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Multiobjective Shape Optimization of Linear
Elastic Structures Considering Multiple

Loading Conditions*

(Dealing with Mean Compliance Minimization
Problems)

Masatoshi SHIMODA**, Hideyuki AZEGAMI***
and Toshiaki SAKURAI**

We describe numerical analysis methods for multiobjective shape optimization of
linear elastic structures. As an example, we consider a multiloading mean compliance
minimization problem with a volume constraint. The methods presented here are
based on the traction method, in which the speed field representing the domain
variation is analyzed. A weighted /p norm method with four types of norm is
emploved to scalarize the multiobjective functionals. The shape gradient functions for
each scalarized objective functional are obtained using the Lagrange multiplier
method. A general-purpose finite element code is used to perform the numerical
analyses. Numerical analysis results for a multiply connected plate problem and a
solid structure problem under multiloading conditions are presented to demonstrate

the validity of the traction method in obtaining Pareto optimal solutions.
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1. Introduction

A key concern in structural design is the determi-
nation of the optimal shapes of multiobjective struc-
tures subject to multiloading conditions efficiently and
economically. The term multiloading here refers to a
number of loads that act independently on a multiob-
jective structure. This is a multiobjective optimiza-
tion involving the determination of Pareto optimal
solutions with respect to objective functionals which
generally requires trade-offs.

There is a considerable number of reports on
shape optimization problems involving a single load-

ing condition™®,  Studies on shape optimization
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problems involving multiloading conditions, which is
the situation that structural designers actually
encounter, are limited in number. Most of the struc-
tural optimization studies on multiloading conditions
have been limited to beam structures ; in other words,
they have dealt with size optimization problems® .
One of the few studies on multiobjective shape
optimization problems involving multiloading condi-
tions was reported by Tada et al’®. They scalarized
the objective functions by applying a weighting
method to minimize the potential energy of each load
and found Pareto solutions to a two-dimensional
shape optimization problem using the energy ratio
method. In a separate study, Kikuchi found Pareto
optimal solutions to a topology optimization problem
using an approximation of the min-max method™.
We, on the other hand, have focused on the trac-
tion method® for solving shape optimization prob-
lems. In previous work, a shape optimization system
has been developed which is applicable to problems
involving a single loading condition®. In the traction
method, the domain variation is analyzed numerically
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as the displacement field in a pseudoelastic problem
subjected to a pseudoforce which is in proportion to
the shape gradient function (i.e., the shape sensitiv-
ity). This method is practical because the finite
element and boundary element methods can be used in
performing the numerical analyses. It is also extreme-
ly easy to use when a mechanically simple functional
such as the mean compliance is selected as the objec-
tive functional. Additionally, because domain varia-
tion can be analyzed in terms of the variation of the
entire domain, the traction method has the advantage
that the mesh of internal nodes does not have to he
refined when the finite element method is used.

We apply the traction method to multiobjective
shape determination problems involving multiloading
conditions. The mean compliance of a linear elastic
continuum subject to multiloading conditions is
selected as the objective functional, which is scalar-
ized using four types of norm determined by the
weighted /» norm method. This functional expresses
the mean stiffness relative to the application of multi-
ple loads. Weighting makes it possible to vary the
extent to which each load is considered. Numerical
analysis results for multiply connected problems in
two and three dimensions are presented to demon-
strate the effectiveness and utility of the traction
method in solving multiobjective shape optimization
problems involving multiloading conditions.

2. Mean Compliance Minimization Problem
with Multiloading Conditions

As shown in Fig. 1, we assume that a linear elastic
continuum with an initial domain QCR" (#n=2,3)
and boundary I"'=0$2 undergoes a variation such that
its domain and boundary become £, and [s=0%;.
The subscript s indicates the history of domain varia-
tion. Body forces f" and surface forces P (m=1,
2, -+, N) are assumed to act on 2 and I, respectively.
It is assumed that N loads act on the domain indepen-
dently. The weighted /,-norm method is used to
scalarize the objective functional®®. Letting v'™ and
[(v")= [, denote the displacement and mean compli-
ance for the load m, the /,-norm of the mean compli-

pw

It

N

Fig. 1 Domain variation problem of elastic continuum
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ance |||y is expressed as
N Lp

ll={ 2 impr} 7 pelte], (1)
\\"herC Ct(('(l). (.(2)‘ el (.(NP)TEO 1'\ a
coefficient vector.

The speed method used to describe domain varia-
tion is explained elsewhere®™.

2.1 Weighting method (method 1)

Assuming that p=1 in Eq. (1), a mean compli-

ance minimization problem with multiloading condi-

weighting

tions can be formulated as shown below using the
weighting method. In this problem, the equations of
state and the volume are given as constraints.

Given 2, f" in 2, P on I, e in 2,

MER., cERY (2)
find Qs (3)
that minimize ||, (4)
subject to «(v'"™, w'™)=/(w'™) (5)

for all w< U, m=1, -+, N,
M- M,<0, (6)
here, the bilinear form «(v'™, w'™) which gives the
variational strain energy for the m th load, the linear

o)

form /(w'™) which gives the variational potential
energy or variational mean compliance due to the
applied external force and the volume M are defined

as

o™, w™)= [ coiullde, (7)
.

Hw™) = [ fmdma@ [ Pmemar, ()

M:A dr, (9)

where ¢y, w; and ¢y are displacement, variational
displacement and an elastic tensor, respectively. {7
denotes the space of kinematically admissible dis-
The notation R. denotes the set of
positive real numbers. Einstein’s summation conven-

placements.

tion is used in the tensor notation in this paper and a
partial differential notation (+),;=d(+)/dx: is used. The
Lagrangian functional for this problem is expressed
as

LR, v o™ w, - wt™, )
N N
— mzl{(.(m)/( v(m])} e z::]{/(wim))
—alv™, w'™)}+ A(M — M) (10)

The following assumptions are made for simplicity :
the boundary at which the surface forces act does not
vary in the normal direction (2,V:=0 on I1), the
material is homogeneous and unchanged (Chme= Cim=
0), and the body forces are constant within a domain
(f=0)"»_ Then, the derivative L of the domain
variation of the Lagrangian functional L can be ex-
pressed as shown below using the speed field V with
respect to the domain variation'.
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L: 21{(‘(M)/(U,‘m))7{1( U!(m!' w(m))}
+ (™)~ o™ w ™)+ (M M)

N
4 { 2((Jmlf,!y")l'}m)*j:m)l(':'m)
I's {m=1

= cout ) + A Vadr (1)

where (:)and ()" indicate a material derivative and a
shape derivative, respectively"".
When v is determined from the state equations,
alv'™, w'™)=1(w''™) for all w< U,
m=1, -, N. (12)
w from the adjoint equations,
atv"™, w'™)=c"(v''"™)
for all v U, m=1, -, N, (13)
and A is determined so as to satisfy the Kuhn-Tucker
conditions

A’l(A’W*AMU):O. (14)

M—M,<0, (15)
Eq. (11) becomes

L=1(V) (16)

V)= [ Gvar (17)

N
G= [ 2 ™A = ek 0l + /1}71
on I'\I (13)

using the relationship between ¢ and ' :

w'™=c"p'"™ ;=1 N. (19)

G represents the shape sensitivity and is called the
shape gradient function. If the shape gradient func-
tion is given, it is possible to use the traction method.
2.2 Weighted min-max method (method 2)
Assuming that p—<c in Eq. (1), the problem
can be formulated as a multiobjective optimization
problem using a weighted min-max method. In this
case, the problem is expressed by rewriting Eq. (1)
as
min}!rpize\] li|g:min}]r31ize ,,,Tl?ﬁ{('(m)[( v'"™)}
at each iteration. (20)
In this method, the problem becomes that of a single
load condition at each iteration in relation to the
maximum load m. Therefore, the shape gradient
function G is given by the following expression which
corresponds to Eq. (18) :
G={c"™Q2fM 0™ = ek o) + Aln
for max. load (m) on I'\I. 21
2.3 Normalized weighted min-max method
(method 3)
The objective functional is considered as a nor-
malized objective functional

- (0" = ln(0'™)
S ()Y — min} 22
[ (L ) /mz'< U(m)f /min( U(m)) ’ (._,_.)
where /. (v'™) is the mean compliance of the initial
shape for load m and /min(v"™) is the mean compliance
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of the optimum shape for a single load m. The
method based on Eq. (23) is referred to here as a
normalized weighted min-max method.

minimize li};:ming)mizc mmlax\‘{(“’” [ (v'"™))

at each iteration. (23)
The shape gradient function G for this problem is
given by Eq. (21), as for method 2. Although method
3 is a min-max method similar to method 2, it is
intended to take the mean compliance of each load as
close as possible to a complete optimal solution. As
such, it minimizes the mean compliance of the load at
the greatest distance from the complete optimal solu-
tion. The problem is thus formulated by a type of
compromise programming method. Method 2 pro-
vides an absolute evaluation of each objective func-
tional whereas method 3 provides a relative evalua-
tion.
2.4 Weighted minimum
method (method 4)
By modifying the weighted min-max method, the
following method of using G in accordance with the
concept of a localized maximum'™ is considered. In
this method, the shape gradient function of each load
is evaluated locally, and the maximum value obtained
is taken as the representative shape gradient function
for that part of the structure. Comparison with Eq.
(21) indicates that an inequality such as that in Eq.
(24) holds true.
G = max [{c™@AM 0" = cpri e+ Aln
(=" — et ol + Aln
for max. load (m)). (24)
This method is referred to as the weighted minimum
localized maximum method in this work.

localized maximum

3. Traction Method

The traction method has been proposed as a
procedure for obtaining the speed field V, based on
the governing equation :

alV, w)=—Il{w) for all wE co (25)
where c¢e denotes the space of kinematically admis-
sible speeds.

This equation indicates that the speed field V
corresponds to a displacement field when the negative
shape gradient function — G acts as an external force.
This means that Eq. (25) can be solved using a general
method for solving linear elastic problems. In this
work, the finite element method is used. The shape is
updated by multiplying the value of V' thus obtained
by a coefficient s that adjusts the amount of domain
variation per iteration. By repeating the stress analy-
sis which yields the shape gradient function, the speed
analysis which yields the speed field and the updating
of the shape, the objective functional is minimized,
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A schematic of the
traction method is shown in Fig. 2.

Equations (14) and (15) represent the Kuhn
Tucker conditions with respect to the volume con-
straint. The following concept of volume control is
used as a method of satisfying these conditions. The
Lagrangian multiplier /1, determined so as to satisfy
the volume constraint, can be regarded as a uniform

resulting in the optimal shape.

surface force in the external force — G. Therefore, by
controlling the magnitude of this uniform surface
force /1, it should be possible to satisfy the conditions
of Egs. (14) and (15). The method used here to
control /1 is based on the concept of the proportional
integral-derivative (PID) control. A detailed expla-
nation of the procedure is given elsewhere®.

In order to apply the traction method to shape
optimization problems in actual design work, we have
developed a shape optimization system based on a
general-purpose finite element code. Experimental
application of the system has confirmed its validity in
solving problems involving a single load condition®.
The results obtained in the present study have also
been incorporated into the system.

4. Numerical Results

The shape optimization system was applied to
multiply connected problems in two and three dimen-
sions to confirm the validity of the above methods,
based on the traction method, in solving multiob-
jective shape optimization problems. In addition, for
the two-dimensional problem, the Pareto optimal
shapes obtained when shape gradient functions defined
by methods 1 - 4 were used, were compared. The two
dimensional problem involved determining the opti-
mal shape of three holes in a plate. The three-dimen-
sional problem involved determining the optimal
thickness of a bracket with a semicircular hole. A
constant volume (area) was given as a constraint in
both problems.

4.1 Two-dimensional problem

The problem is illustrated in Fig. 3. In the stress
analysis, one end of the plate was fully restrained and
two different load distributions were applied to the
other end, as shown in Fig.3(a). A shear load P"
was applied in case 1 and a tensile load % was
applied in case 2. In the speed analysis, it was
assumed that the outer periphery of the plate was
subject to a constraint and did not vary, as shown in
Fig. 3(b). The design boundary was thus defined as
the circumference of the three holes. The weighting
coefficient ¢'" was varied over five stages from 0.2 to
0.8 and ¢® was defined as 1-—c¢'". A plane stress
condition was assumed, and a quadrilateral element
with four nodes was used in the numerical analysis.
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Fig. 3 Shape optimization problem for holes in plate
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Fig. 4 Initial shape and optimal shape under single

loading condition
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Fig. 5 Iteration histories for single loading condition

Figure 4 shows the initial shape and the optimal
shapes computed for the single loads P and P for
comparison with the Pareto optimal shapes. Iteration
histories of the optimization calculations are shown in
Fig. 5. In both cases 1 and 2, the area was controlled
so that it remained constant. Compared with the
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Fig. 6 Pareto optimal shapes under multiloading in two directions
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initial shape, the objective functional was reduced by
approximately 5Y% in case 1 and by approximately
279% in case 2.

Figure 6 shows the Pareto optimal shapes
obtained when the shape gradient functions defined by
methods 1-4 were used. With the exception of
method 2, these methods yielded shapes that are quite
similar overall, although some localized differences
are observed. When ¢'" was small, the shape was
strongly influenced by P®. As the value of the
weighting coefficient was increased, the shape gradu-
ally began to show the influence of P'". In contrast, it
became more difficult to obtain an intermediate shape
using method 2.

Figures 7-10 show iteration histories of the
optimization calculations performed using methods 1 -
4, respectively, for multiloading conditions when ¢'"
was set at 0.4. The results confirm that the area
constraint was satisfied with all four methods. The
mean compliance and the norm defined by each
method were minimized by the final iteration in all
four methods, although the intermediate processes
differed. As expected with the min-max theory, the
iteration histories for methods 2 and 3 in particular
show repetitive minimization of maxima.

Figure 11 shows a comparison of the mean com-
pliances obtained using the four methods for each
weighting coefficient value. The notations /i and /% in

—
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Fig. 12 Objective functional space
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the figure denote the mean compliances for cases 1
and 2, respectively. All of the mean compliances have
been normalized by the mean compliance of the initial
shape in case 1. Similar to the results shown in Fig. 6,
the mean compliances obtained with method 4 agree
well with the values obtained using the other methods
except for method 2. When ¢ was 0.4 or greater, the
mean compliances in both cases 1 and 2 were reduced
in comparison with the results for the initial shape.

In Fig. 12, the above results are plotted in an
objective functional space which has two objective
functionals as its coordinates. The results obtained
with the four methods fall almost entirely on the same
curve. Excluding method 2, it is clear that a complete
set of Pareto optimal shapes can be obtained by
varying the weighting coefficient. Obtaining a com-
plete set of the Pareto optimal shapes with method 2
would require finer adjustments of the weighting
coefficient (e.g., fine adjustments of ¢V=0.2-04 in
the problem considered here). For this reason,
method 2 is not considered to be practical.

These results confirm that all of the Pareto opti-
mal shapes for the two-dimensional problem consid-
ered here can be found using these methods except for
method 2. They also indicate that the mean compli-
ance in each case can be reduced depending on the
weighting coefficient used.

4.2 Three-dimensional problem

Figure 13 shows a solid bracket, as an example of
an application to a three dimensional problem. Simi-
lar to the stress analysis of the two-dimensional
problem, one end of the bracket was fully restrained
and two different load distributions, a shear load PV
and a tensile load P"®, were applied to the other end,
as shown in Fig.13(a). In the speed analysis, a
sliding restriction around the periphery of the bracket
was applied as a constraint, as indicated in Fig.
13(b).

along the thickness of the bracket.

This condition allowed domain variation
Method 1 was

Constraint
_—Restraint

'l Loaded
' Part

bl

e p?
8
i pm

Design
Boundary

L
.

(a) Stress analysis (bh)
Fig. 13

Speed analysis

Problem definition for solid bracket subject to
multiloading in two directions
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used and the weighting coefficient ¢''’ was set at (.5.

The numerical analysis was conducted using a sym-

F metrical half model and a solid element with eight
nodes.

Figure 14 shows the initial shape, the optimal

shape obtained for each single load and the Pareto

41
(a) (b) (c) (d)

Fig. 14 Calculated results for solid bracket

(a) Initial shape . . . ..

(b) Optimal shape for " optimal shape. The Pareto optimal shape is interme-
(¢) Optimal shape for P? diate between those for cases 1 and 2.

(d) Pareto optimal shape (¢V'=10.5) Optimization iteration histories for a single load-

ing condition are shown in Fig. 15 and those for a
multiple loading condition are shown in Fig. 16.
A comparison of the mean compliances obtained

1O} with the four methods is given in Fig. 17. All values
O : I M Yo S . . e
¢ \,Ulume m ‘,‘“e ! were normalized to the mean compliance of the initial
0.9 A : Volume in Case 2 ) L . A .
O : Compliance in Case 1 shape in case 2. The mean compliances obtained with
gV the four methods show good agreement.
S 0.7 The results confirm that these techniques based
on the traction method can also be used
0.6 to find Pareto optimal shapes in three-dimensional
0.5 problems.
P A I NS S S 5. Conclusions
0 10 20 30 40 50
Iteration Number We have described ways of applying the traction
Fig. 15 Iteration histories for single loading condition method to the mean compliance minimization of lin-
ear elastic continua subject to multiloading condi-
. tions, as are example of a multiobjective shape optim-
’ ization problem. The objective functionals considered
1.0 were scalarized using four representative norms. The
: Volume effectiveness and practical utility of the proposed
0.9 © : Compliance in Case 1 s hod were de t di . le appli
: A : Compliance in Case 2 trd%tlon method were cm().ns rated in example appli-
o 08 [ : Norm in Method 1 cations to fundamental design problems.
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