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Abstract

Interactive animation systems often use a level-of-detail
(LOD) control to reduce the computational cost by elimi-
nating unperceivable details of the scene. Most methods
employ a multiresolutional representation of animation
and geometrical data, and adaptively change the accuracy
level according to the importance of each character.
Multilinear analysis provides the efficient representation of
multidimensional and multimodal data, including human
motion data, based on statistical data correlations. This
paper proposes a LOD control method of motion synthesis
with a multilinear model. Our method first extracts a
small number of principal components of motion samples
by analyzing three-mode correlations among joints, time,
and samples using high-order singular value decom-
position. A new motion is synthesized by interpolating
the reduced components using geostatistics, where the
prediction accuracy of the resulting motion is controlled
by adaptively decreasing the data dimensionality. We
introduce a hybrid algorithm to optimize the reduction
size and computational time according to the distance
from the camera while maintaining visual quality. Our
method provides a practical tool for creating an interactive
animation of many characters while ensuring accurate and
flexible controls at a modest level of computational cost.

Keywords: level-of-detail, motion interpolation, mul-
tilinear analysis, geostatistics

1 Introduction

The simulation of a large crowd of human characters has
been widely used in many areas such as film production and
urban engineering. The crowd simulation often requires
significant amount of computational cost for planning be-
haviors of individual characters, synthesizing motions, and
rendering the scene. The level-of-detail (LOD) control is a
technique commonly used to accelerate the simulation and

rendering of a large-scale crowd animation. The basic strat-
egy of LOD control is the elimination of a redundant com-
putation for unperceivable details of the scene. For exam-
ple, the geometric LOD decreases the number of polygons
of the character geometry according to the distance between
the character and the camera. Simulation LOD technique
reduces the computation of physics-based motion genera-
tion by automatically decreasing the degrees of freedom of
dynamics models. Such LOD control is also suitable for
efficiently synthesizing character animations.

Data driven motion generation techniques have been
used for creating natural human animations. The motion
graph technique is suited to crowd animation because it effi-
ciently generates a new motion by resequencing segmented
motion samples. The flexibility of animation controls, how-
ever, depends on the variety of the motion samples. The
motion interpolation technique synthesizes a new motion by
blending several motion samples with weighting functions,
thus providing a continuous motion control with only a few
parameters. For example, curved locomotion can be con-
trolled by blending several walking motions in different di-
rections with a parameter of path curvature. Most methods
separately interpolate a rotational and positional element at
each time and joint. However, such naive interpolation is re-
dundant because human motion data indicates a multimodal
correlation of joints, time series, and control parameters.

To improve computational efficiency, the redundancy of
a motion dataset should be eliminated by a dimensionality
reduction technique such as principal component analysis
(PCA), by which the essential feature of the multidimen-
sional data is extracted. PCA-based methods, however, an-
alyze unimodal correlations separately, for example, only
along the time series. For overcoming this limitation, a mul-
tilinear analysis has been introduced to computer graphics
and vision technologies as a high-order generalization of
traditional multivariate analysis. It extracts multimodal cor-
relations of given data within a multilinear subspace, and
can compactly and efficiently represent a group of motion
samples. Moreover, a multilinear model is well suited to the
multiresolutional representation of motion data.



We propose a practical technique to control a level-of-
motion-detail (Motion LOD). The motion LOD combines a
traditional motion interpolation technique with a multilin-
ear model to optimize the computational cost and interpo-
lation accuracy. High-order singular value decomposition
(HOSVD), which is a high-order generalization of singular
value decomposition (SVD), is used to extract a small num-
ber of principal components from the motion dataset. The
dimensionality of the principal components is automatically
reduced by a greedy search algorithm to optimize a trade-off
between computational cost and visual quality. A nonlinear
regression technique is then used to synthesize an accurate
motion with the control parameter in the low-dimensional
multilinear subspaces. Our algorithm is summarized in the
following three steps:

1. Multilinear analysis of motion dataset

Motion samples compose a motion tensor that is fac-
torized into three correlation components: joint, time,
and sample correlations. We use a HOSVD to simulta-
neously analyze these correlation factors. The original
motion is approximated by a product of reduced com-
ponents, which enables an elimination of the computa-
tional redundancy of existing motion interpolation.

2. Progressive elimination of motion details

We introduce a progressive reduction algorithm to de-
crease the dimensionality of principal components ac-
cording to the distance from the camera while main-
taining visual quality. We use a hybrid dimensionality
reduction technique whose parameters are automati-
cally optimized using a greedy search algorithm that
best reduces computational and storage costs.

3. Motion synthesis using nonlinear regression
A new motion is synthesized by interpolating the re-
duced principal components within a multilinear sub-
space. We employ a universal kriging, which is a
method of spatial statistics for accurately synthesizing
a motion corresponding to given control parameters.

In the following section, we explain related work. Sec-
tion 3 and 4 explain the detailed algorithm of motion syn-
thesis and the progressive elimination of motion details. Ex-
perimental results are shown in Section 5, and we present
our conclusions in Section 6.

2 Related Work
2.1 LOD Controls of Animation

Various types of crowd animation systems have been
proposed using LOD and impostor techniques. Geometri-
cal simplification [6] is a technique commonly used to re-

duce the rendering time by adaptively changing the num-
ber of polygons of a geometric model according to the dis-
tance from the camera. The impostor rendering technique
replaces the character geometry with simpler models such
as boxes and billboards [12]. Although the billboarding
technique successfully reduces the rendering time, motion
synthesis cannot be flexibly controlled because the anima-
tion is generated by sequentially rendering the precomputed
images of an animating character on the billboard.
Simulation LOD techniques have been proposed for re-
ducing the computational cost of the dynamics simulation
of the character motion. Carlson and Hodgins [7] pro-
posed a simulation LOD technique that adaptively switches
the dynamics model of legged-creatures among three lev-
els: whole-body, simplified body, and point-mass models.
A simplified dynamics model is also used for accelerat-
ing physics-based motion generation [23]. Rendon et al.
[25] introduced a simplification method of forward dynam-
ics of articulated bodies by switching between an active and
rigid joint according to the effect on the simulation result.
Though these methods are well suited to multi-body dynam-
ics simulation, their computational cost is still too high for
an interactive system. On the other hand, a skeletal LOD
algorithm was introduced for reducing the degrees of free-
dom of a character skeleton [1, 2]. This method improves
the computational cost of forward kinematics by replacing
a complicated skeletal structure with the simplified model.

2.2 Motion Synthesis

Data-driven motion generation techniques are widely
used for creating natural human animations. A motion
graph technique [5, 15, 19] generates a long motion se-
quence from short clips. The common reassembling ap-
proach segments motion samples into short clips and rese-
quences them. Since this method requires less computation
for selecting optimal segments and creating the transition, it
is also utilized for planning group behavior [18, 30]. While
this method resequences several motion segments to satisfy
given kinematical constraints, the resulting animation is re-
stricted by the variety of motion samples.

Various types of motion interpolation have been pro-
posed using some basis functions. A linear function with
stochastic sampling involves a computational cost that ex-
ponentially increases with the number of motion samples
[35]. A radial basis function introduced for controlling
motions with multiple parameters [26] can be adjusted to
solve inverse kinematics problems [27] where the accuracy
is enhanced by adaptively adding pseudo-examples with
heuristics. K-nearest neighbor interpolation also prolifer-
ates parameterized motions to improve the accuracy of in-
verse kinematics [17]. Spatial statistics is introduced to ac-
curately predict interpolation kernels without proliferating



motions [21]. A parametric motion graph is constructed by
introducing an interpolation method to graph-based motion
synthesis [24, 29]. Although these methods utilize a corre-
lation between motion samples, they neglect correlations of
joints and time series.

2.3 Statistical Analysis of Human Motion

Multivariate analysis is widely applied to computer an-
imation technologies. PCA represents high-dimensional
data with lower dimensional principal components, and
is utilized for compressing multidimensional data such as
mesh animation sequences [3]. Since human motion cap-
ture data indicates a high joint correlation and temporal co-
herence, it can be efficiently compressed by PCA. A clus-
tered PCA 1is performed on the control points of a Bezier
curve that approximates the motion signal [4]. Liu et al.
[20] have also performed a PCA on key frames that rea-
sonably approximates original motion data. PCA was also
used to optimize dynamics parameters within a compact
subspace [28] and to generate performance-driven anima-
tions with only a few signals [8]. These methods utilize a
joint correlation in a single motion sequence or several mo-
tion segments for compressing the motion data. Such meth-
ods, however, should be extended to manage the correlation
among samples of motion interpolation. Additionally, the
complex data manipulations they required are unsuited to
flexible LOD controls.

Our method utilizes a multilinear model that provides
a high-order SVD (HOSVD) for the correlation analysis
of multimodal, multidimensional data. HOSVD is a high-
order generalization of PCA and SVD, which can simulta-
neously analyze multiple correlation factors based on multi-
linear algebra. It finds a multilinear subspace to compactly
represent data. TensorTexture [33] compresses many bi-
linear texture functions with HOSVD. Wang et al. [34]
have proposed an out-of-core HOSVD for a huge amount
of visual data such as temporal volume data. A multilin-
ear model is also used for motion recognition and anno-
tation [32]. The HOSVD is utilized for further reducing
the data dimensionality by using multimodal correlations
against single-mode (or matrix) PCA. However, these meth-
ods use a simple linear function for interpolating principal
components, whereas we introduce spatial statistics for en-
hancing the accuracy of the motion synthesis within multi-
linear subspace.

3 Multilinear Motion Synthesis

3.1 Motion Interpolation

Each pose of an articulated figure is usually represented
by a pose vector y(7) with a discrete time 7, which con-

sists of the rotation of all joints as well as a 3D position
and orientation of the root node, with all rotational ele-
ments represented by exponential maps [13]. Each mo-
tion sample is represented by a time series of the pose vec-
tor and is temporally aligned with the same duration T’
via dynamic timewarping [16]. The incremental inverse
timewarp function [22] is added to the pose vector for in-
terpolating motion speed. The s-th motion sample M;
is then represented as a matrix (second order tensor) as
M; = [ys(1)ys(2) -+ ys(T)], where ys(7) denotes the
pose vector at time 7 of the s-th motion sample. We here
express the joint degrees of freedom (DOF) as dim(y) = P.

A new motion is parametrically synthesized by blending
the motion samples with a few control parameters ¢, such
as kinematical constraints or emotional parameters. Given
S motion samples My and corresponding control parame-
ters ¢5, a new motion M(c) is synthesized by the weighted
average of the samples as

M(c) = > bs(e)M,, (1)

where by(c) denotes an interpolation kernel which is opti-
mized to satisfy the given control parameters [17, 21, 26,
27]. The resulting animation is synthesized via inverse
timewarping using the incremental inverse timewarp func-
tion included in the pose vector.

Although the motion interpolation is efficient enough to
generate the motion of a single character, the computational
cost linearly increases according to the number of samples
S and characters, joint DOF P, and the duration of motion
samples T'. The data redundancy of the motion samples is
therefore eliminated using HOSVD based on these three-
mode correlations.

3.2 Motion Tensor

A motion tensor M € RF*T*3 is composed by lining

up all motion samples in one dimension, where an element
M(p, 7, s) represents the p-th element of the time-aligned
s-th sample y; (7). The motion tensor is decomposed into a
core tensor and three unitary matrices using HOSVD as

M=2Zx,Up xaUr x3Ug , 2

where Z € RP*T*S is a core tensor that indicates the
principal components, Xx; denotes i-mode tensor product
[10], and Up € RP*F, Up € RT*T and Ug € RS*S
are the basic matrices of joint, time, and samples, respec-
tively. The core tensor Z has an ordering property as
Z(i1, yin,yin) > Z(i, - yip + 1, -+, in) forall
possible n and 7,,, which means that the higher-dimensional
data is less important in approximating the original data.



Consequently, the motion tensor M can be approximated
by a truncated HOSVD [10] as

M:Z~X1[~JPXQI~JTX3I~JS, (3)

where Z € RErxRrxRs ig the truncated core tensor, and
Up € REPXP Uy € RETXT and Ug € RE*S are the
truncated basic matrices with reduced ranks (Rp, Rr, Rg),
respectively. Since the truncated HOSVD is generally not
an optimal approximation, an alternative least square algo-
rithm is used to estimate the globally optimal core tensor
and basic matrices [11]. We combine these two reduction
techniques for optimal LOD control as explained in Section
4.

A pose vector is synthesized from the approximated core
tensor and basic matrices as

y(1,¢) = Z x1 Up Xo W X3 Wg , “4)

where wr and wg denote the basic vector associated with
the desired time 7 and the control parameter ¢, respectively.
For the parameters satisfying 7; < 7 < 7,41, the basic
vectors wr is computed by a linear interpolation of two row
vectors of the basic matrix fJT as

wr = (1 —a)up,; + our it , (@)

where the coefficients « is determined by the internal ratios
of 7. The basic vectors wg, however, cannot be linearly
interpolated because the corresponding control parameter
is a vector value arranged in arbitrary order. Radial basis
functions are often utilized for the interpolation in a mul-
tidimensional space, but the resulting estimated data is not
sufficiently accurate, which results in undesirable artifacts.
We consider this defect to be common between interpola-
tions of the pose vector and those of the tensor.

3.3 Universal Kriging for Motion Tensor

A geostatistical interpolation can optimize the interpo-
lation kernel b;(c), given with wg = Zle bi(c)us, by
estimating the correlation between the basic vector ug ; and
control parameter ¢;. However, their values usually have no
correlation, which is against the basic assumption of geo-
statistics, because basic vectors are composed to be orthog-
onal to each other.

We here rewrite Equation (4) as

s
y(r,e) = Zx3 (Z bi(C)USﬂ) x1 Up x5 Wr (6)
i=1
S ~
= Zbi(c)’Ci x1Up Xo Wr (7N
i=1
where K; = Z x5 ug,; € REPXRT §s 3 core tensor of

the ¢-th sample and therefore has a strong correlation with

¢;. Consequently, the kernel b;(c) can be optimized with
geostatistics within the compact subspace.

Kriging is a practical technique of geostatistics for es-
timating the continuous distribution of /C; in the control
space [9]. However, the values of /C; often indicate a large-
scale variation in the control space, which does not meet
the statistical precondition called intrinsic stationarity [9].
We therefore introduce a universal kriging technique [14]
to manage the trend in the motion data. This decomposes
each sample element /C; into the trend K, (¢) and the resid-
ual components . ; = KC; — K0, (¢;), and assumes that the
residual components satisfy the intrinsic stationarity.

The term of the blending core tensor K(c) =
Zf: 1 bi(¢)K; in Equation (7) is then replaced by

S

K(e) = Km(e) + > bi(0)K; . (8)

We assume that the trend component can be represented
by a hyperplane of [K,,(¢)]y = Fle 1]' with a matrix
F ¢ RFrfrx(dim(©)+1) that approximates [K;]y by Fle; 1],
where | ]y and [ ]! denote the vectorization of a tensor and
transposition of a matrix and vector, respectively. The opti-
mal F can be uniquely determined in a least-squares sense
as F = KCT, where [ ] denotes a pseudo-inverse of a ma-
trix, and the i-th column vectors of K € REPETXS apd
C € RUEMOFDXS are [KC;]y and [e; 1], respectively.

Universal kriging optimizes weighting kernels b;(c) by
analyzing a statistical correlation between the spatial dis-
tance between control parameters and the dissimilarity of
corresponding motion samples as explained in Appendix
A. The simplest dissimilarity measure between two motions
is the dynamic timewarping distance, which is a Euclidean
distance of two time-aligned motions as ||[M; — M;||. Be-
cause the Euclidean norm of a tensor is preserved under the
decomposition [11], it can be approximated by ||/C; — ;||
An existing method introduced the nonlinear conversion of
this metric at each frame; the pose distance was computed
by the squared sum of positional differences between ev-
ery joint pair [16]. Though the Euclidean norm between the
two tensors does not directly reflect visual differences, we
have experimentally confirmed that the resulting motions
sufficiently preserve their accuracy. Notice that the previ-
ous interpolation separately computes individual kernels at
each time frame [21], whereas our kernel optimization is
computed only once for whole time sequences, a simplifi-
cation that has not reduced the prediction accuracy in our
experimental results.

4 Progressive Reduction of Motion Details

We here introduce a dimensionality reduction algorithm
for progressively eliminating motion details according to
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Figure 1. Pose vector approximation with re-
ductions in core tensor and basic matrices.

the visual importance of a character. Our method simulta-
neously controls the prediction accuracy and joint DOF of
the resulting motion as illustrated in Figure 1. The former is
controlled with two versions of the tensor reduction method
described in Section 3.2, which eliminates a high-frequency
component of motion details. The number of active joints
is adaptively decreased to reduce the computational cost of
forward kinematics by truncating a basic matrix of joint cor-
relation.

4.1 Tensor Truncation and Optimization

The accuracy of motion synthesis is controlled by de-
creasing the dimensions of a full-size core tensor Z and
basic matrices Up, Ur, and Ug as illustrated in Fig 1(a),
and two types of reduction technique are used for dimen-
sionality control. The simpler approach, which is similar to
PCA-based data compression [3, 4, 20, 28], generates re-
duced core tensors by truncating the high-dimensional ele-
ments of a full-size core tensor [10]. This technique is mem-
ory efficient because it requires only one full-size core ten-
sor generated by HOSVD. The other approach precomputes
reduced core tensors using alternative least square (ALS)
optimization so that the resulting core tensor preserves the
Frobenius norm of an original full-size tensor for arbitrary
tensor dimensions [11]. This method is more computation-
ally efficient than the simple truncation because the precom-
puted data are efficiently switched according to their accu-
racy level in a runtime process. However, it requires redun-
dant storage cost to store all precomputed data.

We experimentally confirmed that a slight truncation
from an optimized core tensor causes only a small increase
in the approximation error. For example, D-dimensional
ALS optimization can be replaced by the truncation of a
(D + 1)-dimensional optimized tensor, since the truncation
error is negligible within the small variation in a tensor di-
mension. We therefore combine these two technique to op-
timize a trade-off between computational and storage costs
by utilizing the advantages of each approach as mentioned
in the next section. Moreover, we confirmed that the visual

ALS optimization

Subtensor
ALS optimization
Subtensor
O &

Key level 1 Key level 2 Key level 3
1 1 1

-

Reduction size

Figure 2. Hybrid reduction scheme of mo-
tion tensor with ALS optimization and tensor
truncation.

artifact is negligible even if the dimension of a reduced core
tensor is only a tenth that of the full-size tensor.

4.2 Hybrid Control of Prediction Accu-
racy

We introduce a hybrid algorithm for approximating a
motion tensor using both simple truncation and ALS op-
timization. The key level K L; at which the corresponding
reduced core tensor is separately computed using ALS opti-
mization, where K'L; < K L;;; always holds. The reduced
core tensor at an arbitrary accuracy level j except at the key
levels is then computed by truncating the core tensor com-
puted at the key level K L; satisfying KL;_; < j < KL;
as illustrated in Figure 2. The average computational cost
improves with more key levels, but there is a trade-off be-
tween the computational and storage costs. The number of
key levels is therefore manually specified depending on the
type of application, and the key tensors are then automati-
cally optimized using a greedy search so that the approxi-
mation error linearly increases according to the key level.

We here explain the details of greedy search algorithm
for key tensors. Given an original motion tensor M and the
number of key levels N, a maximum and minimum core
tensor 27,'1 and Z v are first composed by ALS optimization,
where these tensor dimensions are manually specified (Fig-
ure 3(a)). Secondly, their approximation errors F; and E
are computed by mean-squared error as %m”M — /\;lH,

where M denotes the approximated motion tensor using a
reduced core tensor. An error threshold coefficient Cg is
then computed by Cr = J\If—gl so that the approximation
error proportionally increases according to the key level [
as I} ~ I[CgE;. This is because we assume that the char-
acter in twice distant location allows to show twice larger
errors considering their projected effects. The next key ten-
sor Z,, whose approximation error of ALS optimization is
larger than 2C'g E1, is searched by decrementing the tensor
dimension from the preceding key tensor Z,. This greedy

process is repeated until the size of the key tensor reaches
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the minimum key level (Figure 3(b)).

Figure 4 shows a comparison of the computational time
of a pose vector synthesis among simple truncation, ALS
optimization, and hybrid algorithm. The computational
times are measured by linearly reducing the dimension of
the core tensor according to the accuracy level using each
method. The result of simple truncation reveals higher com-
putational cost due to the additional computational cost of
online truncation, which is propotional to the dimension of a
full-size core tensor PT'S (Appendix B). On the other hand,
the storage requirement of all methods increases propor-
tionally to PT'S, and those of ALS optimization and hybrid
algorithm are also proportional to the number of accuracy
levels N4 and key levels Ny, respectively. The hybrid al-
gorithm improves the storage efficiency if N is given to be
much smaller than N 4. Note that the approximation errors
of both methods exponentially increase according to the re-
duction of the core tensor, and that the ALS optimization
slightly improves the accuracy of simple truncation.

4.3 Progressive Reduction of Joint DOF

As accurate motion synthesis is redundant for a character
appearing small on the screen, it is unnecessary to compute
all joint rotational elements for such characters. A progres-
sive reduction in joint DOF is therefore introduced by trun-
cating row vectors of the basic matrix of joint correlation as
illustrated in Figure 1(b), where all row vectors are manu-
ally sorted in descending order according to visual impor-
tance so that the reduction begins with joints such as wrists
and ankles having less effect on motion appearance. An au-
tomated sorting method [2] should be investigated in future.
Note that only the position and orientation of the root node
are computed for characters at the maximum reduction level
or in an invisible area.

Computational time [msec/pose]
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<
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<
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0 T T T 7T
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Figure 4. Comparison of computational cost
of pose vector synthesis among simple trun-
cation, ALS optimization, and hybrid algo-
rithm.

5 Experimental Results

We demonstrate gait motions controlled with three con-
trol parameters: the height of the character, and the 2D dis-
placement of the root position after two strides. The sample
data are two-step walking motions including S = 186 mo-
tions of three performers, which are measured at 120H z
with joint DOF dim(y) = P = 94. The motion tensor
M € R94x100x186 i then constructed by temporally align-
ing all motion samples with 7" = 100 frames. A long-term
sequence of the gait motion is generated by blending the
second half of the synthesized motion with the first half of
the following motion using ease-in/out functions.

5.1 Performance Evaluation

The N = 10 key tensors are generated from the motion
tensor M, where the maximum and minimum dimensions
of the core tensor are Rp X R x Rg = 40 x 40 x 60 and
7 x 7 x 9, respectively. The maximum core tensor is used
for characters less than 30.0 meters distant from the camera,
and the key level is incremented every 50.0 meters, while
the joint DOF is decremented by three every 10.0 meters.
Figure 5(a) shows the size ratios of a key tensor to the max-
imum, and Figure 5(b) is the performance result measured
on 2.6 GHz Athlon 64 FX-60 CPU with 4.0 GB RAM. The
approximation error is computed using the mean squared
(MS) positional error of every joint from an original motion
sample. The MS error increases monotonically according
to the distance, and a discontinuous change is observed over
200.0 meters because the tensor truncation is seldom used
due to the small variation in the dimensions of key tensors.
However, the visual artifacts caused by such discontinuity
are negligible. On the other hand, the computational time
and dimension of a key tensor are exponentially decreased
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Figure 5. Performance of motion synthesis
with LOD control.

according to the distance, indicating that the computational
cost for synthesizing the animation in an entire scene signif-
icantly depends on the number of characters whose images
occupy a larger display area. The total memory requirement
to store all key tensors and basic matrices is 1.45 MB in a
binary format, whereas 9.7 MB data is required when all re-
duced core tensors are computed by ALS optimization. Our
motion LOD successfully reduces the storage cost of naive
interplation requiring 13.34 MB to store all motion samples.

We compared the performance of our method with PCA-
based data reduction. The data dimensionality of joint DOF
is decreased from P = 94 to Rp 4 = 40 by truncat-
ing higher-dimensional principal components that are ana-
lyzed by a matrix SVD. The number of principal compo-
nents Rp < Rpmaq 1s adaptively reduced in the runtime
computation of a pose vector synthesis, in a way similar to
our method. The total 5.7 MB memory was required for
storing the reduced principal components and a basic ma-
trix. This storage cost is about four times larger than that re-
quired in our method. On the other hand, the computational
algorithm of PCA-based method is less complex than tensor
operation, and the size of its data reduced only for joints’ re-
dundancy is larger than those fully reduced with multilinear
analysis. Owing to this trade-off, the total computational
cost of PCA-based method is approximately equal to that
of our method. Consequently, our method can reduce the
storage cost of PCA-based method while maintaining the
computational efficiency and accuracy.

5.2 Crowd Animations
We demonstrate a gait animation of hundreds of charac-

ters whose motions are generated using our method. The
animation is created using the motion LOD control un-
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Figure 6. One hundred walkers animated by
our method. Various types of walking mo-
tions generated from an identical tensor.

der the same conditions described in the previous section.
Moreover, we adaptively control the transition of short mo-
tion clips to create continuous locomotion with less com-
putation. Continuous motion sequences of important char-
acters should be generated via the transition of the synthe-
sized short motion clips with ease-in/ease-out functions to
enhance visual quality. However, since such a smooth tran-
sition is not required for the distant characters, we therefore
simply switch motion clips at the appropriate frames with-
out using any blending function for such characters.

Figure 6 shows some snapshots of the resulting anima-
tion of one hundred characters, where the color of the char-
acter indicates the reduction level. The computational time
changes according to the accuracy level and the number of
characters in the field of view. The worst, average, and best
computational time for motion synthesis are about 9.5, 12.0,
and 25.0 frames per second, respectively. Using naive inter-
polation without the motion LOD control, the average com-
putational time is 3.9 frames per second. Our motion LOD
control successfully reduces the computational cost of naive
motion interpolation with a small visual artifact.

6 Conclusions

This paper has introduced a motion LOD method with
a multilinear model. Multilinear representation provides a
flexible control of the computational cost depending on the
desired level of accuracy. Moreover, the storage cost is re-
duced by eliminating the redundancy of motion samples us-



ing the multimodal correlation factors. On the other hand,
geostatistical interpolation enhances the prediction accu-
racy of synthesized motions. As a result, our integration
of two numerical methodologies proves more accurate than
the simple restorations of a multilinear model, and requires
less computational and storage costs than existing motion
interpolations. The progressive reduction of a motion ten-
sor is proposed for LOD control of motion synthesis, where
the data dimensionality at each accuracy level is determined
according to the importance of the characters. We have in-
troduced a hybrid method to optimize a trade-off among
computational efficiency, storage cost, and visual quality.
The computational and storage cost can be optimized by
manually adjusting the number of key levels.

The improvements of computational and storage effi-
ciency are not so drastic; their reduction ratios might exceed
one tenth even at best. The recent work on motion data
compression [4] revealed the essential difficulty in dras-
tically reducing data size while preserving visual quality,
compared to well-known algorithms for compressing image
data. The motion interpolation based on spatial statistics
[21] was proved that its computational cost is sufficiently
low owing to its precomputable linear system. For these
reasons, we believe that our system achieves reasonable per-
formance in reducing these costs.

Our multilinear motion synthesis is unsuited for aperi-
odic or overly dynamic motions because the dimensional-
ity reduction with HOSVD utilizes the multimodal correla-
tion among similar motion clips. For example, our method
works well for highly correlated motions such as gait, but
dynamic movement like those in sports often indicate low
correlations. This property is common to motion interpola-
tion, and an advanced correlation analysis such as clustered
tensor approximation [31] should be investigated for over-
coming this limitation.

Multilinear analysis has the potential to be applied to
other motion editing techniques such as motion transition
and warping. We therefore plan to develop another motion
LOD for motion editing or parametric motion graphs [24].
Moreover, synthesized motions are not limited to capturing
human movement; any type of motion data could be man-
aged if they satisfy the statistical preconditions. The im-
plementation of multilinear motion synthesis on GPU could
enhance its usability. The verification of these potential is
the subject of our future work.
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A Kernel Optimization with Simple Kriging
[21]

Given a set of S sample data {x;} and a set of corre-
sponding parameters {c; }, kriging optimizes the interpola-
tion kernel b(¢) = [b1(c) ba(c) - - - bs(c)]" with a variogram
function . First, the distance h = ||¢; —¢, || is computed for
all pairs of samples. The distance range is equally divided
by each Ah into Sy intervals I,,(u = 1,2,---,S;) whose
center is denoted by h,, = Ah(u—1/2), and the average of
dissimilarity 7,, is calculated in each I,, as follows:

1 n(Iu)

Yu = (L) Z (zi —x5)%/2,

where n(I,,) is the number of pairs of samples included in
I,,. Next, a theoretical variogram function ~(h) is fitted to
best approximate the averages J,(u = 1,2,---,S7) in the
least-squares sense. Finally, the kernel b(c) is optimized
with a linear system as

][ )70 e -mo

v(e)=[rllle—el) (e —eall) - A(lle —enl)]’

where ) is a Lagrange multiplier, and 1 is an S-dimensional
column vector filled with 1.

B Computational Overhead Cost of Subten-
sor Operation

An efficient implementation of n-mode product of trun-
cated core tensor and basic matrix requires of the following
four steps:

1. Unfolding a full-size core tensor into a matrix along
n-th mode of the tensor [10].

2. Generating submatrices of the unfolded tensor and ba-
sic matrix.

3. Multiplying the two submatrices.
4. Constructing a tensor from the multiplication result.

The same procedure is applied to the n-mode product of a
truncated core tensor and basic vector. The unfolding ten-
sor becomes the computational bottleneck, since its cost de-
pends on the dimension of a full-size core tensor but is in-
dependent of the truncation size. Furthermore, computing a
pose vector from a decomposed motion tensor requires the
above procedure with the same number of iterations as the
tensor size. Notice that this overhead cost is specifically for
high-order tensor operations. In fact, submatrix operations
do not require such costs.



