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Elasto/Visco-Plastic Deformation of Shells
of Revolution under Thermal Loading
due to Fluid*

Shigeo TAKEZONO**, Katsumi TAO**,
Takashi AOKI*** and Eijiroh INAMURA**

An analytical method for the elasto/visco-plastic deformation of axisymmetrical
thin shells subjected to thermal loads due to fluid is developed. First, the temperature
distribution through the thickness is assumed to be a curve of the second order, and the
temperature field in the shell under appropriate initial and boundary conditions is
determined using the equations of heat conduction and heat transfer. Secondly, the
stresses and deformations are derived from the thermal stress equations. The equa-
tions of equilibrium and the relationships between the strains and displacements are
derived from the Sanders elastic shell theory. For the constitutive relations, the
Perzyna elasto/visco-plastic equations which consider the temperature effect are
employed. The fundamental equations derived are numerically solved using the finite
difference method. As a numerical example, a simply supported internally pressurized
cylindrical shell of aluminum under thermal loading due to fluid is analyzed, and the
variations in displacements and internal forces with time are discussed.

Key Words: Structural Analysis, Theory of Shell, Thermal Stress, Finite Difference
Method, Elasto/Visco-Plasticity, Heat Conduction

linear”-42_ hut we suppose it to be a curve of the
second order, considering the heat transfer on the

1. Introduction

For elasto/visco-plastic deformation of shells,
many investigations have been carried out, not only
for axisymmetrical shells, but also for general asym-
metrical shells. These investigations, however, deal
with cases where a constant temperature distribution
is maintained in the shell body¥~™. Only a few inves-
tigations of problems concerned with nonuniform
temperature distribution have been performed®®,

In the present paper the authors develop an ana-
lytical method for thermo-elasto/visco-plastic defor-
mation of axisymmetrical thin shells of revolution.
Regarding the heat conduction of shells, up to now,
almost all investigators have assumed the tempera-
ture distribution through the thickness to be
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shell surface. First, the temperature field in the shell
under appropriate initial and boundary conditions is
determined using the equations of heat conduction and
heat transfer. Secondly, the stresses and deforma-
tions are derived from the thermal stress equations.
The equations of equilibrium derived from the San-
ders theory for thin shells"® are used. As the con-
stitutive relations, Hooke’s law is used in the elastic
range, and the Perzyna elasto/visco -plastic
equations®, including the temperature effect, are
employed in the plastic range. The yield condition
used in the analysis depends on von Mises yield the-
ory. The fundamental equations derived are solved
numerically by the finite difference method, and the
solutions are obtained by integration of the in-
cremental values.

As a numerical example, an internally pressurized
cylindrical shell subjected to thermal load due to fluid
is analyzed.

2. Fundamental Equations

If the middle surface of axisymmetrical shells is
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given by »=r(s), where » is the distance from the
axis and s is the meridional distance measured from a
boundary along the middle surface as shown in Fig. 1,
the relations among the nondimensional curvatures
we(=a/Rs), ws(=a/Rs) and the nondimensional radius
o{=7/a) become
we=—(7"+7)/ws, @e=v1—(0) /o

we=y(we— ws), p”J0=—wewo ]’ (1)

E=sla, y=0'lo, ( )=d( )/d¢
where « is the reference length. An arbitrary point in
the shell can be expressed in the orthogonal coordi-
nate system (€, 6, &).

2.1 Heat conduction equations

The equation of heat conduction at a point in the
shell body is given in the orthogonal coordinates (&, 8
¢) as

0T _z (0T  #T . 1 &T

7t a( F12 ag”;f 892>
R (2)
X 84«2 Cp0770

where 7T is the temperature at (&, 0, £, t), x(=Ao/cpo)
is the thermal diffusivity, ¢ is the specific heat, oo is
the mass density, A is the coefficient of thermal con-
ductivity and 7 is the heat generation per unit volume
and per unit time.

The boundary conditions of the temperature on
the inner and outer surfaces ({=F#4/2) of the shell
are

(0T3¢ )c=-n2=h Tin— 6) } (3)

[aT/ag]t hi2= T o(Tout @o)
where hi=ki/do, ho=ko/do and £ is the heat transfer
coefficient. Tin and Tou are the temperatures on the
inner and outer surfaces of the shell, ®; and &, are
ambient fluid temperatures of the shell, and #% is the
thickness of the shell.

The assumption that the temperature distribution
through the thickness is linear, has been adopted by
Bolotin*?, Shirakawa and Ochiai*?, Mizoguchi? and
others. If this assumption is used, the boundary
conditions of Egs. (3) cannot be introduced in the
derivation of Egs. (5), and the resulting definite inte-
gral term becomes zero. In the present paper, to avoid
the above difficulty and to improve the accuracy of the
solutions for initial response stages, the temperature
distribution through the thickness is assumed to be a
curve of the second order by using coefficients 7Ty, Th
and T: as follows:

T(E 0,8, )=T«E, 6, )+ T(E, 6, )¢

+ T, 0, 1) (4)

After substituting Eq. (4) into Eq. (2), integrat-

ing Eq. (2), Eq. (2) multiplied by ¢, and Eq. (2)

multiplied by &2 through the thickness, with considera-

tion of the surface boundary conditions (Egs. (3)),
we obtain the following three equations, respectively :

Series A, Vol. 38, No. 2, 1995

2T+ 2T~ LT +-L( T
+L T T+ I 2 T+ LT
+ L BT} [+ ot ) Ty
+Z g ) Ti+E o+ 1) T
—%(ho@a-%hi@i)—l—Q—“:O

i('m ]y BT+ Lo T+ 2 S T

8% (ho- h)To+~Z—(ha+h n h):n

/
+§2l(ha—hl-) T:—5%(1,0,— 1.0))
__1«225“@;_70
Joll’
3K 9

L+ % at(Tz) Zly 35<To>+;§7(n>
+ L T+ 3 E () + LT
+—hW<TZ>}]+—3;%(ho+hi):ro

+32(ho— ) 422 o+ 1) T

~ 32 (1o @,+ 1:B) 1—3";‘2— 0
(5)

where the boundary conditions given by Eqs. (3) are
substituted into the terms [07/0¢]"%. which appear in
the integrations. In Egs. (5) @, @ and - are given
by

Q=" mtrde (n=0,1,2). (6)

—h/2

For three independent variables 7o, 71 and T3,
Egs. (5) are given, and by solving these equations,
the temperature field in the shell can be determined.

In recent years another analytical method for the
heat conduction problem of axisymmetrical shells was
proposed by Updike and Kalnins!®.

2.2 Thermal deformation equations

Eliminating the transverse shear forces Q. and Qs
in the equilibrium equations in the Sanders theory®?®,
and expressing in the rate forms, the following equa-
tions are obtained.

d[%(pNe) +a_(?9(ﬁeo) - P’Na}
+ w;[%( PMe) +‘3%‘(Méa) - P’Me]
+%(a)e— w9)~—a%(11753) + pa®Pe=0

al:‘(?%"(No) + “g%( Pﬁeo) + p/ﬁse]

+wa[§@g(Me)+%(pﬁea)+P'ﬁeaJ (7)
+%pa—a‘€[((1)a_ G)e)ﬁee] + paZPgZO
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o[ o . 0 /5 Yy
a—é[—E(PMe) t5gMea)—p Ma]
1 o[ 0,y 0 = ,
4 30 2p M+ G+ o h
— ap(weNe+ wsNo) + 0a? Pr=0

where N and M. are the modified stress resultant
and modified stress couple, respectively, and are ex-

pressed as follows®® :
ﬁge:(Nee+Nee)/2
H[(U/Rs) —(1/R) N Meo— Moe) /47 .
Meo:(Meo‘f' Mee)/z
The other notations are shown in Fig. 1.

On the boundary, the effective membrane force
Ne and the effective transverse shear force Qe per

unit length are defined as follows"® :

Neo=Net5{5-— )M

Q_ [ E(PM5)+2 H(Mee) PMa}

The strain rates of the middle surface are given by"® :

=] 00+ eV ]
éem_l[p aH(Ue)‘FVUﬁ‘(Ue ]

éeom 1 [P ag(Ue)+ aE<U9) VUG]

where éeﬁm is half the usual engineering shear strain
rate. The bending distortion rates #., x, and x. are

as follows :

=l 500+ 704

7556 1 [P ae(@é)+ é(®0)‘7$8

;Zé d aé(@é)

+2—a(we_ Ct)o){“% —3%_( Ué) __gg( U”) - 7U"}]

where rotation rates @, and @, are:

¢e:%l‘[ __8__( W) + CUEUE:I

aie=i[—?w( W)—I—cuaUe]

Fig. 1 Coordinates and notations
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Under the Kirchhoff -Love hypothesis and the
neglect of quantities ¢/Rs and ¢/Rs which are small in
comparison with unity, the strain rates at the distance
¢ from the middle surface are

{e}={ent+¢{x} (13)
where

{é}:{ée, Eo, éee}T

{Em}:{eem, ésm, éeﬂm}T (14)

{if}z{ife, X, ers}r
and { }” represents the transposed matrix.

Now we use the elasto/visco-plastic equations by
Perzyna®® considering the temperature effect for
constitutive relations. The visco-plastic strain rates
e are

EW¥=y(T)U(f)>SuJ"* (15)
where the dot denotes partial differentiation with
respect to time; Sy, Jo and 7(7) are the deviatoric
stress, the second invariant of the deviatoric stress
tensor and a material constant, respectively, and 7, is
a function of absolute temperature 7T as well as ¢* in
Eq. (17). The symbol <¥(¥)> is defined by :

CT(UP=0: F<0 <FUP=¥(F): />0 (16)
where

f={o—0*(T)}/o*(T) an
and #=0 denotes the von Mises yield surface, ¢ is the
equivalent stress (=+3J2) and ¢*(T) is the static
stress determined from the elasto-plastic stress-strain
relation in a usual tension test.

In the present paper, when we assume that the
total strain rate may be composed of the elastic, the
visco-plastic and the thermal parts, the total strain
rates in the plane stress state are written as

{e}=[D] o} +{e”}+{e*) (18)
where
{U}:{Ge, ():9, O:ee}T
{e)={e¥, &b, %)™
{etY={aT,, aT., 0)7
E 1 v 0
P
= 0 1-0) . 9)
(e =L)< w(- T T))>
1 —-1/2 0]
x%{—l/z 1 0 {o}
0 0 3/2]

E, v and a are Young’s modulus, Poisson’s ratio, and
thermal expansion coefficient, and 7% is the tempera-
ture rise from the original temperature 7, to the
present temperature 7", namely,
TE,0,¢,)=T(,0,¢,t)—To. (20)
Substituting Egs. (13) into Egs. (18) and solving
them for stresses, we obtain
{o}=[DI{en}+E{2#))—{a?}—{0"} 21

where
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{o"}={c?*, 04*, 0¥} =[D) &*}
{ct}={c", o, 0}"=[D]{&")
£, 1,00
The membrane forces and the resultant moments
per unit length are obtained from Egs. (21) :
{N}={Ne, Na, Nea}'r )
=h[D){ én} —{N?}—{N*}
{M}:{Me, Me, Mea}T . (23)
3 . .
= {5ID1#) () — (1)
In Egs. (23), ( ) and ( )* denote the apparent
internal forces due to visco-plasticity and the internal
forces due to temperature rise 7, respectively, and
are given by :

{va, Nt}:-/_':::{gvp, o.t}dg
(e, ary= [ (6%, 64)ede |

A complete set of field equations for the 36 in-
dependent variables {N}, {M}, {N?*}, {M?*}, {N*},
(M}, {c}, (%}, {a*}, {én}, {€°), (&), U, Us, W,
{#}, @ and @, is now given by the 36 equations (7),
(10)~(12), (19) and (21)~(24).

(22)

(24)

3. Nondimensional Equations

In order to analyze the problem of shells under
arbitrary unsymmetrical loads, the distributed loads,
the ambient fluid temperature, the heat generation and
the 35 independent variables mentioned in section 2,
except for { €¥*} and é°, are expanded into the Fourier
series as follows.

{Ne, N&*, No, N#*, N'*}
—ath{n‘”’, P(n) n(ﬂ) vb(n) n“”’}cos nf
{Me, ME, Mo, M¥* M*}

3 o
:———U"h E{WL%"), P, m§?, mEP", m* Mlcos nb
{Nea, N”} Jth{n(") 7% ™sin nf

(Mo, HY="21" 53 (5, 73§ V)sin n
{U$v W Eem, Eom, X2, Xo, @5}

=% E{Clu‘"’ aw'™, e&R, é5w, kén), %n),
a a
(o""}cos no
{Ue, E gom, X g0, @0} .
Y Z {aué’“ eim, kég), qp‘”’}sm nd

{03, 0'5 ) 0'0, 05"0, gt ,Pey P:, T, Th, Tz, Os, 0,}

_0.02{ (n), seup(n)’ S((;"), sgﬁ(n)’ $ t(n),zp(gn)’
&, O R SO/ '%m}cos né
Ea’ Eah’ Eah® Ea’ Ea

{01539 O‘gﬂp» pﬂ}
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=aoi} { &, S8, — é%”’}sin nd
{Q, @1, @2}
:_/1; Fo Z{q"” hg{™ hzqé’”}cos nd

(25)
where oy is a reference stress.

It should be noted that the Fourier expansions,
Eqgs. (25), are not the most general that could exist.
For full generality, these expansions should be aug-
mented by the sine-additional series for the cosine
series and by the cosine-additional series for the sine
series.

Substituting these into the above fundamental
equations, the equations among the Fourier
coefficients relating to the variables are obtained.
From the heat conduction equations, the simultaneous
differential equations for the coefficients #7, #™, "
can be obtained as

AY'+A Y +A Y =A+ As(0Y/or) (26)
where Y={#", t”, #}T and r=yt/a®. A\~ A; are 3X
3 matrices determined from #%;, %, and the shell form.
A4 is a 3X1 matrix determined from ., ®&,, h; and
ho. As is a 3 X3 constant matrix.

Similarly eliminating the variables from the ther-
mal deformation equations, the simultaneous
differential equations for the displacement rates #{",
w§®, w'™ and the bending moment rate #¢” can be
derived as

B\.Z"+ B, Z'+ BsZ =B, (27)
where Z={u{”, u§, w"™, m}. Bi~Bs are 4X4
matrices determined from the shell form and v. B, is
a 4X1 matrix determined from the distributed loads
and the internal forces due to visco-plasticity and
temperature rise in addition to the shell geometries®.

On eliminating the strains and the bending distor-
tions from Egs. (21) and (23), and expressing these by
the Fourier coefficients, the stresses are calculated
from the following equations :

Se=net ne+at+12—> C(m5+m & +mt)
R

Somriot B8+ 12 (rhgt 3P+ R} (28)
— gt

Sso— 1’l59+ neg +12—§(m¢9+ m$ )_ Sea

The rates of internal forces related to the visco-
plasticity and the temperature rise in Egs. (27) and
(28) become the following, by use of Eqs. (22), (24)
and (25).
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O.th{nvp(n) n vp(n) nUP(n)}[A ]
—f /2{65 , £8°, e} D]dt

021'2 ’g{mvp(n) WP 2N A,] (29)

= {55 , £8%, eBY[D]¢&ds

P S | Rl al) ;
m, m }—h l*v,/—‘h/z{l’ hz}tedc
0‘0% (§ppm gapo  mpN[ A ]

_{65,60,655}[17] (30)
where [A.]=[cos #8, cos #8, sin n8] (diagonal
matrix). The visco-plastic strain rates on the right-
hand sides of Egs. (29) and (30) can be related to the
stresses by Egs. (19). The integrations are carried out
numerically using Simpson’s 1/3 rule.

4. Numerical Method

A finite difference method is employed for the
solutions of the two second order simultaneous
differential equations (26) and (27). The usual cen-
tral difference formulas are used for every mesh point
except the discontinuity points and the boundary
points of the shell. For the discontinuity points and
the boundary points, forward and backward difference
equations are employed®. The derivatives with
respect to time in Eq. (26) are treated by the Crank-
Nicolson method. The solutions at any time are
obtained by a summation of the incremental values
due to the time increment.

5. Numerical Example

As a numerical example, a simply supported
internally pressurized cylindrical shell of aluminum
subjected to locally distributed thermal loading due to
fluid is analyzed (Fig. 2). 7o and ©; are both 25°C, and
the boundary conditions at both ends are assumed to
be adiabatic. %#; and %, on inner and outer surfaces of
the shell are both 0.23/m, and internal pressure P; is 0.

, 80=8c056+25!
T
D e e
Ale_goslD G
E=0.25 .
B _|E HL ]
= P=
E=s/L £-05 N =
c |F 1 L
$
L=600mm R=200mm ©
h=4mm b=150mm
P=0.5MPa T.=25°C,

No=hi=0.23 1/m 8i=25°C

Fig. 2 Numerical example
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5MPa. The value of gy in Egs. (25) has been selected
as 6o=1.

The geometrical parameters of the shell are

a:“L’ «S:s/L:_p=1/3, o'=0, 7=0} (31)

We=3, We=we=0
where L is length of the shell.

The meridional increment 4& in the finite
difference calculation is

4=1/{2(N—-1)} (32)
where N is the number of mesh points.

Boundary conditions relating to thermal deforma-
tion equations at the points A (i=1) and G (i=N)
are

Point A: Us,= W M;—O Ne=Py- R/Z}
Point G : Ue—Neo—Qe— @5—0 ’

The material constants employed in the calcula-
tions are as follows.

E=69GPa, py=2.71 g/cm?

v=0.33, =222 W/(m-K)

@=236%X10°K™" ¢=0904 k]J/(kg-K)

o*(T)=—0.011(7/100)*+0.22( 7/100)3 (34)

+0.6(7/100)>*—25.6( 7/100)+92.6 MPa

r{ T)=exp{—(T —302.5)/15.4} s7!

T(H)=[(o—a*(T)/e*(T)]°
where the unit of temperature T is degree centigrade.
Using these material constants, the stress-strain
curves of the material at 7 =25, 200, 300 and 400°C are
obtained as shown in Fig. 3.

The number of mesh points N and the number of
divisions through the thickness are chosen to be 101
and 19, respectively. The number of terms of the
Fourier series is selected to be #=20, and the incre-
ment of time A4t is selected as 0.1 sec. These values
are chosen with consideration of the convergence of
the solutions, the capacity of the computer and
computing time.

Now we shall discuss some results of calculation.

The variations of temperature distribution
through the thickness at point G (£=0.5, §=0°) of
the shell are shown in Fig. 4. In this figure the results
from the present theory are plotted by solid lines, and

(33)

—25°C|  200°C|  300°C|  400°C
E=11/3 1
100; —
I 1
a Ty
< " 0.0t o1 |
O s0f H| 00t | °H
o* 0.01 0.1
o* 5 Y001

0 0204 0 0204 0 0204 0 0204
€ %

Fig. 3 Stress-strain relations
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the results based on the assumption of linear tempera-
ture distribution through the thickness are plotted by
broken lines. In this numerical example both results
almost agree, and the distributions through the thick-
ness become uniform after about =2 sec. Therefore
in the following figures we shall indicate the tempera-
ture on the middle surface of the shell.

Figure 5 illustrates the variations with time of
temperature at points A~I (£=0,0.25,05: §=0°,

90°,180°). Figure 6 gives the meridional distributions
31 400
B This Solution ¥
Linear B 1008 500s
0.9s 300
29k B SJOS
& 0.5s - e 200}
- _ omm I % . T
S
27r ) 75 |
50} t=2s
{
25
-0.5 0 0.5
¢/h

Fig. 4 Temperature distributions through thickness at
point G (£=0.5, §=0°)

400
300} G 1
D
s Noommmmmm T ;
200+ o
-
S H A B E CF.I
1004/ / _ Jtl [
s AR S
OO 100 200 300 400 500
t S
Fig. 5 Variations of temperature at specific points with
time
00— T
______ 90° —E&=05
a0l —= 180' ----- 0.25
t=500 -
o 300+
" 200} ]
100k
0 L
0 0.2 04 O 90 180

¢ (=s/0) 0"
Fig. 6 Meridional and circumferential distributions of
temperature with time
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of the temperature along 6=0°90° 180°, and the
circumferential distributions along £=0,0.25,0.5. In
the heated region the temperature rises quickly in
comparison with other areas, and subsequently
increases gradually until the steady state is reached.

Figure 7 shows the variations with time of meridi-
onal displacement U, at points A~C (£=0; =0°,
90°, 180°), radial displacement W at points G~I (&=
0.5; §=0°190°180°) and circumferential displace-
ment U, at point H. In Figs. 8 and 9, the meridional
distributions of displacements along §=0°, 90°, 180°,
and the circumferential distributions along £=0, 0.5
are illustrated, respectively. Although about a quar-
ter of the yielding internal pressure is applied, axisym-
metrical deformations by the pressure are very small
in comparison with thermal deformations, and only
the distribution of W can be recognized in these
figures. From Figs.8 and 9, a large deformation
occurs in the high temperature region where heating

4 T T
—_— UE
—————— Ue
— W
£
E G
ol .
=
2 1
w"o — L '
D ;':‘:r“*_ . — e ]
\'\‘ ______ ;’___j‘__’—___v ----------
—— B C {4 1
. | _ﬁ——‘“—*—
0 100 200 300

Fig. 7 Variations of displacements at specific points with
time

4

3005 100s. 505

0 04 02 03 04 05
¢ (=s/L)
Fig. 8 Meridional distributions of displacements with
time
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load is directly applied. Under this influence, U, and
W near §=90° on the middle cross section and U.
near the supported edges have negative values.
Figure 10 shows the variations with time of resul-
tant stress N, at points G~I, resultant stress N, at
points A~C, G~I and resultant stress Ne at points B
and E. Meridional and circumferential distributions
of these resultant stresses are also depicted in Figs. 11
and 12, respectively. The value of Ng is initially 50 N/
mm in tension throughout the shell body, and varies
with heat loading until the steady state is reached at
about 100 seconds. N, varies monotonically with &,
but circumferential distribution becomes nonuniform
towards the middle part of the shell. The value of N;
is initially about 100 N/mm in tension except near the
edges (£=0~0.06). About 20 seconds later N,

— £=05

0 30 180 °
eo
Fig. 9 Circumferential distributions of displacements

with time

200 T r
£ G H I

A AN

LY e —————
2 0
-4
2,
- =100
wr
-4

-200

-300 Nee, —

0 100 200 300
t s
Fig. 10 Variations of resultant forces at specific points

with time
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becomes locally large compression at §=0°~90° near
the edges due to heat conduction. After yielding
occurs at t=150 sec, there are few changes in N, with
time. Near point D, where the temperature gradient is
large, slight meridional variation of N, appears. In
these figures N: at =300 sec is also plotted, but this
value is small in comparison with /NV: and Ne.

Figure 13 shows the variations with time of resul-
tant moments M., My at points D~I and resultant
moment M. at points B and E. Figures 14 and 15
represent the variations of distributions of resultant
moments with time. M, and M, show similar distribu-
tions and variations with time, but M. is large near
point A (£=0.03). Both moments show meridional
variation near point D, and decrease markedly near

200

100t

N/mm

100

. Neg

-100

Ne
<
l
&
3
Neg  N/mm

-200 0

- ‘ -50
300 02 03 04 05

¢ (=s/L)

Meridional distributions of resultant forces with
time

0 0.1

Fig. 11

- 100
300s

N;:j //- A\ _
100 g T—x——< 50
3005}.\" t=0s N

t=0s/‘Ne_.—_ 300s:NEﬁ
e

50s / /_/

-100} i

A
“00s
T/

N/mm

[en]
o
Ng | Neo

N/mm

1-50

No

-200} _/3005

E'=8'gs
-/ 5

~3005 0 180

90
Circumferential distributions of resultant forces
with time

Fig. 12
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M g 50
E £ t=100s _
E E = ‘_‘//\ 5& 3OOSM§B
£ E =1 , e
£ -3 ~J MENG - - - —
z © 300s M55 300s
¥ VYT % 50l 195 505 50s 00s {50 £
500 ¢ Db EH F I\ 150 E ¥ L E
P S £ ; .-
P S 0 E 0 §
oo E z
£ LA 1 @
L _EN =
E H 1-50 = —£=05 50s 50
E. €8 0251 Me.Ms
g2 E B 25
z T T T P ——_ 0 :Mee
© 0 0 90 180
g 0 100 200 300 0
t s Fig. 15 Circumferential distributions of resultant
Fig. 13 Variations of resultant moments at specific moments with time

points with time
IR Yield region

L] Elastic region

€ 200 —
E 300s LA suter

E 100s —— 180° surfuBce_
E 100 50s

¥

o
T
0 5
gm
/
!
1
]
)
g:
13
1
\:_
I
1
!
—i
C

300s 50s 100s |

-100} 100s 100 € )
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Resultant

moment My is large near #=50° at the edges.

By using the temperature distributions obtained,
the stresses and deformations have been calculated
from the thermal stress equations. The equations of
equilibrium and the strain displacement relations have
been derived from the Sanders thin shell theory. The
constitutive equations by Perzyna, considering the

Figure 16 illustrates the aspect of the progression
of yield. At about ¢t=70.6 sec, yielding occurs on the
outer surface at point G, and with the lapse of time the
yield region expands in the thickness, meridional and
circumferential directions. Yielding also occurs in the
region of supported edges. The yielding zones on the
outer surface of the shell are larger than those on the
inner surface.

6. Conclusions

In this paper we have described the numerical
analysis of the elasto/visco-plastic deformation of
axisymmetrical thin shells subjected to thermal loads
due to fluid. The temperature distribution through the
thickness has been assumed to be a curve of the
second order, and the equations of heat conduction
and heat transfer have been solved under appropriate

Series A, Vol. 38, No. 2, 1995

temperature effect, have been employed. The numeri-
cal method selected for this problem is a method using
finite difference in both space and time.

As a numerical example, the internally pressur-
ized cylindrical shell subjected to locally distributed
thermal loads due to fluid has been analyzed.

From the calculations, we found the following.

(1)

Displacements and internal forces vary grad-

ually with the temperature rise of the shell, and tend

to the steady state.
(2)

Spring back of displacements and relaxation

of internal forces occur in the yield region.

(3) Resultant stress N

and resultant moments

M., M, have large values on the edges of the shell and
near the edges, respectively, and they show meridional
variations near the boundary of the heated region.
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