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Domain Optimization Analysis in Linear

Elastic Problems*
(Approach Using Traction Method)

Hideyuki AZEGAMI** and Zhi Chang WU***

We present a numerical analysis and results using the traction method for optimiz-
ing domains in terms of which linear elastic problems are defined. In this paper we
consider the application of the traction method, which was proposed as a solution to
domain optimization problems in elliptic boundary value problems. The minimization
of the mean compliance is considered. Using the Lagrange multiplier method, we
obtain the shape gradient functions for these domain optimization problems from the
optimality criteria. In this process we consider variations in the surface force acting
on the boundary and variations in the stiffness function and the body force distributed
in the domain. We obtain solutions for an infinite plate with a hole and a rectangular

plate clamped at both ends.
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1. Introduction

Domain optimization problems in linear elastic
continua assuming a geometrical domain shape as a
design variable are common problems that arise in the
design process for solid structures. In this paper, we
propose a numerical analysis method applicable to
these problems.

In order to optimize the domains, one practical
approach is to provide a substitute model with a finite
number of degrees of freedom as a continuum model
before formulation of the optimization problems.
Based on this model, a shape optimization problem, in
which the design variables are defined in a finite-
dimensional vector space, can be analyzed numeri-
cally using the mathematical programming techniques
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in the same way as common size optimization prob-
lems. A method in which design variables are defined
by nodal coordinates on a design boundary in a finite
element model has been examined since the early
1970s",  Using this approach, the oscillation of the
design boundary is observed during the optimization
process. Methods to overcome this deficiency are
based on the adaptive finite element method®. An
alternate way of defining design variables is to use the
degreesof freedom of the B spline functions represent-
ing the design boundary®. This method, however, is
not effective in locating an optimal solution in prob-
lems with a large number of design variables because
of the large number of dimensions in the design space.

An alternate approach to the optimization of
geometrical domains is to describe the problem using
a distributed mapping function, the derivative of
which with respect to shape variation corresponds to
a velocity field. The governing equation of the veloc-
ity field derived by applying the gradient method for
distributed parameter systems is then solved. Using
this approach, a sensitivity function, which we call a
shape gradient function, can be derived theoretically
as a coefhicient function of the velocity field. A
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numerical analysis method is formulated to solve the
governing equation. We proposed a traction method
for solving domain optimization problems in which
elliptic boundary value problems are defined. In this
method, the velocity fields are obtained as solutions of
pseudoelastic problems in pseudolinear elastic contin-
ua defined on the design domain and loaded with
pseudodistributed external force, or traction, in pro-
portion to the shape gradient function in the design
domain under constraints on displacement of the in-
variable boundaries. This solution is called the trac-
tion method. The pseudolinear elastic problem can be
analyzed using any numerical analysis technique
applicable to linear elastic problems, such as the finite
element method or boundary element method.

In this paper, we apply the traction method to the
optimization of domains in linear elastic continua.
Considering the mean compliance minimization prob-
lem, we present the following: (1) the theoretical
derivation of the optimum criteria and the shape
gradient function assuming that a boundary loaded
with an external boundary force can be varied and
that the body force and elastic stiffness can have
nonuniform distributions; (2) the validity of the
numerical analysis method based on the traction
method using the derived shape gradient function.
The notation used in the linear elastic problem and
domain variation is presented first. Using this nota-
tion, we derive the mean compliance minimization
formula and deduce the optimum criteria and shape
gradient functions. Then the traction method is
introduced to solve these problems. Finally a discus-
sion based on the numerical examination is presented.

2. Linear Elastic Problem

Let us define the notation used in the linear elastic
problem.

A linear elastic continuum is defined in an open
domain QCR", n=2, 3, with a boundary I We
consider that a coercive displacement h distributed on
IC T, a volume force f in £ and a traction P on the

Fig. 1

Linear elastic problem
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boundary I:=1"\I yield a displacement u in £. R is
the set of real numbers and \ indicates the subtraction
between sets.

For the elastic continuum, the variational form,
or the weak form, of the equilibrium equation is
expressed as

alv, w)=Hw)—L{w)

v=u—hsHr, Vw&Hn, (1)
where the bilinear form «a(-, +) and the linear forms
/(+) and /(+) are defined by

(1(0, W):-/S;(:z‘jkllr'k,l“'f,jdr (2)
/(w):fffzfr,~dr+f Pavdl (3)
2 I'2
/h( w):'/‘erkz/btz,1l4u'x'.J(ll‘v (4)
Q
and the kinetically admissible set of displacements by
Hrli{UEHl(-QNU:O on ﬂ} (35)

The Hooke elasticity C, Cuw, E(L™(£2))", has sym-
metry and positive definiteness given by

C:‘jkz: Cjim: C:’jllz_’ C/zlu' ( 6 )
Ja>0: Cu'klskzéi‘zﬂfusij. Ezj:fji
VEESR™ in L. (7)

The functions defined above are assumed to be f&
HNQ), he H'(Q) and PE H"A(I3).

In this paper, boldface vector notation and tensor
notation with subscripts are used. In the tensor
notation, the Einstein summation convention and
gradient notation ( *).,=a( * )/dx: are used. L™(2) and
H™( ) denote the bounded Lebesgue functional space
and the Sobolev space, respectively.

3. Domain Variation

The domain variation can be denoted by the
material derivative method“*® as presented in the
previous paper'®.

Let a domain £ be variable in an admissible
domain D with a partially smooth boundary as shown
in Fig. 2. The change of domain £ to domain &s can

Domain variation

Fig. 2
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be described using a one-to-one mapping Ts(X)
defined in the closed domain D by

T(X): D=X x(s)ED, (8)
where nonsmooth points on the boundary of D, if they
exist, are fixed to avoid changing the admissible
domain 7). The variable s denotes a history of the
variation. If the domain variation is constrained on a
subdomain or subboundary @ of D which includes
these nonsmooth points, the mapping 7s(X) is given
by the identical mapping ¢(X) as

T{(X)=9(X) VX€OCD. (9)
The coordinate system X< Q is called the Lagrange
coordinate system, or the material coordinate system,
and x< Q. the Euler coordinate system, or the real
coordinate system.

Infinitesimal variation of the domain is given by

T s X) =T X) +dsV + 0O(|ds)), (10)
where O(|4s]) is defined by AsO(Jds})—=0(ds—0). In
Eq.(10), the velocity field V is defined by the Euler
derivative of T«(X) as

oTs

o5 Ti(x)=V(x) an
VelCo={Ve (D)
1w Vi=0on oD, V=o0in @CD}. (12)

The notation z© y(r) indicates the mapping relation
x> ylr)e 2(y(r)) and C*(D) denotes the set of #
class continuous functions.

The derivative of a distributed parameter can be
expressed in two different ways using the Lagrange
expression ¢*(X), X&Q, and the Euler expression
¢s(x), x=2,. These are related to Ty(X) as

P X)=¢,0 Ts(X) VXEQ (13)
Substituting Eq. (10), we can define the Euler deriva-
tive, or the material derivative, ¢s and a shape deriva-
tive ¢s. These are related by

ps= i+ BV, (14)
where ¢s and ¢ are defined as

L 1: 1 ( A4S+AS S

po=lim g (790 (15)

Hi=lim  (poss B, (16)

The derivatives of functionals are obtained as follows.
In the case of a functional J of a distributed function
¢s over a domain £ :

J= [ . an
The derivative J is given using Eq. (10) as
]:ﬁ\ (755(1].1' + ./I“s (iﬁslr"n(/['
~ [ 4o+ psVide, (18)
where t»=n;V..

In the case of a functional / of a distributed
function ¢, over a boundary [ :
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J= [ #sar. 19)
The derivative J is given by

j:/;{(ﬁ;“"(¢s,;’ll,+¢s;()yn}d['
:'/;S (¢s+ psxvn)dl’, (20)

where » denotes the curvature when £s is a two-
dimensional domain and the mean curvature when £s
is a three-dimensional domain.

4. Mean Compliance Minimization

We consider linear elastic continua with the mean
compliance as an objective functional. As shown
below, these are self-adjoint problems such that the
sensitivity functions, or the shape gradient functions,
are given with only the state variable function that is
the displacement.

4.1 Formulation

The mean compliance minimization problem is
formulated as follows. We assume that the distribut-
ed functions C, f, h and P determined uniquely. As
examples, we consider the following conditions.

Fixing in space : (*)=(+).Vi:(*)Y=0 inQ2
(21)
()=0:(+)+(+).Vi=o
Fixing in material - N . , o Q_
()=o0:()+(*)nwr=0
on I’
(22)
()+(*)Vii=o0;
(«-)Y+{(-)Vidi=0 inQ

Covariation ()+(*)xn=0:
with material : | () +{(*).a:+(* )xlva=0
on I’
(23)

When we assume a constraint of the magnitude of the
domain

“Z"f,, dr, (24)

the mean compliance minimization problem is de-
scribed as follows.

[> Problem : Given distributed functions C, f, h
and P=C'(D) that are determined uniquely with
respect to the domain variation defined in Egs. (11)
and (12) and a magnitude limit for the domain M &
R., find 2s= T:(£) that minimizes

the mean compliance, {(u), (25)
subject to the equilibrium equation
alv, w)y=Hw)— L(w)

U:u_hEHm VLUEHr,, (26)
and the domain magnitude constraint
m-M<0 <, (27)

where K. is a set of positive real numbers.
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4.2 Optimality criteria

Applying the Lagrange multiplier method, we
derive the optimality criteria.

Using w as the Lagrange multiplier for Eq. (26)
and /1 as the Lagrange multiplier for the inequality
(27), the above problem can be rendered into the
stationalization problem of the Lagrange functional

L=1(v)— l(v)—alv, w)+1(w)—l{(w)

+Alm—M) weEHr, AER.. (28)
The derivative L of the Lagrange functional L with
respect to the domain variation is derived using the
formula in section 3 as follows.

L':/Q‘(f;v,%-f,u,‘)dxﬁL/; S Vidl?
+/ {Pivi+ Puwi
g2
+(Pinvit+ Pivins+ Pooe) ng Ve dlD
_'/;V(ijklllk.ll’i,j%‘ Cispthe, Vs,

N Cijkl/lk’[l"y‘{'f)(l‘r" _/;,s Cijklhk.ll/'i.jnm Vandl’
,ﬁS(C,’juvk,[zv,ﬁ— Comtlh iy

+ Cijnitrn, i, )dx — /;_S CisntVn, W0iim Vadl
+./S;s (fi'll’i+f,'l(,';)dx+£s fz‘l(';‘?’l, der

+ / [P~ Pac

rs2
+(Pi s+ Piving+ Pavie)ne Ve dl
- /;_ (ijkz/’lk.zlt'i,j + Cz‘mzlll.zu‘i.j

+ Cinthr, i) dr — /r Ciethr i nn Vadl

-I-/r‘s/ln,-VidF+A'(m—M)

=(v)—l(v)—alv, .w)+/(w')

—L(w)—alv, w)+Am—M)+1(V), (29)
where

Io( V):ﬁs {(Filvi+ w)— Condlvn e+ haavi

+ hyti;) F Ay nm Vadl

+'/;S Uit wd) — Chnd v, i+ hwvi s

+ haite) + Coml Hestvis + Neswwi ) dx

+ ﬁsz{P{zsﬁ Piw:+(Prnvit Pvisn,

+ Pivix + P+ Piwijn;

+ Piwac) ne Vatdr . (30)
Under the assumption that C, f, h and P are deter-
mined uniquely, we recognize that /c(V) is a linear
form of the velocity field V given by

V)= [ GV, (31)
The coefficient vector function G is the sensitivity of
the velocity field to the objective functional and is

called the shape gradient function. Now we derive
expressions for G for the case in which C, f and h
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are fixed in space and h=o0 in D. When P is fixed in
space, that is P'=o0, G is given by
G = yr((firei+ fiwi— Comittp i 5+ A)n)
+ vro((Pijiu:+ Paisn;+ Pitix
+ P+ Pavins+ Pavaon), (32)
where 7:(®) is the trace operator projecting ¢ defined
in 25 to its boundary Is. When P is fixed in the
material, P=o0, and
G= )’I‘s((filll+fz1l'z — Cijpiltp, s+ A)n)
+ yro((Pitign;+ Pt + Pavgn;
+ Pavic)n). (33)
If P covaries with the material, then P+ Pxv.=o0, and
G =yr((fit;i + fivi— Cimmttrwi;+ A)n)
+ yrool(Piats j1;+ Pave i) n). (34)
In the three cases above, G is given as a distributed
function of the normal vector on the boundary [%.
From Eq. (29), the stationality conditions of the
Lagrange function L are

alv, w)=lIw)—L(w) YwEHn (35)
a(v’, wy=1(v)—L(v) YveEHn (36)
lc( V):O VVeCeo (37)
Alm—M)=0 (38)
m—M<0. (39)

Under these conditions, Eq.(35) is the equation gov-
erning v that agrees with Eq. (1). Using Eq. (36), we
can determine w from the relation

v=w. (40)
In general, w is called an adjoint function and Eq. (36)
an adjoint equation. Since the state equation and the
adjoint equation agree, then this problem is known as
a self-adjoint problem. Equations (38) and (39) are
parts of the Kuhn-Tucker conditions relating to the
inequality condition of Eq. (27). The Lagrange
multiplier A can be determined using these conditions.

Considering the relations v=w determined from
Eq. (35) and A determined from Egs. (38) and (39),
the derivative of the Lagrange function L, which
agrees with the derivative of the objective function
with respect to the velocity field V. can be expressed
as

L=1(V). (41)

5. Traction Method

Since the derivative of the Lagrange functional L
is obtained as a linear form of the velocity field V
with a coefficient function of G, we can apply the
traction method to the compliance minimization prob-
lem. First we describe the traction method
concisely'®.

We consider the 4-th domain variation with the
velocity field V. The traction method is used to
determin V' by
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V% w)=—1(w) VHPECe VYV weCCe.
(42)

We can confirm that a domain variation with
velocity field V' decreases the Lagrange functional
L as follows. When the state equation (35) and the
Kuhn-Tucker conditions (38) and (39) are satisfied,
the perturbational expansion of the Lagrange func-
tional L around the £-th mapping Tsw)(X) is given by

ALY =14 V) + O(| ds)). (43)
Substituting Eq. (42) into Eq. (43) and considering the
positive definiteness of a(v, w) based on Eq. (7)), then

Ja>0: a(g &) zalélf VES(H'(L:))". (44)
The following relation is obtained for a sufficiently
small value of Js.

ALP=—a(dsV® AsV*®)<Q (45)
This equation shows that varying the domain with
velocity field V' obtained from Eq. (42) decreases
the Lagrange functional L, or the objective function,
in case in which the convexity and boundness are
ensured.

Equation (42) indicates that the velocity field
V' is obtained as a displacement of the pseudoelastic
body defined in £2s due to the loading of a pseudoexter-
nal force in proportion to — & under constraints on
the displacement of the invariable subdomains or
subboundaries as shown in Fig. 3. To solve the
pseudoelastic problem, we can use any numerical
analysis method applicable to linear elastic problems,
such as the finite element or the boundary element
method. In this work, the FEM was used.

The Lagrange multiplier /1 that satisfies the Kuhn-
Tucker conditions (38) and (39) is determined as
follows. Since /lnr contributes to the pseudoforce — G
as a uniform boundary force, the relationship among
the variation of the uniform boundary force 4An, the
variation of the velocity field 4V and the variation of
the magnitude of the domain dm is obtained by elastic
deformation analysis based on the following equation
with a uniform boundary force d/An as shown in
Fig. 4.

aldv, w)‘dJ’/; navdl’

AVECy Vwe Co (46)

Am:[Jrvm‘ (47)

Based on the linearity between 4V and 4w for small
deformations, we derive the following renewal proce-
dure for /1 and V.

max[(), d'rl(old) -+ 44/1’)*"(*05’7;!”]

( A¢oray >0, moan—M 7’0)

A’q(now) = A4 ’71(02)’; M (48)

(A‘lmld) :(), Fod) — M > 0)
0 ( 1mm) = 0 Moy — M < 0)
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Fig. 3 Traction method

Fig. 4 Uniform traction

20

NN NRRNY

NN YRR NN
(AARARARRRE
Q

ARARRRRERT]

Fig.5 Infinite plate with a hole: elastic deformation
(left) / domain variation (right)
Tinew) — /1
I/(new): ‘/(uld)'l (new) fed) (19)

4A
6. Numerical Analyses

We present results of some numerical analyses
for basic problems using the traction method and
shape gradient functions derived in section 4.

6.1 Infinite plate with a hole

As a domain optimization problem for which the
analytical solution is known, we applied the traction
method to the plane stress in an infinite plate with a
hole loaded with a traction of 1: 2 perpendicularly at
infinite distance as shown in Fig. 5. The optimal shape
of the hole is known to be an ellipse with axes of 1 :
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Fig. 6

Infinite plate with optimized hole : finite element
mesh (left)/ strain energy density (right)

(EEEERRK

Plate clamped at both ends: elastic deformation
(left)/ domain variation (right)

Fig. 7

» in the case of perpendicular loading of 1 »™. For
the numerical analysis, we chose the first quadrant
with a suitable radius considering the symmetry of the
problem. The traction on the outer arc was deter-
mined from the analytical solution for a plate with a
circular hole. The velocity field was analyzed under
the constraint on the outer arc. Since the hole is
traction-free, the shape gradient function G was
calculated using only the yr(+) term in Eq. (32),
where f=o0. In the numerical analyses, we used eight
node isoparametric elements.

The result obtained by starting with a circular
hole is shown in Fig. 6. This result agrees with the
analytical solution for an elliptical hole with axes of
1: 2. We confirmed that the results obtained for other
initial shapes converged to the same shape. The
iteration number, which depends on the value of Js,
was 5 in the case shown in Fig. 6.

6.2 Plate clamped at both ends

To confirm the validity of the traction method
using shape gradient functions when the loaded bound-
ary varies, we applied it to a simple plate clamped at
both ends as shown in Fig. 7. The traction force P
applied on the upper and lower boundaries was
assumed to have a downward and uniform distribution
at the initial boundary. Then, the traction fixed in
space at P'=o agrees with that fixed in the material
at P=o0. In this case, the traction is applied uniformly
on the boundaries while the domain varies. In con-
trast, when we assume that the traction covaries with
the material, i.e.. P+ Pxv.=o0, the magnitude of the
traction varies in inverse proportion to the expansion
ratio of the applied boundary.

The optimized results are shown in Fig. 8 for the
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Fig. 8 Optimized plate clamped at both ends loaded with
traction fixed in space P'=o0 or fixed in the
material P=o0: finite element mesh (left)/ strain
energy density (right)

_ J)mig

Fig. 9 Optimized plate clamped at both ends loaded with
traction which covaries with the material P
+ Pxtn=o0: finite element mesh (left)/ strain
energy density (right)

case in which the traction is fixed in space, P'=o0, and
that in which it is fixed in the material P=o. Figure
9 shows the case in which the traction covaries with
the material, P+ Pxt.=o0. The shape gradient func-
tions G are calculated using Eqgs. (33) and (34),
respectively. In both cases, we confirmed that the
mean compliances of the converged results obtained
using the correct shape gradient functions are smaller
than those obtained using other shape gradient func-
tions. The results verify the validity of the traction
method using shape gradient functions derived in

section 4.
7. Conclusion

In this study, we derived shape gradient functions
for mean compliance minimization problems theoreti-
cally, allowing variation of the loaded boundary, the
body force and the elastic stiffness. The validity of
the traction method using the derived shape gradient
functions was confirmed by the agreement of the
converged shape with the analytical solution in the
case of an infinite plate with a hole, and by compari-
son between the mean compliances of converged
results obtained using different shape gradient func-
tions in the case of a plate clamped at both ends with
varying load boundaries.
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