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Study on Treatment with Respect to

Idiopathic Scoliosis*
(Sensitivity Analysis Based on Buckling Theory)
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A hypothesis that the thoracic idiopathic scoliosis is buckling phenomenon of the
fourth mode induced by the growth of thoracic vertebral bodies was presented in the
previous work by the authors using numerical simulations with finite element model of

the spine.

If the hypothesis is acceptable, sensitivity function with respect to the

critical growth of thoracic vertebrae on the maximization problem of buckling load
with the fourth buckling mode gives us useful information to improve and develop
treatments for the idiopathic scoliosis. The numerical results analyzed by the finite
element method demonstrated that the sensitivity function is high at the articular
capsules of the intervertebral joints, the intervertebral disks, the costotransverse joints
and the costovertebral joints around the apex of the curvature in the case of the

thoracic idiopathic scoliosis.
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1. Introduction

Idiopathic scoliosis is known as a spinal irregular-
ity with lateral curvatures that appear during adoles-
cence, especially the growth spurt, without any
remarkable abnormality of the vertebrae or associat-
ed musculoskeletal condition. A typical case has an
apex of the lateral curvature in thoracic region and is
called the thoracic idiopathic scoliosis. In cases that
the brace treatments are insufficient, operative fixing
treatments are performed to correct the curvature
and prevent the progression. Growth arresting occurs
by the spine fixing operation, so it is desired to
develop more effective treatment using minimum
fixation.

With respect to mechanical etiology of the
idiopathic scoliosis, a large number of hypotheses
have been presented. In the previous work, the
authors” reviewed them and presented a hypothesis
based on the numerical simulation with finite element
model of the spine that the thoracic idiopathic
scoliosis is a buckling phenomenon of the fourth mode
induced by the growth of thoracic vertebral bodies.

If the hypothesis is acceptable, to find the most
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sensitive parts to maximize the critical growth gener-
ating the fourth buckling mode gives us useful infor-
mation to improve and develop treatments for the
idiopathic scoliosis.

Meanwhile, one of the authors®~® proposed a
solution of structural optimization problems to deter-
mine boundary shapes of linear elastic continua that
minimize deformation by external forces and maxi-
mize buckling load, or the like. With this solution,
boundary shape is modified with sensitivity function
that is defined by the variational ratio of objective
functional with respect to variation of each point on
boundary in the outward normal direction. The sensi-
tivity function can be calculated using optimality
conditions derived theoretically.

This paper presents the outline of the theory on
the maximization problem of the critical growth of
thoracic vertebrae and the numerical result with
respect to the fourth buckling mode. If the fourth
buckling hypothesis is acceptable, these results denote
that the high parts in the sensitivity function indicate
significant parts to correct the curvature and prevent
the progression of the thoracic idiopathic scoliosis.

2. Shape Optimization Problem with Respect
to Buckling

The shape optimization theory of linear elastic
continua with respect to buckling was presented in the
previous paper by one of the authors®. In this section,
the theory is modified with initial strain problem.

2.1 Formulation of domain variation

Let us consider that a linear elastic continuum
defined on a three dimensional bounded domain £2C
R?, and its boundary I, varies to a three dimensional
bounded domain 2:C R®. This domain variation can
be described with a one parameter family of continu-
ous mappings Ts(X): 22X xE8s, where s is a
parameter to express domain variation history.

2.2 Formulation of buckling loading factor
maximization problem

When the growth is given by the bulk strain as
used in the previous paper”’, maximization problem of
the critical growth with respect to the domain varia-
tion is formulated by the following equations.

min—¢& such that (1)
oc R

a(u®, vN=g(ef, v@) ¥P€U Vo9<sU (2)
alu, v)=—td(u®, u,v) uslU VoS U(3)
where the bilinear forms a(-, *), a-, +), and the

trilinear form d(-, -, +) are defined by
alu, v)zj;cijkluk,lvi,jdx (4)
ac(e®, U)EfCijkzégzL’i,jdx (5)
2
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A, u, 0)= [ Conullitimvnude (6)

Equation (2) denotes the variational form to
determine the prebuckling displacement «'¥=
{2{”}i_1,23 due to the generation of the bulk strain e®=
{€%}iio1.25 using the virtual, or adjoint, displacement
vector v 0={v®},1.5. Equation (3) denotes the
variational form of the eigen-equation for the buckl-
ing loading factor ¢ and the buckling mode u=
{#:}i=123 using the virtual, or adjoint, displacement
vector v={v;}i-123. The notation U denote admissi-
ble set of the displacements satisfying boundary condi-
tions. The tensor {Cisd}isri-123 denotes the Hooke
stiffness. In this paper, tensor notation with sub-
scripts, the Einstein summation convention and the
gradient notation (+),;=d(+)/0z:, x={x:}i-12:E R, are
used.

Applying the Lagrange multiplier method, or the
adjoint method, and the formula of the material deriv-
ative, the optimization problem is rewritten by the
stationary problem of the Lagrange functional L(u, v,
u'%, v'?) defined by

L=—¢—a(u, v)—&d(u'®, u, v)

+a(u(0), U(O)) _ CZE(EB, U(O)) ( 7 )
where v={v:}i=123 and vO={v®}:21.2: were
introduced as the Lagrange multipliers, or adjoint
variables.

The derivative L{u, v, «®, v'”) with respect to s
is derived using the velocity function V(x)=0Ts(X)/
0s=0Ts(Ts ' (x))/0s, XE, x =25, as follows.

L=—¢—alu', v)—alu, v)—d(u®, u, v)

—&d(u™, u, v)—&d(u®, w', v)—&d(u®, u, v’)

+a(u'”, v+ a(u®, v¥)—ale?, v )+ (V)

. (8)

where (+) denotes the material derivative, and ()’
denotes shape derivative with respect to domain vari-
ation under a spatially fixed condition. The linear
form /s( V) of the velocity function V is given by the
following equations.

1:(V)= [ GV dr (9)
G=— Cijkluk,él)z’.j_ gCijklul(z%um,iUm.j
+ Cinitts v — Ciinierivs?) (10)

where v={v:}:-123 denotes the outward unit normal
vector. From Eq.(8), the following optimality condi-
tions with respect to u, v, #'®, v'” are obtained.
alu, v)+ed(u® u, v)=0 VYveU (11)
alu’, )+ d(u®, u’, v)=0 VwueEU (12)
du®, u, v)=—1 (13)
a(u®, v ") =ale? v) Vo eEU (14)
a(u®™, vN=td(u™, u,v) Yu®<€U (15)
When #© and # are determined by Eqs.(2) and
(3) respectively, Eqgs.(11) and (14) are satisfied.
Equations (12) and (15) are the adjoint equations to
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determine the adjoint displacements v and 2.
Comparing Egs.(11) and (12), the self-adjoint condi-
tion #=v holds true for this problem. Equation (13)
can be used for normalizing conditions to determine
the magnitude of the eigen-mode #. When «©, v?, u
and v are determined to satisfy Egs.(11) to (15), the
derivative of the Lagrange functional is expressed as
follows.

L=1(V) (16)

From the fact that the vector function Gv is a
coefficient function with respect to velocity V that is
the derivation of the design function 7s, Gv indicates
a sensitivity function of the buckling loading factor
with respect to variation of each point on boundary in
the outward normal direction. The sensitivity func-
tion is also called a shape gradient function. The
scalar function G is the magnitude of the sensitivity
and called the shape gradient density function.

3. Finite Element Model of Spine with Thoracic
Cage

The spinal finite element model constructed in
this study is shown in Fig. 1. This model consists of 6
cervical vertebrae, 12 thoracic vertebrae, 5 lumber
vertebrae, intervertebral disks, intervertebral joints,
12 rib pairs, costovertebral articulations, costotrans-
verse articulations, costicartilages, and sternum, ex-
cluding the atlas, sacrum, and coccyx. In this study,
the muscle system supporting the spinal column
remained out of consideration because instability
resulting in a disorder is caused by a spinal deformity
that the normal human muscle system cannot control.
For geometrical shapes of spinal elements, commer-

Fig. 1

Finite element model with thoracic cage
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cial data of three-dimensional spine surface (View-
point Premier, catalog numbers of VP2886 and
VP3611, Viewpoint Corporation, 498 7th Ave. Suite
1810, New York, NY 10018, USA) was used. Verte-
brae were divided into about 40 subdomains respec-
tively. The finite element meshes were made in their
respective subdomains using a solid modeler (I-DEAS
Master series version 2.1, SDRC, 2000 Eastman Drive,
Milford, Ohio 45150-2789, USA) and combined.
Manual modification was made to improve element
qualities. The model comprises of 68,582 elements
and 84,603 nodes, using hexahedral elements in 889
of the total elements, and pentahedral elements par-
tially as well as a few tetrahedral elements. The
element qualities are shown in Table 1.

The aspect of the ninth and tenth thoracic verte-
brae (T9 and T10) is shown in Fig. 2. Each vertebra
consists of cancellous bone on the inside of the verte-
bral body and cortical bone on the surface of the
vertebral body, vertebral arch, transverse process,
spinal process and articular process. The interverte-
bral disks consist of nucleus pulposus in the center of
the disks (approximately 609 of radius) and annulus
fibrosus in the exterior of the disks. Adjacent verte-
brae were connected with intervertebral disks and
articular capsules of intervertebral joints. Costal
bones and vertebrae are connected with costotrans-
verse joint and costovertebral joint. Sternum and the
costal bones form first to tenth are combined with
costal cartilage.

The material properties of cortical bones and
cancellous bones in vertebrae, ribs and sternum were
assumed using the data by Yamada'®, since their
materials are so hard that their material properties
Material
properties of intervertebral joints were identified by
the experimental results of bending ligamentous
cadaver spines devoid of musculature by Lucas and
Bresler'”. Young’s modulus of intervertebral disks
was determined by comparing with the reactions of
the thoracic and lumber intervertebral disks to exter-
nal forces of tension, compression and shearing in two

are insensitive to the spinal deformations.

directions and moments of bending in the two direc-

Table 1 Finite element qualities
Elements Warping Distortion Stretch
Cortical bone
Cancellous bone < 43 > 0.6 > 0.05
Costal cartilage
Nucleus pulposus
Anulus fibrosus
Articular < 30° > 0.65 > 0.1

Costovertebral joint
Costotransverse joint
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Table 2 Material properties

Elements Young’s Poisson’s
(histology) modulus[MPa]  ratio[-]
Cortical bone 17000 0.3
Cancellous bone 200 0.3
Nucleus pulposus 0.1 0.3
Anulus fibrosus 2.5% 0.3
Articular capsule (C2-T12) 7.5 0.3
Articular capsule (L1-L5) 0.6 0.3
Costovertebral joint 1.1 0.3
Costotransverse joint 1.1 0.3
Costal cartilage 500 0.3

*Shearing modulus is 5[MPa)]

Articular capsule

Epiphyseal ring
(Cortical bone)
Intervertebral disk:

Anulus fibrosus.
Nucleus pulposus.

3

Hyaline cartilage plate
(Cancellous bone)

‘,.

Cortical bone

(a) Sagittal plane

Costotransverse joint

I
T
]

Costovertebral joint

(b) Transverse plane

Fig. 2 Finite element mesh for the ninth and
the tenth thoracic vertebrae

tions and torsion by Markolf®. Young’s modulus of
costovertebral articulations and costotransverse artic-
ulations were identified with the deformation prop-
erties of costosternal and costovertebral articulations
when loading to ribs obtained by Schultz et al.®
Table 2 shows the material properties of the spinal
finite element model. Figure 3 shows comparison of
stiffness for lateral bending between experimental
results reported by Lucas and Bresler™ and computed
results with constructed finite element model removed
the thoracic cage using a commercial finite element
analysis program (MSC.Nastran version 7.0, MSC.
Software Corporation, 815 Colorado Boulevard, Los
Angeles, California 90041-1777, USA).
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Fig. 3 Comparison of stiffness for lateral bending
between experimental results reported by Lucas
and Bresler” and computed results with construct-
ed finite element model

4. Results of Buckling Analysis and
Sensitivity Analysis

The prebuckling growth deformation #” was
analyzed with generating initial strain (thermal
strain) €= £28;;, where {0:}ij=123 is the Kronecker
delta, on hyaline cartilage plate and epiphyseal ring of
vertebrae from the fourth to the tenth (refer to
Fig. 2). Displacement was fixed only on the adjacent
surface with sacrum. Figure 4 shows the result of the
fourth buckling mode analyzed with the prebuckling
growth deformation that occurred at £2=0.108 which
comes to vertebral body growth of 1.30% in length.
The shape of the fourth buckling mode accorded with
the clinical shape classified as the thoracic type as
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Fig. 4 Fourth buckling mode caused by growth of
the fourth to the tenth vertebral bodies

(a) Global view (b) Looking up

Rear zoom

(¢) Inside zoom (d)

Fig. 5 Distribution of shape gradient density function

shown in the previous paper®.

Figure 5 shows the computational result of the
shape gradient density function G with respect to
maximization problem of buckling loading factor.
The functions #‘”, v'¥, u=v, were evaluated based on
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Vertebral level

Integrated value of sensitivity function

Fig. 6 Integrated values of shape gradient density func-
tion in each component of spine

Eqs.(14), (15), and (11) by a developed program using
a commercial finite element analysis program (MSC.
NASTRAN v.70). The integrated values of G in

each component of the spine are shown in Fig. 6.
5. Discussion

The shape gradient density function G evaluated
by Eq.(10) has the meaning of the variational ratio of
the fourth buckling loading factor with respect to
variation of each point on boundary in the outward
normal direction. The variation of boundary in the
outward normal direction is accomplished by putting
the same material of the spinal parts. Use of harder
material with the same volume for the putting mate-
rial on the boundary make the fourth buckling loading
factor be greater.

If the fourth buckling hypothesis of the thoracic
idiopathic scoliosis is acceptable and the growth part
is correct for patients, the distribution map of G offers
quantitative information for reinforcement with the
same material on the boundary to correct the curva-
ture and prevent the progression of the thoracic
idiopathic scoliosis. Ordinary operative fusion treat-
ments on vertebrae with screws and metallic rods
realize more effective reinforcement than that with
living tissue. The reasonable selection of the fusion
vertebrae can minimize fusion area.

The result shown in Figs. 5 and 6 illustrates that
the shape gradient density function G is high at the
articular capsules of the intervertebral joints, the
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intervertebral disks, the costotransverse joints and the
costovertebral joints between the sixth and the eighth
thoracic vertebrae where the apex of the curvature in
the case of the thoracic idiopathic scoliosis appears.
This result suggests that fusion treatments on the
neighborhood of the apex are most effective to correct
the curvature and to prevent the progression.

6. Conclusion

Based on the fourth buckling hypothesis induced
by the growth of thoracic vertebral bodies concerning
the mechanical etiology of the thoracic idiopathic
scoliosis, this paper presents a theory and numerical
results on the sensitivity function with respect to the
critical growth of thoracic vertebrae on the maximi-
zation problem of the fourth buckling load. The
numerical results analyzed by the finite element
method demonstrated that the shape gradient function
is high at the articular capsules of the intervertebral
joints, the intervertebral disks, the costotransverse
joints and the costovertebral joints between the sixth
and the eighth thoracic vertebrae where the apex of
the curvature in the case of the thoracic idiopathic
scoliosis appears.

This study was supported by a Grant-in-Aid for
Scientific Research (B) of Japan Society for the
Promotion of Science (No.12450047).
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