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A Practical Method for Multi-Objective
Scheduling through Soft
Computing Approach*

Yoshiaki SHIMIZU** and Yasutsugu TANAKA**

Due to diversified customer demands and global competition, scheduling has been
increasingly notified as an important problem-solving in manufacturing. Since the
scheduling is considered at stage close to the practical operation in production plan-
ning, flexibility and agility in decision making should be most important in real world
applications. In addition, since the final goal of such scheduling has many attributes,
and their relative importance is likely changed depending on the decision environment,
it is of great significance to derive a flexible scheduling through plain multi-objective
optimization method. To derive such a rational scheduling, in this paper, we have
applied a novel multi-objective optimization named MOON?** (MOON? of radial basis
function) by incorporating with simulated annealing as a solution algorithm. Finally,
illustrative examples are provided to outline and verify the effectiveness of the

proposed method.
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1. Introduction

Recently, agile and flexible manufacturing has
been highly required to deal with diversified customer
demands and global competition. Under such circum-
stances, multi-objective scheduling has been increas-
ingly notified as an important problem-solving in
manufacturing. However, since the optimization of
scheduling is seriously difficult to solve in itself, its
multi-objective optimization has never been studied
so much previously.

Among them, Murata, Ishibuchi and Tanaka®
studied recently about a flow shop problem under two
objectives such like makespan and total tardiness
using what is known as multi-objective genetic algor-
ithm (MOGA). BogchiV published a book titled
“multi-objective scheduling by genetic algorithm”.
Thereat, flow shop, open shop and job shop problems
were concerned under two objectives like makespan
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and average holding time using a kind of MOGA
named non-dominated sorting genetic algorithm
(NSGA) and elitist non-dominated sorting genetic
algorithm (ENGA). Moreover, Mohri, Masuda and
Ishii led a condition existing compromise between
makespan and total completion time in flow shop
problem. On the other hand, Saym and Karabau®
used branch and bound method for the similar kind of
problem. Parallel machine problem was solved by
Tamaki, Nishino and Abe®® under total holding time
and discrepancy from due date using parallel selec-
tion-Pareto reserve GA (PPGA). Sakawa and
Kubota® took job shop problem under three fuzzy
objectives by multiple deme GA.

However, these studies stay at deriving only
Pareto optimal solution set at most. To work with
the problem more extensively, in this paper, we will
apply a novel approach of multi-objective optimiza-
tion named MOON?*® (MOON? of radial basis func-
tion), which is derived from MOON? (Multi-Objective
Optimization with value function modeled by Neural
Network) @202 It can not only overcome the stiffness
and shortcomings of the conventional multi-objective
optimization methods, but also derive a best-compro-
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mise solution readily in the unsteady decision environ-
ment mentioned already. After giving a general
procedure for solving the multi-objective scheduling
by MOON?, illustrative examples will be provided to
outline the proposed method, and to verify its
effectiveness.

2. Soft Computing Approach for Multi-objective
Scheduling

2.1 Problem formulation

Generally, we can describe a multi-objective
scheduling problem as a multi-objective optimization
problem (MOP) described below.

(. 1) min f(x)={A(x), fo(x), -, fn(x)}

subject to x€X

where x denotes an #-dimensional decision variable
vector, X a feasible region, and f an N-dimensional
objective function vector some elements of which
conflict and are incommensurable with each other. It
should be noted that the above formulation for schedu-
ling refers to integer and/or mixed-integer program-
ming problems'” whose combinatorial nature makes
the solution process very complicated and time con-
~ suming (NP-hard).

As a key issue of such MOP, Pareto-optimal
solution is popularly known. It provides a rational
norm for multi-objective optimization, but never pro-
vide a unique or final solution. For any solutions
belonging to Pareto-optimal solution set, if we try to
improve one objective, we are always urged to
degrade another objective as illustrated in Fig. 1. In
decision problem, therefore, we have to decide a
particular one among a number of solutions by revea-
ling a certain value function of DM explicitly or
implicitly (Expressed as a set of contour curves in the
figure). Eventually, this means the final solution will
be derived through engaging in difficult trade off
analysis among the conflicting objectives.

Generally speaking, solution methods of MOP are
classified into prior and interactive methods. Each

I solution

Fig. 1 Idea of solution procedure in MOP
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method has advantages and disadvantages over the
other. The prior methods try to reveal the preference
of decision maker (DM) separately from the search-
ing process. Hence we are not worried about by
tedious interactions during the searching process.
However, such articulation is inflexible in usual. On
the other hand, though interactive methods can articu-
late elaborately the conflicting objectives, DM must be
always ready for the interactions during searching
process.

Though the recent studies known as meta-heuris-
tic approach such like MOGA®*9 and multi-objective
simulated annealing (SA)*® can deal with the problem
in a certain sense, they can generate only the Pareto
optimal solution set. As supposed easily, the inter-
active methods are not available for these algorithms
that need the hundreds of interactions. In contrast to
it, an approach proposed below (MOON??) can derive
a unique solution that should be the best compromise
of DM. Hence it becomes a powerful tool for the
flexible and agile engineering in real world applica-
tions.

2.2 General framework for practical solution

Since MOON?** belongs to a prior articulation
method in multi-objective optimization, we need to
identify a value function of DM a priori. To improve
such modeling stage, we introduced newly a radial-
basis function network (RBFN; O.®) instead of
usual back propagation network (BPN) employed in
MOON?. Due to the linear characteristic of RBFN,
the computational load is considerably small compar-
ed with BPN. That enables us to model the value
function more readily depending on unsteady decision
environment popular with scheduling problems. That
is, the dynamic adaptation against incremental opera-
tion is more flexible and easier than BPN.

The traditional structure of RBFN is shown in
Fig. 2. There each component of input vector x feeds
forward to the basis functions kA whose outputs are
linearly combined with the weight w to derive the
output g(x) as follows :

Output

Hidden

Fig. 2 Traditional structure of RBFN
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o(x) =2 wihi(x) (1)

Using the training data set such like (&, ¥:) (i=1,
-+, p), sum squared error with a penalty term is
minimized with respect to the weights (y: denotes an
observed output for input x:).

C= 2 (vi— o))+ B, (2)

where A;, (j=1, -, m) denotes regularization parame-
ters.

To train the above RBFN, data regarding the
relative preference of DM is gathered through pair
comparisons among the appropriate trial solutions.
That is, DM is asked to reply which he/she likes, and
how much it is between every pair of the trial solu-
tions. Such responses will be taken place by using
linguistic statements, and later transformed into the
score (Refer to Table 1) like AHP (Analytic Hierar-
chy Process™).

As far as the number of objectives is at most 3, we
can express our preference more favorably compared
with the pair-comparison taken place in AHP. Thisis
because though we are poor at the comparison
between the abstract concepts, e.g., importance
between swiftness and cost, we are easy for the com-
parison between the candidates with concrete con-
tents, e.g., attractiveness between K-rail={swift-
ness: 2 hrs, cost: 4000 yen} and Jrail={swiftness: 1
hr, cost : 6000 yen}. In fact, this kind of pair-compari-
son is very popularly encountered in daily decision
making.

After doing such pair comparisons over & trial
solutions in turn, we can obtain a pair comparison
matrix as shown later in Table 2. Its i-; element a;

represents degree of preference (score in Table 1) of

f? compared with f°. According to the same condi-
tions as AHP such that az=1 and a;=1/ay, it is
necessary for DM to reply only k(£—1)/2 times in
total. We are also easy to examine the consistency of
such pair comparisons from the consistency index
calculated by
CI=(rmax—k)/(k—1), (3)

where 7max denotes the maximum eigenvalue of the
pair comparison matrix. It is empirically known if CI
value exceeds 0.1, there are involved undue responses
in the matrix. In such a case, we need to revise
certain scores to recover from the inconsistency.

Table 1 Conversion Table

Linguistic statement a;
Equally

Moderately

Strongly

Demonstrably
Extremely

Intermediate judgments

kS

O~

74,68
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After all, the pair comparison matrix provides
totally %? training data for RBFN as shown already.
Every objective value of the pair, say, f* and f’
becomes 2N inputs, and ¢-; element @; an output of
RBFN. We are possible to view thus trained RBFN
as an implicit function, or a mapping from a 2N
dimensional space @ to a scalar, i.e. Vzsr: (fi(x),
Fi(x)e@CR™ - a,;=R'. Here, notice that the fol-
lowing relation will hold.

For a certain pair of f7, f7, f*

VRBF(fi, fk):aik2 VRBF(fj, fk):ajk

@fi,%fj . ( 4 )

Now we can rank the preference of any solutions
easily by the output of RBFN, axr calculated by fixing
one of the input vector at an appropriate reference,
say f*:

VRBF(f(x), fR):a*R (5)

That is, trajectories with the same values of
R.H.S. of Eq.(5) provide the indifference curves or
contours of value function imposed in Fig. 1. Such an
ranking is valid as long as the inconsistency of the
pair comparison is satisfied (i.e., CI<0.1).

After all, the foregoing MOP (p.1) is possible to
describe as follows.

(p.2) max Vasr(f(x), f¥) subject to x&X

The above formulation will be supported by the

following proposition.
[Proposition] The optimal solution of (p.2) derives
a Pareto optimal solution of (p. 1) if value function is
identified so as to satisfy the relation given by Eq(4).
(Proof) Let f# (i=1, -+, N) be each value of objec-
tive function for the optimal solution of (p.2), x*,i.e.,
F¥=f{x*) (Hereinafter, discuss in the objective func-
tion space.) First assume f* is not a Pareto optimal
solution. Then there exists a certain f° such that for
37, A<fF—AF, (Af;>0) and fA<fF (i=1,- N, i#
7). Since DM apparently prefers f° to f*, it holds that
Vesr(f°, £2)> Veer(f*, £%). This contradicts that f*
is the optimal solution of (p.2). Hence f* must be a
Pareto optimal solution.

Thus describing the multiple objectives into an
overall one, we can apply a variety of optimization
methods known previously, i.e., nonlinear programs,
direct search methods, and even more meta-heuristic
methods like GA, SA, Tabu search, etc. Among them,
SA is considered favorable due to certain combinator-
ial natures of scheduling problems. Its application is
straightforward since we can evaluate any candidates
under the multi-objectives through Vzsr once x is
given.

SA is viewed as a randomized neighborhood
search algorithm. It uses an analogy with the physical
process of annealing, in which a pure lattice structure
of a solid is made by heating up the solid in a heat
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bath until it melts, then cooling it down slowly until it
solidifies into a low energy stage. During the iteration,
a neighborhood solution is generated randomly around
the current solution, and it is checked if acceptable or
not. Only if acceptable, the current solution is revised,
and the same procedure will be repeated until a cer-
tain convergence criterion has been satisfied. It is
said, due to the stochastic perturbation, the algorithm
can hopefully attain at the optimal point without
trapping into local solutions.

After all, we can summarize the proposed solu-
tion method as follows (Refer also Fig. 3).

1. Generate several trial solutions in objective
function space.

2. Ask the preference of DM through pair compari-
son between every pair of the trial solutions.

3. Train RBF based on the above result.
provide a value function Vzsr.

4. Finally, apply SA to solve the problem (p.2).

5. If DM is unsatisfactory with the result, limit the
searching space around there, and repeat the same
procedure untill he/she likes the result.

In the above approach, since the modeling process
of the value function is separated from the searching
process, DM can carry out his/her tradeoff analyses at
his/her own pace without worrying about the hurried/
idle responses often experienced at the interactive
MOP methods. In addition, since the required
responses are simple and relative, DM’s load in such
interaction is very small. Moreover, modeling by
RBFN can deal adaptively with the change of the
decision environment that makes likely alter the
preference of DM. Even in such a case, its retraining
is easily taken place through incremental operations
against both increase and decrease in the training data
and bases from the foregoing one as will be discussed
_ briefly in the latter. These are particular advantages
for aiming at the agile and flexible decision making.

This

(]
[[Set utopia f” and nadir f© |

[Generate several candidates in objective function space |
T
[]

Ask the preference of DM through pair comparison
between every pair of the candidates

Yes
Trai F based t sult
ain &Jgtain%f‘leva He l?n%?i%‘;’l resu

I Apply SA using derived value function ]

Limit the sgacel

Fig. 3 Flow chart of the proposed solution procedure
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3. Illustrative Example

To examine the effectiveness of the proposed
approach, we solved multi-objective flow shop schedu-
ling problems under two objective functions i.e.
minimization of sum due time delay /i and total
changeover cost fz. We also imposed mild assump-
tions such that any jobs are not dividable, simultane-
ous operation, are inhibited, and processing time and
due date are given.

As a generic property of MOP (subjective deci-
sion problem), it is impossible to derive a preferen-
tially optimal solution only by the mathematically
provided conditions. Hence to verify the effectiveness
of the method in the numerical experiments, we sup-
posed the virtual DM whose preference is given as a
value function defined by

U =] Bud =) T,

=1 i 7
(p=1,2, ) (6)
where w; is a weight factor and p a parameter to
specify the adopted norm respectively. On the other
hand, /" and f7** denote utopia and nadir values
respectively.

Moreover, we need to characterize the virtual
DMs more minutely to simulate their preference i.e.,
subjective judgment in their pair comparisons. That
is, the degree of preference mentioned already in
Table 1 is assumed to be given as

. 7y __ J
1+ [ UGV ]
it U(f)>U(f)

Otherwise

(7)

aijzl/aji
where [ - ] denotes Gauss’s operator. Then to verify
the effectiveness, we compared the result obtained
from the proposed approach to the reference solution
that is derived from the direct optimization under
Eq.(6).

Among the trial solutions generated as shown in
Fig. 4, the pair comparison matrix of the virtual DM
is given as Table 2 based on Eq.(7) (=1, w:=0.3,
w>=0.7). Since only the upper triangular part should
be prepared, total number of such responses becomes
35 in this case (@uwp-naa=9 is implied). Using the

Table 2 Pair comparison matrix (p=1)

F* F* F' F* F° F* F° F° F'
F*T'T 9 3 7 5 3 7 4 6
F*l1/9 1 1/7 1/3 1/5 1/7 1/3 1/6 1/4
F'l1ys 7 1 4 3 1 4 2 3
FPl1y7 3 1/4 1 1/3 1/4 1 1/3 1
FPl15 5 1/3 3 1 1/3 3 1/2 2
F*i1/3 7 1 4 3 1 5 2 4
Fl17 3 1/4 1 1/3 1/5 1 1/4 1/2
Fél1/4 6 1/2 3 2 1/2 4 1 3
F'l1/6 4 1/3 2 1/2 1/4 2 1/3 1
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normalized values of those, we trained the RBFN to
obtain the value function defined in Eq.(5).

We compared the contour lines of preference
(indifference curves) between the supposed and
Veer(f, £¥) in Fig.5 when p=1. Except for the
marginal regions, we confirmed that RBFN could
model the supposed value function correctly*".

Under thus identified value function, we solved
three flow shop scheduling problems i.e.,

1. one process, one machine and 7 jobs
2. two processes, one machine and 10 jobs
3. two processes, two machines and 10 jobs.

Each objective function was specified by generat-

ing randomly the scheduling data within certain

extents i.e., between 1 and 10 for fi and every 4 inter- .

val between 4 and 40 for f respectively.

Regarding SA applied here as an optimization
method, we adopted the insertion neighborhood
method, and gave tuning parameters such that reduc-
tion rate of temperature=0.95, and number of itera-
tion=400.

In Table 3, we summarized some numerical
results in comparison with the reference solutions, and

Table 3 Comparison of numerical results (p=1)

Overall objective func.

Kind of problem”™ Reference Vgpr
1,1, 7 347 3.47
2,1,10 7.95 7.95
2,2,10 3.40 3.40

*Numbers of (process:S, machine:M, job:J)
1

F M
F
LR F P
P F P
° /. 1

Fig. 4 Location of trial solutions

RBFN Output

09 ——

Fig. 5 Comparison of contour of value function (p=1)

*1 Presently f¥ is set at (0, 0)
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provide a Gantt chart in Fig. 6 to give a visual exami-
nation of the feasibility of the result. Same results in
every case ascertain that the proposed method can
solve the problem correctly through accurate
identification of the virtual DM’s preference by Visr.

Moreover, to examine the applicability in the
real-life situation, we decreased the number of trial
solutions gradually from the foregoing 9 to 7 and 5.
Accordingly number of required replies will be de-
creased by 20 and 10 respectively. Those numbers are
small enough for DM to respond acceptably. Also in
every case, we could obtain the same results as shown
in Table 3. This means we can identify the linear
value function correctly with small load of interac-
tion.

Just like the same way, we solved the problems
successfully for the case of quadratic form of value
function as shown both in Fig. 7 and Table 4. From
these results, we can ascertain that our approach is
possible to cope with the various types of value func-
tion.

For further consideration, we should notice the
following points. If we failed to model the value
function properly due to the complicated nonlinearity,
we need to refine it around the first solution until
satisfactory result will be obtained (This happened in

Table 4 Comparison of numerical results (p=2)

Overall objective func.

Kind of problem

Reference Vgpr
(1,1, 7) 1.40 1.40
(2,1,10) 2.92 2.92
(2,2,10) 1.60 1.60

SiMy JllJZlJ]I Js | J7 l

SiM2 Jal Ja | Js ]J9IJ/0]

S:My I Ji II Ja I r.jﬂ I

b

sve| [ o (2] s o] e |
0‘”I;””ll()l”IlISII'IZIOI‘IV;SII”SIO”II3l5llll4|0

Fig. 6 Gantt chart of (2, 2, 10) problem (p=1)

1 RBFN Output

o8 F

0.6 pe-awr
S

04 | e { Original Data

0.2 [

R

penn

Fig. 7 Comparison of contour of value function (p=2)
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Table 5 Load of incremental operation’®

Operation Completely retrain  Use operation
Add/Remove  m3 + pm? + p?m p?

a basis

Add/Remove  m®+pm? +p*m  2m? + pm + p?
a pattern

the Min-max (p=00) case). Such situation happens
also in the case where we need to modify the value
function against moving and/or changed preferences.
To deal with these problems properly, it is necessary
to have a procedure easy for incremental operations
in the network modeling. Regarding this point, RBFN
has a nice property. Noticing the relations in Eqgs.(8)
and (9), for example, revised calculation is given by
Eq.(10) in the case of adding a new training pattern.

Ap:Hﬁer‘f'A (8)
H
Hp+1:[ Tp ] (9)
p+1 }
- - AEIhD+1hT+1A;l
) G 1_ b
Aph=Ap =TT B A by (10)

where A, is a variance matrix, and Hy=(h, hz, -+,
hy») denotes a design matrix. On the other hand, when
removing an old training pattern, we use the relation
in Eq.(11).
Ap'h:h] Ap'
1+h,.-rA};lhi
Load required for retraining by these incremental
operations is roughly estimated as shown in Table 5.
As the number becomes large, the effect of time-
saving is known to become considerably large.

Aph=Ax'+ (11

4. Conclusion

To solve the multi-objective scheduling problem,
in this paper, we have proposed a practical approach
characterized, within the framework of MOON?, by
the modeling process of the value function by RBF
and the adaptation of SA as a optimizer. By thus
developed approach named MOON?®®, we can deal with
the unsteady decision environment popular with the
real-life scheduling problems by virtue of its flexible
and simple practice. Illustrative examples are pro-
vided to outline the proposed method, and verify its
effectiveness.
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