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Shape Optimization Analysis of Flow Field*
(Growth-Strain Method Approach)

Eiji KATAMINE**, Hideyuki AZEGAMI***
and Akiyoshi OKITSU**

A new analytical approach for optimizing shapes of the flow field is presented. The
reshaping is accomplished by the growth-strain method which was first developed
using the finite-element calculation of the deformation of shapes by generating bulk
strain for solid problems. The generation law of the bulk strain is given as a function
of a distributed parameter to be made uniform. For solid problems, the validity of the
use of the shear strain energy density to maximize the strength based on the Mises
criterion or the strain energy density to maximize the stiffness for the distributed
parameter has been confirmed. In the present paper, we propose the use of the
dissipation energy density for the distributed parameter to minimize the total energy
dissipated due to the viscosity of the fluid. Numerical results for abruptly enlarged
channel problems in steady state assuming low Reynolds number and incompressible

viscous fluid shows the validity of the present approach.
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1. Introduction

The objective of the present paper is to propose a
new analytical method to optimize shapes of the
viscous flow field in a steady state. The minimization
of total energy dissipated due to viscosity is consid-
ered to be the criterion of optimality.

A guideline for optimization of the flow field can
be obtained through the classical investigation” made
on pipelines whose cross sections were gradually
enlarged under the conditions of constant velocity and
constant dissipation energy per unit length. Compar-
ing these pipelines, the investigation revealed that the
total energy loss of the pipeline with increased con-
stant dissipation energy per unit length was less than
that of the pipeline with increased constant velocity.
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The results of this investigation, suggest that minim-
ization of the total dissipation energy can be carried
out by making the locally defind dissipation energy
uniform.

In the case of continuous flow field problems, the
dissipation energy locally defined becomes the dissipa-
tion energy density defined per unit volume. Our
examination in this paper focuses on whether or not
the total dissipation energy in a continuous flow field
can be minimized through the deformation that makes
the distribution of the dissipation energy density uni-
form.

In our previous studies®®~® on solid problems, it
was confirmed that maximization of the strength
based on the Mises criterion can be carried out by
making the distribution of the shear strain energy
density uniform, and that maximization of the
stiffness, or minimization of the compliance, can be
achieved by making the distribution of the strain
energy density uniform. The reshaping to make these
distributed parameters uniform has been carried out
by the growth-strain method which had been proposed
as a shape optimization method which use the finite-
element calculation of the deformation of shapes by
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generating bulk strain of swelling and contacting. The
generation law of the bulk strain was given as a
simple increasing function of a distributed parameter
to be made uniform®.

Based on the previous studies on solid problems,
we use the growth-strain method as the shape defor-
mation technique for making the distribution of the
dissipation energy density uniform. The validity of the
present approach for minimizing the total dissipation
energy is discussed based on numerical results for
two-dimensional abruptly enlarged channel problems.

2. Growth-Strain Method

The growth-strain method was proposed as a
shape optimization method by generating bulk strain
which causes a distributed parameter to be made
locally uniform. Therefore, in the case of the optimum
criterion that is given as a uniform condition of a
distributed parameter, the growth-strain method is
directly applicable. Maximization of the strength
based on the Mises criterion means minimizing the
maximum value of the shear strain energy density,
which is identical to making the distribution of the
shear strain energy density under a constant volume
uniform. In this case, the growth-strain method can be
applied by setting the shear strain energy density as
the distributed parameter.

When we consider the maximization of a nondis-
tributed integral parameter such as the potential
energy, which has the meaning of stiffness, the appli-
cability of the growth-strain method depends on the
existence of an equivalent condition written with
uniform conditions of a distributed parameter. In the
case of the maximization problem of the potential
energy in static elastic problems, we can show
equivalency of the maximum condition of the poten-
tial energy to the uniform condition of the potential
energy density in shape variation. Therefore, the
growth-strain method becomes applicable to this
problem when the potential energy density is set to the
distributed parameter to be made uniform‘.

However, in the case of a viscous flow field in the
steady state, we cannot obtain any uniform conditions
which are equivalent to the minimum condition of the
total dissipation energy or other total parameters
integrated over the entire flow field, because we can-
not show the existence of any functional Euler equa-
tions which can become Navier-Stokes and continuity
equations.

Therefore, as a convenient alternative, we can
consider a local minimization problem such that the
dissipation energy density is minimized under con-
stant volume at each local point. The minimization
problem becomes identical to the problem of making
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the dissipation energy density uniform under constant
volume. The dissipation energy density D(x) is
defined as
D(x)=2pé(x)é (x)+Ausx)u.:(x) (xERQ),
(1)
where the strain velocity tensor & ;(x) is expressed by
the velocity u:(x)as

éo(@) =g luafO)+ (@) (@€Q).  (2)

Here, ¢ and A are viscosity coefficients. In the case of
incompressible viscous fluid, the second term on the
right side of Eq. (1) is neglected. The Einstein sum-
mation convention and the partial differentiation
notation ( ),,=a( )/dx,; are used in this paper.

Implementation of the shape optimization analy-
sis for flow fields using the growth-strain method
consists of iteration of the two steps shown in Fig. 1.
In the upper step, the dissipation energy density D(x)
is analyzed under mechanical conditions such as the
Navier-Stokes and the continuity equations and
boundary conditions. For this analysis, the finite-ele-
ment method” is used in the present study. In the
lower step, we analyze the shape deformation caused
by generation of the following bulk strain:

ag-(x)=D—(’%£h&-j (z€Q), (3)

where §;; is the Kronecker delta, and D is a constant
value for normalizing D(x). Except in a particular
case, the volume average of D(x) is substituted for D.
The constant value %, which has been called the
growth rate, is a control parameter of the magnitude
of the bulk strain at each iteration. The finite-element
method is also used for this analysis.

The fundamental equations used in these steps
will be shown in the third and the fourth sections.

3. Finite-Element Analysis of Flow Field

The finite-element method used for the analysis
of flow fields of the upper step in Fig. 1 is based on the
formulation called the Taylor-Hood formulation®
which is one of the direct methods in which velocity

Analyze dissipated energy density D(x)
under mechanical condition subject to
Navier-Stokes equation,

equation of continuty and

boundary condition

Y

y

Analyze growth deformation u?(x)
to minimize strain energy Uclu?(x))
at generation of bulk strainegx)
according to D(x)

Fig. 1 Growth-strain method in flow field problems
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and pressure are treated as independent variables. In
this section, this formulation is clarified.

In a flow field domain £ of a incompressible
Newtonian fluid in the steady state, ignoring body
forces, the Navier-Stokes and the continuity equa-
tions are given with velocity #:.(x) and pressure p(x)
as

pulx)tt,(x)+p,x)— pti(x)=0 (xEQ)

(4)

u:,{x)=0 (xEQ). (5)
On the boundary I' of the domain £, considering the
subindexes 7=1, 2, 3 for u.(x)(x € I') to be indepen-
dent, we assume that either condition of the Dirichlet
boundary condition of Eq. (6) or the Neumann
boundary condition of Eq. ( 7) is given. Moreover, on
a part of boundary I'? where the pressure p(x) is
known, we assume Eq. (8) holds:

udx)=udlx) (x€I'’=r-rv) (6)

wix)nx)=v:x)nx) (x€lr"=r-rIrr)

(7)

mx)=p(x) (xEI*CI), (8)
where p is the density, and »n.{x) represents the unit
outer-normal vector at each point on the boundary.
The notation ( ) represents known quantities.

Using the standard procedure of the finite-ele-
ment method, the inner velocity «,(x¢) within a finite
element x°® & Q¢ is expressed, using the velocity #a:
at the a-th nodes and shape functions @.(x°), as Eq.
(9). The inner pressure p(x®) is also expressed, using
the pressure ps at the 8-th nodes and shape functions
Ps(x®), which generally consist of functions with
order lower than @.(x°), as Eq. (10).

w{x?)=0x)tha: (x°ERQ°) (9)

Hx®)=U(x)ps (x°ERQ°) (10)
Employing the Galerkin weighted residual approach
in the domain .sze‘..Qe, Egs. (4) and (5) become

2 [, Oulae ot () i)
+ 5, x%) — i)} dV =0 (11)
S [, W) o x)dV =0, (12)
Integration by parts of Eqgs. (11) and (12) gives
2 [ 10N ot 2t x®) + p,(x)
+ 10 f2) i)V~ [ 1O &) iim,dS=0
(13)
S Wl udx)dV -5 [ Bz imdS=0.
(14)

Substitution of Egs. (9) and (10) for each element
into Egs. (13) and (14) gives the following governing

equations :
Maprstipithyi+ Kaigithgi+ Haispp= Qui (15)
Hai,ﬂuaz‘z 78, (16)
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where
Mars=2. || 00e0s0,,dV (a7
Ke=3 [ 1@0u®sudsdV (18)
Ha=% [ 0ulhdV (19)
Qu=3 [ #®utim,dS (20)
=2 [, Wimids. (21)

Substituting the boundary conditions of Egs. (6) to
(8), Egs. (15) and (16) become nonlinear equations
for the unknown variables of #.. and ps. These non-
linear equations can be solved by the Newton-Raph-
son method. When the value of the given velocity #; is
large enough, to stabilize the convergence of the
solution, the analyses should be performed in-
crementally by dividing the value into appropriate
increments.

4. Shape Deformation Analysis

In this section, the finite-element method used for
the shape deformation analyses of the lower step in
Fig. 1 is clarified.

When the bulk strain e%(x) of Eq. (3) is generat-
ed over the entire domain 2, we can define the strain
energy for the deformation. Therefore, we can natu-
rally assume that the deformation is determined from
the minimum condition of the strain energy. Using the
notation x; €  + xf=x;+uf € Q2° for the shape

deformation, the strain energy is given as
US(u(x))

— . (e8(@)— 2@} D) — ()} AV,

2
(22)
where the strain €%(x) for the shape deformation
should satisfy the following compatibility condition.

e8() =5 () + us(@)) (23)

The tensor D is the elastic constitutive tensor. The
minimum condition of the strain energy is obtained as
U (u(x))

= f (e5(2) — e8(2)) Disuideidx)dV =0, (24)

where § represents the arbitrary shape deformation
satisfying the shape constraints.

In the standard procedure of the finite-element
method, using the matrix expression for simplicity,
the inner strain vector {¢°(x®)} for the shape defor-
mation in a finite element x° € Q° is expressed, with
the nodal displacement vector {«°}, as

{e(xN=[B(x)u} {x°€2°). (25)
Equation (24) is rewritten, using the matrix expres-
sion in the domain Q=§.Qe, as

JSME International Journal

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

99
> f 8{e%(x9)) [ D ()} dV assumed. In fact, considering symmetry, the following
e Jae boundary conditions were given :
=Ze![)2 ez [DI{*(x)}aV. (26) ul(x)=%z7{1—<%)2xzz}
Substituting Eq. (25) for the whole element into Eq. and ux(2)=0 (zE[A—B)) (30)

(26), we can obtain the following governing equations
for {x°}:

[K1{ut={g}, 27)
where

wi(x)=0 and wuxlx)=0 (x€[B—E]) (31)
u1(x)=0 and wu.:(x)=0 (xE[E—-F))
(32)
u12(x)=0 and ux)=0 (x[F—A]) (33)
[K]=3Z Le[B(xe)]’[D][B(xe)]dV (28) p(x)=0 (x€[E-F)), (34)

(@=2 [ [B@)V[DHe"(z)}aV. (29)
The matrix [K] is the stiffness matrix and {g} is the

equivalent nodal force vector for generation of the N
bulk strain. The notation ( )" represents transposi-

tion.

3L

L2 kx 2z

5. Numerical Results

Numerical examination was performed on two- c
dimensional abruptly enlarged channel problems. B
The initial shape of the channel is shown in Fig. 2 L2 D E
where incompressible viscous flow is from the left side
to the right side. The Reynolds number Re=50 was 3L/4 L
assumed. At the entrance, Poiseulle flow was assumed

at the exit, the Neumman boundary condition was Fig. 2 Initial shape of two-dimensional symmetrically
enlarged channel

VW

1.0 ———"—

1.0 —— L]

Fig. 3 Results by the growth-strain method : Comparison between finite-element meshes
(upper), flow velocity maps (middle) and distributions of dissipated energy density
(lower) at initial state (left) and at converged state after twenty iterations (right)
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where the Reynolds number Re is defined as
Re =YL (35)
§73

In the shape deformation analyses, a free bound-
ary on [C-D], slide constraints on [B-C], [D-E]
and [F-A], and a complete constraint on [A-B]
and [E-F] were assumed. ‘

The flow fluid analyses were performed using the
triangular elements, the shape functions of which
were of second order in velocity and first order in
pressure™. The shape deformation analyses were
carried out using triangular elements of first order in
displacement. For D in Eq. (3), the volume average
of D(x) (x € ) was substituted. A value of 0.03 was
taken for the growth rate %. For simplicity, D=
J:0;: was assumed. The distortion of the mesh due to
shape deformation did not require any modification.

Numerical results to this problem are shown in
Figs.3 to 5. Figure3 shows a comparison of the
finite-element meshes, the flow velocity maps and the
distribution of the dissipated energy density between
at the initial state and at the converged state after
twenty iterations of shape deformation. A detail of the
comparison between these shapes is shown in Fig. 4.
From these results, we can infer that the shape of the

/

n=20
n=0

Fig. 4 Comparison of shapes at initial state and at
converged state
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Fig. 5 Convergence ratios to initial values of maxi-
mum value Dmax and average in volume Dave
of dissipated energy density, volume V and
total energy dissipated Diotal
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flow field became smoother, especially in the neighbor-
hood of the bending point.

In Fig.5, the convergence ratios of the total
energy dissipated Diota;, the maximum value Dmax and
the average in volume Dave of the dissipated energy
density, and the volume V, which are normalized with
the initial values, are illustrated. The bending of the
path of Dmax between iteration numbers =4 and n=
5 occurred because the location at which Drax exists
was changed. From these results of the convergence
ratios, we can conclude that the shape deformation
converged at the iteration »=20 and that the improve-
ments of 3% for Dot and 119 for Dmax were obtained.

Based on these results, the present approach can
be judged to be an effective method for minimizing the
total dissipation energy.

6. Comparison with Classical Results

In this section, the results obtained by the
proposed method are compared with the classical
results obtained applying Gibson’s suggestion‘®.

The abruptly enlarged channel in Gibson’s theory
is dependent on the condition of the energy loss con-
stant. With the variable height %(x) and the velocity
u(x) at the distance x from the end of the parallel
part shown in Fig. 6, this condition is given as

P 2
du—d(f)—=const. (36)
Employing the continuity equation, we obtain
L=t oo~ i) (37)
R~ w02 I\ A(D?)

Figure 7 shows the result for the channel designed
using Eq. (37) and analyzed by the finite-element
method. The comparison between the shapes is shown
in Fig. 8. The followings are the results of numerical

comparison.
(n=20) D(n=20)
=R =1.007, BVS =0.983
S
o | h(l)
h(x)
N
X
1
Fig. 6 Notations for enlarged channel
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Fig. 7 Results determined under Gibson’s condition :
finite-element mesh (upper), flow velocity
map (middle) and distribution of dissipated
energy density (lower)

/

Gibson's theory

Growth-strain  method

(n=20)

Fig. 8 Comparison between shapes obtained by the
growth-strain method and those determined
under Gibson’s condition

(n=20)
VVG =1.007,

D&

Dt(GJtal =0990

Here, ( )""=* represents the results for the channel
obtained by the proposed method at the iteration n=
20 and ( ) the results for the channel determined
under the Gibson’s condition.

Based on these results, it was confirmed that the
shape of the channel analyzed by the proposed
approach is in good agreement with the shape deter-
mined under Gibson’s condition, especially in the
vicinity of the beginning of enlargement.
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7. Conclusions

A numerical analysis method of flow fields for
minimizing the total energy dissipated was proposed.
The shape deformation was achieved by the growth-
strain method which consisted of analyzing the defor-
mation of the shape by generating a bulk strain. In the
flow field problems, the bulk strain was generated in
proportion to the dissipated energy density. By means
of the numerical examination of the two-dimensional
enlarged channel problems, it was confirmed that the
flow field was improved by the proposed approach.
The shape of the flow field analyzed by the present
approach was in good agreement with the shape
determined under Gibson’s condition.
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