Psychological Model for Animating Crowded
Pedestrians

Takeshi Sakuma

Tomohiko Mukai

Shigeru Kuriyama

Visual Agent Laboratory - Toyohashi University of Technology
{scal@val., mukai@val., kuriyama@ }ics.tut.ac.jp
http://www.val.ics.tut.ac.jp/

Abstract

This paper proposes a psychological model for
simulating pedestrian behaviors in a crowded
space. Our decision-making scheme controls
plausible avoidance behavior depending on
the positional relations among surrounding
persons, on the basis of a two-stage personal
space and a virtual memory structure as
proposed in social psychology. Our system
determines pedestrian walking speed with
the crowd density to imitate the measured
data in urban engineering, and automatically
generates plausible motions of the individual
pedestrian by composing a locomotion graph
with motion capture data.  Our approach
based on psychology and a variety of actual
measurements can increase the accuracy of
simulation at both the micro and macro levels.

Keywords: crowd simulation, psychologi-
cal model, personal space, virtual memory,
locomotion graph

1 Introduction

Crowd simulation has been widely used for cre-
ating animations of large groups of humans and
creatures. Most of the systems used for the
crowd simulation extend a particle system by
introducing a characteristic behavior model for
each agent. The behavior model is often com-
posed of scripts or rule-based schemes for ef-
ficiently controlling groups of simple creatures.
However, human crowd behavior is more com-

plex than that of simple creatures due to the
highly-advanced mechanism of perceptual in-
formation processing. Thus, the bottom-up sim-
ulation requires one to exploit human psychol-
ogy and perception mechanism, which are now
neglected in the conventional methods. Several
methods have been proposed for controlling the
crowd at will because the reflection of the de-
signer’s intention is the most important issue in
animation production. However, such top-down
strategy is not suited for accurately simulating
the flow of crowded pedestrians.

Crowd simulation has also been used in urban
engineering, which evaluates the validity or risk
of a pedestrian space such as public buildings.
A high-level autonomy of agents was introduced
using a sociological and psychological behavior
models for accurately estimating crowd behav-
iors. Such crowd simulation can supply a power-
ful tool for designing pedestrian space; its realis-
tic animation, however, is difficult to achieve be-
cause such high-level simulations usually con-
sider only positional changes of pedestrians.

This paper introduces a method for simu-
lating crowd behavior using a psychological
perception-reaction model. We develop a visual
perception model involving the virtual memory
structure corresponding to the capacity and de-
lay of human perception, and use motion cap-
ture data to generate a detailed motion of each
agent. These approaches can imitate individ-
ual behaviors of a pedestrian group. Our sys-
tem also employs a rule-based scheme for de-
ciding reactive behaviors where each rule is de-



signed to take account of the theory of social
psychology. In addition, we introduce an actual
measurement of a relation between the pedes-
trian flow speed and crowd density to simulate
a dense crowd with reasonable accuracy. These
approaches can explain pedestrian behaviors as
a group phenomenon. As a result, our system
provides realistic simulation of crowded pedes-
trians at both the micro and macro levels.

In the following section, we explain related
work and propose a psychological perception
model in the third section. The fourth section
explains how to determine a reactive behavior
against the perceived environmental informa-
tion. Experimental results and applications are
demonstrated in the fifth section, and we discuss
our conclusions in the final section.

2 Related works

Most crowd animation systems have been de-
veloped on the basis of a particle system [1].
Each agent in a crowd is simplified as a particle
model, and complex crowd behavior emerges
from the interactions. Individual behavior is of-
ten modeled by a rule-based scheme represent-
ing a mapping from a perception of the envi-
ronmental information to a reaction against it
[2]. Such a scheme is described as a set of logi-
cal rules, a probabilistic decision-making mech-
anism [3], and a scenario written in natural lan-
guage [4]. These methods generate natural ani-
mation of a flock of birds or school of fish, but
their schemes are too simple to provide natu-
ral human behavior. Several methods have in-
troduced the psychological and sociological be-
havior models of pedestrians such as a personal
space and prediction behavior [5]. However,
these methods do not discuss how to estimate
optimum parameters of the behavior model such
as the size of personal space.

Several approaches have been proposed for
interactively navigating the crowd. The Vi-
Crowd system introduced multiple levels of au-
tonomy for simulating hierarchical crowd be-
haviors [6]. This method controls a large crowd
in multiple hierarchies such as crowd, group,
and individual; it, however, requires a skilful
scripting operation for a complex environment.
Adaptive path planning algorithm is proposed

for synthesizing the collision-free animation of
flocks [7]. A leader-follower approach is well
suited to avoid the collisions between not only
individuals but also groups [8]. A stochastic
sampling algorithm is used to search the plausi-
ble group behavior while satisfying the geomet-
ric constraints [9]. However, these top-down ap-
proaches rarely take account of human percep-
tion mechanisms such as visual range and per-
sonal space. OpenSteer, the public steering be-
havior toolkit, provides an intuitive way to nav-
igate the crowd by imposing soft constraints on
individual movement with a vector field [10].
Our system utilizes the vector field as a ba-
sic factor to control the directions of pedestrian
flows.

Crowd simulation is also used in social psy-
chology and urban engineering [11]. The sim-
ulation in emergency situations was proposed
using a simple particle model [12], and it was
later extended by introducing the individual and
group characteristics [13]. The parameters of
the human perception model were estimated by
observing actual pedestrian flow in a train sta-
tion [14]. These simulations are used to evalu-
ate the safety and usability of pedestrian space.
Although these methods successfully simulate
crowd behavior using psychological and social
behavior models, the resulting animation of in-
dividual agent lacks naturalness. Our system
therefore generates plausible animation using
motion capture data, while utilizing these psy-
chological behavior models.

3 Psychological perception model

3.1 Psychological virtual memory

Each pedestrian reacts to observed environ-
ments, and the behavior is modeled as individ-
ual and independent intellectual entity, which is
called pedestrian agent or simply agent. The
human perception mechanism does not process
all perceived information immediately; it selects
only the important part of the information with
limited memory capacity and processing delay.
The virtual memory structure is therefore intro-
duced in between the perception mechanism and
the reaction decision process, so the reactive be-
havior is controlled by the memory contents.
The memory stores the positions and the speed
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Figure 1: Prediction of future collision

of other N,, agents, and they are updated at each
time interval T,, which represents the duration
of the memory content. The time interval T, is
optimized through simulation, and the memory
capacity Ny, is fixed to N,, = 7 by relying on the
results of a psychological experiment [15].

3.2 Visual sensor

A visual sensor obtains the environmental in-
formation on a semicircular front region of the
agent. It detects the positions and speeds of
other agents within the visual range, and fails to
sense when interrupted by obstacles. Moreover,
future collisions within a time span (or a predic-
tion horizon) Ty are predicted by computing in-
tersection points of linearly extrapolated trajec-
tories of the agents (figure 1). Such prediction
mechanism can reduce redundant movements to
avoid collision [14].

From a psychological viewpoint, the neigh-
boring agents impose mental stress on each
other, which can be estimated on the basis of
a personal space model [5, 16]. This model ex-
perimentally showed that mental stress increases
exponentially as others get close, and it becomes
critical at a certain distance [14]. We therefore
developed a two-stage personal space model as
shown in figure 2. Each agent tries to avoid the
others detected in the outer annulus, called the
cautionary region, by gradually steering to the
sides without deceleration. The inner circle rep-
resents the critical region where the agent takes
immediate action to avoid a collision. We opti-
mize the radii of the critical region r; and cau-
tionary region r,, and also optimize the predic-
tion horizon T’y through the simulation.

The agents cannot manage all predicted col-
lision information because of their memory ca-
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Figure 2: Two-stage personal space

pacity limitation N,, = 7. All detected collisions
are therefore prioritized by the distance between
the agents, that is, the neighbors close within the
critical region are memorized with high priority,
and the exterior ones are memorized in the or-
der of estimated arrival in the cautionary region
within the time span 7'y.

3.3 Parameter optimization

Since the parameters of the personal space
model deeply affect both individual and crowd
behaviors, simulated annealing is used to opti-
mize the four free parameters: the memory du-
ration T}, the prediction horizon Tf, and the
radii of the personal space ry and r,. The reward
function of the optimization is then designed to
maximize the flow speed of pedestrians and to
minimize collisions, by computing two metrics:
the validity of a moving direction and the num-
ber of collisions. The first metric is computed
by the dot product of the actual moving direc-
tion v(¢) and the vector d(¢) from the agent’s lo-
cation to the target. The second metric exerts a
negative effect by counting the number of colli-
sions n.(#) with the other agents while walking.
The reward is therefore computed as follows:

T,
reward = " {wp(v(t) ® d(1)) = wenc(1))
=0

where w, and w. represent weighting coeffi-
cients which are empirically set to 5 and 2000,
respectively. Notice that the optimization is it-
erated until all parameters converge. Table 1
shows the optimized values by using the sim-
ulation in which two ten-person-groups pass



Table 1: Optimized parameters of psychological
perception model
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Figure 3: Example of vector fields

through each other at various angles (0, 45, 90,
135, 180 deg).

4 Reactive behavior

4.1 Navigation with vector field

A vector field represents the mapping from a
present agent position to a desired moving di-
rection [10]. The pedestrians determine their
moving direction by referring to the vector fields
at the present location. This strategy is well
suited to design a complex flow pathway includ-
ing branch and loop. Moreover, it is possible
to assign a different vector field for each group,
and to avoid colliding with the obstacle by set-
ting the outward vectors. Our system uses an
attractive and repulsive force model [17] for de-
signing such vector fields as shown in figure 3,
where the attractive force lies along the pathway,
and the repulsive force surrounds the wall.

4.2 Avoidance behavior

Collision avoidance behavior is controlled by
the environmental information stored in virtual
memory. The agent keeps walking along a vec-
tor field while no collision information is stored
in the memory. After the future collision is de-
tected, the optimum avoidance behavior is se-
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Figure 4: Rules for collision avoidance

lected between urgent and smooth avoidances,
according to the following rules:

Urgent avoidance The agent rapidly deceler-
ate or sharply veer by side stepping when
another agent is detected in the critical re-
gion of personal space. We set higher prior-
ity on deceleration over rapid steering in or-
der to keep following the preceding pedes-
trian. If the collision cannot be avoided
using both avoidance behaviors, the agents
keep stopping and waiting until they find
room to step forward.

Smooth avoidance The agents gradually
steer to the sides when they have enough
time to avoid collision. The moving
direction is determined according to the
positional relation among the agents.

After a certain time span from the beginning
of avoidance, the agent searches for room in
their front and discontinues the avoidance be-
havior to return to normal walking (figure 4 (c)).
When two waiting agents are confronted with
each other, they try to step to either side (figure
4 (d)). If there is no room to avoid, the waiting
behavior is again maintained for a certain time
period.

4.3 Density-based walking speed control

The walking speed of pedestrians heavily de-
pends on the crowd density; for example, the
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Figure 5: Relation between crowd density and average walking speed [18]

pedestrian tries to maintain a slower pace in
a more crowded space owing to severe mental
stress. The relational model between the space
occupied per person and average walking speed
is represented by the saturation function shown
in figure 5 [18]. With this relation, we limit the
pedestrian walking speed by sensing the local
density of the personal space within the given
visual range.

4.4 Detailed motion generation

The detailed motion of each agent is synthe-
sized using the motion capture data. Our sys-
tem uses four types of locomotive motions: gait,
side stepping, starting, and halting. Each motion
clip is represented as a node and has a locomo-
tive state transition path to construct a locomo-
tion graph [19]. The transition over the graph is
selected according to the reactive behavior, and
motion in the transition process is synthesized
using ease in/out interpolation. Table 2 shows a
list of all motion data used in our system, and
figure 6 gives the constructed locomotion graph.

Gait motions are generated by blending sev-
eral motions at various walking speeds for con-
tinuously controlling the speed. The six types of
gait motions shown in table 3 are blended with
linear interpolation where the blending weights
are computed so that the synthesized motion has
the desired walking speed. However, the result-
ing motion often involves some artifacts such
as foot skating because a curved locomotion is
generated by simply manipulating a trajectory
of straight walking. We are implementing a
smarter interpolation mechanism based on sta-
tistical analysis [20] for more accurately gener-
ating gait motions with less artifacts.

Ga.i"t"::c;ntrol U
Figure 6: Locomotion graph

Table 2: Motion data used for simulations

# of motions | Total # of frames
Gait 9 100
Side step 2 191
Start 6 172
Halt 8 230

5 Results and applications

5.1 Simulation of crossing groups

Figure 7 provides snapshots of the resulting an-
imations. Figure 7 (a) illustrates the flow of a
dense crowd where every person runs in one di-
rection while occupying approximately 1.0 m?
in area, and figures 7 (b) and (c) are simulations
of two groups passing through at right angles
and opposite angles, respectively, by navigating
them with different vector fields. These anima-
tions demonstrate plausible behaviors without
causing unnecessary collision, avoidance, and
deceleration. The computational time for fig-
ure 7(a) takes 20 msec per frame on a 1.8GHz
Athlon XP CPU.
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Figure 7: Simulations of pedestrian groups

(c) Two groups passing at
right angles

Table 3: Gait motions for controlling walking

speed

Gait style speed [m/min]

Run 165

Trot 90

Long stride 85

Normal walking 75

Short stride 60

Backward walking -60

5.2 Comparison with actual measurement

The simulation accuracy of our system is eval-
uated through comparison with the actual mea-
surement in urban engineering [18]. A pedes-
trian flow coeflicient represents the number of
pedestrians passing through one meter wide
space per minute, and we use this value as a
metric for evaluating the plausibility of crowded
walking at the macro level. The simulation was
done in a straight lane as shown in figure 8,
and the crowd is composed of three pedestrian
groups of the same number that have different
gait styles (velocity): jog (110 m/min), slow
walk (50 m/min), and normal walk (80 m/min).
The flow coefficient and the average crowd den-
sity [m?/person] are computed by randomly
changing the number of pedestrians moving in
the lane.

The simulated flow coefficients and actual
measurements are compared in figure 9. As
this comparison demonstrates, our simulation
well approximates the actual measurement, es-
pecially at the peak range, by which we can ac-
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Figure 9: Comparison of flow coefficient with
actual measurement

curately simulate the pedestrian flow in a very
crowded space. Figure 9 also shows the ef-
fectiveness of both the virtual memory and the
density-based speed control. Excessive avoid-
ance behaviors are caused from the lack of the
virtual memory due to faulty selection of the
avoidance direction, which results in the abnor-
mal decrease of the flow coefficient at the peak
range. Without the density-based speed control,
the flow coefficient monotonically increases ac-
cording to the density because pedestrians do
not slow down their walking speed regardless of
the increase of collisions in the crowded space.

5.3 Application of layout design

Our system can be applied to evaluate the lay-
out of a crowded public space such as an urban
train station. Designers can visually and numer-
ically evaluate the arrangement of equipments
with our simulation by interactively changing
their locations. Figure 10 demonstrates a simple
optimization of a pedestrian space by randomly



Figure 8: Virtual environments for measuring flow coefficient (k: space per person [m?/person))

Average time required:
24 .4 sec

(a) Moderate layout
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(b) Obstructive layout

Figure 10: Prediction of required travel time

moving each of three square obstacles around in
the central area. Each arrangement is evaluated
with the total time required for 128 pedestrians
to pass through the virtual room. Figures 10 (a)
and (b) show one of the moderate and the most
obstructive layouts computed by using our simu-
lation. These results intuitively show that agents
must make a detour when an obstacle is arranged
to obstruct the shortest path.

6 Conclusions

We have proposed a crowd simulation method
using a psychological behavior model. The con-
tributions of our method may be summarized as
follows:

e The two-stage personal space model can
produce more plausible interactions among
agents.

e The virtual memory selects the minimum
targets to be avoided, which can reduce the
redundant movements in a crowded space.

o Density-based speed control can imitate the
speed of actual measurement and thus en-
hances the accuracy in estimating pedes-
trian flows.

e Realistic animation using motion capture
data allows the user to analyze crowd be-
havior at the micro level.

Our personal space model neglects the indi-
vidualities and adaptable nature of actual hu-
mans. For example, the range of personal space
should be varied according to gender, age, job,
and moving speed [14], and it should vanish in
emergency situations. The other limitation is the
lack of the naturalness of motions at the micro
level due to the narrow variety of motion sam-
ples that urgently avoid collisions. Our system
currently requires users to manually set vector
fields for driving pedestrians and automatic gen-
eration of the vector fields should be developed
to enhance plausibility of individual behaviors,
using smart path planning techniques or some
decision-making rules.

Our future work includes a development of
a more human-like perception model and the



mechanism of generating vector field from envi-
ronmental information. A wider variety of mo-
tion samples of collision avoidance and locomo-
tion should be provided and managed for more
accurately simulating various complex condi-
tions. Integration of pedestrian behaviors with
different kinds of behaviors, such as resting and
communicating ones, is also indispensable to
develop practical applications.
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