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Analysis of Elasto/Visco-Plastic Dynamic
Response of General Thin Shells by
Means of Overlay Model*

Katsumi TAO** and Shigeo TAKEZONO**

The numerical analysis of the elasto/visco-plastic dynamic response of general
thin shells to arbitrary loads is carried out by means of the elasto/visco-plastic overlay
model, which is able to express the Bauschinger effect and the strain rate dependence.
Namely, Perzyna’s equation is used for the constitutive relation of each layer of the
overlay model and as a whole, the Bauschinger effect and the influence of viscosity in
the plastic range of the material are taken into account. The equations of motion
derived from Sanders’ nonlinear theory for thin shells by adding the inertia terms are
used, and the relationships between strains and displacements where rotations of the
shell are considered for the membrane strains are employed. The basic differential
equations derived are numerically solved by the finite difference method. As a numeri-
cal example, a cylindrical shell under a semisinusoidal external load with respect to
time is analyzed, and the results are compared with those in the case of isotropic
hardening.

Key Words: Structural Analysis, Inelasticity, Finite Difference Method, Elasto/
Visco-Plasticity, Dynamic Response, General Thin Shells, Bauschinger
Effect

of each layer of the overlay model®. We have already

1. Int i
ntroduction analyzed the small deformation elasto/visco-plastic

In a dynamic response of shell structures subject-
ed to impulsive loads, the influence of viscosity in the
plastic range becomes significant owing to high strain
rates. Therefore the consideration of the influence of
the material viscosity becomes very important in the
structural analysis. As for an elasto/visco-plastic
dynamic response of shells to time-dependent loads,
many investigations have been carried out for not only
the axisymmetrical shells"’~*® but also for general
thin shells”. These investigations, however, are most-
ly based on the assumption that the material shows
isotropic work hardening in the plastic range, and the
Bauschinger effect of materials is not included in the
calculation.

Hence we studied this problem of the shells by the
use of the elasto/visco-plastic overlay model. Per-
zyna’s equation® is used for the constitutive relation
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dynamic response of the axisymmetrical shells by the
use of this model”'”, In the present paper, the relative-
ly large deformation for the general thin shells to
arbitrary loads is treated using this model.

2. Fundamental Equations

Let the undeformed middle surface of a shell be
given by the next equations, as shown in Fig. 1,

r'=x'(&)(i=1,2,3; a=1, 2), (1)
where x* are Cartesian coordinates in space and &,
are curvilinear coordinates on the surface. When &,
are orthogonal, the line element ds is given by

ds*=adtd&t+ ddt}, (2)
where a1 and @ are Lame’s parameters.

Adding the inertia terms to the equilibrium equa-
tions in Sanders’ nonlinear theory for thin shells"? and
eliminating the transverse shear forces @ and Q.
from these, where the rotatory inertia terms are
omitted, we obtain the following equations of motion :
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(@eN1)a+ (e Niz2) 2+ a2 N2 — o Nea + Ri'[(eeMn)a+(aMiz) 2+ o 2Miz— 001 M) + (a/2)[(Ri!
— R YMiz) 2 — avae R (1 Nu+ ¢2Ni2) — (1) 2)[ $( Ny + Naz) )2+ v Pr— pohd? Un [082) =0
[(Va) (M) 1+ (asMiz) 2+ 1Mz — aMan}]1+ (/) {(aiMz) 2+ (e Miz).1 + aeaMiz— & 2Mull.2
— a1 R Nu~+ Ri ' Nez) — (e Ny + 222 N12) 1 — (a1 Nia + & $2Na2) 2+ an oo P — pohd? W/ot2)=0
Another equation may be obtained by interchanging subscripts 1 and 2 in the first equation. In these equations,
the commas mean partial differentiation with respect to &; or &, as the subscript following the comma indicates.
Nu, Na, Niz and My, Mz, M, are the resultant stresses and the resultant moments per unit length of the shell,
respectively, as shown in Fig. 1. P,, P, and P are the distributed loads per unit area of the shell. R and R: are
the principal radii of curvature in the direction of & and & of the middle surface, respectively. The notations 4,
¢ and po in the inertia terms are thickness of the shell, time and mass density, respectively. ¢, ¢, and ¢ in the
nonlinear terms indicate the rotations of the middle surface and are related to Uy, U. and W as follows"":
b= —a! VV,]‘FRFIU\, Po=— o'\ We+ Rz_le, ¢=l/2((1’1(1’2)_1[(02[]2),1—({1’1 U)),z]. (4)
In a fairly large deflection problem, the membrane strains of the middle surface are given by!?
eun=(ma) {aU+a U+ @R W+ 1/2;9t+1/2a0:¢%]
Ezzm:(ma’z)-l[d’l U2,2+ az,1 U+ (lflaszz'l W+ 1/2(110’2¢%+ 1/20’10’2¢2] ’ ( 5 )
612m=1/2((1102)_1[0’2U2,1 +aUiz~ (1’1,2U1 — 2, U+ Cl’l(l’z¢1¢z]

(3)

where e12n is half the usual engineering shear strain. en=¢eum+ &xn

The bending distortions x11, xz2, x12 are'" €n=—¢Enn+t Crnt (7)
m=(aa) [+ o202 €12=€nnt {riz
xa={(ma) [ pr2+ ae11] (6) respectively.

x=1/2(aa) [@p+ardr2— m2d1] Now, in order to introduce strain rate dependency

— et (R — RV ¢) and the Bauschinger effect in the plastic range, we

Under the Kirchhoff-Love hypothesis and by  Shall use the equations by Perzyna® for the con-

neglecting the terms of order ¢/R\ and ¢/R; relative to stitutive relation of each layer of the overlay model®,

unity, the strains at the distance ¢ from the middle as shown in Fig2. This model corresponds to the
surface, en, €2, €12 are

o Dynamic Static
dn
ke |k
n
o3 tan Rk = E [ L
j=k
o, k-1 n
O Ok=E Y1 +(Z t,)Vk
0 = j=k
(o]] n
o l [ (k=120 L ty=1)
0 E
(a) Moments, rotations and loads
n o ——— ?
Q===
Y, Y2 vk
o 4 |
E
(b) Forces and displacements
Fig. 1 Coordinates and notations Fig. 2 Elasto/visco-plastic overlay model
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kinematic hardening model whose yield surface does
not expand. In the plane stress state assumed in the
ordinary thin shell theory, the constitutive relations of
each layer may be expressed as follows:

En 1 -v 0 ) O"uk éi){’k
€22 =E| "V 1 0 Oizu + 1 €8, (8)
1z 0 0 1+v]|0i2 éthy
where E is Young’s modulus, v is Poisson’s ratio and
Eth (1 =05 0 ][oux
ésfut =7 < ¥(fx) >5Lh —05 1 0 |\oux
éth L 0 0 1.5])| 01z
(9)
Sfe=(Gx— Ovs) /Oy (10)
Gr=(0bn + 0%k — 01110226 + 30F20) "2 (11)

The dots in these equations denote the partial
differentiation with respect to time, and the indices &
in the material constant 7., the stress o, and the
visco-plastic strain e’ mean the kth layer of the
overlay model. The symbol <¥(f:)> is defined as
follows :

<¥(fi)>=0 when fi<0 }

<U(fu)>=¥(f) when fi>0|
and f,=0 denotes the von Mises yield surface, while
ox and oyx are the equivalent stress and the yield
stress in uniaxial reversal loading tests with very
small strain rate, respectively.

Solving Eq.(8) for stresses, the stresses in each
layer are

(12)

Ok 1v 0 én| |[éth
O22k 1=, vl 0 Enp—i1E%. 1. (13)

O12k 001—v €12 EVhn
Multiplying the stresses 6i1x~ 012 by the thickness #
of the & th layer and summing up these values of each
layer, the stresses at a generic point in the shell are

{on, 02, 0'12}=§1{0'11k, Cazk, Oiza} tx, ?;ltk=l. (14)

The resultant stresses and the resultant moments
per unit length are as follows:

hi2 hi2 o
N“_[ﬁ/z""f'dgv M=  ostdt (i,j=1,2).

(15)
A complete set of field equations for 30 indepen-
dent variables, Nii, Naz, Ni2, My, Moz, My, Uy, Us, W,
€11, €22, €12, E1m, E22m, €12m, X1, X22, X12, ¢1, ¢2, ¢, On, O22,
O12, O11k, O22k, Orzk, Eif, €3, €Vs, is now given by 30
equations, (3)~(7), (9) and (13)~(15).

Fig. 3 Mesh points (7,7,k)

3. Numerical Method

If we solve the above 30 equations with suitable
boundary conditions, we have solutions for the prob-
lem. However, it is too difficult to solve these equa-
tions analytically, so we shall use the finite difference
method.

Let the shell be divided into (M;—1) and (M.—1)
equal segments in the direction of & and &, as shown
in Fig.3. Then the increments 4, and 4&; in the
nondimensional variables & and &; are as follows :

6= G =Ty 25~ T e
where §1,5. are the lengths of the shell in the direc-
tions of &, &, respectively.

In order to use Simpson’s 1/3 rule for integration
of Eq.(15), we divide the thickness % of the shell into
(L—1) equal layers, running from 1 at the inner sur-
face to L at the outer surface. Then the positions of
arbitrary points of the shell may be written as (7, j, ).

Denoting some quantities at the mesh point (7,;)
by f; and employing three point difference formulas
for the boundary and central difference formulas for
other points, nine finite difference equations related to
four boundary lines*, four boundary corner points**
and the region except the boundary can be obtained
for each derivative : 0f,;/0€, 9fi;/0&, 0*f,/0E2, Ff /068,
0*f:;/0&10&. For the second derivatives with respect to
time in the inertia terms in Eq.( 3), the next relation
is employed :

Pflat?= -Q}W(f,m — 2+ frrar). an

By the use of the above finite difference equations,
the equations of motion (Eq.(3)) are transformed
into the following equations at the point (7, j) :

Ul(t +At): - U](t _At)+2U1(t)+ {Atz/(alazpoh)}[a.Nu(t)vL azNu(t),l + alel(t),z‘f' d4sz(t)

+ asNaua(t) 2+ asNio(t) + arNwo(8) 2+ asMu(t)+ asMi(t) 1+ awoMa(t)+ auMi(t)+ aeMit) 2+ asPi(t)]
W(t+dt)=—W(it—dt)+2W(¢)+ {42 (@ azpoh)} [ i NU(E) + caNu (). + esNao(t) + CalNoo( 1) 2

,(18)

+ osNua2) + cs N 8), + crNw(t) 2+ csMu(t) .+ CoMus(t) 22+ CroMia(t) s+ cuP(t)]

* (&£=0, &, &=0, E;z] o
- [(EI, 52)2(0. 0), (51, 0), (0, 52), (51 51)]
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and so on, where the coefficients a7, 7} and ci(z, /) consist of the constants determined from the shell form and
the rotations at time 7' =¢. From Eq.(18), if each displacement at time 7 =¢— 4t and ¢, and each internal force
at time 7 =t are known at every spatial mesh point (7, ;), the displacements at time 7T =¢+ 4t can be calculated.
When each displacement at 7=¢+ 4t is obtained, the increments of displacements are evaluated from the
next equations,
8U\i, j, )=Un(i, j, t +At)— Un(i, j, 1), (19)
and so on.
The incremental strains de;; at any point (7,/,4) are as follows from Egs.(4)~(7):
denli, j, &, t)=(alaz)"[a26U1(z', 7, Ba+ 2001, 7, t)+a1aszf‘8W(z', 7, f)]+¢1(1., 7, t)8¢l(i, 7, )
+ X801, . )+ 86,5, 008G, 5, 0+ 568 j, D+ (FT =5 @@ [wdbi(i,/, Da+ aadbdi, j. 1)
derli, j, k, l‘)=%(010’2)_'[_a1.23U1(1', 7 )+ adUi(, j, 1)2— 18U, 7, 1)+ a8UA1, j, t).]
F 10001, D080, 5, D+ 588101, DB, J, ) +5 881, J, )88, 1, )
+ (AL D) e (dbli, j, Da+ @dbli, i, D= @206, i, )= aadpli, i, D
+aaR:'— R )64, j, )]

(20)
and so on. oy P4
. . U=0U=%5—-
From the incremental strains de;; and the stresses 200k
o in each layer of the overlay model, the in- U,= 5U2:ﬁl’_f02 ) (22)
cremental stresses of esch layer are obtained by using zp"hz
Egs.(9) and (13). Adding these to the stresses of each W= 6W=§f—otl‘,’l
layer at time T =¢, we obtain the stresses o« in each
layer at time T =¢-+4¢. 4. Numerical Example

The stresses at any point in the shell at time 7=
t+ 4t are evaluated by summing the forces of each
layer through Eq.(14), and each internal force at time
T =t+ A4t is calculated from numerical integration of
Eq.(15) by Simpson’s 1/3 rule. Substituting these
internal forces into Eq.(18), we obtain the displace-
ments at the next time. Lp

Now the initial displacements (incremental dis- n fﬁ—h& P «
placements) at time 7=4¢ must be given for this A5 o M <
calculation. In order to reduce the error in the initial
approximation, we divide the first time increment into Y
several equal parts : dty=A¢t/n(e.g., n=10). The load- T8
ing which is considered in this analysis may be either
impulsive or of finite duration. A general case of 174 ! ﬁh
impulsive loading is denoted by impulse (&, &) per C F 'N &Y
unit area. Since all displacements are assumed to be
zero in the beginning, initial incremental displace- 1z150 mm, R=50mm, h=1mm, Lp=15mm
ments may be given by P=Pysin(mt/t)

Py =-1.0 MPa
to =0.2 ms

As a numerical example, a 1100-O aluminum
cylindrical shell under a semisinusoidal load with
respect to time, as shown in Fig. 4, is analyzed. The

~

U ANNNRNNY

ol
m!
@

ANNNNNN

U= aU,=i%f¢)At0: Uty

U= aUz=i%E@Ato= Uhdity . (21)
W=5W=I—(%E@Ato= WAt

Load P

. . 0
If the shell is excited by applied surface loads, initial Time t to

conditions become as follows :

Fig. 4 Cylindrical shell and loading
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load is locally distributed, and the ends of the shell are
assumed to be fixed.

As for the coordinates, we shall take & in the
direction of axis (£) and &; in the direction of circum-
ference (4). The problem being symmetric with
respect to two planes, it is sufficient to calculate only
a quarter of the shell (ACNM), and the geometrical
parameters for this portion are as follows:

a=m=R, 46=1/2R(M,—1) }
A0=7n/(M.—1), Ri=, R;=R)’
The boundary conditions are,
for the fixed edge AC:
Ue=Us=W=0W/3E=0;

for the symmetrical plane MN :
Ue=0U,/06=W[3E=0;

for the symmetrical plane AMNC:
Us=0U,/00=0W/[36=0

The initial conditions may be given by

t=0:Ue=Us=W=0

t=A4t: U5=5Ue=0, Uozana:O

PA? _ Podt* sin{zndi/t) |
e s P

(23)

(24)

(25)
The model which consists of 6 layers” is em-
ployed in this example and the material constants of
each layer of the model are decided as follows, from
tension tests on Al 1100-O with various strain rates:
E=70.0GPa, v=0.33, 00=2.71 g/cm?®
ov=[0ov1~ove]l=[15.7, 25.5, 38.8, 59.5, 99.3, 213]
(MPa)

te=[t~ 1]=[0.778, 0.070, 0.046, 0.035, 0.030, 0.041] ;.

re=[r1~rs)=[45.0, 39.7, 35.4, 30.3, 24.6, 19.1](1/s)
11’(f~)=< Or— Ova )2'0

Oyx
(26)

60 .

50—

<

atic

4

T
— Overlay model

(Eq.26)
10 H—--- Isotropic
hardening
(Eq.27)
L
0 01 02 03 04
€ °lo

Fig. 5 Stress-strain relationships (¢ : constant)
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From the obtained stress-strain curves, the con-
stitutive relation of the single-layered model
(isotropic hardening model) becomes

& 9 ] 1 —05 0 || 0w
ésr :ﬁ}’o< q"(f)>g —-05 1 0 Oor
E}’f 0 0 15 Teor | (,

T(f)={(a— %) /o*}*°, 70=611]s
0*=112(0.002 98 + &) MPa
(27)

where £” is an equivalent visco-plastic strain. The
stress-strain curves of the material given by Eqgs. (26)
and (27) under uniaxial tension and under uniaxial
cyclic loading are shown in Figs. 5 and 6. It is found
from Fig. 6 that approximations to the Bauschinger
effect and the strain rate dependency in the plastic
range can be obtained by using the elasto/visco-plas-
tic overlay model.

Mesh point numbers M,, M. and the division
number L through thickness are M, =26, M,=45and L
=17, respectively. The increment of time 4¢ is set as
5.0x107* ms.

Now we shall discuss the results of calculation.
The calculations are carried out to 0.8 ms for two
material models, the isotropic hardening model and
the overlay model. Some of the essential features of
the solutions are shown in Figs. 7~12. In these figures,
the results from the overlay model are indicated by
solid lines and chain lines, and the results from the
isotropic hardening models are indicated by broken
lines.

Maximum values (absolute values) of strain and
strain rate appear in the circumferential components

— Overlay model

E=Bsin(nt/ts)

(Eq.26) -

--- lIsotropic 9 B=40x1073

hardenin te=0.3ms
(Eq.27) " -100 ¢

Fig. 6 Stresses under cyclic strain
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at point M on the outer surface, and these values are
0.41% and 42 1/s, respectively.

Figure 7 shows the variations with time of W at
points M, G and N, U, at point G and U, at point D.
U: and U, are very small compared with W. In the
middle cross section MGN, the shell begins to deform
in the order of points M, G, N with the lapse of time,
and large displacement occurs at point M, where the
load is distributed. The difference between the solu-
tions from the overlay model and the isotropic harden-
ing model becomes marked at point M after {=0.2 ms,
but becomes small at points G and N. It is found from
the variations of W at point M and U, at point D that
the difference between the results from both models
becomes nearly constant after ¢ =0.4 ms, and that the
isotropic hardening model estimates the return at
about {=0.4 ms to be small.

Figures 8(a) and (b) give the variations of
deformations in meridional section §=0° and in the
middle cross section £=1.5 with time, respectively.
The shell deforms greatly inward near point M at ¢=
0.18 ms, and the difference between the solutions from
both models appears with the lapse of time. This
difference is large near point M, but very small in the
GN part.

Figure 9 represents the variations of N, at points
A, B and M, and N; at points A and M with time. N;
and N, at point M initially show large compression,
and after {=0.2ms a difference between the results

02t , /- l'Jg(Po'int l;) '\
' / : Ug (Point G%f \

o1} / \ : ’//,' \YI‘ 17

’ i X' \ ’,-‘ \’N\ \ 4

| x10°

\\-’[
-03 —— W(Overlay model)
—-— Uy(Overlay model)
* —— Ug(Overlay model)

---- W, U, Ug
-04 (isotropic hardening)
0 02 04 06 08
Time ms

Fig. 7 Variations of displacements at points M, G, N, D
with time
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-30

£02 s
E Overlay model \_
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0 02 t=018 ms
—-— t=042ms
Isotropic hardening

(a) 6=0°

Undeformed
shape

Overlay
#/— t=018 ms

§ ) —--1=028ms
o "~ ——t=042ms
© Isotropic

N e Particle path

(b) £&=15
Fig. 8 Variations of deformations with time

I —— Ng(Overlay)
- \\ / —-— Ng(Overtay) i
\M / ----- Nz, Ng (Isotropic)
¥/
oz o0& 08 o8
Time ms

Fig. 9 Variations of N, No with time
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E
£
£
z

My, Mg

——— Mg (Overlay)

—-— Mg (Overtay)

---~ Mg, Mg (Isotrop‘ic) 4

A

0 0.2 0.4 06 08
Time ms

Fig. 10 Variations of M., Ms with time

°-3’“5/.r}-—0.4ms Point M
40r i (Outer
I surface)
! _08ms
] 0.7ms
20.0.3!“5 !y
05ms—-4 04ms
o tosmsyt
> 02ms_ [\ 08ms
0
<3
_20.
| Overlay 1
-40f o
Isotropic
_60.
-04 -02 0 02
Ee o

Fig. 11 0s— &, relationships on outer surface at point M

from both models appears. On the other hand, these
components at point A indicate large tension at first,
and the difference appears after about #=0.3 ms. It is
seen from the variation of N, at point M that in the
case of the isotropic hardening model, mean value of
vibration is larger than that in the case of the overlay
model.

Figure 10 shows the variations of M, at points A
and M, and M, at points M, G and N. The large
difference between the results from both models is
observed at points A and M, and this difference gener-

Series I, Vol. 33, No. 3, 1990

ts002%ms

1

|
- |

(a) Outer surface
1! o g T = "o
¢ ﬁ | |

(1) t=008 ms (2) t=016ms  (3) t=028ms (4) t=040ms (5) t=056 ms

[—JElastic region MR Yield region E=Unloading region
3 Reyield region

T

(b) Inner surface

Fig. 12 Progression of yield with time (by overlay
model)

ally appears after =0.2 ms at point M and about ¢ =
0.3 ms at point A, as well as in the case of the resul-
tant stresses. Some difference appears about £ =0.1 ms
at point M, though reyielding does not occur. It seems
that this is due to the difference between the stress-
strain curves of the two models shown in Fig. 5.

0e— €4 relationships on the outer surface at point
M are plotted in Fig. 11. The large difference between
the results from the overlay model and those from the
isotropic hardening model appears after reyielding.
This fact corresponds to the difference between the
solutions for displacements and internal forces from
both models at point M after {=0.2 ms, as shown in
Figs. 7~10. At about ¢=0.1ms, some difference
between the solid and broken lines is found. It seems
that this is due to the difference between the stress-
strain curves of the two models as well as the bending
moments in Fig. 10.

Figures 12(a) and (b) illustrate the aspect of
progression of yielding on the inner and outer surfaces
of the shell by the overlay model. In these figures, the
unloading region means the portion where the equiva-
lent stress becomes smaller than the yield stress after
yielding. The aspect of progression of yielding by the
isotropic hardening model, not illustrated here, is
almost the same as this figure. At first, yielding occurs
on the outer surface at point M and then the yield
region expands in the meridional direction. At about ¢
=0.28 ms, yielding occurs near point G, and later it
appears on the inner and outer surfaces at point N.
Unloading and reyielding appear alternately with time
in the yield region of the shell.

The numerical calculation for the present exam-
ple requires about 42 minutes in the case of the over-
lay model and about 10 minutes in the case of the
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isotropic hardening model on FACOM VP-200.
5. Conclusions

In this paper, we have described the numerical
analysis on the elasto/visco-plastic dynamic response
of general thin shells to arbitrary blast loads by the
use of the elasto/visco-plastic overlay model, which is
able to express the Bauschinger effect and the strain
rate dependency. The equations of motion and the
strain-displacement relations have been derived from
Sanders, nonlinear theory for thin shells. The numeri-
cal method selected for this problem is a method using
finite difference in both space and time.

As a numerical example, an aluminum cylindrical
shell under a semisinusoidal external load with
respect to time was analyzed for two material models,
the isotropic hardening model and the overlay model.
It was found from the calculated results that in the
case of reversal stress, a difference between the
results from the two material models is evident, and
the isotropic model estimates the variation of dis-
placements to be small and the variation of internal
forces to be large immediately after reyielding.
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