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Elasto/Visco-Plastic Deformation of Multi-
Layered Moderately Thick Shells
of Revolution *

Shigeo TAKEZONO **, Katsumi TAO **
and Kiyoyuki TANI ***

This paper is concerned with an analytical formulation and a numerical solution
of the elasto/visco-plastic problems of multi-layered moderately thick shells of
revolution under asymmetrical loads with application to a cylindrical shell. The
analytical formulation is developed by extending the Reissner-Naghdi theory on
elastic shells. It is assumed that the total strain rates are composed of an elastic part
and a part due to visco-plasticity. The elastic strains are proportional to the stresses
by Hooke’s law. The visco-plastic strain rates are related to the stresses according to
Perzyna’s equation. As a numerical example, the elasto/visco-plastic deformation of
a two-layered cylindrical shell composed of a titanium and a mild steel layer subjected
to locally distributed loads is analyzed. Numerical computations are carried out for
three cases of the ratio of the thickness of the titanium layer to the shell thickness. It
is found from the computations that the stress distributions and the deformation vary
significantly depending on the thickness ratio.

Key Words: Structural Analysis, Computational Mechanics, Laminated Construc-

tion, FDM, Elasto/Visco-Plasticity, Thick Shells

1. Introduction

Many investigations”~"" of the elasto/visco-
plastic deformation of shells of revolution have been
conducted. These investigations, however, have been
mostly concerned with the case of single-layered
shells, and few studies on multi-layered shells com-
posed of different materials have been reported in
spite of their importance in engineering, with the
exception of the study which the authors performed
on thin shells"?.

In this paper, the authors study the elasto/visco-
plastic deformation of multi-layered moderately thick
shells of revolution under general asymmetrical loads.
The equations of equilibrium and the relationships
between strain and displacement are derived from the
Reissner-Naghdi theory"®"* for elastic shells where
a consideration on the effect of shear deformation is
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given. As the constitutive relation, Hooke’s law is
used in the linear elastic range, and the elasto/visco-

plastic equations by Perzyna ** are employed in the
plastic range.

In the case of multi-layered shells, the rela-
tionships between the generalized stresses and strains
are different from those of single-layered shells, and
therefore the derived basic differential equations are
also different.

The basic differential equations for incremental
values are numerically solved by a finite difference
method, and the solutions are obtained by a summa-
tion of the incremental values.

As a numerical example, the elasto/visco-plastic
deformation of a simply supported two-layered cylin-
drical shell composed of a titanium and a mild steel
layer subjected to locally distributed loads is anal-
yzed. Numerical computations are carried out for
three cases of the ratio of the thickness of the tita-
nium layer to the shell thickness.

2. Analytical Formulations
2.1 Fundamental equations

If the middle surface of the shells of revolution is
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given by »=7(s), where r is the distance from the
axis and s is the meridional distance measured from a
boundary along the middle surface as shown in Fig.1,
the relations among the nondimensional curvatures
we(=a/Rs), we=a/Rs) and the nondimensional radius
o(=7r/a) become

We= _(7”+ 72)/609, We= m/ﬂ

wo="y(we— ws), 0" [0=— wews (1)

ry=0lp, é=sla,( Y=d( )/dé
where a is the reference length. An arbitrary point of
the shell can be expressed in the orthogonal coordi-
nate system (&, 6, ¢).

An application of the Reissner shell theory™® to
the shells of revolution and a differentiation of the
equilibrium equation with time or load yield

‘%—Aé["f V(Ng N9)+ ]’2 a(%”'f‘&)g@g"‘an:O ]
Ne ONo

85 +7(N¢9+Not)+? ae +WaQo+aPo=0
§%+YQ¢+L%_(G)QN:+0)0NG)+¢ZP¢=0

Qe [ 3M¢ + Y(Me

Mo+ ; aM“] 0

o0& a6
Q.o—'g[ aﬂ?a + Y(Mco+Ma¢)+? aggo] 0

(2)
where the notations are shown in Fig. 1. Pe, Ps and P;
are components of distributed loads per unit area of
the middle surface, and these are connected with
internal pressures { Ps, Ps, P;} and external pressures
{P¢, P#, P} by the following relation :
{Pe, Ps, P}={P¢, Ps, PrYh™—{P¢, P4, P{Yh*
(3)

where

w1t ot g )+ o (4)

The strain rates of the middle surface, &em, €onm,
€ eom, are given by the displacements U,, Us, U; in the
next equations"?:

w= g G+ o]
Eom= [:} %%04'705'{'(000:] (5)
1 aU: aU0 ¥ ]

e eom— 2 a [ 0 86 +=7 6 U0
where € em is half the usual engineering shear strain
rate.

The relations between the bending distortions xe,
Xo, Xeo, Xo: and the displacements are™"

=g G ‘(L%’“‘D‘)
ko= | aa‘? ~ 20,0, (6)

. 190 -
X ge= Za(p 90 )’@o+2a)o¢n>

where rotation rates @, @ and @, are
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Fig. 1 Coordinates and notations

L( +a)¢U4>+26¢;,.

¢o—‘(_ 1 aa%;+a)oUo)+2éocm (7)
;1 M oUs .
b=~ 0 06 T ok +100)

The strain rates at the distance ¢ from the middle
surface are given as

Ee=(EemtExe)/Le, E6=(Eom+ Exo)/Lo
ém={%( Eeomt Dn)+ (Xt (bn/Rs)}/L,

2 eom— On) + L (e w',,/R.,)}/L,
Ee=6um/Le, €or=Eotm/Lo
(8)
where
Le=1+¢/Rs, Lo=1+¢/Ro.
Now, we shall use the elasto/visco-plastic equa-
tions by Perzyna'® for the constitutive relation

1+VS +1 ZUS(S +)’0<m(F)>Suj?.”2
(9)

where the dot denotes partial differentiation with
respect to time ; &4, S, S; and J, are strain, mean
stress, deviatoric stress and the second invariant of
the deviatoric stress, respectively ; and E, v and y, are
Young’s modulus, Poisson’s ratio and the viscosity
constant of the material. The symbol <(@(F)> is
defined as follows :
<OF)>=0:F<0,<®(F)>=0(F): F>0
(10)

Ey=

where function F is

F=(8—cd*)/o*, (11)
and F'=0 denotes the von Mises yield surface, & is the
equivalent stress (=+3];) and ¢* is the statical stress
determined from the elasto-plastic stress-strain rela-
tion in a usual tension test, and becomes the function
of the equivalent plastic strain £ in general.

In the present theory where the stress component

o normal to the middle surface can be assumed to be
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neglected, the constitutive equations are written as follows :
{e}=(D) s} +{&*} (12)
where
{e)={¢s, €0, €, €, €at}7, {0} ={0e, 06, Oes, Tec, Tac)”
1 -1/2 0 0 0
. -1/2 1 0 0 0
(em)=(er, ep, e, et ey =n<o(C5)>L 0 0 32 0 0 ()
0 0 0 3/2 0
0 0 0 0 3/2
(13)
1 v 0 0 0
v 1 0 0 0
71:%70, Dl=xZ-0 0 1-» 0 0
0 0 0 1—v 0
0 0 0 0 1-v
Substituting Eqs.(8) into Eqs.(12) and solving them for stress rates, the stress rates are given :
Se=Er((éont EXDILet v éont EXD)/Lab— 52
d°=T-€y7{(éom+ §x0)[Lo+v(Eemt+ Exe)/Le}— 68° "
d'w:%[{—é‘( Eeom+ On)+ f(ito+%)}/Le+{%( € som— D)+ ;(A"oe_%:)}/[m]“ o¥f
d“:%éﬂ!n/ltt_ ¥, dx=ﬂE;éacm/Lo— 68
where
{6"Y=(0¢*, 3%, ¥, 6¥, 6} =[Dl{ "} (15)
By the use of Egs.(14) with the approximation,
L
b (e e (e

the rates of change of the resultant stresses and the resultant moments per unit length for the multi-layered shell
(Fig. 2) may be expressed by the following :

) Em )
N hi2 g ” NvP
{M}_ —h/z[L]{d*g}dg—[A]{; }_{Mvp} (17)
where
{N}={Nt, Néo, Neo, Noe, Qe, Qs}r, {M}:{Me. Mo, Mes, MO:}T
L. Z
L! 0 La 0
Ly O _ Le _ Le
[L]_[ 0 Lz]' (L= Le , [Le] Lo
0 L, 0 L.
L L]
Middle Surface InnerSurface
4
3]
Outer Surface
h:n h
LMo
Fig. 2 Multi-layered shell element
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({ay, a2, as, as, as}")*={ay, az, as}”, {Eém}={Eem, Eom, Eeom, Eem, Eatm)”, (X} ={R¢, %o, % oo, Xoe}” (18)
[A]=3[EA] (19)
[E;]=%g[l, L1-vy1=v,1=v;,1-v;, 1,1, 1— v, 1= ] © (diagonal matrix) (20)
- oY, vt 0 , 0, 0 , &, vibk:; 0, 0, 0 -
vibli, &, 0 , 0, 0 , viks &F, 0, 0, 0
0, 0, J(&+&d, 0, 0, 0, 0, & G (a)
0, 0, F&r+G) 0, 0, 0, 0, Ly & (b)
[A]z 0 y 0 ’ O y 5/6§|fh 0 y 0 ’ 0 ’ Ov 0 ’ O
' o, 0, 0 , 0 , 5/68%, o0, 0, 0, 0, 0
&, vib, 0 , 0, 0 , &, vk, 0, 0, 0
Vié’z-i) szl*) 0 y 0 s 0 ) Vl'{avi, §3’?l* ) 0 ’ 0 ’ 0
0, 0, FE+E), 0, 0, 0, 0, 8 & ()
Lo, 0, HEHE), 0, 0, 0, 0, &L, & (d)]
(a) 2%(&?:'—Cl.f)"’%é’fi—%?z.n (b) =%(Cx.i—§ff?‘)+%§z.f—%§£.*
(¢) =g (Bh— )+t —20g, (d) =G G+ 205, —Logt
(21)
gn,i=%(§in_ i"—l) (n=1,2,---,5)
C:.r-_—Cn,i—lz(we*wo)fnﬂ,i*‘%%(we’wo)§n+z.x, Crt’!=§n.i—"};(0)9_ah)§n+l.i+_2)20’((00_(1):);14-2,1'
(n=1,2,3)
(22)
and
) e hi2 ) Rt
N*={N¢*, N§?, Nif, Nit, Qé*, Qé”}’“—‘[HZ[Ll]{o"’}d{:glfn_l[L;][D.']{é?"}dé’
5 . . . . ) n ru _
MY =[M*, M3, M, Ma",’}7=/:hlz[Lz]{6”’}*{d§=§f“_][Lz][D,~]{éf-’”}*é‘dé’ (23)

1 Vi 0
[D.~]=1%"Mz[u.- 1 0 ]
0 0 1—w
In Eqs.(19) ~(23), the subscript 7 refers to the 7 th layer.
If i=1,5i=h/2 and &L=—h/2 are assumed in Egs.(19)~(23), they coincide with the equations for the
ordinary single-layered shells previously derived®.
A complete set of field equations for 50 independent variables, Us, Us, Uz, @, o @», (N}, (N?*}, (M}, (M?*},
{&n), (£}, (€%}, {6), {67}, is now given by 50 equations, Eqs. (2), (5)~(8), (12), (15), (17) and (23).
2.2 Non-dimensional equations
It is assumed that the distributed loads and the 45 independent variables, except { € ”?} , can be expanded into
Fourier series as follows:

(B P)="200 5 (5 p)cos nd, Bu=-200 51 5 sin ng

(Ne, N2, No, K%, Qe, Q)= cohg S0, 5P, 289, 5P, 447, 41%)cos n6
(New, Nt Noe, N3P, Qu, Q%)= ooho 32 (89, #™, @), 58", 487, 43 "}sin n

3 o
C owrep ap N o ) oy
{Me, ME?, Mo, M3?}= (’aho Z (i, mg?™, m, m?™}cos nd

. . . . ook & . . . . .
(Mo, MiF, Moo, M) =225 32 (i), in8™ s, 188"} sin n6
a n=i
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. . . 00 n
{Ue, Us, Eem, Eom, Eetm, X e, %o, @e}=ﬂ2{dd§m. aul®, el et 95?»)-.‘16‘3_ ké , 9¢"}cos nf
.
{Ua, E eom, € orm, X eo, X 0e, 09, Qn}— % 2{(1“5") eé :m, k:; , kée s ¢§") ¢‘"’}sin né
{Ge, 6¢%, Go, 68°, G, G¥f}= 602{33") SEPW s 8P S, s i) cos nb
{O’eo, O'ef O'o;, O'ef} O'o {Sé s‘é’f"”, 53?), s'a"f("’}sin né
(24)

where g, h and E, are a reference stress, a reference thickness, and a reference Young’s modulus, respectively.
It should be noted that the Fourier expansions (24) are not the most general that could exist. For full
generality, these expansions should be augmented by the additional series, e.g.,

(Pe, P =(cuhola) S {54, 5)sin n, Po—(ooho/a) 3, B cos né. (25)

Substituting these Fourier series into the above fundamental equations, the equations among the Fourier
coefficients relating to the variables are obtained. Eliminating appropriately the coefficients, the resultant set for
the displacement rates wu,, #s, u;, and the rotation rates @¢, ¢» can then be derived as follows :

Uttt asuet asttot astot+ asthit artiyt as @i+ Ao et AnPet an ot age=acu

013112'*’ Quiet istte + awtiot+ arrtiet+ alad;+ d19¢'e+ dzo¢e+ a ¢;+ dzz¢3+ d23¢o=Cz

AulUet Qusthet Aunthot Aotk + anUit Ali;+ AnPet anPet a2Pe=C3

Ui+ uuet Qsstlet st Antiot At Assthc+ AP+ GuPet AuPet A Pot Audo=Cs

Qustiet Qustlet Aatis + Qo+ Auothot asotis+ As1 Pt As2 P et As3 P6 + Qs Po+ assPo=Cs

(26)
where the superscript (#) on Fourier coefficients will be omitted for convenience. ai~ass are the coefficients
determined from the shell geometries and the elastic constants, E;, vi. ci~cs are constants determined from the
distributed loads and the internal forces due to visco-plasticity in addition to the shell geometries. These are
given as follows :

a=n+y(n¥—ns* )+—nae +weG¥® —pe, co=ni+r(n¥+ ng”)—?n‘é”i—a)oq —be

=g +yiP+2 q P — wen8® — won3P — pr, o= G &P — APl — BBymlP + A2ymisf — A—moe

cs= G§° — AP — A2 y(mid + mik )+/12 my’
(27)
where A="1/a.
The rates of internal forces related to visco-plasticity in Egs.(27) become the following by the use of Egs.

(23) and (24):

O'Ohoi[An]{ P(n) nvp(n) n‘g(n) nﬂg(n) vﬂ(n) vP(n) f [L ][D vp}dé«
G S Bal e, e, g, s} =% [ i[Lz][D,-]{é””}*Cdt (28)
[An]=[cos n6, cos nd, sin né, sin 78, cos 70, sin 78]

{B.]=[cos n8, cos n8, sin n8, sin né]

where [A.] and [ B,] are diagonal matrices. The visco-
plastic strain rates on the right-hand sides of Egs. (28)
can be related to the stresses by Eqs.(13). The integra-
tions are carried out numerically by the use of Simp-
son’s 1/3 rule.

3. Numerical Method

A finite difference method is employed for the
solution of Eqs.(26). The usual central difference
formulas are used for every mesh point except the
discontinuity points and the boundary points of the
shell. For the discontinuity points and the boundary
points, forward and backward difference equations
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are employed®. Applying these difference formulas to
fundamental equations (26), the boundary conditions
and the continuity equations, the simultaneous equa-
tions can be obtained. The solutions at any stage of
the problem are obtained by a summation of the
increments of internal forces and displacements due to
the load increment and the time increment.

4. Numerical Example

As a numerical example of the multi-layered
shells of revolution, a simply supported two-layered
cylindrical shell composed of mild steel and titanium
subjected to locally distributed loads is considered
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(Fig. 3). Three cases of the ratio of the thickness of
the titanium layer to the shell thickness, 4i/2=0, 0.1,
0.3, are calculated.

It is sufficient to calculate only one-eighth of the
shell with consideration of the symmetry of the prob-
lem. The geometrical parameters of this shell are as
follows :

a=L, E=s/L, p=1/3, cuo=3}

O =r=we=we=0

The meridional mesh interval 4 in the finite
difference calculation is

4=1/2AN-1) (30)
where N is the number of mesh points.

The boundary conditions at the points A (/=1)
and B(;=N) are, respectively,

Ue= UE=¢3=N30=M40=0, (31)
and

Ua= U;zMe=¢o=Ne=0. (32)
When ¢=0, the dots in the above equations are
removed. The value of g, in Eqs.(24) has been selected
as =1 in this calculation.

The material constants of mild steel and titanium
employed in the calculations are as follows"s"® .

Titanium :

E=91x10*MPa

v=0.33, 7.=800/s

O(F)={(5 —o*)/o*}"* (33)

0*=656(0.0101+ £**)**2 MPa

Initial yielding stress oy=206.1 MPa

Mild steel :

E=20x10°MPa

v=0.29, n=40.4/s

O(F)={(& —0*)/o*}*°

0*=261.7 MPa
The stress-strain curves for these material constants

(29)

(34)

b R=-P
Mild - P=Pi-cos 48
Steel ¥ — ”"'_‘r ) AN (i=1.2)
Titanium A 8
L
W
| i

L=600mm ,b=30mm , h=40mm
R=200mm ,d=225" , hi=0,4,12mm

Pok-e--
P’ ] ! PI=150 MPa
o ; | P2:180 -
gh :' H m/h]Ry/PocMPa] b s] 1 9
Nroc ‘ 0 |793/734 |132 | 288
! i 01 |73.0/693 |48 [323
0 m ta 0.3 |654 /1621 [186 [378
Time

Fig. 3 Numerical example (two-layered cylindrical
shell)
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are shown in Fig. 4.

The meridional mesh point number N and divi-
sion number K through the thickness are chosen to be
N=101 and K=11 for each layer (K=19 in the case
of hi/h=0). The number of terms of Fourier series [=
(n+2)/2)] is selected as n=38.

The increment of time 4¢; is decided as 4t;=
0.94¢, where

Aty= 4ty o ) (j : calculation stage)
3nE \ dO/dF /;
(35)
is the stability limit given by Zienkiewicz and Cor-
meau"?”. It is regarded that the stationary state has
been reached when the ratio of maximum visco-plas-
tic strain rate €“’max to maximum strain &max immedi-
ately after each loading becomes less than 1.0 X107
i.e.,|éme femex] £1.0¢107.

These values are determined according to the
convergency of the solution, the capacity of the com-
puter and computing time.

Some of the essential features of the solutions are
shown in Figs. 5~14. In the figures, the broken lines
indicate the values immediately after loading of P
and P, and the solid lines and chain lines indicate the
values in stationary states. The results from thin shell
theory (classical theory), which neglects the effect of
shear deformations, are plotted by chain lines. P, and
Py denote the initial yielding loads calculated from
the present theory, and thin shell theory, respectively.
In either theory, initial yielding occurs on the outer
surface at point A (£=0, §=0°).

Figures 5(a) and (b) show the deformations of
the meridional section #=0° and those of the cross
section £=0 with time, respectively. The dotted lines
indicate the particle path. The shell is greatly
deformed near point A (£=0, §=0°). The difference
between the instantaneous state and the stationary
state increases due to the progression of yielding with
increasing loads. Shell deformations become large

600———————r—r— 600——r————
€=10 /s
L ; J L
01 €=10 Vs
400 . 400} !
o o 0.1
a.
F L |
001
b b
200~ 001 7 2001 0=261.7 MPa ]
0'%656(001014 £*P 2752
MPa - .
Titanium Mild Steel
e 1 i A A A 1 i A A
0 05 1.0 ) 05 10

€ €
(a) Titanium (b) Mild steel

Fig. 4 Stress-strain relationships
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with the increased thickness of the titanium layer.
Some differences between the results from the present
theory and the thin shell theory are seen in the loading
parts of the shell.

Figures 6~9 represent the meridional and circum-
ferential distributions of the resultant stresses. N, and
N relax greatly in the loading parts, and the amount
of relaxation increases a little with the thickness of
the titanium layer A large difference between solu-
tions from both theories is found in the loading part,
and N, shows a more remarkable difference than N,.
Other resultant stresses have small values, small
variation with time and little difference due to /A

Figures 10~12 are the variations of distributions
of the resultant moments with time. M, and M, relax
largely with time in the loading parts, and M, relaxes

h/h=03

05
Uy mm

-~ Particle path 0 05
Present
theory

Instantaneous state ---~---

Stationary state

U mm

Classical
theory

(a) 6=0°

(b) £=0

Fig. 5 Deformations
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more than M. . The variations increase a little with
h/h, but there is little difference between the station-
ary values at each loading stage. M« and M are
nearly equal, and these values and variations with
time are both small. A relatively small difference
between solutions from the two theories is observed in
all the resultant moments.

Figures 13 (a) and (b) represent the distribu-
tions of stresses ce and s through the thickness at
point A of the shell. The stresses relax in the outer
part of the mild steel layer in every case of i /k. In the
titanium layer, the stress variation is complex. The
difference between solutions from two theories
becomes significant near the boundary of elastic and
plastic zones.

5
0 01 Q2 03 04 05

x10° T M T
2 P hw/h=0

h/h=03

0 01 0.2 03 S 04 05

Fig. 6 Meridional distributions of N and @

X

0 0 02 [k 04 05
hi/h=0
0
€ ’
£ In J/ Ne6=45
Z b /) poh ]
NP/ o2 o1 a2 a3 %o0s o5
F4 . y h/h=01
) [
(TP 3
E Im W Ney(0=45 )
Z-2F " Ne o P,
¥ Foc //if a0
z ./ o
24 ”
LR E
—Pl_"f,z
#
N
Z.
0
Fig. 7 Meridional distributions of Ne and N
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Ny, Ngy N/mm

Ni,. Ngz N/mm

-5F

Ng, Ngp N/mm

Fig. 8 Circumferential distributions of N, and N

o P r T
217t N
£ m/h= 0
3 0
Poc )Po
S e
-2 —
2 P, J
-4 __\i_,./ Ne
£~ 107
P A x20
Qe €
hih=01 | g
0z
K
z

x10°

No. Q¢ N/mm

v
~

Fig. 9 Circumferential distributions of Ny and@Qs
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Fig. 12 Circumferential distributions of M,
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£ - ]
v a % AN Jntertace
P R Mild Steel /
. hlh=0} Titonium
R o b P, 4
a0 P e \ P fe \J-p
05 50 0 063000 O 3006300) O 300
Oy, MPa
(a) o

Mi/h=Q3

Interface;
Mitd Steel /
W Titanium
Py
© AR
300(-300)
MPa

( b ) [o]]
Fig.13 Stress distributions through thickness at point A (¢
=0, §=0°)

Figure 14 illustrates the aspect of the progression
of yielding. When P= P, the initial yielding occurs on
the outer-surface at point A. With the increase of
loads P, the plastic zones progress from the inner and
outer surfaces of the loading part to the meridional,
circumferential and thickness directions. The yielding
zones of the two-layered shells are discontinuous on
the interface and larger than those of the single-layer-
ed shell (7u/h=0).

5. Conclusions

In this paper, the authors have described the
numerical analysis of elasto/visco-plastic problems of
multi-layered moderately thick shells of revolution
under asymmetrical loads. The basic differential equa-
tions on the multi-layered shell have been developed
on the basis of the Reissner-Naghdi theory for elastic
moderately thick shells. The elasto/visco-plastic
equations by Perzyna have been employed as the
constitutive relation.

The increments of all pertinent variables have
been expanded into Fourier series in the circumferen-
tial direction and decoupled sets of ordinary
differential equations have been solved by the usual
finite difference method. The solutions at any time are
obtained by the integration of the incremental values.

As a numerical example of practical application,
the elasto/visco-plastic deformation of a simply
supported two-layered cylindrical shell composed of
mild steel and titanium layers has been taken.

The numerical computations have been carried
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0=0") "
Mitd
Steel

Mild
Steel

Titanium
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out for three cases of the ratio of thickness of the
titanium layer to shell thickness (#/R=0.2), and the
results have been compared with those from the thin
shell theory which neglects the effect of shear defor-
mations. From the computations, the following was
found :

(1) Deformation becomes large with the increase
of I /h .

(2) The resultant stresses and the resultant
moments are not influenced greatly by the ratio of the
thickness of the titanium layer to the shell thickness.
On the other hand, stress distributions through the
thickness and progression of yield vary significantly
depending on the thickness ratio.

(3) The difference between solutions from the
present theory and those from the thin shell theory
becomes significant.
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