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Abstract

This paper proposes a method for retrieving human motion data with concise retrieval rules
based on the spatio-temporal features of motion appearance. Our method first converts
motion clip into a form of clausal language that represents geometrical relations between
body parts and their temporal relationship. A retrieval rule is then learned from the set
of manually classified examples using inductive logic programming (ILP). ILP automatically
discovers the essential rule in the same clausal form with a user-defined hypothesis-testing
procedure. All motions are indexed using this clausal language, and the desired clips are
retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable
performance and the rule can be intuitively edited in the same language form.
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1 Introduction
Automated retrieval methods of human motion data have been proposed using some feature anal-
ysis techniques. However, existing methods have one major problem with query formulation. The
numerical methods (Chiu et al., 2004) use a short motion clip as a query, but the similarity mea-
sure between motions should be manually defined with fine parameter tunings. The learning-based
methods (Arikan et al., 2003) implicitly obtain a motion classifier which can not be modified after
the learning. The template-based methods (Müller and Röder, 2006) use many binary symbols
so as to enable them to represent a wide variety of human movement, making the notation often
redundant for retrieval problem. Although the heuristic method (Müller et al., 2008) eliminates
the redundancy of the template, the conventional method does not guarantee the minimality of
the resulting template and requires high computational cost.

In the fields of artificial intelligence, a general induction technique has been developed to
discover an effective solution to multiple classification problems. The induction method often uses a
logical language such as symbolic and clausal language to represent the training data, and discovers
a concise classification rule using logical programming, called inductive logic programming (ILP)
(Muggleton, 1995). ILP analyzes an essential rule presented in the explicit logical language, and
provides a programmable framework based on the same logical language to control its learning
procedure.

We propose a rule generation technique for human motion retrieval using ILP. Our method
first computes a set of spatio-temporal features of motion appearance in the form of a multivalued
logical expression. An ILP framework then discovers an essential classification rule, which is
composed of a few logical expressions, by analyzing an intrinsic difference among the set of training
motion clips. The desirable segments are retrieved from a database using the discovered rule by
specifying the name of the motion class. Moreover, such a retrieval rule can be easily edited in
the form of logical language to improve the retrieval accuracy. Consequently, our system provides
flexible motion retrieval with semi-automated rule generation.



2 Algorithm
We here explain how to discover the retrieval rule. Given training data, they are manually seg-
mented into clips of unit movement and classified into multiple semantic classes. One class is then
chosen as a positive class and others are used as a negative class. Each training clip is represented
by a set of clauses corresponding to the spatio-temporal motion features. The inductive learning
discovers a retrieval rule consisted of as few clauses as possible so that the resulting rule explains
common features of the positive examples and no features of the negative ones.

2.1 Spatio-temporal features of motion appearance
Given a training motion clip, several key-poses are first extracted from the training data to reduce
the computational cost of the learning. After selecting the first key-pose at the first frame of the
motion sequence, the next key-pose is sequentially searched until the pose distance to the previous
key-pose exceeds a given threshold. Next, the multivalued spatial features are computed at each
key-frame and then represented in the clausal form like has sf(fi[li]), where fi and li denote a
name and quantization index of a spatial feature, respectively. This clause means that the training
data has a pose indicating a spatial feature fi with the quantization index li, where we omit [li]
for binary features for simplicity. Our definition of spatial feature includes 31 geometrical features
proposed in (Müller and Röder, 2006) and 4 additional customized features.

We also define two types of temporal features that explain the duration of a spatial feature and
a temporal relation between different spatial features. The duration is represented by two clauses:
long(fi[li]) and short(fi[li]), which indicate longer and shorter duration than 0.5 sec, respectively.
The temporal relation is represented by a clause: after(fi[li], fj [lj ], lt), for the spatial feature
fj [lj ] appearing after fi[li] with a quantized delay lt. The time delay index lt is represented by
three symbols: short ([0, 0.25) sec), middle ([0.25, 0.5) sec), and long ([0.5, 1.0) sec), where these
time ranges are experimentally optimized.

2.2 Simplification of retrieval rules
Given the clauses of spatio-temporal feature of a training data, the ILP framework discovers the
retrieval rule for each motion class. We use a public ILP system, called Progol (Muggleton, 1995),
which uses a programmable hypothesis-testing procedure to discover an essential rule. It uses both
positive and negative examples to discover a rule that is obeyed by the positive examples and is
excluded by the negative examples. This learning model often results in too strict a retrieval rule,
which can be reduced by relaxing the tolerance of the quantization error of multivalued feature.

The learning criterion of ILP is the minimality of the clauses used in retrieval rules. Multiple
clauses can often be substituted with a simpler clause based on a syllogism and other reasoning.
ILP introduces the substitution procedure with user-defined logical expressions represented in the
clausal form for discovering the retrieval rule that consists of as few clauses as possible. We define
the subsumption relation of multivalued feature, which is modeled by a combinational structure.
The basic component of the structure is the quantization index of multivalued feature. The ILP
system then selects the most appropriate subset to best describe the feature of training data.

2.3 Subsequence search with space windows
By specifying the name of motion class, motion segments are retrieved by a subsequence search
using the retrieval rule associated with the specified class. Our system sequentially searches the
subsequence that includes all constituent clauses of the retrieval rule from the motion sequence.
The discrete representation of spatial feature often decreases retrieval accuracy because its quan-
tization index is computed by regularly discretizing the geometrical distance between body parts.
The space window is therefore introduced for tolerating the small variation of simple quantization
of multivalued feature. If a quantization index lf is assigned to the interval [di, di+1), where di

and di+1 are the geometrical distance between body parts, the retrieval process uses a wider range
[di − α, di+1 + α) for discriminating the region of the quantization index lf . The margin α is
experimentally optimized by the quantization interval α = 0.5|di+1 − di|.



Table 1: Retrieval rules discovered from train-
ing dataset, where the number in [] represents a
quantization index of multivalued features.

Class Retrieval rule

Cartwheel long(lhand up[2]) & long(gradient)
& long(move upward)

ElbowToKnee long(larm bent[2])
long(larm bent[1]) &
after(larm bent[0], lfoot up[0], middle)
short(rarm bent[1]) & has sf(lleg bent[0])

JumpingJack long(move upward)
& short(lhand up[1])
& after(rhand up[2], lhand up[0], short)

Lie long(lying)
Sit long(move upward) & long(gradient)

& long(body bent[1])
Squat long(rhand up[0]) & has sf(body bent[0])

long(lhand up[1]) & long(rhand up[1])
& has sf(body bent[0])

Toss long(move upward) & short(larm bent[0])
& after(larm bent[1], rhand up[1], middle)
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Figure 1: Retrieval results of seven motion
classes. The dark-colored bars and light-
colored ones represents the performance of
our method and existing method (Müller
et al., 2008), respectively.

3 Experimental result
The retrieval performance of our method is compared with the existing heuristic method
(Müller et al., 2008) under almost the same experimental condition. We experimentally re-
trieved motion segments from a large public collection of motion capture data (http://www.mpi-
inf.mpg.de/resources/HDM05). We manually segment a whole motion sequence of 120 min-
utes into 5481 clips of unit movement and arranged them into 99 motion classes. The training
dataset consists of 7 motion classes; Cartwheel(6/21), ElbowToKnee(17/58), JumpingJack(15/52),
Lie(6/20), Sit(6/20), Squat(16/56), and Toss(4/14)), where the two numbers in () denote the
number of training data of each class and the total number of motion clips, respectively.

3.1 Discovery of retrieval rules
Table 1 shows the retrieval rules for the seven motion classes which are discovered using the
training dataset. It shows that a motion clip is classified as a cartwheel motion if the actor bend
his/her body and raises his/her left hand, and moves upward for a long period. The number of
constituent clauses is determined according to the uniqueness of movements in comparison with
other motion classes. For example, the rule of Lie motions only has one clause because the spatial
feature of Lying appears only in the Lie motion class. On the other hand, the ILP framework
discovers multiple retrieval rules for ElbowToKnee and Squat, and the desired segment is retrieved
using all rules. This indicates that these motion classes can be respectively divided into subclasses.
In fact, the training dataset of ElbowToKnee includes symmetric motions.

3.2 Retrieval by discovered rule
The statistics of the retrieval performance is shown in Figure 1. Average computational time
of the retrieval is about 10 milliseconds, which is fast enough for practical usage. High recall
indicates that the subsequence matching with a retrieval rule successfully retrieves almost all
relevant motions. The low recall of Toss is probably caused by the overfitting problem; the ILP
generalizes the small common part of the example motions which do not appear in other Toss
motions that are not used in the learning. On the other hand, the precision values are remarkably
lower than those of the existing method except for Cartwheel. This means that the discovered
rules can not exclude the non-relevant motions because the number of training data is too small
to generalize the retrieval rule for the size of the entire database. However, a large number of
examples often lead to a failure in learning because of the limited memory capacity. We consider
that the accuracy of our retrieval method becomes acceptable for the practical motion database
because the retrieval performance could be improved by a manual editing.



3.3 Extensions of rule-based retrieval
The manual editing can make the retrieval rule more distinctive and often improves the retrieval
accuracy. For example, we modify the second clause of the rule of Cartwheel from long(gradient)
& long(lhand up[2]) to long(somersault), based on our knowledge that cartwheel motion includes
a handstanding pose. This modification increases the precision and recall from 0.83 to 1.0 and
0.95 to 1.0, respectively. This improvement is attributed to the constraint of somersault stricter
than that of the gradient where both features appear in most cartwheel motions. Such an artificial
decision can be integrated into the rule by simple text editing.

Our rule-based method can also use a motion clip for a retrieval key. Given a query clip, every
retrieval rule is checked if it categorizes the query motion into one of the given class, and the vali-
dated rules are then used for retrieving the similar motion segments. We use the short motion clip
composed of several types of gymnastic movements for the retrieval query. Our system validates
that the query motion clip consists of subsequences categorized as ElbowToKnee and Squat. The
related motion clips are then retrieved from the database using the two corresponding retrieval
rules. This approach enables the retrieval of a semantically similar motion with a large difference
in appearance. This property can overcome the limitations in existing numerical techniques.

4 Conclusions
This paper has proposed a rule generation technique for motion retrieval using ILP. The clausal
formulation provides a meaningful representation of human motion and its retrieval rules. The
retrieval rules are efficiently learned within the ILP framework from a set of manually classified
training data. The discovered rule is directly edited in the clausal form. By specifying the name
of a motion class, motion segments are efficiently retrieved from a large database using the rule
assigned to the motion class with the space windows. Our system also retrieves the motions using
a short motion clip for the retrieval query, which actually uses the retrieval rule associated with
the query clip.

The major limitation of our method is that the retrieval rule can not be incrementally learned.
Another limitation is that our method requires fine adjustment of many numerical parameters.
Furthermore, the manual segmentation of the training motions often affects the retrieval accuracy,
which is a general issue in example-based motion retrieval techniques. These problems could be
alleviated by statistically optimizing the thresholds or using a fuzzy representation in the logical
expression. Our future work also involves the investigation of the adaptive sampling method for
selecting training data essential to rule generation.
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