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Optimization of Frame Topology Using
Boundary Cycle and Genetic Algorithm*

Yasuhiko NAKANISHI** and Shigeru NAKAGIRI***

We report topological optimization of elastic frames by means of the boundary
cycle used in algebraic topology and a genetic algorithm. In this study the optimum
frame is defined as that in which the deformation at a point is minimal for a given
weight limit. Members that have a tip which is not connected to other members, and
increase the weight without making any mechanical contribution are neglected. The
optimum topology is identified efficiently using a boundary cycle which yields a one-
dimensional simplicial complex with no tips, satisfying the topological condition of no
idle tip. The boundary cycle is derived from a chain and boundary operator, which
plays the important role of decoding the genotype into the phenotype in the genetic
algorithm, and is included in the string used in the genetic algorithm to represent the
frame topology. The numerical examples are concerned with minimization of the
deformation of two-dimensional frames subject to bending, and three-dimensional
frames subject to torsion or expansion analyzed by the finite element method.
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1. Introduction

Structural optimization can be classified into the
two categories of size optimization and topological
optimization. Various methods of topological optim-
ization have been developed recently”*?, but they are
not as advanced as the methods of size optimization
and a general method has yet to be developed.

In this paper we report topological optimization
of two- and three-dimensional frames analyzed by the
finite element method. A formulation is proposed
based on algebraic topology for topological optimiza-
tion of frame structures. A member with a tip that is
not connected to another member does not contribute
to the transmission of internal forces, and thus
increases the weight of the structure without making
any mechanical contribution. Absence of such tips is

* Received 14th April, 1993. Japanese original : Trans.
Jpn. Soc. Mech. Eng., Vol. 60, No. 577, A (1994),
pp. 2157-2162. (Received 25th February, 1994)

** Toyohashi University of Technology, 1-1 Hibarigao-

ka, Tempaku-cho, Toyohashi 441, Japan
*** Institute of Industrial Science, University of Tokyo,
7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

JSME International Journal

one necessary requirement of an optimum light
weight frame. It is feasible to identify a frame of
minimum weight or minimum deformation in a set of
frames which have no unconnected members. Such a
set of frames can be generated by means of a bound-
ary cycle®. The 1-boundary cycle used in algebraic
topology is a one-dimensional simplicial complex
without any tips, which satisfies the above-mentioned
necessary condition. The usefulness of the boundary
cycle for structural optimization was demonstrated in
numerical examples concerned with finding the shor-
test boundary lines which partition a domain into
several subdomains of equal area'®.

In this study a method of representing the topol-
ogy of a frame by a combination of integers is
proposed, and the optimum combination is identified
using a genetic algorithm (GA). Numerical examples
concerned with the minimization of deformation of a
frame under the constraint of constant weight are
given. Deformation of the frame is analyzed by the
finite element method under the assumptions that the
frame remains in the elastic state and the displace-
ment and strain are small.
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2. Statement of problem

The topology of two- and three-dimensional
frames is optimized. In this study the optimum frame
is defined as that in which the sum of the displace-
ments at the loading points is a minimum, with a
weight equal to a certain prescribed value.

Figure 1 shows a ground structure for identifying
the optimum two dimensional frame which is fixed on
a rigid wall and subject to a vertical force of 98.1 N at
a point 1m from the rigid wall.
minimize the vertical displacement at the loading
point. Under the assumption that the optimum frame
consists of some members of the ground structure
shown by the solid lines in Fig. 1, the frame members
are selected from those in the 1>x1m? design domain

The aim is to

shown in Fig. 1. The intersection points of the solid
lines are called nodes.

In the case of three-dimensional frames, the
members are arranged in a cube as shown in Fig. 2 so
as to minimize the sum of the displacements of load-
ing points A, B, C and D under the constraint condi-
tion of constant weight. The members of the optimum
frame are selected from those shown in Fig. 3.

The cross section of all members is assumed to
be a circle which has the same diameter in both the
two- and three dimensional frames since we aim at
optimization of topology only. The case in which
some tips of the frame member are loading points is
not considered.

3. Method of coding topology using
integers, and optimization by GA

3.1 Coding by boundary cycle

A boundary cycle is used to represent the topol-
ogy of a frame in which there are no members that
have a free tip, are not connected to other members,
and do not contribute either to force transmission or
to the frame stiffness. The characteristics of the
boundary cycle are described in Ref. (4). The
definition of the boundary cycle and related technical
terms are summarized as follows. The topology of a
frame can be represented succinctly by a string of
integers using the boundary cycle, that is, a one-
dimensional simplicial complex with no tips.

On the assumption that «;(/=0,:, ) are in-
dependent points, the »-simplex that consists of the
vertexes «; is written as
L ar). (1)

A set of simplexes that satisfy the following condi-
tions is called a simplicial complex which is denoted
by K in the following.

1) When an arbitrary simplex belongs to K, its

arbitrary face also belongs to K.

.l'r:((lo, ay, "
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Fig. 1

Ground structure for optimization of two
dimensional frame

Fig. 2 Cube for optimization of three dimensional frame

Fig. 3 Ground structure for optimization of three
dimensional frame

2) An intersection between two simplexes in K is a
face common to each.

3) Each simplex in K is a face of the finite number
of simplexes in K. This condition is called local
finiteness.

The summation of integer coefficients {'(i=1, -,

m) multiplied by the »-simplexes is called an » -chain

which is written in the form
=10l el e+t e, (2)
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where m denotes the number of »-simplexes in K.
The operation of the boundary operator, d-, on the
»-simplex is defined as

&I'"—éo( Diao, =+, @i -+, ar), (3)

where @:; means that «; is absent. The (» —1)-bound-
ary cycle is the »-chain operated with or as given by

ST =40l + 120+ 0 + 170 (4)

The boundary operator has a feature dr-1°0,={0}.
This means that there is no edge of edge, and ensures
that the 1-boundary cycle has no tip. Equation (4)
indicates that once a certain » -dimensional simplicial
complex is determined, the (» —1)-boundary cycle is
specified by the integer coefficients ¢" only. In other
words, decision of the integer ¢’ results in the genera-
tion of a frame with no tip. Therefore, optimization
of the frame topology is achieved by finding the
optimum combination of integers ' which are taken
as a design variable.

A two dimensional complex that consists of the
2-simplexes shown in Fig. 1 is used for optimization
of the two-dimensional frame.
cients are allotted to each 2-simplex in order to make
a 2-chain. Then the 1-boundary cycle is obtained
by operating ¢ on the 2 chain.
coefficients are allocated to the gray 2-simplexes in
Fig. 1 in order to ensure that there are members that

First, integer coefhi-
Nonzero integer

connect the loading point and the rigid wall.

The simplicial complex used for optimization of
the three-dimensional frame is generated by dividing
the cube shown in Fig. 2 into tetrahedral 3 simplexes.
The 2-boundary cycle is obtained in the same way as
the 1-boundary cycle, that is, allocation of integer
coefficients to the 3-simplexes and operation of 6. In
order to obtain the 1 boundary cycle, the absolute
value of the integer coefficients of the 2-boundary
cvcle is replaced with unity, and ¢ is operated on this
modified 2-boundary cycle. The replacement of the
absolute value is necessary to prevent the 1-boundary
cycle from becoming zero, because :d; is {0} unless
this procedure is carried out.

3.2 Genetic algorithm

The total number of combinations of /' is so large
in most cases that it is necessary to choose a appropri-
ate method to find the optimum combination. A GA®
is chosen to meet the requirements in this study.

When the integer coefficients /' are considered as
a gene, a string in the GA can be expressed as t't*
{™ In this case, the boundary or operator plays the
role of decoding the genotype into the phenotype in
the GA. The fitness function F for the optimization is
defined as

N R
F=- 21 Jult+ e+, (
ha

o
~
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where u:, v; and w; (i=1, .-, N) indicate the displace-
ments in the xr, ¥ and z directions respectively at the
ith loading point. In the case of two-dimensional
frames, w; is equal to zero. The fitness function is
defined such that its value increases with increasing
frame stiffness. The strings are selected by the strat-
egy of elitist preservation on the basis of the fitness
function value ranking calculated by finite element
analysis of the frame.

Two methods, A and B, given below, are proposed
to satisfy the weight constraint. In method A, the
diameter of the members d is constrained by the
prescribed total weight of the frame W, the weight
per unit volume of the material used 7 and the total
length of the members L, according to the equation @
=2y W/ryL. In method B, the diameter of the mem-
bers d is held constant at 30mm. The upper limit /
of the total length of the members L is constrained so
that the frame weight is less than the prescribed value
W. When the total length L of a certain string is
longer than the upper limit U, the fitness function
value F is changed to a value —C—(L— /), where
— C is a constant much smaller than any likely value
of F calculated by Eq. (5). This method is used only
for two-dimensional frames. The total length L is
discrete, because the nodal coordinates are fixed.
This implies that it is impossible to obtain a frame
weight exactly equal to the prescribed value W.

4. Numerical examples

It is impossible to prove that a solution obtained
by GA is an optimum solution. In order to compensate
for this deficiency, a best-first search® is added to the
GA optimization, that is, the optimization method
changes from the GA to a hest-first search when the
fitness function value of an elitist string is constant for
twenty generations. All figures in this section indicate
the frame, which has the largest fitness function value
in five or six GA test runs. These frames cannot be
guaranteed to be optimum in the sense that the sum of
their displacements is proved to be a minimum. In the
numerical examples, Young's modulus and the specific
gravity of the frame material are taken to be 202 GPa
and 7.83, respectively.

4.1 Topological optimization of two-dimensional
frame

The parameters used in the GA are as follows:
population is 434, probability of mutation is 1.0% for
each locus, two point crossover being adopted. The
number of 2 simplexes used is 144 in the ground
structure. By taking advantage of the symmetry of
the frame with respect to the horizontal line from the
loading point to the rigid wall, half of the 2- simplexes,
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i.e. 72, is sufficient for the length of a string (the
number of loci).

Figure 4 shows the optimum frame obtained from
the ground structure shown in Fig. 1 using constraint
method A. The prescribed total weight W is 39.2 kg.
The fitness function value is —0.104 X 10 *’mm, and the
diameter of each member « is 22.7mm.

Figures 5, 6, and 7 show the frames obtained using
constraint method B (4 =30mm), with the upper limit
of length U as 209, 409% and 609% of the total length
of the ground structure of 31.0m, respectively. These
length limits are equivalent to weight limits of 34.3 kg,
68.6 kg and 1029 kg. The total lengths L of the
members shown in Figs. 5, 6 and 7 are less than each
upper limit {/: 19.69, 39.79% and 59.99% of the length
of the ground structure. The values of the fitness

function for the frames in Figs. 5, 6 and 7 are
—0.290%x10°% —0.739x10"°* and —0477x10*mm,
respectively.

As shown in the figures, the 1-simplexes in the
central area near the rigid wall and in the corners on
the right side and around the loading point tend to be
eliminated from the square design domain of the
ground structure.

4.2 Topological optimization of three-dimen-
sional frame

In this section a three-dimensional frame is
optimized using constraint method A. The prescribed
total weight W is 78.3 kg. The parameters used in the
GA and the result obtained are listed in Table 1.

Figure 8 shows the optimum frame under tor-
sional load applied at the upper face of the cube. The

Table 1 Parameters used in GA and sum of displacements (three-dimensional frame)

] ] feature length . . sum of
figure | load (x4) string value CIOSSOVET  f pring mutation 3-simplex displacements
Fig. 8 138.6 N 860 -2,-1,1,2 two-point 96 0.5 % 384 0.154 x10~T mm
Fig. 13| 1386 N 860 -1.1 two-point 96 0.5% 384 0.116 x10~2 mm
Fig. 14 | 169.7 N 280  -3.-2.-11,23  simple 24 1.0 % 48 0.334 x1072 mm

Fig. 4 Two dimensional frame obtained by constraint
method A

AN

/

Fig. 5 Two-dimensional frame obtained by constraint

method B(209)
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Fig. 6 Two-dimensional frame obtained by constraint
method B(409%)

N\

DI

Fig. 7 Two dimensional frame obtained by constraint

method B(60%)
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(unit: J/m?)

Fig. 9 Distribution of total strain energy density (first
generation)

(unit: J/m?)

Fig. 10 Distribution of total strain energy density (eighth
generation)

arrows in all figures in this section indicate load. The
members in the inner space of the cube are eliminated
from the ground structure, while some members
remain in the four vertical sides of the cube. Owing to
the symmetry of the cubic ground structure domain
and the loading, integer coefficients ¢* are allotted to
a quarter of the 3-simplexes. Figure 9 depicts the
elitist frame in the population of the first generation,
and the total strain energy density in each member is
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(unit: J/m3)

Fig. 11 Distribution of total strain energy density (151st

generation)

indicated by the degree of black shading. The diame-
ter of each member of the first generation is calcu-
lated as 10.5 mm. It is seen that the total strain energy
density in the side surface members of the cube is
much larger than that in the inner members. This
agrees well with the knowledge inferred from struc-
tural mechanics that the inner members do not con-
tribute to the torsional rigidity of the frame.

Figure 10 shows the elitist frame in the eighth
generation. The diameter of each member changes to
12.4 mm. The number of members left inside the cube
decreases with
difference between the maximum and minimum total
strain energy densities is smaller than that of the
generation shown in Fig. 9. Figure 11 shows the elitist
frame in the 151st generation, that is, the optimum
frame shown in Fig. 8. The diameter of each member
is 19.2 mm, nearly twice that of the members in Fig. 9.
[t is shown in Fig. 11 that the total strain energy
density is uniformly distributed over all members
except the four vertical members at the corner edges
of the cube.

Figure 12 shows how the fitness function F' (the
upper row), the total strain energy (the middle row)
and the ratio of the bending strain energy to the total
strain energy (the lower row) change as the number
of generations increases. The value of the fitness
function F increases with successive generations,
while the total strain energy decreases. The ratio of
the bending strain energy decreases to a small value.
It is concluded based on this figure that the optimum
frame subjected to torsion carries external load not by
bending action but by axial force transmission.

Figure 13 shows the optimum frame obtained
when four diagonal forces are applied horizontally so
as to enlarge the upper square of the cube. In this
case, all members except those on the cube edges are
allocated in the upper plane. Figure 14 shows the

successive generations, and the
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Fig. 12 Evolution of fitness function (top), total strain

energy (middle) and ratio of bending strain
energy to total strain energy (bottom)

Fig. 13 Frame subjected to diagonal forces on upper face
of cube

optimum frame for another loading case, in which
upward and downward components are added to the
load in Fig. 13. In this frame there are members in all
sides of the cube except for the base, since this frame
is subject to both diagonal loading in the upper plane
and vertical loading. It is necessary to allot integer
coefficients /' to half of the 3-simplexes because the
symmetry in this loading case differs from that in
Figs. 8 and 13. Consequently, the number of 3-sim-
plexes used is 48, which is fewer than the 384 used in
the cases shown in Figs. 8 and 13.

5. Conclusions

A method of topological optimization is proposed
on the basis of representing the topology of a frame
structure by a combination of integers coded by the
boundary cycle and locating the optimum string using
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Fig. 14 Frame subjected to upward and downward forces
on upper face of cube

a GA. The validity of this method is confirmed by
numerical examples concerning optimization of two-
dimensional and three-dimensional frames under vari-
ous loading conditions.

In the optimization process the 1-boundary cycle
satisfies the topological constraint that all strings in
the GA must represent a one-dimensional complex
without a tip. This prevents breeding of useless
members which do not contribute to force transmis-
sion but increase the frame weight without making
any mechanical contribution, and enables efficient
location of the hest string. In the case of two-dimen-
sional frames, it is found that in the optimum frame
there are few members in the central area near the
rigid wall and in the corner of the design domain near
the loading point, and that most of the members are
around the upper and lower sides of the design
domain. The optimum three-dimensional frame
carries the load not by bending of the members but by
axial force transmission.

The integer coefficients of the simplexes that
generate the l-boundary cycle include information
relating to both magnitude and orientation, although
only the magnitude information, nonzero or zero, is
used to determine the existence or nonexistence of the
member in this study. It will be possible to represent
not only the topology but also the geometry and size
by integer coefficients in future when a method of
including information such as internal force and
member cross section in the integer coefficients has
been developed.
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