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Geometric Model Based Displacement
Analysis System of Mechanisms*

Naoki UCHIYAMA**, Eiji ARAI***
~ and Masanori IGOSHI****

This paper deals with a software system for the displacement analysis of arbitrary
mechanisms, which has been discussed by many researchers. However, concerning the
topological analysis of a mechanism and the automated generation of joint informa-
tion, several problems remain unsolved. We propose more general methods than those
previously reported in order to handle spatial constraints involving higher pairs by
using solid models and to analyze the structure of the mechanism by considering the
directions of multiple closed loops. Furthermore, the technique of mathematical
programming is applied to the displacement analysis. The practical applicability of
the developed system with the methods described in this paper is demonstrated through
several examples. ‘
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1. Introduction

Several software systems for analyzing kinematic
motion of mechanisms have been developed by many
researchers. = Sheth and Uicker developed a system
called IMP (integrated mechanism program) by
extending the D-H notation method™?. This system
can analyze not only kinematic characteristics but
also static and dynamic ones. It is, however,
restricted to closed-loop mechanisms.  Although
Nagamatsu et al. have extended the IMP to arbitrary
mechanisms including opened- and closed-loop mech-
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anisms, it is not clear how the structures of these
mechanisms® are analyzed. Kuroiwa et al. took note
of this point and developed a method for structural
analysis using a reachability matrix®. However, the
directions of multiple closed loops were not the focus
of their research. To analyze the kinematic motion of
mechanisms numerically, we must orient multiple
closed loops that share several joints along the same
direction. If the closed loops are in different direc-
tions, we will have to change the sign of the value
representing the displacement during calculation.

On the other hand, there still exists a problem of
generating joint information. In most commercial
software, system users need to input joint informa-
tion, such as what type of joint is created between two
or more parts, and which direction the parts can
move. This is troublesome for the users because 3-D
coordinate values of the geometry of mechanism must
be dealt with. To automate this work, several
methods for extracting joint information have already
been presented. Arai and Iwata, for example, defined
a table whose rows and columns denote the contact
states between parts in order to classify a given
contact state into one of the joint types®, such as
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prismatic pair or a revolute pair. Kim and Lee also
developed a series of rules for identifying the joint
type from the given contact states®. Nevertheless,
both methods still leave the ambiguity for the case
that the contact states between parts are very compli-
cated. Moreover, these two methods cannot handle
higher pairs.

In this paper, we first propose a method for
generating joint information from a given geometric
model of a mechanism based on the considerations
mentioned above. Then, a structural analysis method
of the mechanism is developed where multiple closed
loops sharing several joints are extracted so that they
lie along the same direction. A data structure that
facilitates the calculation of transformation matrices
for the parts of the mechanism, is developed. Lastly,
a nonlinear function minimization method is applied
to the displacement analysis of closed-loop mecha-
nisms.

2. Assumptions

In this research, the following four conditions are
assumed.
(1) All parts of the mechanism have rigid bodies.
(2) At least one part is fixed.
(3) All parts of the mechanism consist of either a
planar, cylindrical, conical or spherical surface. The
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contact state of any two parts involves any of the four
types of surfaces.

(4) There is no change in the contact state
between parts during motion of the mechanism.

3. Generation of Joint Information from
Geometric Model

There are several methods for deriving the allow-
able translational and rotational movements that
maintain the contact states between two parts. Those
derivations are mostly accomplished by integrating
the contact states. However, since only simple con-
tact states are considered by those methods, it is
possible that allowable movements cannot be calcu-
lated correctly. We propose a new method for deriv-
ing possible movements by dealing with all contact
states separately.

In our method, local coordinate systems are
defined for each of the contact states shown in Fig. 1.
Table 1 lists the constraints used to create the local
coordinate systems for all contact states. Letters
under column “type” correspond to those in Fig. 1.
Symbols f;, ai, ¢: denote the ith (/=1,2) surface
itself, the central axis of the surface (if the surface is
cylindrical or conical), and the center of the surface
(if the surface is spherical), respectively. Symbols n;,
a;, U: denote the normal vector of the surface (if the

® (h)

M (m)

@) @ (]

p

(m) (0) ®

Fig. 1 Local coordinate systems defined for each contact state
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Table 1 Constraints used to generate local coordinate systems

Contact states
Type Constraints
N 2 Contact region
(a) | planar surf. planar surf. zy//ny, Oponf
() | planar surf. cylindrical surf. z1//ny, Oronfi, 22 /a2, Oyon e
(©) | planar surf. conical surf. zy//ny, Oronf, z2/az, O ona
(d) | planar surf. spherical surf. z1//z2//ny, Oronf1, Oz onc
(e) | cylindrical surf. | cylindrical surf. surface z1/la;, Opona
(f) | cylindrical surf. | cylindrical surf. line zi/lay, Oronay, z2/ay, Oz one
(g) | cylindrical surf. | cylindrical surf. point z1/lay, Oyonay, z2//m, 0z 0np, z3/az, O3 ona
(h) cylindrical surf. | conical surf. line 21 //al, 01 onay, Zo /! as, O, ona
(@) | cylindrical surf. | conical surf. point zi/lay, Orona, z2//m,Oyonp, z3/1as, O3 ona
6] cylindrical surf.| spherical surf. z1/lay, Oy 0ona;, O, oncy
(k) | conical surf. conical surf. surface z1 /a1, O1 onay
(1) | conical surf. conical surf. line z1//a;,O10nay,z2/l1l,0p0nl, z3//az Oz ona
(m)| conical surf. conical surf. point zy/llay, Ojona,z2//m, Oyonp, z3/la;, O3 ona
(n) | conical surf. spherical surf. z1/la, Oyonay, z2//(v1 - p), O2onp, Oz oncy
(o) | spherical surf. | spherical surf. surface 0, onc;
(p) | spherical surf. | spherical surf. point Oroncy, Oz oncy, 21 /22 11(01 - Oy)
s

surface is planar), the directional vector of the axis of
the surface (if the surface is cylindrical or conical),
and the position vector of the vertex of the surface (if
the surface is conical), respectively. Symbols m and
m, [ and I, and p and p, denote the tangential plane to
two contacting surfaces and its normal vector, the line
of contact of two surfaces (if the contacting region
becomes a line) and its direction vector, and the point
of contact of two surfaces (if the contacting region
becomes a point) and its position vector, respectively.
Expression A/ B means that vectors A and B are
parallel, while A on B denotes that vector A is on B.
Table 2 shows the allowable movements of 2
relative to p1 for each of the contact states in Fig. 1,
where symbol M; denotes the matrix that makes the
7th local coordinate system coincide with the world
coordinate system. Symbols, Tz, Ty, Tzs, Trys, Toy,
Tsss denote the matrices that represent the allowable
translational and rotational movements as follows.

1000 cd —sp 0 0
0100 sp cp 0 0
=001 2 =0 o 1 0of
0001 0 0 01
cp —s¢p 0 0
s¢ cp 0 0
Tz"{o 012}’
0 0 0 1
cp —s¢p 0 x
. _|s¢ cp 0 y
o0 1 0
0 0 01
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Table 2 Allowable movements for each contact state

Type Allowable movements Type Allowable movements
@ M{'T, M, O | MIT MM T MoM3'T M
(b) Mi'T o MM;'T M, ) M T, MM T g M
© MiT, M MG'T M) ® Mi'T M,
(@ M, MIMG'T o M, W | MT MM T MMS'T M3
(© Mi'T M, m) | M{'TMMS'T,, MoM;'T M
O MITMMTM, M | Mi'T MM TMM'T gy M
® |M'T MM, MM5'TM; || (0) Mi'T gy
) M T MM T M, ® Mi'T o MM5' T g, M,
cp  s¢s@  sgcd 0
0 cd —s 0
Tos= »
—s¢p  cgsf cgcd 0
0 0 0 1
cpcd  chsgsd —spcl@  chspcld+spcd 0
Toso= spcy  spsgsf+ cpcl  spspcld—cps8 0 ~
—s¢ c¢sf cdcl 0
0 0 0 1

where z, y, z denote the translational displacement
along, and 4, ¢, ¢ denote the rotational displacement
about the three axes of the local coordinate system,
and s=sin and c¢=cos.

The case that several contact states exist
between two parts is dealt with as closed loops. For
example, if there are two contact states between two
parts, planar contact and cylindrical contact, as
shown in Fig. 2, relative movements between these
two parts must satisfy the following constraints :

hJo=1, Ji=Mi'TweM, Jo=M"T\wM, (1)
where I denotes the 4 X4 identity matrix, and Ji and
J> correspond to (a) and (e) in Table 2. In this way,

JSME International Journal

NI | -El ectronic Library Service



The Japan Soci ety of Mechani cal

Engi neers

Fig. 2 Multiple contact states between two parts

our method can handle the case in which multiple
contact states exist between two parts without the
need for integrating the contact states.

4. Structural Analysis of Mechanisms

4.1 Extraction of closed loop considering its
direction
Kuroiwa et al. have developed a method for
analyzing structures of mechanisms by using the rea-
chability matrix®. In their method, however, the
directions of closed loops that share some common
joints are not considered. If there exist several closed
loops that share common joints, they must be extract-
ed so that they lie along the same direction. Since the
allowable movements between two parts are relative,
a fixed part and a moving part of a common joint must
coincide in multiple loops. In the following, a new
method for analyzing the structure of mechanisms
considering the directions of closed loops is presented.
We classify the elements of the mechanism as
follows.

(1) Single closed loop
(2) Multiple closed loop
(3) Part not included in any loop

A single closed loop has no joint that is included
in any other loops, while a multiple closed loop means
several closed loops that share some joints. An inci-
dence matrix™ and a cycle matrix” are used to
extract the single closed loop and the multiple closed
loop. The model shown in Fig. 3(a), where p: and Jx
denote a part and a joint respectively, is used to
explain the closed-loop extraction method. We
assume that parts p: and pe are fixed. All fixed parts
are recognized as one part. The incidence matrix for
the model shown in Fig.3(a) is represented by Eq.
(2), where each row and each column denote part
and joint, respectively.
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J1o I——.D 17—|.i 18
P1s P16 l
AN
P1
J10
pPsg
Jj1
J10
Jju Jji2 Js J1
(b)
J1o jo Ja j2
l—' s Js ‘_l
Jju J12 Js J1
©
Fig. 3 An example of mechanism
p ;1 2 3 4 5 6 7 8 9
1&9;1 0 0 0 1 0 0 0 O
2 -11 0 0 0 0 0 0 O
3 0 -11 1 0 0 0 0 O
4 0 0 0 -1-11 0 0 0
5 0O 0 0 0 0 —-11 1 0
6 0o 0 0 0 0 0 0 -1 1
7 6o 06 0 0 0 0 0 0 —1
_ 8 0o 0 0 0 0 0 0 0 O
10 0o 0 0 0 0 0 —-1 0 0
11 0 0 -10 0 0 0 0 O
12 0O 0 0 0 0 0 0 0 O
13 0 0 0 0 0 0 O 0 O
14 0O 0 0 0 0 0 0 0 O
15 6 0 0 0 0 0 0 0 0
16 60 0 0 0 0 0 0 0 O
17 0o 0 0 0 0 0 0 0 o0
18 0O 0 0 0 0 0 0 0 O
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10 11 12 13 14 15 16 17 18 19 20 13 14 15 16 17 18 19
01 1 0 0 0 0 0 0 0 0] 00 0 0 0 0 0
0 0 0 0 0 0 O 0 O 0 O 0O 0 0 0 0 0 O
o 06 0 0 0 0 0 0 O 0 O 0 0 0 0 0 0 0
0o 6 0 0 0 0 0 0 O 0 O 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0 0 0 O 0O 0 0 0 0 0 O
6 06 -1 0 0 0 0 0 0 0 O 0 0 0 0 0 0 O
1 0 0 0 0 0 O O 0 0 O 0o 0 0 0 0 0 0
-1-10 0 0 0 0 0 0 0 0 0o 1 0 1 0 0 0 |
6 0 0 0 1 0o 1 0 O 0 0 1 0 0 0 0 0 0
60 0 0o 1 0 0 0 0 0 0 0 -10 0 0 0 0 0
6o 06 0 -1.0 0 0 O O O O© 0 -11 0 0 0 O
0o 0 0 0 -1 1 0 0 0 0 O 0 0 -1.0 0 0 O
0o 6 0 0 0 -1 0 0 0 0 0 0 0 0 -1 1 0 0
o 06 0 0 0 0 —-11 0 0 1 0 0 0 0 -1 1 0
6o 0 0 0 0 0 0 —-11 0 0 0 0 0 0 0 —-11
6 06 0 0 0 0 0 0 -1 1 o0 0o 0 0 0 0 0 —1]
06 6 0 0 0 O 0 0 0 —1 —1] p 75 11 12 20
(2) 210 0 0 0]
For example, parts p. and ps are connected by 310 0 0 0
in Fig.3(a) so that corresponding elements in the 41-10 0 0
matrix become 1 and —1, respectively. In this exam- 2 8 g 0 1 8
ple, the upper and lower rows are set as 1 and —1, 7 0 0 0 0
respectively, for all columns. The cycle matrix can be 8 0 =1 0 0
obtained by the following calculation. S=10] 0 0 0 0 (4)
L=[-SASH1], (3) 1o 0 0 0
where matrix S is a full-rank sub matrix of a 1210 0 0 0
reduced matrix® of the incidence matrix. S: is the 310 0 0 0
remaining matrix of the reduced matrix. For exam- 410 0 0 0
ple, in Eq.( 2 ), the reduced matrix can be constructed 1510 0 0 1
. 60 0 0 0
by eliminating the first row, then the full-rank sub 71lo o o o
matrix can be constructed from the columns except 810 0o o -1
for the 5th, 11th, 12th,'and 20th rows. Accordingly, S: A cycle;matrix is obtainéd as shown in Eq.(5).
and S: are as shown in Eq( 4 ) / ] 1 2 3 4 6 7 8 9 10 13 14
pjl 2 3 4 6 7 8 9 10 1[-1-10-1000 0 0 00
2y-11.0 0 0 0 0 0 0 L=2|-1-10-1-10-1-1-10 0
3,0 -11 1 0 0 0 0 0 3/-1-10-1-10-10 0 0 0
470 0 0 -1 1 0 0 0 0 400 000 000 0 0 00
5(0 0 0 0 —-11 1 0 0 1516 17 18 19 511 12 20
rpo 00 00 0 0 —11 00 C 0 00100 (5)
810 0 0 0 0 0 0 0 —1 00 0 0 000710
g 8 8 _01 8 8 g 8 8 8 Each row and each column of the loop matrix
Blo 0o 0 0 0 0 0 0 0 represent, respectively, a loop and a joint of the
410 0 0 0 0 0 0 0 0 mechanism. In Eq.(5), the first to third rows repre-
510 0 0 0 0 0 0 0 0 sent a multiple closed loop. Joints ji, /2 and j: appear
60 0 0 0 0 0 0 0 O in the three loops, and s and s exist in both second
790 0 0 0 0 0 0 0 0 and third rows. The fourth row represents a single
B8Lo6 0 0 0 0 0 0 0 0 closed loop because none of the joints in this row are

included in the other rows.

The directions of the multiple closed loop must be
arranged if some of the loops are not in the same
direction. To accomplish this, a new matrix as shown
in Eq.(6) is constructed for each multiple closed loop.
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1j1 6 8 9 10

1 —1—1—10 0 0 0

L= 2{4 -1 -1-1-1-1-1
3l-1-1-1-1-120 0

511 12

100

.010}. (6)
00 1

This matrix represents the three loops shown in
Fig.3(b). If all non-zero row elements have the
same sign for all columns, then all loops in the
multiple closed loop lie along the same direction. For
the case in Eq.( 6 ), we need not change the directions.
The following operations can be made to make the
directions of loops coincide with each other.

(a) Change the signs of all elements in some rows
of the matrix representing the multiple closed loop.

(b) Change the combination of some closed loops
of the multiple closed loop.

The multiple closed loop shown in Fig. 3(b) can
also be represented by an other combination of three
loops as shown in Fig. 3(c). This is represented by
the following matrix.

l 71 2 4 6 8 9 10

L= -1 -1-10 0 0 0

2 -1 -1-1-1-1-1-1

3 0 0 0 —1 -1 0 O

5 11 12

1 0 0

b 0}. (7)
-1 0 1

Operation (a) means that the directions of some
loops are turned to the other way. It is notable that
the directions of all loops in Eq.(7) cannot be made
the same by only operation (a). In this case, we must
employ operation (b). Since the combination of the
closed loops depends on the selection of S; from the
incidence matrix, we can make other combinations by
changing Si. This operation can be performed by the
following calculation.

L,=L;'L; (8)
where Ls denotes the full-rank sub matrix of a loop
matrix L, and L; means a loop matrix representing a
new combination of the multiple closed loop. For
example, Eq.(6) can be obtained from Eq.(8) by
creating Ls from the last three columns of Eq.(7) as
follows.

1 00
L= 0 10| (9)
-101

Using operations (a) and (b), multiple closed
loops can be recognized by considering their direc-
tions. The proposed closed-loop extraction method
can be summarized as follows.

(step1) Make a loop matrix and extract all

JSME International Journal
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multiple closed loops. Then, generate different

matrices for each multiple closed loop. If no multiple

closed loop exists, then exit. Otherwise, let L: (i=1,
-, n) be each matrix and i<1. Go to (step 2).

(step2) If 7>, then exit. Otherwise, go to (step
3. .

(step3) Decide whether all non-zero elements
have the same sign for all columns. If yes, then i<
+1 and go to (step 2). Otherwise, go to (step 4).

(step4) Find the subset of rows for which all non-
zero elements are the same by applying operation
(a). If such subset is found, then 7<—7+1 and go to
(step 2). Otherwise, go to (step 5).

(step5) Change the combination of loops con-
structing L; by applying operation (b), then go to
(step 4).

By this procedure, it is guaranteed that the direc-
tions of multiple closed loops become the same.

4.2 Data structure of mechanism for displace-

ment analysis

We propose the data structure of the mechanism
that forms a tree in order to analyze the displace-
ments simply. Figure 4 is a data structure of the
mechanism shown in Fig. 3(a). Circles represent the
single closed loop, the multiple closed loop or a part
that is not included in any closed loop. Those circles
are called structure element nodes. For example,
node N represents a multiple closed loop that consists
of three loops 4— /%, and node Ns, a single closed loop

Fig. 4 Data for transformation matrix generation
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Table 3 Loop data
Loop' Elements and thier order
h (1 &ps)-Js-Pa-ja-p3-ja-p2- J1
b (p1 & po) - j11 - P8 - j10 -P7-Jo - P - Jg - P5 - Je - Pa-Ja-P3 -Jo - P2 - ji
I3 (P1&po)-j12-Ps-ja-Ps-Jo-Pa- ja-P3-ja-p2-ji
L P15 - j20 - P18 - j19 - P17 - j18 - P16 - 17

that consists of only one loop /4. The other structure
element nodes represent all parts that are not included
in any closed loop. A joint adjacent to two different
structure element nodes is represented by a block, and
is called a joint node. Long circles included in each
structure element node represent the part adjacent to
the joint nodes. A long circle node shown in the upper
portion of each structure element node is called an
upper adjacent node, while that shown in the lower
portion is called a lower adjacent node. The upper
and lower adjacent nodes denote parts that are adja-
cent to those represented by their upper and lower
nodes, respectively. For example, parts ps and ps in
Fig. 3(a), the lower adjacent nodes of N, in Fig. 4, are
adjacent to parts pi and pu1, the upper adjacent nodes
of N, and MNs, respectively. If the structure element
node denotes a part, then the upper and lower adjacent
nodes denote the same part. The root node of the tree
structure denotes parts corresponding to the fixed
parts, or the single closed loop or the multiple closed
loop including the fixed parts. The upper adjacent
node of the root node corresponds to the fixed parts.
In each structure element node, the number of upper
adjacent nodes is one if we regard the fixed parts as
one part, whereas the number of lower adjacent nodes
of all leaf nodes of the tree is zero.

The structure element node for the single closed
loop or the multiple closed loop has pointers to other
data called loop data as shown in Table 3, where 5i— /4
correspond to those in Fig. 4. In each loop, parts and
joints are connected alternately according to the loop
direction. The first part of the loop data corresponds
to the upper adjacent node of each structure element
node. For example, the upper adjacent node of struc-
ture element node Ns in Fig. 4 corresponds to the first
part of loop 4 in Table 3. The first loop of the
structure element node must correspond to any loop
that includes the upper adjacent node. For node M, all
loops include the upper adjacent nodes, 1 and po;
therefore / is adopted as the first loop. The second
loop must include at least one part of the first loop,
and that part must be the first part of the second loop.
Similarly the third loop must include at least one part
that is in either the first or the second loop, and that
part must be the first part of the third loop. The loop
data of the multiple closed loop are generated accord-
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ing to this procedure. Using this data structure,
transformation matrices of all parts can be readily
calculated.

5. Displacement Analysis of Mechanisms

5.1 Displacement calculation of joints of closed-
loop mechanisms by nonlinear function
minimization method

A nonlinear function minimization method is
applied to the displacement calculation of the joints of
the closed-loop mechanism. The movement of one
multiple closed loop consisting of ¢ loops is con-
strained by the following equation.

JtJim=1I, h=1, -, q, (10)
where J# denotes the matrix representing the possible
movements of the 7th joint of the 4th loop of the
multiple closed loop. The symbol ¢(%) is the number
of joints included in the /4th loop. Elements e; on the
left except for the fourth row in Eq.(10) must meet
the following twelve equations from the right in Eq.
(10).

{ef}—l=0, if i=j5 .

el=0, otherwise’ l

Equation (11) can be solved as the following

nonlinear function minimization problem.

q 12
min 3, 3 (f4)’, (12)
where f{ denotes the kth equation of the twelve
equations shown in Eq.(11). The solution of Eq.(11)

exists if and only if the following condition is satisfied
after minimizing Eq.(12). ‘
2

3 S (=0, (13)

In the current implementation, we use the
Davidon-Fletcher-Powell method® to solve Eq.(12).

5.2 Generation of transformation matrices

We explain how the transformation matrices for
all parts of the mechanism are generated from the
data structure mentioned in Section 4.2. The same
mechanism shown in Fig. 3(a) and its data structure
shown in Fig. 4 and Table 3, are employed to elucidate
our method.

First, root node of the data structure is consid-
ered. If root node represents a single closed loop or a
multiple closed loop, displacements of all joints includ-
ed in the loop are calculated by the method described
in Section 4. 1. After the calculation, the transforma-
tion matrices for moving all parts included in the loop
are generated. In this case, the transformation
matrices for moving parts included in /4 are made
according to the sequence of the first row in Table 1
as follows.

P1&9:I, P4:P1&9J5, P3=P4J4, P2=P3Jz,
where P; denotes the transformation matrix- for

=1,--,3,7=1--4. (11)
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moving part pi. Similarly, the transformation
matrices for moving parts included in %~ can be
obtained according to the sequence of the second row
in Table 3.

Ps=Podu, Pr=PJw, Ps=PiJs, P:=PsJs.

Then, loop % is considered. However, the trans-
formation matrices for all parts included in loop &
have already been calculated, so all calculations nec-
essary for node N, are done. Next, nodes N: and N;
are focused on. The transformation matrices for
parts of the upper adjacent nodes of N. and N; are
calculated using the matrices for the part of the lower
adjacent node of M and its adjacent joint nodes,

P10=P5J7, Py =P:J;.

Since nodes N; and Ns denote the parts, we shift
to the lower nodes Ns, Ns and Ns. The transformation
matrices for these nodes can be generated using those
for the lower adjacent nodes of N; and Ns, and their
adjacent joint nodes.

P13:P10J14, P15=P10J16, P12=P11J13.

Since node Ns represents a single closed loop, we
must calculate the transformation matrices for parts
included in it. If a displacement is given to any of the
joints included in this single closed loop, the displace-
ments for other joints of this loop must be calculated
by the method explained in Section 5.1. Then, the
transformation matrices are calculated according to
the sequence of the fourth row in Table 3 as follows.

P18:P15J20, P17:P18J19, Pis=PrJss.

The transformation matrix for the upper adjacent
node of N; is generated in a simijlar manner.

Py=PisJss.

In this way, we can obtain the transformation
matrices of all parts of the given mechanism using the

0

OlA
7

o

OfA
4

(a)

Fig. 5 Example 1
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data structure as shown in Fig. 4 and Table 3.
6. Examples

The mechanism shown in Fig.3(a) is modeled
using a geometric method as shown in Fig. 5 on the
computer. The proposed method is applied to this
model. For simplicity, all joints of the mechanism are
regarded as those of the cylindrical contacts shown in
Fig.1(e). We assume that parts p1 and ps are fixed
parts. Joint information is automatically generated
from the geometric model by the method described in
Section 2. The data structure shown in Fig. 4 is
obtained by the method explained in Section 3. By
inputting the displacements as shown by the arrows in
Fig.5(a) to joints /i, s, jis, j1z such that they rotate
about each cylindrical axis, we can obtain the motion
of the mechanism as shown in Fig.5(b). Next, we
designate only part p as the fixed part and input the
same displacements ; then, the mechanism is moved
as shown in Fig.5(c).

Fig.6(a) is an example of a mechanism that has
a contact state between planar and cylindrical sur-
faces. Figure 6(b) is its disassembled state. Table 4
shows all relations among parts, joints and contact
states of the mechanism. From this table, we can see
that there are three independent loops that share some
common joints. Part ps is designated as the fixed part.
Loop data are generated as shown in Table 5 where
all loops are in the same direction. By rotating part
1 about the cylindrical axis, as shown by an arrow in

Table 4 Structure of mechanism in Fig. 6

Joint No. Part No. Iggtedg{
1 1 2 (b)
2 1 3 (@
3 1 3 ()
4 2 3 (a)
5 2 3 ©

© (@

Fig. 6 Example 2
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Table 5 Recognition result of loops for mechanism
in Fig. 6

No. Elements and their order

P3-h-P1-j1-P2-ja-D3
2 Pi-jL-p2-j5-P3-j2-p1
D3-j2-P1-j3-D3

Fig. 7 Example 3

Fig. 6(a), namely, by giving a displacement to joint
73, we can obtain the movements shown in Figs. 6(c)
and (d).

The final example shown in Fig. 7(a) is a very
complex mechanism that consists of an air cylinder
and a parallel linkage. Its disassembled state is shown
in Fig. 7(b), and the relationship among parts, joints
and contact states are shown in Table 6. There are
seven independent loops sharing common joints in the
mechanism, and they are recognized as shown in
Table 7. All loops are in the same direction. Part ps
is designated as the fixed part. By translating part p:
along its cylindrical axis as shown by an arrow in Fig.
7(a), namely, by giving a displacement to joint s, the
mechanism behaves as shown in Figs. 7(c) and (d).

7. Conclusions

In this paper, a new displacement analysis method
for an arbitrary mechanism has been proposed. First,
we have presented an automatic generation method of
joint information from a geometric description of the
mechanism. This method can handle a very complex
joint consisting of multiple contact states including
higher pairs. Then, a structure analysis method has
been developed considering the direction of multiple
closed loops that share some common joints. A data
structure has also been proposed to easily generate
the transformation matrices for all parts of the
mechanism. Moreover, a nonlinear function minim-

Table 6 Structure of mechanism in Fig. 7

Joint No. Part No. E();stcagtf Joint No. Part No. Ignl?ela‘g:
1 1 5 (e) 9 2 10 (e)
2 1 6 (e) 10 3 10 (a)
3 1 7 () 11 4 5 (e)
4 1 8 (c) 12 4 6 (¢)
5 1 9 © 13 4 17 (0
6 2 3 (e) 14 4 8 (e)
7 2 9 (a) 15 4 10 (e)
8 2 9 (e) 16 4 10 ®©)

Table 7 Recognition result of loops for mechanism
in Fig. 7

Z
c

Elements and their order

Pa-j12-Pe-j2-P1-jt-Ps-ji1-pa
P1-j1-ps-jit-pa-ji3-pr-j3-pi
P1L=J1-P5-jil -Pa-j1a - P8 - ja-P1
PL-ji = P5-ji1 - P4 - jis - Pio - jo - P2 - J7-Po - js - P1
P1-J1-ps-ji-pa-jie - pro-jo-p2-j1-po-Jjs-p1
P10 - jo = P2 - jo - P3 - ji0 - P10
P2-j1-p9-jg-p2

S0 D WY —

ization method has been applied to the displacement
calculation of the closed loops. Finally, the
effectiveness of our method has been demonstrated
through several examples.
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