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Efficient Iterative Solution for Large Elasto-Dynamic
Inverse Problems”

Fergyanto Efendy GUNAWAN™* and Hiroomi HOMMA***

Convergence of the solver and the regularization are two important issues concerning an
ill-posed inverse problem. The intrinsic regularization of the conjugate gradient method along
iteration makes the method superior for solving an ill-posed problem. The solutions along
iteration converge fast to an optimal solution. If the termination criterion is not satisfied,
the solution will diverge to a solution which dominated by the noise. Reformulation of an
ill-posed problem as an eigenvalue formulation gives a very convenient formula since it is
possible to estimate an optimal regularization parameter and an optimal solution at once. For
very large problems, the fast Fourier transformation could be implemented in the circulant
matrix-vector multiplication. The developed method is applied to some inverse problems of
elasto-dynamic and the accurate estimation was achieved.
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1. Introduction

This paper is dealing with an ill-posed inverse prob-
lem. It is widely known that solving an ill-posed inverse
problem is difficult. In the case of a well-posed problem,
the attention only given to the solution method of the gov-
erning equation. An ill-posed inverse problem needs an
additional treatment in term of the regularization to stabi-
lize the numerical computation. Similar with the conven-
tional problem, when the size of the problem becomes so
large, an iterative solution method is preferable. A large
size of data sometimes unavoidable. For example, data
collected from an experiment of high speed impact of a
small particle with a flexible plate, the sampling frequency
should be very high to capture the event of high frequency
oscillation. For that reason understanding the numerical
behavior of an iterative solution in solving an inverse of
elasto-dynamic problem is necessary.

Recently many researchers deal with application of
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the inverse analysis to some engineering problems. Two
major fields in engineering, i.e., heat transfer"» @ and im-
age restoration® receive much bigger attention than oth-
ers. There are only a few publications concerning with
inverse of elasto-dynamic problems®*®, and no publica-
tion concerning a large elasto-dynamic inverse problem.

In his publication, Inoue™® employed a statistical
method to minimize the noise in data. The numerical in-
version is solved safely via the Tikhonov regularization
and the singular value decomposition (SVD). Doyle®
minimizing the noise by using a digital filter and the in-
version was done in the frequency domain. The frequency
domain approach gives a possibility to solve a large in-
verse problem because the computational can be done effi-
ciently. Even though the frequency domain method could
handle a large size inverse problem, it is rather vague what
criterion should be employed in designing the digital fil-
ter. There is a possibility that the digital filter also remove
the sighificant spectrum on the data. The Tikhonov and
SVD based method have been applied to various inverse
problems and the method works well. The disadvantage
of this method is that the decomposition is costly and only
well suited when the data size is not large. At this cir-
cumstance, an iterative solution method offers an effective
solution.

The termination criterion comes to play when an it-
erative solution method is being used. Basically, a con-
ventional termination criteria such as minimize the objec-
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Fig. 1 An example of the failure of a least-square approach to

an ill-posed problem

tive function, may lead unacceptable solution depending
on the degree of the ill-posedness. It is easily shown that
minimizing only an objective function without any numer-
ical stabilization probably provides a wrong answer. As an
example, a problem of one-dimensional image reconstruc-
tion can be taken. The optimal solution is computed by
minimizing a residual vector r by means of the conjugate
gradient (CG) iterative method and then various conver-
gence limits of residual vector are evaluated. It is shown
in Fig. 1 that for the lower residual vector, the discrepancy
of the estimation and the exact solution becomes larger.

Tikhonov provides a method that an ill-posed inverse
analysis should be solved by combining the minimum
noise effect on the solution and the residual.

There are many iterative solution methods. Without
an additional regularization only CG method suitable for
solving an ill-posed inverse problem. The CG method
which having an inherent regularization is a favorable iter-
ative solution method. On iteration to search the optimal
solution, the CG algorithm regularizes the solution vector.
If careful treatment is not done for the convergence cri-
terion, the obtained solution may be under-regularized or
over-regularized.

As a summary, this paper focuses on an iterative so-
lution method of CG algorithm for solving the ill-posed
elasto dynamic problem. The results are given in the fol-
lowing order:

e A numerical study on convergence properties of
the CG method is given in the next section.

e Accordingly, a combination of the CG method
with the total least-square formulation (TLS) for determin-
ing the regularization parameter is presented.

e The method is evaluated by using a numerical sim-
ulation of some elasto dynamic inverse problems, i.e.,

— A single degree of freedom system (SDOF)
— Force estimation on a lateral impact of a flexible plate
— Identification of viscoelastic properties of GFRP
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2. Convergence of Conjugate Gradient Method and
Total Least-Square Formulation

The problem discussed in this paper is limited to a
linear inverse problem, which can be written as a system
of linear equation

Ax=b )

where A is a nxn system matrix, x is an unknown, and b is
a known right-hand side vector. The solution of x becomes
ill-posed if the matrix A is not invertible. The invertibility
of a system matrix can be quantified by their condition
number. For a convolution problem, the system matrix
A is a circulant matrix of the impulse response function.
In engineering application, the impulse response function
can be estimated by means of a numerical simulation, an
analytical solution, or an experiment. Usually, the right-
hand side vector b is an experimental result in which the
interference of noise to the data is unavoidable. The larger
condition number of the system matrix means the larger
noise effect in the solution vector x. Mostly, the solution
of an ill-posed problem without numerical stabilization is
not acceptable.

Tikhonov(® re-defined the system of algebra equation
Eq. (1) by introducing a stabilization parameter « as,

min{[|Ax - bl + &|lx]l,} 2)
or as normal equation
(ATA+a*Dx=A"b. 3)

For a small-scale problem, the above equation can be
solved via the SVD method. The solution in term of the
SVD is written as,

n o? u,.Tb
X = —; 4
,2{0'24—02 o @
A=Zu,-0',-viT (5)
i=1

If the SVD of the matrix A is available, then the L-
curve technique can be used to compute the regularization
parameter @. The value of @ will lie somewhere between
the highest and lowest singular values. To construct an L-
curve, Eq. (4) must be solved for several values of a and
then the norm of residual vector Ax — b and the norm of
vector x are plotted on an x—y diagram in a log —log scale.
The optimal regularization is the corner of the L-curve as
depicted in Fig. 2.

In case of a large-scale inverse problem, the SVD is
hardly computed, so then the iterative solution method like
the CG method is preferable.

The CG algorithm for solving Eq.(3) can be seen
in many publications. Hansen® proposed an implicit al-
gorithm that can be applied without direct multiplication
AT A, which leads to unneéessary inaccuracy. In next sec-
tion, we only explore the convergence properties of the
CG algorithm.
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Fig.3 An example of inverse of heat conduction problem

2.1 Convergence of Conjugate Gradient method

As stated above, the CG method has inherent numer-
ical regularization. This section examines the effect of the
regularization to the solution. For simplicity, the analy-
sis was performed using an ill-posed 1-D heat conduction
problem as depicted in Fig. 3. The problem having con-
dition number in order of 1.0 E+30. The temperature on
the s side is related with the temperature on the ¢ side by a
convolution equation with a kernel

=372
%34@&-:)2 (6)
K \NTT

k(s—1)=

where k= 1.

In this example, the vector x is a temperature-time
history at an inaccessible location and also as parameter
to be inferred. The right-hand side vector & is a measured
temperature-time history at the accessible side. The ex-
act and the noise-contaminated right-hand side vector are
plotted in Fig.4 (b), while the exact solution is plotted in
Fig.4 (a). The noise assumed has Gaussian distribution
with a ratio of noise to signal 0.01.

The CG iterative calculation is implemented to com-
pute an optimal solution, and the following convergence
criteria are examined:

1. The norm of residual vector ||r]|,,
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Fig.4 The contaminated right-hand side and exact solution
vectors

2. The norm of improvement of the solution vector
[I¢x; —x;-1)ll> and
3. The norm of the solution vector x.

The iteration initialization is assumed as xo =0. This
initialization is similar with the situation having no priori
information before hand. Using CG algorithm, the con-
vergent solution is always obtained”. The convergence of
the CG algorithm to the true solution in the finite number
of iterations is achieved in the absence of rounding error®.

In this section, only a small ill-posed problem is con-
sidered to observe the evolution of solution vector x along
iteration and evolution of convergence-criteria. The results
of this study are shown in Figs. 5 to 9. In this case, the best
solution is reconstructed after 14 iterations as compared to
the exact solution in Fig. 6.

From the results as given Figs. 5 to 9, some properties
are observed. As depicted in Fig.5, begin at the initial-
ization, the solution x approaches the exact solution and
then diverge to a noise dominated solution. Figures 7 and
8 shows both r and x;—x;_; decrease gently until an opti-
mal solution is reached and then both norms oscillates. A
curve similar to an L-curve in the Tikhonov-SVD method
can be constructed along iteration as depicted in Fig. 9. In
the curve, the optimal solution is located in the curve cor-
ner as well.

For a summary of this study, the convergence be-
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tion (x-axis is the normalized time and y-axis is the nor-
malized temperature) v havior of CG algorithm is illustrated in the Fig. 10. The

iteration begin at the initial vector xo, and then the so-
lution converges very fast to reach the optimal solution
XOptimalSolution- 1f one of the convergence criterion is satis-

o Optimal Solution fied, the iteration is finished, otherwise, the iteration will
—— Exact Solution

1.2

continue and then the solution diverges to the Xgeg solution-
2.2 Total least-square method

In the total least-square formulation, the system ma-

trix A and the right-hand side vector b are assumed to be

contaminated by noise, and then total least-squares so-

lution may be obtained by solving the following equa-

tion!,
ATA ATh\( x x
T T =0r. Q)

b’A bbb j\-1 -1
where o1 is the smallest singular value of augmented
0.2 . . : - / matrix [ A b ]. The above equation is for an eigenvalue
0 02 04 0e 08 problem that should be solved for regularization parameter
Fig. 6 The optimal estimated temperature x o and associated eigenvector x. There are many methods
concerning with solution of an eigenvalue problem such
as bisection, Rayleigh quotient iteration, and orthogonal
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Fig. 10 The convergence properties of CG algorithm

iteration®. One approach for solving the TLS problem is
proposed by Bjorck employed the Newton method!D.

In the Bjorck approach, Eq. (7) is rewritten as a func-
tion of o by following steps. Decompose Eq. (7) into two
equivalent form as follow,

ATAx-ATb=02 x (8)

b"Ax-b"b=-c2,, ©))
which can be combined to obtain the following functional
equation for op41:

b'b-b"A(ATA-0?, ) 'ATb-02,,=0.  (10)

Therefore, (ri 41 is the smallest root of the rational
function

h(o)=b"b-b"A(ATA-*"'ATb-0%, (1]
and can be minimized by the Newton method. The New-
ton algorithm for computing o and an associated eigen-

vector can be written as follows:
k=0

Series A, Vol. 47, No. 2, 2004

Initialize (o-1)?
while [[(c®)? - (*D)?||> € do
Solve (ATA - (a("))ZTI)x = ATb kb); CG
(c®+DY2 = ()24 Mlll%&
k=k+1
end while
The above algorithm shows a combination of two iter-
ative methods, i.e., Newton method for searching the reg-
ularization parameter o and the CG for solving a linear
system equation. In case where the system matrix A has
Toeplitz structure, the FFT method can be employed for
matrix-vector multiplication in the CG method. For more
than 1000x 1000 full matrix A, the FFT multiplication is
faster than direct multiplication.

3. Numerical Experiments

In this section, the proposed method is applied to
some problems in the elasto-dynamic. The first example
problem is the estimation of an impulse response function
of a single degree of freedom system (SDOF). The second
is the estimation of the impact force profile, and the last is
identification of viscoelastic material properties. This im-
provement in the identification method may be extended
to more general load profile. It is shown that by apply-
ing an inverse analysis method, the deconvolution can be
solved safely. The number data in following examples are
taken as 2 048 points.

These example problems are having the same govern-
ing equation in form of a convolution integral

b(t)= fm h(t—1t)x(t)dt (12)
0

where h(t) is a weighting function or an impulse response
function. The function is a complete characterization of
the dynamic behavior of a system. In the time domain ap-
proach, the deconvolution of Eq. (12) is transformed into
an algebra equation form as follow,

b=Ax (13)

where A is a Toeplitz-circulant matrix of k and having
size of nxn, b and x are vectors represent the discrete data
of b(f) and x(¢), respectively. The data are sampled at a
fixed interval T =t;,) —t;. The Toeplitz-circulant matrix is
a symmetric matrix with respect to it’s anti-diagonal line
and the matrix is given following,

h(ty)  h(ty) - h(t3) h(t)
h()  h(t1) - h(ts) h(t3)
A=l (14)
h(ty-1) h(tn—2) -+ h(t1) h(ty)
h(tn)  h(tn-1) -+ h(2) h(ty)
For h as the unknown to be sought, Eq. (13) should be re-

arranged as b = Xh, where X is a Toeplitz-circulant matrix
of x.
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3.1 Estimation of the impulse response function of
a SDOF system

The first example problem is estimation of the im-
pulse response function of a SDOF system. The data of
the displacement b and the applied impact force x are nec-
essary for estimation. At beginning, a forward analysis is
performed to establish these data. In the analysis, the dis-
placement b is obtain by solving Eq. (13) for given the
applied impact force x and the impulse response function
h(t). The applied impact force x is taken as a half sine
function and the exact impulse response function is com-

puted by

h(t)= —l—e"é’ wnt sin(wgt) (15)
mwg

where w, = Vk/m and wg = w, y1-¢2. In this example,
the mass m, spring stiffness k and damping ratio { are
taken as 1.0kg, 1.0 E+11N/m, and 0.2, respectively. The
total duration of the analysis is taken as 100 p-second.
The condition number of the problem is about 1.0 E+6.
The impact forces and their associated responses are show
in Fig. 11.

After adding a small noise in the displacement data,
an inversion is performed to obtain the impulse response
function. The noise level is taken as 1% of the data, and
superimposed the data linearly.

The estimated impulse response function using the
CG-TLS method is displayed in Fig. 12. In the same fig-
ure, the exact solution and the solution given by the TSVD
method are presented as well. The figure shows that the
method gives an accurate estimation and the solution is
slightly better than the TSVD method.

3.2 Impact force estimation

In this section, the total least-square formulation and
solution by means of the CG method combined with
the Newton method are employed to estimate the im-
pact force. Since the exact solution of the impulse re-

x107°

Applied impact force
« Displacement

Force (N)
o
(4]
o
Displacement (m)

0 50 100
Time (u—second)

Fig. 11 The applied impact force and associated displacement

response
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sponse function of the plate does not exist, a cross check-
ing scheme is used. Figure 13 shows the cross checking
scheme which shows that at least load cases are necessary.
One from these two load cases would be the calibra-
tion test to obtain the impulse response function. In this
paper, the first load case is a triangular form impact force
and the second load case is a sine form impact force. The
plate is taken as a circular plate and having the thickness of
10 mm and the radius of 100 mm. The impact simulations
are performed numerically via the finite element method.
The finite element mesh of a 10 degree pie section of the
plate is shown in Fig. 14, while the material properties are
tabulated in Table 1.
" As shown in Fig. 13, the first deconvolution is to es-
tablish the impulse response function, and accordingly, the

x107°

Exact Solution

5 100
Time (n—second)

Fig. 12 The eétimated impulse response function and
comparison with the TSVD method

The Cross-Checking Scheme
€Cal.

fcal.

h

Load case 1

Load case 2

-

P _-—: E;a_t; ;[;—c;n_'u;ared
Cal. = calibration

Fig. 13 The cross checking scheme

Fig. 14 Finite element mesh
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Table 1 Material properties of the plate

Property Value
Young’s modulus  200.0 GPa
Poisson’s ratio 0.3
Density 7500.0 kg/m?

> Estimated Load
Given Load

=
O
3
Z
s
3 &
3]
2 WAL,
Y RY Y
04 0.2 04 0.6 0.8

Time in p—-second

Fig. 15 The sine load function case

second deconvolution is to obtain the estimated impact
force. In the first deconvolution, the data set are obtained
from the first load set. The result of the impulse response
function has condition number in order of 1.0E+16. In
the second deconvolution, the estimated impulse response
function is deconvolved with respect to the strain time his-
tory from the second load set. Figure 15 shows the esti-
mated impact sine force and comparison with the given
impact force. The estimated forces in the unloaded re-
gion are oscillating around the zero. This behavior in the
inverse analysis commonly occurs. The unloaded region
contains high frequency components in which the noise
exists. The regularization parameter cuts-out the noise and
the high frequency parts of the signal as well, and so then
the solution vibrates in a low frequency oscillation.

Figure 16 shows the estimated triangular impact force
case. In this case, the impulse response function is esti-
mated based on data from the sine case. The result also
shows the low frequency oscillation in the flat region.

3.3 Identification of viscoelastic properties of
GFRP

Upon application of a load, a viscoelastic material be-
haves like a combination of an elastic and a viscous ma-
terial. Such a material may be expressed as Prony-series
expansion in an integral form using the kernel function of
the generalized Maxwell elements as:

G(t)= iG,-e—ﬁi' +G(c0) (16)
i=1

where G(?) is current value of material property, » is num-
ber of Maxwell elements used to approximate the material
relaxation modulus, G; is give as Ci(G(0) — G(o0)), C; is
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Fig. 16 The estimated triangular impact force

one constants associated with the instantaneous response,
G(0) is initial modulus, G(c0) is final modulus, ¢ is time,
and g; are constants associated with a discrete relaxation
spectrum(!?).

In this example, for simplicity, it is assumed that the
viscoelastic behavior of GFRP may be represented as a
single Prony-series. The extension to the several Prony-
series is straightforward. The single Prony-series expan-
sion can be written:

G() =(G(0)— G(o0))e P + G(c0) (17

The GFRP viscoelastic material is also assumed to deform
under constant bulk modulus.

Many methods proposed are for identification of vis-
coelastic material properties, mostly based on the model-
fitting-like technique. These methods include the Pro-
cedure X method, Collocation method, and Multi-data
method!®. All these methods are only applicable for es-
timation under a special loading function. It is clear that
these special load functions such as impulse function, step
function, slope function and harmonic function are diffi-
cult to realize in experiments.

This section deals with an inverse analysis method
that can be applied for a general type of load profile. The
response and the applied stress are related to each other
as an convolution equation with an hereditary function or
memory function U(¢):

E(t)=f U(t—u)o(u)du (18)
0

Using Eq. (18) and available data e(r) and o(¢), a stable
deconvolution calculation using CG-TLS method can be
performed for U(¢). By definition, €(¢) is an compliance
function if o(¢) in Eq. (18) is an unit step function. By
knowing U(f) and employing an unit step function for
o (1), the above equation can be solved again for an com-
pliance function J(r). The identification of G(0), G(c0)
and S is performed in the following steps:
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Table 2 The estimated viscoelastic parameters

G(o) B

1 Sine function 152 6.5 4940
2 Triangle function 142 7.5 4800
3  Trapezoid function 13.5 6.9 5010

No. Load Profile G(0)

1. A particular values of viscoelastic properties are
assumed for one viscoelastic material, those are G(0) =
14.1 GPa, G(o0)=17.1 GPa, and 8=5000 1/sec.

2. A viscoelastic dynamic finite element analysis is
performed for given data o-(¢) and &(?) is calculated.

3. Solve the deconvolution of Eq. (18) using Newton-
CG method for U().

4. Convolve U(?) and an unit step stress for compli-
ance function J(¥).

5. Applied the least-square curve-fitting to the data
J(®) for G(0), G(e0) and B in Eq. (17).

The estimation was performed under 3 types of load
profiles, and then the estimated viscoelastic parameter are
shown in Table 2. The estimated viscoelastic parameters
shown in the Table 2 are very close to the given parame-
ters. The discrepancy between the estimated initial modu-
lus and the present modulus is less than 8%, and the dis-
repancy of the final modulues G(o) is less than 10%. A
good estimation is obtained for relaxation time 8 where
the discrepancy is less than 5.0%.

4. Conclusions

The improved iteration solution developed by this
work is very useful for large elasto-dynamic inverse prob-
lems. Concerning the developed method, the following
conclusions are deduced:

1. Inthe CG algorithm for solving an ill-posed prob-
lem, the convergence criterion plays a very significant
role. The L-curve like technique can be used to estimate
the optimal number of iterations that satisfies the mini-
mum residual criterion and the minimum norm of x crite-
rion.

2. The total least-square formulation that can be
solved by combination of Newton-CG method gives very
convenient formulas for solving an ill-posed problem
since the regularization parameter and the solution vector
can be solved at once.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)

10§

an

(12

(13)
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