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A Proposal of a Shape-Optimization Method

Using a Constitutive Equation of Growth*
(In the Case of a Static Elastic Body)

Hideyuki AZEGAMI**

A simple method for analysis of uniform-strength shape is newly proposed. In this
paper, the most fundamental case of a static elastic body is considered. The idea of the
present method came from the growth behavior of living organisms by which they
changed their own shapes to adapt themselves to the mechanical living environment.
The scheme consists of the iteration of the two analytical steps: (1) conventional
elastic analysis for evaluation of stress distribution, and (2) incremental growth
analysis using a constitutive equation of growth. In the latter step, a shape is deformed
with an incremental bulk strain which is generated according to an objective stress
indicating strength of the material. Two examples of a cantilever beam under top
shear loading and a column under top compressive loading and gravity are analyzed to

show the effectiveness of the proposed method.
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1. Introduction

The objective of the present paper is to propose a
new approach to the analysis of uniform-strength
shapes for general use. In this paper, the most funda-
mental case of a static elastic body is considered.

The motive of the present work was a hypothesis
described in the explanation by Fung and Seguchi®:
“In biosystems, the behavior of growth and atrophy is
most likely controlled by a stress, and the change in
the residual stress may be caused by the behavior (in
Japanese).” I believed that if we could implement an
incremental growth analysis with the finite-element
method obeying a constitutive equation of growth (or
growth law) in which swelling and contracting bulk
strains sprang up in response to stress, shapes could be
deformed and optimized like biosystems.

The present method is positioned vis-a-vis the
previous methods as following. In the various
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classifications, one is to assort the methods into two
groups in terms of the definition.of optimum criteria:
(1) “minimum criterion” of an object function and
(2) “uniform criterion” of a distributed object func-
tion, where the term uniformity is defined as a station-
ary state of an iterative uniformalizing process. The
minimum condition of the potential energy, which
means the minimum deflection at loading points,
under volume constant is an instance of the former.
For these problems, the previous numerical methods
were generally based on mathematical program-
ming®~®. The uniform condition of the equivalent
stress under Mises’s criterion to strength of material
is an instance of the latter. The previously proposed
numerical methods were to transform the finite ele-
ments adjoining a surface with a particular pattern®®
or to shift the nodal positions on a surface according
to a magnitude of a reference stress®. The proposed
method is classified into the latter, but differs from
these previous approaches in the use of the bulk strain
which is generated on the constitutive equation of
growth in all parts of the body.

Simplicity of the procedure is a feature of the
proposed method, particularly in comparison with the
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mathematical programming approach. Indeed, the
mathematical programming approach required calcu-
lation of the sensitivity of the object function to design
variable of shape, so that steep extension of computer
memory and additional programming for optimization
were required. In contrast, the proposed approach
does not require calculation of the sensitivity because
of the use of the initial- stress method®, which is
popular for nonelastic analyses, so that the program-
ming is simplified and steep extension of computer
memory is unnecessary.

The present paper consists of the following parts :
section 2 (‘Growth Law and Shape Optimization’)
gives the formulation of the constitutive equation of
growth and proposes the scheme for shape optimiza-
tion, section 3 (‘Numerical Method with Finite
Elements’) presents the method of analysis, and sec-
tion 4 (‘Examples’) shows the fundamental experience
of computation.

2. Growth Law and Shape Optimization

In this section, we formulate the constitutive
equation of growth which makes strength uniform
when a criterion of strength is given to a fracture or
an elastic failure of material, and propose the scheme
for shape optimization.

The criterion of strength is generally given with a
measure of a specific stress. In the case of the maxi-
mum principle-stress criterion, which has been known
as an effectual criterion to the fracture of brittle
materials, the maximum principle stress is employed
as the measure. The equivalent stress is used in Mises’
s criterion to the elastic failure of ductile material.
The former criterion is given by the inequality

0120, (1)
where o is the largest principle stress, and the latter
is given with the equivalent stress geq

O'ev=|:%(622_ (733)2+(633_ 611)2+(6‘l_ 622)2

172
+6(ck+ o+ afz)] (2)

by the inequality

Oeq = O, ( 3 )
where oc is a critical stress of the fracture or the
elastic failure, and o;; is the stress tensor.

Therefore the objective for our shape optimiza-
tion is to uniformalize a given stress from these
stresses. Then we represent the stress as a object
stress ow;. Which is found as a distributed object
function described in the introduction.

Let the uniformalized condition be the stationary
state of an iterative uniformalizing process, as
mentioned in the introduction, and the uniformalizing
process be an incremental growth process with the

JSME International Journal

65

following law. We formulate the growth law in which
a swelling bulk strain springs up in the case of the
object stress over its basic value, and a contracting
bulk strain springs up in the opposite case.

Concretely, in the elastic analysis, the constitutive
equation is given by Hook’s law :

Gii:DﬁktEft, (4)
where o0y, €k, and D are the stress tensor, the
elastic strain tensor, and the elastic stiffness tensor. In
this paper, the summation convention is employed in
tensor expression. In the incremental growth process,
we assume that the incremental total strain dea:
consists of the incremental elastic strain Je%; and the
incremental bulk strain Jdef;, and the relation by
Hook’s law holds.

A0U=DuuAsz=Do‘u(deu—AE£1). ( 5 )

Where the incremental bulk strain Jef, is generated
in response to the deflection of the object stress dob; to
the basic stress Gvas:

Aefi= Af (Gobi— Ovas) Oxt. (6)
The tensor Jx: denotes the Kronecker delta, and 4f
(0obs-Ovas) Tepresents an incremental growth function.
A straightforward incremental growth function is
given by the proportional relation :

Af(Gov;— ab.,s)=MAh, (7)

Obas

where 4h is a constant with which the magnitude of
the incremental bulk strain is determined at an itera-
tion, so we term it an incremental growth rate. The
basic stress ogses might be regarded as a design con-
stant or an average in volume; it should be considered
as a variable when we set a ceiling on the maximum
of the object stress.

A schematic tflow chart for shape refinement is
shown in Fig. 1. In this chart, the control of the basic
stress is omitted to maintain the simplicity. The
method starts at the input of an original shape (1).
Based on the shape, the conventional elastic analysis
(2) is followed and from it, the distribution of object
stress is output. The boundary condition is set up from
a mechanical condition of the problem. The conver-
gence of the the object stress distribution (3) is
judged after the elastic analysis. At the judgement,
when the convergence is confirmed, the shape is out-
put (4); when it is not confirmed, the incremental
growth analysis (5) is followed. On the incremental
growth analysis, the object stress distribution is input
and the incremental growth displacement is output.
The boundary condition is given from a restriction of
shape deformation for design. The shape modification
(6) is performed by moving the nodes based on the
incremental growth displacement. After the
modification, the flow returns to the elastic analysis
(2). The indicator of the convergence might set the
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object stress ratio of the maximum value to the basic
stress. In the case in which a finite-element mesh is
distorted by the growth deformation, an implementa-
tion to regularize the mesh is required in the shape
modification.

3. Numerical Method with Finite Elements

In this section, the numerical method of the two
analytical steps with finite elements is presented. The
substance of the method for the incremental growth
analysis is the initial stress method®, which is well
known as a general method for a nonelatic deforma-
tion analysis. The vector and matrix expression is
used in this section.

Based on the standard finite-element procedure,

{u(x)}=[N(x){u} (8)

{e(x)}=[B(x)){u} (9)
where {«) is the nodal displacement vector, {x(x)}
and {e(x)} are the inner displacement and the inner
strain vectors, and [N(x)] and [B(x)] are the
shape function and the nodal displacement-strain
matrices. The bolt sign x denotes the coordinate
vector in a finite element and it will not be omitted for
its functions in this paper.

The constitutive equation of elasticity is given by
Eq. (4):

{o(2))=[De*(x)}=[D][B(x)){u}. (10)

1.0riginal shape
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Object stress
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5.ncremental growth analysis
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Growth deformation

6.Modification
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Fig. 1 Shape-optimization method with growth law
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Then substitution of Eqs. from (8) to (10) into the
principle of virtual work

[ 3teE @) a@Nav - [ slu(@) (bx)dv
— [ st (¢(x))dS =0, (1)

gives the element-governing equation for the elastic
analysis :

[£){u}={b}+{2}, (12)
where

(k1= [ [B@)) [DIB))aV (13)

(8}= [ [N [b(x)ldV (14)

(t)= [ IN@"(¢(x))dS. (15)

The vectors {6(x)} and {¢(x)} are the body force and
the traction; V¢ and S§ are the element volume and
the surface on the element over which the traction
force is prescribed ; [£] , {b} and {¢} are the element
stiffness matrix, the equivalent nodal force vectors by
the body force, and the traction; and the sign denotes
the virtual variation subjected to the boundary condi-
tion of displacement. The global governing equation is
given by superimposing every element-governing
equation.

The constitutive equation for incremental growth
is given by Eq. (5):

{do(x)}=[D){de(x)} - [D){de®(x)}

=[D][B(x){du} - [D]{4e*(x)}. (16)

Since the external forces do not change during the
incremental growth, substitution of the incremental
relations of Eqs. (8) and (9) and Eq. (16) into the
incremental relation of Eq. (11)

[ 3(ae(x) (do(x)dV =0, (17)

gives the element-governing equation for the in-

(a) for elastic analysis

(b) for incremental growth analysis

Fig. 2 Cantilever beam under top shear loading : Bound-
ary conditions; width =1.2m, length =5m;
Young’s modulus =210 GPa, Poisson’s ratio =
0.3 and load =6 MN/m.
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Fig. 3 Results of the shape-optimization process in the cantilever beam problem.
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cremental growth analysis :
[£]{du}={dg}, (18)
where
(k)= [ [B@VDIB()1aV, (19)
(49)= [ [B)V (D) geX(@)}aV. (20)

The matrix [k] is the same as the stiffness matrix
of Eq. (13), and {4g} is an equivalent nodal force
vector generated by the bulk strain. The global gov-
erning equation is given by superimposing every ele-
ment-governing equation.

Therefore the numerical procedure is obtained in
the following order. The elastic nodal displacement,
as a matter of course, is obtained by solving the global
governing equation of elasticity. The distribution of
object stress is evaluated with the stress which is
calculated by Eq. (10). With the object stress distribu-
tion, the distribution of incremental bulk strain is
given by Egs. (6) and (7). The nodal displacement
of incremental growth is obtained by solving the
global governing equation for the incremental growth.

4. Examples

Two examples of plane-strain problems were
provided to confirm the propriety of the proposed
method.

For the examination, a program using the eight-
noded isoparametric element was prepared. The
object stress was assumed to be the equivalent stress
in Mises’s criterion. For the incremental growth func-
tion, we used Eq. (7), in which the value of 0.05 was
taken for the incremental growth rate Jh. As an
indicator of the convergence, the object stress ratio of
the maximum value to the basic stress was evaluated,
where the basic stress was given with the average of
the object stress distribution in volume and the maxi-
mum value was estimated in the values at the four
points to every element of Gaussian integral points.
For mesh refinement, the inner nodes were rearranged
at regular intervals, in the direction of width in both
examples. The prepared programme is equipped with
a function of drawing contours of the object stress.
The methods to remove the discontinuity of the object
stress distribution between elements and to draw the
contours are described in the appendix. The examina-
tion was made on a microcomputer (NEC PC-
9801VM2 with numeric data processor 8087).

4.1 Cantilever beam under top shear loading

The prepared conditions are shown in Fig. 2. The
shear loading was assumed to be distributed uniform-
ly at the top and did not change its total value of 6
MN/m. The grid represents the finite-element
meshes. Figure 3 shows the results of the shape optim-
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ization process to the iteration of the incremental
growth.

The results show that the present approach was
successful on this problem, since the distribution of
the object stress was uniformalized by the iteration.

As might be expected, the refined shape was
similar to the Euler beam or the Timmoshenko beam
with uniform strength except in the vicinity of the
fixed line. In the former beam, the shear direction
width was to be a parabolic state, and in the latter
beam, because the shear stress was taken into
account, the parabolic state was corrected by becom-
ing a finite width near the top. The difference in the
vicinity of the fixed bottom can be seen as an effect of
continuum with finite width. Indeed we can see that
the equivalent stress on the fixed line was smaller than
that slightly apart from the fixed line, since the equiv-
alent stress was a function of the deviatoric stress and
the hydrostatic pressure was higher and the deviatoric
stress was lower on the fixed line than those slightly
apart from the fixed line.

Moreover, the tendency for the object stress ratio
of the maximum value to the basic stress to decrease
with the iteration of incremental growth in an
exponential form was expected from Eq. (7),
because the incremental bulk strain sprang up in
proportion with the deflection of the object stress to
the basic stress, and the difference between the object

(a) for elastic analysis (b) for incremental

growth analysis

Fig. 4 Column under top compressive loading and grav-
ity: Boundary conditions ; width/2 = 0.6 m,
length = 5m; Young’s modulus = 210 GPa,
Poisson’s ratio = 0.3, density = 7.86x10° kg/m?
and load/2 = 0.06 MN/m.
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- 3 stress and the basic stress was decreased almost in
g proportion with the shape modification rate, which
*',:, was determined by the magnitude of the bulk strain.
= 2 2 In order to confirm the convergence state, an
£ < L additional examination with a smaller incremental
; o growth rate of 0.01 was performed following the
g z nIIIn]JnmI[mI converged result. A new convergence state, however,
g2 1 ML) as not found.
g 4.2 Column under top compressive loading and
'E gravity
b3 0 The defined conditions are shown in Fig. 4. Due to
0 20 40 60 symmetry, half of the column was analyzed. External

forces were the gravity (gravitational acceleration:
Iteration number of incremental growth n 9.8 m/s?) and it was assumed that the compressive
loading distributed uniformly at the top and did not
change its total value of 0.06 MN/m in a half of the
column. Figure 5 shows the results of the shape optim-

(¢) convergence rate

Fig. 5 Results of the shape-optimization process in the ization process.
column problem. The results demonstrate that the present
JSME International Journal Series I, Vol. 33, No. 1, 1990
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approach was also successful on this problem, since
the distribution of the object stress was uniformalized
by the iteration of the incremental growth.

As might be expected, the refined shape was
similar to the simple column with uniform strength
based on the assumption of uniform stress in cross
section or of the infinitesimal area of the cross section
except in the vicinity of the fixed bottom. In the
simple column the cross-sectional area changed in the
form of exponential function. The difference in the
vicinity of the fixed bottom can also be seen as an
effect of continuum with finite cross-sectional area.
Indeed, we can see that the weight was suspended on
the center rather than on both sides of the bottom.

5. Conclusions

Based on an idea which was suggested from the
growth behavior of biosystems, a simple shape-analy-
sis method for uniformalizing strength was proposed.
The scheme is shown in Fig. 1. The shape deformation
was performed with bulk strain which was generated
according to the object stress indicating strength in
the incremental growth step. The finite-element
method was employed for the numerical analyses and
the initial stress method was employed for the in-
cremental growth analysis.

The two examinations of the cantilever beam
under top shear loading (Fig. 2) and the column under
top compressive loading and gravity (Fig. 4) indicated
the effectiveness of the proposed method for unifor-
malizing strength.
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7. Appendix: Drawing of Object Stress Contours

In the typical elastic analysis, the continuity of
the displacement is held between elements, but that of
the strain or the stress is not held. While the most
exact expression of the object stress contours is to
draw them independently at every element with the
discontinuity, this expression might be difficult to
read. Therefore in the prepared program, the func-
tions to smooth the discontinuous distribution of the
object stress and to draw the contours were provided.

We assumed that the smoothed object-stress
distribution was given with the shape function {N(x)}:

ovss(2)={N(x)}"{Govss}, (21)
where {dovss} and donis(x) are the nodal vector and the
inner value of smoothed object stress in an element,

Series 1, Vol. 33, No. 1, 1990
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Fig. 6 Division of an eight-noded isoparametric ele-
ment into eight triangles for drawing of object
stress contours.

respectively. We assumed the form :
[ AN@ N Gmss) = o DdV =10}, (22)

where du;(x) is the original inner object stress with
the discontinuity. Then substitution of Eq. (21) into
Eq. (22) gives the equation:

(1/o) m}{ Govis} ={Gons}, (23)
where

We)mNams}= [ (N@HN @AV,  (24)

(o= [ (N(2)} a2}V . (25)

Here [m] is termed the element mass matrix when
p is to be the density. The global equation was given
by superimposing every element equation. Therefore
the nodal vector of the smoothed object stress was
obtained by solving the global equation and the inner
distribution of the smoothed object stress was given
by Eq. (21).

The contours of the smoothed object-stress distri-
bution were drawn in the eight triangles in every
element, as shown in Fig. 6, with straight linés, since
the eight nodal values of the smoothed object stress
were already obtained, and the center value on the
normalized coordinates was given by Eq. (21).
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