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Optimization of Truss Topology Using
Boundary Cycle*

(Derivation of Design Variables to Avoid
Inexpedient Structure)

Y asuhiko NAKANISHI** and Shigeru NAKAGIR[***

This paper deals with optimization of truss topology using boundary cycle in
algebraic topology. Elimination of unnecessary members from the ground structure,
one of the popular means to optimize truss topology, is employed. The elimination has
a disadvantage that unstable structures possibly appear in the process of the optimiza-
tion. Boundary operator, which has the ability to represent equilibrium of internal
force in members, is used to generate the boundary cycle from chain. Design variables
derived by the boundary cycle can always satisfy this equilibrium and avoid a category
of unstable structures without imposing any constraint. An attempt is made through
numerical examples to minimize the total weight of a plane truss, which is fixed to a
rigid wall and supports a vertical load acting at a point distant from the wall, under
the condition that the distribution of strain energy density is uniform and equal to a
certain value. The validity of this formulation is verified by the numerical examples
concerned with the weight minimization of the truss.
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means of eliminating unnecessary members from a

1. Introduction by .
ground structure”’. The necessary condition for an

Topological condition of the optimum structure is
evident in some structural optimization problems on
the basis of engineering judgment. For example,
members of a frame with a tip disconnected from
other members are useless, because the members do
not carry any load and their weight is nothing but
burden to the frame. Topology of the optimum struc-
ture should be represented as a set of loops, when such
useless members have to be avoided. The purpose of
this paper is to derive design variables that satisfy
such the topological condition. Some numerical
examples have revealed that mass of the planar trus-
ses fixed on a rigid wall and loaded vertically on a
point distant from the wall can be minimized by
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optimum truss includes those for an optimum frame
and the satisfaction of equilibrium of internal forces,
concentrated loads and reaction forces at the support.
The equilibrium condition makes optimization of trus-
ses more difficult than that of frames. In this paper,
structure of a truss is represented as a set of loops,
and design variables to avoid such structures that
cannot satisfy the equilibrium of force are derived on
the basis of the boundary cycle®® used in algebraic
topology. The cross section of the truss members is
supposed to be circular, and the design variables are
assigned to the diameter of the cross section, because
the mutual relationship between the cross sections can
be controlled so that the force equilibrium is satisfied
during the optimization.

2. Statement of Problem

Figure 1 shows ground structures (a)~(e) used
in optimization of a planar truss. The left side of each
ground structure is fixed to a rigid wall, and a point A
on the right side sustains a concentrated vertical load
of 9.8 kN. All the members are assumed to be made
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rigid wall

(c) (d)

Fig. 1  Ground structures

of steel and have circular cross section. The design
domain is set as an inner space of a square of 1 m in
span. Such a constraint condition is employed that the
strain energy density in the truss is distributed uni-
formly equal to a prescribed value in all the members.
In other words, the axial stress in each member is set
equal to a certain constant. Then the design under
this condition is a kind of fully stressed design. The
strain energy density is calculated due to infinitesimal
displacement theory in elastic problems. Design vari-
ables are chosen so as to avoid only structures which
cannot satisfy the force equilibrium. Consequently, a
structure is considered candidate for the optimization,
even when it is statically indeterminate or unstable in
case if it satisfies the force equilibrium.

3. Definition of Boundary Cycle

Boundary cycle can be utilized to derive parame-
ters which always satisfy the force equilibrium, and
those parameters are called design parameters in this
study. The definition of boundary cycle is summarized
as follows, while the detail is seen in the Ref. (4).

r-simplex & is written as («, @\, **-, ar) where
each «.(i=1, -+, r) is an independent vertex. A set of
simplexes is called simplicial complex. » chain ¢’ is
defined as sum of /'x/(7 =1, m),

=l i+ e, (1)
where m is the number of » simplexes belonging to
the simplicial complex. Each coefficient t'(i=1, -,
) must be an element of the Abelian group® to
define the boundary cycle. Though /7 is, in general,
treated as an integer coefficient, /' in this paper is used
as a real number to represent a dimension of cross
section of each member. The boundary (» —1) cycle
or" is generated by operating - on » chain ¢”. 0ris
called boundary operator and defined as
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where @ expresses lack of a vertex «.. The boundary
operator dr has an important feature that

Or 1{0rr”)=0 (¢
for any x’.

(o)
~—

4. Optimization of Topology and Shape by
Boundary Cycle

4.1 Derivation of design parameters

Two simplicial complexes related to a ground
structure are chosen for representation of the force
equilibrium. These two simplicial complexes express
the r-direction and y-direction components of forces
in a truss, respectively. A simplicial complex related
to a certain ground structure is not unique. Figure 2
shows an example of a simplicial complex related to
the ground structure (@) shown in Fig. 1. This sim-
plicial complex consists of 2-simplexes (triangles),
1 simplexes segments) and
(points). Coeflicients of these simplexes express the

(line () simplexes
equilibrium of the .r-direction components of the
forces. This simplicial complex is explained in the
following by use of the numbers given in Fig. 2.

Coefficients of 1 simplexes /(/=1, -+, 12) depend
on those of 2 simplexes t'(/=1, -+, 7). For example, a
coefhicient of 1 simplex 2 is decided by coefficients of
2 simplexes D and @. 2 simplexes &, ® and @ are
virtual 2 simplexes placed to represent the . direc-
tion components of the reaction force in the rigid wall
and the vertical load on the point A. Coefhicients of
1 simplexes 1~7, 9~10 and 12 correspond to the
£ direction components of the internal force in the
members, the reaction force and the external load,
respectively. 1 simplexes 8 and 11 are set to make
virtual 2 simplexes for the sake of convenience.
Equation (3) guarantees that all the coefficients of
0 simplexes are equal to zero. A coefficient of
simplex is sum of the coeflicients of 1 simplexes
(internal force in the members) connected to the 0
simplex.  As the result, the force equilibrium is
satisfied by means of making the coefficients of 0
simplexes equal to zero. The reaction force and the
load are balanced at point B. Another simplicial
complex to represent the y -direction components of
the forces can be formulated in the same way.

As for the simplicial complex of the .r direction
components of the forces, let {/} and {¢} be the vector
whose elements are coefficients of 1 simplexes and 2
simplexes, respectively, and let [A] be a matrix deter-
mined by the boundary operator ¢ and the ground
structure. {/} is related to {¢} linearly through [A] as
follows.

{ri=(All4) (4)
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reaction
in wall

Fig. 2 Example of simplicial complex related to ground

structure (a)

The ingredients of [A] take one of —1, 0 or 1. A
similar equation to Eq. (4) holds for the simplicial
complex of the y direction components of the forces,
that is. Eq. (5), where let {g} and {«} denote the
vector equivalent to {f} and {{}, respectively.

{gt=[ANu} (5)
{/} and {g} are not arbitrary vector, and there is a
relationship between them governed by the direction
of the member axes, because the orientation of an
internal force in a member must be identical to the
member axis. The orientation of the reaction force in
the wall is not restricted, so that Eqgs. (6) and (7)
are significant which are constituted by extracting
only the rows concerning with the internal forces and
vertical load from Egs. (4) and (5) and indicated by
suffix .

{le} = [Ad]{ f} (6)

{K/d}:[Ad]{U} (7)
The relationship between {/} and {¢.} is described by
a diagonal matrix [ 7], whose ingredients are tangent
of the member axes.

lgat =1 T S} (8)
The axes of coordinate should be properly rotated in
order to prevent the ingredients of [T] from being
infinite. Equation (9) is obtained by substituting Eqs.
(6) and (7) into the vectors in Eq. (8).

(A} =[TI[ At} (9)
The existence condition of solutions of {u«} is
(1-[AJ A TN Al =10} (10)

17 is the Moor
Equation (10)

where [/] is an identity matrix, and (4
Penrose generalized inverse® of [A].
being rewritten as

[ Bt =10}, (1D
the general solution of {{} is given by the complemen-
tary solution as Eq. (12) because the particular solu-
tion of Eq. (11) is {0},

{th=U]=[B][BDin (12)

where {#1} is an arbitrary vector. The vector {/} in Eq.
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(12) always satisfys the force equilibrium. When {/}
is determined by Eqgs. (4) and (12), and f'=0 means
the elimination of the /-th member corresponding to
/%, topology of a truss except members with a loading
or supporting point is always expressed as a set of
loops.

Since magnitude of the load is not included in Eq.
(12), {h} should be constrainted so that the orienta-
tions of 2-simplexes ® and @ are the same, and that
their coefhicients are equal to the magnitude of the xr
direction component of the load. The orientations of
these 2 -simplexes depend upon the load direction,
because combination of the orientation of 1-simplexes
No. 12 and these 2-simplexes decides sign of the .r-
direction component of the load. Let {/.} be a vector
consisting of the coefficients of 2-simplexes ® and @,
and [C] be a matrix made of rows related with {/}
extracted from [/]—[B][B] in Eq. (12). Then, the
following equation must hold between {t} and {/}.

{ty=1CIn} (13)
When {/-}=P:{1}, the general solution of {1} becomes
thy=rlCr )+ {]-[CICHip (14)

where P. means the magnitude of the x-direction
component of the load, {1} is a vector whose ingredi-
ents are 1, and {p} is an arbitrary vector. The con-
straint on {4} guarantees that more than one loop
surrounding 2-simplexes ® and @ exist. Consequent-
ly, all trusses thus generated by the above formulation
always connect the loading point A with the rigid
wall.

Finally, the vector of the coefficients of 1-sim-
plexes {/} is written as follows using Eqgs. (4), (12)
and (14).

1=/ +[Fel{p} (15)
where

{fd=PJLAN[1]=[BI[BDIC] {1},

[Fo]=[AN[7]1=[B][BD(I]-[C][CD.

When the ingredients of {p} are treated as design
parameter, {/} due to Eq. (15) can always satisfy the
force equilibrium without imposing any constraint on
{p}. However, this expression does not mean the
uniqueness of displacements in trusses.

The formulation described in this section is sum-
marized as given below. A coefficient of a certain 0-
simplex is the sum of the coefficients of 1-simplexes
connected with the 0-simplex and corresponds to the
resultant internal force at the node (0-simplex).
Moreover, Eq. ( 3) guarantees that the coefficients of
all 0-simplexes are zero. The resultant internal force
represented by {/} and {¢} is always held equal to zero
at each node, ie. the force equilibrium is always
satisfied. As the result, Eq. ( 3) guarantees that {/} in
Eq. (15) satisfies the force equilibrium.
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4.2 Objective function
An objective function F' dealt with herein is mass
of a truss. F is written as a function of the number of
truss members # and diameter of cross section of the
/-th member d; as given below.

F:i)l :Zp/,v(lf (16)

where /; is length of the /-th member, and p is mass
density of the material, both of them being taken
constant. The diameter of cross section d; is for-
mulated as Eq. (17) by the constraint condition that
strain energy density must be uniform and equal to
prescribed value U/,

d{ — \4’““’ 8{_(_/,;}2%((_79_22_} (17)
where wZ/’)“’-‘r@’)z is the internal force in the /-th
member and £ is the Young’s modulus. This objective
function is also a function of the design parameters {p}
in Eq. (15). Substitution of Eq. (17) into ¢; in Eq. (16)
generates the following result.

n e

=3 (7 () (18)

In this formula, the internal force indirectly plays
a role of design variables. In general, the internal
force in the optimization has different value from
In other

actual truss except the optimum truss.
words, since the constraint condition concerning with
strain energy density is satisfied for only the internal
force supposed in the optimization, the strain energy
density in a truss obtained by analysis will be incon-
sistent with the prescribed value {7 at a stage of the
optimization process. Mass of a truss is closely
related with total strain energy, and then the mini-
mization of mass is essential for identification of the
strain energy density obtained by the analysis with U,
4.3 Method to minimize mass

The objective function F in Eq. (18) forms a
convexity consisting of hyperplanes in the space of
design parameters and /. Minimization of the func-
tion F can be recognized as a linear programming
problem. The number of hyperplanes in the convexity
is equivalent to the number of combinations of plus
and minus signs of the & direction components of the
For example, the number of hyper-
planes of the ground structure (€) which has 100
members, i.e. the largest number among (a)~(e ), is
estimated as enormous number of 2'®=1.26x10%

internal force.

Though actual number dealt with in the optimization
2! the number of hyperplanes is
still too large to employ the simplex method. There-
fore, the Newton- Raphson's method is utilized to
search the minimum of F. The following method is
utilized, since the objective function F is linear to the
design parameters, those methods that use only sensi-

will be smaller than
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tivity are not proper to be applied in the search. First,
a target value of mass slightly smaller than the cur-
rent value is set. Secondly, the design parameters to
realize the target value of mass are determined by the
Newton-Raphson's method. Thirdly, the target value
of smaller mass is renewed. The second and third
steps mentioned above are repeated successively, and
eventually the minimum mass will be found. This
method is hardly affected by the number of hyper-
planes.

5. Numerical Examples

The mass of truss is minimized based on the
ground structures (a)~(e). The prescribed value
of strain energy density U/, Young's modulus £ and
mass density p are taken equal to 5.95>x10* J/m?®, 202
GPa and 7.83 x10° kg/m® respectively. These values
are equivalent to set the absolute values of stress in all
the members equal to 49.0 MPa.

Figure 3 shows the relation between a design
parameter p (the abscissa) and mass of a structure
(the ordinate) obtained from the ground structure
(a). In this chapter the number of design parameters
is reduced to make the aforementioned steps efficient
by means of eigenvalue decomposition of a matrix
[F,] in Eq. (15). In the case of (@), the number of
design parameters is decreased to one. The numbers
written beside the right side of Fig. 3 correspond to
the number of the members shown by the upper side of
the same figure. The solid line which is obtained by
the sum of two broken lines representing mass of each
member is the trace of the objective function F.
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Fig. 3 Relation between design parameter and mass of

structure
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Three members 1, 3 and 5, whose mass can be expres-
sed by the same function (one of the broken lines), are
eliminated or left at the same time in the optimiza-
tion. On the other hand, four members 2, 4, 6 and 7
correspond to another broken line. It should be noted
that the members belonging to different broken lines
cannot be eliminated from (&) at once. As for the
members 1 and 2, at least one of them always remains.
A point a in Fig. 3 denotes the optimum structure
shown in Fig. 4. This structure obtained by elimina-
tion of the members 2, 4, 6 and 7 from (@) has two
diagonal members. Displacement at a point that
connects these members cannot be determined unicue-
lv owing to the assumption that the deformation is
infinitesimally small. It is desirable in design of actual
truss to merge these members in one piece.

The eigenvalue decomposition of the matrix [Fs]
for the ground structure (b) reduces the number of
design parameters to two. The abscissa and the
ordinate in Fig.5 are design parameters p and pe,

respectively. Numbers on the right hand of Fig. 5
AN
Fig. 4 Optimum structure obtained from ground
structure (a)
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Fig. 3 Relation between design parameters pi and p:
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indicate the number of the members shown by the
upper side. When combination of p1 and p. satisfies
relation represented by a solid line, mass of members
concerning the solid line is zero. The members shown
by parallel solid lines, such as members 1 and 4,
cannot vanish at the same time. Figure 6 shows the
optimum structure corresponding to the point a in
Fig. 5. Though the ground structure {b) has a larger
number of members than the ground structure (a), it
gives rise to a heavier truss than (a). It is shown that
a ground structure which has a larger number of
members does not always generate a better structure.
Figure 7 shows the optimum structure obtained
from the ground structure (C). This truss has two
pairs of diagonal member inclined approximately
63.4° to the wall, and this is the lightest one among the
optimum trusses found in this paper (see Table 1).
Figure 8 depicts the optimum structure based on

Table 1 Mass of optimum structures

figure ground structure mass of structure (kg)
Fig. 4 (a) 4.70
Fig. 6 (b) 5.48
Fig. 7 (¢) 3.92
Fig. 8,9 (d) 4.70
Fig. 10 (d) 6.27
Fig. 11, 12 (e) 470

Fig. 6 Optimum structure obtained from ground
structure (b)

Fig. 7 Optimum structure obtained from ground
structure (¢)
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Fig. 8 Optimum structure obtained from ground

structure (d) (1)

Fig. 9 Optimum structure obtained from ground
structure (d) (1I)

Fig. 10 Optimum structure obtained from ground

structure (d) (1D

the ground structure (d). The feature of this truss
quite different from the ones shown in Figs. 4, 6 and 7
is the existence of lightly matted members which can
be eliminated. The optimum structure generated
from (d) is not unique. Other optimum structure of
First, the sum of
squared values of mass of each member in Fig. 8 is

(d) can be obtained as follows.
minimized to find a symmetric structure. Secondly,
members are removed in the order from the thinnest
to the thickest member as many as possible. The
structure found by this method is shown in Fig. 9. It
is confirmed that the structure in Fig. 9 has as much

Series A, Vol 39, No. 3. 1996

Fig. 11 Optimum structure obtained from ground
structure (€) (1)
Fig. 12 Optimum structure obtained from ground

structure (e) (II)

mass as that in Fig. 8 and satisfies the constraint that
the strain energy density is uniform and equal to the
prescribed value U. It is anticipated that the contour
of the optimum structure based on (d) is decided
uniquely, while its inside arrangement of the members
is not unique.

Figure 10 shows also the optimum structure of
(d). This truss carries two loads as indicated in the
small figure, top right of Fig. 10 shows. This figure is
evidence that the proposed formula is valid also in the
case of more than one load. This truss does not have
as many lightly matted members as the structure in
Fig. 8 and is heavier than that in Fig. 8.

The optimum structure based on the ground struc-
ture (€) shown in Fig. 11 also has removable lightly
matted members. A structure shown in Fig. 12 is
obtained by elimination of lightly matted members
from the structure in Fig. 11 in the same way to obtain
the structure in Fig. 9. These figures imply that the
optimum structure of (€) is not unique except its
contour like that of (d).

The finite element analysis carried out for the
structures reveals that the difference between U and
the strain energy density in all the optimum structures
found in this paper is held less than 4/10°
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6. Conclusion

Design parameters to minimize mass of trusses by
use of boundary cycle was formulated. The advan-
tages of the proposed formulation are summarized as
follows.

1. Useless members which carry no internal force
are never generated, because topology of a structure
except members with a loading or supporting point is
represented as a set of loops.

2. The proposed design parameters can always
satisfy the force equilibrium.

3. The connection between a loading point and
supporting points is assured.

4. Owing to relationship of mass of each member
with its internal force, a constraint condition of uni-
form distribution of strain energy density and equality
to a prescribed value can be easily formulated.

The numerical examples dealt with the minimiza-
tion of the mass of trusses sustaining a load distant
from a rigid wall to examine the validity of the
proposed formula. The followings were found.

1. Ground structures with a larger number of
members are not always more effective than those
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with fewer members for the optimization of trusses.

2. In some cases, the optimum structure cannot be
determined uniquely by a constraint condition con-
cerning only strain energy density.
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