
IEEE COMPUTER GRAPHICS AND APPLICATIONS 1

Texture Synthesis for Mobile Data Communications
Hirofumi Otori and Shigeru Kuriyama

Abstract—A digital camera mounted on a mobile phone is
utilized as a data input device to obtain embedded data by
analyzing the pattern of an image code such as a 2D bar code.
This article proposes a new type of image coding method using
texture image synthesis. Regularly arranged dotted-pattern is
first painted with colors picked out from a texture sample,
for having features corresponding to embedded data. Our
texture synthesis technique then camouflages the dotted-pattern
using the same texture sample while preserving the quality
comparable to that of existing synthesis techniques. The textured
code provides the conventional bar code with an aesthetic appeal
and is used for tagging data onto real texture objects, which can
form a basis for ubiquitous mobile data communications. This
technical approach has the potential to explore new application
fields of example-based, computer-generated texture images.
Keywords:
Texture synthesis, image coding, local binary pattern, data
hiding, code detection.

I. INTRODUCTION
A high-quality digital camera is equipped on most recent

mobile phones, and it is often utilized as a handy image code
detector. Two-dimensional bar codes are frequently utilized
for coding URL that guides to relevant information services
on the web. The black and white matrix-formed patterns of
the 2D bar code are efficient for robustly coding data, but
their meaningless images often diminish the attractiveness of
printed matter such as magazines and wrapping papers. We
have found this can be overcome by introducing recent CG
technologies to the data-coding mechanism.
In this article, we focus on texture images of iterative

patterns as a new type of image code. We directly paint colored
dotted patterns to be robustly detected from a photographed
image. Then, we synthesize texture images to conceal the
patterns while preserving their colors. Our novel approach can
embed larger information than existing technologies, and the
quality of the synthesized images is assured owing to a smart
algorithm of texture image generation.
Using texture images as a replacement for bar codes has two

benefits. Iterative texture is sometimes used as a background
image of a printed matter, and information can be embedded
on some blank places unoccupied by foreground images.
Another promising application is the use of a camouflage code
on real material. By synthesizing a texture with a sample image
scanned from a real material such as wood or cloth, we can
embed data by affixing a seal of the printed texture on the
material in an inconspicuous manner. This camouflage code
can be used to record product information of the material
while avoiding unsightly coded images. We demonstrate the
feasibility of this technique through actual implementation on

Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toy-
ohashi, Aichi, 441-8580, Japan TEL:+81-532-44-6737, FAX:+81-532-44-
6757 otori@val.ics.tut.ac.jp, kuriyama@ics.tut.ac.jp

a mobile phone, and show that our robust and efficient data
detection mechanism can read coded data within a reasonable
response time and error ratio.
Figure 1 shows various kinds of texture synthesis, which

displays sample seed images, textures synthesized with an ex-
isting pixel-based method [1], and 25-byte data-coded textures
with our method. Although the resulting images are slightly
different in appearance, their quality is nearly the same.

(a) (b) (c)

Fig. 1. Examples of (a) sample image, (b) ordinary synthesis, and (c) data-
coded synthesis.

II. RELATED WORKS
A. Data coding and hiding
A QR-code1 was developed as an efficient and robust 2D

bar code, as shown in Figure 2(a), and it has become a popular



IEEE COMPUTER GRAPHICS AND APPLICATIONS 2

device to read a URL for navigating web pages and services,
without the troublesome operations of a small numerical key-
pad. Several methods have been developed to introduce some
eye-pleasing aesthetic pattern, for example, a Color-code 2 in
Figure 2(b) adds colors, and a Design-QR3 partially modifies
the patterns of the QR code to small icons, as shown in
Figure 2(c). These approaches, however, embody the style of
the matrix form and impose rigid constraints on their visual
design.

(a) (b) (c)

Fig. 2. Examples of two-dimensional bar codes. (a) QR-code, (b) Color-code,
(c) Design-QR.

Recently, natural images are also utilized as a replacement
for the QR code. Some techniques intentionally modulate the
specific color or frequency component of the image according
to embedded data. Most methods incorporate either of two
numerical techniques developed, watermarking or steganogra-
phy [2]. Watermarking is utilized to protect copyright, which
requires robustness against intentional attack through alteration
or destruction of images, and steganography is designed to in-
crease the amount of hidden data while sacrificing robustness.
These traditional approaches have only a restricted amount of
embedded data (or payload) for assuring robustness against
noise caused by actual lights, lenses, and imaging devices.
Also, increasing such robustness requires a large modulation
in the color or frequency component of an original image,
which often seriously compromises the quality of the resulting
image.

B. Texture synthesis
Texture image synthesis using the example-based approach

may be roughly classified into two types; pixel-based and
patch-based. The former technique determines the color of
every pixel via a pattern matching process using a square
sample image as a template, and the latter adaptively arranges
the sample image, called a patch, while ensuring seamless and
continuous connection of the patches (see [3] for the detailed
explanation of these techniques).
We here focus on the pixel-based methodologies [1], [4],

[5], [6] that determine the colors of every pixel by referencing
a sample image. These methods usually paint a texture image
from scratch. Our technique, however, is to start painting
from an initial dotted pattern generated for coding data. This
approach is similar to texture generation from initially painted
images [5] or flow fields [6] by which the resulting images
are transformed. Such techniques try to preserve the visual
1QR-code is a trademark of DENSO WAVE Inc. [http://www.qrcode.com/].
2Color-code is a trademark of ColorZip Japan [http://www.colorzip.com/].
3Design-QR is a trademark of IT Design Inc. [http://d-qr.net/].

features of the initial image while allowing a slight change
in color with soft-constraints. Our method, on the other hand,
preserves the color of the initial image with hard-constraints
while making the visual features inconspicuous. Our approach
essentially uses a greedy method for effectively conceal the
initially given pattern, and more sophisticated optimizations
[6] have the potential to improve the quality of the resulting
image by sacrificing computational simplicity and efficiency.

III. DATA CODING WITH LBP
Our data-coding strategy first converts bit-patterns of in-

formation into colored dotted patterns. We sparsely arrange
colored dots and convert binary values into the difference of a
specific color component, which is called a coded component,
whereas existing bar codes use densely-arranged black and
white dots. Although our texture synthesis allows any type of
regularly-arranged pattern, we experimentally found that the
existing feature vector for texture images, called local binary
pattern (or LBP) [7], is best suited to synthesize high-quality
images with our method for many types of textures.
This code is computed by comparing the value of a

centered pixel against those of circularly-arranged nearby
pixels. The coded data are divided by P bits and LBP is
computed from the difference of a coded component be-
tween a pixel located at the center pc of the block and
the P circular positions regularly arranged as pn = pc +
R (cos (2πn/P ) ,− sin (2πn/P )) , n = 0, . . . , P −1 with the
distance R from the center (see Figure 3):

LBPP.R (pc) =
P−1∑
n=0

s (g (pn) − g (pc)) 2n, (1)

s (x) =

{
1 : x ≥ 0
0 : x < 0

where g(p) denotes the coded component at p, and
s (g(pn) − g(pc)) corresponds to the value of the n-th bit.
Notice that the coordinates of the circular positions pn are
actually rounded off to integers for fitting them to discrete
pixel positions.

gc

g6

g4

g2

g0

g7

g1g3

g5

R

Fig. 3. Pixel sampling positions for computing LBP code (P=8).

We divide a region of synthesized texture image into a
predefined number of square blocks, and arbitrary data are
divided and coded by painting the pattern of LBP onto each
block in a scan-line sequence (i.e. from left to right, then top
to bottom). A texture image is then coated on so as to conceal
this painted LBP code. Because each LBP can represent P bits,
embedding data of n bits requires regularly-arranged #n/P $



IEEE COMPUTER GRAPHICS AND APPLICATIONS 3

image blocks, where # $ denotes a ceil function. Whole data
are therefore recovered by concatenating the P bits for each
block in the same scan-line sequence. We usually set P = 8
so that each block embeds one byte of data (or character).
The original LBP uses grayscale level or each RGB com-

ponent as g(p), but it can be replaced by an arbitrary color
component that can be uniquely converted from RGB. We
usually select a color component insensitive to the human
vision system as the coded component; for example, the Cb
component on Y-Cb-Cr color space. However, the component
must have wide distribution for ensuring robustness against
color distortions. For this reason, we are forced to select
a visually sensitive component if all insensitive components
have narrow distributions.

IV. PAINTING OF LBP CODE

A. Classification of colors

Every pixel color of a synthesized texture is determined
by adaptively selecting one from those included in a sample
image called an exemplar, and the image of LBP code is
camouflaged by selecting constituent colors from the subset
of the same group. Let c̃(p) be the color of the pixel located
at p in an exemplar, and let g̃(p) be the corresponding coded
component. We first extract the insensitive color component as
g̃(p) from all pixels and compute the median gm. Every pixel
color c̃(p) is then divided into three classes: the median class
for g̃(p) ≡ gm, the upper class for g̃(p) ≥ gm + T , and the
lower class for g̃(p) ≤ g̃m − T , where the coded components
residing in the middle range; gm − T < g̃(p) < gm + T ,
are neglected in painting LBP. The scalar value T isolates the
coded components in upper and lower classes from the median
value gm, and an increase of T enhances robustness against
the noisy variation caused in printing and photographing.
However, too much T greatly narrows down the range of
usable colors, and T = 30 ensures good balance for 8-bit
coded components.
After classifying the constituent colors of the exemplar

into three classes, the central pixel of a synthesized texture
is always painted by the pixel color whose coded compo-
nent belongs to the median class as c(pc) = c̃(pm) where
g̃(pm) ≡ gm, and the surrounding pixels are painted by
randomly selecting the pixel color whose coded component
belongs to the upper and lower classes for the embedded
binary data of 1 and 0, respectively.
We here assume that the process of texture generation is

based on a stationary random field; the color distribution for
each block is independent of its location, and this property
is our ground for introducing a global threshold. Using the
centered dots at every block to compute gm seems to be
redundant, but the local comparison of the coded components
inside the block can enhance robustness in data detection.
Color intensity of the captured image often varies depending
on the location due to the change of illumination, and each
locally estimated color at the center serves as the calibrated
value of gm for each block.

B. Screening of LBP colors
For increasing robustness against the positional error caused

by image distortions, each dot for embedding data requires
an area greater than the size of a single pixel. We therefore
paint the same color on the nearby pixels (in our case, 8-link
neighbors). Figure 4(b) represents examples of the LBP code
for 5 × 5 blocks made from the exemplar in Figure 4(a).
The classified colors of an exemplar, however, become

conspicuous on a synthesized image if their frequency band
is higher than that of the LBP dots whose area contains 3 by
3 pixels. For this reason, high-frequency color components of
the exemplar are removed from the upper or lower class. In
practice, we remove the pixel colors if their outputs through
a differential filter (we currently use a Sobel filter) exceed a
threshold, where the threshold should be carefully determined
so as to ensure a sufficient number of colors for each class.
The effect of this screening is demonstrated in Figure 8.

(a) (b) (c)

Fig. 4. Examples of data-coded texture synthesis. (a) Exemplar (sample
image), (b) LBP code for 25-byte data, (c) Synthesized texture.

V. TEXTURE SYNTHESIS WITH LBP
A. Texture coating with exemplar
The initially painted LBP code is concealed by adaptively

determining the colors of unpainted pixels by referencing the
features of the exemplar. For each unpainted pixel, we compute
the differences in color c(p) of the nearby pixels with the
corresponding pixels in the exemplar as

S(p, q) =
∑

r∈ν

D(p, q, r) (2)

D(p, q, r) =

{
0 if c(p + r) is null
‖c(p + r) − c̃(q + r)‖2 else

where p denotes the 2D position of the unpainted pixel,
and ν is the set of offset vectors for indicating N =
(2w + 1)2 − 1 neighbors centered at p; ν := {(s, t)|s, t ∈
{−w, . . . ,−1, 0, 1, . . . , w}, (s, t) *= (0, 0)}. Notice that the
S(p, q) decreases the more similar the synthesized texture and
exemplar are in color distribution pattern for the nearby pixels
of the p and q locations. We then substitute c(p) for the color
at q of the exemplar, where S(p, q) takes the minimum value
of:

q̂ = argmin
q

S(p, q) , c(p) = c̃(q̂) (3)

The equations (2) and (3) are interpreted as template match-
ing where a square context window of N pixels centering p



IEEE COMPUTER GRAPHICS AND APPLICATIONS 4

is regarded as a template, and the best matching region is
searched within the exemplar. Larger N can generate images
more similar to the exemplar, but LBP code becomes more
conspicuous as a side effect. We experimentally found that
w = 7(N = 224) ensures good balance of these factors.
The above procedure is repeated until all pixels are painted.

Figure 4(c) shows the texture generated by using this coating
algorithm from the exemplar of Figure 4(a) and the LBP code
in Figure 4(b).

B. Effects of pixel-painting sequence
In pixel-based texture synthesis, the sequence of painting

pixels plays an important role in the quality of the synthesized
images, and existing methods usually select unpainted pixels
in scan-line sequence for referencing the color coherency of
previously painted pixels as much as possible. In our method,
however, the sequence of scan-line often fails to conceal the
LBP code. The colors near the LBP code reveal discontinuity
because the top pixels used for pattern matching, marked A
in Figure 5(a), have been coated in former iterations without
the effect of the LBP code marked X, and even nearer pixels
marked B have little effect from the LBP because of the
smaller area inside the context window (notice that the Figure
5(a) schematically represents the window of w = 2 for
simplicity, but we actually use w = 7). Consequently, the color
inconsistency near the boundary of the LBP is unavoidable,
which reveals our peculiar problem for using the LBP code as
hard-constraints in generating textures.
We here introduce randomness to pixel-painting sequences

(Figure 5(b)) for blurring the borders of a LBP dot. This
random sequence can make the number of pattern-matched
pixels uneven; the pixels near the LBP codes may be heavily
influenced by the LBP when they are occasionally visited in
an early stage of the coating process. A similar policy has
been introduced in [8] for generating textures over surfaces of
arbitrary topology.
This approach, however, seriously degrades the quality of

the resulting image when the exemplar has structured patterns.
The existing methods using sophisticated techniques, such
as iterative optimizations or scalable pattern-matching [3],
[6], have advantageous properties in accurately reproducing
structured patterns in an exemplar. This reproducing capability,
however, conflicts with the hard LBP constraints, so we must
find a point of compromise considering this trade-off.
Our solution is to introduce a Hilbert curve sequence (Figure

5(c)), by which the sequence can be uniformly distributed
while preserving the space coherency in painting order. This
approach can be regarded as a reasonable compromise because
the space coherency ensures the capability in reproducing
structural patterns in the simplest way, similarly in the scan-
line sequence, and its randomness of pixel-traversing direc-
tions can simultaneously bring about the effect of blurring to
some extent.
Figure 6 shows the effects of pixel-painting sequences. The

random sequence can conceal the LBP code better than a scan-
line sequence, as shown in Figures 6(b) and 6(c), because it
can blur the discontinuous borders of the LBP. However, it

B
A

X

B
A
B
A
B
A
B
A

B B

X
X

X X
X X
X X

(a)

56 6 11 48 22 40
55 19 38 30 33 42

X

10 54 50 43 24 29 17
32 41

52

5
46 39 20

26 53

27

25

16

36 35 13
45 X

5115

31 21 23
9 3 44 28 37 47 2 8
49 7 18 1 14 4 34

X
X X X
X X X

(b)

X X X
X X X
X X X

(c)

Fig. 5. Schematic representation of pixel-painting sequences: (a) scan-line,
(b) random, and (c) Hilbert curve. Pixels painted for LBP code are marked
X, and arrows and numbers represent the sequence of painting pixels.

loses the distinctness of the pattern silhouette inherent in the
exemplar as a side effect because of the lack of the reproducing
capability. On the other hand, the Hilbert curve sequence has
both the advantageous properties of blurring conspicuous spots
and preserving silhouettes because it can irregularly paint
pixels in series. This property is especially effective for the
regular iterative pattern, as shown in Figures 6(h), 6(i), and
6(j).

C. Quality improvement with re-coating
The coating process determines the most similar pattern

only with the painted pixels due to the rule of the dissimilarity
computation in equation (2);D(p, q, r) = 0 if c(p+r) is null.
However, this causes inaccurate pattern analysis in the early
stage of coating when we introduce randomness in pixel-
painting sequences. This property is useful in blurring borders
of the LBP, but damages the image quality at the regions
distant from the LBP as a side effect. To eliminate this defect,
we re-coat all pixels except for those on the LBP codes. In this
second coating phase, all pixel colors have been tentatively
determined, and thus the texture pattern analysis becomes
more accurate. As a result, the quality of the synthesized
images can be improved. We experimentally confirmed that
the re-coating in more than the second trial cannot particularly
increase the quality of the image, and therefore we do the re-
coating only once. Notice that the effect of the pixel-painting
sequence is negligible in the re-coating phase, and we therefore
use a scan-line sequence.
Figures 6(e), 6(f), 6(k), 6(l) demonstrate the improvement of

image quality through the re-coating process. As these exam-
ples show, the effects of re-coating enhance the advantageous
property of their painting sequences; the random sequence
makes the spots of LBP code more inconspicuous and the
Hilbert curve sequence recovers the silhouette more clearly
and correctly after the re-coating process.

D. Effects of LBP and randomness
The texture image is synthesized so as to have the features

of an exemplar, but the features in frequency components
are largely affected by the density of the LBP code. Figure
7 demonstrates the effect of the amount of the coded data
where Figures 7(b) and 7(c) denote the LBP for 25- and 100-
byte data, respectively, from the same exemplar in Figure 7(a).
Figures 7(d) and 7(e) show the synthesized textures from the



IEEE COMPUTER GRAPHICS AND APPLICATIONS 5

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6. Effects of pixel-painting sequences and re-coating for the exemplars
of (a) random and (g) regular patterns. Texture images in (b) and (h) are
synthesized using scan-line sequence, and (c),(i) and (d),(j) are synthesized
using random and Hilbert curve sequences, respectively. Magnified images
(e),(k) show intermediate defective patterns before re-coating and (f),(l) show
their improved images after re-coating, where (e),(f) use a random sequence
and (k),(l) use a Hilbert curve sequence.

LBP in Figures 7(b) and 7(c), respectively, which reveals the
change in the frequency pattern. Figure 8 shows the effects of
screening LBP colors, where the conspicuous spots in Figure
8(b) are successfully removed in Figure 8(c) by excluding tiny
dark colors in the exemplar with our color screening.
The randomness (or larger entropy) residing in an exemplar

plays an important role. Figure 9 (b) shows the capability
of the existing method [1] based on the scan-line sequence
in reproducing the structural feature of an exemplar of little
randomness in Figure 9 (a). Our modified sequence with the
Hilbert curve partially destroys the structure as a side effect
of incorporating randomness in the pixel-visiting sequence,
as shown in Figure 9 (c), and its data-embedding synthesis
in Figure 9 (d) clearly shows the failure in concealing LBP
codes. Notice that all syntheses used a larger context window
(w = 15) for enhancing reproductive capability of the struc-
ture. These examples show that our encoding scheme is only
suitable to random texture images, and suggest the difficulty

in camouflaging LBP codes with general images.

(a) (b) (c)

(d) (e)

Fig. 7. Texture synthesis for various density of LBP code from the exemplar
in (a). The 25 and 100 bytes data are embedded in (b) and (c), and the
corresponding textures are shown in (d) and (e), respectively.

(a) (b) (c)

Fig. 8. The effect of screening LBP colors. The texture image in (b) is
synthesized from the exemplar in (a) by randomly selecting the colors among
the corresponding class, and (c) is synthesized using our color screening
mechanism by which conspicuous spots can be removed.

(a) (b) (c) (d)

Fig. 9. The limitation of our method. The structural feature of an exemplar in
(a) is reproduced in (b) synthesized with the scan-line sequence and is partially
destroyed in (c) with the Hilbert curve sequence due to its randomness in
pixel-visiting directions. Figure (d) reveals the difficulty in camouflaging the
LBP code for the exemplar of small entropy.

VI. EXPERIMENTAL RESULTS
A. Implementation on Mobile Phone
We have investigated the robustness of our data-detecting

mechanism by implementing it on a mobile phone of FOMA
D904i with Doja API. The data-coded texture images of 200
by 200 pixels were printed in a 2-by-2 inch square region
with an EPSON PX-G5100 color ink-jet printer on super-
fine A4 paper. The printed image was then captured by the



IEEE COMPUTER GRAPHICS AND APPLICATIONS 6

phone’s camera with a macro mode of 480 by 640 pixels
supported by hand at a distance of 5 to 8 cm, where a
fluorescent lamp was used for lighting. Through 10 trials for
each 4 examples, we had average error bits of 0.29 where
the maximum and minimum of the error bits was 6 and 0,
respectively. Figure 10 shows snapshots of the process for
detecting data, and an example of this process is demonstrated
on a movie file which can be downloaded from our web page
(http://www.val.ics.tut.ac.jp/otori/forCGAdemo.wmv).

(a) (b)

Fig. 10. URL detection with a mobile phone on the market. (a) Capturing
image , (b) Detecting URL.

As a data detection pre-process, we have implemented an
image calibration mechanism [9] that automatically detects
four corners of a square region and corrects distortions through
projective transformations with the four corners. We then ex-
tract coded components of all pixels and compute their upper
and lower classes for dividing up each coded component of the
LBP dots, where the positions of the dots are computed from
the relative position of each block subdivided by predefined
numbers.
Table I shows the detailed result of data detection for

the images in Figures 4(c), 6(f), 7(d), and 7(e). Error rate
represents the ratio of imperfect code detections and the
average and maximum error bits were computed by the number
of wrong bits for the 10 trials. The embedded data cannot be
completely detected, especially in Figure 4(c), but the ratios
of error bits are small enough to recover the information with
some error correcting codes such as Reed-Solomon [10]. It is
noteworthy that the amount of embedded data (payload) has
little effect on the accuracy of detection.

TABLE I
ERROR RATE FOR VARIOUS SIZES OF EMBEDDED DATA.

Example Payload Error rate # of error bits
(byte) Average Maximum

Fig. 4(c) 25 0.5 1.7 6
Fig. 6(f) 25 0.1 0.1 1
Fig. 7(d) 25 0.2 0.2 1
Fig. 7(e) 100 0.1 0.1 1

Table II compares the payload of our method against the
existing market products. We can only show a rough compar-
ison due to the lack of detailed specification of the products,
and these payloads cannot be accurately estimated because of
the difference in measurement conditions in terms of paper-
size, resolution of camera, lighting, and so on. Although the

evaluation of payload lacks the accuracy, our method can
embed a larger amount of data than existing techniques based
on natural image modulations. On the other hand, the payload
in our method is smaller than those in the 2D bar code, and
current capacity is not suited to embed long messages.

TABLE II
COMPARISON OF PAYLOAD WITH MARKET PRODUCTS.

Product Payload (byte) Encoding scheme
Our method ∼ 100 LBP code
QR-Code ∼ 3000 2D bar code

Pasha-warp [11] 3 Frequency modulation
FP-code [12] 5 Color modulation

VII. DISCUSSIONS
We have proposed a novel texture synthesis for coding data

with little aesthetic defect. An encoding scheme with a dotted
pattern, like the matrix-formed pattern of QR-code, is suited
to embed larger data than the existing scheme based on color
or frequency modulation used in traditional watermarking or
steganography, and can guarantee robustness in code detection.
We have experimentally found that our LBP is also robust
against the analog channel of a printer and digital camera.
We have improved the quality of data-embedded textures by

introducing adaptive LBP color selection, new pixel-painting
sequences, and re-coating mechanism. However, those heuris-
tic approaches could be generalized by the optimization that
can guarantee both similarities in local and global features.
The payload in our method surpasses those in existing

techniques of natural image modulations, and its amount is
sufficient to embed most kinds of URLs for sending anchor
information of Web services. Although the payload of our
method should be more accurately estimated, it has the po-
tential to replace existing bar codes to aesthetically improve
the appearance.
The conspicuousness of LBP dots can be reduced by relax-

ing the restriction on the constancy in color. This relaxation
should ensure the robustness in code detection, and might
require integrating optimizations for both painting processes
in LBP and texture. Currently, some marks or lines must be
drawn on a texture image for extracting the data-embedded
square region, but in some cases, their appearance also should
be visually concealed. It is also a challenging work to extend
our target from 2D flat images to deformed images texture-
mapped on a virtual 3D object.

ACKNOWLEDGMENT
This work was supported in part by Global COE Program:

Frontiers of Intelligent Sensing, MEXT, Japan.

REFERENCES
[1] Wei, L.-Y. and Levoy, M.: Fast Texture Synthesis using Tree-structured

Vector Quantization. Proceedings of SIGGRAPH 2000 (2000) 479-488
[2] Provos, N. and Honeyman, P.: Hide and Seek: An Introduction to

Steganography. IEEE Security & Privacy, Vol.1. No.3. (2003) 32-44
[3] Dong, F. and Ye, X.: Multiscaled Texture Synthesis Using Multi-

sized Pixel Neighborhoods, IEEE Computer Graphics and Applications,
Vol.27, No.3 (2007) 41-47



IEEE COMPUTER GRAPHICS AND APPLICATIONS 7

[4] Efros, A. A. and Leung, T. K.: Texture Synthesis by Non-parametric
Sampling, IEEE International Conference on Computer Vision, (1999)
1033-1038

[5] Ashikhmin, M.: Synthesizing natural textures. Symposium on Interactive
3D Graphics (2001) 217-226

[6] Kwatra, V. and Essa, I. and Bobick A. and Kwatra, N.: Texture opti-
mization for example-based synthesis, ACM Transactions on Graphics,
Vol.24, No.3 (2005) 795-802

[7] Mäenpää, T. and Pietikäinen, M.: Texture analysis with local binary
patterns. Handbook of Pattern Recognition and Computer Vision 3rd
ed. World Scientific (2005) 197-216

[8] Wei, L.-Y. and Levoy, M.: Texture Synthesis Over Arbitrary Manifold
Surfaces. Proceedings of ACM SIGGRAPH 2001 (2001) 355-360

[9] Katayama, A. and Nakamura, T. and Yamamuro, M. and Sonehara, N.:
New high-speed frame detection method: Side Trace Algorithm (STA)
for i-appli on cellular phones to detect watermarks , ACM International
Conference Proceeding Series Vol.83. (2004) 109-116

[10] Reed, I.S. and Solomon, G.: Polynomial codes over certain finite fields.
SIAM J (1960) 300-304

[11] Nakamura, T. and Ogawa, H. and Tomioka, A. and Takashima, Y.:
Improved Digital Watermark Robustness against Translation and/or
Cropping of an Image Area, IEICE Trans. Fundamentals, Vol.E83-A.
No.1. (2000) 68-76

[12] Noda, T. and Moroo, J. and Chiba, H.: Print-type Steganography Tech-
nology (in Japanese). Magazine FUJITSU 2006-5 Vol.57. No.3.(2006)
320-324

BIOGRAPHY
Hirofumi Otori is a PhD student in the department of

information and computer sciences at the Toyohashi University
of Technology, and a research assistant of Global COE of
MEXT. His research interests include data coding techniques
with computer-generated images and applications with mobile
graphics in general. Contact him at otori@val.ics.tut.ac.jp.
Shigeru Kuriyama is a professor at the Toyohashi Univer-

sity of Technology, and an invited leader of the visualization
team in Digital Human Research Center at Advanced Institute
of Science and Technology. His research interests include mo-
bile graphics technology and humanoid animations. Kuriyama
received a Doctor of Engineering from the Osaka University.
Contact him at kuriyama@ics.tut.ac.jp.


