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Structural Optimization under Topological

Constraint Represented by Homology Groups*
(Topological Constraint on One-Dimensional Complex
by Use of Zero- and One-Dimensional
Homology Groups)

Yasuhiko NAKANISHI** and Shigeru NAKAGIRI***

Topology of any one-dimensional complex can be represented by zero- and one-
dimensional homology groups, which are isomorphic to the direct sum of additive
groups. In this paper, a method is proposed to impose constraint on the topology of a
frame treated as a one-dimensional complex by use of homology groups in the field of
structural optimization. As the numerical examples, the total strain energy of the
frame is minimized under topological constraints and constant weight. Useless
members are eliminated from a ground structure by use of genetic algorithm. Any
number of additive groups can be freely set up as a topological constraint because of
generalized inverse matrices, and a rule of coding in the genetic algorithm is prescribed
so that all strings (corresponding to chromosomes in biological systems) generated in
the optimization process could satisfy the topological constraints. As the result it is
found that loops in the topology of the optimum structure adjoin each other. The
proposed method is also applied to the topology optimization of a square, flat panel
board fixed on a rigid wall and loaded vertically on points distant from the wall.
Key Words: Optimum Design, Computational Mechanics, Framed Structure,
Homology Group, Group of Cycles, Genetic Algorithm, Generalized
Inverse Matrix, Topology

ogy to structural optimization remain yet unknown,

1. Introduction . . . .
niro but expression of topological constraints can be cited

Several distinguished methods proposed for topol-
ogy optimization in recent years have been employed
in industries”. For instance, the homogenization
method has been developed well and is especially
remarkable®. It has been extended into not only
structural optimization but also other fields such as
stress analysis of composite materials. There are
very few methods which directly and explicitly deal
with topology of a structure from mathematical point
of view, however. Most of benefits of algebraic topol-

* Received 16th April, 1997. Japanese original : Trans.
Jpn. Soc. Mech. Eng., Vol. 62, No.596, A(1996), p.
1098-1103 (Received 30th August, 1995) ; Vol. 63, No.
605, A(1997), p. 189-194 (Received 15th July, 1996)

** Department of Mechanical Engineering, Toyohashi
University of Technology, 1-1 Hibarigaoka,
Tempaku-cho, Toyohashi 441, Japan

*** Institute of Industrial Science, University of Tokyo,
7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

JSME International Journal

as an example of the benefits. Topological constraint
conditions of a structure can be explicitly expressed
by algebraic topology. It was shown that boundary
cycles in the algebraic topology are useful for repre-
sentation of the necessary condition which topology of
the optimum frame or truss must satisfy, and that
optimum structures can be searched efficiently by
them®®,  The boundary cycles cannot deal with all
topological constraints. The boundary cycles play an
important role in calculation of homology groups in
the algebraic topology®™®, but they do not yield any
information about topology of a structure. Therefore,
we attempt to utilize homology groups which can
represent complicated topology for formulation of
topological constraints in this paper. Structures are
treated as a simplicial complex consisting of simplex-
es in the homology theory, so that the homology
theory can be easily involved in structural optimiza-
tion for which finite element method has been used
usually. The authors purpose to construct a general-
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ized method using homology theory which can deal
with various topology optimization problems in a
unified way and is able to impose arbitrary topological
constraints on structures of any dimension. As the
first step to this purpose, a method is proposed for
imposing topological constraints using zero- and one-
dimensional homology groups on a structure rep-
resented by one-dimensional complex such as frame
or truss. Homology groups of a one-dimensional
complex are isomorphic to the direct sum of additive
groups of integers. Then it is able to control topology
of a structure by assigning the number of additive
groups to one-dimensional homology group using
generalized inverse matrices”. Additive groups of
zero-dimensional homology group can be also
restricted to any number, as is proved mathematically
later, and the number is always set equal to unity in
this paper. Topological constraints on homology
groups of two or more dimensions are not necessary,
because such homology groups are always isomorphic
to zero. As numerical examples, the total strain
energy of a frame is minimized by the use of the
genetic algorithm (abbreviated to GA)® under
topological constraints. The code between a string (a
chromosome) and a structure is decided so that all
structures made from an arbitrary string could satisfy
topological constraints. The proposed method is also
applied to topology optimization of a flat panel in the
end of this paper.

2. Description of Problem

It is aimed at that the total strain energy of a

frame is minimized under a certain loading and the
constraints of both weight and topology. It is assumed
that only the frame topology can be changed to opti-
mize a frame, and that all the frame members remain
the same each other in weight and in size. The cross
section of the members is circular, and the diameter is
adjusted so that the weight of a structure could be
equal to a given value as a weight constraint. Useless
members are eliminated from a ground structure by
means of the GA to obtain an optimum structure.
Structures (2) and (b) shown in Fig. 1 are employed
as ground structure in the optimization. The solid
lines in the figure are members, and connecting point
of members is called node. The hexagonal planar

(@) ()
Fig. 1 Ground structures (2) and (b)
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domain in Fig. 1 is subjected to uniform lateral (verti-
cal to the sheet) load acting to each node. The solid
circle at the center of the structures (2) and (b)
indicates the frame support which has no degree of
freedom of deformation. The fitness value of each
string in the GA is the total strain energy of a struc-
ture made from the string. The strain in the members
is calculated by the finite element method on the
assumption that the frame deformation is elastic and
infinitesimal, the axial strain being neglected. The
topological constraints are written as follows,
H{(K)=Z (1)
H(K)=Z®Z®D--®Z (the number of Z is N)
(2)

where K denotes a complex obtained by eliminating
unnecessary members from a ground structure. Equa-
tion (1) means that the number of connected compo-
nents is unity, that is, the complex K is not split into
pieces. All nodes contained in a ground structure
must be joined together to satisfy Eq.( 1), because all
the nodes remain as independent component even
after the elimination of members. Equation (2)
means that the complex K has N loops consisting of
several members.

3. Method to Identify Removable Members

A ground structure can be treated as a one-
dimensional complex when nodes and members are
recognized as 0-simplexes and 1-simplexes, respec-
tively. Zero-dimensional homology group Ho(Ko) of a
ground structure Ko (a structure (a) or (b) in Fig. 1)
is isomorphic to an additive group of integers Z, and
one-dimensional homology group Hi(K,) is also
isomorphic to the direct sum of N additive groups, for
No=1—x(Ko), x(Ko) being Euler number. Thus a
method to keep Ho(K) constant throughout the opti-
mization process and to decrease the number of Z of a
one-dimensional homology group from N to N can be
devised to satisfy Egs.(1) and (2). Such a method
is convenient, because satisfaction of either of Egs.
(1) and (2) implies automatic satisfaction of the
other. In the other words, if elimination of a member
surely causes reduction of the number of Z in Hi(K)
by unity, Ho(K) never changes, and vice versa. This
can be proved by the Mayer-Vietoris theorem for
reduced homology groups as follows®+®),

Let Ks be a complex and K, Kz be its subcomplex-
es with Ks=KiUK, The following exact sequence
holds,

ser T Hr(Klm Kz)i’ ﬁr(Kl)@ﬁr([{Z)

2 A(Ks)—> Hr(KiNK)— - (3)
where ix[z]=([z], —[2]), jx([2], [2])=[2]+[2] and
6’*[2’3]:[361] with [Z]Egr(KlﬂKZ), [21]61;[1(}{1), [Zz]
EAK), [#]EH(K:) and a€CA(K). [z] is
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Fig. 2 Complex K: and its subcomplexes Ki, K»

homology class of z. The relation between homology
groups and reduced homology is written as

HA(K)=H/(K), =0

Hy(K)=H(K)®Z. (4)

If Im for1=Ker fn exists for all #, a sequence

sre /> Gn+1‘£rﬂ’ Gnﬁ’ Gn—lﬂ-—l"
is called the exact sequence.

Figure 2 shows an example of Ki, Kz and Ks. Ki
is a complex made from K; by elimination of 1-sim-
plex Kz. The broken lines indicate that a part of
structures Kz and K are shown in this figure, instead
of the entire ones. The solid circles are KiN K, that
is, K> is connected with K by two 0-simplexes. The
case that KiN K: is one 0-simplex need not be consid-
ered, because elimination of such 1-simplex is obvi-
ously against a topological constraint of Eq.(1).
Consequently only the case shown in Fig. 2 is discuss-
ed in this chapter. When the number of the connected
components of both Ki and Ks is unity (i.e. Ho(Ki)=
Hy(K3)=0), the exact sequence of Eq.(3) becomes

0— H(K)D0 > H\(Ks) —> Z — 06D0.

(5)
If a sequence of Abelian group 0— A ~ts B 7
— ( is the exact sequence, then there is B=A®Z.
Therefore, the following formula holds.

H(Ks)=H(K)®Z (6)
The above equations (5) and (6) prove that the
number of Z in Hi(K) is always decreased by unity, if
elimination of a l-simplex K: does not make any
change in the number of the connected components.
This means that Eq.(2) is automatically satisfied, if
Eq.(1) is satisfied throughout the elimination process
of N—N, 1-simplexes.

The reverse process is proved as follows. If the
connected components of Ki is unknown and Ks
satisfies Eq.( 6 ), the following sequence is obtained by
the Mayer-Vietoris theorem.

00— [‘71([{1)@0 L’ ]‘?1(K1)<‘BZ N

Z > Hy(K)®0— 0 (7)
Exactness of this diagram results in the following four
equations.

Ker j«=0 (8)
Im jx=Ker 0« (9)
Im d0x=Ker ix (10)
Im ix=Hy(K)) (11)
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Furthermore, the following relation is assured by the
theorem of homomorphism.

H{(RK)Ker j«+=1Im j+ (12)
(H(K)DZ)/Ker 0x=Im dx (13)
ZI|Ker i+=Im ix (14)

When it can be assumed that homology groups of
one-dimensional complex do not include any torsion
coefficient, Eq.(15) is derived from Eqs.(8)-(14).

ﬁo(-Kl):O 15)
This proves that Ho(K) never change, if the number of
Z in Hi(K) is decreased by unity by removal of a 1-
simplex.

In this study, only the number of Z in Hi(K) in
Eq.(2) is controlled and Eq.(1) is neglected (both of
the constraints are satisfied, however). Identification
of removable members must be repeated whenever a
certain member is eliminated, because elimination of
even a member may change topology of a complex.
The process of identifying removable members is as
follows.

H\(K) of any one-dimensional complex is equal
to group of cycles Zi(K). Let [A] be a matrix decided
by the ground structure Ko and boundary homomor-
phism &, and {#} be a vector of which ingredients are
coefficient of 1-simplexes. 1-cycle z (€ Zi(Ko)) must
satisfy the following equation corresponding to diz=
0.

[Aln}={0x} (16)
{0} is null vector which has m ingredients, and  is
the number of 0-simplexes in Ko. Ingredients in [A]
are any of 1, 0, —1. Let % be the number of 1-simplex-
es. [A] is a matrix of order mX k. For computing
time sawing, it is desirable that [A] is a matrix of full
rank. The reason is described in the subsequent
chapter. Let a,, 7-, 8- and b, be rank of group of 7~
dimensional chains C-(K), cycles Z,(K), boundary
cycles B-(K) and homology group H-(K), respective-
ly. The following equations hold in general.

br="7r—PBr, Brer=ar—vr amn
As the result, Eq. (18) is obtained when the relation of
Co(K)=Z(K) is taken into account.

7’1261/1—60:(!1_(&/0—‘50) (18)
As for the ground structures in Fig. 1, the formula of
rn=k—{(m—1) is derived from av=m, ex=Fk and bh=1
(k>m). 7 is equal to 1— x(Ko), namely, the rank of
Hi(Ky). On the other hand, the solution of {#} in Eq.
(16) consists of k—rank([A]) linear independent
vectors when rank of a matrix [A] is denoted by
rank([A])29. Asis aforementioned, Hi(Ky) is equal to
Z\(K,), and then yni=Fk—rank([A]) holds. Hence,
rank([A)) is found to be m—1. [A] has a feature that
the sum of the ingredients of each column is zero. It
means that [A] can be changed to a matrix of full
rank by deletion of an arbitrary row. In this study
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such row is deleted that the number of zero ingredi-
ents is the least. When [A"] is the matrix of full rank
obtained from [A] by deletion of the row, Eq.(16) is
rewritten by use of [A°] as given below.

[AHn}={0m-1} (19)
The matrix [A°] must be defined newly when a
member is eliminated from the ground structure.
Using a superscript to indicate the number of eliminat-
ed members, such as [A%], [AY], [A%], -+, Eq.(19) is
rewritten in the following form when s-+1 members
are removed,

LA {n} ={0mss} (20)
where [A®'] is defined as given below.

(A=, 0[?]0 ...... ooy

Superscript 7 indicates transpose of vector or
matrix. By denoting the number to be eliminated by
7, the vector {5} in the right hand side of Eq.(21) is so
defined that the z-th ingredient is 1 and others are 0,
that is, elimination of the /-th member is represented
by fixing the 7-th ingredient of {n} as zero. A member
to be eliminated is selected in the manner that
topological constraints could be satisfied. When the
Moor-Penrose generalized inverse matrix™® of [A®] is
denoted by [A®]", the following equations are
obtained,
[AS]{n}:{Oers—l}

{n}=(L]-[A°T[AD{n} (22)
where [I:] is the identity matrix of order kX £, and
{%} is an arbitrary vector. If some ingredients of {#}
are equal to zero, the members corresponding to such
ingredients of {n} are not components of l-cycle,
whatsoever value the vector {4} takes. In the other
words, if all the ingredients in the j-th row of the
matrix [Ix]—[A°]"[A®] are equal to zero, the j-th
member cannot be removed. Whenever a member is
eliminated, this operation by use of the matrix [Ix]
—[A*]1[A®] must be carried out to all members
before selecting another member eliminated by the
GA. It means that the operation is to be repeated N
— N, times.

The following is an example of [A] corresponding
to Fig. 3. Let (ao, a1, a2, -+, ar) be 7-simplex x7, then

(21)

Fig. 3 Example of simplicial complex
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dx” is represented in the following form,
8rx’=§(—l)i(420, e @ity ) (23)

where a; (=1, -+, 7) is an independent point (0-sim-
plex), and a@: means lack of a point a: #-chain
denoted by ¢” of a complex which has # »-simplexes
is written as given below,

" =maxi+ mxi+ - +nuxl (24)
where #: is a coefficient. A suffix of x” is a number
assigned to each x”. When the boundary homomor-
phism 0 is operated to the »—chain ¢”, the following
is resulted.

orc” = mrxi + n20r3+ -+ + nudrry (25)

In the case of »=1, #;is a coefficient of 1-simplex and
corresponds to the /-th ingredient of {#} in Eq.(16).
Numbers from 1 to 5 and from I to IV in Fig. 3
indicate those of 1-simplex and 0-simplex, respective-
ly, and the arrows show the orientation of 1-simplex-
es, that is, the order of 0-simplexes. A vector whose
ingredients are coefficient of 0-simplex is denoted by
{#}. Then Eqgs.(23), (24) and (25) enable us to express
the relation between {#} and {p} as follows in the case
of Fig. 3.

-1 0 0 1-1
Sl 1-1 0 0o of ,_
(A= ;1] o = @)
0 0 1-1 0

Equations (16) and (26) stand for that l-cycle is
special 1-chain whose {#} is equal to {0n}.

4. Reduction of Computing Time

It is necessary for the proposed formulation to
compute the Moor-Penrose generalized inverse
matrix [A°]” repeatedly whenever a member is
removed for each string and generation in the GA. It
probably takes long to compute the generalized
inverse when one of such complicated methods as
singular value decomposition is employed. - The
matrix [I.]—[A°"']7[A*"'] can be computed easily
when [1.]—[Af][A?] is computed once, because the
difference between [A°*'] and [A®] is only one row.

The Moor-Penrose generalized inverse [B]~ of a
fully-ranked rectangular [ B] (the rank is equal to the
number of rows) can be obtained by Eq.(27) by use of
the regular inverse matrix ([B][B]%)~eo,

[B]-=[B]([B][B])™* @7
[A°*'] is fully-ranked, because [A°] is fully-ranked
and rank([A*])=rank([A%])+1, and the number of
columns is greater than that of the rows. Equation
(27) can be utilized to obtain [A°*']™ as follows. The
following abbreviation is used for a, {¢} and [P].

a={BY (L)~ [ATTAD B} (28)
() =-L(eyaT (29)
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[PI=(A)LAT) " +-L AT b} (b) AT
(30)

Then the regular inverse matrix ([AS*'][A°*']7)™" can
be partitioned in the following form.

(Pl {a}
([As+1][As+l]T)~1: {q}r i (31)
a

In addition, by use of the matrix [F] and vector {g} as
defined below,

[F]=[A*7 —L (L1~ [ATTADBHOTAT
(32)
(=11 - 1A 1A D5} (33)

the generalized inverse matrix [A°*']™ is obtained by
Eqgs.(27) and (31) in the following form.

(A =[[F]{g}] (34)
Furthermore, [I.]—[AS]"[A°""] is rewritten as fol-
lows.

[ (AT LA ] =[1]—-[A°) [4°]
~ LRI 1A IA BN (1] -[ATT A7)

(35)
Equation (35) shows that it takes only short time to
compute [ 1] —[ASH][A*], because [1.]—[A®]"[A®]
is computed already, and @, ([[.]—[A°1[A°]{5} and
{6} ([1.]—[A®][A®]) are scalar (7, 7), the 7-th col-
umn and i-th row of [1.]—[A]"[A®], respectively.

5. Coding in the GA to Always Satisfy
Topological Constraints

Coding to relate a structured frame with a string
is the first step of the GA applied to minimization of
the total strain energy of the frame. In this study,
coding is so defined that any strings can satisfy
topological constraints expressed by Egs.(1) and
(2). A string has different features (corresponding
to genes in biological systems) in the first half from
those in the second half as described in the following.

It is possible to assign string positions (loci) in
the first half of a string to 1— x(Ks) independent loops
in a ground structure Ko, because there are one or
more removable l-simplexes in each independent
loop. Feature values (alleles) are number assigned to
1-simplexes in each independent loop (not consecutive
numbers to all 1-simplexes, as Fig.3). 1-simplexes
corresponding to feature values are eliminated in the
decoding process of a string. If a certain 1-simplex is
judged unremovable, 1-simplex of the subsequent
number is tried to be removed. If the subsequent 1-
simplex is also unremovable, 1-simplex of larger
number is to be removed. This process is repeated
until a removable one is found. In the case that no
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K3 K1 K>

Fig. 4 Elimination of 1-simplex from a loop

removable 1-simplex exists in a loop, the string posi-
tion is skipped over and decoding process is tried
again from the top of a string. This skip can be
interpreted as a shift among string positions.

In the second half of a string, features are rep-
resented by the number of string positions which are
never decoded. If all the features in the first half of a
string are decoded and 1—x(Ko) 1-simplexes are
eliminated, any structure obtained by the decoding has
no loops (Hi(K)=0) against the topological con-
straint of Eq.(2). Thus it is necessary to skip over N
string positions in the first half. In the decoding
process, the features in the second half of a string are
decoded firstly, and N string position numbers are
memorized. The first half of a string is decoded
subsequently. The number of the first half of a string
is 1— x(Ko) and that of second one is N.

The elimination of a 1-simplex from an indepen-
dent loop can exactly reduce the number of Z in
Hi(K) by unity at all times. The proof is as follows.
Figure 4 shows complexes Ki, K; and K3 which satisfy
Ks=KiUK,, as Fig. 2. Bold lines in Fig. 4 depict KiN
K>, When the Mayer-Vietoris theorem is applied to
the situation in Fig. 4, the following sequence is
obtained.

0— H(K)®Z 2> H(Ks) — 0 (36)
Hencg, the fol~10Wing is obtained.
H(K)=H(K)DPZ (37)

This equation means that the number of Z in Hi(K) is
decreased by unity, when a 1-simplex is eliminated
from an independent loop, and proves that the
proposed method is valid.

Which loops are independent in a ground struc-
ture Ko must be specified before carrying out the GA.
Shapes of the loops are not unique, but the optimum
structure obtained by the proposed method is always
independent of loop shape. Figure 5 shows an exam-
ple of the case of N=1. A complex on the left side in
Fig.5 is a ground structure in this example, having
four independent loops. Triangles a, b, ¢ and d are
example of the four loops. A loop « (triangle a)
consists of three 1-simplexes (sides) whose numbers
are 1, 2 and 3. In the same way, loop b consists of
1-simplexes 4, 5 and 6, loop ¢ of 1-simplexes 7, 8 and
9, and loop d of 1-simplexes 10, 11 and 12. A large

Series A, Vol. 40, No. 3, 1997

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

224

(1) 1,59,10,a 2) 1459,10,a

3) 148,10a 4) 14,812,

Fig. 5 Examples of strings in GA

triangle of six 1-simplexes 4, 7, 8, 11, 12 and 6 can be
taken instead of loop &, because independent loops are
not unique. 1-simplexes 1 and 5 are identical, because
they are common in the loop @ and b. 1-simplexes 2
and 9, and 1-simplexes 3 and 10, are also identical,
respectively. Figures(1)-(4) in Fig.5 show exam-
ple of the strings and structures obtained by decoding
them. Feature values in each string position are (1, 2,
3), (4,5,6), (7,8,9), (10,11, 12) and («, b, ¢, d). The
fifth feature in all strings is the same a. The top string
position (corresponding to the loop @) is to be skipped
over in the decoding process. In the case of string (1)
in Fig. 5, 1-simplex 5 of the loop &, 1-simplex 9 of the
loop ¢ and 1-simplex 10 of the loop d are eliminated
from the ground structure. The loop @ vanishes in the
structure (1), though the top position of a string is
ignored.  And the structure (1) satisfies the
topological condition of N=1. In cases of the struc-
tures (2) and (3), two and one l-simplexes are
removed from the loop a, respectively. Whole loop a
is left intact only in the structure (4). Therefore, it
can be said that skipping over string positions does
not mean leaving loops that correspond to the skipped
string positions intact throughout the decoding proc-
ess. This is an advantage of the coding method
erriployed in this study. In actual computation for
optimization, the characters «, b, ¢ and d as features
are replaced by combination of numerals, and the
number of feature values is reduced, because the large
number of feature values often decreases the possibil-
ity of obtaining the optimum structure, or increases
the number of generations required in the GA to find
it.
6. Topological Constraint on Ho(K)

It is useful from an engineering viewpoint to
restrict the number of Z in Ho(K) (the number of
connected components) to unity. Only this constraint
is discussed in this study. Any number of Z in Ho(K)
can be chosen as a constraint by a slight modification
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Fig. 6 Connected component K3 and its subcomplexes
K and Kz

in the proposed method, however, as is proved in the
following. It is plausible that the following proof
implies the generality of the proposed method.

Let a constraint on Ho(K) be

H(K)=Z®Z® - DZ (the number of Z is M),

(38)

where M is the number of connected components.
The number of Z in Ho(K) should be increased by M
—1 to satisfy the above constraint, because of Ho(Xo)
=Z7. This requirement is fulfilled by elimination of M
—1 1-simplexes which has no relation with indepen-
dent loops. Such 1-simplexes correspond to ingredi-
ents of {n} which are always equal to zero for arbi-
trary value of {#} in Eq.(22). Elimination of 1-sim-
plexes free from 1l-cycle (independent loops) makes
no change in Hi(K), because Hi(K) of any one-dimen-
sional complex is equal to Zi(K). Figure 6 illustrates
that K: is an example of 1-simplex free from 1-cycle.
K;, K, and Ks are connected components in a certain
complex, and K; consists of Ki and KAKs=K UK>).
The number of connected components does not
influence the following proof, though it is taken equal
to 3 in Fig. 6, for example. The relation of Hi(K;) =
H\(K)) can be assumed, because elimination of K
never affects Hi(K). It is assumed, in addition, that
the homology groups of complexes in this study need
no torsion coefficient. When the Mayer-Vietoris theo-
rem is applied again to the case of Fig. 6, the exact
sequence takes the following form.

00— ]:Il(Kl) L Hl(Kl) 2, A =,

Hy(K)— 0 (39)

Exactness of this diagram gives the following for-
mulas,

Ker j«=0 (40)
Im jx=Ker 0« (41)
Im 0x=Ker ix (42)
Im ix=Hy(K) (43)

and also the followings are derived from the theorem
of homomorphism.

(K [Ker j«=Im jx (44)
H(K)[Ker 0x=Im 0x (45)
ZI|Ker ix=Im ix (46)
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Therefore, Ho(K:) results in the following formula.
H{(K)=H{K)DZ=ZDZ (47)
This proof shows that elimination of a 1-simplex free
from 1-cycle is equivalent to addition of an additive
group Z to Ho(K), because of Ho(Ks)=Z. Hence,
elimination of M —1 1-simplexes free from l-cycle
and 1— x(Ko)— N 1-simplexes which are component of
l-cycle from a ground structure satisfies both
topological constraints of Egs.(2) and (38). Only
Hy(K)=_Z is used in the subsequent chapter, however,
because of its usefulness in the engineering field.

7. Numerical Examples of Topology
Optimization of Frames

The aforementioned formulation is applied to the
minimization of the total strain energy of a frame
under the conditions that the frame has one connected
component and N loops (Egs.(1) and (2)), and that
the frame weight is kept equal to 7.38 kg in the case
of the ground structure (2) in Fig. 1, or 11.1 kg in the
case of the ground structure (b). The sum of the

uniform load is set equal to 1.36 kPa, and all the

members are supposed to be the same in size. The
frame material is taken homogeneous, and its mass
density, Young’s modulus and modulus of rigidity are
taken as 7.83%10%kg/m® 202GPa and 8l.4GPa,
respectively. The cross section of the members is
circular, and the diameter is so adjusted that the
weight constraint could be satisfied. Two point cross-
over is adopted in the GA, and the probability of
mutation is assumed to be 2.0%. The population is
approximately 30 in the case of the ground structure
(a), or 560 for the ground structure (b). Selection
of strings is based on only their ranking, and the elite
string is preserved in the GA.

The solution obtained by the GA is not guaran-
teed optimum exactly, in general. Though the word
‘optimum’ is used for the sake of convenience in this
study, each structure obtained in this and in the subse-
quent chapter is none but the best one among the 30
structures obtained from various initial values of
strings.

Figure 7 shows the optimum structures obtained
by the GA by use of the ground structure (a) for N
=0, --+, 5, where N and U in Fig. 7 are the number of
Z in Hi(K) and the total strain energy of the frame,
respectively. F' is the number of the optimum struc-
tures (to be exact, frames which have the same U as
the one in Fig. 7 regardless of the shape) among those
structures obtained as the result of 30 runs of the GA.
The total strain energy U of the ground structure ()
corresponding to a structure of N=6 takes the largest
value of 1.89 J. Figure 7 shows that loops are triangular
in shape and are placed adjacent to each other. N of a
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N=0 N=1 N=2
U=0.758 (J) U=0.993 (J) U=1.19J)
F=22/30 F=30/30 F=29/30
N=3 N=4 N=5
U=1.39(J) U=1.58 (J) U=175(1)
F=30/30 F=30/30 F=30/30

Fig. 7 Optimum structures (ground structure (a))

=YY
) 7
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~
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N=0 N=1 =
U=0.459 (J) U=0.422 (I} U=0.394 (1)
F=30/30 F=25/30 F=23/30
N=3 N=4 N=5
U=0.406 (J) U=0.416 (J) U=0.433 (J)
F=20/30 F=25/30 F=22/30

N=6
U=0.438 (J)
F=11/30

Fig. 8 Optimum structures (ground structure (b))

structure with the smallest U is zero (no loop). The
structure of N=0 which is called ‘a tree’ also has the
smallest 7. The reason may be the uniqueness of the
structure. For instance, a structure of N=1 can be
derived from more than six kinds of strings in this
case, because any rotation of the structure by 60
degrees never changes the value of U.

Figure 8 depicts the optimum structures derived
from the ground structure (b) for N=0,---,6. The
ground structure (b) has the largest value of U=
0.984 J as a structure of N=24. The difference of the
cases shown in Fig. 8 from those in Fig. 7 is as follows.

A structure of N=5 has a hexagonal loop.

A structure of N=2 (not a tree) has the smallest

U.

Geometry of these structures is rather compli-

cated.
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Most of these structures have smaller F than
those in Fig. 7, though the cases in Fig. 8 cannot be
simply compared with those in Fig.7, because of
disparity in their geometrical and loading conditions.
A structure of N=6 has the smallest . The reason
is that the number of kinds of strings which make a
structure of N=6 and U=0.438] is quite smaller
than the other structures.

8. Application of Proposed Method to Topology
Optimization of Panel Structure

In some cases, the proposed method can be
applied to topology optimization of panel structures,
whereas it is originally devised for skeleton structures
such as frames and trusses.

The numerical example is concerned with the
minimization of the total strain energy in a square
elastic panel fixed on a rigid wall and subjected to the
vertical loading of 9.8 kN as shown in Fig.9. The
optimum shape can be found by elimination of unnec-
essary triangular elements. Weight of the structure is
kept equal to 39.2 kg in both cases of the ground
structures (¢) and (d). The size of all elements is
assumed to be the same. The element thickness is so
decided that the weight constraint of 39.2kg is
satisfied. The vertices and sides of the triangular
elements are regarded as 0-simplexes and 1-simplex-
es, respectively. Equations (1) and (2) are em-
ployed again as topological constraints. Panel struc-
ture does not have topology expressed in Eqs.(1) and
(2) as two-dimensional complex, however. These
topological constraints considered in this chapter
mean that the areas enclosed with NV loops consisting
of 1-simplexes (sides) are cut out from the ground
structure, that is, the structure has not more than N
holes. Population employed in the GA is approximate-
ly 370 when the ground structure (¢) is used, or 940
for the ground structure (d). Elimination of triangu-
lar elements is substituted by setting their thickness
equal to 107 mm, because finite element analysis of
structures having elements, whose thickness is zero
exactly, turns to be impossible in some cases. Other
data in the GA, such as Young’s modulus and selection
process, are the same with those in the preceding
chapter.

Figure 10 shows the optimum structures of N=1,
-+, 4 derived from the ground structure (C). A struc-
ture of N=1 has a hole placed adjacent to the rigid
wall. This site close to the wall is supposed to be most
effective for decrease in strain energy. It can be said
that the structure with the smallest U has not more
than three holes under this condition. The ground
structure (€ ) has strain energy of 0.279 J as a struc-
ture of N=0. Structures of N=3 and 4 have smaller
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Fig. 9 Ground structures (¢) and (d)

N=1 N=2
U=0.267 (J) U=0.256 (J)
F=30/30 F=30/30

N=3
U=0.240 (J)
F=23/30

N=4
U=0.240 (J)
F=24/30

Fig. 10 Optimum structures (ground structure (c))

N=1 N=2
U=0.289 (J) U=0.281 (J)
F=30/30 F=29/30

N=3 N=4
U=0.270 (J) U=0.265 (J)
F=20/30 F=6/30

Fig. 11 Optimum structures (ground structure (d))

F than the other two cases of N=1 and 2, probably
because the strings for the structures of N=3 or 4 are
much longer than those of N=1 or 2.
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U=0.242 (J)
F=22/30

Fig. 12 Optimum structure (without topological
constraint)

Structures of N=1,--- 4 in Fig. 11 are obtained
from the ground structure (d). A structure of N=1
is made by cutting off a bottom corner from the right
side .of the ground structure (d). This tendency is
obviously different from the situation shown in Fig.
10. The strain energy in the ground structure (d) as
a structure of N=0 is equal to U=0.296]. F is
decreased while N is increased. Length of strings
probably causes the decrease of F' as well as in Fig.
10. Such structures having more than four holes are
expected to have the smallest U. Thus, minimization
of U without topological constraints is attempted. As
the result, a structure corresponding to N =7 shown in
Fig. 12 is found to exist.

9. Concluding Remarks

A formulation is proposed to deal with explicit
topological constraints represented by homology
groups on one-dimensional complex. The application
of homology groups has advantages of explicit and
general description of structural topology in expres-
sion which makes treatment of topological constraints
easy. The validity of this proposed method is verified
by the numerical examples in which total strain
energy of a frame is minimized under constraints in
topology and weight. The numbers of connected
components and loops in the frame are limited to
unity and N, respectively. As the result, it is found
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that (1) loops are placed next to each other, (2) the
number of loops N of a structure which has the
minimum total strain energy depends on the arrange-
ment of members in the ground structures. Further-
more, it is shown that the proposed method can also
be applied to topological optimization of panel struc-
tures represented as two-dimensional complex.
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