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Numerical Solution for Min-Max Shape
Optimization Problems*
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This paper presents a numerical shape optimization method for continua that
minimizes some maximum local measure such as stress or displacement. A method of
solving such min-max problems subject to a volume constraint is proposed. This
method uses the Kreisselmeier-Steinhauser function to transpose local functionals to
global integral functionals so as to avoid non-differentiability. With this function, a
multiple loading problem is recast as a single loading problem. The shape gradient
functions used in the proposed traction method are derived theoretically using Lagran-
ge multipliers and the material derivative method. Using the traction method, the
optimum domain variation that reduces the objective functional is numerically and
iteratively determined while maintaining boundary smoothness. Calculated results for
two- and three-dimensional problems are presented to show the effectiveness and

practical utility of the proposed method for min-max shape design problems.
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1. Introduction

In structural design, it is often necessary to deter-
mine the optimal shape that maximizes strength for a
given material. This can be accomplished by minimiz-
ing the maximum value of some local measure (e.g.,
von Mises stress) with respect to the strength crite-
rion of the material to be used. Another design
requirement often encountered is the need to maxi-
mize rigidity so as to minimize displacement in cases
where the latter is the evaluation measure and its
maximum value is an index of the former. These
represent examples of what are called min-max prob-
lems the objective of which is to minimize the maxi-
mum value of a local state variable or its function
(both of which will be referred to here as a local
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measure). This paper concerns min-max shape
optimization problems in which the local measure is
von Mises stress or the displacement norm, and the
boundary shape is treated as the design variable.

In general, such min-max problems contain the
following latent difficulties. One difficulty is the occur-
rence of non-differentiability in relation to domain
variation because of the local property of the maxi-
mum measure, i.e., the objective functional. This
problem can occur because the functions in the func-
tional are not smooth or because the maximum value
may jump to another location as a result of domain
variation. Moreover, when using the adjoint variable
method to find the sensitivity, the issue of singularity
can occur because the virtual load becomes a delta
function. As a way to avoid these problems,
Banichuk® proposed a method whereby the & norm is
used to transpose a local functional into an integral
functional. In addition, Taylor and Bendsge'® used a
method referred to as the bound formulation or A
method to change the value of the maximum stress
coristraint to the objective functional. Trompette et
al.® and Kristensen et al.¥ have also applied similar
approaches to shape optimization problems involving
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fillets or holes. By transforming the problem to a
solvable formulation, min-max problems can be treat-
ed as ordinary minimization problems.

The authors, on the other hand, have applied the
traction method® to derive solutions to boundary
shape optimization problems, including stress square
error minimization problems® and homologous defor-
mation problems®”. Grounded in the variational
method and optimal control, the traction method has
been proposed as a procedure for solving shape optim-
ization problems. It provides a numerical procedure
for determining the amount of domain variation that
minimizes the objective functional, using the gradient
method in a Hilbert space. By deriving the shape
sensitivity function (shape gradient function) and
treating the design variable (boundary shape) as a
function, it is possible to design boundary shapes
having many degrees of freedom, without limiting the
latitude of design freedom.

This paper describes the application of the trac-
tion method to obtain solutions to boundary shape
optimization problems in which a maximum local
measure is the objective functional. The problems
treated here are min-max stress problems and min-
max displacement problems involving a multiob-
jective structure subject to multiple loading. Few
studies of such problems are found in the literature.
The Kreisselmeier-Steinhauser (KS) function®,
proposed for use in solving optimal control problems,
is used to transform the local measure (von Mises
stress or the displacement norm) to an integral func-
tional and to scalarize the vector objective functional.
The proposed method makes it possible to design
shapes that minimize the maximum stress or maxi-
mum displacement.

First, the problems will be formulated, and the
shape gradient function will be derived using the
Lagrange multiplier method or the adjoint variable
method and the material derivative method. Then,
procedures for analyzing the shape gradient function,
including the adjoint variable, and domain variation
based on the traction method will be presented.
Finally, the computed results for typical two- and
three-dimensional problems will be presented to dem-
onstrate the effectiveness of the proposed method for
solving min—-max local measure problems in which the
design boundary is taken as the design variable and
the objective is to minimize the maximum stress or
displacement.

2. Min-Max Local Measure Problems

Consider a minimization problem of a local mea-
sure subject to multiple loading under a condition of a
volume constraint. The local measures considered
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Fig. 1 Domain variation of continuum

here are von Mises stress in a strength maximization
problem and the displacement norm in a rigidity
maximization problem. The shape gradient function
of each problem will be derived theoretically.

2.1 Problem formulation

As shown in Fig. 1, we will assume that a linear
elastic continuum having an initial domain of £ and
boundary of I'=0% undergoes variation V such that
its domain and boundary become £s and [s=0%s. The
notation Iuesign denotes the variable design boundary,
and multiple body forces f™ and surface tractions
P™ (m=1,2,+-, N) are assumed to act on £s and I3,
respectively. It is also assumed that N load cases act
independently. The notation s indicates the iteration
history of domain variation.

It is necessary to express the objective functional
in an integral form in order to avoid the above-
mentioned problems of non-differentiability and sin-
gularity due to the local property of the maximum
measure. This representation is also needed to formu-
late the problem as a distributed parameter optimiza-
tion problem so as to allow application of the traction
method. Additionally, this optimization problem sub-
ject to multiple loading will be treated as a vector
optimization problem. To allow easy treatment of the
problem, it must be scalarized to a single objective
optimization problem. The KS function is introduced
here to resolve these issues.

2.2 KS function
The KS function is defined as

N

K81(¢(”)(x))=—1{;1n Z exp (¢™(x)-p) (1)

m=1

A sufficiently smooth function enveloping the
maximum value of N number of measure functions
#"™(x) is obtained with this expression when p is
sufficiently large, as shown in Fig. 2. In actuality, a
value of o in a range of 5 to 200 is used®. By
expressing a single measure function ¢(x) in an inte-
gral form as indicated in Eq.(2), its maximum value
can be extracted when o is sufficiently large.

KSZ(QS(.Z')):‘%;IH'/[;@XD (¢(x)-0)dx (2)
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Fig. 2 KS function

2.3 Objective functional

The objective functional of a minimization prob-

lem of a maximum measure subject to multiple load-
ing can generally be expressed as

ot

=max max
TERs m= N

[ ¢ (x) ]
ba
(3)
Since this local functional contains the inherent
difficulties noted earlier, we will transpose it to an
integral functional of a single solvable objective by
combining the KS function of Egs.(1) and (2). This

produces the following expression :

Lo Yol #5520 ®

where ¢, is a normalization constant.
2.4 Min-max stress problem
When von Mises stress is considered as the local
measure, a min-max stress problem can be stated as
noted below using Eq.(4), with volume and the state
equations of each load case used as constraints.
Given 2, f™ in 2, P™ on I}, e in 2, MoER .+

max max[
m=1,+++,N TERs

(5)

find 2s (or V) (6)
N m)

that minimize %ln fg s{ﬂ%exp(%-p)}dx (7)

subject to M — M,<0 (8)

a(v'™, w™)=(w™)
for all w”e U, v™e U,
m=1-N  (9)
where ox is the von Mises stress defined by Eq.(10).

Ulzl{:”%“{(o‘xx - ny)z + (ny - Uzz)z + ( Ozz— O'.rr)z

+6(0‘§y+0‘§z+ G.izsz)} (10)
Additionally, the bilinear form a(v™, w'™) that gives
the variational strain energy with respect to the m-th
load case and the linear form /(w'™) that gives the
variational potential energy due to external forces are
defined by Egs.(11) and (12). In these equations, v'™
and w'™ indicate the displacement and the variational
displacement of load case wm, respectively, and U
denotes the suitably smooth function space that
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satisfies the displacement constraint condition. M and
Mo, indicate the volume and its constraint value,
respectively, and R ; is a set of positive real numbers.

a(v(”“, w""’):'[] eimvif”z’wz(,’?’d&? (11)

(w™)= [2 AP ag -+ fr PPuwmdr (12)

where e (e in tensor notation) is Hooke’s rigidity.
The tensor notation employed in this paper uses the
Einstein summation convention and a partial
differential notation (+),,=a(-)/0x..

Letting w'™ and A denote the Lagrange multi-
pliers for the state equations and volume, respectively,
the Lagrangian functional L with respect to this
problem can be expressed as

L(2,0V, - v™, oW 1o A1)

Lo, (oo
- ﬁ]l{l(w"”))—a(v"”’, ™)} -+ A(M — My) (13)

For simplicity, it is assumed that the traction bound-
aries does not change in the normal direction (n;V,=
0 on I1), the material is homogenous and constant
(efei= € 5,=0), and the body forces are constant within
the domain (f’=0). Then, using the speed field V
that expresses the domain variation, the derivative L
in relation to the domain variation of the Lagrangian
functional L can be expressed with the material
derivative method as

L= ﬁl {Z(w"’”))—a(v(”", w'™)}

(m) (m)
oM > 90t (m)
. . — v
Qs ( Cfa ,0 6’0‘u GZJ a( ’

-4
(M) }

N
E_( euri Wi + fiM wi™

+ plA exp( air” >)+A}-nszdF
+ (M — M), VE Co (14)
A:Ls {éﬁxp( gi’;ﬂ) -p>}dx (15)

where (+)’ is the shape derivative, (+) is the material
derivative®, n is an outward unit normal vector and
Co is the suitably smooth function space that satisfies
the constraint on domain variation.

The optimality condition with respect to v, w and
A of the Lagrange functional L is expressed as shown
below taking into account the stationarity of the
inequality constraints.

a(v™, w'™)=[(w'™)

for all w™eU, m=1,*N (16)

a(v’™, w"”’)—ﬂ f exp( oif” p) agé’:)dudr

_ . aif” . >. amﬂ}" . 00 v
AO'aA ./s‘zsexl)< Oq o 30 Ovw vhdx
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for all v™< U, m=1,,N 17

AM — My)=0 (18)
M—M<0 (19)
A=0 (20)

where Eq.(16) is the governing equation of v and
coincides with the state equation, and Eq.(17) is the
governing equation of the adjoint variable w™ which
is equivalent to the variational displacement (adjoint
equation). Further, Eqgs.(18) through (20) are the
governing equations of the Lagrangian multiplier /A
with respect to the volume constraint.

Hence, by using v, w™ and A which have been
determined under the foregoing conditions, the deriva-
tive of the Lagrangian functional can be given by

L=1V) (21)
where the linear form /e(V) of the speed field V is
given by the following equation :

(V)= GiVidr (22)

N
G:{ 2 <* ez‘jkl”}e [ ZUf’f)‘Fﬂm)wgm)

m=1

s o))+ afn
on FdesignEF\Fﬁ.r (23)
It should be noted that G is given on the design
boundary and is called the shape gradient function.
2.5 Min-max displacement problem
When the displacement norm [vz| expressed by
Eq.(24) is considered as the local measure, the objec-
tive functional can be defined as indicated in Eq.(25).

+

lor(2)l|=(v3+vi+ 0" (24)
%lnﬂs{”élexp(wﬂ >}a’x (25)

Similar to the strength maximization problem,
adjoint Eq.(26) corresponding to Eq.(17) and a shape
gradient function (Eq.(28)) corresponding to Eq.(23)
can be derived as shown below.

1A [? exp(%' p)

Va
Mv dzx
for all v'™e U, m=1,N  (26)
A= [ [Ze( L o) @
{ 21: ( il WY

m
+ fim i + p-lA °exp< “vzi " 'p))%-/l}-n

on Fdesz‘gnEF\Ffix (28)
So long as the shape gradient function can be
derived theoretically, domain variation can be anal-
yzed by the traction method.

d( vr(m> (m)>:

3. Numerical Solution Technique

3.1 Traction method
The traction method is a procedure for finding the
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amount of domain variation (speed field V) that
reduces the objective functional, based on governing
Eq.(29). This method uses the gradient method in a
Hilbert space, a technique that is also employed in
distributed parameter optimal control problems.
a(V, w)=—Il(w) for all wE Co (29)
Governing Eq.(29) indicates that the speed field
V is found as a displacement field when the negative
shape gradient function — G acts on the boundary or
the domain as an external force. In other words, with
the traction method the domain variation is found as a
displacement field when the shape gradient function
acts as an external force in a pseudo-elastic problem.
Accordingly, Eq.(29) can be solved with a solution to
ordinary linear-elastic problems, confirming the gen-
eral applicability of the traction method. In this
paper, the finite element method is used. Moreover,
the traction method also offers the advantages that
there is no need to refine the mesh and that boundary
smoothness is assured following domain variation®.
With the aim of applying the traction method to
a wide range of practical design problems, the authors
have developed a shape optimization system that uses
a general-purpose FEM code. This general-purpose
code, I-DEAS, has also been used in this work as a

: Developed Code
< ; General-purpose FEM Code

Objective Functional
Evaluation of { &
Volume

l Calculation of N Adjoint Loads

Calculation of Shape Gradient
Function G

¥

Determination of
Lagrange Multiplier A

Fig. 3 Schematic flow chart of shape optimization sys-
tem
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type of subroutine to solve Egs.(16),(17) and (29). A
flow chart of the shape optimization system is shown
in Fig. 3. The objective functional is minimized and
the optimum shape is obtained by repeating the stress
analysis (Eq.(16)) to evaluate the objective functional
and to find the shape gradient function, the adjoint
analysis (Eqgs.(17) or (26)), the speed analysis to
determine the speed field V' (Eq. 29), and updating the
shape. The boundary conditions (side constraint and
adjoint load) set for domain variation in the speed
analysis are independent of and different from the
boundary conditions defined in the stress analysis.
3.2 Calculation of adjoint variables

This section explains the specific procedure for
solving adjoint Egs.(17) and (26) that are characteris-
tic of the problems treated here.

Adjoint Eq.(17) can be expressed in the following
matrix notation :

[ (BT [DIB™]dx{w™)

- L L o) )
(30)

where [B]" indicates the transposed matrix of the
strain-displacement matrix [B] and [ D] indicates the
elastic matrix. By applying the distributed initial
strain in the domain

1 o\ ook
{ daAeXp( 0. ©) b0y }
as an external force, the adjoint displacement w is
found. The initial strain can also be converted to a
thermal strain and applied in that form™. Further, in
the case of adjoint Eq.(26), the adjoint displacement
w is found by giving the distributed load in the domain

(L exp{12. ). 3uil)
v Va Vr

as an external force.
3.3 Consideration of constraints

Two procedures for considering constraints have
been used so far in applying the traction method to
actual design problems. One procedure, based on the
concept of PID (proportional-integral-derivative)
control, is effective in treating a single equality
constraint®®. The other procedure can also treat
multiple constraints®®. In this paper, the procedure
based on the concept of PID control is used.
Specifically, the Lagrangian multiplier /4, which is
determined so as to satisfy the volume constraint, can
be regarded as a uniform surface traction within the
force — G. The volume constraint is then satisfied by
controlling the magnitude of the uniform surface
traction A.

JSME International Journal

4. Computed Results

The shape optimization system was applied to
min-max stress and displacement problems in order
to verify the effectiveness and practical utility of the
proposed method. The min-max stress problems
were fundamental two-dimensional problems involv-
ing a fillet and a torsion arm and a three-dimensional
problem involving a solid arm. The min-max dis-
placement problems involved a two-dimensional bent
plate, a fillet and a torsion arm. The latter two
problems were similar to the min-max stress prob-
lems and were considered for the sake of comparing
the optimal shapes. In all of the problems, the initial
volume (area) was given as a constraint. The maxi-
mum value of the initial shape in each problem was
used as the normalization constant 04 or ve.. The two-
dimensional problems assumed a condition of plane
stress, and four node elements were used in the numer-
ical analysis. The value of o in the KS function was
set at 30.

4.1 Min-max stress problems

4.1.1 2D single-loading fillet problem The
problem statement of a fillet design in which the
objective was to minimize the maximum stress is
shown in Fig. 4. In the stress analysis, one end of the
part was subjected to a sliding constraint and a dis-
tributed load P was applied to the other end, as shown
in Fig. 4(a). In the speed analysis, only the fillet
portion was specified as the design boundary and the
remaining boundaries were treated as being invari-
able. The analysis was performed with a symmetrical
half model.

Constraint .
Restraint Design
?{ :,{/ Boundary
Z
?"’-———\ ?
0 T 7
A 5P 7 /
% > ¢ Z 7
Constraint
(a) Stress analysis (b) Speed analysis

Fig. 4 Fillet Problem

Fig. 5 Initial and optimal shapes and stress distributions
[MPa]
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The initial shape and optimal shape obtained are
shown in Fig. 5 along with their von Mises stress
distributions. Iteration histories normalized to the
value of the initial shape are given in Fig. 6. The
maximum stress was reduced by approximately 609,
and the fillet portion shows a uniform stress distribu-
tion, except in the vicinity of the fixed boundaries.
The results confirm that the objective functional and
the maximum stress were minimized.

4.1.2 3D single-loading solid arm problem

The min-max stress problem statement for a solid
arm subject to compressive loading is shown in Fig. 7
as an example of an application to a three-dimen-
sional problem. As the boundary conditions in the
stress analysis, the circumference of a circular hole
was fixed and a distributed compressive load P was
applied to the other end, as shown in Fig. 7(a). The
constraints applied in the speed analysis consisted of
constraints that allowed domain variation along its
width and thickness, as indicated in Fig. 7(b). A
solid element with eight nodes was used in the numeri-
cal analysis which was performed with a symmetrical
half model.

The initial shape and the optimal shape obtained
are shown in Fig. 8 along with their von Mises stress
distributions. Iteration histories normalized to the
initial values are given in Fig. 9. The maximum stress

1'2 TTITTTTTY 'l'(‘I|||I’I|l"llllllll.lll|!"
1¢ ;

F [: Area ]

0.8 - : Objective Functional ]|

A : Max. Stress

Ratio

ITRTERERNIRTRR FUNI RTRNI NUSE] FETRE SRR !

0.2
0 10 20 30 40 50 60 70 80
Iteration Number

Fig. 6 Iteration histories

Design Boundary

. = ., Design
Restraint N Constraint
(Fixed) (Sliding) Boundary
(a) Stress analysis (b) Speed analysis

Fig. 7 Solid arm problem
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was reduced by approximately 309% and a uniform
stress distribution was obtained over nearly the entire
arm, except for a portion around the circumference of
the hole. Similar to the results of the two-dimensional
problem, the objective functional and the maximum
stress were minimized. These results confirm that the
proposed method can also be used to find optimal
shapes in three-dimensional problems.

4.1.3 2D multiple-loading torsion arm problem
The min-max stress problem statement for a torsion
arm subject to multiple loading is shown in Fig. 10. As
shown in Fig. 10(a), the circumference of a circular

Max. 158

Fig. 8 Initial and optimal shapes and stress distributions
[MPa]

L B B L LA IR B R

[J: Volume
: Objective Functional ...
A': Max. Stress

TN

TTT T

0.6 trea e b lvaan el ey brr s dagag
0 10 20 30 40 50 60 70 80

Iteration Number

Fig. 9 Iteration histories

Restraint Constraint
2);0/ \\a;
” G A >t o
pY” A\ Z
Design Boundaries
(a) Stress analysis (b) Speed analysis

Fig. 10 Torsion arm problem
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(a) Initial shape (b) Loadl (c) Load?2
Fig. 11 Initial shape and stress distributions for multiple loads [MPa]
80 120,60 Max. 221
T 40
T HE ‘ -
(a) Final shape (b) Loadl (c) Load2
Fig. 12 Optimal shape and stress distributions for multiple loads [MPa]
1 L e .
O: Area Restraint Design Boundary
1.05 : Objective Functional f/ 2
A : Global Max. Stress Z
1 |||"IIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIII|II|III|IIIIIIIIIIIIIII|IIII|I|IIIII|II ,///O
L %AQ
o 7
€ 095 Constraint
-4
0.9 e S s .
0.85 | : =z P 22
08C v v Lo Lo b o L] (a) Stress Analysis g1 Analysi
0 0 m 50 80 ysis p (b) Speed Analysis

Iteration Number

Fig. 13 Iteration histories (load 1 and load 2)

T
T

Fig. 14 Optimal shape and stress distribution for load 1
[MPa]

80 12,60 Max. 219

Fig. 15 Optimal shape and stress distribution for load 2
[MPa]

hole was fixed in the stress analysis and two types of
distributed loads, P® and P®, were applied to the
other end. In the speed analysis, a fixed constraint
was applied to the circumference of the hole and
sliding constraints were applied to both ends of the
arm, as indicated in Fig. 10(b).

Figures 11 and 12 show the initial shape and
optimal shape obtained along with the von Mises
stress distributions for the two load cases. Iteration

JSME International Journal

Fig. 16 Bent plate problem

histories normalized to the value of the initial shape
are given in Fig. 13. The results indicate that the
objective functional and maximum stress were minim-
ized, verifying that the proposed method also fun-
ctioned effectively in this multiple-loading problem.
For the sake of comparison, the optimal torsion arm
shape calculated for each load individually is shown in
Figs. 14 and 15.

4.2 Min-max displacement problems

4.2.1 2D multiple-loading bent plate The
problem statement for a bent plate is shown in Fig. 16
as an example of a min-max displacement problem.
As shown in Fig. 16 (a ), one end of the plate was fixed
in the stress analysis and two types of distributed
loads, P® and P®, were applied to the other end. In
the speed analysis, the outer shape was specified as the
design boundary, as indicated in Fig. 16(b).

Figure 17 shows the initial shape and optimal
shape obtained along with the deformation modes for
the two load cases. Iteration histories normalized to
the value of the initial shape are given in Fig. 18. Both
the objective functional and the maximum displace-
ment were minimized, confirming that the proposed
method is also applicable to min-max displacement
problems.
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8
(al) Initial shape (a2) Loadl (a3) Load?2
i FEEH
(Max. 0.29) Max. 0.59
(b1) Final shape (b2) Loadl (b3) Load?2

Fig. 17 Initial and optimal shapes and deformation
modes

1[glllllf[llllillllIiHIHEHIHfIIIII§|IIII_I

09 O:Area . . .
° " : Objective Functional ]
£ 08 A': Global Max. Displacement ]
g f% ]
E % 1

0.7 B .
0.6 | /
0.5 bl b b

0 5 10 15 20 25 30 35 40

Iteration Number

Fig. 18 Iteration histories

4.2.2 2D single-loading fillet problem Calcu-
lations were performed for a min-max displacement
problem involving a fillet subject to the same condi-
tions as in section 4. 1. 1. The optimal shape obtained
is shown in Fig. 19. The shape resembles that
obtained in the min-max stress problem (Fig. 5),
although slight differences are observed near the load-
ing point owing to the influence of the adjoint load.

4.2.3 2D single-loading torsion arm problem
Min-max displacement calculations were performed
for the torsion arm when it was subjected only to the
P® load case mentioned in section 4. 1. 3. Figure 20
shows the optimal shape obtained. The maximum
displacement was reduced by 34%. A comparison
with the shape obtained in the min-max stress prob-
lem (Fig. 14) reveals that the optimum stress is
approximately 139§ higher and that the shape is also
clearly different.

These results indicate that the optimal shapes for
min-max displacement and min-max stress problems
do not always coincide. This discrepancy is attributed
to differences in the strain fields of the adjoint ana-
lyses.

5. Conclusion

This paper has presented a numerical method for
solving boundary shape optimization problems in
which the objective is to minimize some maximum
local measure under multiple loading conditions. The
local measures considered here were von Mises stress
and the displacement norm. The specific procedure of

Stress distribution of final shape

Max. 196 (MPa)

Stress distribution of final shape

=
HHHHHH
(¢)
Max. 0.070 Max. 0.068
----------------- (mm)
(a) Initial shape (b) Final shape
Fig. 19 Initial and optimal shapes
TR
iFEsARE: T T T
ﬁ_ 1 T
n‘g‘l:Jrr YT
Max. 0.87 (mm) ~ Max. 0.58
o ‘"“‘x\‘ (c)
(a) Initial shape (b) Final shape

Fig. 20 Initjal
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and optimal shapes
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the proposed method is as follows.

(1) Using the KS function, a multiple loading
problem is simplified and formulated as a solvable
single-objective problem.

(2) The shape gradient function of the recast
problem is derived theoretically using the material
derivative method and the adjoint variable method.

(3) By applying the shape gradient function with
the traction method, the amount of domain variation
that minimizes the objective functional is found
numerically.

Calculated results for typical two- and three-
dimensional problems were presented to demonstrate
the effectiveness of the proposed method. This
method makes it possible to obtain optimal shape
designs that minimize the maximum stress or maxi-
mum displacement of the structure.
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