The Japan Soci ety of Mechanica

Bulletin of JSMIS,

Engi neers

Vol. 29, No. 257 Nobember 1936

[ Paper No. 257—5

An Evaluation of the Fracture Resistance
of a Stably Growing Crack by Crack Energy Density
(1st Report, Derivation of Fundamental

Relations and Proposal of Evaluation Method)*

Katsuhiko WATANABE** Hideyuki AZEGAMI***

The objective of this study is to propose a practical method to evaluate
the fracture resistance of a stably growing crack by crack energy density and
to verify it through its applications to actual stable crack growth problems.
The contents of this report are as follows:

(1) More refined investigation of the relationship obtained before
initial crack length, load-displacement curves and the crack energy density
which holds until a crack starts to grow is made by using two crack models,
(2) A relationship between initial crack length, present crack length, load-
displacement curves and the additional rate of crack energy density caused by
crack extension which holds generally for a growing crack is derived by using
the same crack models as used in (1).

(3) A method to evaluate the fracture resistance of a stably growing crack
from load-displacement curves which can be easily obtained by experiments is
proposed, based on the relations above.
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1. Introduction

It is important to evaluate the char-—
acter of a stably growing crack in a duc-
tile material in order to estimate the
fracture mode of a structure including a
crack and, moreover, avoid a design bring-
ing about a dangerous fracture mode. In
connection with this problem, several
methods were proposed based on the energy
release rate (or the stress intensity fac-
tor)®, the J ~integral®®, the crack tip
opening angle and the plastic work done
in the recrystallized region around a
crack tip® . However, when we try to eva-
luate the fracture resistance as a mate-
rial characteristic by these methods, there
are some problems; that is, the former two
methods need to satisfy the strict condi-
tions of the small-scale~yielding and the
J ~controlled crack growth respectively
though they are applied easily through the
measurements of load and load-point-dis-
placement, and the latter two methods re-
quire accurate observation around a crack
tip though they are applicable with no
restriction.

By the way, inthe previous work®, the
authors proposed an idea to evaluate the
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character of a stably growing crack based
on the crack energy density”®and systema-—
tized the above methods through considera-
tions on relations between the above meth-
ods and the proposed idea. 1In the present
serial study, they go one step farther, pro-
pose a practical method to evaluate the
fracture resistance of a material by the
crack energy density and establish it as a
fracture resistance evaluation method
through the concrete verification of its
applicability. In this first report, fun-
damental relationships between the crack
energy density and the mechanical parameters
like load, load-point-displacement and so
on are derived, and an evaluation method
of fracture resistance by the crack energy
density is proposed based on the above re-
lations. This method makes it possible to
evaluate the fracture resistance, without
any restriction on its applicability, only
from the mechanical parameters reflecting
the overall behavior of a specimen such as
load, load-point-displacement and the like.

2. Concept and Definition
of Crack Energy Density

A crack tip in an actual material is,
except a completely elastic crack, in a
state of complicated deformation caused by
such uneven plastic deformation as a slip
and a twinning, so a complete description
of its state is difficult. A crack param—
eter should express totally and represent-
atively the intensity of a change around a
crack tip and the crack tip opening dis-
placement is regarded as a parameter which
expresses the intensity of the change in
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Fig.!l Notch model

the dimension of displacement. On the
other hand, the crack energy density can
assert itself as a crack parameter to

express the intensity of the change in the
dimension of energy per unit area, and it
is defined generally as '"the work done per
unit area in the plane containing a crack
tip line during deformation at each posi-
tion in the plane containing a crack tip
line before deformation'.

The crack energy density distributes
in the plane containing a crack tip line®®,
and, in this paper, discussion is  made
by employing a continuum notch model (call-
ed notch model hereafter)’”and a crackmodel
considering the discontinuity in the plane
containing a crack tip line formulated by
the authors (called discontinuous model
hereafter)'’because the distribution of
crack energy densities can be defined con-
cretely in these models. For the simplifi-
cation of the following argument, a two-
dimensional cracked plate with thickness B
under crack opening mode (Mode I) is con~
sidered hereafter.

2.1 1In case of noich model

The notch model is one in which a
cracked material is substituted by a notch-
ed continuum with a sufficiently small
radius of notch curvature, and the notched
part is shown in Fig.i with a system of
coordinates. Here, [(a,)is the path along
the bottom of the notch in the initial
state at the time r=¢, and I(X;) is the
path of which the shape is the same as/'(a.)
at an arbitrary position in front of the
notch tip. In the figure, it is supposed
that a crack of which the initial length
was @ in the initial state at the time ¢
=0 (Fig.1(a)) blunted until the timer=tlo,
extended thereafter under loading and its
length has become a at the time 7={ (Fig.1
(b)). Crack extension is realized by cut-
ting off the bottom of the notch and put-—
ting the stresses acting on the new sur-
faces into zero. The crack energy density
in the state of Fig.1(b) (1, X)) , based on
the definition above, is given by

e, x0= [ Wwax, e (1)
(X

Here, W is strain energy density defined
by

are sitress and straln ten-—

rely and  ( )=g( Yor (when

e
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REGION

(b) TIMET=1

Fig.2 Discontinuous model

an extending crack is considered,( )is de—
fined for the change from r—dr to 7. ()
for the changes from r—dr to 7 and from
to r+dr are equal and their distinction 1is
not required in the region except the crack
tip, but their distinction is necessary in
order to let the quantity at the crack tip
at the time r have the meaning).

2.2 1In case of discontinuous model

The discontinuous model is composed of
two parts, that is, the plane containing a
crack tip line which is stretched by appli-~
ed stress and the usual continuum part ex-
cept the above plane; and the neighborhood
of the crack tip is shown 1in Fig.2. In
this model, as the out—-of-plane relative
displacement [ §, ) at a place of (X:,0)
before deformation at the time r=/{ and the
out—of-plane stress L.gsl corresponding
to the relative displacement are (referring
to Fig.2(c)) given by

L8nd =L 822, 823, 12 i (3)
Loy J =L 022, O23, O12 - i (4)

the strain energy plane density as the en-
ergy per unit area is defined by

Wmane:J{ Lon I {Snldr e (5)

and the crack energy density, based on the
definition, 1is given by

Et, X1)=Whiane  worrromermrmee (6)

3. Relation between Crack
Energy Density at Crack Tip

and Load~displacement Curves
before Onset of Crack Extension

In this chapter, a general relation
between load, load-point-displacement, ini-
tial crack length and crack energy density
at crack tip before onset of crack exten-
sion is derived by using two models above.
Here, the relation for the notch model was
previously discussed® but that 1is also
presented in a more refined manner corre-
sponding to the description in this paper
in contrast with the discontinuous model
case.

3.1 Relation on notch model

o We consider two notch models as shown
in Tig.3 which are in the states before
onsets of crack extension under loading
(r=t<ty and to+Ji., where lo+dio is the
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Fig.3 Two notch models differing in
initial crack length before
onset of crack growth

time when the crack of the specimen in Fig.
3(b) begins to extend). The two notch
models are idential except that their ini-
tial crack lengths ¢ and ao+dao are slight~
ly different, and they are loaded in such
a way that their load-point-displacements
u(zr) become equal at the time r and in-
crease monotonously (one-to-one correspond-
ence between # and 7 is assumed).

Here, we represent load, whole strain
energy, strain energy density, traction
force and displacement by Plao, v), Ulao, 7),
W(ao, t), Ti(a,,z) and ui(ao, 7) , respec—
tively, as functions of the initial crack
length @ and the time 7. Then, the whole
strain energies of the two notch models
shown in Fig.3, Ul(as, t) and Ulao+dao, t),
at the time r=¢ are expressed by

Ulas, )= [ W(as, 0aV = ['Plas, t)adr (1)
Ulao+ 4a, t)=fl/—4vaan(ao+Azzo, t)dv

= [ "Plao+t das, Yz woovoe. (8)

where ¥ and V—4V,, are the volumes
corresponding to all the parts of the notch
models with initial crack lengths @0 and
aotdas respectively (refer to Fig.3).

On the other hand, we can consider the
state at the time r=¢{+(* in which the fol-
lowing relation on the parts of V—AV,, of
the two notch models holds.

Qo+ dap
Ulao, f)~Bfu fm W (a0, 1)dX X,

=Ulao+dao, t)
1+ .
+'/Jsao-/; Tilao+ dao, 7)t:(ao+ dao, r)(ir:?

Here, 4Se, is the surface which appears
when A4V,, is removed, and Ti(ae+dae, 7) and
#i(ao+das, r) at the time r=¢ are the trac—
tion force applied on 4S,, of the notch
model with initial crack length  ao+dao
under the condition of holding the load-
point-displacement to be y(r)=1(¢) and the
corresponding displacement respectively
(refer to Fig.3(b)). Especially, Ti(ao+ da.,
t)=0, Tilao+dao, t+1*) is the applied trac-
tion force and u:(ao+dao, {+ %)= uilao+dao, t)
is the displacement caused by Ti(ao+ dao,
t+1*). 1n the case of linear elastic con-
tinuum, Eq.(9) holds when substituting the
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traction force 7i(an. ) on 4S., of the notch
model with initial crack length ao for 7
(av+das, 1+ 1)

Moreover, the strain energy on JV,,
of the notch model with initial crack
length @ is expressed by

B W an, NdXaaX,

=— [ /’(T,'(au, t)uao, 7)drdS -+ (10)

where 7%(ao, 7) and wui(ao, 7) are the traction
force and the displacement, respectively,
on 4Ss of the notch model  with initial
crack length av at the time (<)

Here, paying attention to the differ-—
ence of the whole strain energy AUa(ao, t)
caused by the difference of initial crack
length  day, , we obtain from Egqs.(9) and
(10)

*dUau(ﬂn, f)
=Ulao, t)— Ulao+ dao, t)

=— [ ["Tuas, )il ae, £)drds
4Sao~0

o
+ Lo 7 Taot dan, )il aot dao, 7)dzds

In this relation, we consider the case of
da,»0. In this case, —AUa(ao, )0 , and,
as the first and the second term in the
right hand are positive, both become zero.
However, their infinitesimal orders are
different. When das—-0, that is, as A4S,
approaches the free surface /'(a,), we get
Ti(ao, t)~0 but wi(ao, £) does not vary and is
finite. Therefore, the first term becomes
the first order of inifinitesimal. On the
other hand, the second term becomes the
second order of infinitesimal, because the
displacement of w(ao+das, i +1")— ui( @o+ dao, t)
and the traction force 7Ti(ac+dao, t+1*) are
caused by each other and therefore become
zero together. Accordingly, when we con-
sider the variation of whole strain energy
with an infinitesimal increase of initial
crack length @, we can neglect the second
term in the right hand and obtain the fol-
lowing relation by substituting Eq.(10)
into Eq, (11).

AUag(ﬂo, t)

dao

sl o 0800} ]

=B VV(ao, t)dXz

I(ag)

U .
Gag o = Jim,

Here, 0Z/0X(X,Y) represents a partial
derivative of a function Z.of X and Y
with X. The term of fr(a)W(do,t)dXz in
Eq.(12) is the crack energy ::lensity at the
crack tip &(f, o= &(£,X))x1=as) defined in
Eq.(1). Therefore, the following relation
is obtained by substituting Eqs.(7) and (8)
into Eq.(12).

U
025

elt, a.,)=~~}5 (ao, t)

—_1ror R
= Bfo aao(aa,r)udr (13)

Moreover, from the assumption of one-to-one
correspondence beiween ioad-displacement #
and time 7, Eq.(13) is also expressed hy

u(e)
elt, a)=—= [%’3(&,, Wde e (14)
0
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Fig.4 Two discontinuous models differing
in initial crack length before
onset of crack growth

3.2 Relation on discontinuous model

We consider the discontinuous models
with initial crack lengths @ and a.+dao
as shown in Fig.4 which are in the states
before onsets of crack extension ( r={ and
to+dte ) under loading. Also on the dis-—
continuous models, when the strain energy
plane density is represented as a function
of the initial crack length @ and the time
7 by Wyanelao, r) , the whole strain ener-—
gies of the two discontinuous models are
expressed by

Ulao, )= [ W (a0, DAV + [ Wonnelao, 1)aS

= ['Plas, D) itdzrveoessnnins (15)

Ulavtdao, 1)= [ W (av+das, 1)dV

$i—45., Whoiane( 20 + dao, ¢ )dS

:Jgtp(do+d(10, T)udr oooeienne (16)

where V is the volume corresponding to
all parts of the continuum, and §, and S,
—4S., are the planes considering the dis-
continuities of the discontinuous models
with initial crack lengths & and @o+Jao
respectively (refer to Fig.4). On the
other hand, we can consider the state at
the time r=/+("in which the following
relation on the parts of V+Ss—4Sa, of the
two discontinuous models holds.

aotdag
Ulao, =B [ Wosnel a0, 1)dX,
=U(ao+dao, 1)

RE A
+/A‘S /, Tilao+ dao, v)aao+ dao, r)drdS

ao

Here, 4Sa, is the surface of the continuum
part being in contact with 45, , and 7
(@o+dae, t) and ulactdas, r) at the time 7!
are the traction force acting on 4S5, of
the discontinuous model with initial crack
length ao+4dage under the condition of hold-
ing the load-point-displacement to be u(7r)
=u(t) and the corresponding displacement
respectively. 1In the case of the Dugdale
model, Eq.(17) holds substituting yield
stress g, for Tlac+das t+1%).

Moreover, the strain emergy on 4Sa
of the disontinuous model with initial

crack length 4, is cxpressed by
Totday
B Wi (et 10N
g [ el .y
i / / FiCaa, 2Vl D)dedS - (18)
JaSeado

Here, paying attention to the differ-—
ence of the whole strain energies JUalao 1)
caused by the difference of initial crack
length gy, we obtain formally the same
equation as Eq.(11) from Eqs.(17) and (18).
In this equation, we consider the case of
dae—0. The traction forces Ti(av+dao, (+1*)
and 7T(ae, t) in the first and the second
term in the right hand side are finite
under the condition of dae—0 . However,
the area of the surface 4Ss on which 7%
(a0t dae, i+1*) acts becomes the first order
of inifinitesimal. Moreover, the displace-
ment yi(ao, t) in the first term  of the
right hand side is finite because the dis-
placement becomes equal to half the rela-
tive displacement at the crack tip of the
discontinuous model with initial crack
length ¢o at the time r=/. However, the
displacement of w,(as+dao, t+1")— wuilau+ dao, t)
in the second term of the right hand side
becomes the first order of infinitesimal
because the area of 45« becomes zero when
Aday-0 . Consequently, the first and the
second term in the right hand side of Eq.
(11) become the first and the second order
inifinitesimal respectively. Hence, the
second term can be neglected when we ob-
tain the differential coefficient of whole
strain energy with initial crack length
dU/dav(a», t), and the following relation is
obtained by substituting Eq.(18) into Eq.
(11).

__,,‘?.Q,( /)= lim _ dUayao, 1)
a2 200-0 Aao

aoet dao
= tim[{B L Wounelan, )20}/
dag—-0 ao
= BWomne(@o, £ xeeay  erreeeeeeseisens (19)

Here, Wpane(ao, {)lx,-a, 18 the crack energy
density at the crack tip &(f, @) defined by
Eq.(6). Therefore, the same relations as
Eqs.(13) and (14) are obtained by substi-
tuting Egs.(15) and (16) into Eq.(19).

4. Relation between Additional
Rate of Crack Energy Density
and Load-displacement Curve

on Growing Crack

Subsequently, a relation between load,
growing crack length, load-point-displace-
ment, initial crack length and additional
rate of crack energy density after onset
of stable crack growth 1is derived for the
two models above.

4.1 Relation on notch model

Figure 5 shows the states after onset
of stable crack growth at the time r=;(>¢,
and fto+4dt) for the notch models shown in
Fig.3 under load corresponding to a monot-
onously increasing u(7z). Here, the crack
growth is assumed to be smooth. Also in
this chapter, we follow the same manner of
description as in the previous chapter,
and the growing crack length, which is the
sum of the initial crack length and the
crack growth length, is represented as a

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

I’(r10_, t+8t), P(aOMao, t+bt),
wlt+ht) wl{t+dt)=u(t+ot+ot*)
Ti(aO’ t+0t), Ti (00+Aa0, t+Ot+ALY),
. ] { *
e (ao, t+ot) u;lagtbda,y, t+dt+ot*)

&S _(t+at)
a

Asa(t+at)
Va (ao, t+At)—\ I/a(aowa(), t+At)

T,
2,

1 A 1 7/
;10 a0+Aa0
a(ao,ti-at) a(ap_. t+ot)
a(ao+AaO, t+ot) a(a0+AaO, t+At)

t+0t)

- 3 - -
1% Va(ao, trot) LI AVaO Va(a0+Aa

0°

7777 7, 77,

(a) (b)

Fig.5 Two notch models differing in
initial crack length after onset
of crack growth

function of the initial crack length @ and
the time r by a(ao, 7).

Following the manner of description,
the increments of the whole strain ener-
gies of the two notch models shown in Fig.
5, 4Udlas, 1) and dUdlao+dao, t), during the
period of At from r=; to r={+4t are ex~-
pressed by

ﬁ(/a(ﬂa, f): U([Zo, t+dt)“ U(du, t)
= [ Wlan )aVar

t+4t

= | Plao, 7)UdT ++ooeeeveeennanan. (20)

AUo(ao+ dao, t)
=U(ao+dao, t+4t)— Ulao+day, t)

= /-Hmf W (as+ dae, 7)dVdr
<t —4Vao—Valag+daor)
:f[+AtP(do+Aﬂo,T)l.ldT ...................... (21)
t

where Vi(ao, ) and Veilae+das, ) are the
volumes corresponding to the parts through
which the crack tips of the notch models
with initial crack lengths & and a+da,
have passed before the time 7 (refer to
Fig.5).

On the other hand, we can consider
the state at the time r=¢+4¢t+4¢t* in which
the following relation on the parts of
V —=4Va,— Valao+dao, r) at the time of (<7<
t+4¢ in the two notch models holds.

t+ 4t a(aop+4ao,t) -
AUalao, )=B [ [ o, W (a0, ©)dXedXodr

(aeT)
=4Ud{ao+ dao, t)
+ftmm f Ti(ao+dao, v)iao+ dao, 7)dSdr
dSal(t+4r)

t+4e

Here, A4S.(¢{+4t) is the surface obtained by
excluding [I"{a(ao, t+4¢)} from the surface
which appears after removing AdVao+ Valao+
dao, t+41), and Ti(ao+dao, ) and ui(ao+ da,, )
at the time r2/+4t are the traction force
acting ondSa.(/+4dt) of the notch model with
initial crack length a@,+ 44, under the con-
dition of holding the load-point-displace~
ment to be y(r)=wu(i+4t) and the corre-
sponding displacement (refer to Fig.5).

Moreover, on the part of AVag+ Va
(@o+das, )~ Valao, ) at the time of (=r
St+4t in the notch model with initial
crack length ao, the relation

3689

~4 A avded dag.t) o i - 3 .
B[ o, W o, 2)aX X vz

(ao.1)

:—f”“/‘ Ti(ae, 0)tti(as, v)dSdr--- (23)
t <aSetr)
holds where 4S.(r) is the surface obtained
by excluding /{alao,z)} from the surface
which appears after removing 4V, + Va(ao+ dao,
7)== Valao, r) » and Tilao, r) and #€ilae, 7) are
the traction force and the displacement on
4Sa(r) respectively.

Here, paying attention to the differ-
ence of the increments of whole strain en-
ergies A4’U(ao, t) during the period of 4t
from the time ;=; caused by the difference
of initial crack length da,, we obtain from
Egs.(22) and (23)

“‘Az(/(ﬂo, /)
=A4Ua(ao, 1)—AUd(ao+ das, t)

t+ 4t
= —f f Ti(ao, T)ui(ao, r)dSdr
t 4S5a(r)

L+ AL+ At
+ T Tuavtdas, v) it ao+ das, T)dSdr
t 4Sa(t+41¢)

+4t

In this relation, we consider the case of
das—0and 4i-0 . First, we consider the
case of Ag,—0. The traction forces of
Ti(ao, v) and Ti(ao+dao, t+At+4t*) in the first
and the second term of the right hand side
become the first order infinitesimals to-
gether because AS.(r) and 4S.(1+4t) ap-
proach the free surfaces /"{a(ao, 7))} and
Ialao, t+4t)) , respectively, with Aag—0 .
Further, the displacement of w:(ao, (+4t)—
u:i(ao, t) in the first term of the right
hand side is finite because it becomes the
increment of displacement at I'{alao, t)} be-
tween ¢ and {+4¢ of notch model with ini-
tial crack length 4o when Jdgn—n. but the
displacement of u:(ao+das, t+At+4t") —uia,
+da,, t+4t) in the second term of the right
hand side becomes the first order of infi-
nitesimal because it corresponds to Ti(ao+
dao, t+At+4t*) -0 . Second, we consider the
case of 4f—0. The traction force of T:
(a0, t+4t) in the first term of the right
hand side is finite because it becomes T:
(a0, ) with A4¢-0 and A4S.(!) does not become
a free surface, but the traction force of
T;(ao+zlau,t+dt+dt‘) in the second term of
the right hand side becomes the first
order of infinitesimal because every term
in Eq.(22) defining the second term of the
right hand side becomes zero and the second
term in the right hand side of Eq.(22) is
determined by  Ti(ao+das, t+At+4t*). Fur-
ther, the displacements u:(ao, ¢ +4t)— wi(ao, t)
and wu:(ao+ dao, t+At+A4t" )=~ uilac+ dao, t+4t) in
the first and the second term of the right
hand side become the first order infinites-
imals together because (a0, t+4t)- uilao, t)
and  Ti(av+dao, t+4t+4t%)-0 , respectively,
with 4t-0. Based on the above discus—
sion, the first and the second term in the
right hand side of Eq.(24) become the first
and the second order infinitesimal respec-
tively when Aa, becomes the first order
infinitesimal, and they become the same
order infinitesimals when 4t becomes the
first order of infinitesimal. Hence, when
we obtain the variational rate of whole
strain energy change on initial crack
length and growing crack length 82U/ (da0da)
(ao, t), the second term in the right hand
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side can be neglected, and the following

relation is obtained by substituting Eq.
(23) into Eq.(22).
2i)
f? (_""(17(\, 1)
adoud
7
N L YTIE
@lao, 1) (I(Ina/
=t fim - U, 1)
i ao, 1) sa0st-0 gt

_ 1 B
a(ao, 1) Ju 4r nJuu/’/

f’ “f‘””“ U Wae, 2)dXdXdr
A

(@aT) H 1)

- B oa _ -
~alae 1) 3(70< o )[ {alao, 1)} W Cao. 1)ax:
D T (25)

Here, we define the additional rate of

crack energy density change (called addi-
tional rate hereafter) 5 ¢&/du(t, X)), for the
region of X,Za, by

{?Li([ X, )_71”,35 (1‘, /\'71) ........................ (26)
or

then, f] {atan. O] W((Iu, 1)dX: in Eq.(25) is the
additional rate at the crack tip a¢&'/dalt, a)
{=0a¢./dalt, X:)lx,-a) Therefore, using the
relations of Egs.{(20) and (21), the rela-—
tion

&

*;;*a*'(/,a)

__1oP all)

=~ B (ao’[)a(ao,t) 8 D (o, £) weeoeerer @n

is obtained. Moreover, from the assump-
tion of one-to—one correspondence between
load-point—displacement w and time r, Eq.
(27) is expressed by
35
(1, a)

= <ao u)/{ (20, u)- W(aa, w)} @28)

4.2 Relation on discontinuous model

Figure 6 shows the states after onset
of stable crack growth at the time z=/(>/o
and lo+dto) for the discontinuous models
shown in Fig.4 under a load corresponding
to a monotonously increaseg u(r).

Also in case of the discontinuous
models, the increments of the whole strain
energies AUd(ao, t) and AUa(ao+das, t)  be-
tween ¢ and (+4¢ are expressed by

AUalao, t)
=Ulao, t+4t)— Ulas, 1)

t+ 4t
= [ [ W (ao, D)avar
i+ dt ; o
+]; .[:,75‘,(119, 7)” mane(ﬂo,l’)du{]l'

t+at

=/, Play, r)udr

ﬂUa((Io‘i’A(Zo, f)
=Ulac+dao, t+41)— Ulao+ dao, t)

t44¢t .
= [ [W a0+ das, )avar
t+dt ..
L e s imstan o Womnelaot das, T)dSdr

t+ 4t
:j/; Plaot dao, T)adr e (30)

where S,(ao, r) and Si(ac+das, t) are the
planes corresponding to the parts through
which the crack tips of the discontinous
models with initial crack lengths @ and
aot+dao have passed before the time 7 (refer
to I'ig.5).

i f'mn{ m(}, t+0t),

i
| wizrot) = crarat)

Tt ;:0+A(20: TFATFETEY),

gt tHOLHAEY)

/\,Qq/f+[x‘t)
G ’uov"fm o t+ot) ’\ /

w.la
i

)

a (u0+Au t+ht

v
ST S s 7777
(a) (b)

Fig.6 Two discontinuous models differing
in initial crack length after
onset of crack growth

On the other hand, we can consider
the state at the time r={+4df+A/* in which
the following relation on the part of y+
Ss=A8ay— Salaot das, r) at the time!=r={+4t
in the two discontinuous models holds.

t+ 4L aglagtdag,t) |
dUa((Io,/)fB/t f Waisne(ao, 7)dX1d7

(ao,1)

=AUa(ao+ Zi([u, t)

{4 4t4 4t
+ »/;+A[ ‘}/;sn(tl"’)T.'(du"lw‘dan, T)ui(a‘}_"dao' T)dez—

Here, 4S.(t+4t) is the surface of the con-
tinuum part in contact with AS.,+ Sa(ac+ dao,
{+4t) —Salao, t+4t) , and Ti(ao+dao, ) and
ulaot dao, r) at the time r2/+4df are  the
traction force acting on AS.(/+4t) of the
discontinuous model with initial crack
length as+das  under the condition of
holding the load-point—displacement to be
w(r)=u(t+4t) and the corresponding dis—
placement (refer to Fig.6). In the case
of the Dugdale model, Eq. (31) holds when
putting  Ti(ae+dae, t+ At + 4t*)=

Moreover, on ASg,+ Sa(ao+dao, 7)—Sala, 1)
at the time of (=r</+4f in the discon~
tinuous model with initial crack length
a0 ,» the relation

t+at ﬂ(ag‘!dﬂuf) .
j _/; pJunc(Hu, 2)dX dr

(ao.7)

- f“M-fA.S (”T;(ao, )uao, T)dSdr ------- (32)

holds, where 4S.(zr) is the surface of the
continuum which appears after removing
ASaet Salaet dao, )= Salas, ) -

Here, paying attention to the differ-
ence of the increments of whole strain en-
ergies 4*U(ao. 1) between ¢ and i+ At
caused by the difference of initial crack
length 4dao,, we obtain formally the same
relation as Eq.(24) from Eqs.(31) and (32),
and, in this relation, we consider the case
of da¢— ( and 4t-0 . First, we consider
the case of Jdao—0 ., The traction forces
of Tlae, t+41) and  Tiao+dae, 1 +4t+4t7)  in
the first and the second term of the right
hand side are finite, but the areas of the
surfaces 4S.(r) and A4S.({+A4t)on which the
traction forces act become the first order
infinitesimals together when Jgo— 0. Fur-
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ther, the displacement of u(ao, {+di)— ui(a,,
{) in the first term of the right hand
side is finite because the displacement
becomes equal to half the increment of the
relative displacement at the crack tip of
the discontinuous model with initial crack
length @0 corresponding to time increment
4t from the time 7=/ with dao—0, but
the displacement of uilaot+dao, i + At + 4t )— 4,
(ao+dao,t +41)in the second term of the right
hand side becomes the first order infini-
tesimal because AS.(/+4()~0 with dao-0 .
Second, we consider the case of Ai —0
The traction force of Ty, t+4l) in the
first term of the right hand side is finite
because it becomes Ti(ao, /) with g¢-0, but
the traction force of Ty(aqo+dao, t +41+4t*)
in the second term of the right hand side
becomes the first order infiniterimal be-
cause every term in Eq.(31) defining the
second term of the right hand side becomes
zero and the second term in the right hand
side of Eq.(31) is determined by T:(ao+ dao,
{+4t +4t*) . Further, the displacements of
ui(ao, t +At)— uilao, t) and uilao+dao, t + 4t +4t*)
—ui(ao+das, t+4t) in the first and the sec-
ond term of the right hand side become the
first order infinitesimals together because
uilao, t+41)~ uilao, t) and T ao+ dao, t+ At + At*)
-0 respectively with 47 —0. From the re-
sults on infinitesimals, the first and the
second term in the right hand side of Eq.
(24) become the first and the second order
infinitesimal when 44 becomes the first
order infinitesimal, and they become the
same order infinitesimals also when 4f be-
comes the first order infinitesimal. Hence,
when we obtain the variational rate of in—
crease of whole strain energy on initial
crack length and growing crack length U
/(3asda)(as, t) , the second term in the right
hand can be neglected, and the following
relation is obtained by substituting Eq.
(32) into Eq.(31).

_d*U

daoda

(00, t)

@(ao, t) dasot %™

— 1 lim ‘AZU(dn,t)
d(dc, Z‘)Aao.dl~0 Adoﬂt

t+4¢ ra(ag+daot)

1 . B )
-t - A
dalao, t )Aal:}.??—o daodt '[ a(ao,n) Woane( 20, 7)dX1dz

:T[Ila,_l)_ gaa; (dn, [)Wplane(do, [)lXx=a(ao,t) b (33)
Here, Womne(do, t)lxi=atann in Eq.(33) is the
additional rate at the crack tip 9&/da(t, a)
defined by Eqgs.(5) and (26). Therefore,
using the relations of Egs.(29) and (30),
the same relations as those in Egs.(27) and
(28) for the notch model are obtained.

5. Proposal of Evaluation
Method of Fracture Resistance

The variation of crack energy density
distribution on a growing crack can be
shown shematically in Fig.7. Here, the
solid line represents the distribution at
the time of onset of crack growth ( =1ty ),
the chain line with a dot does the change
of crack energy density at the crack tip
between r=4, and r=/-d¢ when the growing
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Fig.7 Crack energy demsity
with crack growth

crack length becomes a—daq , the chain line
with two dots does the distribution at the
time z={—4d/ and the broken line represents
the distribution at the time of r=f. 1In
the previous paper®, the authors proposed,
based on the fact that the crack energy
density distribution can be defined momen-~
tarily, to express the criterion for stable
crack growth by

&(t, a)= &Eclt, a) (growth) — weeeeeee (34)
and the criterion for crack growth becom—
ing unstable at the time ¢ by

a¢ déc

‘d;(t,a)>7a‘(t,a) (unstable) - (35)
or, as another equivalent expression, by

& &

55 (1 a)>—3"=(1, a) (unstable) --(36)

Here, the left hand sides of the three eq-
ations above represent the quantities de-
termined by prescribed mechanical condi-
tion, and the right hand sides with the
subscript ¢ represent the fracture resist-
ances determined through an actual process
of stable crack growth. Further, d&/da(t, a)
at r={ is defined by

4a¢ -19¢
da (z,a) a or (z,2)

=1 0¢ ae

= (z, a)+ GXl(T’ a)

_9¢ ¢

= o (T, a).f_T ](2', Q) crereeeeeeens (37)

(refer to Fig.7), and the equivalency of
Eqs.(35) and (36) is derived from the fact
that  9&/0X.\(¢, a)=0&/9X (L, a) at the place
of crack tip Xi=g—da at the time r={—dt.

By the way, as to the criterion for
the crack growth, considering that the
greater-than-signs in Eqs.(35) and (36)
become equal-signs in the process of stable
crack growth and that the relation

E(t, a)= &(to, ﬂo)“’rj:%(ﬁd)ddf ---(38)

holds, another criterion which is equiv-
alent to Eq.(34) is given by the combina-
tion of the relation of  &(t, a0)= Eclte, ao)
and the relation given by replacing the
greater—than-sign with the equal-sign in
Eq.(35) or (36), for instance
€.
=25t a) (growth) - (39)
The relations derived in the previous
chapters show that it is possible to eval-

¢
e
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uote divectly the fracture resistance of
Eelto, ao) and IES3alt, @) by Tgs.(14) and (28),
respective from the measurements of the
parameters, which represent the overall
behavior of a specimen such as load, load-
point-displacement and so on, through the
experiments of stable crack growths for
several specimens with  various initial
crack lengths. Morcover, if a suitable
value of §&./0X,(r, a) is chosen, it becomes
possible to evaluate the fracture vesist-—
ance of &, a) by Eqs.(37) and (38) wusing
Eclto, @) and 3 &c/dall, @) evaluated above.
Thereupon, in this paper, we propose to
evaluate the fracture resistance, in the
manner above, by the combination of &c(fo, ao)
and 8&/dalt, a) or by &4, a). Here, it
is considered, as the simplest estimation
method of 9&./8X.\(f,a), toevaluate it, from
the constant value (§€./0a)uni of 8E./0a(z, a)
under the condition of crack extension ac—
companied with a uniform fracture mode, by
08 __(9&:
axa(””*‘”(’5{>m;
because the relation d&/da(r,a)=0  holds
in Eq.(37) under a uniform fracture mode.

6. Conclusion

From a standpoint of crack energy den-—
sity, we derived the relation between the
crack energy density, the load~displacement
curve and so on considering stable crack

growth behaviors in the mechanical models.
and proposed an evalvation method of frac-
ture resistance for stable crack growth
based on the relation above. In the next
reports, we aragoing fto apply the proposed
method to actual problems and examine the
applicability of the method.
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