.0‘2;+255013+255518; s—2=1{10651+é{—'/‘l(s:
.2
g +Sez)0;z+25z540n+251530'12}. S_‘=2/1160'z:+‘;‘(/11525c0' ;z—2(33+A|S:)62:+2/1134550u), §u=2310612+é(31515|d;a
:E ’+2/1154Ss<7::"2(55+/1153)0'12},S_;=/12GO'z'z. “;:"’ZGUZJ.S.;:ZGU:I"

§o=A.G—é—lSz’+A.(Sf+S§)).§='3-5’hﬁ'+§§aéz+2§20u+2§idu,

Fere [N yopy 1 YA, 1(vSE+1S.S, 7o l=—L (A 0] 1[—Si 4S5:5:)_ 175:8: $.8%

(H"I}—_‘{O}'(H’f‘}—?a—(_E{0}+S{5155‘“V3251})’ [HM]_ hSe E[O /1]+S[stc —'{Stz] S S—‘S.; §'§;])'
§ E'=1 Ey,, A= 1;”, Si=Eoli+v012), Sa=E'(voi+ i), Se=2AE’01a,
£ =
QL
?‘E S=%51H'+S;dﬁ+5;65;+2$;0‘xz,$z=/IE'O‘£:+T]§'("quo';z'i'Z/{SzSomz),S_'a:Z/lE' Ulz"‘%(Sled;z—USz'dlz)

1= £ 035,51 = 248 0, S0 = AE' ~=(AS1+ 5D, S = L 21 + Siota+25i0s

S 9

G : equivalent stress, ¢}; : deviatoric stress, A’ ! strain-hardening rate
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2.3 Finite element formulation of DWA model

We carry out the formulation for the
finite element analysis of DWA model here,
and it is shown through this formulation
that the analysis of DWA model becomes
possible by introducing plane elements into
the plane admitting the discontinuity and
extending an already-existing program of
finite element method.

Consider the DWA crack model under
body force and traction force. We repre-
sent the plane admitting the discontinuity,
the volume of the continuum part and the
surface traction force being applied by S,,
V and Ss respectively. The principle of
virtual work to this' DWA crack model is
given, in the incremental form, by

fs LdsJ(dd}dV+_/:s'8 o d8n1{don}dS

= [8 duslariav+ [ 5 au,(dp)ds - (30)

where {de} and {do} are the increments of
strain and stress in a global coordinate
system, (ds.} and (do.) are the increments

of out-of-plane relative displacement and
out-of-plane stress for the plane S, and
{du}, {dF} and {gp} are the increments of dis-
placement, body force and traction force
in a global coordinate system respectively,
In addition, § expresses the variation and
d{du} is an arbitrary increment of dis—
placement which satisfies the geometrical
boundary condition given. Here, since in-
plane stress and in-plane strain are de-
fined in the plane S, and the stiffness
corresponding to them is zero, the second

term in the left side of Eq.(30) is ex-
pressed by

L, 3 cdduildonaS= [ & .dbus{dor)aS

vddii= 1 0, 0,0|da’u ........................... (31)
where 140y is defined in Eq.(16). Now, we
consider dividing the volume V into M
elements of which the volumes are repre-
sented by V™ and the plane S: into N
plane elements of which the areas are re-
presented by S§’. On the plane S:, we

introduce the coordinate 7 normalized by

out-of-plane vrelative displacement §a
which is normal to the plane S, and of
which the origin is the center of out-of-
plane relative displacement (Fig.2). And
we assume that the distribution of dis-
placements is given by interpolating the
displacements at 7 =-—1/2 and 7=1/2

linearly since the assumption does not res-—
trict the generality of DWA model. The
plane S; is divided into & plane elements
as shown in Fig.2 for example. After hav-

“~ing divided S;, we give the distribution
of displacements in 5 —-direction of the #n -
th element by interpolating the displace-
ments in the # -th element linearly. "On
the divided DWA model, the relation of EHq.
(30), using Eq.(31), becomes

N
5[ & desldo}av+ Z oo b dS0ildor)dnas

=)/ V(m)

=3[ & cduslaF)av+ 3 [[.& dusldplas

............................... (32)
and 7""are the area and the ex-
n—
the

L b

where S§”
tent of 7-coordinate corresponding to
th plane element (Fig.2) and SY is

Fig.2 1Introduction of plane element

surface traction force being
the m-th volume element.

To the volume element, the standard
procedure for finite element formulation
is applicable. That is, the increment of
displacement {du} in element is expressed
with the increment of nodal displacement
{diz} of element by

applied of

(du}=[N]{dz7} ......................................... (33)
where [N] is called the shape function.
Therefore, the increment of strain  [ds)

is given by
{de}=[2]{du)=[2)[N){da)={BY{da} - (34)

where [?] is a matrix composed of differ—
ential operators which relate strain to
displacement and [B] is called a strain-
nodal displacement matrix. Using the rela-

tions of Eqs.(10), (11) and (34), the in-
crement of stres is given by
{do}=[D]{de}=[DI[BHdT) ++errreereererserronne (35)

where [D] is given by, [D°] for elastic
deformation and by [D?] for elasto-plastic
deformation. On the other hand, for the
plane element, a similar formulation can
be made. That is, the increment of nodal

displacement {d#:} in a 1local coordinate
system is expressed, by using that in a
global coordinate system, as

(daL} = [THAG) -eeveeerermereremnmssseesienniniiennn (36)

where [T] is a matrix for coordinate trans-—

formation. The increment of displacement
{du} in an element in local coordinate
system is expressed by

(du:.}=[1\7]{diil_} ....................................... 37

_where [N] is the shape function of plane
element, and is given as a function of 7~
coordinate and in-plane coordinate. The
increment of in-plane strain and out-of-
plane relative displacement {de,} and the
increment of out~of-plane relative dis—
placement {d8.] are expressed, byusing the
increment of displacement in anelement and
the increment of nodal displacement, as

(des) =[G} =[ 5 taun) = [ 5)dcr)

=[2IN)[TNda}=(B){aa]

(o) ={ g} = [ 2|t =1 7 dim)

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

=[5’][N]{T]{dﬁ)=[§’]{dﬁ} ............... (39)

where [2] is a matrix composed of differ-
ential operators which relate strain to

displacement and [2-] 1is a matrix which

relates out-of-plane relative displacement

to displacement in element. Using the re-

lations of Eqs.(16), (26) and (38), the

increment of stress is expressed by

(dod} =[D){des) =[DIBIda) -+oeereerererreneene (40)

where [D] is given by [D°] for elastic de-
formation and by [p?] for elasto-plastic
deformation. Here, substituting Eqs.(33)n
(40) into Eq.(32) and considering that
0 .d@, is an arbitrary displacement which
satisfies the geometrical boundary condi-
tion, we obtain the stiffness equation for
each element

(el{dit) ={dP}={dPv}+ (dPs}

(for volume element M Yereerneanreinins (41)
[£da}= {0}

(for plane element ) cerrerrrienneens 42)

where

(1= [ _[BYIDUBIAV worscersrrreerion. 43
(@P/}= [ _[NT"(aF)av,
(dPs) =fss,"' [N]T{dp}dS reererenerererveciuns (44)
(61 = [, [ BV IDUBYS woorrrere (45)

Here, [#] is the stiffness matrix of
volume element, (¢P} is the incremenE of
equivalent nodal force vector and [£] is
the stiffness matrix of plane element.

Therefore, the stiffness equation of total
system is obtained by assemblingthe stiff-
ness equations to each element _given by
Eqs.(41) and (42). Although [H] matrix
defined by Eq.(16) or Eq.(26) and [D)]

matrix are not symmetric, [£] matrix is
symmetric when [D] matrix is symmetric.
Consequently, the matrix of total system
is also symmetric under the same condition.
When the stiffness equation is solved, the
strain and stress of volume element are ob-
tained by Eq.(34) and Eq.(35) and, more-
over, the in-plane strain, out—-of-plane
relative displacement and stress of plane
element are obtained by Eq.(38) and Eq. (40)
respectively.

In case of a two-dimensional problem
using a triangular element in which a
linear displacement field is assumed, the
concrete expression of plane element. stiff-
ness matrix is especially shown in the
following. That is, if considering a tri-
angular plane element of whichthe inclina-
tion from the global coordinate system is
9, the three nodes are indicated by
i, jand # and the lengths of the three
sides are by (i, ), L(i, k) and [(j, k) as
shown in Fig.2, the plane element stiff-
ness matrix will be given by

[E]=L2£[E']T[D—][B] .............................. (46)

where, on the definition of . d@s= . dit1, dits,
dity, dﬁjz, ditn, dfin_j N

1401
—écosf ~£sind fcosd &sin @ 0 0
[Bl=| &sing —2icosd &sing ~&cosf —sinf cos 0]
—é2cos 8 —&sing ~ficosh —£ sin § cosd sing
.............................. 47
0 0 0 0 0 0
[E']=[ &sinf  —fcos®  bisind  —£cosd —sind cosd
—§acos @ —&sinfd —éicos @ —&isinfd  cosf sind
.............................. (48)
é=1/1, &i=1h/1, IS0 2V (49)

and { is the thickness.

3. Elasto-plastic Finite
Element Analysis of
DWA Model

In this chapter, according to the
formulation shown in Chapter 2, the DWA
model analyses of an elasto-plastic crack
and a crack corresponding to Dugdale model
are carried out by means of finite element
method, and the availability of DWA model
as a crack model is fundamentally consid-
ered based on the results.

3.1 Elasto-plastic crack

A center cracked panel specimen, which
is supposed to be made of A533B steel,
under monotonously incresing uniform ten-
sion as shown in Fig.3(a) is analyzed.
Because of symmetry, the mesh used here to
4 quarter part of specimen is shown in
Fig.3(b), where the triangular plane ele-
ments of which the concrete expression is
given in section 2.3 and the constant
strain triangular volume elements are ap-
plied to the ligament plane and to the con-
tinuum part respectively. Sixty-three plane
elements, 786 volume elements and 467 nodes
are used. As the constitutive equations
for plastic deformation, the associated
flow rule with Mises' yield criterion is
applied to volume elements and the flow
rule given by [H] matrix in Table 1 to
plane elements. As to the material con-
stants, Young's modulus £ = 205.8 GPa,
Poisson's ratio p = 0.3, yield stress or
= 0.4802 GPa and strain hardening rate H’
= dd/de® = 2.058 GPa  (the relation be-
tween equivalent stress and equivalent
plastic strain is approximated by two
straight lines). The value of # defined
by Eq.(27) is assumed to be 0.02 m (as
the state, in which the plane elements in
Fig.3(a) are doubly inserted into the lig-
ament plane in order to keep symmetry, is
supposed, the value of % for adopted plane

‘elements becomes 0.01 mm). As for the

method to increase the load, one by Yamada
is adopted.

The results of the analysis are shown
in Figs.4n7, That is, Fig.4 shows the
shape of plastic yielding region, Fig.5
does the relation between crack energy
density at crack tip evaluated by Eqs.(3)
and (4) &(¢ ) and average displacement
on loading surface un » Fig.6 does the
relation between load 2P and average dis~
Placement on loading surface “m and Fig.7
does the distribution of crack energy den-—
sities in the ligament plane. At the same
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time, the finite element analysis of usual
continuum crack model 1is carried out by
using the mesh obtained by removing the
plane elements in Fig.3(a) and the results
are also shown in Figs.4 and 5. The value
of J-integral in Fig.5 is the mean value
of those evaluated by usingtwo integration
paths shown in Fig.3(b) and it agrees with
the value of crack emergy density at crack
tip well over the range of um. As it is
shown that J-integral agrees with crack
energy density at crack tip to usual con-
tinuum crack model when unloadingand crack
extension are not considered® , it can be
said that the DWA model is hopeful as a
crack model to estimate the crack energy
density.

3.2 Dugdale model

As described before, the Dugdale model
corresponds to the DWA model at the time
when E—~c0 and H'=0 in the plane contain-
ing a crack and the continuum part isdealt
with as a linear elastic body, so the ana-
lysis of Dugdale model by finite element
method becomes possible by using completely
the same procedure as in case of elasto-
plastic crack.

The results of finite element analysis
are shown in Fig.8. TFig.8(a) shows the
relation between crack energy density at
crack tip and displacement on loading sur-
face, Fig.8(b) does the relation between
load and displacement on loading surface
and Fig.8(c) does thedistribution of crack
energy densities in the 1ligament plane.
Here, specimen shape, loading condition and
material constants E and v are the same

. as in section 3.1, and E/E = 0.2 mm, G’

=0 and or = 0.4802 GPa are used in the
ligament plane (the value of E/E to plane
elements is 0.1 mm as we are in the same
situation as in section 3.1). The results
of so-called Dugdale model analysis by the
boundary collocation method formulated by
Ishida® are also shown in Fig.8. In this
analysis, 12 subdivisions and calculation
of double-precision are used and the value
of stress o:; obtained by DWA model analy-
sis above, that is, 0.55 GPa 1is employed
as the value of uniform tensile stress in
the yielding plane (the value of gz in DWA
model analysis is different from the yield
stress because of the existence of in-plane

|
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Fig.3 Specimen and finite element mesh used in the analysis
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Fig.5 Crack energy density at crack tip
(J -integral) versus average
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