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Elasto/Visco-Plastic Dynamic Response of
Axisymmetrical Shells Under Mechanical
and/or Thermal Loading*

Katsumi TAO**, Shigeo TAKEZONO**,
Toshihiro TAGUCHI** and Kazuo HOTADA ***

An analytical method for the elasto/visco-plastic dynamic problems of axisym-
metrical thin shells subjected to mechanical and/or thermal loads is developed. The
equations of motion and the relations between the strains and displacements are
derived by extending Sanders’ elastic shell theory. For the constitutive relations,
Perzyna’s elasto/visco-plastic equations including the temperature effect are em-
ployed. The derived fundamental equations are numerically solved by the finite
difference method. As numerical examples, the 'simply supported cylindrical shells
made of mild steel are treated and the following two cases are analyzed: a nonuniform
temperature cylinder subjected to impulsive internal pressure, and an internal pressure
cylinder subjected to impulsive thermal load. In both cases the variations of displace-
ments and internal forces with time are discussed.
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1. Introduction

Many investigations on the elasto/visco-plastic
dynamic response of shells to time-dependent loads
have been carried out not only for axisymmetrical
shells but also for general asymmetrical shells®®~®
These investigations, however, deal with cases
maintaining a constant temperature distribution in the
shell body. Only a few investigations on the problems
for nonuniform temperature distribution have been
performed®-”,

In the present paper, the authors study the elasto/
visco-plastic dynamic response of axisymmetrical
thin shells to general asymmetrical mechanical and/or
thermal loads. The equations of motion derived from
Sanders’ theory for thin shells® by adding the inertia
terms are used. As the constitutive relation, Hooke’s
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law is used in the linear elastic range, and Perzyna’s
elasto/visco-plastic equations® including the temper-
ature effect are employed in the plastic range. In the
numerical analysis of the fundamental equations for
incremental values an usual finite difference form is
employed for the spatial derivatives and the inertia
terms are treated with the backward difference for-
mula proposed by Houbolt"”, The solutions are
obtained by integration of the incremental values.
As numerical examples, a nonuniformly heated
cylindrical shell subjected to impulsive internal pres-
sure and an internally pressurized cylindrical shell
subjected to impulsive thermal load are analyzed.

2. Fundamental Equations

Let the undeformed middle surface of axisym-
metrical shells be given by the orthogonal coordinate
system (&, §) and ¢ be directed outward from the
middle surface, as shown in F ig. 1, then the relations
among the nondimensional curvatures w¢(=a/R;),
ws(=a/Rs) and the nondimensional radius o(=r/a)
become as follows :
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we=— (7 + P wo,we=/1—(0)Jo,0s=7(we— wo)}
o Jo=—wews,y=0lp,E=sla( Y=d( )/ds
(1)
where 7 is the distance from the axis, s is the meridio-
nal distance measured from a boundary along the
middle surface and a is the reference length.
Adding the inertia terms to the equilibrium equa-

tions in Sanders’ theory for thin shells® and eliminat-

ing the transverse shear forces Q. and s from these,
where the rotatory inertia terms are omitted, the
following equations of motion are obtained :

a[é%( pAN)+~-2( AN ) 0 4N,
+ wgb%ﬂ oM+ (A~ o' AV
+ e wo)- (A
+ paz[APe = ,Oohgtiz“(d(]e)] =0

o Z (4N +-L=( 04N )+ 0 AN]
+ A +Lep 4 + o Al
+%pa—aé[(cuo— we) AMes]
+ paZ[APg ~ poh-2+(4U) | =0

3

[ 5(pAM5)+ 2 (4i) - pAMa]+?5§

i:—a?“(AMo) + a_§< pAMeg) + ‘O,A/Weo} - ap( (UeANe

2
+ wodNy) + paz[AP; - pah%(d W)jl =0
(2)

Here the notations %, ¢ and o in the inertia terms are

02

Fig. 1 Coordinates and notations
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the thickness of the shell, the time and the mass
density, respectively, and the modified stress resultant
N and the modified stress couple M are® :

AN50=(AN53+AN05)/2+[(1/Ra)_(1/Rs)]

X (AMes— AMoe) [4 (3)

AM50=(AM59+ dMee)/z
The other variables are shown in Fig. 1.

On the boundary, the effective membrane force
Nes and the effective transverse shear force Q. per
unit length are defined as follows® :

ANew= AN+ + ( §—~?)AM59

4Q.= —a?[“é?( odM.)+ Zﬁ(dﬂz’w) - p/AMB}
(4)

The strains of the middle surface are given by® :

Asm:%[{g(due)wedw],
dam:%[li(dw) + 7 AUs+ wsd W}
AEeam [0 ag(Z’Ue)+ aE(dUﬁ) J’AU{I

(5)
where € is half the usual engineering shear strain.
The relations between the bending distortions xe,
Xo, Xso and the rotations @., @, are as follows ®:

dr=1 af(dd)e) Axo= 1[— g e]

=] L2400+ (40— 1(40) + 5 (00

o] 525 au)- E(AUE)—MUOH

(6)

where
A@E:%[—i(AW)-'rweAUe]
(7)
D O R -
A@a—;[ P ag(Z]W)‘i’a)sAUo}

Under the Kirchhoff-Love hypothesis and the
neglect of the small quantities {/Rs and {/Rs in com-
parison with unity, the strains at the distance ¢ from
the middle surface are:

{dey={den}+ §{dx} (8)
where

(de)={dee,deo, deeo}”, {Aem}={deen,deom,decon}’,

{dx)={dxe,dxo,dxee}” (9)
and { }’ represents the transposed matrix.

Now, we shall use the elasto/visco-plastic equa-
tions by Perzyna considering the temperature effect
for constitutive relations. The visco-plastic strain
rates & are as follows:

e =n(T)< W(F)>SuJz"* (10
where the dot denotes the partial differentiation with
respect to time, ¥, Su, J» and n(T) are the visco-
plastic strain, the deviatoric stress, the second invar-
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iant of the deviatoric stress tensor and material con-
stant, respectively. ¥, is a function of absolute temper-

ature T as well as ¢* in Eq.(12). The symbol < T(F)>
is defined as follows :

F20:<¥(F)>=0, F>0:<¥(F)>=¥(F)

(11)
Function F is:

F=[6—0*(T)/o*(T) (12)
where & is the equivalent stress (=y/3/;) and o*(T)is
the static yielding stress obtained in the usual tension
test, which is also a function of the equivalent plastic
strain €. F=0 denotes the von Mises yield surface.

In the present paper when we assume that the
total strain increment may be composed of the elastic,
the visco-plastic and the thermal parts, the total
strain increments in the plane stress state are written
as follows :

{de}=[D] 4o} +{de"*) + {4e*) (13)
where

{AG} {AO‘e,AO’g,AO’ea}T

{de**y={det? des?, 48T

{de'}=(adT.,adT.0}"
1 v 0
0 01—v
{AEUP}—{ -vp}dt
=< e(TL) 4
1 -=1/2 0
X|—-1/2 1 0 {o}at (14)
0 0 3/2

where £, v and « are Young’s modulus, Poisson’s

ratio, and thermal expansion coefficient, and 75, is the

temperature rise from the original temperature 7y to

the present temperature 7, namely,
TL£,0,5,0)=T(£,0,¢,1)- T (15)
Substituting Eq.(8) into Eq.(13) and solving

them for stresses, the stresses are :
{Ad}=[D]({Asm}+C{Ax})—{da”"}—{dd‘} (16)

where

{Ad”"}={Aoé"’,da&"’,ddé’é"}T=[D]{Ae”"}

(do')={d0*,0'0)" =[ D}{de'} =2 {dTe,dTe,O}T}

(17)
The membrane forces and the resultant moments
per unit length are from Eqgs.(16) :
{ANeyANe,ANe&} T= h[D]{AEm}
~{dN#? AN??, AN” T ={4N*, AN 0)T
{AM;,AM@ AIWM}T [ ]{AX}

—{AME, M, A ”}T {am® apme 07
In Egs.(18), ( ) and ( )‘ denote the apparent
internal forces due to visco-plasticity and the internal

(18)
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forces due to temperature rise T., respectively, and
are given by :
{AN#?, ANg?, ANZ, AN?)
= [, a0t 4028, 40)a
{amee, amge, amtgy, am+)
—fm(d &8, dodP e, Ao ¢, dote)de

A complete set of field equations for 36 indepen-
dent variables : 4N,, AN, AN, AM,, AMs, A0, AN?®,
AN§?, ANeP AN‘ AM AMEP, AM X, AM*, Ao, dos,
Ao, Ao¥? o0&, dot, deem, Aeom, deeom, 42,
Adey?, de e” Ae AU;, AUs, AW, Adxe, dxs, dxes, A0,
4®, is now given by 36 equations:(2),(5)-(7), (14),
(16)-(19).

(19)

3. Nondimensional Equations

In order to analyze the problem of the shells
under arbitrary unsymmetrical loads, the loads AP,
AP, 4Py, AT. and the 32 independent variables, ex-
cept dei?, det?, deth, det, are expanded into Fourier
series"’. Generally, correspondmg small letters are
adopted as the Fourier coefficients, but the letter s is
used for the stress o.

Substituting these Fourier series into the above 36
equations and appropriately eliminating the variables,
the simultaneous differential equations for Aul™,
Aul”, dw'™ and Am¢ can be obtained in the matrix
form:

A;z"+Azz’+Aaz=A4N’+A5N+A5M'+A7M

+ AT + AT+ AP+ ALz (20)
where Ai-Au are 4 X4 matrices determined from the
shell form and materials (A4,-A; are the same as in
ref.(12)), and z, N, M, T, P are as follows :

z={du ", dus™, Aw'™, AmM)T
N:{Anew(n)’ Anaup(m' Aﬁwup(n), O}T

M ={dm*®, Adms"* ™, dimie®®™, 0)7, (21)
T={dnt, dm*,0,0}7

P={dp™, 4ps™, 4p;™, 0}, '=d]d¢

The increments of internal forces related to the
visco-plasticity and the temperature rise in Eqs.(20)
and (21) become the following by use of Eqs.(17) and
(19) :

m,?;‘(’{dn?" Ame*}cos n&z-%T_—lU—z
< [ (1% aer + vaeiryac
Z {dng?, dmP)cos n6~7 1_1)/

x [ L% dew + vaer)ar (22)
O'(]é{ 7%, dmgs}sin nﬁ:%T—ll-—y
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2 gb vp
< [ w{l' i }Aeea dt

(ant amty=1=4 [ W{l,%:}dtea@

hl2
aogo{dse”",dsé”’}cos n8=1—_§7'
X (A&t + vdel?, des? +vdei) (23)

SNRT __FE up
o()nzslldsse”sm nd=+7 Adet
The visco-plastic strain increments on the right-hand
sides of the equations can be related to the stresses by
Eq.(14), and Simpson’s 1/3 rule is used for the calcula-

tion of integration.

4. Numerical Method

A finite difference method is employed in order to
obtain the solution. The usual central difference for-
mulas are used for every mesh point except the discon-
tinuity points and the boundary points of the shell. For
the discontinuity points and the boundary points, for-
ward and backward difference equations are em-
ployed". The second derivative with respect to time
in the inertia terms in Eq.(20) is treated with the
backward difference formula proposed by Houbolt"".

Applying these difference formulas to the funda-
mental equations (20), the boundary conditions and
the continuity equations, the simultaneous equations
with respect to z.,(z at any point and at any time) can
be obtained. The solutions at any time are obtained by
integration of the incremental values at each calculat-
ing stage.

5. Numerical Example

As numerical examples, simply supported cylin-
drical shells made of mild steel are treated and the
following two cases are analyzed.

5.1 Example 1 (Nonuniformly heated shell sub-
jected to impulsive internal pressure)

The nonuniformly heated cylindrical shell (Fig.
2) under a semi-sinusoidal internal pressure with
respect to time, as shown in Fig.3(a), is analyzed.

Te=T(0)-To=TiCosb

Vi /
< I
o £, Fenld
i To
2=600mm ’

£=200mm, R=200mm, h=4mm, T0=25°C

Fig. 2 Cylindrical shell and temperature distribution
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The temperature with uniform distribution along the
axis and cosine distribution around the half circumfer-
ence is considered. Two kinds of shells (/=200, 600
mm) are treated and the same loads are applied. Each
parameter of temperature and internal pressure in
Figs. 2 and 3(2) is as follows:

T,=25°C, T\=75°C, P,=10 MPa, £, =0.2 ms (24)

The geometrical parameters of these shells are :

a=1,&=s/l, p=1,1/3, o’=0, 7=0}

G)o=1, 3, (1)5:(1),5:0
The increment 4€ in the nondimensional variable &
is:

4E=1/2AN-1) (26)
where N is the meridional mesh point number.

Boundary conditions at the points A(i=1) and
B(i=N) are,

Point A : AUs=AN:w=4Q:=40:=0

Point B : AU():AW::AMe:O, ANe:AP;'R/Z

(27

The material constants employed in the calcula-
tion are as follows™:

E=1895GPa, v=03, ¢=11.7X107°°C™},

00=17.78g/cm®

o*(T)=207exp{0.45(288/T —1)}MPa, (28)

v T)=30.12[1+2.6{(220— T)/273}*] s~

w(F)=[(g—*(TH/c*(T)F
By using these material constants, the stress-strain
curves at T =15, 100, 200, 300°C are shown in Fig. 4.

The mesh point numbers N are chosen to be N=
51 and 101 for short and long shells, respectively. The
division number through thickness of the shell and
number of terms of Fourier series are selected as 19
and 20, respectively. The increment of time 4t is
determined as 1.0 X 107® ms. These values are obtained
in consideration of convergency of the solutions,
capacity of the computer and computing time.

The variations of displacements U., Us and W
with time at specific points are plotted in Figs.5 and 6.
The displacements U, and W in the high temperature
portion are larger than that in the low temperature

(25)

& R=P.Sin(rt/ted  Tiof--

Ti(t)

{
1
!
I
i
!
1

to 0 to .
: Time t
tme 1, 2750¢ P =1.5MPa
Po=10MPs  to=0.2ms Ti0=275°C t=01ms

(a) Example 1 (b) Example 2

Fig. 3 Impulsive loads (a) Example 1 (b) Example 2

JSME International fournal

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

portion. Owing to the application of internal pressure,
the above difference becomes large with the lapse of
time. It is found from comparisons between long and
short shells that the U, and Us of the long shells vary
to a great extent with respect to time, but slowly with

[ T=15°C T=100°C [ T=200°C { T=300°C 1
600+€=200 1/s | L L .
100
o 10
a 1
2 400}01
b
200} forfy .
O.q1/
o L
0 02 040 02 040 02 040 02 04
€ A
Fig. 4 Stress-strain relations
20 " l=6(30 i ]

1.0
E
£
=
. 1=200
0 s
b =~ 9= Oo 4
r ——=- q0° ]
i ——  180° 1
0 02 0.4 06
time t ms
Fig. 5 Variations of W with time
 p— 9%-}u '5) | | ]
S o k(=0 4

[ - 8 90°:Us (€70)

0.2
£
o1 E
= '<, /_,,‘ O S
el - \\/’/ 101
~ ‘s
}Ue ST
1-02
0.4 0.6

time t ms

Fig. 6 Variations of U and U, with time
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the lapse of time.

Figure 7 illustrates the variations of membrane
force N. with time at specific points. There is little
difference in N, at these three points but the difference
between the solutions of the long and short shells

2000 T T T T T

1000

N/mm

Ng

-1000

-2000 . L L . L
0 .
Time ¢ ms

Fig. 7 Variations of N, with time

E=(s/?)

Fig. 8 Meridional distributions of W

(=s/1)
ot 0
zooo[:_
i
" 0ams(l= 500)/‘ ‘ \
c1000} 0:0" =01 ms(1=200) \
E ] ----- 90
s —— 180"
z 3
0 05
s o0 — 2000
120(22200,600)7"
= 035ms(1 200)
-1000 =
i
0 01 02 03 04 05 *
& (:s/D) P
0:0" 90
12200 — -~
600 === --m
0 01 a2 03 04 a5

& (=si1)

Fig. 9 Meridional distributions of N, and M,
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becomes significant after {=0.2 ms.
Figures 8 and 9 show the meridional distributions
of W and N, along =0, 90, 180°, and those of M.
along =0 and 90°. In these figures the meridional
coordinates of the long and short shells are taken as
proportional to the real length s. It is found from these
figures that distributions of these components near the
edges in the long shell are similar to the distributions
over all the meridian of those in the short shell. In the
long shell, W and N, are nearly constant along the
meridian and the resultant moments are very small
except near the edges. Therefore, the membrane
stress state occurs except there.
5.2 Example 2 (Internally pressurized shell sub-
jected to impulsive thermal load)
The internally pressurized cylindrical shell under
the impulsive thermal load as shown in Figs. 2 and 3
(b) is analyzed. The thermal load with uniform
distribution along the axis and cosine distribution
around the half circumference is considered. The
geometrical parameters, the material constants and

the boundary conditions of the shell are the same as in.

example 1.

0 N e AR
L E:O : \\“/’_\N
0 02 . 0.4 0.6
time t ms
Fig. 10 Variations of W with time
r T T T T T _{
1or Ue (E=05) ]
] £=600
£ I 12200 1
>
P RIS =
CEY s A ve st A S
- | AN \><Ue(5;=0)\~ <
e %3(2580 B ]
=== 90° < 17600 - i
O‘“ —— 180° b .
__]. i i L 1 1
0 0.2 04 06
time ¢ ms

Fig. 11 Variations of U, and U, with time
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The parameters of internal pressure and thermal
load in Figs.2 and 3(b) are as follows:

P=15MPa, Tob=25C, £=01ms, T1w=275C

(29)

Calculating results are shown in Figs.10-14. Fig-
ures 10-12 show the variations of displacements and
internal forces at specific points. Owing to the internal
pressure the shell deforms slightly in the beginning,
and the application of a thermal load induces a large
deformation. An especially notable deformation
appears in the high temperature portion. It is found
via comparison of long and short shells that the
displacements and internal forces of the long shells
vary a great deal with respect to time, but they
respond later and vary more slowly with the lapse of
time.

Figures 13 and 14 show the meridional distribu-
tions of W and N, along =0, 90, 180°, N along 6=
90°, and M. along =0, 90°. In Fig. 13 the solid line of
t=0 coincide with the chain line of £=0.05ms. The

1000
£
€
230
S
F=
1z
z
-1000 E
°8
ER
¥
0
Fig. 12 Variations of Ne and Ne with time
E=(s/h)
I
E o somsms(r=gopy | TOOMsUE07
r '\.\
| 1=005ms(1600)  T—q=r=
‘__4&(:
. b g
£ T /}--"1=0(1=200.600)
0 /f/ (
3
%}
-1000
L —~—— 90° |Ne ]
L —— 180°
0 o 3703 oL 05
E=(s/h)

Fig. 13 Meridional distributions of N, and Ne
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(=s)
OE' °

1=0.3ms(6=0°
ms[ 30"
===7=:02200 l=0.35ms{8=0")
—=— 600, , 190
0 0.1 0.2 03
E(=s/1)

Fig. 14 Meridional distributions of W and M,

distributions of these components near the edges in
the long cylindrical shell are similar to the distribu-
tions over the entire meridian of those in the short
shell, except Ne. It is seen from comparison of the
distributions of W and M, along =0, 90, 180° that the
values along §=0°. where the thermal load is strong,
become large.

6. Conclusions

In this paper the authors have described the
numerical analysis of the elasto / visco-plastic
dynamic response of axisymmetrical thin shells sub-
jected to mechanical and/or thermal loads. The equa-
tions of motion and the strain displacement relations
have been derived from Sanders’ thin shell theory.
The constitutive equations by Perzyna considering the
temperature effect have been employed. The numeri-
cal method selected for this problem is a method using
finite difference in both space and time.

As numerical examples, the simply supported
cylindrical shells made of mild steel are treated and
the following two cases are analyzed : a nonuniformly
heated shell subjected to impulsive internal pressure,
and an internally pressurized shell subjected to impul-
sive thermal load. Two kinds of shell length are
adopted in each example. From both numerical exam-
ples the following has been found :

(1) The shells deform largely in the portion of
the application of high temperature.

(2) From comparison with long and short shells,
the displacements and internal forces of the long
shells vary a great deal, but they respond more later
and vary slowly with the lapse of time.

(3) The meridional distributions of displace-

347

ments and internal forces near the edges in the long
cylindrical shells are similar to the distributions over
the entire meridian in the short shells.

The numerical calculation for each example
requires about 30 minutes in FACOM M-382.
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