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Dynamic Response of Poroelastic Moderately
Thick Shells of Revolution Saturated
in Viscous Fluid*

Shigeo TAKEZONO**, Katsumi TAO**
and Takeshi GONDA**

This paper describes an analytical formulation and a numerical solution of the
elastic dynamic problems of fluid-saturated porous moderately thick shells of revolu-
tion. The equations of motion and relations between the strains and displacements are
derived from the Reissner-Naghdi shell theory. As the constitutive relations, the
consolidation theory of Biot for models of fluid-solid mixtures is employed. The
fundamental equations derived are numerically solved by the finite difference method.
As a numerical example, the simply supported cylindrical shell under a semi-sinusoidal
internal load with respect to time is analyzed, and the variations of pore pressure,

displacements and internal forces with time are discussed.
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1. Introduction

Porous materials, such as filter materials made of
sintering metals, lagging materials, fireproof mate-
rials, are utilized for various fields. Furthermore,
biological structures, such as hearts, blood vessels,
diaphragms can be frequently treated as fluid-saturat-
ed poroelastic bodies. In such a fluid-saturated open-
cell form, pore fluid flows due to pore pressure gradi-
ent, and under the influence of fluid viscosity the
higher the deformation rate of the body is, the greater
strain rate dependency appears. Jayaraman‘’, Okuno
and Kingsbury®, Taber®* and Kurashige et al.®®®
have studied fluid-saturated poroelastic plates, cylin-
ders and cylindrical shells subjected to time dependent
surface loads. The authors™® also have dealt with
dynamical problems of axisymmetrical thin shells
made of porous materials. From the obtained results,
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remarkable influence of saturated fluid pressure upon
the deformations and internal forces of shells has been
recognized in the high loading rate regions.

In the present paper the authors study the
dynamic response of fluid-saturated porous moderate-
ly thick shells of revolution, considering the effect of
shear deformation. The equations of motion derived
from the Reissner-Naghdi shell theory®? for moder-
ately thick shells (1/20< 2/R<1/5; & being the thick-
ness and R being the radius of curvature of the shell)
by adding the inertia terms are used. As the con-
stitutive relations for a fluid-saturated poroelastic
solid, Biot’s consolidation theory®"? is used, and
Darcy’s law is employed for the viscous fluid flow
through a porous elastic solid. In the numerical
analysis of the fundamental equations, an usual finite
difference form is employed for the spatial deriva-
tives, and the inertia terms are treated with the
backward difference formula proposed by Houbolt®®.

As a numerical example, simply supported porous
cylindrical shell under the semi-sinusoidal internal
pressure with respect to time is analyzed. The
difference between the influence of permeability and
impermeability on the inner and outer surfaces of the
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shell upon the variations of displacements and internal
forces with time is discussed. The results are also
compared with those from the Sanders theory®* for
thin shells which neglects the effect of shear deforma-
tions.

2. Fundamental Equations

If the middle surface of axisymmetrical shells is
given by R=R(s), where R is the distance from the
axis and s is the meridional distance measured from a
boundary along the middle surface, the relations
among the nondimensional curvatures w«(=a/Rs),
ws(=a/Rs) and the nondimensional radius »(=R/a)
become

we=—(7"+ 7)) /ws, woe=v1—(7")%/r,

we=r(we— we), 7" [r = — wewo, (1)

y=r'lr,&é=sla,( )=d( )/dE,
where a is the reference length. An arbitrary point in
the shell can be expressed in the orthogonal coordi-
nate system (&, 8, {) as shown in Fig. 1.

2.1 Fluid flow equations

The flow of viscous fluid through a-porous elastic
solid is governed by Darcy’s law. The present theory
is based on the following assumptions: (1) In-plane
fluid velocity gradients in the shells are small compar-
ed to the transverse fluid-velocity gradient. (2) The
contained fluid in pore is assumed to be incompress-
ible. The fluid flow equation is given as follows:

& _ 0
Ka—gz(dpf)—ﬁ(dpf)
0 (( deem 4 Aeom 4 Axe
+eg () (e o))
Le=1+Y/Rs, Lo=1+¢/Rq,
=aB/B, K_k/(ﬂﬂf)

__a _
=g i k=

B 24 _1-2y

Ar+2p, ~ 1—yp>
_1_Cn 1
a=1— C» —=, M= CTila—7)"

(2)

where Pr: fluid (pore) pressure, K : effective shell

0 1 0
—E(ANE) + T(ANe —ANs) +7’a‘6—
a—aé(dNee) + }’(dNea‘i‘dNae) +Li

85 (dQe)‘*' r4Q:+

2Q.—1 [a—s (AMe) + (M~ M) +7'ﬁ(dM95)] =0,

40—+ [%(AMEG) + 7Moo+ AM o) +2-2

(ANot) + 0ed Qe+ a[APg—
(4Ns) + wedQe+ a[APa

ae 9 (4Q0) —(wedNe+ a)sANe)—Fa[AP; oh-Zr (AW)]

(4n)]=0

Fig. 1 Coordinates and notations

permeability, C: material parameter, £ : intrinsic
permeability, Ar, #-: Lamé constants for the solid
skeleton, C»: compressibility of the material making
up the skeleton, C,: compressibility of the porous
body, #r: fluid viscosity, #»: void radius, f : porosity,
v : Poisson’s ratio, @ : constant determined from com-
pressibility, €em, €om : strains of the middle surface, e,

xo: bending distortions, 4: refers to increment, ¢:

~ time.

The boundary conditions of the fluid pressure on
the inner and outer surfaces ({=F 4/2) of the shell
are

E=—hn/2:

AP;=APn (on a permeable surface),
d(4P;)/0¢=0 (on a 1mpermeable surface),

E=h/2:

AP;=—APsu: (on a permeable surface),
(4P;)[6¢=0 (on a impermeable surface),
where % is the thickness of the shell, and P, Pout are
internal and external pressures, respectively.
2.2 Deformation equations

Adding the inertia terms to the equilibrium equa-
tions in the Reissner shell theory® and applying these
to the shells of revolution, the following equations of
motion expressed in the incremental forms are
obtained, where the rotatory inertia terms are omit-
ted:

hiz(AUe)]=o,

atz (AUH

v

(3)

The notation e in the inertia terms is mass density for the shells, and the other variables are shown in Fig. 1. P,
P, and P; in Fig.1 are components of distributed loads per unit area of the middle surface, and those are
connected with internal loads {Ps, P, P} and external loads {P#, P#, P¢} by following relation :
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{Pe,Pa,P{}z{Pe—,PB_,P(‘_}h—_{P;,P;-,P;}h+, (4)

Bl w1 |
w1 () mm )

The strains of the middle surface are given by the displacements Ue, Us, W in the next equations"®:

Jeen= 1[ E(AU;)+w;AW] Deom= 1[ i(AU,)+7AUe+waAW],

where

iy (6)
leem=n| L5 (AU +(4UD - 7aU)

where &eom is half the usual engineering shear strain.

The relations between the bending distortions xe, xs, x¢s, xs¢ and the displacements are'®
Axe=——5(405), A)(e=_1_|i—_‘(d@o)+ YA@e], .

: (7)
Axes= [85 (4@s)— Za)edd)n], Axse= L [ y 20 (40:)— 7Ad)a+2a)od@n],

where rotations D¢, Oy and D» are

A@;=L[—%(AW)+ a)eAUe] +2deem,

a

a v 060

1
A0.= 2a [ 7 39 =7 (4Ue) +5= 5 (4Us)+ 7AU9]

The strain components at a distance ¢ from the middle surface are given as
A65=(A59m+ fdxe)/Le, d63=(AEem+ CAKe)/La,

A€es=[%(dseom+d@n)+ é’(dkeo'*’%‘d@n)]/Lg

+[%(Aeegm—d(pn)+ f(dme_—waid¢")]/ld9’

Adeer=Aeggm/Le, deor=Aeotm/Lo.
As the constitutive relations, we shall use Biot’s consolidation theory“? for poroelastic solids. In the
present theory where the stress component d; normal to the middle surface can be assumed to be negligible, the
relations between the total stresses per unit area of bulk material and the fluid (pore) pressure are

Ade— 2 (AE;'*‘ VAEG) B&’APf, AOe— 2 (A€9+ VAE;) BCI’AP_;‘,

A@,:L[————(AW)‘F(U&AU(J]+2459§m, (8)

(9)

doee= E AEea, dog= 1fy T Adeg, doar= + > e, (10)

AP;—MC(ACf—aAe), ACf—(Ae—-Aef)f,
where ¢ and & are the solid and fluid dilatations, respectively. & is the fluid filtration, and E is the Young’s
modulus for the drained solid skeleton.
By the use of Egs.(9) and (10) with the following approximations

Lokl eae= h[lné’és(é—%)} [ttt = %=7)
Lpeeetas=is (145570 (%))

the resultant stresses and the resultant moments per unit length are

aNe={ [ Edt) 1~ )| deen+ vlicom—(we— wi) e |~ BadNy,

(11

AN58={ i :::Edé'/(1+u)}[deeam+ (0= 05 (deem—A0.)— Axeo}]
2Q=3{ [ Bde/ 1+ v)| deesn, o » 12)

amte={ [ B at) 1~ ) dxet vire—(0e—wo) deen |~ BadMse,

AM50={ f :::E§2d§/(1+ V)}[Axeﬁ‘dme—glz(we— we)(dmn—dé‘eam)],

where Ny, M;: are the force and moment resultants due to pore pressure across the shell thickness, respectively,
and are given by
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hi2
(ANye, M= [ {AF), 4P} Ladt. (13)

Furthermore, 4Ny, ANge, 4Qo, AMs, AMse and ANy, AMys are obtained by exchanging the subscripts € and 4 in
equations for 4N, ANeo, 4Qe, AMe, AMes and ANye, AMyse and by changing the sign of 4@x.

A complete set of field equations for 35 independent variables ; 4N, ANs, AN¢o, ANse, AQe, AQs, AMe, AMo,
AM;@, AMae, ANfe, ANfa, AM]E, AM_{E, AU@, AUo, AW, A@e, d@o, A@n, A€em, A&am, AEeam, A&egm, dés;m, A}{e, Aka, AXes,
Axee, Aoe, Ao, A0es, A0er, Aoer, AP is now given by 35 equations, (3), (6)~(8), (10), (12) and (13).

3. Nondimensional Equations

In order to analyze the problem of shells under arbitrary unsymmetrical loads, the 35 independent variables
and the distributed loads mentioned in chapter 2 are expanded into Fourier series. Only the variables which have
not been mentioned in the published paper'® are shown as follows :

oo 2
(AP, ANye, ANys, AMye, AM e} = 0okt Z‘,ﬂ{%ﬂp‘"’, AP, Anp, %Am‘f?, —h~Am<">}cos 6, (14)

where corresponding small letters are adopted as the Fourier coefficients, and ¢ is a reference stress.
Substituting these Fourier series into the above fundamental equations, the equations among the Fourier
coefficients relating to the variables are obtained. From the fluid flow equation the following nondimensional

equation is obtained :
2( A7) n) (n) (n)

S =y ol v (A R L (225 as)
Similarly eliminating the variables from the deformation equations, the second simultaneous differential equa-
tions for the displacement increments duf®, du§®, Aw'” and the rotational increments 4¢:™, 4¢s'™ can be
derived as

A{Z)Y + A ZY + AdZ} = Ad N/) + As{N/} + As( 2} + Add 1), (16)
where {Z}= {Au‘"’ Aul®, Aw'™®, A, APV, {Nsy={An2, AnSD, AmP, Am$P}" and {p}={4pt®, 4p°, A}
Also{ }, (") and (") denote d( )/d&, ( )/or and 6% )/d7? respectively. (=(E/o0)"*t/a) is nondlrnensmnal time,
and { }7 represents the transposed matrix. Ai~As; are 5X5 matrices determined from the shell form and v, and
A~A; are given as follows :

_ r Bay — Bay 0 0 1
Ba 0 0 0 0 n g
0 0 0 0 “yBe 0 0
A= 0 0 0 0|, As=| —Baw: — Baws 0 0 ,
0 0 —A*Ba 0 0 0 —A2yBa A’yBa
0 0 0 0 7
- i 0 0 0 7/1230_ (17)
(100 0 0 -1 0 0
01000 0 —1 0
As=(0 0 1 0 0], A=| O 0 —1
00 000 0 0 0
00 0 00 0 0 0
where A=/h/a. converged enough, and the increments of pore pres-

sure, displacements, strains and stresses with respect

4. N ical Method ) . . ]
umerical Aetho to the time increment are decided. For the solutions

In order to solve the fluid and solid coupling
equations, firstly we assume that the strain rates are
zero in the fluid flow equation, and calculate the
distributions of pore pressure increments under the
given boundary conditions. By substitution of the
obtained pore pressure increments into the shell defor-
mation equations, the increments of displacements
and strains are obtained. Then by using the obtained
strain increments, the modified distributions of pore
pressure increments are calculated. These procedures
are continued until the pore pressure distribution is
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of these equations a finite difference method is em-
ployed and the inertia terms are treated with the
backward difference formula proposed by Houbolt!®.
The integration is carried out numerically by the use
of Simpson’s 1/3 rule. The solutions at any time are
obtained by integration of the incremental values at
each calculating stage.

5. Numerical Example
As a numerical example, the simply supported

porous cylindrical shell made of silicon carbide
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Fig. 2 Cylindrical shell
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=
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0 . ?

time ¢ 0
Fig. 3 Load

ceramics under a semi-sinusoidal internal load with
respect to time, as shown in Figs. 2 and 3, is analyzed.
Viscous fluid is saturated in the shell body, and four
cases of surface boundary conditions on the permea-
bility are examined :
Case 1: Inner and outer surfaces of the shell are
both permeable. ‘
Case 2: Inner surface is permeable, but outer
surface is impermeable.
Case 3: Inner surface is impermeable, but outer
surface is permeable.
Case 4 : Inner and outer surfaces are both imper-
meable.
The geometrical parameters of the shell are as
follows :
a=R, E=s/L, r=1, ' =0, }
y=0, we=w:=0, ws=1.
Boundary conditions at the points A and C are
AUs=AdW =A0s= AN, = AdM.:=0
(Point A),
AU:=4P:=4Qe=ANe=AdM:=0
(Point C).
On the inner and outer surfaces, the following equa-
tions are employed :
Cascl: 4P;=4Py, 4P;= — AP, ]
Case 2: AP;=A4Pn, (3(4Fs)[08)ou=0,
Case 3: (0(4P;)[08)in=0, AdP;= — 4 Pon,
Case 4 : (B(APf)/aC)m=0, (a(APf)/3§)0u1=0
(20)

(18)

(19)
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Fig. 4 Variations of U, at point A with time
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non-porous
2
S
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5
S
S
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Fig. 5 Variations of W at point C with time

The meridional mesh point number is chosen to be
101, and the division number through the thickness is
selected as 21. The increment of time 4¢ is decided as
0.1 ps. These values are obtained in consideration of
convergence of the solutions.

The material constants employed in the calcula-
tion are as follows:

Silicon carbide ceramics:
E»=370 GPa, p»=3.2 g/cm?®,
v=0.16.

Viscous fluid :
0,=0.85g/cm?, 1£,=0.2 Pa-s. : (21)

Poroelastic solid :

E=Em(1_f)2, Pzpm(l—f)+10ff,
a=1—Cn/Co=1—(1—f)?,

f=0.3, =5 pm. )
Now we shall discuss some results of calculations.

In Figs. 4~14 the solid lines, broken lines and two

kinds of chain lines indicate the values for four cases

of surface boundary conditions on the permeability,
respectively. For the reference stress oo, the statical
hoop stress of a cylindrical shell under inner pressure

P oo=PoR/h) is employed.

The variations of meridional displacement U, at
the simply supported edge (Point A: s/L=0), radial

displacement W at the middle cross section (Point C:

5
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Fig. 6 Variations of P on the middle surface at
point C with time
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,Li N, I Cas:2
2k ~-=-= Case3 |
D\kj\ - o
~ -4 N ] . r T T )
0 0.1 0.2 0.3 04 0.5
s/L
Fig. 7 Meridional distributions of Us, W and Pr

at t=0.07 ms

s/L=0.5) and pore pressure P on the middle surface
at point C with time are shown in Figs. 4~6, respec-
tively. Figure 7 illustrates the meridional distribu-
tions of U,;, W and Pr on the middle surface of the
shell at time £=0.07 ms when the shell deforms largely
outward firstly after loading and pore pressure at
point C becomes minimum. Distributions of P; at
point C through the shell thickness at {=0.07 ms and
0.125 ms are also shown in Fig. 8. In Figs. 4 and 5 the
results for the case of a dry shell and for a nonporous
solid shell are also plotted by thick broken and solid
lines, respectively. From Fig. 7 at the initial loading
stage, strain becomes tensile throughout the shell with
the increase of W, and owing to the expansion of pore
volume in the shell body, pore pressure shows negative
value. From Fig. 8 near the inner and outer surfaces
of the shell, there is a remarkable difference between
solutions for each surface permeability condition. In
Fig. 6 ‘this difference is also found on the middle
surface of the shell, and becomes large with the lapse
of time. From the variations of displacements with
time (Fig.5), it is found that in comparison with
nonporous shells, displacements of the porous shells
vary largely and slowly with the lapse of time, and the
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0 0.1 0.2 0.3 04 0.5
t ms
Fig..10 Variations of M, at point B with time

shells saturated in viscous fluid deform more slowly
with time. The difference of displacements for each
permeability condition is small in comparison with the
difference of pore pressure, but tends to become large
with the lapse of time. :
Figures 9 and 10 show the variations of the resul-
tant force N at point C and the resultant moment M.
at point B (s/L=0.1) with time, respectively. The
point B is a position where resultant moments become
large for the statical load. The distributions of axial
stress 0¢ and circumferential stress oo through the
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Fig. 11 Distributions of g and 0s through thickness
at t=0.07 ms

WE, / Ro,

MGoL=01) T L
0 02 04 06 08 1
t ms

Fig. 12 Variations of W and M. with time
(£=0.5, 1.0 ms)

shell thickness at points B and C at ¢{=0.07 ms are
illustrated in Fig. 11. The distributions of Pr near the
inner and outer surfaces of the shell due to the perme-
ability as shown in Fig. 8 has effects on the stress
distributions, and so on the resultant forces and resul-
tant moments. The variations of N with time are
similar to the response of W, and the difference due to
the boundary permeability conditions becomes large
with the lapse of time. The stress distributions near
the shell surfaces has a great influence on M., and the
difference of M. appears greatly immediately after
loading.

Next we shall discuss the influence of the impul-
sive loading rate and the boundary permeability condi-
tions on the inner and outer surfaces of porous shells
upon the displacements and stresses. The variations
of W at point C and M. at point B with time for two
semi-sinusoidal internal loads (continuity time #%=0.5
ms, 1.0 ms) are shown in Fig. 12. For the case of 4=
0.5 ms, the variations of Pr on the middle surface at
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0 02 04 06 08 ]
t ms

Fig. 13 Variations of P on the middle surface
at point C with time

LT 82:2 tp,= 1.0 ms ]
B - Case3 s/L=0.5
- === Case4 t/t=0.5 1
-5 A 1 N L A 1 .
-0.5 -0.25 0 0.25 0.5
C/h

Fig. 14 Distributions of Pr through thickness at point C

point C with time and the distributions of Pr through
thickness at point C at peak loading time #/t,=0.5 are
illustrated in Figs. 13 and 14, respectively. The results
of case 1 and case 4 for %=1.0 ms are also plotted by
thick lines. By comparison with the results for %=0.1
ms (vid. Figs. 5, 6, 8 and 10), for the lower impulsive
loading rate, the difference due to the boundary per-
meability conditions can be seen for the loading time
to, and especially for W, this difference becomes a
little larger with the increase of %. The shells, whose
both surfaces are permeable, are most deformed out-
ward, and the deformation of shells whose both sur-
faces are impermeable is the smallest. Main cause of
the different variations with time as shown in Fig. 12
is due to the difference of pore pressure distributions
in the shell body (vid. Figs. 8 and 14).

Finally comparison between solutions from the
present theory and the thin shell theory which neglects
the effect of shear deformations for the case of £=0.1
ms is shown in Figs.15 and 16. Inner and outer
surfaces of the shell are assumed to be permeable
(Case 1). Figure 15 shows the variations of W and FPr
at point C on the middle surface with time, and Fig. 16
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Fig. 15 Variations of W and Pr at point C with time
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Fig. 16 Variations of N, at point C and M, at
point B with time

illustrates the variations of Ns at point C and M. at
point B with time. In the present numerical example
relatively thick shells, whose ratio of the shell thick-
ness to the mean radius of curvature is about 0.2, are
adopted, so that a little influence of the shear deforma-
tion is found for all components of displacements,
pore pressure and internal forces. Also results from
the thick shell theory which neglects the inertia term
are plotted in Figs. 15 and 16. The displacements and
internal forces are almost similar to the variations of
semi-sinusoidal internal pressure with time until near
the end of loading (0.1 ms). However, the variations
of Pr on the middle surface at point C are different
from other components, and due to fluid viscosity Pr
decreases gradually with time after the end of loading.
This phenomenon also appears a little in displacement
components.

The discussions on the influences of porosity, void
radius and fluid viscosity upon internal forces and
displacements of the shell are omitted here on account
of limited space, but these are almost the same as the
solutions for thin shells™.

6. Conclusions

In this paper we have described the numerical
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analysis of the elastic dynamic problems of fluid-
saturated porous moderately thick shells of revolu-
tion. For the viscous fluid flow equations through
porous solids Darcy’s law has been used, and the
equations of motion and the strain displacement rela-
tions have been derived from the Reissner-Naghdi
shell theory. As the constitutive relations, the consoli-
dation theory of Biot for models of fluid-solid mix-
tures has been employed. The numerical method
selected for this problem is a method using finite
difference in both space and time.

As a numerical example, simply supported cylin-
drical porous shells under semi-sinusoidal internal
loads with respect to time have been analyzed, and the
difference of the response for the different permeabil-
ity boundary conditions on the inner and outer sur-
faces of shells has been discussed. '

From the computations, we found the following.

(1) The boundary permeability conditions on the
inner and outer surfaces of shells have a great
influence on the distributions of pore pressure and
stress components through shell thickness.

(2) This influence upon the displacements is
small in the case of high impulsive loading rate, but
for the low impulsive loading rate, this influence
becomes great. The displacements of the shells whose
inner and outer surfaces are both permeable become
larger than those whose surfaces are impermeable.

(3) From the comparison between solutions from
the present theory and the thin shell theory which
neglects the effect of shear deformations, a little
influence of shear deformations is found on the compo-
nents of displacements and internal forces.
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