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Static Debonding Initiation Stress of Fiber Glass Composite*

Fergyanto Efendy GUNAWAN™*, Hiroomi HOMMA***,
Fenny Tri KURNIAWATI**** and Motoharu YAMAUCHI'

Mesoscale debonding initiation stress of a bundle of glass fibers and epoxy matrix under
static loading is investigated. A special cylindrical bar specimen was designed for the exper-
iment. The specimen contains a bundle of glass fibers in the center and the bundle diameters
were 1 and 2mm. The fiber diameter is 7pum. A static tension test was performed under
the displacement control. The applied load-displacement curve was recorded for each speci-
men and then the debonding initiation load was defined as the deviation point from the linear
curve. In addition, the debonding length was measured directly from the tested specimen.
Using the debonding load measured from experiment, an axisymmetric finite element analy-
sis is performed and debonding parameters K; and K, were computed. The results show the
debonding initiation is fully dominated by an opening mode rather than a sliding mode and
the stress intensity factor K; for the debonding initiation is 2.0E+05 Pa+/m. The mixed mode
fracture takes place in the debonding propagation with constant mode mixity around 41.0
degree and the averaged stress intensity factors are 1.67E+05 Pa+/m and 1.41E+05 Pa+y/m for
the opening and the sliding mode, respectively.
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very important to keep integrity of composite structures.
The interface is also one weak point of failure in a com-
posite structure.

There are many publications concerning microscopic
approach to the interface strength of a matrix and a fiber,
for example Schuller and Liu®, as well as publications
dealing with the interface strength in the mesoscopic level.

It is clear that the knowledge of a mesoscopic debond-
ing behavior in a composite materials is very impor-
tant to provide a bridge between microscopic interface
debonding processes to the macroscopic treatment of the
debonding for engineering application. However, inter-
facial mechanics dealing with the debonding processes is
not fully developed yet to explain complicated debond-
ing processes, because of stress complexity caused by an
interface between two materials.

The fracture parameters of the interfacial crack tip
in a bimaterial, such as energy release rate or J integral,

1. Introduction

Fiber reinforced composite materials have been used
in wide engineering applications. It is well known that the
damages of a composite structure possibly occur in var-
ious mechanisms such as fiber fracture, matrix cracking,
debonding, delamination and fiber buckling. The inter-
face strength between the fiber and the matrix plays a very
important role to transmit the load from matrix to fiber and
to carry a large load as a result. Therefore, the interface is
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stress intensity factor K, and crack opening displacement
COD, have been studied extensively by many researchers.
However, the fracture parameters widely changed from
the one experiment to the other. Usually, the interfacial
crack deforms under a mixed mode of the opening and the
sliding and a mixed mode ratio changes depending on the
loading configuration and the specimen geometry. Con-
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sidering this background, this research devises a specimen
to deal with a debonding process in a simple mechani-
cal aspect and collects basic data to clarify criteria for the
debonding initiation and propagation in the framework of
fracture mechanics. It is necessary to identify the fracture
parameter under a single mode from the mixed mode data.
Sridharan® developed a method based on displacement
to compute a strain energy release rate for each mode.
Cervenka et al.® used extrapolation of displacement fields
behind the crack tip to estimate the stress intensity fac-
tors K; and K,. Ikeda® applied a similar technique to
J-integral to compile the complex stress intensity factor
from experimental data. The simplest method to compute
a single-mode stress intensity factor of an interface crack
was proposed by Bjerkén and Christer® by using a modi-
fied crack closure integral method. Because of its simplic-
ity, this method is adopted in this work.

2. Static Debonding Experiment

2.1 Specimen

The debonding test is carried out using a cylinder bar
specimen that contains a bundle of glass fibers along the
axis. The specimens are fabricated in the laboratory. Glass
fibers of 7 um in diameter are bundled up into 1 mm and
2mm diameters. The fiber bundle is placed in the center
of the mold and then, the unsaturated polyester resin is
poured into the mold with prudential attention to be free of
air bubbles in the specimen. After the matrix is hardened,
the specimen is cured at 75°C for two hours and cooled
down in an oven. Mechanical properties of E-glass and
unsaturated polyester are shown in Table 1. The specimen
geometry and dimensions are shown in Fig. 1 and Table 2.
A v-notch is machined in the middle of the length.

The macroscopic mechanical properties of the spec-
imens are obtained based on the volume fraction of each

Table 1 Mechanical properties of GFRP component

Epoxy Glass Matrix

Young’s modulus (GPa) 76.0 5.4
Poisson’s ratio 0.23 0.32
Density (kg/m®) 2510.0 1165.0
Fiber
Polyester
]
—'&df d
=
]
C
L >

Fig. 1 Specimen geometry and dimension
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component as shown in Table 3.
2.2 Tension test

The specimen ends are firmly fixed into grips
designed to prevent the slip in the grips. The grip is
depicted in Fig. 2.

Load-displacement diagrams are obtained from the
test. - A typical load-displacement diagram is shown in
Fig.3. In figure, the stress is the nominal stress applied

Table 2 Specimen dimension

Geometry 1 mm Fiber Bundle 2 mm Fiber Bundle
Bundle dia. dy (mm) 2.0 1.0
Specimen dia. d (mm) 9.5 9.5
Specimen length L (mm) 72.0 72.0
Depth of notch ¢ (mm) 3.0 3.0
Notch angle (degree) 60.0 60.0

Table 3 Mechanical properties of specimen without a notch

1 mm Fiber Bundle 2 mm Fiber Bundle

Young’s mod. (GPa) 6.18 8.53
Poisson’s ratio 0.32 0.32
Density (kg/m?) 1180.0 1225.0
Fiber vol. frac. (%) 1.11 443
(=]
[=!
B O [
[=) 8.0
=
©
180 Un-scale
2, o9 Unit: mm
50.0 z
Fig.2 Specimen holder
12

Applied Stress (MPa)

0 0.2 04 0.6
Displacement (mm)

Fig.3 Typical load-displacement diagram applied nominal
stress versus deflection.
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to the specimen cross section, which is the quotient of the
applied load and the specimen cross section area.

3. Experimental Results

3.1 Debonding initiation

As shown in Fig. 3, the curve linearly increase with
the displacement in the initial stage although at the
beginning, non-linearity appears due to slight clearance
between the testing fixtures and the grips. When the stress
reaches the critical level, fracture initiates at the notch
root, and then propagates to stop at the boundary of the
matrix and the fiber bundle. When the matrix fracture
takes place, the stress suddenly drops. After that, the stress
increases linearly again with the displacement. At around
8.34 MPa as shown in Fig. 3, the stress-displacement curve
deviates from the linear line. Beyond this point, the test
was interrupted and the specimen was examined to detect
the debonding. The observation indicated that the debond-
ing between the fiber bundle and the matrix took place at
this point. The debonding initiation stress was defined as
8.34 MPa for this specimen.

The debonding initiation stress is plotted for the
tested specimens in Fig.4. Eight specimens are used to
obtain the critical debonding initiation stress for the 2 mm
fiber bundle specimen, and twenty-seven specimens for
the 1 mm fiber bundle specimen. For the 1 mm specimen,
two different depths of notches are machined. As seen in
figure, the debonding initiation stress is not significantly
dependent on the notch depth. Therefore, the debonding
initiation stress is defined as 9.0MPa and 19.6 MPa for
the 1 and 2 mm fiber bundle specimens, respectively.

3.2 Debonding propagation

After the debonding initiation, the applied stress is
increased further so then the debonding area is extended.
After being loaded up to a certain applied stress level, the
specimen is unloaded. The specimen is observed with

30
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Fig. 4 Debonding initiation stress
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a digital optical microscope. The microscopic photograph
is shown in Fig. 5.

As shown in Fig. 5, the debonding area is clearly iden-
tified as the white region. The debonding length is mea-
sured on the photograph then plotted as a function of the
applied stress in Fig. 6.

The debonding length increases with the applied
stress. In the 1 mm fiber bundle specimen, the debond-
ing extends linearly with the applied stress, whereas in
the 2 mm fiber bundle specimen, a large increment of the
applied stress is necessary to expand the debonding area.

4. Numerical Analysis

4.1 Modified interface spring model and crack clo-
sure integral method
The exposition and evaluation of extension of the
crack closure integral method for computing the stress
intensity factor of an interface crack in a bimaterial has
been developed by Bjerkén and Christer®. The authors
also applied the method to a half body of a center
cracked bimaterial specimen and an acceptable solution
is achieved.
In this section, the important formulas for comput-

Fig. 5 Observation of debonding area
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Fig. 6 Debonding length versus applied stress
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ing the complex stress intensity factor are summarized and
two modifications of the previous method are made.

The interface is assumed to be perfectly bonded with
zero thickness. To satisfy this assumption, the coincident
nodes along interface ligament are connected by equation
constraint except the crack tip nodes. In this work, instead
of equation constraints, those coincident nodes along liga-
ment of interface are joined. The pair nodes at the crack tip
are connected using zero length shear and normal springs.
This approach will reduce the complexity in the develop-
ment of the finite element mesh while the zero thickness
and perfect bonding assumption are easily satisfied. In the
development of a finite element mesh, the employment of
equation constraint is far more complicated than joining
the nodes along interfaces. :

In the finite element analysis, spring forces and dis-
placements of nodes n; and n, as depicted in Fig.7 can
be written in a complex number. The springs force can be
written in complex form as follows

F=F,+JF, 1)
=|Fle” @

and the complex relative displacement between nodes n;
and n,

A=A+ JAg 3)
=|Ale 4)
where A, and A; are the relative displacement components
in the normal » and the shear direction s, respectively.

The absolute value of the complex stress intensity fac-
tor is computed by®

IK|= \/ ME* cosh?(re) 5)
with

1 1{1 1
—_—==l=+= 6
E* 2(E1+E2) ©)

where E; = E;/(1 —v?) in the plane strain and £; = E; in

\ F nF 2 Springs
oM S

/2

Crack tip

Equation constraint
n

I—'—.s o Node position before loading
¢ Node position after loading

Fig. 7 Interface spring model
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the plane stress and the bi-material constant €,

=5l 47 2

and ; for j=1, 2,

o= {3 4v; Plane Stress ®)

I71(3-4v)/(1+v;) Plane Strain

with u, v are shear modulus and Poisson’s ratio, respec-
tively.

The stress intensity factor for the normal mode and
the sliding mode are computed respectively using formu-
las,

K =|K|cosy 9
K, =|K|siny (10)

and an absolute stress intensity factor is computed by

Kaps. = K2 +K2. (11)

The mode mixity ¢ is given as

-1

1//—¢+/1 tan 2(2«5)_‘5111(10)_% 12)
where ¢ and A are computed from Egs. (2) and (4), respec-
tively. The bimaterial constant € is computed by Eq. (7).
Bjerkén et al.©© applied a numerical integration to esti-
mate w as a function of € for a few values of w. In this
work, their result is expressed by the following quadratic
polynomial,

w=-0.3317€¢-2.7783¢ (13)

The definition of the stress intensity factor for an
interface crack was proposed by Erdogan? as

I('1+]I(2(I‘)]E

Opt+jos= I
0

14
2nr 1

Above equation shows the dependence of stress inten-
sity factor on the characteristic length lo. Ikeda® derived
an equation in which the mode mixity ¢ is depending on
the characteristic length. He also rewrite above equation
using other characteristic length.

Many ideas have been proposed for the characteris-
tic length, such as a size closed to the process zone by
Tkeda®, the element size ahead of the crack tip by Bjerkén
and Christer®, the crack length by Sun'” and crossing
point of log(c-,) and log(o;) versus log(r) on the ligament
region by Tang and Zehnder®. In this work, the element
length 1.0 mm is taken as the characteristic length.

4.2 Fracture parameter for debonding

Accompanied with experimental results described in
the previous section, a finite element analysis is per-
formed. The ANSYS code is used for the finite element
analysis. The bar is modelled using a linear axisymmetric
element, since the linear element gives better estimation
of a stress intensity factor than a quadratic element®. The
boundary condition and applied loads of the finite element
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model are depicted in Fig.8. In figure, the symbol ‘o’
denotes the applied axisymmetric constraint.

The coincident nodes at the interface along ligament
are joined except nodes at the crack tip. Both nodes are
connected using shear and normal spring elements with
the spring stiffness 1.0E+16 N/m for each spring. These
nodes are separated in Fig.9 for an illustration. Forty
equal sized elements were placed ahead and behind the
crack tip. No friction is assumed between the matrix and
fiber surfaces when the bar undergoes the deformation.
The analysis is performed for two types of grip forces.
In the first analysis, the grip force is assumed to be zero,
and in the second analysis, the grip force is assumed to
be 1N for the 1 mm and the 2N for 2 mm fiber bundle
specimen, and the force is uniformly distributed along the

Applied Stress

[ANERERN

Grip Force

bttt

o

ebonding length—
(o]

i

o

! Fit;/|jatrix

Fig. 8 Boundary condition in finite element model

Debonding Initiation Debonding Propagation

Matrix \
)
Fiber )

3 @

Fig. 9 Specimen model and implementation of springs to the
crack tip
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grip region.

The average value for the debonding initiation stress
of 9.0MPa and 19.6 MPa for the 1 mm and 2mm fiber
bundle specimen, respectively, were applied to the spec-
imen end in the debonding initiation analysis. In the
debonding propagation, the applied stress and the debond-
ing length given in Fig. 6 were employed in the finite ele-
ment analysis. The results from the finite element anal-
ysis in form of the spring forces and the relative dis-
placement of the nodes near the crack tip are depicted
in Figs. 11 and 12, respectively. These figures show the
relation between the relative displacement and the spring
forces for various crack length as well. Both spring
forces increase significantly with the crack length up to the
holder region. At around 15 mm crack length, the crack
tip reached the specimen holder region, so then the spring
forces decrease. The springs are playing an important role
in bridging the flow of stress around the crack tip from
the matrix to the fiber, and the figure shows that there
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Fig. 10 Debonding initiation stress intensity factor

18 : 48
« Sheér Force

17 : 46
z z
g 16 ,,,,,,,, 44 g
& £
g 15Normal-Force e -\ 2/ 42 g
® S
@ 4

14 140

130 0.01 0.02 0.0338

Crack Length (m)

Fig. 11 Spring forces in normal and shear directions for various
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Fig. 12 Relative displacement near the crack tip
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Fig. 13 Ratio of normal and shear stresses at near the crack tip

are more load passes through the springs when the crack
length increase. '

The finite element analysis indicates the flow of the
stresses as shown in the right-bottom of Fig.9. When
the crack lies in the interface, there are no effect of the
first crack on the second crack, because no stresses are
remained on the first crack surface. The stresses at the
matrix are transmitted to the fiber through the interface,
and eventually, the stresses at the second crack tip are
intensified.

For the debonding initiation, the matrix fracture at the
notch tip is assumed to occur in a moment. This assump-
tion is based on two facts. First, the ligament length of the
matrix ahead of the notch tip is quite short. The ligament
has nominal length about 1.25 mm for 1.0 mm fiber bun-
dle diameter and 0.75 mm for 2.0 mm fiber bundle diam-
eter. Second, the matrix is relatively weak and subjected
to a high stress because of the stress concentration at the
notch tip.

The analysis of debonding initiation is begun when
the crack tip of matrix fracture rests on the interface
between the fiber and the matrix. The analysis is done
using the model as shown in left-bottom of Fig. 9.
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Fig. 15 Shearing mode stress intensity factor versus debonding
length

By increasing the applied load, the crack tip is kinked
and propagates along the matrix-fiber interface. The crack
becomes the secondary crack or debonding. The model
used in the finite element analysis for debonding is shown
in the right-bottom of Fig. 9.

The fracture parameters K, K5, Ksp;. and mode mix-
ity y shown in Figs. 14 to 17 were estimated using proce-
dure described in section 4.1.

As shown in Fig. 10, the debonding initiation stress
is fully dominated by the opening mode and the initia-
tion debonding stress intensity factor is 2.0E+05 Pa+ym.
The debonding propagates in a mixed mode condition
with a constant mode mixity of 41.0 degree as shown in
Fig.17. The average opening mode and shearing mode
stress intensity factors are around 1.67E+05Pa+/m and
1.41E+05 Pa+/m, respectively. Observation on the relative
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Fig. 17 Mode mixity y versus debonding length

displacement of first nodes behind the crack-tip in Fig. 12
also shows the mixed mode of deformation. The finite ele-
ment results of the ratio of the normal to the shear stresses
as given in Fig. 13 indicates the same phenomena as well.

By observing the deformation of the whole debond-
ing surfaces, those modes of fracture should be eas-
ily understood. Debonding initiation took place around
v-notch region in which the radial deformation easily took
place, but when the debonding propagates to the certain
length, the radial deformation was restrained by the tan-
gential deformation. This phenomenon is schematically
illustrated in Fig. 18.

As described in section 4.1, the estimation of frac-
ture parameters are deduced from the spring forces at
the crack tip and the relative displacement of the nodes
behind the crack tip. Those forces and the relative dis-
placement depend on the spring stiffness and the element
size employed at the region around of the crack tip. Two

Series A, Vol. 47, No.2, 2004

Less constrained region
I More constrained region

AN

C T/

[ {

Crack initiation Crack propagation

Restrained radial
displacement

Fig. 18 Restrained radial displacement when crack propagated

2x10
o O O

—_ O I'(1 O
7E o K 5 0O 0 i
€15 ]
4l
9
[&]
©
w1
2
7]
c
2
[
% 0.5 Q..
[72]
o
77

o2 '

10° 10" 10%

Spring Stiffness (N/m)

Fig. 19 Sensitivity of stress intensity factors to springs stiffness

sensitivity analyses are performed to study the effect of
the both parameters on the fracture parameters. In the first
sensitivity analysis, the stress intensity factor for the 2 mm
fiber bundle with debonding length of 10.8 mm is com-
puted for varying the spring stiffness from 1.0E+02 N/m
to 1.0E+20 N/m. The results are shown in Fig. 19. The
stress intensity factor becomes a constant for the spring
stiffness greater than 1.0E+10 N/m. Thus the spring stiff-
ness of 1.0E+16 N/m is used for all analysis. The value
seems high enough to satisfy perfect bonding assumption
and for the stable numerical solution.

In the second sensitivity analysis, the element size
was varied in the range of 1.0, 1.3, 1.7, 2.5, 5.0, and
10.0 mm. Those element sizes were employed for the ele-
ments around the crack tip in the 2 mm fiber bundle spec-
imen with 4.5 mm debonding length and then the fracture
parameters K; and K, are computed as shown in Fig. 20.
Figure 20 shows that the stress intensity factor does not
sensitive to the element size.
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5. Conclusions

The static debonding test was performed using speci-
men designed to detect debonding clearly and precisely.
The debonding toughness parameter, a complex stress
intensity factor, which was computed by use of a modified
crack closure integral method for bimaterial, was applied
to debonding analysis. The debonding along the fiber-
matrix interface was caused under the mix mode of defor-
mation after the debonding propagated to certain length.
The debonding initiation was caused under the dominant
mode I of deformation and the debonding initiation tough-
ness was around 22.0E+05 Paym. In the debonding prop-
agation under the mix mode condition, the mode I and
the mode II toughness value are 1.67E+05Paym and
1.41E+05 Pa+/m, respectively.

References

(1) Schuller, T., Becker, W. and Lauke, B., Analytical

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10

129

and Numerical Calculation of the Energy Release Rate
for the Micro Bond Test, J. Adhesion, Vol.70 (1999),
pp.33-56.

Liu, C.H. and Nairn, J.A., Analytical and Experimen-
tal Methods for a Fracture Mechanics Interpretation of
the Micro Bond Test Including the Effects Friction and
Thermal Stresses, International Journal of Adhesion &
Adhesives, Vol.19 (1999), pp.59-70.

Sridharan, S., Displacement-Based Mode Separation of
Strain Energy Release Rates for Interfacial Cracks in
Bi-Material Media, International Journal of Solids and
Structures, Vol.38 (2001), pp.6787-6803.

Cervenka, J. and Kishen, JM.C., Mixed Mode Frac-
ture of Cementitious Bi-Material Interfaces; Part II:
Numerical Simulation, Engineering Fracture Mechan-
ics, Vol.60, No.1 (1998), pp.95-107.

Ikeda, T. and Miyazaki, N., Mixed Mode Fracture Cri-
terion of Interface Crack between Dissimilar Materials,
Engineering Fracture Mechanics, Vol.59, No.6 (1998),
pp.-725-735.

Bjerkén, C. and Christer, P., A Numerical Method
for Calculating Stress Intensity Factors for Interface
Cracks in Bi-Materials, Engineering Fracture Mechan-
ics, Vol.68 (2001), pp.235-246.

Sun, C.T. and Jih, C.J.,, On Strain Energy Release
Reates for Interfacial Cracks in Bi-Material Media,
Engineering Fracture Mechanics, Vol.28 (1987),
pp-13-20.

Tang, S. and Zehnder, A.T., Nickel-Alumina Inter-
facial Fracture Toughness Using Thick Foil Tech-
nique, Engineering Fracture Mechanics, Vol.69 (2002),
pp.701-715. .

Rybicki, E.F. and Kanninen, M.F,, A Finite Element
Calculation of Stress Intensity Factors by a Modi-
fied Crack Closure Integral, Int. J. Frac. Mech., Vol.9
(1977), pp.931-938.

Erdogan, F.,, Stress Distribution in Bonded Dissimi-
lar Materials with Cracks, Transactions of the ASME
Series E, Journal of Applied Mechanics, Vol.32 (1963),
pp-403-410.

JSME International Journal

Series A, Vol. 47, No.2, 2004

NI | -El ectronic Library Service



