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Thermal Stress and Deformation
in Functionally Graded Material Shells of
Revolution under Thermal Loading
due to Fluid*

Shigeo TAKEZONO**, Katsumi TAO**
Eijiroh INAMURA** and Masahiro INOUE***

This paper is concerned with an analytical formulation and a numerical solution
of the thermal stress and deformation for axisymmetrical shells of functionally graded
material (FGM) subjected to thermal loading due to fluid. The temperature distribu-
tion through the thickness is assumed to be a curve of high order, and the temperature
field in the shell is determined using the equations of heat conduction and heat transfer.
The equations of equilibrium and the relationships between the strains and displace-
ments are derived from the Sanders elastic shell theory. The fundamental equations
derived are numerically solved using the finite difference method. As numerical
examples, functionally graded cylindrical shells composed of SUS 304 and ZrO: sub-
jected to thermal loads due to fluid are analyzed. Numerical computations are carried
out for various compositional distribution profiles in FGM. The results show that the
present method gives correct temperature distributions and that the temperature
distributions, stress distributions and deformations vary significantly depending on
these compositional distribution profiles.
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In this paper the authors develop an analytical

1. Introduction method for thermal deformation of FGM shells of

In recent years a functionally graded material
(FGM) has been developed due to its excellent
mechanical and thermal properties. For thermal
stress relaxation analysis of structural components
and/or mechanical components of FGM, many investi-
gations have been carried out. These investigations,
however, are almost limited to the simple geometries
such as plates, hollow cylinders and hollow
spheresV=®. Moreover they are almost all treated as
multilayered composite models in spite of continuity
of FGM and each is considered to be

homogeneous'® %,

layer
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revolution under thermal loading due to fluid. Mate-
rial parameters are given by functions of the shell
thickness direction, and each coefficient of basic equa-
tions related to material properties is determined
from numerical integration through shell thickness.
In order to improve the accuracy of the solutions for
initial thermal loading stage, the temperature distribu-
tion through the thickness is supposed to be a curve of
high order, and is determined using the equations of
heat conduction and heat transfer. Suitable degree of
temperature distribution polynomial is determined
from evaluation of convergency of the solutions
according to variation of the degree. Then using the
obtained temperature distribution, the stresses and
deformations are derived from the thermal stress
equations. The equations of equilibrium and the
strain displacement relations are derived from the
Sanders thin shell theory®?. The fundamental equa-
tions derived are numerically solved by the finite
difference method in both space and time, and the
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solutions are obtained by integration of the in-
cremental values.

As numerical examples, functionally graded cylin-
drical shells composed of SUS 304 and ZrO: subjected
to thermal loads due to fluid, which are expressed by
step function in regard of time, are analyzed. First we
analyze the heat conduction problem of the long shell
under axisymmetric thermal loading. The obtained
temperature distributions are compared with ones
obtained by other methods®, and the accuracy of the
solutions is evaluated. Secondly we analyze the sim-
ply supported cylindrical shells subjected to locally
distributed axisymmetric thermal loading, and com-
pare the solutions for various compositional distribu-
tion profiles in FGM.

2. Fundamental Equations

If the middle surface of axisymmetrical shells is
given by R=R(s), where R is the distance from the
axis and s is the meridional distance measured from a
boundary along the middle surface, the relations
among the nondimensional curvatures w. (=a/Rs), we
(=a/Rs) and the nondimensional radius » (= R/a)
become

We= —(7”+ 7%) [we, we=v'1 ‘(7")2 /7‘,

wWo= 7’((05_600) 1’”/7’: — WeWs, (1)

y=vr'lr,é=sla,( Y=d( )/d¢
where a is the reference length. An arbitrary point in
the shell can be expressed in the orthogonal coordi-
nate system (&, 6, £) as shown in Fig. 1.

2.1 Heat conduction equations

The equation of heat conduction at a point in the
shell body, whose material parameters vary only
along the shell thickness direction, is given in the
orthogonal coordinates (&, 4, &) as

oT x(1 o/( oT 1 &#T

ot 02{ y a?(’ a¢>+7 aez}

_ 1 a(.0T\ »n _
cp 8§(A8§) cp—o (2)

Fig. 1

Coordinates and notations
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where T is the temperature at (£, 8, ¢, t), x (=24/(co))
is the thermal diffusivity, c is the specific heat, ¢ is the
mass density, 4 is the coefficient of thermal conductiv-
ity, 7 is the heat generation per unit volume and per
unit time, and ¢ is time.

The boundary conditions of the temperature on
the inner and outer surfaces ({=7F//2) of the shell
are

[%]::—h/zzkln( Tin— 6n), o
oT _ ~
[ ac Lh,z kout{ Tout— Gout)

where Ain=Kin/(A)in, kour=Kou/(Aow and K is the heat
transfer coefficient. Tin and 7ouw are the temperatures
on the inner and outer surfaces of the shell, & and
Bout are ambient fluid temperatures of the shell, and #
is the thickness of the shell.

The authors have analyzed the thermal conduc-
tion problems and thermal stress ones of homogene-
ous shells “"™? and multi-layered ones’®. In these
studies the temperature distributions through the
thickness have been assumed to be linear or a curve of
the second order, and the temperature field in the shell
has been determined (Only in the case of multi-layered
thin shells, linear temperature distribution is adopted
in each layer"'®). For the shells of functionally graded
material, however, the temperature distribution in the
initial response can not be estimated with enough
accuracy by a curve of the low order, because the heat-
resisting material component has the relatively small
coefficient of thermal conductivity. In the present
paper, to improve the accuracy of the solutions, the
temperature distribution through the thickness is
assumed to be a curve of p-th degree by using
coefficients 7 (;=0,1, 2, ---, p) as follows

(66,8 =T 6,08 (4)

After substituting Eq.(4) into Eq.(2), integrat-
ing Eq.(2) multiplied by ¢*(/=0,1,2, -, p) through
the thickness, we obtain the following (p+1) equa-
tions.

a k12 i 2 sJ

RS ZE)TJ-E d¢

V(1 0(. 3 (", & .,
el s [ ne)
vk f [ ea g Trd) (5)

—h'2

Lo sl B e

With consideration of the surface boundary conditions

(Eqs.(3)), Egs.(5) become as follows :
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L 8T ﬂ(w)/ aY‘J 8273 L 627‘,
J_g[a/(zﬂ 8t (l \[ 85 + 862 )’2 802 )
_(7(1'.j)+3(z‘.j)+E(f.j)T] (Z)out( ) kout Oour
(X)1n< > kinOn— Q=0 (ZZO, 1,2, -, p)

(6)

where

- 1+(_1)i-j<£)i+j+l N —-/‘h/Z e
A= i+ +1 9 , Bun= _mxé’ d§

Tan= T (X)out<’éi)i+jkout_ (X)In( -ﬁ‘)iﬁkm

o2 56 )(3) (P52
-K%p%é‘).n( ) -(EH.N-2)

7t
cwn= [\ T a e
(1)

Q= [ Ly (8)

For (p+1) independent variables 7;(j=0,1, 2,
-, p), Egs.(6) are given, and by solving these equa-
tions, the temperature field in the shell can be deter-
mined.
2.2 Thermal deformation equations
Eliminating the transverse shear forces Q¢ and s
in the equilibrium equations in the Sanders theory“®,
and expressing in the differential form with time or
load, the following equations are obtained.

(7Ne) g(ﬁea)‘ "’No]

[35
+ o LM+ (H )~ r M
+%’(0)5_ (U&)a_%‘(ﬁse)+ 7’(12[)5:0
a[’é%(xva) +Taé( 7'ﬁ50) + 7"1\_}55]
+ wa[Tag(Ma) +”3%‘(Vﬁee)+ 7’ﬁea]
1 d
+?7 35 [(wa

ol o . 0 55
o0& [TE<7M€)+W(MEG)_7 Mo}

- ws)ﬁeg] + mzf’o=0

+% —a%[a—%(nf'lo)+79%(rzl7le,)+ ;—'Meo}
- ra(wEN'e+ CUsNa)+ 7‘a2P;=0
where N and M: are the modified stress resultant
and modified stress couple, respectively, and are ex-
pressed as follows"?:
Neaz(NsanNoe)/z
H[(1/Re) — (/RN Meo— Mae) /4 (10)
MEB:(M50+MOE)/2
The other notations are shown in Fig. 1.
The strain rates of the middle surface are given
by :
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%‘—[a ]5)+a)5W]
%[i 5 {(Us) + yUs+ wo W ] (an
E eom= 1[‘;@((&) 55( Js) — YUH]

where é:m is half the usual engineering shear strain
rate. The bending distortion rates xe, xs and xe are
as fo]low%

xe= ”l aé(@e) xo= 1{7 a‘g(@o)+7’d)e}
7250 1 [7/ a€(¢é)+ 5(@9) 7@9

(12)
where rotation rates @ and &, are:
@;=%[—i( W)‘*'wsUe]
o (13)
“"’:Z['? ae(W)+“"’U"]

Under the Kirchhoff-Love hypothesis and the
neglect of quantities {/Rs and {/Rs which are small in
comparison with unity, the strain rates at the distance
¢ from the middle surface are

{e}={en+&{x} (14)
where

{5'}:{55, s, éss}T, {ém}:

{k}:{ks, xe, )&ee}r
and { }7 represents the transposed matrix.

Using Egs.(14), the stress rates in the plane stress
state are written as

{6}=[DI({ émnt+E{x))—
where

{5}:{5e, G, 550}7

[6)={6", 6,0} = IO‘AEV{T;, 0. 0)7

1v 0
v1 0 1
001-v
E, v and a are Young’s modulus, Poisson’s ratio, and
thermal expansion coefficient, and 7. is the tempera-
ture rise from the original temperature 7o to the
present temperature T, namely,
T, 0,8, )=T(&, 0, cyf)—To (18)
The membrane forces {N} and the resultant
moments {M} per unit length are obtained from Eqgs.
(16) :

{Z }:{Ne, Noy Neo, Me, Mo, 20}

{éem, éom, ééﬂm} } (15)

{6} (16)

[D]:T_E;z

et

)* denotes the internal forces due to
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temperature rise 7. and are given by

(NG =8, N, 07 = [ (6t

. . . hi2Z (20)
(=, a1, 0 = [ {6V e
and A~C are as follows:
A= ["(Dlae, B= [ [D)eat
—h/2 —h/2 (21)

hi2
C= [, Jotsds
A complete set of field equations for the 23 in-
dependent variables {N},{M}, U, Us, W, {&n}, {5},
Oc, Do, {6}, {6}, N} and {M*} is now given by the 23
equations (9), (11)~(13), (16), (17), (19) and (20).

3. Nondimensional Equations

In order to analyze the problem of shells under
arbitrary unsymmetrical loads, the distributed loads,
the ambient fluid temperature, the heat generation and
the (p+24) independent variables mentioned in section

2 are expanded into the Fourier series as follows.
{Y‘J'; @In, @Ouly Qx}

—_ 0o g ll (n)}
Eatl’ongo{ we O cos nf

(7,7=0,1,2, -, p)
{Ne, No, N, Me, Mo, M)
~o‘oh2{n‘g’”, Ry, nttm,
h (n) h
a

p ] “"’}cos né

(N e, 11750}=60h§{n‘£’ %m‘;’é’}sin né
{Uey W Eem, Eom, K&, Ko, (De} Eo

o ké") k‘én; o
X E{aué’” aw'™, é&R, eé%’,";“,T, @ }
=

X cos né
{Uﬂy éEOm, kéo‘ ¢0}

0 & k) -
= E{azt&"). € om, P (0(0")}511‘1 né
n

. . h
&M, § ™, b"') ,/)Y” cos nf

) —a‘b%’“}sm né

(22)
where 6o, Eo and a are a reference stress, a reference
Young’s modulus and a reference thermal expansion
coefficient, respectively. And xo is a reference thermal
diffusivity (=4e/(copo), 40 : a coefficient of reference
thermal conductivity, ¢o: a reference specific heat, oo :
a reference mass density).

It should be noted that the Fourier expansions,
Eqs.(22), are not the most general that could exist.
For full generality, these expansions should be aug-
mented by the sine-additional series for the cosine
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series and by the cosine-additional series for the sine
series.

Substituting these into the above fundamental
equations, the equations among the Fourier
coefficients relating to the variables are obtained.
From the heat conduction equations, the simultaneous
differential equations for the coefficients £ (;=0, 1,

-, b) can be obtained as

AY'+ A Y + A Y =A+ As(dY/or) (23)
where Y ={", 7, 5™ - 5"} and t=pxt/d®. A
~A;s are (p+1) X (p+1) matrices determined from A,
ko and the shell form. A4 is a (p+1) X1 matrix
determined from @in, Gout, kin, ko and 7. Asisa (p+1)
X (p+1) constant matrix.

Similarly eliminating the variables from the ther-
mal deformation equations, the simultaneous

differential equations for the displacement rates #{",

(n) (n) )

us”, w and the bending moment rate #2¢" can be
denved as

B]Z"+BzZ’+ BSZ:BA (24)
where Z={u{", u{®, '™, m{})T. Bi~Bs are 4X4

matrices determmed from the shell form and v. Biis
a 4X1 matrix determined from the distributed loads
and the temperature rise in addition to the shell
geometries.

The integrations are carried out numerically
using Simpson’s 1/3 rule.

4. Numerical Method

A finite difference method is employed for the
solutions of the two second order simultaneous
differential equations (23) and (24). The usual cen-
tral difference formulas are used for every mesh point
except the discontinuity points and the boundary
points of the shell. For the discontinuity points and
the boundary points, forward and backward difference
equations are employed. The derivatives with respect
to time in Eq.(23) are treated by the Crank-Nicolson
method. The solutions at any time are obtained by a
summation of the incremental values due to the time
increment.

5. Numerical Example

As numerical examples, functionally graded cylin-
drical shells composed of SUS 304 and ZrO: subjected
to thermal loads due to fluid, which are expressed by
step function in regard of time, are treated and two
problems are analyzed.

By using a parameter Vs which denotes the
volumetric ratio of SUS 304, four kinds of
compositional distribution profiles with respect to
relative thickness coordinate, {/k, are selected for the
numerical examples as follows(Fig. 2)
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Fig. 2 Volumetric distribution of SUS 304 through
thickness

Case 1: Vs=1—(¢/h+0.5)

Case 2: Vs=1—(&/h+0.5)

Case 3: Vs=1—(¢/h+05)°

Case 4: Vs=1
Namely, case 1~case 3 represent the FGM shells
whose outer and inner surfaces consist of ZrO: only
and SUS 304 only, respectively, and case 1 shows that
the volumetric ratio of SUS 304 varies lineally
through shell thickness. Case 4 corresponds to the
homogeneous shell made of SUS 304.

The material constants of SUS 304 and ZrO:
employed in the calculations are as follows.

O SUS 304

E=170 GPa, v=0.3

o=78g/cm? A=19 W/(m-°C) '> (26)

¢=056 kJ/(kg*°C), a=18x107%1/°C

O ZrO:

E=210GPa, v=0.32,

0=59g/cm? A=3 W/(m*°C) } (27

c=0.3k]J/(kg"C), a=10x10"%1/°C
In the present calculation, six kinds of material con-
stants in Egs. (26) and (27) are assumed to be linearly
dependent on the volume functionVs. For example
Young’s modulus E({) is given as

E(c):Ez{l‘Vs(C)}‘FEsVs(g) (28)
where Es and E; are Young’s modulus of SUS 304 and
ZrOs, respectively.

In the following two numerical examples, Tv and
@i are both 0°C, and Kin and Kou on inner and outer
surfaces of the shell are both 3kW/(m*C). ¢ has
been selected as co=1. The number of division
through the thickness is chosen to be 19 for integra-
tion of thermal stress in Egs.(20). On the other hand
for integration of material constants in Egs.(7) and
(21), division number depends on the degree of tem-
perature distribution polynomial, and the maximum
number of 64 is selected here. The increment of time
At is selected as 0.1 second, and the number of mesh
points is chosen to be 51 for the half span of the

(25)
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A=10mm R =200 mm

@m=00C T[):OOC
Kow=Kin=13 kW/(szC)

Fig. 3 Numerical example 1

500 T
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---p= 3} Present Theory]
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® Analytical Solution®

400

=
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OL) .
& 200
1004
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-0.5 0 0.5
$lh

Fig. 4 Temperature distributions through thickness

cylindrical shells in example 2. These values are
chosen with consideration of the convergence of the
solutions, the capacity of the computer and computing
time.
5.1 Example 1: Thermal analysis and evaluation
of solution

A long cylindrical shell under axisymmetric ther-
mal loading, where the compositional distribution
profile through thickness is linear(case 1), is treated
(Fig. 3), and the temperature distributions obtained
are compared with solutions by other methods.

The variations of temperature distribution
through shell thickness with time are shown in Fig. 4.
In the figure, solid circles indicate the analytical solu-
tions treated as multilayered composite cylinder (20
layers)by Tanigawa et al.®. The results from the
present theory, whose temperature distributions
through thickness are assumed to be the curves of the
second, third and sixth orders, are plotted by chain
lines, broken lines and solid lines, respectively. Just
after thermal loading(#=1 second), using higher
order curve of the temperature distribution in Eq.(4),
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present solutions rapidly converge with p to the ana-
lytical solutions. Therefore it is found that the pres-
ent method is effective for the analysis of FGM shells.
5.2 Example 2: Thermal stress analysis

The simply supported cylindrical shells subjected
to locally distributed axisymmetric thermal loading
due to fluid are analyzed(Fig.5). For four kinds of
compositional distribution profiles(case 1~case 4)
suitable degrees p of temperature distribution
polynomial are 6, 8, 10 and 4, respectively. The
boundary conditions at both ends are assumed to be
adiabatic.

Now we shall discuss some results of calculations.
In Figs. 6~15, except Figs. 8 and 11, the solid lines,
broken lines and two kinds of chain lines indicate the
values for four cases of compositional distribution
profiles, respectively.

The wvariations of temperature distribution
through the thickness at point C (£=0.5) of the shell

b —
» Z@oul ,,,,,,,,,,,,
BT[] &
% ————— »--—»—-/’# ------------- -
Aleo2s ¢ on 500
. ! L
=== F-—-—- [ e ———— 2}
&=s/L i &
=0.5 | = < 1®§
e
r time

L=600mm R =200mm
h=10 mm b =150 mm
On=0°C To=0C
Kour=Kin=3 kW/(mz“(I)

0°C(0<£<0.25)

@ou = =
" L@ (0.255E<0.5)

Fig. 5 Numerical example 2

500

—lCase 1

400

300

v
[

200

100E

Fig. 6 Temperature distributions through thickness at
point C

Series A, Vol. 39, No. 4, 1996

are shown in Fig. 6. Figure 7 illustrates the variations
with time of temperature at point C on the inner and
outer surfaces of the shell, and Fig. 8 gives the meridi-
onal distributions of temperature on the surfaces in
the case 1. Just after thermal load is applied, the
temperature near the heated surface rises quickly, and
the temperature near the inner surface rises gradually.
After about 50 seconds the temperature becomes the
steady state, however, the difference of temperature
between inner and outer surfaces is still large.
Because of smaller thermal conductivity coefficient of
ZrO: than one of SUS 304, with the increased
volumetric ratio of ZrQ,, this difference of tempera-
ture becomes remarkable. Excepting the region near
the outer surface of the shell, the temperature in the
homogeneous shell of SUS 304 on the steady state is
high in comparison with one in the FGM shells, and
shows the linear distribution through thickness. The
meridional distribution of temperature in other cases
(case 2~case 4), not illustrated here, is almost the
same as one in Fig. 8. Because the thickness of the
shell is small compared with other dimensions, and the
parameters kn and ko using in this example are
relatively large, temperature distributions along the
meridian change stepwise near the heating boundary
(at point B: £=0.25), and except the heating region

1 L] T 1
4001 P Tt
300 SNl —Case 1 -
JARE N\ . Case 2
o ¥ ./ Outer Surface $=05 ___
200 J: / c Case 3
& /
100 =
o2 :
i 1 1 1 1
0 10 20 30 40 50
r s
Fig. 7 Variations of temperature at point C with time
4001 N
Case 1 f .
300k Outer Surface f /' ]
------ Inner Surface
OL) L
200} .

.
O + I n IJ—’ AR B S D
+ t + T + + + t +

" 1 " 1 " 1 " "
0 0.1 0.2 0.3 0.4 0.5
£(=s/L)

Fig. 8 Meridional distributions of temperature (Case 1)
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(£=0.25~0.5) initial temperature is maintained.

In Fig. 9 the variations of circumferential stress
distribution through the thickness at point C are
shown, and in Fig. 10 the variations of gs on the inner
and outer surfaces at point C with time are illustrated.
The aspect of variations of meridional stress ¢, not
illustrated here, is almost the same as one of varia-
tions of 0s. Near the heated surface of the shells, due
to the remarkable temperature gradient through shell
thickness, high compressive stresses arise, and the
stresses become large with the increased volumetric
ratio of ZrQO.. Subsequently the stresses reverse large-
ly with the increase of thermal deformation due to
heat conduction(cf. Fig. 12), but compressive stress
states are still maintained in steady state in all shells.
On the other hand, near the inner surface of the shell,
just after thermal loading, tensile stresses occur and
then gradually increase. Those increments in the
FGM shells become large with the increased
volumetric ratio of SUS 304. In comparison with

500

-500

point C
500}
| ,/-';‘/’"
§ I/~ —— Case 1
0
© =05
-500f .~
Outer Surface
i - n | n | i L n
0 10 20 30 40 50

Fig. 10 Variations of stress 0, on inner and outer sur-
faces at point C with time
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FGM shells, homogeneous shell(case 4) of SUS 304
gives higher tensile stress distributions on inner side
of the shell. Considering with the fact that in steady
state compressive stresses are maintained near the
outer surface of FGM shells, the advantage of FGM
shells, which arrange metals and ceramics in the
lower and higher temperature portions, respectively,
is recognized.

Moreover, Fig. 11 shows the meridional distribu-
tions of 0s on inner and outer surfaces of the shell in
case 1. Near the point B on outer surface, where the
temperature gradient along the meridian becomes
large, meridional variations of ds also appear large.

Figure 12 shows the variations with time of
meridional displacement U. at point A (£=0) and
radial displacement W at point C. In Fig. 13, the
meridional distributions of displacements U: and W
are illustrated. After thermal load is applied, both
displacements increase gradually until the steady
state (#=50sec), but deformed area is restricted to
the heated region. Because of larger thermal expan-
sion coefficient of SUS 304 than one of ZrO;, deforma-
tion becomes large with the increased volumetric
ratio of SUS 304.

Finally the meridional distributions of resultant
stress Ny and resultant moment M. are depicted in

1
200}
t=S5s
0
<
8 |
= 200}
D
© _400} <
- Case 1 1
i 5s s .
—~600F —— Outer Surface
L - Inner Surface K\HE
_ N \ X 1 N It N T :
800 ——01 02 03 04 05
E(=s/L)
Fig. 11 Meridional distributions of stress ds (Case 1)
1 T T ! R
s
I e ]
157 A
S 5 W(&=05) ——Casel
- 0 . Ly Case 2 ]
e E=0y | T Case 3
ey Ue(e=0)  _ —Case 4
N T
N SIS I
05k NI I I
. e e ]
0 10 20 30 40 50

Fig. 12 Variations of displacements U: and W with time
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I ——Case ] T T 1

§(=s/L)
Fig. 13 Meridional distributions of displacements U, and
W
2 T T T T T T T T
£
Z,
&~
0
=
-1
-2 N | A 1 N ) 1 N 1 L
0 0.1 0.2 0.3 0.4 0.5

S(=s/L)

Fig. 14 Meridional distributions of resultant force N,

Fig. 15 Meridional distributions of resultant moment M.

Figs. 14 and 15, respectively. Near point B, where the
gradient of temperature along the meridian is very
large, meridional variations of Ny appear remarkable.
These variations become large with the increased
volumetric ratio of SUS 304. N, increases with time
monotonically as well as the meridional distributions
of W with time. On the other hand, in FGM shells M,

Sertes A, Vol. 39, No. 4, 1996

decreases on the heated region, but in the homogene-
ous shell, M. shows little variation.

6. Conclusions

In this paper we have described the numerical
analysis of the thermal stress and deformation for
axisymmetrical thin shells of functionally graded
material subjected to thermal loads due to fluid. In
order to improve the accuracy of the solutions, the
temperature distribution through the thickness has
been assumed to be a curve of high order, and the
equations of heat conduction and heat transfer have
been solved under appropriate initial and boundary
conditions. Suitable degree of temperature distribu-
tion polynomial has been determined from evaluation
of convergency of the solutions according to variation
of the degree. By using the temperature distributions
obtained, the stresses and deformations have been
calculated from the thermal stress equations. The
equations of equilibrium and the strain displacement
relations have been derived from the Sanders thin
shell theory. The numerical method selected for this
problem is a method using finite difference in both
space and time.

As numerical examples, functionally graded cylin-
drical shells composed of SUS 304 and ZrO: subjected
to thermal loads due to fluid, which are expressed by
step function in regard of time, have been analyzed.
First we have analyzed the heat conduction problem
of the long shell under axisymmetric thermal loading.
The obtained temperature distributions have been
compared with ones by other methods, and the accu-
racy of the solutions has been evaluated. Secondly we
have analyzed the simply supported cylindrical shells
subjected to locally distributed axisymmetric thermal
loading, and have compared the solutions for various
compositional distribution profiles in FGM.

From the computations, we found the following.

(1) Using higher order curve of the temperature
distribution, we can expect to obtain more accurate
solutions for the problems where the locally large
gradient of temperature distribution through shell
thickness occurs in FGM shells. Therefore the pres-
ent method is effective in the analysis of FGM shells.

(2) With the increase of ZrQO., which has small
thermal conductivity, the temperature on the heating
surface becomes higher and on the opposite surface
lower, and the temperature gradient through the
thickness becomes large at the stationary state. Also
the stress distribution and the deformation vary
significantly depending on the compositional distribu-
tion profiles in FGM.
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