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Elasto/Visco-Plastic Deformation of Multi-
Layered Shells of Revolution*

Shigeo TAKEZONO**, Kohji MIGITA***
and Akihisa HIRAKAWA****

This paper is concerned with an analytical formulation and a numerical solution
of the elasto/visco-plastic problems of multi-layered shells of revolution under asym-
metrical loads with application to a cylindrical shell. The analytical formulation is
developed by extending Sanders’ theory on elastic shells. It is assumed that the total
strain rates are composed of an elastic part and a part due to visco-plasticity. The
elastic strains are proportional to the stresses by Hooke’s law. The visco-plastic strain
rates are related to the stresses by Perzyna’s equation. As a numerical example, the
elasto/visco-plastic deformation of a two-layered cylindrical shell composed of a
titanium and a mild steel layer subjected to locally distributed loads is analyzed.
Numerical computations are carried out for three cases of the ratio of the thickness
of the titanium layer to the shell thickness. It is found from the computations that
stress distributions and deformation vary significantly depending on the thickness
ratio.

Key Words: Structural Analysis, Multi - Layered Shells of Revolution, Elasto/

Visco- Plastic Deformation, Asymmetrical Loads, FDM

Hooke’s law is used in the linear elastic range, and the
elasto/visco-plastic equations by Perzyna"¥ are em-
ployed in the plastic range.

1. Introduction

Many investigations®~"'? of the elasto/visco-

plastic deformation of shells of revolution have been
conducted. These investigations, however, have been
mostly concerned with the case of single-layered
shells, and few studies on multi-layered shells have
been reported in spite of their importance in engineer-
ing.

In this paper, the authors study the elasto/visco-
plastic deformation of the multi-layered shells of
revolution under general asymmetrical loads. The
equations of equilibrium and the relations between
strain and displacement are derived from Sanders’
theory for thin shells®. As the constitutive relation,
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In the case of the multi-layered shells, the rela-
tions between the generalized stresses and strains are
different from those of single-layered shells, and
therefore the basic differential equations derived are
also different.

The basic differential equations for incremental
values are numerically solved by a finite difference
method and the solutions are obtained by summation
of the incremental values.

As a numerical example, the elasto/visco-plastic
deformation of a simply supported two-layered cylin-
drical shell composed of mild steel and titanium sub-
jected to locally distributed loads is analyzed. Numeri-
cal computations have been carried out for three cases
of the ratio of thickness of the titanium layer to shell
thickness.

2. Analytical Formulations

2.1 Fundamental equations
If the middle surface of axisymmetrical shells is
given by »=7(s), where r is the distance from the
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axis and s is the meridional distance measured from a
boundary along the middle surface, as shown in Fig. 1,
the relations among the non-dimensional curvatures
we(=a/Rs), we( = a/R,) and the non-dimensional radius
o(=r/a) become :

we=—(7"+ r)ws, we=v1—(0")?/p

wo=y(we—ws), 0" fo=—wews } (1)

r=0'lo, E=sla,( )=d( )/d¢
where @ is the reference length. An arbitrary point of
the shell can be expressed by the orthogonal coordi-
nate system (&, 4, &).

Eliminating the transverse shear forces Q. and Qs
in the equilibrium equations in Sanders’ theory [13]
and writing in the rate forms, the following equations
are obtained :

[ FE (pNe)+ aN”

—0'No ]
M

+ we[ 3 (PMe)'*‘.

+—(CL)5_(1)6) %56 +azppg=0

{8Ng

- p’Me:I

+ 5N )+ o' Nl
+w0|: 51W9
+'ﬂ aé[(wo we)Mee]+a oPs=0

d oM e
a—s[ aé(pMé)")' e
1 4 [ 3Mo

E(PM50)+PM50} [ (2)

p'Ma}

+?W 5(‘0M59)+PM50}

—ap(CUEN5+ CUeNo)'l'd pP;—O
where :
Neo=(Neo+ Noe)/2
H/Ro) = (/RN Meo—
M eo=(Meo+ Mae) /2
and the notations are shown in Fig. 2.
Ne and @ in Fig. 1 are effective membrane and
transverse shear forces per unit length, respectively,
defined as follows:

Moe)/4} (3)

Fig. 1 Geometry and coordinates
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The strain rates of the middle surface are given
by :

(4)

[ aa% + cueU;]

[1 U,
o 96

Eem=

om =

+7Ue+wsUc] (5)

€ eom= Za[ o 36 Tag TV
where € ¢n is half the usual engineering shear strain
rate. The bending distortion rates are as follows:

. _1 80, . 1 30,
Ke=" o ""‘<p 56 T “’*)

1 30 , 30,

#o=g] L2040 10, (6)
+gtoron( 5= -0
where rotation rates @ and @ are:
A

Under the Kirchhoff-Love hypothesis and the
neglect of terms of order ¢/Rs and ¢/R, relative to
unity, the strain rates at the distance ¢ from the
middle surface are:

{e}={ent+¢{#} (8)
where

{e}={é¢, €0, 20}, (én}={Een, Eom, éeom}r}

{73}={ie, Xo, iea}r

(9)

Now, we shall use the elasto/visco-plastic equa-

(a) Forces and loads (b)

Moments

P
5 9

3

—
B\ &
(c) Displacements and Rotations

Fig. 2 Notations
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tions by Perzyna'? for the constitutive relations
é:x;,'z 1_2)/ Sij+ 1—2;2)/ 5'50
+70<@(F)>Sij]{1/2 (10)
where the dot denotes partial differentiation with
respect to time; e S, S, and /. are strain, mean
stress, deviatoric stress and the second invariant,
respectively; and E, v and y are Young’s modulus,
Poisson’s ratio and the viscosity constant of the
material. The symbol <@(F)) is defined as follows:

KO(F)»=0,F<0
= 0(F), F>0 } (1)
where function F is:
F=(5—o0*)/c* (12)

and F'=0 denotes the von Mises yield surface, 7 is the
equivalent stress (=v3/2) and ¢* is the statical stress
determined from the elasto-plastic stress-strain rela-
tion in a usual tension test.

In the plane stress state, as usually assumed in
ordinary shell theories, the constitutive relation (10)
may be expressed as follows :

{e}=[D] (s} +{e™)} (13)
where

{6}={0e, Go, Geal™, {P}={e¥, €8, €%)T

1 v 0
[D]zl—E{[l/ 1 0 }
0

—V
0 1—v
(14)
B 1 -1/2 0
{e'""}=yl<a><(’;*"*>>~1:{—1/2 1 0 }{a}
o
0 0 3/2
n=02/V3)n
(15)

Substituting Egs.(8) into Eqgs.(13) and solving
them for stress rates, the stress rates are given :

{o}=[D][{ent+&{£}]-{5"") (16)
where
{g7?}=[D]{&*} an

From Eqs.(16), the rates of change of the resul-
tant forces and the resultant moments for the multi-
layered shell (Fig. 3) may be expressed by the follow-
ing :

N hiz( & noru(g

{M}:[hlz{ o"éf}dgz 12:11/::—1{ o‘é’}dg

(A2
B Cil £ Mv?)
where ) )
{N}Y={(Ne, No, Neo)", (M} =(Me, Mo, M c0}"
(V)= (e, Mg, Negy = [ (o)

~h/2
n 11
) - op
D [ (7t
(arery=(agee, omge, i1y = [ (o epear | (1Y

2
~h/2

(18)
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=20 [ (e")eds

1 Vi 0
(DJ=-Ei,u 1 o

1—vi
0 01—
and
A= [ pas=Eod [ a
= 2DNG— 1)
B=["IDltar=£(D [ tat
O (20)

:?izl[Di]( §E—¢t)
c= [ IDlgtas =3 (D]

o L G

i=1

14
§*dg

&—1

In Eqs.(18)~(20), the subscript i refers to the 7th
layer.

A complete set of field equations for 32 indepen-
dent variables: .
Ne‘ No, 1\750, 11/.[5, Mo, Mee, Ue, Uo, U;, é;m, éem, éeam, iée,
Ko, kes, Do, o, Ge, Go, Geo, 58, G3°, G, €2, €, €,
NP NP N%, MP?, My®?, M¥ is now given by 32 equa-
tions:(2), (5)~(7), (15)~(19).

2.2 Non-dimensional equations

It is assumed that the distributed loads and the 29
independent variables, except{ &%}, can be expanded
into Fourier series as follows :

(P, Ps, Py =(avhola) 53(5¢", 54, 58} [An]
(Ne, No, Neo) = ool 33 (9, 587, %) [As]

{M«'» Mo, ﬁeo}=(ooh3/a)2 {m(sm, ”;L(a"), m(eg)} [An]

o
=0

(U, Us, Usd=(aoo/E) 33 (", i, 057} [An]

n=0

{ € em, él?m, é;sm}

=(a/E) T {8, e, ¢} [Ad]

Middle Surface

Inner Surface

Fig. 3 Multi-layered shell element
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(£e, 2o, 2ea)=(ao/aEo) T (£(, £, kD) [A]
(Bs, Do} =(0o/Eo) 33($4” cos 18, $4” sin n6}
{Ng®, N§*, Ngg)

= aoho 33 (A, AP, 5%} [An]
{Mevp, M‘;}p’ M?g}

= (Guja) 3 (g™, i, mB™)  [Ad]
{d¢, 0o, Geob= 0'0"2:10{ s, s6, s [Aal
(68, 98, 6if)

=00§0{_S:gp(n)’ s-é)ﬂ(n)’ s'géb(n)} [An]

(21)
where

[An]==[cos 78, cos n8, sin n8],
(diagonal matrix), (22)

and oo, 7 and E, are a reference stress, a reference
thickness, and a reference Young’s modulus, respec-
tively.

It should be noted that the Fourier expansions
(21) are not the most general that could exist. For full
generality, these expansions should be augmented by
the additional series,

(e, P, P} =(auhola) Z,(34, 3, 5} [B]

(23)
where (diagonal
matrix).

Equations (21) are substituted into the above
fundamental equations as follows :
The equilibrium Eq. (2) lead to
Het y(se— 110) +(n/0) tgo+ A{ werit’s
+ ywe(wre— 116) + (n/20)(3we — wo) Mieo)
+ ]5 s= 0
72'60+27ﬂea_(n/p)ﬂ8+/12{““(”/9)600m0
+(1/2)Bws— we)mize+(1/2)[y(Bws+ i) (24)
—welMies} + po=0
—wetie— wono+ A Wi+ 2ymi— weworne
+wewo—(n/0)? )1 — yrvo+ (2n/0) ¥ies
+(2yn/0)me} + pe=0
where the superscript (#) on Fourier coefficients is
omitted for convenience.
The relations (5)~(7) become
Eem=ust Welle, éam=(n/p)z29+ Yie+ wotls
eom=(1/2)[ds—rito—(nfo)de]
ke=¢4 ko=(nlo)do+ rde
keo=(1/2){—(nlo) be+ o+ rdo
+(1/2)wo— we)(nfo) de+ so+ yiol}
Ge=— tit+ wette, po=(n/0) ks + wotko

[B.]=[sin %8, sin #8, cos n8],

and Eqgs. (18) lead to
Vle:ALéem+Azéom+Blk'e+sz'o—’};lgp
ﬂezAxésm+Azéem+Blk.9+Bz/€.e“ﬂgp
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Hieo=A36om+ Bskeo— 1k
77'1@=(Bx//12) e'5,,,+(B,//12) Eom
+Cike+ Coko—mi® (26)
‘n"lf}:(Bx/Az) € om +(BM2) éem
+Ciko+ Coke—mif
11e0=_B3/A%) é som+ Cs b co— m¥5

where
A Az O _ [BiB: 0 —_
AzAl 0 =77 Bsz 0 |=
£y’ E

004l ™0 0Bl B o
Cl CZ 0 C
C:C 0 |= ,/1=ho/a

mEo
00 G

For each =, the set of field equations for the 17
Fourier coefficients #e, %o, 7¢s, e, e, Vigo, Ue, Us, U,
be, bo, Eem, Com, € eom, ke, ko, Ees is NOW given by the 17
Egs. (24)~(26).
By eliminating %. from Egs.(26)1,s, Eqs.(26) 2,4 and
Eqgs.(26) 45 the following equations are obtained,
respectively :
1e=(B1/C)me+[A—(BEAC)] éem
+{As—(B1B:/A*C1)] é om+ [ Be—(B1C2/C)] ks
— %8 +(B/C)mi*

ﬂa=(Bz/C1)7he+ [Az"(Ble/AzCI)] éem
+[Ai—(B3/A*C)] ésm+[Bi—(B2C2/C1)] ks
— 18P +(B.C)m®

o= (C2/C)me+(1/A%)[Ba—(B1Co/C)] é em
+(1/A)[Bi—(B:C:/C1)] é om
+[Ci—(CE/C))] Eo
—my? +(Co/C)mz?

(28)
Substituting Eqgs.(26)s,s and (28) into Egs.(24)
and using Eqs.(25) to eliminate the membrane strains
and bending distortions gives three equations conve-
nient for numerical computations, which have second-
order derivatives of the variables we, uo, #; and me..
The fourth equation may be obtained from substitu-
tion of Egs.(25) into Eq.(26)4.
The resultant set of equations can be written as:
@i+ azuitt astie+asuot asio+ asuy
+arut+ asu+ asmet+ aroMe= 1
annet antet+ ats+auttot aistiot arstty
+auit asihst aome=c:
AUe+anuit Quist+ anis +auntst astiof
+ QUi+ anttit Anit i+ AN+ adzMe
+anme=cs
Anust astiet asthot+ assut + aseti;
+Qsrteet+ A= Cq

(29)
where a:~ass are constants which depend on shell
form and materials, and ¢~ c¢s are determined from
the loads, and the membrane forces and moments due
to visco-plasticity. These are given as follows:

al—_—Al—Bf/(AZCJ, Q2=Yya:
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az=(ywe— wiwe)B:— Y* A\ —27*w:B\
+(1/2)(n/0)(ws—3we) Ba— weweA,
—(1/2)(n/0)* As— A7*wiCi—(1/8)(n/p) A ws
- 3w5)2C3 + ((U%(Ue— yw;)Bl CZ/C1
+ wewoB1 B /(A2 Ch) + y* B3/ (A*Cy)
F27we B2 Co/C1+ A2y CE/Cy

a:=(n/p)Az+(n/o) wsB2+(1/2)(n/0) As
+(1/2)(n/o)(wo+ we) Bs+(1/8)(n/p) A*(3ws
—we)(Bwe— we) Ca— (/o) BiB:/(A*Cy)
—<72/0)CU031C2/C1

as=—y(nfo) A1~ (7/2)(nfo) As—
+ wo) B+ (7/8)(n/0) A*(3we—

(v/2)(n/o)we
a)o)(a)e— 3(1)5) C3

~(n/o)y(we— wo) BiC2/Ci+ (y/A*)(n/p) B2/C,
—7(n/o)(we+ we)(Bi— B:C./Cy)
+(nylo)(we— we) Bz
- /lzr(n/p)wewe(Cx - CZZ/CL)
as=—= — Y(Bz"BlCz/CL)
ar=weA1+ wel2+{(n/0)* + wews) B:+ y2 By
+(n/p)?Bs+ A7 w:Ci+ (A*/2)(n/0)*(Bw.
- CUo) Cy— CUeBlz/(AZCI)
— weB1 B2/ (A*C1) — {(n/p)*
+ weCUa}Bl Cz/cl - }’232C2/C1 - /12}’2605C22/C1
as=(We+ ywe— yws) Av— y{(n/0)*+ wewa} By
=7 rws(nfo)*Ci— y(n/0)*Bs
= (7/2)(n/0)*A*(Bwe — wo) Cs

- (0)’5'*' ‘/Q)e)sz/(/lzCl) + 7(00322/(/‘12(:‘1)

+ r{(nfo)* + we B1C2/C

+Aywe(nfo)* C3/C

= r{wd+(n/0)}} B: + y{wews + (n/0)*} B:C2/C)
a9=B1/C1+/12w5

CZm"(//Cl){Bx B+ Aw(Ci— Co)} etc. (30)

== pet n¥ + i —yns* +(njo) nif

—(B/C)m P+ (y/C)(Bz— Bi+ A2weCo) m®

— Al ywemd® + (1A% 20)(Bwe — we) W2 etc.
(31)

If i=1,84=h/2, 5=—h/2 are assumed in Egs.
(20), then B=0, and Egs.(29)~(31) coincide with the
equations for single-layered shells previously derived
by Takezono and Tao®.

Once the solutions for we, #e, #2; and m. have
been calculated, the internal forces at any point in the
shells can be found.

The stress rates (in the 7 th layer) can be expres-
sed with the solution {2} of Eqgs.(29) as follows:

{5i}={Fi}{2}'+{Ht}{Z'}+{S':pp} (32)
where
{gi}:{fez, S o, 5eaz}r
%;%1—)/, -—:mé Pos¥
{s}={ Ei & _ (33)
Es a 1«;/, Clme st
Se(ﬁ
Lasfsl

{F:} and {H,} are determined from the shell geome-
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tries, the materials and the thickness of each layer.

By the use of Eqgs.(17),(19) and (21), the rates of
internal forces and stresses related to visco-plasticity
are given as follows:

o«

o‘ol’k)go{izé’”‘"), ng?", w%") [Aal]
noru

2_2 {Eeyfe,Eeg}

(Uoho/a) 2{ vp(n) P(n) m g(’!)} [A"]

(D:]dt

(34)
=2, {55 , €5°, €} [Di]gdg

i=1

(5820, 57, 58} [Ad]

{55 , £8P , €% } [Di]
The visco-plastic strain rates on the right-hand
sides can be related to the stresses by Eq.(15).

3. Numerical Method

OJo

I iMs

The incremental solutions at any calculation
stage are obtained from Egs.(29) with appropriate
boundary conditions. Once these have been calculated,
the increments of membrane forces and moments at
any point in the shell can be found from Egs.(25) and
(26). The solutions at any time are given by summa-
tion of the incremental values. Equations (29) are
solved numerically by the finite difference method as
described in Ref.[ 5].

4. Numerical Example

As a numerical example of the multi-layered
shells of revolution, a simply supported two-layered
cylindrical shell composed of mild steel and titanium
subjected to locally distributed loads is considered
(Fig. 4).

The geometrical parameters of this shell are as
follows :

a=L, =s/L, 0=1/3, Cl)e:3}

O =r=w:=w:=0

The meridional mesh interval 4 in finite dif-
ference calculation is

A4=1/2(N—1) (36)
where N is the number of mesh points.

Boundary conditions at the points A and B are,

(35)

respectively : .

Ue=Ut=Mi=Ne&=0 (37
and

Uy=Uc=Me:Ne:0 (38)

The material constants of mild steel and titanium
employed in the calculations are as follows*4-1%

Titanium :

E=91x10*MPa, v=0.33

71=8001/s, O(F)={(&—o*)/o*}™*

0*=656(0.010 1+ £°7)**2 MPa

Initial yielding stress oy =206.1 MPa

(39)
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Mild B P=Picos 48 h/n[RMA] s | & s
< Steel 773 (i=1,2) 0 [ 2.36 |4.52x10%9.68x10
T e 0.2 | 2.08 5.16 x108 1.05+10”
CTitanfum [Aqg=n By« ) 05 | 1.86 [7.17x0%1.46<0]]
L
i !
— Py ;
£ =s/L H
al . B = P2=55 MP
! SR P1=45
O 1
LH_U‘ 0 _u t2
Time
L=600mm b=36 mm h=4mm h;=08, 2mm
R= 200 mm d=225°
Fig. 4 Two layered cylindrical shell
Mild steel :
E=2.0x10°MPa, v=0.29
71=40.41/s, O(F)={(5 — 06*)/o*}>° (40)

m/h =05

(-

-

— Stationary state

—--- Instantaneous state[” 2)
-------- Particle path | Po \
‘ P1
P
| 200
. Y h/h= 0 I
Wl n/n=0s | 8 \
Po ) Po N
P | P,
¢ P
\ ? P2 4

>
o L]
4

;

h/h = o.

~. =

(b)

Fig. 5 Deformations

JSME International Journal

0*=261.7T MPa

The meridional mesh point number N and divi-
sion number K through the thickness are selected as
N =51 and K=10 for each layer. The number of terms
of Fourier series is chosen to be 20. It is regarded that
the stationary state has been reached when the ratio
of maximum visco-plastic strain rate &2« to maxi-
mum strain émax immediately after each loading
becomes less than 3.5X107%, i.e. |& ¥y /emax] £3.5%
1071°,

These values are determined according to the
convergency of the solution, the capacity of the com-
puter and computing time.

Some of the essential features of the solutions are
shown in Figs.5-12. In the figures, the broken lines
indicate the values immediately after loading of P
and P, and the solid lines indicate the values in
stationary states. When P= P, initial yielding occurs
on the outer surface at point A (£=0, §=0).

Figures 5(a) and (b) show the deformations of
the cross section £=0 and those of meridional sections
§=0 with time, respectively. The dotted lines indicate
the particle path. The shell is greatly deformed at
point A (=0, §=0°). The difference between the in-
stantaneous state and the stationary state incresses
due to the progression of yielding with increasing
loads. Shell deformations become large with the in-
creased thickness of the titanium layer.

Figures 6 and 7 are the variations of distributions
of N and N, with time. N, relaxes more than N, in
loading parts. The influence of 4/k are not great.

Figures 8-10 show the meridional and circumfer-
ential distributions of the bending moments M. and
M. They relax considerably with time in loading part.
The variations become significant with increase of
hu/h, but there is little difference between the station-
ary values at each loading stage.

Figure 11 shows the yield progression. When P=
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P? ==z
100, P Ne
Po
0
M/ =0
-500
&
=
=
]
=
=
-500
oF
Py Y Y
Po .
Ne ™ Stationary state
N po -==== {nslantaneous state
Iy N 4]
-500r y ; ," P2 b
) o1 02 93 04 0.5
3
Fig. 6 Meridional distributions of N, and N,
400
0
4500
-500 m/h= 02
-
= .
= -&
o= =
£ S
= 500
1-500
0
—— Slationary state
| ===~ lnstantaneous state
-500
£:0
8005 30 & 30
¢

Fig. 7 Circumferential distributions of N: and N,
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Nam/ze

My

—— Stationary state

- -=-- Instantaneous state
-1000F ™

e = Q°

0 0.1 0.2 03 04 05
E(=S/L)

Fig. 8 Meridional distributions of M and M,

500

m/h=0

500

Nan/an

%500

h/h= 05

-500
——]

—— Stalionary state

-500 £ ---- Instantaneous stale

§ =0

g
1000 5 . 50 30

Fig. 9 Circumferential distributions of M.
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P, the initial yielding occurs on the outer-surface at
point A. With the increase of loads P, the plastic
zones progress from the loading part and the inner-
surface at £=0.09 to the meridional and circumferen-
tial directions. The yielding zones of the two-layered
shells are discontinuous on the interface and larger
than those of the single-layered shell (%, /A=0).

543

mild steel layer in every case of 4,/4. In the titanium
layer, the stress variation is complex.

In numerical calculations, FACOM M-380 S+ VP-
100 was used. The CPU times of the numerical exam-
ples are about 20-40 minutes.

Figures 12 (2) and (b) show the distributions of %
stresses 0. and e through the thickness at point A of
the shell. The stresses relax in the outer part of the O)
D ]
05
8=0°
m/h= 0 =
P2 g o~
& 500 ~Stee! ~
H m/h = 0.2 TN T KX Titanium,
: o = o1 020
=z \Xﬁ 3
05
. m/h = 0.5 -500 Mitd
= Steel
k A O
-500 — Stationary slate
o ---- Instantaneous state -05
-1000F"
/ E=0
X <& — Stalionary state —-= Intetface
0 30 o° 60 90 ~--- Instantaneous state
Fig. 10 Circumferential distributions of M, Fig. 11 Progression of yield
Qs
Interface
Mild
£, 0 Steel |
~ P2 A= .
h/h=05 \ gy Titanium
P2 t- 001 K
) 0001s(Py¥ A
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5. Conclusions

In this paper the authors have described the
numerical analysis of elasto/visco-plastic problems of
multi-layered shells of revolution under arbitrary
loads. The basic differential equations on the multi-
layered shell have been developed on the basis of
Sanders’ elastic shell theory. The elasto/visco-plastic
equations by Perzyna have been employed as the
constitutive relation.

The increments of all pertinent variables have
been expanded into Fourier series in the circumferen-
tial direction and decoupled sets of ordinary
differential equations have been solved by the usual
finite difference method. The solutions at any time are
obtained by integration of the incremental values.

As a numerical example of practical application,
the creep deformation of a simply supported two-
layered cylindrical shell composed of mild steel and
titanium layers has been taken.

The numerical computations have been carried
out for three cases of the ratio of thickness of tita-
nium layer to shell thickness. It was found from the
computations that the deformation becomes large
with the increase of & /k and the stress distributions
and progression of yield vary significantly depending
on the thickness ratio.
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