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Abstract

Data volume transferred on the Internet is growing explosively along with the advance-

ment of computer technology and the popularization of Internet applications. To take

account of the data volume, introducing alternative systems or redesigning the whole

Internet might be adequate but cannot be achieved promptly. Introducing bandwidth

reservation mechanism is one of possible directions of the adequate evolution. How-

ever, dedicated network infrastructures would be necessary for implementing such a

kind of mechanisms. On the other hand, a method that efficiently utilizes the existing

Internet is promising. Network throughput prediction on the Internet, which is another

approach for the efficient utilization of the Internet, does not require hardware for the

infrastructures, and it can help to enhance site selection on multiple sites and grid ap-

plications by reducing data transfer time.

Although many solutions have been proposed for predicting the network throughput,

they suffer the following obstacles. First, it is hard to be modeled mathematically be-

cause distribution of traffic fluctuation is unclear. Second, changes in data are very large

because the scale and bandwidth of network are rapidly increased each year. Third, there

is noise occurred by abrupt changes in network state.

In this thesis, throughput prediction methods and its application to efficient utilization

of the Internet are explored.

As a first step, we introduce and discuss research issues of Internet traffic characteris-

tics when virtualization technology is used on the Internet. We gather throughput mea-

surements on the Internet and appropriate prediction parameters are selected through

statistical analysis before the actual prediction. In the throughput measurements, we

clarify extra effects caused by the virtualization. Although network state is stable, the

measurement results are fluctuated by the effects. A previous prediction parameter is

inappropriate for the precise prediction, and noise and non-linear characteristics are

found.

Next, we propose a throughput prediction method with improved prediction results.

Machine learning techniques, that find patterns or characteristic features, are applied



on the throughput measurements to automatically determine an appropriate regression

curve and to deal with prediction models represented as noise and non-linear character-

istics. The prediction results of our method compared to those of the previous prediction

method are more accurate on the same condition.

Finally, we investigate the contributions of prediction results through grid simulation.

Our prediction method and the previous prediction method were adopted by a grid

scheduler and their performance was quantitatively compared to that of the scheduler

without any throughput predictions. Through the simulation, the prediction results will

not always contribute to reduce processing time on given tasks. Most results reduce

overall processing time using our prediction method.
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Chapter 1

Introduction

1.1 Background

The Internet is an essential infrastructure, and many researchers and developers have

been devoted for the safe and efficient use of the Internet. Therefore, Internet applica-

tions [1][2] and cloud services [3][4] have been widely used to save user’s data and to

share the data to many people. Recently, the volume of data on the Internet is rapidly in-

creased through the increasing the Internet applications and the development of network

equipments. In order to take account such volume, bandwidth reservation would be a

reasonable way, but it can be promptly impossible to apply the system to the Internet.

Under this situation, a method that efficiently uses the Internet is an alternative way. For

an efficient use of the Internet, the applications have considered network characteristics.

With the characteristics, the applications can control transfer timing or a volume of data

transfer to avoid network congestion. Moreover, we can select a fast server with the

characteristics to reduce data transfer time.

In grid [5], network is used for moving data to distributed resources. Thus, overall pro-

cessing time is affected by network resource. If we can use network resource efficiently,

we can reduce the overall processing time. We here introduce how to use network re-

source on grid applications. To share huge amounts of data on the grid applications

to distributed resources, well-known network metrics, such as Round-trip Time (RTT),

packet loss, and so on or reserving communication resources are provided to grid sched-

ulers [6][7]. However, it would be hard to provide the metrics on current Internet envi-

ronments because Internet service providers (ISPs) do not disclose the metrics on their

network environments. Next, dedicated communication infrastructures are required for

1
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such a kind of reservation mechanisms. A construction of infrastructures on the Internet

would be a possible solution, but it is costly and takes a lot of time for the construction.

Network throughput prediction on the Internet is a sensible solution for the efficient

use. It does not require hardware for the infrastructures. Moreover, it can be used to

enhance grid task scheduling, path selection on multiple paths, and the efficiency of data

transfer. The predicted throughput can be provided as a criterion to schedule grid tasks

and the path that has the shortest transfer time can be selected by using the predicted

throughput.

In this thesis, we report on a throughput prediction method on the Internet with im-

proved prediction accuracy. We focus on measurements, analysis, and modeling for

precise prediction results. We also discuss many issues of traffic characteristics on the

current Internet, describe the prediction method, and clarify the effect of prediction

results to the grid applications.

1.2 Anomaly

In general, anomaly is something that deviates from what is normal, expected, and pre-

dictable. The anomaly has been widely used in many different areas. For example,

the anomaly in stock market is a distortion in prices. Thus, the meaning of anomaly

would be different depending on the definition. To prevent confusion with the meaning,

the definition of anomaly in this thesis is as follows: a situation determined by some

measurement result. If we observe that network bandwidth is significantly slower than

that of our expectation from the network metrics or past measurement results, we judge

that there is the anomaly. In order to determine the anomaly, preconditions are analysis

results in packet-level. In detail, throughput instability occurred by virtualization tech-

nology is the representative anomaly. The precondition is stable network state where

there are no significant changes in well-known network metrics, such as RTT, packet

loss rate, and advertised window.

For a better understanding of the anomaly, we prepare two throughput measurement

results (cases A and B) on the Internet. The same sender and receiver nodes are used for

the measurements, and the data size transmitted to the receiver is 16 MB (megabytes).

The actual throughput is shown in Figure 1.1. Despite of the same data size, the actual

throughput at case B is decreased in comparison with that at case A. Normally, we
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can assume a cause of throughput instability at case B as network congestion. Thus,

the cause of throughput instability is predicable. To clarify the cause, we analyze the

results in packet-level. The mean throughput and network metrics are shown in Table

1.1. Although the actual throughput at case B is decreased, there are no significant

differences in other network metrics. Case B is a typical case we call it anomaly. Again,

we focus on the measurement result for the definition of anomaly. We will introduce

and discuss the anomaly deeply in Chapter 2.
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FIGURE 1.1: Actual throughput at cases A and B.

TABLE 1.1: Mean throughput and network metrics.
Data size Mean throughput Mean RTT Packet loss rate

[MB] [KBps] [s] [%]
Case A 16 1266.9 0.0442 0.196
Case B 16 259.5 0.0451 0.065

1.3 Research Problems and Questions

In this section, we introduce problems that this research deals with. We first describe

the situation on the current Internet environment and the reason why Internet traffic

characteristics are considered. Second, we explain a composition of bandwidth on end

nodes to understand bandwidth. Third, we introduce what is network throughput. Next,

the prediction of network throughput in this research is described. Finally, we show

research questions for the accurate throughput prediction.
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A virtualization technology [8][9] is a promising technology that provides software en-

vironments in the form of virtual machines (VMs) [10][11][12], and many fields of

network have been widely used. Thus, network measurement is different from non-

virtualized environments. Because the VMs on a physical node are provided as plat-

forms for user, lower layers, such as TCP/IP, are hidden and virtualized. Under this

situation, extra effects may be induced by the virtualization. Then, real resource state

on a physical node is hidden and it would be hard to track user behaviors with the vir-

tual resource state. For example, a case of connection state on virtualized environment

is shown in Figure 1.2. Although VM1 and VM3 on site A are connected to VM1 and

VM2 on site B, each VM cannot track behaviors of other VMs on the same physical

node. In order to create a precise throughput prediction, we should consider above sit-

uation. Moreover, we should also investigate the current behavior of Internet traffic

because the bandwidth and scale of networks are rapidly increased.

FIGURE 1.2: Case of connection state on virtualized environment.

We present the composition of network bandwidth. The bandwidth can be divided into

following criteria. Total capacity consists of available bandwidth and utilized band-

width. The utilized bandwidth is the rate of existing flows. The available bandwidth is

the maximum rate of a new flow that will not reduce the rate of existing flows. Nor-

mally, user datagram protocol (UDP) can use the available bandwidth fully. Network

throughput is the average rate of successful data over a flow. Transmission control pro-

tocol (TCP) is one of mechanisms to measure the throughput. The bandwidth is shown

in Figure 1.3. Again, the goal of this research is to predict the network throughput.

Here, we introduce how to predict the throughput. At first, we simultaneously generate

a small transfer using TCP as a probe transfer and a large transfer using TCP as a

data transfer to measure the throughput on the Internet. Next, the measurement results

are used as historical data. In other words, such prediction can be formulated as a

regression problem. Finally, we apply statistics and machine learning techniques [13]
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FIGURE 1.3: Composition of bandwidth on end nodes.

to the results to determine an appropriate regression curve. To summarize, we focus on

the appropriate regression curve using the past measurements. The prediction problem

is described in Figure 1.4.
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FIGURE 1.4: Problem of network throughput prediction.

There are research questions for the throughput prediction. We will attempt to answers

the following research questions:

1. What traffic characteristics are observed when the virtualization technology is

used on the current Internet?

2. During network measurement, how can the impact of virtualization be estimated

on application layer?

3. Will there be linearity between probe and data transfers or what other character-

istics are implied for the throughput prediction?

4. What is an appropriate probe size for precise prediction?
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5. What algorithms are proper to determine an appropriate fitting curve on noise and

non-linear characteristics?

6. How can prediction results contribute applications? Is it true that precise predic-

tion results should always guarantee the reduction of processing time when tasks

are given?

1.4 Characteristics of Thesis

In order to obtain the research goals, this thesis uses non-parametric statistics and ma-

chine learning techniques. We classify the thesis as two positions of research areas; the

former is a network research area and the latter is machine learning.

1.4.1 Networking

In order to predict the network throughput using historical data, there are two ap-

proaches: passive measurement and active measurement. The passive measurement

only uses existing traffic, thus nothing extra traffic is occurred into networks. NetFlow

[14] is one of representative passive measurements. In contrast, the active measurement

uses packets that measure networks. For example, the ping program sends an ICMP

packet [15], and together with its reply measures RTT on end nodes. Our approach

is based on the active measurement. We simultaneously generated the probe and data

transfers to measure the network throughput.

Our approach is different from previous prediction methods [6][16][17]. They focused

on simply remember of past measurements [6], linear regression [16] based on Pearson

product-moment correlation coefficient, or cumulative distribution function (CDF) [17].

Meanwhile, our method uses machine learning techniques to analyze massive data and

to find patterns or characteristic features that help the prediction on the data.

1.4.2 Machine Learning

At aspects of machine learning techniques, the data of network traffic has many noises

and the distribution of traffic fluctuation is unclear. Thus, it would be hard to determine

a model of probability distribution for the prediction. Moreover, changes in data are
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very large because the scale and bandwidth of networks are rapidly increased each year.

Machine learning techniques are appropriate indicators to take into account such data.

Although our method was not a first method to apply machine learning techniques into

the throughput network, it is simpler than a previous prediction method [18].

1.5 Contributions of Thesis

In this section, a list of contributions is given briefly. Although detailed descriptions

of this research will be presented through Chapters 2 and 6, major contributions are

outlined below.

• We show that oversize packet spacing, which can be caused by CPU scheduling

latency, is a major cause of throughput instability on the Internet even when no

significant changes occur in the well-known network metrics.

• To estimate the major cause of throughput instability, we propose two estimation

methods: the former focuses on CPU availability and the latter is based on a

nature of resource states with principal component analysis (PCA).

• We select an appropriate probe size for the prediction model through statistics

approach. We make clear that a previous proposed probe size did not have high

predictability and it was not enough to real applications.

• A network throughput prediction method with improved accuracy is proposed.

The prediction results of the proposed method are more accurate and robust than

the previous method [17] for the same data sets.

• Through a meta-scheduler simulation, we clarify how high accuracy of through-

put prediction should contribute to realize efficient scheduling. Next, we show

that the schedulers with throughput predictors should not always guarantee the

reduction of processing time on give tasks. Only a few of large prediction errors

can drastically affect the overall processing time. As a result, it takes more time

than the scheduler without any predictions although precise prediction results re-

duce the processing time.
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1.6 Thesis Organization

In this thesis, we investigate Internet traffic characteristics, describe a network through-

put prediction method with improved prediction results, and clarify the effect of pre-

diction results. This section illustrates thesis organization (Figure 1.5). In Chapter 1,

the nature of research problems has been established and the research issues have been

introduced.
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FIGURE 1.5: Thesis Organization.

We take an analytical approach to predict the throughput. Our approach for the predic-

tion is presented through Chapters 2 and 5. Chapter 2 presents some studies related to

network measurement with the virtualization technology to diagnose research issues of

traffic characteristics. We here introduce PlanetLab [19] as a virtualized network testbed

on the Internet and our throughput measurement method. We also show throughput

measurement results and analysis results in packet-level to understand traffic character-

istics on the Internet. In this chapter, we describe traffic characteristics [20][21][22] on

the current Internet environments, clarify causes of negative impacts [20][21] of traf-

fic by the virtualization technology, and propose a naive method [21] to get rid off the

negative impacts. Moreover, the problem of naive method is clarified and an alterna-

tive estimation method [23] using principal component analysis (PCA) is described in

Chapter 3. Chapter 4 is mostly concerned with the selection of prediction criteria [24]

based on analysis results of Internet traffic. In this chapter, we present how to select

prediction criteria through statistics approach and show throughput measurements with

the criteria. Chapter 5 primarily focuses on modeling [25][26] for the throughput pre-

diction with the analysis results in Chapter 2 and the prediction criteria in Chapter 4.

Our approach is given to predict the throughput, and machine learning techniques are

also introduced to determine an appropriate regression curve. In particular, prediction
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results are compared with a previous prediction method for the same data sets. Until

this chapter, we are absorbed in our throughput prediction method, thus these chapters

are essential elements to propose a precise throughput prediction method.

Chapter 6 focuses on the impact of prediction results to the grid applications. In this

chapter, a simulation model of meta-scheduler using real traces of throughput is pre-

sented. We introduce some studies related to grid schedulers and services to understand

research issues of grid scheduler. We present the simulation model to make clear the

effect of prediction results. We show simulation results through statistics, and discuss

the results. The main emphasis throughout the simulation is how significantly the high

prediction accuracy contributes to the reduction of processing time.

Chapter 7 gives critical and concise summaries of the thesis, draws thesis conclusion,

and describes potential future extensions.



Chapter 2

Traffic Characteristics on the Internet

2.1 Overview

In this chapter, we introduce and discuss research issues of Internet traffic characteristics

when the virtualization technology is used. We first describe some studies related to

network measurement on virtualized environments and a concept of packet spacing in

Sections 2.2 and 2.3. Second, we present PlanetLab as a virtualized network testbed

and our throughput measurement methodology in Section 2.4. In detail, we show how

to select node and how to measure the throughput on the virtualized testbed. Third,

throughput measurement results are described theoretically and statistically in Section

2.5. Next, we clarify a major cause of throughput instability in packet-level analysis and

anomalous case is defined in Section 2.6. Moreover, a naive method for estimating the

anomalous case is proposed in Section 2.7. Then, we present traffic characteristics on

public cloud service in Section 2.8. Finally, we conclude with a summary of the main

points in Section 2.9.

10
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2.2 Precise Network Measurement on Virtualized Envi-

ronments

In order to apply VMs to network measurement and experiments, their performance

has been investigated and improved by many researchers and developers. Here, we

introduce some studies related to their performance. In [28], they introduced a prob-

lem of network performance on Xen, and discussed the problem. However, they did

not propose their original solution. Next, Kangarlou et. al [29] reported the prob-

lem occurred by the impact of virtualization. When many VMs shared CPU resources,

CPU scheduling latency is significantly increased. It disturbed TCP transmissions to

the VMs. Moreover, they proposed vSnoop, where the driver domain of a host ac-

knowledges TCP packets on behalf of the guest VMs. Their prototype designed and

implemented on Xen and they showed the improvement of throughput. The problem

that addresses them is same to this research, but our approach is different from their

approach. We focus on empirical-statistical criteria and methods on userland because

the virtualization technology used in the provided testbeds is hardly replaceable.

In PlanetLab, a few studies [30][31] have investigated the impact of virtualization for

precise network measurement and have understood Internet traffic characteristics on the

virtualized testbed. Peterson et al. [30] deployed a packet forwarding overlay between

Seattle and Washington, D.C on the virtualized testbed and used ping packets to com-

pare the RTT between the Seattle and D.C. nodes for the network and overlay. The

RTT of network was constant while that of the overlay varied widely. The cause of the

fluctuation in RTT was CPU scheduling latency. Although CPU scheduling latency at

a node will be a serious problem for network applications, no consideration has been

given to the relationship between packet spacing fluctuation and scheduling latency.

Spring et al. [31] showed that the load prevents accurate latency measurement and pre-

cise spacing for packet trains. They ran traceroute and tcpdump in parallel to acquire

timestamps between the application and kernel levels and showed the differences be-

tween application and kernel-captured timestamps when sending probes and receiving

responses. Moreover, they transmitted packet trains to determine how the CPU load

impaired precisely-spaced packets. However, they showed no clear conditions for the

types of load.
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2.3 Packet Spacing

We here look at a concept of packet spacing and explain an ordinary value of packet

spacing. We also describe the reason why methods that estimate oversize packet spacing

on userland are needed.

2.3.1 Concept of Packet Spacing

A round-trip time (RTT) is the time required for a packet to travel from a specific source

to a specific destination and back again. However, a packet spacing is different from the

RTT. It is amount of time between the reception of a packet and the sending of the next

packet. The concept of packet spacing is described in Figure 2.1. Network measurement

in virtualized environment can be affected by the packet spacing in comparison with

the case in non-virtualized environment. In other words, we should understand the

effect of packet spacing for the precise prediction. The packet spacing is approximately

0.000010 [s] over non-virtualized environments. Although the packet spacing is an

important criterion to network measurement, it is hidden to users, thus privilege or the

modification of kernel is needed to measure the packet spacing.
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FIGURE 2.1: Concept of packet spacing.
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2.3.2 Necessity for Estimating Oversize Packet Spacing on User-
land

Virtualized network testbeds become popular to make network experiments with ease.

In system construction on non-virtualized environment, we can re-implement lower lay-

ers, such as TCP/IP, on the system. However, the situation on the virtualized testbeds

is different from the non-virtualized environment. Thus, the virtualization technology

used in the provided testbeds is hardly replaceable. Moreover, the lower layers on the

virtualized testbeds are normally hidden and virtualized. In other words, real resource

state on a physical node is hidden and it is hard to track user behaviors on the same

node over the virtualized testbed. Empirical-statistical criteria and methods that pick

out oversize packet spacings for precise network experiments are required on userland.

2.4 Measurement Methodology

In this section, we first introduce PlanetLab and its characteristics as a virtualized net-

work testbed on the Internet. Next, we present how to select node pairs before the

introduction of throughput measurement method. Then, their node characteristics and

mean RTT using ping are shown. Finally, we explain our throughput measurement

method, and describe TCP parameters, the number of connections, and so on. It is very

important to understand the measurement method because it is based on our prediction

model.

2.4.1 PlanetLab as a Virtualized Network Testbed

With the progress of virtualization technology, network testbeds, e.g., PlanetLab [19][27],

Emulab [32], and StarBED [33] have been widely used for network researches, dis-

tributed system researches, and network experiments. In such testbeds, resources, such

as CPU, memory, and I/O interfaces, are shared and virtualized to maximize node util-

ity for many users. PlanetLab, which is a virtualized network testbed over the Internet,

has been used as a testbed for donation-based grids [34]. Moreover, it also used to in-

vestigate the validity of measurement tools [35] and prediction methods [36]. We have

found that this kind of prediction needs precise measurements to obtain the learning

samples. As of February 2013, it has grown to 1,100 machines spanning more than 500
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sites and 40 countries. In PlanetLab, a node based on the Linux-VServer [11] shares the

resources. A sliver represents a collection of resources assigned to a user on a physical

node. Thus, the sliver is a virtualized environment on the physical node. Multiple sliv-

ers can be run simultaneously at each node. A set of these slivers participating in the

same activity at different nodes is called a slice. Thus, PlanetLab consists of virtualized

nodes on the Internet.

For a better understanding of PlanetLab, we prepare an example of PlanetLab archi-

tecture on the Internet (Figure 2.2). There are four types of slivers and five PlanetLab

nodes on the Internet. The green slivers on nodes A, C, D, and E are connected on the

Internet. In other words, the green slice consists of the green slivers. While users of

green slice cannot access node B, they can access the nodes A, C, D, and E.

FIGURE 2.2: PlanetLab architecture.

2.4.2 Node Selection

To investigate the traffic characteristics, we empirically select four node pairs (eight

nodes), which we refer to these pairs as (α, β), (γ, δ), (κ, λ), and (µ, ν). The nodes are

contributed by universities or research institutions across North America and Europe

participating to PlanetLab, and composed of two or four independent CPU cores and

physical memory of approximately 3 GB (gigabytes). The virtualized network testbed

does not support network virtualization [37][38] for virtualized networks, thus the re-

source is shared among slices. It would be possible to use it at each site, but we did not

consider it in the experiments. We measure the throughput using Iperf and RTT using
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ping; their basic characteristics are given in Table 2.1. We observed throughput insta-

bility and abrupt RTT fluctuation in node pairs for two pairs (κ, λ) and (µ, ν). To show

the abrupt RTT fluctuation, we introduce RTT using ping at pair (κ, λ) in Figure 2.3.

We find an abrupt value of RTT (0.3990 [s]), and it is larger than the others.

TABLE 2.1: Node characteristics on virtualized network testbed.
Node CPU Memory Node pair Mean
name cores [GB] (arrow denotes transfer direction) RTT [s]

α 2 2.96
α ← β 0.0428

β 4 3.46
γ 4 3.42

γ ← δ 0.0830
δ 4 3.21
κ 4 3.42

κ ← λ 0.0200
λ 2 3.47
µ 2 3.45

µ ← ν 0.0900
ν 2 2.97
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2.4.3 Connection pair

A connection pair is a pair of probe and data transfers. The probe transfer is used for

the throughput prediction and the data transfer is used for actual throughput. In other

words, the connection pair consists of two simultaneous TCP connections in different

sizes. The probe size is relatively smaller than the data size. The measurement results

of connection pair are used for our prediction method.

We briefly introduce the previous work [16] related a prediction method using the probe

transfer. Wolski et al. [16] used different-sized pairs of connections and empirically

established the basic probe size as 64 KB (kilobytes) for Network Weather Service

(NWS). However, they did not consider an appropriate size for probe transfer on the

current Internet. We will discuss an appropriate probe size for the connection pair in

Chapter 4.

2.4.4 Throughput Measurement using Connection Pair

Our objective in measuring the throughput using the connection pair is to identify Inter-

net traffic characteristics for network throughput prediction on network virtualization

areas [39][40]. We used multiple TCP connections to press router’s queue at end-to-end

path and to encounter congested network state. In [41], when the number of connec-

tions was over 8 on non-virtualized testbed, the throughput was saturated. Moreover,

Altman et al. [42] found that aggregate throughput is not saturate on the virtualized

testbed when the number of connections is below 5. In the virtualized testbed, there are

various kinds of network traffic of the other slices on the node. We considered the above

situation, and used 6 connections (3 connection pairs) simultaneously. We generated the

various sizes for the connection pair every 5 minutes at all the pairs, and monitored the

resource state per slice on the node with slicestat [43] every 1 minute during throughput

measurement. If the measured size is smaller than expected or if the transfer time is

more than 5 minutes, we judge that the experiment has failed. Advertised window sizes

for probe and data transfers are respectively reduced to 16 and 64 KB. These window

sizes for the connection pair have been based on NWS. The sizes for the connection pair

are based on the original sizes and shown in Table 2.2. The measurement methodology

is described in Figure 2.4.
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TABLE 2.2: Probe and data sizes for connection pair.
Index Probe size Data size Number of

[KB] [MB] connection pairs
1 16 8 3
2 16 16 3
3 32 16 3
4 64 16 3
5 64 32 3

Although CPU scheduling latency [30] and heavy loads [31] are likely to affect the net-

work measurement, the impact of virtualization over many sites was not investigated

and no clear conditions or criteria had been established to estimate unstable conditions.

Moreover, it is hard to directly observe CPU scheduling latency on the virtualized net-

work testbed. Our approach is to implement a simple CPU monitoring program that gets

the current time every second to investigate CPU availability. It consists of a loop for

timestamp acquisition. In each iteration, the monitoring program calls get-timeofday()

and the timestamp is saved in a pre-allocated memory. If the resource state is stable,

the constant spaced timestamps are stored and one CPU core will be allocated to the

monitoring program fully. It is run during throughput measurement.

FIGURE 2.4: Connection pair measurement method with resource monitoring.
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2.5 Throughput Measurement Results

In this section, we first present a formulation that calculates theoretical throughput.

It is based on parameters in TCP headers. Next, we show actual throughput for the

connection pair. Finally, we summarize the measurement results with the statistics.

2.5.1 Theoretical Achievable Throughput

Theoretical achievable throughput is defined as

Throughput =
W · p
P · R

(2.1)

where W is advertised window size, p is packet size without TCP/IP headers, P is

packet size with headers, and R is RTT. In the theoretical achievable throughput, we

assume that there is no packet loss and advertised window is saturated to the maximum

size. For example, when the advertised window is 64 KB, RTT is 0.02 [s], packet size

without headers is 1368 Bytes, and packet size with headers is 1420 Bytes, the ideal

case using the theory is 3156.7 KBps. We can compare differences in the ideal and the

measurement results.

2.5.2 The Statistics of Measurement Results

We gathered a data set of approximately 2,000 connection pairs from all the node pairs

everyday. Table 2.3 presents the ideal case using the theoretical achievable throughput

and the statistics when the probe size was 64 KB and the data size was 32 MB. The

parameters, such as packet size, header size, and so on, of the ideal are equal to the

measurement results. The mean throughput at pairs (α, β), (κ, λ), and (µ, ν) is different

from the ideal case. Moreover, the maximum throughput at pairs (κ, λ) and (µ, ν) is

not close to the ideal case. It is very different in comparison with the maximum value

at pairs (α, β) and (γ, δ). Moreover, we find a significant difference in the statistics at

pairs (κ, λ) and (µ, ν). Figure 2.5 shows throughput measurement results of the above

size. Also, the decreases in the throughput are observed on two pairs (κ, λ) and (µ, ν).
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FIGURE 2.5: Throughput measurement results (probe: 64 KB, data : 32 MB).

TABLE 2.3: Ideal, minimum, mean, and maximum throughput.
Node pair Ideal Min Mean Max

[KBps] [KBps] [KBps] [KBps]
α - β 1475.1 893.4 1073.7 1236.5
γ - δ 760.6 680.4 730.6 739.2
κ - λ 3156.7 251.9 288.6 413.1
µ - ν 701.5 128.7 241.9 363.3

2.6 Packet-level Analysis

In this section, we describe packet-level analysis. Our objective in packet-level analysis

is to find the cause of throughput instability and to clarify the Internet traffic character-

istics. We analyze well-known network metrics, such as RTT and packet loss rate, for

the connection pair where the probe size was 64 KB and the data size was 32 MB in

all the node pairs. Next, we investigate packet spacing and advertised window at the

sender. Finally, we introduce anomalous cases to understand traffic characteristics on

the virtualized testbed.
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2.6.1 Round-trip Time (RTT)

The RTT normally fluctuates and the throughput decreases as a result of network con-

gestion on the end-to-end path. Table 2.4 shows the mean RTT for all the node pairs.

We find increases in the mean RTT at pair (α, β) in comparison with the mean RTT

using ping. However, the range of fluctuation of the mean RTT at the others is smaller

than the case at pair (α, β). To investigate the fluctuations in RTT, we present the cu-

mulative distribution function (CDF) of RTT in Figure 2.6. The values of throughput at

all the pairs (α, β), (γ, δ), (κ, λ), and (µ, ν) are 1085.8 KBps, 738.3 KBps, 399.0 KBps,

and 363.3 KBps respectively. In the CDF at pair (α, β), RTT is gradually increased,

and it is a cause of fluctuation in throughput. Although the approximate 90% of RTT

is close to the mean RTT using ping at two pairs (κ, λ) and (µ, ν), the decreases in the

network throughput are occurred. Thus, the fluctuations in RTT are not enough to prove

the major cause of throughput instability at two pairs (κ, λ) and (µ, ν).

TABLE 2.4: Mean RTT of connection pair.
Node pair Mean RTT Mean RTT Mean RTT

Probe [s] Data [s] Ping [s]
α - β 0.0520 0.0556 0.0428
γ - δ 0.0854 0.0829 0.0830
κ - λ 0.0224 0.0225 0.0200
µ - ν 0.0974 0.0974 0.0900
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2.6.2 Packet Loss Rate

The packet loss rate is normally an important metric for the throughput. If it is high,

the network throughput is decreased. The mean loss rates at all the pairs are shown in

Table 2.5; they are smaller than 1%. To summarize, both packet loss and the fluctuations

in RTT were the major cause of throughput fluctuation at pair (α, β). Conversely, these

metrics could not clarify the cause of throughput instability at two pairs (κ, λ) and (µ,

ν). Thus, the cause of throughput instability at two pairs (κ, λ) and (µ, ν) was not any

network effect, such as network congestion, on the virtualized testbed. Moreover, we

find that there is no packet loss though the values of RTT are increased. In it, the mean

RTT is 0.0231 [s], the mean packet spacing is 0.013366 [s], and the throughput is 283.5

KBps. To identify the validity of the above case, we investigate TCP’s timeout interval

[44] of the case. We present RTT, estimated RTT, and the timeout interval of the above

case in Figure 2.7. Although the values of RTT are increased, the timeout intervals are

larger than the values of RTT, and there is no packet loss.

TABLE 2.5: Mean packet loss rate of connection pair.
Node pair Mean loss rate [%] Mean loss rate [%]

(Probe) (Data)
α - β 0.032 0.049
γ - δ 0.216 0.015
κ - λ 0 0.001
µ - ν 0 0.001
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2.6.3 Cause of Network Throughput Drop

We observed decreases in the network throughput for particular node pairs. When many

connections exceed the acceptable number of connections concurrently concentrated on

the receiver node, the network throughput decreases. Rak et al. [45] observed the num-

ber of pending requests at a server by increasing the number of requests to evaluate

Web Service resilience. However, our case differs from the above case because re-

sources, such as memory and network bandwidth, at each node are limited by a watch-

dog daemon. This daemon forcibly reduces a user’s memory rate when the memory rate

suddenly exceeds the threshold amount.

Again, the packet spacing is a very short period over non-virtualized environments. To

investigate packet spacing over a non-virtualized environment, we considered that a

local environment consists of a router and two native nodes. Each native node has an

Intel Pentium 4 processor with a 1 GB RAM and a 100 Mbps network card and runs

on Ubuntu 9.04. The router was connected between these nodes via a 100 Mbps link.

There are no heavy loads at each node and no network traffic between the nodes. We

generated the sizes for connection pair in Table 2.2. When data size was 32 MB, the

minimum, mean, maximum values of packet spacing are 0.000006 [s], 0.000010 [s],

and 0.000040 [s] respectively. In the local, there is no abrupt fluctuation in the packet

spacing and these values do not affect the throughput measurement. Next, we show the

packet spacing on the virtualized testbed. Figure 2.8 shows the CDF of packet spacing

at the local and that for connection pair where the probe was 64 KB and the data was

32 MB at all the pairs. The approximate 80% of packet spacings for the probe transfer

and the approximate 90% for the data transfer at nodes β and δ are similar to the packet

spacing at the local. In the case at node β, the throughput of the data transfer is 1093.9

KBps, the mean RTT is 0.0559 [s], and the mean packet spacing is 0.000021 [s]. The

CDF for connection pair at node β is similar to the CDF of the local. Although a portion

of packet spacings at node β is increased, these cannot be the major cause of fluctuations

in the throughput. The case at node δ is similar to the above case. However, the packet

spacings at nodes λ and ν are larger than the other nodes. We introduce the CDF of

packet spacing at node λ. In this case, the network throughput is 288.1 KBps, mean

RTT is 0.0223 [s], and mean packet spacing is 0.014064 [s]. Although the mean RTT

is similar to that using ping, a portion of the packet spacings is larger than the packet

transmission period, and the CDF of packet spacing is very different from the case at the

local and nodes β and δ. Moreover, we show the mean packet spacing for connection

pair where the probe was 64 KB and the data was 32 MB in Figure 2.9. The mean
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packet spacing at nodes λ and ν is larger than the case at nodes β and δ, and these are

very different from the case at the local.
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The oversize packet spacing as compared to that over non-virtualized environment was

a major cause of throughput instability even when there were no abrupt changes in the

well-known network metrics at pairs (κ, λ) and (µ, ν). It accords with results at the

previous work [30]. These oversize packet spacings are unusual anomalies. When the

packet spacing was larger than RTT, packets at the sender node were not sent consecu-

tively. These rarely happen in non-virtualized network environment while it is easy for

anomalies to be occurred in virtualized network environment. The problem described

above is more severe on the virtualized environments than the non-virtualized envi-

ronments because resources are virtualized and shared among virtual machines, and it

would be hard to monitor the other virtual machines on the node.

2.6.4 Advertised Window

TCP provides flow control [46] for the receiver to control transmission speed, so that

the receiver is not overwhelmed with data from the sender. The advertised window

is used to give the sender an idea of how much free buffer space is available at the

receiver. If the advertised window at the receiver is zero, the sender does not send data

to the receiver after ACK packet; thus, the packet spacing is increased at the sender. We

show two cases in Figure 2.10; one case is that the packet spacings are increased and
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the advertised window is decreased due to flow control while the other case is that the

packet spacings are increased and the advertised window is saturated to up maximum

size. In it, packet spacings do not relate to flow control.
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2.6.5 Anomalous Case

To summarize, the result at pair (α, β) experienced the fluctuations in network through-

put caused by the packet loss and the fluctuations in RTT. This case is normally pre-

dictable. But, the case at two pairs (κ, λ) and (µ, ν) differed from the above case.

In this case, the network throughput drop was occurred by the anomalies with stable

network state.

Major distinction of anomalous cases is the throughput instability despite of stable net-

work state, which can be observed through RTT, packet loss rate, and advertised win-

dow. The condition for the judgment of the anomalous case is the impact of packet

spacing. We introduce the case at node λ as an example of the anomalous case. We

show the CDF of RTT and packet spacing in Figure 2.11. In this case, the throughput

is 288.6 KBps, the loss rate is zero, the advertised window is saturated to the maxi-

mum size (64 KB), and minimum, mean, and maximum RTT are 0.0213 [s], 0.0222 [s],

and 0.0274 [s]. The statistics of RTT are close to the mean RTT (0.02 [s]) using ping.

However, minimum, mean, and maximum values of packet spacing are 0.000015 [s],

0.013618 [s], and 1.332624 [s] respectively. The CDF of packet spacing at node λ is

different from the CDF at nodes β and δ. To summarize, the most of values of RTT are

stable, and the throughput instability are occurred by the anomalies. This case is the

anomalous case. If the network throughput is decreased by the anomalies, we should

carefully review measurement results.

Finally, we investigate the impact of the packet spacings to the throughput instability at

pairs (κ, λ) and (µ, ν). To prove stable network state, we show the CDF of RTT at pairs

(κ, λ) and (µ, ν) in Figure 2.12. Most of values of RTT are close to the mean RTT using

ping. It is sufficient to show the stable network. Despite the stable network state, the

statistics of network throughput are different from the ideal case in Table 2.3. We show

the CDF of the packet spacing for the judgment in Figure 2.13. The distribution of the

CDF at nodes λ and ν differs from that at nodes β and δ.
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-

(a) CDF of RTT at κ and λ

-

(b) CDF of RTT at µ and ν

FIGURE 2.12: CDF of RTT at anomalous case (32 MB).
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(a) CDF of packet spacing at β, δ, and λ

(b) CDF of packet spacing at β, δ, and ν

FIGURE 2.13: CDF of packet spacing at anomalous case (32 MB).
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2.7 Naive Method for Estimating Anomalous Case

In the previous section, we observed decreases in the throughput at the particular pairs.

The major causes of throughput decrease were anomalies. Previous works [30][31] did

not investigate the anomalies at many sites. Moreover, no clear conditions or criteria had

been established to estimate the effect of the anomalies. During the generation of the

connection pair, we analyzed results of resource monitoring to investigate the anomaly

condition and to establish efficient criteria to estimate the anomalous case.

2.7.1 CPU Utilization

In a multi-core processor, if there are two or four CPU cores on the processor, maximum

CPU utilization can be showed to 200% or 400%. However, these can give us confusion.

We divided these values into the number of cores, and normalized these values as 100%.

In order to investigate the condition of anomalous case, we observed CPU utilization

at the sender node using slicestat during the connection pair generation. The CPU

utilization at all the sender nodes is shown in Figure 2.14. The CPU utilization at node

δ was lower than the other senders. In this case, there were no anomalies because of

very low CPU utilization.

Although there was a difference in the mean packet spacings, the CPU utilization did

not reflect the mean packet spacings without node δ. In this case, it will be inappropriate

for estimating the anomalous case on the virtualized testbed. We show the statistics of

CPU utilization at all the senders in Figure 2.15. In the statistics, the case at node β

does not differ from the case at nodes λ and ν. The statistics are not enough to estimate

the anomalous cases.
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2.7.2 CPU Availability

While we ran the monitoring program that consumes CPU cycles at the node, we ob-

served CPU availability at the node using the monitoring program. The CPU availability

is different from the CPU utilization. It is available CPUs to be allocated to users while

the CPU utilization is consumed to users. If there are two CPU cores at the node and the

CPUs are idle, one will be fully allocated to the monitoring program. Thus, it uses one

CPU core and the CPU utilization can be increased to 50%. Conversely, it will be hard

to allocate the CPU to the monitoring program if the CPUs are busy. Figure 2.16 shows

the CPU availability at all the sender nodes. There is a significant change in the CPU

availability. Although there were two CPU cores at nodes λ and ν, it was not increased

to approximately 50%. These nodes had the anomalies. Conversely, there are four CPU

cores at node δ. It is keeping up the approximately 25% and the small packet spacing.

The CPU availability is an important criterion for estimating the anomalous cases on the

virtualized network testbed. When the CPU utilization is high and the CPU availability

is low, the anomalies are occurred.
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2.8 Traffic Characteristics on Cloud Service

In this section, we show the traffic characteristics on different virtualized environment.

We first introduce Amazon EC2 [4] and its performance analysis results discussed in

previous works. Next, our experimental environment is described for throughput mea-

surements. Then, throughput measurement results are shown through statistic analysis.

Finally, CPU resources are presented to indentify the reproduction of the anomalous

cases.

2.8.1 Amazon EC2

Cloud services emerge as a new paradigm recently, and provide users to acquire com-

puting resources from large scale data centers of service providers, such as Amazon,

Google, and Microsoft. Amazon EC2 [4] is one of popular cloud services. It is a com-

ponent of Amazon web services (AWS) [47], and its web service interface allows users

to obtain Amazon Machine Instance (AMI) and to run applications on the AMIs. The

AMI based Xen is provided to user as the platform. The instances e.g., micro, small,

large, and so on, have different resources, such as CPU cores, memory, and storage.

Amazon EC2 provides the ability to place the instances in multiple locations. The lo-

cations are composed of regions and availability zones. The zones are distinct locations

that are engineered to be insulated from failures in other zones and provide inexpensive

and low latency network connectivity to other zones in the same region. It is currently

available in seven regions: US East (Northern Virginia), US West (Northern Califor-

nia, Oregon), South America (Sao Paulo), EU (Ireland), and Asia Pacific (Singapore,

Tokyo).

2.8.2 Performance Analysis of Amazon EC2

We here introduce some studies related to performance analysis of Amazon EC2.

Iosup et al.[48] investigated EC2 performance using micro-benchmarks, kernels, and

eScience workloads. They evaluated the instances as a scientific computing platform

only. Dejun et al.[49] analyzed EC2 performance for service-oriented applications.

They developed a CPU-intensive web application and database read and write-intensive

applications to simulate different types of workload pattern. Despite the performance of



Chapter 2. Traffic Characteristics on the Internet 34

the instances to be stable, the multiple instances of the same type showed heterogeneous

performances. The performance analysis was focused, but they did not discuss traffic

characteristics of instances.

To our best knowledge, Wang et al.[50] focused on networking performance among the

instances, and demonstrated very different characteristics, such as abnormal large delay

variations and unstable TCP/UDP throughput, caused by the impact of virtualization

on node. However, they focused on the regions on Amazon EC2 data center only,

and did not investigate networking performance between the region and different types

of network. In these studies, they did not use monitoring programs offered by AWS.

Because the lower layers on the virtual machine are block-box typically, their approach

would be inappropriate for the performance analysis.

2.8.3 Throughput Measurement

We choose the micro instance as a sender node to observe the anomalies and to identify

the impact of virtualization. The five micro instances are used for the experiments. We

also choose a native node on our university as a receiver node to eliminate the impact

of virtualization. The native node has an Intel Xeon CPU (4 CPU cores) with a 4 GB

RAM and an 1 Gbps network card and runs on Ubuntu 10.04. Meanwhile, the micro

instance is with 613 MB memory, 1 EC2 compute unit (Intel Xeon), and 10 GB on

EBS storage. However, we cannot have information about the physical node. Then,

the virtualization level is also different from PlanetLab. Amazon EC2 uses Xen, while

PlanetLab uses V-Server. It is with operating system-level virtualization while the micro

instance is with para-virtualization. The instances are in US East - N. Virginia (us-east-

1a). Min, max, and mean RTT between the region on Amazon EC2 and our node are

0.209 [s], 0.369 [s], and 0.213 [s]. Our selection of instance is appropriate because the

experiments use mainly network resources. In order to measure the actual throughput,

we use the connection pair. Moreover, we prepare both small and large-sized probe for

the connection pair to identify the validity of the large-sized probe on Amazon EC2.

The sizes for the connection pairs are shown in Table 2.6.
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TABLE 2.6: Probe and data size combinations for connection pairs.
Index Probe size [KB] Data size [MB] Number of connection pairs

i 16 8 3
ii 16 16 3
iii 32 16 3
iv 64 16 3
v 64 32 3
vi 512 8 3
vii 512 16 3
viii 1024 16 3
ix 1024 16 3
x 2048 32 3

2.8.4 Resource Monitoring Method

If we observe resource state using monitoring tool, such as sysstat [51], the information

of resource metrics will be incorrect because the lower layers are normally black-box.

We used Amazon CloudWatch [52] offered by AWS to observe the resource state dur-

ing the throughput measurement. It correctly provides resource metrics such as CPU

utilization, disk I/O, and network traffic per the instance. However, it does not provide

memory utilization, the number of the instances on physical node, network traffic on

the node, and the other instance state on the node. Moreover, the minimum granularity

of the metrics is limited as 1 minute. The measurement methodology is described in

Figure 2.17.

FIGURE 2.17: Throughput measurement method on Amazon EC2.
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2.8.5 Throughput Measurement Results

Although we measured the throughput for the connection pair over 3 days, some of it

was not gathered by libpcap error. A data set consisted of approximately 1,000 con-

nection pairs over 18 hours. Throughput measurement results at indices i and vi are

shown in Figure 2.18. Low network throughput was observed at all the throughput

measurement results. While the results where the probe size was 16 KB at index i were

clustered at the certain areas, the results where the probe size was 512 KB at index vi

were widely changed with non-linear characteristics. The results from index ii to v were

similar to the results at index i, and the others were similar to the results at index vi. The

large-sized probe would be appropriate for the connection pair.
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2.8.6 Analysis of Network Metrics

Here, we first analyze the network metrics to understand the traffic characteristics on

Amazon EC2. Next, we observe the packet spacings for reproduction of the anomalies.

Finally, we compare them to the results with the anomalous case on PlanetLab.

2.8.6.1 RTT and Packet Loss

The RTT normally fluctuates and the network throughput decreases as a result of net-

work congestion on the end-to-end path. Thus, a lot of packets would be dropped in

the congestion. These well-known network metrics are important to understand Inter-

net traffic characteristics. Figure 2.19 shows RTT of connection pair at index ix. The

throughput measurement results of probe and data were 121.4 KBps and 98.5 KBps

respectively. Although the throughput decreases were occurred, the most values of RTT

were stable and the mean values of RTT of them were 0.216 [s] and 0.220 [s]. The

values are similar to the mean RTT (0.213 [s]) using ping. Moreover, packet loss rate

of the data transfer was 1.304 %. It would be small but the packet loss was continu-

ously occurred during the throughput measurements. Table 6.2 shows mean values of

the network metrics for all the indices. There were no significant changes in the mean

RTT, so the network condition did not exhibit any abrupt changes. The mean values at

all the indices were higher than that using ping because the sender node had to wait for

a timeout. Although the mean values of RTT were not significantly changed, there was

packet loss continuously. The loss rate at all the indices was less than 10 %, however

the packet loss was similar to the above results.

TABLE 2.7: Mean values of well-known network metrics.
Index Mean RTT [s] Mean RTT [s] Mean loss rate [%] Mean loss rate [%]

(Probe) (Data) (Probe) (Data)
i 0.215 0.218 2.025 1.675
ii 0.215 0.217 1.711 1.436
iii 0.215 0.217 1.86 1.462
iv 0.217 0.218 0.056 1.192
v 0.217 0.217 5.397 1.234
vi 0.216 0.215 1.122 0.581
vii 0.218 0.217 1.646 0.9
viii 0.218 0.218 1.775 0.794
ix 0.216 0.215 0.645 0.42
x 0.217 0.216 1.167 0.709
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FIGURE 2.19: RTT of connection pair at index ix.
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2.8.6.2 Packet Spacing

In order to observe the anomalies on Amazon EC2, we investigate the packet spacings

for the connection pair. We also compare them to the results, where the probe size was

64 KB and the data size was 32 MB, which experience throughput instability caused by

the anomalies on PlanetLab. Figure 2.20 shows the CDF of packet spacing on Planet-

Lab and the CDF of mean packet spacing for the connection pair at all the indices on

Amazon EC2. Additionally, we insert the CDF of packet spacing on the local environ-

ment in Figure 2.8. The CDF of packet spacing on PlanetLab was larger than the others,

and their pattern was the anomalous case. A part of CDF of packet spacing on Amazon

EC2 was stable like the result on local environment. However, some of it was increased,

and similar to the results on PlanetLab.

To identify the reproduction of the anomalies, we present that the case where the mean

packet spacings of probe and data were 0.003620 [s] and 0.000415 [s] at index ix. Fig-

ure 2.21 shows the packet spacing at the above case. The throughput measurement

results of probe and data were 193.9 KBps and 251 KBps respectively. Due to the val-

ues where packet spacings of probe and data were 0.469552 [s] and 0.475770 [s], the

mean packet spacing was increased. In the other results, very few of packet spacings

were the anomalies, and it is hard to determine the major cause of throughput instability.

Our results are different from the results shown by Wang et al. [50]. Typically, the fluc-

tuation in packet spacing can be caused by flow control in TCP mechanism. Packet will

be not sent immediately after ACK packet. We observe advertised window to identify

the effect of flow control. Figure 2.22 shows packet spacing and advertised window at

the above case. The window is saturated to up maximum size, thus there is no impact

of flow control.

To summarize the Internet traffic characteristics on Amazon EC2, very few of packet

spacings were the anomalies and they were not the major cause of throughput instability.

Packets were continuously dropped during the throughput measurements although RTT

was very similar to mean RTT using ping. The packet loss was the major cause of

throughput instability. In the data centers, tens of nodes per rack are connected via top

of rack switches that connect to high degree aggregation switches [53]. The previous

works [53][54] presented impairments among flows in the data center. Our implications

of throughput instability are that various types of many flows co-exist in the data center

and available buffer size in switches would be insufficient. These would affect the

measurement results.
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FIGURE 2.21: Packet spacing of outgoing transfers at index ix.
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2.8.7 CPU Utilization

Because the packet spacings are similar to those over the non-virtualized environment,

the CPU utilization will be low. Figure 2.23 shows the CPU utilization at indices i

and vi. Most of values are less than 20 %. In the experiments, the CPUs were not

busy, and the CPUs were fully allocated to the instances. The others were similar to the

above cases. In cloud data centers, the CPU utilization would be low due to resource

policy and the structure of data center. Again, very few of anomalies were occurred on

Amazon EC2, and they were not the major cause of throughput instability.
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2.9 Conclusion

This chapter shows the importance of packet spacing for the prediction of network

throughput in virtualized network environment, and presents a naive method for esti-

mating the negative impact of virtualization. Again, it is important to understand the

traffic characteristics for a precise prediction model. Research issues, which address

precise network measurement on virtualized environments, were presented and previ-

ous works, which can help to diagnose the research problems and to find alternative

solutions, have also been discussed. In conclusion, there is the throughput instabil-

ity to disturb precise network measurement when the virtualization technology is used.

The major cause is the oversize packet spacing occurred by CPU scheduling latency

among virtual platforms. If the network throughput is decreased by the oversize packet

spacings, we should carefully review measurement results. Furthermore, solutions that

estimate the negative impact on userland have not been addressed in the existing lit-

erature and there are no adequate solutions that focus on empirical-statistical criteria.

Consequently, this chapter has established the adequate solution of this thesis’s research

problems described in Chapter 1. The Internet traffic characteristics and the naive esti-

mation method have been published in [20][21]. The Internet traffic characteristics on

Amazon EC2 have been also published in [22].

The following chapter discusses the problem of naive method. In order to overcome

the problem, we propose an alternative estimation method using principal component

analysis (PCA). In this chapter, we also present the evaluation results of alternative

estimation method.



Chapter 3

Estimation of Traffic Anomaly on the
Internet

3.1 Overview

In this chapter, we mainly focus on a problem of naive method and an alternative es-

timation method to overcome the problem. The remainder of this chapter is divided

into six more sections. Section 3.2 describes the problem of naive method. Section 3.3

introduces some studies related to monitoring systems on the virtualized testbed. In this

section, we diagnose their characteristics and discuss their missing points. Next, we

show throughput measurement method with resource state and measurement results in

Section 3.4. Then, our method for estimating the anomalous case and its validation are

presented in Sections 3.5 and 3.6. Finally, we conclude with a summary of the main

points in Section 3.7.

3.2 Problem of Naive Method

Although the CPU availability is an important criterion for estimating the anomalous

case, a naive method for measuring it may overconsume CPU resources and can affect

the performance of other tasks. Thus, the anomalous cases would be occurred by our

monitoring program when there are a few of CPU resources. It is important to overcome

this problem for gathering precise learning samples. The modification of kernel is a

possible way to overcome the problem, but is would be inappropriate to the virtualized

45
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network testbed. We focus on a nature of resource state through statistical analysis to

find an appropriate estimation method.

3.3 Monitoring Systems

We here introduce some monitoring systems on the virtualized network testbed.

CoMon [55][56] is a centralized resource monitoring system for the virtualized testbed.

It provides views of the virtualized testbed, such as node-centric and slice-centric infor-

mation. Moreover, it has been used for selecting nodes and identifying problems on the

virtualized testbed. Because it gathers data every five minutes, the data granularity is

limited and the data type makes it hard to estimate fluctuation in packet spacing.

Clue [57] is an anomaly detection system for the virtualized testbed. However, this

system focused on detecting anomalous behavior for the virtualized testbed and it used

data on CoMon only.

Slicestat [43] provides slice-level resource consumption information, such as CPU,

memory utilization, network I/O, number of processes, and so on, at each node on

the virtualized testbed. It does not provide node-level information, such as SSH failing

and shutdown. In these monitoring systems, however, the authors did not discuss any

anomalous cases occurring in their network experiments.

3.4 Throughput Measurement with Resource State

In this section, we first introduce how to compose node pairs for the throughput mea-

surement with resource state. Next, we investigate the anomalous case in packet-level

analysis. Finally, we show features of resource state when the anomalous cases were

and were not present.

3.4.1 Node Characteristics

To measure the throughput with the resource state, we empirically selected seven pairs

of nodes (fourteen nodes), which we refer to these pairs as (α, β), (γ, δ), (ϵ, ζ), (η, θ),

(κ, λ), (µ, ν), and (ξ, π). These nodes are located at different sites across North America
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and Europe, and are composed of one, two, four, or eight independent CPU cores, and

have physical memory of approximately 3 GB, excepting node λ. We measured hop

count using traceroute and RTT using ping; their basic node characteristics are given in

Table 3.1.

We generated various sizes of connection pairs to observe the anomalous case and to

establish a throughput prediction method for network virtualization. We observed the

resource state per slice on the node with slicestat every 1 minute during throughput

measurement. The packet spacing is hidden to users, and we cannot measure it simply.

Our approach of observing the resource state on the node is suitable for anomaly esti-

mation. The measurement methodology is the same to that in Figure 2.4 and the sizes

of the connection pairs are also the same to those in Table 2.2.

TABLE 3.1: Node characteristics on virtualized testbed.
Node CPU speed CPU Memory Node pair Mean Hop
name [Ghz] cores [GB] (arrow denotes RTT Count

transfer direction) [ms]
α Xeon 2.5 4 3.29

α ← β 38.4 18
β Pentium4 3.2 2 3.03
γ Core2Quad 2.66 4 3.42

γ ← δ 20 15
δ PentiumD 3.2 2 3.47
ϵ Xeon 2.4 4 3.53

ϵ ← ζ 49.9 19
ζ PentiumD 3.2 2 3.54
η Core2Quad 2.66 4 3.42

η ← θ 57.6 15
θ Core2Quad 2.66 4 3.21
κ Xeon 2.66 8 3.28

κ ← λ 43.7 17
λ Athlon(tm) 64 3200+ 1 2.01
µ Xeon 2.4 2 3.03

µ ← ν 28.3 14
ν PentiumD 3.2 2 3.54
ξ Xeon 2.66 2 2.96

ξ ← π 42.8 17
π Xeon 2.4 4 3.46

3.4.2 Throughput Measurement Results

We measured the throughput for approximately 1,100 connection pairs from all the

node pairs over 48 hours. Throughput measurement results are shown in Figure 3.1.

Low network throughput was observed on two pairs (α, β) and (γ, δ). However, there

were no significant changes in the RTT and packet loss rate on network paths between

the sender and the receiver of the pairs, as shown in Table 3.2. Although the network
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metrics of the path from ζ to ϵ were smaller than those of the path from θ to η, the

throughput from ζ to ϵ was low.
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FIGURE 3.1: Actual throughput for connection pair at all pairs.

TABLE 3.2: Mean RTT and packet loss rate of connection pair.
Node pair RTT [ms] Loss rate [%]

α - β 40.5 0.0
γ - δ 22.1 0.002
ϵ - ζ 52.2 0.0
η - θ 60.2 0.478
κ - λ 44.9 0.001
µ - ν 29.2 0.075
ξ - π 48.5 0.069

3.4.3 Cause of Throughput Instability

To clarify the cause of throughput instability, the mean packet spacing and the through-

put of the connection pairs at all the sender nodes is shown in Figure 3.2. The mean

packet spacing at node pairs (α, β), (γ, δ), and (ϵ, ζ), which experienced low through-

put, was larger than that of the other node pairs. Thus, it can be concluded that the

anomalous cases were the cause of throughput instability. Furthermore, the mean packet

spacing and throughput decreases at node β were larger than those at the other nodes.
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Then, the CDF of packet spacing at node δ is shown in Figure 3.3. The packet spacing

was increased during the measurement, and some of packet spacing was larger than the

mean RTT. Moreover, the forms of CDF for the connection pair are very similar to those

of the anomalous cases in Figure 2.13. Similar results were also observed on nodes β

and ζ .

To summarize, nodes β (red points), δ (green points), and ζ (blue points) experienced

throughput instability caused by the anomalous case. We simultaneously measured both

network throughput and the resource state at all the pairs to observe the characteristics

of the resource state when the anomalous cases are present and to make a data set for a

PCA. The data set consisted of approximately 8,000 resource state results.

3.4.4 Features of Resource State

We here introduce criteria of resource state and their statistics. We excluded transmit-

ting and receiving bandwidth from the resource state features; we included slice states

because the anomalous cases relate to the resource state and multiple slivers simultane-

ously share the resources on the node. For a PCA analysis, we selected seven resource

state features: total CPU utilization (CpuR), total memory utilization (MemR), total

number of processes (Proc), number of current processes (CurProc), number of live

slices (LiveC), number of active slices (ActiveC), and total number of slices (TotalC).

These features were provided by the system on the virtualized network testbed. The

CPU utilization and memory utilization were the consumption rates (%) at all the slices

on the node. A process using the CPU cycle at the moment of measurement is called

a current process. We call a slice that uses at least 0.1% of the CPU a live slice, and a

slice that contains a process an active slice.

Mean usage of the resource state at all the sender nodes is shown in Table 3.3. There

were large deviations in the usage at node θ, but no large deviation in the usage at

node π. Additionally, the minimum, mean, and maximum CpuR at all the sender nodes

is shown in Figure 3.4. Although the maximum CpuR at nodes λ, ν, and π rose to

approximately 100%, the anomalous cases did not occur on these nodes. Thus, CpuR

would be inappropriate for estimating the anomalous case. Moreover, it would be hard

to design an anomaly estimator with all the features.
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TABLE 3.3: Mean usage of resource state at all sender nodes.
Sender Anom- CpuR MemR Proc CurProc LiveC ActiveC TotalC
node alies [%] [%]

β Yes 73.43 78.33 1021 13.33 12.71 136.3 149
δ Yes 77.77 63.54 638.1 11.48 10.1 107.6 117.7
ζ Yes 85.54 99.92 852.3 16.55 9.827 65.4 75.23
θ No 21.65 29.52 335.4 1.617 1.606 37.5 39.11
λ No 84.9 61.61 428.7 6.137 5.63 43.85 49.48
ν No 91.05 47.95 639.7 5.244 5.085 76.99 82.07
π No 62.61 55.39 687 8.833 6.408 149.8 156.2

3.5 A Method for Estimating Anomalous Case using PCA

In previous section, we showed the characteristics of throughput measurements and

resource states. However, we cannot which resource state is important for estimating

the anomalous case.

In this section, our estimation method using PCA is presented. As a first step, we in-

troduce PCA and how to apply PCA into network research. Next, our analysis results

using PCA are shown in detail. Finally, we describe boundaries to estimate the anoma-

lous case automatically.
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3.5.1 Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that is widely used for applications such as

lossy data compression, feature extraction, and data visualization. It has also been used

in Internet traffic analysis for security [58][59]. It seeks a space of lower dimensionality,

known as the principal subspace, such that the orthogonal projection of data points onto

this subspace maximizes the variance of the projected points. An alternative definition

of PCA is based on minimizing the sum-of-squares of the projection errors. Consider

the general case of an M -dimensional projection space; the optimal linear projection for

which the variance of the projected data is maximized is defined by the M eigenvectors

u1, u2, ..., ui, ..., uM of the data covariance matrix S corresponding to the largest M

eigenvalues λ1, λ2, ..., λi, ..., λM . The eigenvector u1 is the first principal component,

and it has the maximum entropy of give data set. The eigenvalues are arranged from

largest to smallest, i.e., λ1 ≥ λ2 ≥, ..., λi ≥, ...,≥ λM . Moreover, they are expressed

as a percent of the total variance. The cumulative percentage of total variance si is

accounted for by the current and all percentages. The sum of all the eigenvalues is

equal to the number of variables. There are no obvious meaningful components from the

trivial components. Most researchers would agree that the first and second components

are probably meaningful, but it is difficult to decide on the exact meaningfulness. On

the basis of earlier PCA studies [60][61], we adopted “λi > 0.7 or si > 0.9” as criteria

for selecting meaningful components.
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3.5.2 Analysis Result using PCA

We applied PCA to an approximately 7 × 8000 matrix of resource states. The eigenval-

ues and the cumulative percentage of total variance are described in Table 3.4. The top

two principal components accounted for 84% of the cumulative percentage, and they

are sufficient for describing the original resource state. Component loadings are the

correlation coefficients between the variables and principal components: Component

loading =
√

λiui. These values are shown in Table 3.5.

TABLE 3.4: Eigenvalues and cumulative percentage of total variance.
PC 1 2 3 4 5 6 7
λi 4.844 1.043 0.651 0.313 0.126 0.023 0.000
si 0.692 0.842 0.934 0.983 0.995 1.000 1.000

TABLE 3.5: Component loadings.
PC 1 2 3 4 5 6 7

CpuR 0.299 -0.324 0.768 0.455 0.076 0.036 0.000
MemR 0.385 -0.438 -0.121 -0.239 -0.761 0.082 0.000
Proc 0.4 -0.213 0.11 -0.651 0.472 -0.365 0.000

CurProc 0.412 -0.186 -0.402 0.158 0.4 0.67 0.000
LiveC 0.401 0.043 -0.417 0.519 0.015 -0.617 -0.011

ActiveC 0.355 0.583 0.186 -0.123 -0.129 0.158 -0.063
TotalC 0.379 0.53 0.105 -0.033 -0.113 0.049 -0.073

As mentioned earlier, the first principal component captures the maximum entropy of

given data set. In the analysis results, the first component has a positive correlation with

all the resource features. It depicts workloads on the node. If the principal component

score of the first component is close to the negative, the resources on the node are idle.

Conversely, if the score of the first component is close to the positive, the resources are

in busy states. For example, when resources, such as CPU and memory, are consumed

by users, the other resource features are increased. The second component has a nega-

tive correlation with CpuR, MemR, Proc, and CurProc and a positive correlation with

LiveC, ActiveC, and TotalC. The second component relates to the difference in the re-

source state. In the second component, MemR and ActiveC were larger than CpuR. This

implies that these features are more important than CpuR and that an anomaly estimator

can be designed without CpuR. The other components have very small eigenvalues, and

it would be hard to describe the original resource state by using them.
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We show a scatter plot of the first and second component scores in Figure 3.5. It pro-

vides a simple view of the resource state for anomaly estimation. There are seven clus-

ters in the scatter plot, each of which represents the node used in the measurement. The

Greek characters indicate the names of the sender nodes. Certain scores–such as -1, 0,

1, and so on–have no meaning in the scatter plot. Recall that nodes β, δ, and ζ are the

nodes that experienced the anomaly. The clusters of the nodes situated on the bottom-

right corner of Figure 3.5. This suggests that the combination of the higher score of

the first component and the lower score of the second component might be used as an

indicator of anomaly. The scores of the first component at clusters λ, ν, and θ are in the

negatives. These correspond to the state at nodes λ, ν, and θ showing that there are no

heavy workloads on these nodes.

To summarize, the first component can be interpreted as workloads and the second

one as lack of resources, leading to the anomalous case. Thus, although the resources

are busy, there are no anomalous cases when the resources are sufficiently allocated to

users, i.e., at cluster π. Conversely, the anomalous case occurred when the resources

were busy and there were not enough of them for allocation, i.e., at clusters β, δ, and

ζ . Thus, the first and second components can be used instead of CPU availability to

estimate the anomalous case.
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3.5.3 Boundaries for Estimating Anomalous Case

In the previous section, we showed that the resource state of anomalous case is clustered

at certain areas in the space spanned by the first and second eigenvectors. To estimate

the anomalous case automatically, we need to determine the boundaries of the normal

and anomalous cases. We used Bayes’ approach to find appropriate boundary values

for the component scores. The analysis results of PCA were used, and the minimum

error(e) on the component scores was found. This error is defined as

error(e) = P (A|PC1 < x, PC2 > y)

+P (O|PC1 > x, PC2 < y) (3.1)

where A and O are the anomalous case (β, δ, and ζ) and the normal case (λ, ν, θ, and

π), respectively, PC1 is the first component scores, and PC2 is the second component

scores. P (A|PC1 < x, PC2 > y) is the conditional probability of A, given PC1 <

x, PC2 > y, and P (O|PC1 > x, PC2 < y) is the conditional probability of O, given

PC1 > x, PC2 < y. Moreover, error(e) can be transformed by Bayes’ theorem to

error(e) =
P (PC1 < x, PC2 > y|A)P (A)

P (PC1 < x, PC2 > y)

+
P (PC1 > x, PC2 < y|O)P (O)

P (PC1 > x, PC2 < y)
(3.2)

where P (A) is the prior probability of the anomalous case and P (O) is the prior proba-

bility of the normal case. In the learning phase, we investigated the values of x ranging

from -1 to 0 and the values of y ranging from 1 to 2. When the value was smaller than

0.01, there was no change in the error. We increased both values by 0.01. We found

the minimum error value (0.000299902) where the value of x was -0.26 and the value

of y was 1.52. The boundaries are described in Figure 3.6. Moreover, we evaluated

Type I (false positive) and Type II (false negative) errors of the normal and anomalous

cases using the boundaries. The Type I error occurred in 0.022% and the Type II error

in 0.210%. Although the Type II error is larger than the Type I error, it is still very

small. Our approach is suitable for finding appropriate values because we analyzed the

meanings of all the clusters and found the anomalous cases to be clustered in a certain

area, i.e., the clusters of nodes β, δ, and ζ in the bottom-right corner of Figure 3.5. If

the first component score is greater than -0.26 and the second component score is less

than 1.52, an anomaly can be assumed.
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FIGURE 3.6: Component scores with boundaries.

3.6 Evaluation Results using PCA

In this section, we focus on the validation of our estimation method. We present the

composition of input data set to evaluate our method. Here, the validation of our method

is presented with the input data set.

3.6.1 Input Data Set

In order to show the validation of our estimation method, we additionally selected two

pairs of nodes (four nodes), which we refer to the pairs as (ρ, σ) and (ψ, ω). These

pairs are located at different sites across North America. Their basic characteristics are

given in Table 3.6. We measured the network throughput through the connection pair

and observed the resource state with slicestat over 24 hours. We found the anomalous

case at node σ. These are a major cause of throughput decreases. Mean packet spacing

and throughput of the connection pair are depicted in Figure 3.7, and the mean usage of

the resource state at nodes σ and ω are shown in Table 3.7. The input data set consisted

of approximately 1,350 resource state results at nodes σ and ω, so the input data set was

also aggregated at cases with and without the anomalous cases.
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TABLE 3.6: Node characteristics of input data set on virtualized testbed.
Node CPU speed CPU Memory Node pair Mean Hop
name [Ghz] cores [GB] (arrow denotes RTT Count

transfer direction) [ms]
ρ CoreDuo 2.33 2 3.45

ρ ← σ 90 21
σ Xeon 3.4 2 2.97
ψ PentiumD 3.2 2 3.42

ψ ← ω 39 14
ω Core2Quad 2.66 4 3.5

TABLE 3.7: Mean usage of resource state at input data set.
Sender Anom- CpuR MemR Proc CurProc LiveC ActiveC TotalC
node alies [%] [%]

σ Yes 73.58 80.1 662 15.8 14.54 102.3 116.9
ω No 3.5 59.2 571 3 3 63.02 66.17

3.6.2 Evaluation Results

Here, we calculated the first and second component scores of the input data set. The

scores at node σ were in the anomaly area. Conversely, the scores at node ω were not in

the anomaly area. These scores are shown in Figure 3.8. The component scores show

that there were heavy workloads at node σ and that there were not enough resources

for allocation. However, the scores at node ω were not in the anomaly area because

the workloads were not heavy. These results are sufficient to show the validity of our

approach.
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3.7 Conclusion

This chapter presents the estimation method using PCA and the validation of estimation

method. Our estimation method focuses on a nature of resource state with statistical

approach, and it can prevent the overconsumed CPU resources. We applied PCA to a

matrix gathered from the resource state to estimate the anomalous case. The analysis

results showed that the top two principal components account for 84% of the original

data set and can describe the original resource state. Component loadings and a scatter

plot of the first and second component scores provided a simple but descriptive enough

view of the resource state for the estimation. The first component can be interpreted

as workloads, and the second one as lack of resources, leading to the anomalous case.

We determined the appropriate boundaries of the components by using Bayes’ approach

and used them to automatically evaluate the anomalous case with an input data set gath-

ered from other nodes. The evaluation results presented the validation of our approach.

The estimation method using PCA is enough to answer research questions described in

Chapter 1. The estimation method has been published in [23].

The following chapter identifies appropriate prediction parameters through statistic anal-

ysis. The parameters are identified in Chapter 4, and we propose a reasonable solution

of the research questions. They will become the heart of our prediction method.



Chapter 4

Parameter Selection using Statistical
Approach

4.1 Overview

The previous chapters introduced research issues of the Internet traffic characteristics

when the virtualization technology is used. Contributions which have been achieved in

our and previous works were also discussed in detail. It was ascertained that a few stud-

ies discussed the traffic characteristics on the virtualized network testbed and there are

no adequate solutions to estimate the anomalous cases on userland. We proposed two

estimation methods, which focus on resource state on userland. Again, it is very im-

portant to estimate the anomalous cases for measuring networks and gathering learning

samples of prediction model.

In this chapter, our approach for the selection of an appropriate probe size is described

before the prediction and the validity of the selected probe size is shown. We first

introduce our assumption for the prediction model and a valid indicator for the selec-

tion in Section 4.2. Second, evaluation results of the connection pair are statistically

shown through the indicator in Section 4.3. Next, we make clear how to fluctuate actual

throughput for the connection pair and the appropriate probe size is selected through

re-evaluation in Section 4.4. Then, the actual throughput with the selected probe size

is shown in Section 4.5. Finally, we conclude with a summary of the main points in

Section 4.6.

60
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4.2 Proposed Approach for Parameter Selection

Various types of traffic, such as mice and elephant flows [62][63][64], co-exist in current

networks and the elephant flow is a major cause of traffic spikes [62]. The probability

distribution of traffic is close to long-tail, and it is too hard to determine a traffic model

based on probability distribution. In this case, linear and parametric statistics methods

would be inappropriate. In other words, non-parametric statistics methods are appro-

priate. These methods do not rely on a given probability distribution and focus on the

ranks of observations in data sets. In particular, Spearman’s rank correlation coeffi-

cient (ρ) assesses how well the relationship between data sets can be described using a

monotonic function. We use ρ to denote the correlation coefficient of connection pair.

Here, we describe our assumption for the prediction model using the connection pair.

We assumed monotonicity between probe throughput and data throughput for the pre-

diction. For example, if probe throughput is decreased, data throughput will be de-

creased monotonically. Thus, we focused on the ranks of the connection pair, and

Spearman’s rank correlation coefficient (ρ) is a valid indicator for the selection. More-

over, a high ρ value implies that the probe will have a high predictability and that it can

therefore be regarded as appropriate for prediction.

4.3 Evaluation Results for the Selection of Probe Size

In order to select an appropriate probe size for the precise prediction model using the

connection pair, we first generate various sizes for the connection pairs every five min-

utes on the virtualized network testbed. Measurement methodology using the connec-

tion pair is described in Figure 4.1. Second, we gathered approximately 15,000 con-

nection pairs from the virtualized testbed over thirteen days. We applied ρ to the data

set to select an appropriate probe size for predicting the throughput. Sizes and their ρ

are shown in Table 4.1. Again, a high ρ value implies that the probe will have a high

predictability and it helps to build the precise prediction model. Although the scale and

bandwidth of current networks are increasing, a 32-KB probe, which is smaller than the

original probe size (64 KB), was the highest value of ρ (0.69). To clarify this result, we

investigate the connection pairs in packet-level analysis.
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FIGURE 4.1: Measurement methodology.

TABLE 4.1: Spearman’s rank correlation coefficient for connection pairs.
Index Probe size [KB] Data size [MB] Rank Cor. (ρ)

i 16 8 0.49
ii 16 16 0.42
iii 32 16 0.69
iv 64 16 0.45
v 64 32 0.52
vi 128 64 0.42
vii 256 128 0.67
viii 256 256 0.45

4.4 Packet-level Analysis

Here, we clarify the cause of throughput fluctuations in packet-level analysis. First,

daily changes in the actual throughput are shown to observe throughput fluctuations.

Next, we investigate the anomalous cases in the data set. Then, it will be clear how

the anomalous cases can affect the actual throughput. Finally, we show the evalua-

tion results without the anomalous cases, and select the appropriate probe size for our

prediction model.
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4.4.1 The Cause of Throughput Fluctuations

In order to investigate the cause of fluctuations, daily changes in the actual throughput

are shown with the 32-KB probe and the 16-MB data. The actual throughput decreased

in a certain time period. The daily changes in transfer time at index iii are shown

in Figure 4.2. Two causes of throughput instability are considered: one is network

congestion, and the other is the anomalous case. The throughput would be typically

fluctuated by network congestion. This case can be predictable through the well-known

network metrics. On the other hand, the throughput can be affected by the anomalous

cases. Again, we explained and discussed them and their effects in Chapter 2.
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FIGURE 4.2: Daily change in transfer time at index iii.

In packet-level analysis, we found anomalous cases at index iii. To show the anomalous

case at index iii, we introduce two cases (A and B). The respective mean RTT for the
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connection pair of the cases is 0.0456 [s] and 0.0443 [s] and respective packet loss rate

is 0.098% and 0.188%. However, the actual throughput for probe transfer in the cases is

351.6 KBps and 18.8 KBps and that for data transfer is 1112.6 KBps and 234.3 KBps.

The packet spacing in case A is vey short period, and it is similar to the non-virtualized

environment. Case B experienced throughput drop caused by the anomalies, and the

CDF of packet spacing in case B was different from that in case A. The CDF of packet

spacing for connection pair at cases A and B is shown in Figure 4.3. The anomalous

cases are found at both probe and data transfers. The mean packet spacing and through-

put at index iii are described in Figure 4.4. The actual throughput is described when the

mean packet spacing is increased. Moreover, we also found the anomalous cases from

index i to v.
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4.4.2 Appropriate Probe Size for Prediction Model

After filtering the anomalous cases, we re-evaluate the data set using ρ. The re-evaluation

results are shown in Table 4.2. The ρ for the connection pairs from index i to v was sig-

nificantly changed, and a 256-KB probe had the highest value of ρ (0.67). The results

show that the anomalous cases are affected to the evaluation results. In the virtualized

network environment, we should carefully review network measurement. Finally, we

thus selected the 256-KB probe for the connection pair to predict the throughput.

TABLE 4.2: Evaluation results without anomalous cases.
Index Probe size [KB] Data size [MB] Rank Cor. (ρ)

i 16 8 0.31
ii 16 16 0.31
iii 32 16 0.31
iv 64 16 0.32
v 64 32 0.47
vi 128 64 0.42
vii 256 128 0.67
viii 256 256 0.45

4.5 Actual Throughput using Various Probe Sizes

To investigate the effect of probe sizes, two nodes are selected from PlanetLab nodes

located in Europe. The mean RTT using ping between the nodes is 0.0477 [s]. We

generate connection pairs with the various probe sizes, such as 32 KB, 64 KB, 256 KB,

and 512 KB. In the experiments, the data size was unified as 16 MB. To summarize the

probe sizes, the 32-KB probe was the best condition with the anomalous case and the

64-KB probe was used for NWS. The 256-KB probe was the best condition without the

anomalous cases, and it was selected for our prediction model. Moreover, we select the

512-KB probe to compare the validation of the 256-KB probe. It is twice as large as our

probe size.

We gathered approximately 4,000 connection pairs from this node pair over seven days.

Actual throughput for these connection pairs is shown in Figure 4.5. With 256-KB

probes, the actual throughput monotonically changed, and had noise and non-linear

characteristics. Next, no significant changes occurred between the data sets for the

512-KB and 256-KB probes (Figure 4.5(a)). Conversely, actual throughput with 64-KB
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(Figure 4.5(b)) and 32-KB (Figure 4.5(c)) probes is concentrated in certain areas. The

small probes, such as 32-KB and 64-KB probes, would be shrunk due to the increased

network capacity. As a result, the 256-KB probe has characteristics of a non-linear and

continuous monotonic function, and it is appropriate for the prediction model.
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4.6 Conclusion

In this chapter, we show how to adjust experimental setting before the actual prediction.

Especially, we have focused on probe size. Noise and non-linear characteristics were

founded in our results, and they should be considered for the precise prediction model.

Thus, there are no linear characteristics between probe and data transfers. Next, the sta-

tistical approach was described to select the appropriate probe size. We showed the rea-

son why Spearman’s rank correlation coefficient (ρ) is a valid indicator, and evaluated

various sizes for the connection pair through the rank correlation coefficient. Moreover,

we presented how the anomalous cases affect the evaluation results. Although there was

no high predictability for the connection pair, the small probe sizes had high ρ values.

Particularly, the 32-KB probe was the best condition with the anomalous cases. With-

out the anomalous cases, the 256-KB probe was selected as the probe size. In order to

investigate the validation of the selected probe size, we measured the actual throughput

with the various probe sizes. While the actual throughput with 256-KB and 512-KB

probes monotonically changed and had noise and non-linear characteristics, that with

32-KB and 64-KB probes was concentrated in certain areas. The results presented in

this chapter have been published in [24][65].

In the following chapter, our approach for building the precise prediction model is pur-

sued in detail. As a first step, a problem of previous prediction method [17] using CDF

of probe and data transfers is introduced. Next, appropriate algorithms are shown to

compensate the problem. Then, we build our prediction method with the algorithms.

Finally, we compare and discuss prediction results using both prediction methods.



Chapter 5

Analytical Modeling for Network
Throughput Prediction

5.1 Overview

In this chapter, a description of the SVR-based predictor and its characteristics are pro-

vided. We first introduce and discuss previous prediction methods and how to apply

SVMs and SVR into network research in Section 5.2. Second, we describe the compo-

sition of data sets, present the actual throughput with the selected probe size on different

sites, and discuss their characteristics with the statistics in Section 5.3. Third, we build

the previous prediction method [17], and a weak point of previous method is shown with

prediction results in Section 5.4. Next, we propose a throughput prediction method, and

compare prediction results with those of the previous one in Sections 5.5 and 5.6. Then,

we build our prediction method with other probe sizes and non-parametric regression

techniques to clarify our assumption for the precise prediction in Sections 5.7 and 5.8.

Finally, we conclude with a summary of the main points in Section 5.9.

5.2 Related Work

Here, we introduce and discuss some studies related to the prediction of traffic and

throughput to find an alternative prediction method. As a first step, we introduce the

studies to predict network traffic. Although their goal is the prediction of network traffic,

these methods can help to propose a network throughput prediction method. Again, the

69
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aims of our study are to predict network throughput and to improve the accuracy of

predicting throughput. Next, we explain and discuss previous throughput prediction

methods. Finally, we describe how to apply SVMs and SVR into the network studies.

5.2.1 Prediction of Network Traffic

In order to predict network traffic, there are many prediction methods. Here, we in-

troduce some prediction methods. These methods basically used past network traffic

as historical data, and applied mathematical algorithms or machine learning techniques

into the historical data to improve the predictability of network traffic. Sang et al. [66]

collected continuous traffic data from live networks for a specific period, and subse-

quently applied Auto-Regressive Moving Average (ARMA) and Markov-Modulated

Poisson Process (MMPP) to the traffic data for predicting short to long term traffic

fluctuations in network. Then, a traffic prediction method using a Neural Network (NN)

is proposed by Cortez et al. [67]. In their method, network topology is used for multi-

variate strategies, and the method outperformed other forecasting methods (e.g. Holt-

Winters). Moreover, Zhao et al. [68] also proposed a traffic prediction method using

Artificial Neural Networks (ANNs). Their method performed non-linear mappings be-

tween past and present traffic values. However, there is no single ANN form that can

capture all the traffic characteristics. In [69], they proposed a hybrid traffic prediction

method based on a combination of ANNs and covariation orthogonal prediction. How-

ever, their traffic traces focused on wireless local area network only.

5.2.2 Throughput Prediction Methods

Various methods have been proposed for predicting the network throughput. In [70],

a scheme that polls Management Information Base (MIB) information of Simple Net-

work Management Protocol (SNMP) from the bottleneck router has been proposed.

However, their scheme would be an unsuitable solution because it is not easy to find a

bottleneck router. Abusina et al. [71] have proposed Optimistic Network Performance

Index (ONPI) and Robust Network Performance Index (RNPI) for the future network

throughput. the ONPI corresponds to a range of the best expected network throughput.

In contrast, the RNPI corresponds to a range of the lowest expected network through-

put. Their heuristic-based method used historical network traffic data, and was similar
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to the Genetic Algorithm. Next, He et al. [72] proposed Formula-Based (FB) predic-

tion and History-Based (HB) prediction. The formula-based prediction does not rely

on historical traffic measurements in an end-to-end path; it would thus be inaccurate in

congested paths and dependent on network characteristics. The history-based predic-

tion is based on the Moving Average and Holt-Winter models. Then, Borzemski et al.

[73] have developed an application based on data mining algorithms, such as ANNs,

decision trees, and transform regression, to predict the throughput in hypertext trans-

fer protocol (HTTP) transactions. They proposed useful parameters for predicting the

throughput, but did not clarify why these parameters were useful. Vazhkudai et al. [74]

compared several different simple forecasting methods to predict the throughput. Yin et

al. [75] proposed a throughput prediction service for many-task computing. It provides

users with the optimal number of TCP connections and an estimated time for data trans-

fer. However, their evaluation results focused on Louisiana Optical Network Initiative

(LONI) clusters, and they did not investigate the characteristics of experimental net-

works. Hwang et al. [76] proposed a formula-based predictor with the available band-

width. Their predictor was accurate in comparison with a predictor based on Amherst

model. Their experiments in Local Area Network (LAN) were performed over real net-

work with a simple dumbbell topology while the experiments in Wide Area Network

(WAN) were performed through simulation only.

Here, we introduce throughput prediction methods using the probe transfer. Wolski et

al. [16] empirically established the basic probe size as 64 KB for the Network Weather

Service (NWS). They used the connection pair to predict the throughput of data transfer

on NWS and focused on only the connection pair where the probe size was 64 KB and

data size was 16 MB. However, they selected the size of the connection pair empirically

and generated connection pairs in limited networks, so the probe size might be inappro-

priate for other networks. Again, we showed that the actual throughput with the 64-KB

probe was concentrated on the certain areas in Chapter 4. Moreover, Yousaf et al. [77]

reported the requirement of a large-sized probe, but they did not select an appropriate

probe size for the Internet. Vazhkudai et al. [78] proposed a linear regression model

using a combination of the 64-KB probe and past measurements; their model uses the

least squares method. However, there were less data transfers than probe transfers,

meaning the data size was not determined precisely. Swany et al. [17] proposed a pre-

diction method using the cumulative distribution function (CDF) of network throughput

for probe and data transfers. It computes the CDF of the throughput for probe and data

transfers. The throughput for data transfer was predicted by using the CDF of a probe
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transfer. In particular, we compare in this chapter the prediction results of our predic-

tion method with the prediction method using CDF for the same data sets to show the

improved accuracy.

5.2.3 SVM and SVR for Network Research

Support vector machines (SVMs) and support vector regression (SVR) have been used

in various network research areas. Bermolen et al. [79] used an SVR for link load

prediction. Beverly et al. [80] considered an SVM for predicting round-trip latency.

Moreover, Huifang et al. [81] proposed WLAN traffic prediction using an SVM. Mirza

et al. [18] have proposed a throughput prediction method using an SVR that combines

prior data transfers and measurements of network metrics, such as packet loss, queuing

delay, and available bandwidth. However, our method depends only on measurements

of the connection pair. Thus, our method uses bivariate data while their method uses

multivariate data. In their method, a radial basis function (RBF) for the kernel trick

is used to consider non-linear and multivariate regression. They used their laboratory

testbed [18] for passive and active measurement of these network metrics. In evalu-

ations, the prediction results with the passive measurement were more accurate than

those with the active measurement because of the accurate network metrics for the pas-

sive measurements. However, the network metrics are normally undisclosed to users,

and it is hard to estimate them on end nodes precisely. Next, they used the Resilient

Overlay Networks (RON) testbed [82] to evaluate their method with active measure-

ment on the Internet, but nodes that should have little or no other CPU or network load

were restricted and the operating system was also limited to FreeBSD 4.7 for the ac-

tive measurement of the network metrics. Thus, these limitations may be unsuitable for

evaluations on the Internet.

5.3 Data Sets for Throughput Prediction

In this section, we investigate the traffic characteristics through Chapters 2 and 4 with

different nodes on the virtualized network testbed for gathering training data sets. As

a first step, we introduce the characteristics of selected node pairs on the virtualized

testbed. Next, measurement results using the connection pair are shown and their fea-

tures are also described. Finally, we present input data sets that consist of two types to

evaluate prediction results on the same conditions.
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5.3.1 Training Data Sets

For training data sets, we empirically selected six pairs of nodes from PlanetLab nodes

located in both North America and Europe, which we refer to the pairs as (α, β), (γ, δ),

(ϵ, ζ), (η, θ), (κ, λ), and (µ, ν). The geographic location and mean RTT using ping for

all the pairs are shown in Table 5.1. We simultaneously generated connection pairs at

the sender every 5 minutes. This time we used the 256-KB probe and the 16-MB data.

Again, the 256-KB probe had the highest predictability. If the measured size is smaller

than expected or if the transfer time is more than 5 minutes, we judge at the receiver

that the measurement has failed. Thus, the network throughput was measured using the

connection pair. We gathered training data sets for all the node pairs over seven days.

There were no the anomalous cases in the training sets. The statistics for the training

sets are shown in Table 5.2. The actual throughput for the connection pair at (η, θ)

is described in Figure 5.1. It is shown to be non-linear with noise. Thus, probe and

data throughputs are monotonically changed. Again, we described these characteristics

in Chapter 4. Finally, we should consider noise and non-linear characteristics for the

precise prediction model.

TABLE 5.1: Geographic location and mean RTT at node pairs.
Node Geographic Node pair Mean
name location (arrow is transfer direction) RTT [s]

α
Europe α ← β 0.0283

β

γ
Europe γ ← δ 0.0477

δ

ϵ
Europe ϵ ← ζ 0.0511

ζ

η
North America η ← θ 0.0370

θ

κ
North America κ ← λ 0.0598

λ

µ
North America µ ← ν 0.0392

ν
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FIGURE 5.1: Actual throughput for connection pair at node pair (η, θ).

TABLE 5.2: Statistics of training data sets. (NT is network throughput.)
Node Min NT Mean NT Max NT Total
pair [KBps] [KBps] [KBps] counts
α, β 138.1 2008.0 2107.8 4705
γ, δ 323.7 1280.5 1290.7 3690
ϵ, ζ 0.2 1140.9 1168.0 4535
η, θ 304.3 1467.6 1616.3 4941
κ, λ 56.3 975.0 1032.1 4936
µ, ν 845.9 1335.4 1512.3 5340

5.3.2 Input Data Sets

To evaluate prediction methods, the input data sets per node pair were collected over

36 hours. The actual throughput of the input data set at node pair (η, θ) is shown in

Figure 5.2. The actual throughput widely fluctuated with noise. Prediction results un-

der an unstable network state are more important than those under the stable one. If the

network state is stable or stationary, we do not have to predict the network throughput.

However, the scale and the bandwidth of networks are rapidly increasing and the net-

work state is dynamically changing. To evaluate the prediction results under an unsta-

ble network state, we determined the mean throughput of a probe transfer as a threshold

value, and additional input data sets consisted of the actual throughput below the thresh-

old value. The composition of the data sets is described in Table 5.3. For example, at
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node pair (α, β), the number of connection pairs at the input set is 1134 and that at the

additional set is 328.

TABLE 5.3: Composition of input data sets. (NT is network throughput.)
Node pair Mean NT [KBps] Total counts Below mean

α, β 1116.0 1134 328
γ, δ 699.2 779 146
ϵ, ζ 586.0 1130 325
η, θ 760.5 929 378
κ, λ 364.9 654 259
µ, ν 656.5 992 377
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FIGURE 5.2: Actual throughput of input data set at node pair (η, θ).

5.4 Previous Prediction Method (CDF-based Predictor)

5.4.1 Building CDF-based Predictor

While other predictors require network metrics, such as RTT, packet loss, and so on, it is

possible to build the CDF-based predictor [17] using only the connection pair. Thus, it is

appropriate for the comparison of prediction results under the same condition. We first

built the CDF-based predictor with the training sets to evaluate whether this predictor
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produces precise prediction results. It computed the CDF of throughput for probe and

data transfers. The throughput for data transfer was predicted by using the CDF of a

probe transfer. If there is no noise, the throughput can be predicted precisely. The CDF

of the connection pair at node pair (η, θ) is shown in Figure 5.3. In the previous work

[17], the curve shape of the CDF of the connection pair was similar, but that of the CDF

at all node pairs was different. The cause of the different shape is noise.
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FIGURE 5.3: CDF of connection pair at node pair (η, θ).
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5.4.2 Prediction Results

Prediction results of the CDF-based predictor at node pair (κ, λ) are shown in Figure 5.4.

Because the CDF-based predictor deals with all data, the results are far from those for

the input data set. Thus, a major cause of the difference is noise. Moreover, the differ-

ence between the actual throughput and the predicted throughput becomes large when

the probe throughput is below the mean probe throughput (364.9 KBps). Therefore,

the prediction results would be inaccurate under an unstable network state. The other

results are similar to the above results. We should consider the noise and monotonicity

between probe and data throughputs for a precise prediction model.
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FIGURE 5.4: Prediction results of CDF-based predictor at node pair (κ, λ).

5.5 Proposed Prediction Method (SVR-based Predictor)

5.5.1 SVR Overview

Support vector regression (SVR) is a version of a support vector machine (SVM) [83]

for regression. The concept of SVR is to maximize margins. Assume we have a training

data set {(x1, y1), ...., (xi, yi), ...., (xl, yl)} ∈ Rn × R, where Rn is the space of the

input features xi, and yi is a symbol value. Here, we give an overview of two types

of SVR: ϵ-SVR [83] and ν-SVR [84]. ϵ-SVR finds a function f(X) that approximates
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future values accurately. The function is defined as

f(X) = wφ(X) + b (5.1)

where w ∈Rn, b∈R, and φ is a non-linear transformation from Rn to high-dimensional

spaces. An ϵ-insensitive loss function is used to measure an empirical error and is de-

fined as

Lϵ(f(xi), yi) =

{
0, if|f(xi) − yi| ≤ ϵ

|f(xi) − yi| − ϵ, otherwise
(5.2)

ϵ-SVR can be written as

min
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (5.3)

where C is a weight parameter. The constant C > 0 is used to determine the trade-off

between training error and model flatness. Slack variables ξi and ξ∗i are allowed to lie

outside of an ϵ-insensitive tube. Thus, ϵ-SVR calculates the distance of data points on

the tube to determine the shape of the tube. However, the shape of the tube would be

changed inappropriately if there was an outlier, such as noise. ν-SVR is a modified

version of ϵ-SVR. It has the advantage that a parameter ν, which replaces C, can be

interpreted as both an upper bound on the fraction of margin errors and a lower bound

on the fraction of support vectors. ν-SVR can be written as

min
1

2
∥w∥2 − C

(
νϵ +

1

n

n∑
i=1

(ξi + ξ∗i )

)
(5.4)

In ν-SVR, there is no calculation of distance on the outside tube. Even if there is

an outlier, we can determine the appropriate shape of the tube. We thus selected ν-

SVR for our prediction method. We can apply the kernel trick [85] in SVR without

ever having to compute the mapping explicitly. The value of the kernel is equal to the

inner product of two vectors xi and xj in the feature space φ(xi) and φ(xj), that is,

K(xi,xj) = φ(xi) · φ(xj). Commonly used kernel functions are linear, polynomial,

and radial basis. In our prediction method, we use the polynomial function to consider

the non-linear characteristics of traffic. It is given by

K(xi,xj) = (< xi · xj > +1)d (5.5)
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where d is degrees.

5.5.2 Building SVR-based Predictor

We introduce here our prediction method using ν-SVR and the polynomial kernel. A

linear regression curve for throughput prediction would be inappropriate. Various types

of traffic, such as mice and elephants [62][64], co-exist in current networks, and spikes

that correspond to large and abrupt throughput are occasionally caused by the elephants.

The distribution of traffic fluctuation is close to long-tail by the above characteristics. In

particular, the marginal distribution of the traffic is not Gaussian [62]. Again, the actual

throughput was changed monotonically and there was noise. Then, ϵ-SVR would be

inappropriate because it calculates the distance of data points for the shape of the tube.

The proposed method uses ν-SVR to deal with noise. The radial basis function (RBF)

has been introduced for the purpose of function interpolation, and it can also be used for

non-linear characteristics. In comparison with the polynomial kernel, the RBF would

be undesirable when there is noise or a paucity of data. Because of this, we apply the

polynomial kernel of degree 3 into the proposed method to consider a non-linear and

continuous monotonic function. Later, we will discuss whether our selection for the

kernel degree is suitable or not.

The SVR-based predictor for node pair (η, θ) is shown in Figure 5.5. The number of

support vectors is 2472, and the other data points are used for the tube of the regression

curve. Although there is noise, the SVR-based predictor reflects the characteristics of a

non-linear and continuous monotonic function. The other node pairs are similar to the

above case. The e1071 package [86] in R [87] is used for the predictor. It offers an

interface to the libsvm library [88], which is a popular SVM tool. The other parameters

in the package are set to the default values.
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(a) Support vectors for ν-SVR
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(b) Tube of regression curve

FIGURE 5.5: SVR-based predictor at node pair (η, θ).
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5.6 Comparison of Prediction Results

To evaluate the accuracy of an individual throughput prediction result at the predictors,

we used the relative prediction error (RPE) [72], which is defined as

RPE =
R̂ − R

min(R̂, R)
(5.6)

where R̂ is the predicted throughput and R is the actual throughput. We show the

fraction of RPE within 10% or less, which is written as

Fraction of RPE =
♯{r| − 0.1 < RPE(r) < 0.1}

♯{r}
(5.7)

where r is the input set. If the RPE is high, prediction error is high. However, the

fraction of RPE is different from the RPE. For example, the fraction of RPE within

10% or less is the percentage of RPE within 10% or less. Thus, it means that a predictor

is accurate if the fraction of RPE is high.

To evaluate the entire input data sets and the entire additional input data sets, we used

the root-mean-square error (RMSE). It provides an error for the entire input sets. The

minimum error value would be one key criterion in selecting a precise predictor.

RMSE =

√√√√1

n

n∑
i=1

(R̂ − R)2 (5.8)

where n is the number of connection pairs at the input set, and R̂ and R are the same as

for RPE. To summarize, we compare the individual prediction result through RPE and

the entire prediction results through RMSE. The fraction of RPE within 10% or less

for the input data sets is shown in Figure 5.6. At node pair (µ, ν), 49.8% of the CDF-

based predictor has an RPE of 10% or less while 89.3% of the SVR-based predictor

has an RPE of 10% or less. In the other input data sets, the fraction of RPE with SVR

was higher than that with CDF. Moreover, the RMSE with SVR (Table 5.4) was also

smaller than that with CDF. From these results, the SVR-based predictor is more precise

than the CDF-based predictor. Next, prediction results at node pair (η, θ) are shown in

Figure 5.7. The regression curve of the SVR-based predictor is more accurate than

that of the CDF-based predictor. Thus, the noise had little effect on the SVR-based

predictor. The fraction of RPE within 10% or less and the RMSE for the additional sets

are shown in Figure 5.8 and Table 5.5 respectively. For the additional sets, the fraction
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of RPE with SVR was higher than that with CDF. Although the fraction of RPE with

the SVR-based predictor decreased, the range of the drop was small in comparison with

that of the CDF-based predictor. In the fraction of RPE with CDF, the range of the

drop at node pair (κ, λ) was 33.9%, the largest value. Furthermore, the RMSE value

with SVR was also smaller than that with CDF. These results are sufficient to show that

our SVR-based predictor is precise, robust, and better performing than the CDF-based

predictor.
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FIGURE 5.6: Fraction of RPE within 10% or less for input data sets.

TABLE 5.4: Root-Mean-Square error of input data sets.
Node pair SVR-based predictor CDF-based predictor

α, β 94.6 113.3
γ, δ 27.0 51.4
ϵ, ζ 40.9 79.7
η, θ 155.7 187.5
κ, λ 168.1 203.0
µ, ν 102.7 157.2
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FIGURE 5.7: Prediction results at node pair (η, θ).
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FIGURE 5.8: Fraction of RPE within 10% or less for additional input data sets.

TABLE 5.5: Root-Mean-Square error of additional input data sets.
Node pair SVR-based predictor CDF-based predictor

α, β 137.7 180.3
γ, δ 35.0 98.2
ϵ, ζ 56.1 137.7
η, θ 183.0 230.0
κ, λ 182.6 251.9
µ, ν 100.8 192.5
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While the CDF-based predictor deals with all data that include noise, our SVR-based

predictor uses only characteristic features in the training set. This explains its better

prediction results. The regression curve of the SVR-based predictor at node pair (κ, λ)

(Figure 5.9) was also closer to the input data set in comparison with that of the CDF-

based predictor. Because computational resources and the I/O device of the node on

the virtualized testbed are shared by many slices, the sharing can affect the prediction

results. Moreover, a congested network state for the node pair can also affect the predic-

tion results. We should clarify what effects lead to the changes in the prediction results,

and investigation of this is one of our future works.
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FIGURE 5.9: Prediction results at node pair (κ, λ).

To investigate the adequacy of degree 3, we performed the same experiments by vary-

ing the degree from 2 to 5. We omitted the polynomial kernels of degree 6 and above

because the regression curve could be fitted to a complicated curve, consequently re-

sulting in overfitting. Moreover, it is time-consuming to determine the regression curve

with kernels of high degree. The evaluation results are summarized in Table 5.6. These

results show that there are no significant differences in the RPE, except in the case at

node pair (κ, λ). Thus, in this study, we concluded that the 3-degree polynomial kernel,

which is the default value, is a reasonable choice for our prediction method. Next, from

the results obtained with degree 5 at node pair (κ, λ), we found that the 5-degree kernel

could achieve better RPE results than the 3-degree kernel. Figure 5.10 shows the regres-

sion curves of both 3- and 5-degree kernels. From this figure, we observe that although
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both the curves do not fit ideally, the discrepancy is small when we use the 5-degree

kernel. In future, we intend to investigate the reason why kernels of higher degree can

outperform in such cases.

TABLE 5.6: Fraction of RPE of degrees for input data sets. (Deg. is degree).
Node Fraction of RPE [%]
pair Deg. 2 Deg. 3 Deg. 4 Deg. 5
α, β 96.0 96.0 96.0 96.0
γ, δ 98.8 98.8 98.8 98.5
ϵ, ζ 98.7 98.7 98.3 98.3
η, θ 81.5 81.1 80.2 79.9
κ, λ 48.9 50.2 51.8 53.8
µ, ν 89.0 89.3 89.6 89.6
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FIGURE 5.10: Prediction results with degree 3 and 5 at node pair (κ, λ).

To summarize, the actual throughput for the connection pair had noise and non-linear

characteristics, and the CDF-based predictor was unsuitable for considering the above

characteristics. In our prediction method, ν-SVR and the polynomial kernel are used to

deal with a non-linear and continuous monotonic function. These lead to the improved

prediction results. In the evaluation, we showed that our proposed method is better

performing than the CDF-based predictor through RPE and RMSE.
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5.7 Issue of Probe Size

Our assumption is that the prediction model is precise with the probe size that has high

predictability. Thus, the assumption should be clarified. We here compare prediction

results of other probes with those of the proposed probe. To investigate the effect of

the probe size on the SVR-based predictor, we increased the probe size to 512 KB, and

decreased it to 64 KB for the connection pair. We showed features of these probe sizes

in Chapter 4.

5.7.1 SVR-based Predictor with 512-KB Probe

To investigate the effect of a larger probe size, we increased the probe size to 512 KB.

It is twice as large as the selected probe size. The numbers of training data sets and

input data sets were similar to those for the 256-KB probes. Because the probe size was

increased from 256 KB to 512 KB, the actual throughput for probe transfer increased.

However, no significant changes occurred between the training sets for the different-

sized probes. Again, we showed the characteristics in Chapter 4. The actual throughput

of the training sets at node pair (η, θ) is depicted in Figure 5.11. The actual throughput

is similar to the training set with 256-KB probes. Thus, the connection pair showed

characteristics of a non-linear and continuous monotonic function.
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FIGURE 5.11: Actual throughput of training data sets at node pair (η, θ).
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We built the SVR-based predictor with the same parameters as previously described.

The predictor at node pair (η, θ) is shown in Figure 5.12. It is remarkably similar to the

predictor with 256-KB probes. The other node pairs also show the same form. Next, we

evaluated the node pairs with RPE to clarify the individual throughput prediction result.

The fraction of RPE within 10% or less with 512-KB probes is shown in Figure 5.13.

There are no significant changes although the accuracy at node pair (κ, λ) is slightly

higher than that with 256-KB probes. Moreover, the RMSE with the 512-KB probe

(Table 5.7) was also similar to that with the 256-KB probe. From these results, there is

no advantage to increasing the probe size for the prediction accuracy.
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FIGURE 5.12: SVR-based predictor with 512-KB probe at node pair (η, θ).
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FIGURE 5.13: Fraction of RPE within 10% or less with 512-KB probes.

TABLE 5.7: Root-Mean-Square error with 256-KB and 512-KB probes.
Node pair 256-KB probe 512-KB probe

α, β 94.6 85.2
γ, δ 27.0 20.0
ϵ, ζ 40.9 43.6
η, θ 155.7 153.2
κ, λ 168.1 190.0
µ, ν 102.7 109.6

5.7.2 SVR-based Predictor with 64-KB Probe

To investigate the effect of a small probe size, we changed the probe size to 64 KB.

Again, it was proposed by Wolski et al. [16] and used for NWS. We gathered training

sets without node pair (ϵ, ζ) because the site of node ζ dropped out PlanetLab Con-

sortium during the experimental period. The number of training sets was similar to

that with 256-KB probes. Although we only decreased the probe size from 256 KB to

64 KB, the actual throughput with 64-KB probes was different from that with 256-KB

probes. The actual throughput at node pair (γ, δ) is shown in Figure 5.14. In this case,

the number of connection pairs in the training set is 5083. The actual throughput with

256-KB probes is fluctuated, and we can find an appropriate regression curve for the pre-

diction. However, the actual throughput with 64-KB probes is concentrated in certain
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areas, and the probes cannot reflect the data transfer. This shows that building a precise

predictor is difficult. We also eliminated this pair in building the SVR-based predictor.

Moreover, we observed considerable noise at the other pairs. The actual throughput at

node pair (η, θ) is depicted in Figure 5.15. There was considerable noise at the actual

throughput, which becomes an obstacle to finding the appropriate regression curve for

the SVR-based predictor.
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FIGURE 5.14: Actual throughput of training data sets at node pair (γ, δ).
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FIGURE 5.15: Actual throughput of training data sets at node pair (η, θ).
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We used four node pairs to build the SVR-based predictor, and we evaluated them with

RPE. Prediction results at node pair (η, θ) are described in Figure 5.16. The regression

curve of the SVR-based predictor cannot represent all of the features in the data set. The

fraction of RPE within 10% or less with 64-KB probes is shown in Figure 5.17. Due to

the considerable noise, the prediction accuracy at all the node pairs was decreased. The

effect of noise is shown in the RMSE with the 64-KB probe (Table 5.8). All of values

in the RMSE with the 64-KB probe are dropped in comparison with those with 256-KB

probe. To summarize, the actual throughput with 64-KB probes is different from that

with 256-KB probes. We observed substantial noise at the actual throughput. This is a

major cause of the decreased prediction accuracy.
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FIGURE 5.16: Prediction results at node pair (η, θ).

TABLE 5.8: Root-Mean-Square error with 256-KB and 64-KB probes.
Node pair 256-KB probe 64-KB probe

α, β 94.6 192.0
η, θ 155.7 551.9
κ, λ 168.1 297.4
µ, ν 102.7 141.8
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FIGURE 5.17: Fraction of RPE within 10% or less with 64-KB probes.

5.8 Issue of Predictability using Non-parametric Regres-

sion Techniques

In the previous sections, we focused on the precise prediction model when the actual

throughput has noise and non-linear characteristics, evaluated the prediction results, and

presented the validation of our assumption related to the issue of probe size.

In this section, we mainly compare the prediction results using the SVR-based predictor

to those using non-parametric regression techniques. As a first step, we present different

points of non-parametric regression in comparison with parametric regression. Next, we

briefly introduce generalized additive models (GAM) [89][90] and multivariate adaptive

regression splines (MARS) [91]. Then, we build prediction models using GAM and

MARS for the same data sets that build the SVR-based predictor. Finally, we show and

discuss the prediction results using the regression techniques.

5.8.1 Non-parametric Regression Techniques

We here describe what is non-parametric regression and what is different from paramet-

ric regression. Then, we introduce and discuss the characteristics of GAM and MARS.

Unlike parametric regression uses a finite set of parameters, non-parametric regression

accommodates a very flexible form of regression curve. For example, polynomial re-

gression consists of performing multiple regression with variables (x, x2, x3, ...) to find
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an appropriate regression curve. In other words, parametric regression is based on a

finite number of parameters. Contrarily, non-parametric regression provides a versatile

method of exploring a general relationship between variables. Moreover, it requires

larger samples than those of parametric regression because data must supply model

structure as well as model estimation. Two of the most commonly used approaches

to non-parametric regression are smoothing splines and kernel regression. Smooth-

ing splines minimize the residual sum of squares, and plus a term which penalizes the

roughness of the fit. Kernel regression involves making smooth composites by applying

a weighted filter to data. Both methods are useful for many areas of science, economy,

and technology.

5.8.1.1 GAM Overview

In order to understand GAM, we first introduce generalized linear models (GLM). It

assumes a linear relationship between values of dependent variables and independent

variables. Let Y be a dependent variable, and X1, ..., Xp be p independent variables.

The mean of Y is modeled as a linear function of X1, ..., Xp, which is written as

E(Y ) = f(X1, ..., Xp)

= β0 + β1X1 + ... + βpXp

= β0 +

p∑
j=1

βjXj (5.9)

Given a sample of values for Y and X , where X = (X1, ..., Xp), the estimates

of β0, β1, ..., βp are obtained by a particular response function, such as least squares

method.

GAM blends properties of GLM with additive models, which is written as

E(Y ) = f(X1, ..., Xp)

= s0 + s1(X1) + ... + sp(Xp)

= s0 +

p∑
j=1

sj(Xj) (5.10)

where sj are unspecified smooth functions estimated from data. To summarize, GAM

replaces the response function with the smooth functions. The gam package [92] in R

is used for our prediction model.
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5.8.1.2 MARS Overview

MARS is a non-parametric regression technique and can be seen as an extension of lin-

ear models that automatically models nonlinearity and interactions between variables.

MARS model has the following form:

Y = β0 +
M∑

m=1

βmBm(X) (5.11)

where Y is output variable, X is input variable, β0 is the coefficient of constant term,

M is the number of spline basis functions, Bm is the mth spline basis function, and

βm is the best balance between training error and generalization error. In MARS, the

suitable value of M is determined from training data.

MARS builds a regression model in two phases: the forward and the backward pass.

Two phases are the same as that used by recursive partitioning trees.

• The forward pass

In this phase, MARS repeatedly adds the spline basis functions to the model. At

each step, it finds the pair of spline basis functions that gives the maximum reduc-

tion in the residual sum of squares. This process of adding terms continues until

the change in residual error is small to continue or until the maximum number of

terms is reached. Again, the maximum number of terms is specified by the user

before the model building starts. In the forward pass, the model can be overfitted

due to a large number of basis functions.

• The backward pass

The backward pass prunes the model to build a model with better generalization

ability. It removes terms one by one, deleting the least effective term at each step

until it finds the best submodel. Model subsets are compared using generalized

cross validation (GCV). Finally, the best submodel that has the lowest values of

GCV is selected as the regression model.

The earth package [92] in R is used for our prediction model because the term “MARS”

is trademarked and licensed to Salford Systems.
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5.8.2 Prediction Results

We here present prediction results using GAM and MARS to compare them to the pre-

diction results using the SVR-based predictor. So, we build predictors using GAM and

MARS with the training data set of the 256-KB probe. Two types of prediction results

using GAM and MARS are found. The former is the similar prediction results using the

SVR-based predictor and the latter is the overfitted prediction results. The prediction

results at node pair (η, θ) are similar to those using the SVR-based predictor. The results

are depicted in Figure 5.18. Similar regression curves are found in comparison with that

using the SVR-based predictor. Meanwhile, the prediction results at node pair (κ, λ) are

different from the above results. The results are shown in Figure 5.19. The regression

curve using GAM is overfitted becasue the model is interpolated by all of data. Thus,

the curve is obviously affected by noise. Moreover, the regression curve using MARS

(Figure 5.20) is also affected by noise. The predicted throughput is decreased when

the throughput of probe transfer is larger than 650 KBps. It is enough to present the

overfitted results of MARS.

To summarize, the prediction results using the non-parametric regression techniques

did not have the monotonicity between probe and data throughputs. Moreover, the

regression curve is more sensitive than the SVR-based predictor because the regression

techniques focus on the interpolation between data points.
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Chapter 5. Analytical Modeling for Network Throughput Prediction 95

 0

 200

 400

 600

 800

 1000

 1200

 0  100  200  300  400  500  600  700  800

T
h

ro
u

g
h
p

u
t 

o
f 

d
a

ta
 t
ra

n
s
fe

r 
[K

B
p

s
]

Throughput of probe transfer [KBps]

Input data set SVR MARSGAM

FIGURE 5.19: Prediction results using SVR, GAM, and MARS at node pair (κ, λ).
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5.9 Conclusion

This chapter shows that the SVR-based predictor can significantly improve the predic-

tion results if the actual throughput has noise and non-liner characteristics. ν-SVR and

polynomial kernel are the key elements for the improvements and these elements are

represented in the SVR-based predictor. It was established that the SVR-based predic-

tor is more accurate, robust, and suitable than the CDF-based predictor with the same

condition. Moreover, issues of suitable probe size are shown and discussed to present

the validation of our approach. As a result, the SVR-based predictor based on the con-

nection pair that uses ν-support vector regression and the polynomial kernel to deal

with prediction models represented as a non-linear and continuous monotonic function

is proposed and illustrated. Our prediction method is enough to answer research ques-

tions described in Chapter 1. The SVR-based predictor has been published in [25][26].

In the next chapter, we present how the prediction results contribute to grid scheduling

through simulation. First, a simulation method is described with real throughput traces.

Next, qualitative evaluation results of the simulation are shown and discussed. Finally,

performance implications are illustrated through the evaluation results.



Chapter 6

Performance Implications by
Predicting Throughput

6.1 Overview

Through Chapters 2 and 5, we explored a way to predict the network throughput on

the Internet. Our prediction method was based on analysis results of Internet traffic,

and research issues of Internet traffic characteristics were also discussed for our predic-

tion model. We used machine learning techniques (ν-SVR and polynomial kernel) for

precise prediction results. With the same condition, our SVR-based predictor is more

accurate, robust, and suitable in comparison with the CDF-based predictor. However,

we only focused on the precise prediction and we did not discuss the contribution of pre-

diction results to real applications, such as grid computing. In detail, it is unclear how

high accuracy of throughput prediction should contribute to realize efficient schedul-

ing. Moreover, it is also unclear that higher accuracy should always guarantee better

scheduling.

In this chapter, we focused on how the predictors affect meta-scheduler performance

quantitatively. We first introduce our motivation and some studies related to grid ser-

vices and schedulers in Sections 6.2 and 6.3. Second, we describe the composition of

data sets, build the predictors, and evaluate their prediction results in Sections 6.4 and

6.5. Next, our simulation method is introduced in Section 6.6. Then, the evaluation of

simulation results and performance implications are described in Section 6.7 and Sec-

tion 6.8 respectively. Finally, we conclude with a summary of the main points in Section

6.9.

97
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6.2 Motivation

Modern Scientific experiments, such as high-energy physics, astronomy, and climate

modeling, become increasingly data-intensive. The data volumes of such experiments

are growing to petascales [93][94][95][96]. In 2007, the Large Hadron Collider (LHC)

[94] produces roughly 15 petabytes of data annually. Such data-intensive tasks are pro-

cessed on geographically distributed resources, and the Internet is often used to share

the resources on sites. Grid middleware [97][98] and services [1][2] have been devel-

oped to offer efficient available resources to site users.

A meta-scheduler is used to efficiently manage resources on remote sites. It is deployed

on a layer above the sites and assigns tasks to the site that has the best resources. The

scheduler can reduce the overall processing time of given tasks. Hereafter, we refer to

the “scheduler performance” as the amount of time that is saved using the scheduler,

compared to another scheduler. The performance of the meta-scheduler can also be

enhanced by the efficient use of network resources. The scheduling problems in re-

gard to both computational and communication resources are known as co-allocations

[99][100] when dedicated communication links are available among grid sites. How-

ever, allocation and reservation of communication resources are difficult when the Inter-

net is used. Under this situation, the throughput prediction on the Internet is promising

for improving the scheduler performance. However, it is unclear how high accuracy

of throughput prediction should contribute to realize efficient scheduling. Moreover, it

is also unclear that higher accuracy should always guarantee the improved scheduler

performance. The aim of this chapter is to quantitatively clarify how the predictors can

affect the overall processing time of given tasks.

6.3 Grid Services and Schedulers

Many grid services and network-aware schedulers have been developed to improve

scheduling performance in grid computing. We here introduce some services and sched-

ulers. The grid harvest service (GHS) [101] was developed by Wu et al., and it provides

task scheduling performance prediction. However, network resources are not consid-

ered. Grid Service Broker [102] uses network information provided by the NWS [16].

They applied the broker to a data-intensive environment and showed a reduced process-

ing time. However, we have already observed that the 64-KB probe was inappropriate
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for predicting the network throughput in Chapters 4 and 5. Chinnaiah et al. [7] pro-

posed monitoring architecture with network cost function for grid network. Again, it is

not easy to estimate network metrics for the function on the Internet. Moreover, they

only used local grid testbeds for their evaluations. Caminero et al. [103] proposed a

strategy to perform P2P meta-scheduling in the grid by considering the network charac-

teristics. In their strategy, the nodes forward queries to neighbors using Routing Indices

(RI) [104] to find neighbors that are more likely to have required resources. The strategy

showed performance improvements through simulations. But, the strategy considered

only physical topology, which is not providing most efficient query forwarding, and they

did not show how to change the network characteristics on the DataGRID [105] for the

simulations. McClatchey et al. [106] proposed a meta-scheduler called Data Intensive

and Network Aware (DIANA). It considers network cost for scheduling decision in the

grid. The network metrics, such as bandwidth, latency, packet loss, jitter, and anomalies

of network links, should be provided for the network cost, i.e., DIANA would be un-

suitable for the current Internet. Hsu et al. [107] proposed a selection scheme coupled

with P2P co-allocation based on available bandwidth between a client and different

servers. However, control overhead is high and the selection scheme requires avail-

able bandwidth. Christodoulopoulos et al. [108] have also proposed network resource

scheduling. NS-2 [109] was used for their simulation and they showed performance

benefits by co-allocating the network and computational resources. However, the above

works did not use the real throughput fluctuation traces for their simulations.

For the efficient co-allocations, resource reservation in advance has been considered.

In [99][100], network resources were used as distributed resources, and G-lambda [99]

and GridARS [100], which provide reservation services for computational and network

resources, were proposed. In addition, they extended their service to multiple network

domains [110]. However, their testbeds were located on JGN [111]. Thus, networks

for the reservation should support Generalized Multiprotocol Label Switching (GM-

PLS) [112] and provide the network metric to their Network Resource Management

(NRM) systems. Kokkinos et al. [113] proposed an information aggregation scheme

for resource management in the grid. The aggregation scheme was based on spectral

clustering [114], and considered not only computational resources but also network re-

sources, such as delay and bandwidth. In their simulations, however, they only used

discretized time availability for the resource reservation in advance. In other words, the

network resources were summarized as discretized availability, and it would be hard to

fully reflect characteristics of network. Liang et al. [115] proposed Earliest Start Time
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Estimator (ESE) for Advance Reservation Service (ARS). Experiments showed the ef-

ficiency of ESE. However, it is unclear how to use network resource in ESE. Tomás et

al. [6] proposed a network-aware meta-scheduler to consider the case where the reser-

vations are impossible. But, their scheduler only used a mean value of past transfers for

estimated transfer time. Experiments were also executed on local grid testbeds.

To summarize these studies, the dedicated infrastructures or disclosure of network met-

rics are required for their services and schemes. It is too costly and takes a lot of time to

construct such infrastructures on the Internet. Moreover, it is hard to fully disclose the

network metrics among ISPs or countries. Although an estimation of network metrics is

one of alternative solutions, it is too hard to precisely estimate the metrics on end nodes.

Moreover, it would be obvious that the imprecise metrics have the negative effects of

scheduling. Finally, our approach is different from the studies, thus it does not require

hardware for the or the disclosure and it can be applied to the current Internet.

6.4 Measurement Methodology

In this section, we introduce two types of data sets on different nodes. The former is to

build the predictors and the latter is to evaluate them and to use our simulation. Here,

we clarify actual throughput for the connection pair even if the different nodes are used.

The data set is transformed into time-series data to reflect the throughput fluctuation for

the simulation. It will be clear how to fluctuate the actual throughput over the time.

6.4.1 Training Data Sets

There are many types of topologies for the grid. We use a star topology for our meta-

scheduler simulation. It is a basic hierarchical topology and enough to show the effect

of prediction results. In future, we will explore simulations with other topologies, such

as P2P based. Our environment was composed as the star topology in which all sites

are connected to a central site. A PlanetLab node from North America was empirically

selected as the central site. Then, PlanetLab nodes having similar network metrics on

different sites from North America were also selected, and are referred to as sites S-0,

S-1, S-2, S-3, S-4, S-5, and S-6. Next, connection pairs were generated at the central

site every 300 [s] over 7 days when the probe size was 256 KB and the data size was 16

MB. Again, discussions on how to choose proper sizes for both probe and data transfers
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are presented in Chapter 4. In Figure 6.1, the actual throughput of connection pair is

fluctuated and has noise and non-linear characteristics. The other cases are similar to the

above case. Again, the actual throughput characteristics were also observed in Chapters

4 and 5. The statistics of learning data sets are shown in Table 6.1.
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FIGURE 6.1: Actual throughput of connection pair at site S-4.

TABLE 6.1: Statistics of learning data sets.
Site Min NT Mean NT Max NT Mean Total

[KBps] [KBps] [KBps] RTT [s] counts
S-0 677.6 1190.9 1365.9 0.439 5097
S-1 337.6 1157.2 1263.5 0.479 3284
S-2 549.6 1242.7 1352.8 0.444 4867
S-3 108.6 1252.2 1545.0 0.393 4219
S-4 75.3 1070.8 1284.2 0.490 5033
S-5 55.9 1199.0 1413.3 0.418 3484
S-6 304.3 1467.6 1616.3 0.370 4941
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6.4.2 Input Data Sets

In order to evaluate the predictors, input data sets were collected in the measurement

environment over a period of 48 hours. However, there is a traffic shaper at each node

on PlanetLab. When the transmitted network traffic is more than the boundary volume,

the shaper reduces the network traffic by force. In our measurements, the shaper re-

duced the traffic after 16 or 17 hours. Thus, actual throughput was only gathered for

57600 or 61200 [s] per day. Input data sets for the evaluation and simulation are shown

in Table 6.2. The statistics of input sets are similar to those of the learning data sets.

Next, the input data set is transformed into time-series data to reflect the throughput

fluctuation for the simulation. Therefore, the time length of the input sets is approxi-

mately 110,000 or 120,000 [s]. The time-series data at site S-4 is shown in Figure 6.2.

Changes in the actual throughput were found over the time.

TABLE 6.2: Characteristics of input data sets.
Site Min NT Mean NT Max NT Total Time

[KBps] [KBps] [KBps] counts length [s]
S-0 729.4 1175.4 1361.2 1129 115200
S-1 701.6 1100.7 1252.2 1095 119400
S-2 737.8 1291.6 1351.6 1057 114900
S-3 217.5 1256.7 1551.4 914 120400
S-4 680.5 1101.5 1284.2 1010 117600
S-5 373.2 1212.6 1406.7 1082 117900
S-6 583.3 1423.9 1617.1 928 120900
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FIGURE 6.2: Time-series data of connection pair at site S-4.
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6.5 Throughput Prediction Methods

6.5.1 Previous Throughput Predictor (CDF-based Predictor)

While other predictors require multiple network metrics, it is possible to build the CDF-

based predictor [17] using only the connection pair. The CDF-based predictor for site

S-4 is shown in Figure 6.3. The CDF curve shape of probe transfer was not similar to

that of the data transfer owing to the actual throughput noise. The CDF curve shape in

the other cases is similar to the above case.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

Throughput of probe transfer [KBps]

(a) CDF of probe transfer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Throughput of data transfer [KBps]

(b) CDF of data transfer

FIGURE 6.3: CDF-based predictor at site S-4.

6.5.2 Proposed Throughput Predictor (SVR-based Predictor)

Before presenting the SVR-based predictor, we briefly present support vector regression

(SVR) [83] that described in Chapter 5. It is a version of a support vector machine

(SVM) used for regression. The concept of SVR is to maximize margins. There are

two types of SVR: ϵ-SVR [83] and ν-SVR [84]. While ϵ-SVR calculates the distance

of data points on a tube in order to determine the shape of tube, ν-SVR instead fixes a

parameter, ν, which bounds the fraction of points lying outside the tube. Thus, there

is no distance calculation on the outside tube and the appropriate tube shape can be

determined using ν-SVR, even if there are outliers such as noise. ν-SVR was used to

deal with the actual throughput noise in our predictor. Moreover, the kernel trick [85]

can be applied in SVR without ever having to explicitly compute the mapping. The

polynomial kernel was also used to consider non-linear characteristics. To summarize,
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our predictor uses ν-SVR and a three-degree polynomial kernel to consider a non-linear

and continuous monotonic function.

The SVR-based predictor at site S-4 is shown in Figure 6.4. The SVR predictor reflects

the characteristics of a non-linear and continuous monotonic function. The other cases

are similar to the above case.
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(a) Support vectors for ν-SVR
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(b) Tube of regression curve

FIGURE 6.4: SVR-based predictor at site S-4.

6.5.3 Evaluation of Prediction Results

To evaluate the prediction results, we used the relative prediction error (RPE) [72],

which is defined as

RPE =
R̂ − R

min(R̂, R)
(6.1)

where R̂ is the predicted throughput and R is the actual throughput. The RPE fraction

within 10% or less is shown, which is written as

Fraction of RPE =
♯{r| − 0.1 < RPE (r) < 0.1}

♯{r}
(6.2)

where r is the input set. Again, this way is same to the way described in Chapter 5.

RPE fraction within 10% or less is shown in Fig. 6.5. The RPE fraction was higher with

SVR than that with CDF in the evaluation results.



Chapter 6. Performance Implications by Predicting Throughput 105

The results are similar to those in Chapter 5. While the CDF-based predictor deals with

all data that include noise, our SVR predictor uses only the characteristic features in the

training set. This explains its better prediction results. The regression curve of the SVR-

based predictor at S-4 (Figure 6.6) was also closer to the input data set in comparison to

that of the CDF-based predictor. In particular, the prediction results at the CDF-based

predictor are affected by noise when the probe throughput is low. To summarize, similar

prediction results are shown although different nodes were used for the measurements

and predictors.
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FIGURE 6.5: Fraction of RPE within 10% or less.
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FIGURE 6.6: Prediction results at S-4.
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6.6 Simulation Method

In this section, we introduce our simulation model and scenario to clarify how through-

put prediction can affect task scheduler performance. We first explain a simulation

model for task scheduling. Second, we present task insert periods for changing queue

states. Third, we show the task schedulers for performance evaluation. Finally, we

describe simulation scenario for experiments.

6.6.1 Model

The Internet has been used to share distributed resources and meta-schedulers have been

used to efficiently assign tasks to resources. However, unlike computational resources,

the availability of network resources on the Internet is very unstable and difficult to

manage. The throughput prediction can enhance such schedulers, but it is unclear that

the predictor should always guarantee the improved scheduler performance of given

tasks.

Simulation with real traces can yield more realistic results than that with artificial traces.

We use the input data sets as the real traces of throughput fluctuation. Again, we trans-

form the input data sets into time-series data, which changed over time. Next, we as-

sume that each of the sites, S-0, S-1, S-2, S- 3, S-4, S-5, and S-6, denotes a grid site.

There is a local scheduler at the site for managing computational resources such as

CPU, memory, and storage. For execution time, we assume that each site has the same

computing power, the computational resources are integrated, and it takes 1 [s] to exe-

cute 1 MB. For example, we assume that it takes 1024 [s] to execute 1 GB on the site.

The central site denotes the meta-scheduler, which has a queue that receives tasks from

users, and a task is assigned to the local scheduler. There is no preemption at any of

the queues; thus, the assignment is performed on a first come, first served (FCFS) basis.

Our simulation model is shown in Figure 6.7.

To reflect data-intensive tasks, we assume that a task denotes a meta-task, and thus it

cannot be divided. And also we assume that the task has data, thus the data should

be fully transmitted to the site to process the task. In eScience, the amount of data

for each experiment on the LHC [94] was approximately 1 GB per second and that on

SETI@home [116] was approximately 500 MB. With reference to these sizes as well

as the movement of data on the Internet, we select the following sizes. The minimum
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FIGURE 6.7: Simulation model.

size is 1 GB, the maximum size is 9 GB, and the data size is increased per gigabyte.

We execute the simulation experiments per a task set that includes the tasks. There are

four types of task sets. Although the number of tasks at the task sets was increased to

100 tasks, the results were similar after task set (IV). The task sets are summarized in

Table 6.3. The data size in the task is randomly selected and the number of tasks is

based on the number of sites.

TABLE 6.3: Number of tasks at task sets for simulation.
Set (I) Set (II) Set (III) Set (IV)

7 14 21 28

6.6.2 Task Insert Periods

To change the queue state on the local scheduler on the grid site, we prepare the follow-

ing task insert periods of online mode:

• Busy state limits the time slot to 300 or 600 [s]. Again, the minimum time slot is

300 [s]. Pre-scheduled tasks are presented in the local scheduler to keep the insert

period short.
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• Idle state considers the time slot as 3600 [s]. The insert period is larger than the

busy state. The pre-scheduled tasks almost never remain in the local scheduler.

If the start time is fixed as zero or a certain time, similar results will be expected and the

full time-series data cannot be used. While a start time ranging from 0 to 99000 [s] is

randomly selected in the busy state, a start time ranging from 0 to 45000 [s] is randomly

selected in the idle state in order to use all of the data.

6.6.3 Meta-schedulers

In our simulation, the basic scheduling approach involves assigning the task to the site

having the minimum expected completion time (MCT) [117], which is defined as

MCT (ti, sj) = min0≤j<N(CT (ti, sj) + ETP(sj )) (6.3)

where s is the site, t is the task at the task set. i is the index of task and j is the index

of site. N is the number of the grid sites. This time N is 7. Moreover, CT (ti, sj)

is the expected completion time when the task ti is assigned to the site sj , and the

calculation of CT (ti, sj) depends on the scheduler. ETP(sj ) is the execution time of

the pre-assigned tasks on the site sj . If task scheduling is started, ETP(sj ) will be zero

on site sj .

The following schedulers are used for task scheduling:

• COM Only the computational resource is considered when assigning tasks. If

there are pre-scheduled tasks at the sites, this scheduler calculates the execution

time at each site and the task is allocated to the site that has the minimum exe-

cution time. Conversely, if there are no tasks at the sites, the task is sequentially

assigned from S-0 to the last site. For example, the first task would be allocated

to site S-0. This is defined as

CT (ti, sj) = ET (ti, sj) (6.4)

where ET (ti, sj) is the execution time of task ti on site sj .

• NT(SVR) The computational resource and the predicted throughput using the

SVR predictor are considered when assigning tasks. Thus, this scheduler cal-

culates combinations of the execution time and the predicted transfer time using
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the SVR predictor, and then selects the minimum combination. This is defined as

CT (ti, sj) = ET (ti, sj) + DTsvr(ti, sj) (6.5)

where DTsvr(ti, sj) is the predicted transfer time of task ti found by using the

SVR predictor for site sj .

• NT(CDF) This scheduler is the same as NT(SVR), but it uses the predicted

throughput that is obtained by using the CDF predictor. We prepared this sched-

uler to clarify the performance using different prediction results. This is defined

as

CT (ti, sj) = ET (ti, sj) + DTcdf (ti, sj) (6.6)

where DTcdf (ti, sj) is the predicted transfer time of task ti estimated by using the

CDF predictor for site sj .

• NT(Ideal) This scheduler is the same as NT(SVR), but it uses the perfectly pre-

dicted throughput. Thus, there is no error between the predicted and actual

throughput. This scheduler is used to compare the above schedulers with the

throughput prediction. It is defined as

CT (ti, sj) = ET (ti, sj) + DTideal(ti, sj) (6.7)

where DTideal(ti, sj) is the actual transfer time of task ti for site sj .

6.6.4 Scenario

The simulation experiments were executed 10 times per the task set in order to clarify

the simulation results. The simulation scenario is as follows:

1. The start time of scheduling is randomly chosen from the range of time in the

time-series data of real traces.

2. Each of the schedulers calculates the expected completion time and selects the

grid site that has the minimum expected completion time (MCT) when the task is

inserted in the scheduler.

3. We assume that the data is promptly transmitted to the selected site.
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4. After arriving the entire data, the task will wait in the local scheduler until the

pre-scheduled tasks are completed if there are pre-scheduled tasks at the site.

Conversely, if there are no tasks in the local scheduler, the task will be promptly

processed.

5. Steps 2 to 4 are repeated until the all tasks are assigned.

To summarize, we assume that the task that has data (1-9 GB) is transmitted to the

selected grid site and processed at the site. For our simulation method, we design and

implement the calculation of processing time on the schedulers.

6.7 Evaluation of Simulation Results

In this section, we present evaluation results of the simulation to compare the perfor-

mance of each task scheduler. Furthermore, we observe the operation of our simula-

tion method and the effect of throughput prediction on the performance of our method.

We first introduce the evaluation criteria. Next, we compare the performances of the

simulation results. Finally, we clarify a major cause of decreased performance that is

unexpectedly observed during the simulation.

6.7.1 Scheduling Performance Rate (SPR)

To evaluate the simulation results, we determine the processing time, which is a com-

bination of the actual transfer time and the execution time for given tasks, and use the

scheduling performance rate (SPR), which is defined as

SPR =
Tcom − Tnt

Tcom

∗ 100 (6.8)

where Tcom is the processing time of COM and Tnt is the processing time of NT(SVR),

NT(CDF), or NT(Ideal). A positive SPR value means that task scheduling with through-

put prediction achieved better performance than task scheduling without any predic-

tions. Thus, the SPR is a differential rate between the processing times.
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6.7.2 Simulation Results

Figures 6.8 and 6.9 show SPR values of simulation results, consisting of 10 trials on

each task set. Thus, we focus on the evaluation of the task set.

Most of the results showed improved performance; thus, the processing time is reduced

as compared to that without the throughput prediction. At index 0 for the busy state

(Figure 6.9(b)), the overall processing time at COM is 150088.4 [s] and that at NT(SVR)

is 136354.9 [s]. Then, the SPR at NT(SVR) is approximately 9.2%, which is the same

as that at NT(Ideal). On the other hand, some results showed decreased performance.

Two causes of the decreased performance are considered: one is improper site selection

based on MCT, and the other is imprecise prediction. The result of NT(SVR) at index 2

for the busy state is attributable to site selection because the SPR at NT(SVR) is close

to that at NT(Ideal). Because of the large number of tasks in the queue, only a few

idle sites have low throughput. The above situation results in the negative values at

NT(Ideal). Others are similar to the above result. Next, the result at index 9 for the idle

state is attributable to imprecise prediction because the SPR at NT(Ideal) is increased.

We will discuss this case later. Our simulation method, which evaluates the effect of

throughput prediction on the scheduler, showed improved performance with real traces.
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(c) Task set (III)
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(d) Task set (IV)

FIGURE 6.8: SPR of simulation results in idle state.
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(c) Task set (III)
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FIGURE 6.9: SPR of simulation results in busy state.
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6.7.3 Cause of Decreased Scheduling Performance

To clarify the cause of decreased performance due to imprecise prediction in detail,

we investigate the cases at index 9 in Figure 6.8(b) and index 4 in Figure 6.9(b). Fig-

ures 6.10 and 6.11 illustrate Gantt charts, each of which shows a comparison between

the actual transfer time and predicted time for each task. In the figures, the task color is

changed from green to blue for the predicted time. The first task is depicted in green and

last task, in blue. The actual task is shown in red. The length of each bar corresponds to

the transfer time. The larger the data size of a given task, the longer is the corresponding

bar.

At index 9 for the idle state (Figure 6.10), the SPR values at NT(SVR) and NT(CDF)

are -7.7% and -9.0%, respectively. The actual time is similar to the predicted time, ex-

cept for site S-3 because the case at site S-3 is different from the cases at other sites.

Even though site S-3 is only selected twice, the predicted and actual time at NT(SVR)

are 10410.7 [s] and 23164.4 [s], respectively. The imprecise prediction is a major cause

of the decreased performance. The case at NT(CDF) is also similar to that at NT(SVR).

For the busy state at index 4 (Figure 6.11), the cause is the same as in the above case.

These cases are enough to show that the predictors should not always guarantees the

improved scheduler performance. And also the higher accuracy should not always

guarantee the improved performance. Similar cases are also found for the other task

sets. This implies that the performance degradation can be mitigated by detecting and

re-scheduling such incorrectly scheduled tasks. However, we do not consider this mit-

igation for now. Moreover, we find that the multiple data transfers are overlapped in

the busy state. It implies that the transfer time may become much longer. To consider

this situation, we generated three connection pairs simultaneously in our measurements.

Moreover, aggregate throughput is not saturate on PlanetLab when the number of con-

nections is below 5 [42]. In future, we intend to explore parallel transfers on the Internet

and include a model of the parallel transfers to consider the overlapped transfers.
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FIGURE 6.10: Gantt chart of idle state for task set (II).
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FIGURE 6.11: Gantt chart of busy state for task set (II).
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6.7.4 SPR of Entire Result Set

Here, we discuss on the entire simulation result set to clarify the contribution of pre-

dictors to overall performance and verify whether the overall NT(SVR) performance is

improved in comparison to that of NT(CDF). We prepare a data set composed of the 80

simulation results at each of the schedulers.

In order to clarify the expected scheduler performance, we calculate the expected values

of SPR at each of the schedulers. The expected value of SPR at NT(Ideal) is 4.85%. It

is an upper value of SPR, thus any scheduler cannot overcome this upper value under

the simulation method we used. In other words, we can expect the improved scheduler

performance if the expected value is close to the upper value. The expected values are

given in Table 6.4. The expected value at NT(SVR) is close to that at NT(Ideal). It is

obvious to expect the improved scheduler performance when the SVR-based predictor

is used.

TABLE 6.4: Expected values of SPR for entire result set.
Scheduler Expected values of SPR [%]
NT (Ideal) 4.85
NT (SVR) 3.73
NT (CDF) 2.53

To investigate the performance of the entire result set, we calculate the CDF of the SPR

for each scheduler. The CDF of SPR is depicted in Figure 6.12. For SPR values larger

than -2.4%, the curve shape of NT(SVR) is close to that of NT(Ideal) in comparison

to NT(CDF). When the CDF value is 0.5, the SPR at NT(SVR) is 3.1% and that at

NT(CDF) is 1.5%. To investigate the SPR fraction with the decreased performance, we

select the value at which SPR is 0.0%. The SPR fraction less than 0.0% at NT(SVR) is

23.8% and that at NT(CDF) is 33.8%. The SPR fraction at NT(SVR) is smaller than that

at NT(CDF). However, the results show that the predictors should not always guarantee

the improved scheduler performance of the given task set. Next, the SPR statistics for

the entire result set are summarized in Table 6.5. The mean and median SPR values

at NT(SVR) are higher than those at NT(CDF) and close to NT(Ideal). In particular,

the maximum SPR at NT(SVR) is 13.3%. Thus, the processing time is reduced by up

to 13.3% as compared to the scheduler without any throughput predictions. There is a

significant performance improvement in the overall results when we use the predicted

throughput using the SVR-based predictor under our simulation method.
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FIGURE 6.12: CDF of SPR for entire result set.

TABLE 6.5: SPR statistics for entire result set.
Scheduler Minimum Median Mean Maximum

SPR [%] SPR [%] SPR [%] SPR [%]
NT (Ideal) -0.8 4.6 4.8 13.6
NT (SVR) -15.7 3.2 2.3 13.3
NT (CDF) -15.4 1.6 1.3 13.1

6.7.5 Simulation Results without Site S-3

When there is no large prediction error, we should use all of sites and an accurate predic-

tor will have the largest SPR value. Normally, this case is predictable. But, a situation

with large prediction error is different from the above situation. Thus, we should con-

sider whether to include a site with large prediction error or to exclude it for the task

scheduling. Again, large prediction error at site S-3 is a major cause of negative SPR

values. We here explore additional simulations using the SVR-based predictor without

site S-3 (as indicated NT(SVR-6)) to investigate the effect of large prediction error.

Simulation results at NT(SVR-6) are shown in Figures 6.13 and 6.14. At results for

index 5 in the idle state (Figure 6.13(b)), NT(Ideal) has the largest SPR value and

NT(SVR-6) has the smallest SPR value. In the above results, there is no large pre-

diction error. However, results with large prediction error are different from the results

in Section 6.7.3. At results for index 9 in the idle state (Figure 6.13(b)) and index 9
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in the busy state (Figure 6.14(b)), the result at NT(SVR-6) has the positive SPR value

while those at NT(SVR) and NT(CDF) have the negative SPR values. Most results with

large prediction error are similar to the above cases. It is enough to show the effect

of large prediction error. If a site has sufficient the computational resource and there is

large prediction error or an abrupt change in network state, we should carefully consider

the use of that site.
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(c) Task set (III)
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FIGURE 6.13: SPR of simulation results in idle state without site S-3.
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(c) Task set (III)
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FIGURE 6.14: SPR of simulation results in busy state without site S-3.

6.8 Implications

In this section, we analyze the entire result set through statistical analysis for a better

understanding of the simulation results. We calculate a significance level through sign

test to determine whether the simulation results at NT(SVR) are valid. Then, we inves-

tigate the relationship between performance and predictability through the correlation

coefficient.

The sign test is a non-parametric test, thus there are very few assumptions about the na-

ture of distributions. It is used to test the null hypothesis that the median of a distribution

is equal to some value. To show the validity of the simulation results at NT(SVR), we

calculate a significance level through the sign test. The counts of winning and losing

at NT(SVR) are 59 and 21, respectively. The significance level is 0.000012, which is

less than 0.01. This result sufficiently confirms the validity of the simulation results at

NT(SVR).
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Most of our simulation results have improved performances using the predicted through-

put, although a few results have decreased performances resulting from imprecise pre-

diction. In other words, the prediction error increases when performance decreases

without the improper site selection. A negative relationship between performance and

predictability is implied by the simulation results.

To determine an appropriate parameter for the relationship, we calculate a correlation

coefficient between the SPR and the statistics of RPE. The correlation coefficient is

given in Table 6.6. The scatter plots of correlation coefficient at NT(SVR) and NT(CDF)

are shown in Figures 6.15 and 6.16. In the scatter plots between SPR and the mini-

mum RPE (Figures 6.15(a) and 6.16(a)), the correlation values are close to zero and

there is no linear correlation. The correlation values between SPR and the median

RPE (Figures 6.15(b) and 6.16(b)) are also similar to the above results. Conversely,

there is a strong negative correlation between SPR and the mean RPE (Figures 6.15(c)

and 6.16(c)). In particular, the result at NT(SVR) is higher than that of NT(CDF).

The similar results are shown between SPR and the maximum RPE (Figures 6.15(d)

and 6.16(d)).

TABLE 6.6: Correlation coefficient between SPR and statistics of RPE.
Scheduler Minimum Median Mean Maximum

RPE RPE RPE RPE
NT (SVR) 0.03 -0.15 -0.75 -0.72
NT (CDF) -0.03 -0.10 -0.66 -0.54

These evaluations and analysis can be summarized as follows. Under our simulation

method based on real traces of throughput fluctuation, it is clear that the predicted

throughput using the SVR-based predictor improves performance. However, the sched-

ulers should not always improve the scheduler performance. And also the higher ac-

curacy should not always guarantee the improved performance. Next, the CDF curve

at NT(SVR) is close to that at the NT(Ideal) in comparison to NT(CDF), and the ex-

pected value of SPR at NT(SVR) is also larger than that at NT(CDF). Then, the signifi-

cance level is observed to be smaller than 0.01 through the sign test, which sufficiently

confirms that the simulation results at NT(SVR) are valid. Finally, there is the strong

negative correlation between SPR and the mean RPE.



Chapter 6. Performance Implications by Predicting Throughput 120

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

M
in

im
u
m

 R
P

E
 [
%

]

−20 −10 20
Scheduling performance rate [%]

0 10

(a) Minimum RPE

1
2

M
e

d
ia

n
 R

P
E

 [
%

]

−20 −10 20
Scheduling performance rate [%]

0 10

1
0

8
6

4

(b) Median RPE

−20 −10 20

1
0

2
0

3
0

4
0

Scheduling performance rate [%]

M
e

a
n

 R
P

E
 [

%
]

0 10

(c) Mean RPE

−20 −10 20

5
0

1
0

0
1

5
0

2
0

0
2

5
0

Scheduling performance rate [%]

M
a

x
im

u
m

 R
P

E
 [

%
]

0

0 10

(d) Maximum RPE

FIGURE 6.15: Scatter plots of correlation coefficient at NT(SVR).
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FIGURE 6.16: Scatter plots of correlation coefficient at NT(CDF).
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6.9 Conclusion

In this chapter, we show the simulation where the proposed SVR-based predictor im-

proves the performance of computation. Our approach was based on simulations using

real traces of throughput fluctuation on the Internet. We developed a simulation method

that evaluates the impact of throughput prediction on the scheduler performance using

real traces. Most results show improved performance using the predicted throughput un-

der our simulation method. In particular, the scheduler using the SVR-based predictor

leads to an overall processing time reduction of up to 13.3% compared to the scheduler

without any throughput predictions. The SVR-based predictor, which is a more pre-

cise predictor than the CDF-based, showed significant performance improvement in the

overall results. Moreover, the expected value of SPR using the SVR-based predictor

is closer than that of ideal case. However, the schedulers using the throughput predic-

tors should not always improve the scheduler performance. Although precise prediction

results increase the scheduler performance, only a few of imprecise prediction results

drastically decrease the entire scheduler performance. Finally, a better understanding of

the results was achieved through statistical analysis. We found that the result using the

SVR-based predictor was appropriately representative of a strong negative correlation

between predictability and performance.



Chapter 7

Conclusion and Future Directions

7.1 Overview

The previous chapters have discussed the research issues related to Internet traffic char-

acteristics, the accurate prediction model, and the contributions of prediction results.

The Internet traffic characteristics are obviously presented with the virtualization tech-

nology, precise predictions have been enabled in comparison with the previous predic-

tion method, and the contributions of prediction have been clarified through the meta-

scheduler simulation.

We divide this chapter into three sections: Section 7.2 summarizes the whole thesis

and presents a comprehensive review of the issues and approaches that have been taken

throughout the thesis. Section 7.3 describes conclusion with the contributions and iden-

tifies their significances. Section 7.4 discusses the future research directions. Finally,

we conclude the thesis with a closing statement.

7.2 Summary

In this thesis, we presented a throughput prediction method based on the connection

pair that uses ν-SVR and polynomial kernel to deal with prediction models represented

as a non-linear and continuous monotonic function. Because the SVR-based predictor

uses only characteristic features in the training set, the prediction results of the SVR-

based predictor are more accurate and robust than the CDF-based predictor for the same

122
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data sets. The research questions have been discussed and answered through various

experiments and analysis results.

In Chapter 2, we investigated and discussed many issues of Internet traffic character-

istics when the virtualization technology is used on the Internet. In measuring the

throughput, we showed that oversize packet spacing, which can be caused by CPU

scheduling latency, is a major cause of throughput instability on the virtualized testbed

even when no significant changes occur in the well-known network metrics. Partic-

ularly, some of the packet spacings were larger than RTT, and these oversize packet

spacings were unusual anomalies on virtualized network environment. Moreover, we

determined the anomalous case caused by the anomalies. It is throughput instability

despite of stable network state, which can be observed through RTT, packet loss rate,

and advertised window. The condition for the judgment of the anomalous case is the

impact of packet spacing. We should carefully review measurement results obtained

under such the anomalous cases. In monitoring resources, we showed that the anoma-

lous cases are occurred when the CPU utilization is high and the CPU availability is

low. Our empirical approach, which observes criteria provided by system during the

throughput measurement and analyzes the criteria statistically, enables the anomalous

cases to be identified on the virtualized testbed. We found that the CPU availability is an

important criterion for estimating the anomalous case. On the other hand, we explored

occurrences of the anomalies on Amazon EC2 to investigate on different virtualized

environment. We measured the throughput for the connection pair between the micro

instance on Amazon EC2 and a native node on our university, and observed correct

resource state by using Amazon CloudWatch [52]. Analysis results showed that very

few of packet spacings are the anomalies, and it is hard to determine the major cause of

throughput instability. Our results are different from the results shown by Wang et al.

[50]. Moreover, packet loss was occurred continuously during the throughput measure-

ments although RTT was very similar to mean RTT using ping. It was the major cause

of throughput instability. In data center, various types of many flows would co-exist,

and they would affect their communication performance. The CPU utilization was less

than 20% during the measurements. The CPUs were not busy, and the CPUs were fully

allocated to the instances. Thus, there was no CPU scheduling latency. In data center,

the CPU utilization would be low due to resource policy and the structure of data center.

In Chapter 3, we focused on a nature of resource state to make up for a weak point

in the CPU availability. We applied PCA to a matrix gathered from the resource state

to establish the criteria for anomaly estimation. Analysis results showed that the top
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two principal components account for 84% of the original data set and can describe the

original resource state. Component loadings and a scatter plot of the first and second

component scores provided a simple but descriptive enough view of the resource state

for estimating the anomalous case. The first component can be interpreted as workloads,

and the second one as lack of resources, leading to the anomalous case. These compo-

nents can be used instead of the CPU availability to estimate the anomalous case. We

determined the appropriate boundaries of the components by using Bayes’ approach and

used them to automatically evaluate the anomalous case with an input data set gathered

from other nodes. The evaluation results presented the validation of our approach.

In Chapter 4, our approach for the selection of an appropriate probe size was described

before the prediction, and the validity of the selected probe size was shown. We selected

the probe size through Spearman’s rank correlation coefficient (ρ), thus our selection is

based on a predictability of probe. We clarified that probe size obtained by using unfil-

tered data is not always appropriate for the connection pair. Daily changes in transfer

time at this connection pair are occurred at the certain period, and a major cause of

throughput fluctuation was the anomalous case. As a result, the inappropriate probe

size had high predictability. Without the anomalous case, the 256-KB probe had the

highest ρ. To investigate whether this probe is appropriate or not for the prediction, we

generated the connection pair when the probe size was 256 KB and the data size was 16

MB on the virtualized testbed. When the probe size is used to 256 KB, actual through-

put for the connection pair had a non-linear and changed monotonically. Conversely,

when the probe size for the connection pair is decreased to 32 KB or 64 KB, the actual

throughput was concentrated on certain areas or considerable noise occurs in the actual

throughput. The selected probe size through statistical analysis is appropriate for the

connection pair.

In Chapter 5, a description of the SVR-based predictor and its characteristics were pro-

vided. We first built a predictor based on an existing prediction method [17] for the same

data sets as for our method to evaluate whether it produces precise prediction results.

We found that the existing prediction method was unsuitable when the actual throughput

was non-linearly and monotonically changed with noise. We thus proposed a through-

put prediction method for precise prediction results. The proposed method uses ν-SVR

and the polynomial kernel to deal with prediction models represented as a non-linear

and continuous monotonic function. The prediction results of our proposed method are

more accurate than those of the existing one. Furthermore, it is more robust than the

existing one under an unstable network state. Next, we changed the probe size for the
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connection pair to investigate the predictability of the SVR-based predictor. There were

no significant changes in prediction results with 512-KB probes. Conversely, there was

considerable noise at the actual throughput when the probe size was decreased to 64

KB. The noise is an obstacle to finding an appropriate regression curve. Prediction re-

sults are inaccurate in comparison with the original SVR-based predictor. As a result,

the 256-KB probes are appropriate for the current networks, and our SVR-based pre-

dictor is accurate, robust, and suitable for its purpose. To summarize, we focused on

measurements, analysis, and modeling for precise prediction results. Our approach is

presented through Chapters 2 and 5.

In Chapter 6, we focused on how the predictors affect meta-scheduler performance

quantitatively. Our study was based on simulations using real traces of throughput fluc-

tuation on the Internet. We developed a simulation method that evaluates the impact of

throughput prediction on the scheduler performance using real traces. Most results show

improved performance using the predicted throughput under our simulation method. In

particular, the scheduler using the SVR-based predictor leads to an overall processing

time reduction of up to 13.3% compared to the scheduler without any throughput predic-

tions. The SVR-based predictor, which is a more precise predictor than the CDF-based,

showed significant performance improvement in the overall results. Moreover, the ex-

pected value of scheduling performance rate (SPR) using the SVR-based predictor is

closer than that of ideal case. However, the schedulers using the throughput predictors

should not always improve the scheduler performance. Although precise prediction re-

sults increase the scheduler performance, only a few of imprecise prediction results can

drastically decrease the entire scheduler performance. Next, a better understanding of

the results was achieved through statistical analysis. We found that the result using the

SVR-based predictor was appropriately representative of a strong negative correlation

between predictability and performance.

7.3 Contributions

In this research, we proposed the SVR-based predictor with the improved prediction

results. Our approach is based on measurements, analysis, and modeling for the precise

predictor. Moreover, we quantitatively clarify how the predictors can affect the overall

processing time of given tasks through meta-scheduler simulation. Our results present

the validation of research questions.
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The main contributions of this research are the following:

• With the virtualization technology, extra effects are specifically observed on net-

work measurement. In particular, throughput instability is occurred by oversize

packet spacings although there are no significant changes in the well-known net-

work metrics. A major cause is CPU scheduling latency among virtual platforms.

If network throughput is decreased by the impact of virtualization, we should

carefully review measurement results. In our experiments, a 32-KB probe had the

highest predictability because changes in throughput were occurred by the impact

of virtualization. When we get rid off the negative impacts, it was not the best

condition. It validates research question 1 as outlined in Chapter 1 to characterize

Internet traffic when the virtualization technology is used on the current Internet.

• In order to estimate the impact of virtualization, we proposed two methods: the

former focuses on the CPU availability and the latter is based on a nature of re-

source states with principal component analysis (PCA). It is easy and simple to

measure the CPU availability, but it overconsumes CPU resources and affects the

performance of other tasks. Meanwhile, when we applied PCA into the resource

states, the top two principal components account for 84% of the original data set

and can describe the original resource state. Moreover, the first component is

workloads on the node, and the second one is lack of resources, leading to over-

size packet spacings. These components can be used instead of CPU availability

to estimate the oversize packet spacings. This validates research question 2 that

states that the estimation methods on application layer are required for the impact

of virtualization.

• In the current Internet, various types of traffic, such as mice and elephant flows,

co-exist, and spikes that correspond to large and abrupt throughput are occasion-

ally caused by the elephant flows. As a result, probability distribution of traffic

is unclear or close to long-tail by the above characteristics. Under the above sit-

uations, it is hard to expect linearity between probe and data transfers. Thus,

a non-linear and monotonicity between probe and data transfers are expected.

Moreover, a probe size should be increased in comparison with the original probe

size (64 [KB]) because the scale and bandwidth of network are rapidly increased.

In Chapters 4 and 5, we showed that the 64-KB probe has considerable noise and

it was shrunk in certain throughput areas. Meanwhile, the non-linear characteris-

tic and monotonicity were found with the 256-KB probe. This addresses research
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question 3 that investigates the characteristics between probe and data transfers.

Moreover, it partially validates research question 4.

• An appropriate probe size should have high predictability and reflect congestion

window correctly. To select the appropriate probe size, we assumed that there

is monotonicity between probe and data transfers. We gathered approximately

15,000 connection pairs, and evaluated through Spearman’s rank correlation co-

efficient (ρ). It is a valid indicator because it focuses on the ranks of data set,

and does not rely on probability distribution of data set. In our evaluation results,

a 256-KB probe had the highest rank correlation coefficient (ρ = 0.67), and it

was selected for the prediction model. Our approach is unique in the sense that

the probe size is selected based on the predictability before the prediction. This

addresses research question 4 about the characteristics between probe and data

transfers.

• To take account into noise and non-linear characteristics, we applied ν-SVR and

polynomial kernel into our data sets. For noise, ν-SVR is more suitable than ϵ-

SVR because it does not calculate the distance of data points on out side. Thus,

even if there is outlier, such as noise, we can determine the appropriate shape of

tube. It is a different point in comparison with ϵ-SVR. Prediction results with

ν-SVR are also more accurate than those with ϵ-SVR. To deal with non-linear

characteristics, we used polynomial kernel of degree 3. Moreover, we performed

the same experiments by varying the degree from 2 to 5 to investigate the ad-

equacy of degree 3. Although the degree is changed for the prediction model,

there are no significant differences. As a result, our approach is a reasonable

choice for our prediction method. This indicates a solution of research question

5.

• To clarify the contributions of prediction results, we explored meta-scheduler sim-

ulation with real-traces of throughput. The meta-scheduler using the SVR-based

predictor was observed to result in a reduction of up to 13.3% in the overall pro-

cessing time compared to the meta-scheduler without any predictions. We also

show that the schedulers with throughput predictors should not always guaran-

tee the reduction of processing time. Only a few of large prediction errors can

drastically affect the overall processing time. As a result, it takes more time

than the scheduler without any predictions although precise prediction results re-

duce the processing time. To mitigate such performance degradation, detecting
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or re-scheduling mechanism should be considered. It answers research question

6 concerned in the contributions of prediction results.

These conclusions adequately answered the research questions described in Chapter

1. This research is unique in the sense that it tried to apply non-parametric statistics

and machine learning techniques, such as ν-SVR and polynomial kernel, to networking

research. Not only theoretical approach, but also practice approach was used in this

research for the improved prediction results.

7.4 Future Directions

There are other aspects of the research area beyond issues that are important in the

network throughput prediction but were not covered in the SVR-based predictor. First,

many experiments and analysis should be explored to improve predictability. Next,

further research is needed for the temporal prediction because the prediction problem

deals with a regression problem. Finally, the SVR-base predictor should be designed

and implemented as a module for the meta-scheduler, an Internet application for path

selection, or a migration on cloud service. These are some of the research issues that

were not able to be covered in this thesis but merit future investigation.

7.4.1 Issue of Improving Predictability

The SVR-based predictor relies on throughput measurement results gathered in the past

to predict the network throughput. Thus, a prediction result is assumed to be similar to

the past, and a lack of historical data would be hard to predict the throughput precisely.

In order to overcome such problem, a sophisticated mathematical model should be con-

sidered with adequate parameters. Next, our experiments were executed on PlanetLab.

It is a virtualized network testbed on the Internet, but it cannot represent all of Inter-

net environments. To improve predictability of the SVR-based predictor, experiments

and analysis should be explored on the other Internet environments, such as InTrigger

[118], GENI [119], and so on. Although our predictor is more accurate and robust than

the CDF-based predictor, we cannot determine that our predictor should be more pre-

cise than all of predictors. The prediction results of the SVR-based predictor should be

compared to other predictors.



Chapter 7. Conclusion and Future Directions 129

We focused on the problem of throughput prediction as a regression problem. From

now on, the problem should deal with a temporal prediction to predict future throughput.

Because it is more harder than the regression, an alternative measurement method based

on the connection pair should be proposed to gather continuous time-series data, and a

sophisticated model should be considered for the temporal prediction.

7.4.2 Issue of Design and Implements

In this thesis, we mainly presented the analytic model to build the SVR-based predictor

and validity of prediction results by the simulation. The SVR-based predictor targets

distributed, grid, and cloud computing.

For distributed systems, it can provide path state on multiple paths, and a user can se-

lect the best path that has the shortest transfer time. The SVR-based predictor should be

designed and implemented as an Internet application. Next, we clearly showed the vali-

dation of prediction results through the meta-scheduler simulation. Since data-intensive

grid tasks are rapidly increased, the SVR-based predictor should be implemented as a

module on meta-scheduler. Thus, precise prediction results can reduce the processing

time of given tasks. Moreover, imprecise prediction results should be also considered

for the meta-scheduler. Particularly, re-scheduling mechanism should be considered

when the imprecise prediction result is provided by the predictor. In cloud services, a

migration is an ordinary method to move a virtual machine between different physical

machines. In order to move the virtual machine, network resources have been consid-

ered. Thus, the prediction results can be used to reduce the migration time. Moreover, it

can be also used in logging-replay [120] on distributed resources. We can determine the

timing of logging-replay with the prediction results. For example, the logging-replay

can be executed when network state is stable. Conversely, the logging-replay can be

stopped by predicting the throughput when network state is unstable.
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7.5 Closing Statement

The Internet has been evolved as a platform to support emerging applications for per-

sonal, business, enterprise, eScience, and so on. The throughput prediction can help the

evolution and one of reasonable solutions for the efficient use of the Internet. In this

thesis, we focus on measurements, analysis, and modeling for the precise throughput

prediction on the Internet. The SVR-based predictor is accurate, robust, and suitable in

comparison with the CDF-based predictor. It can support path selection on multi paths,

the migration on cloud services, and grid schedulers as a criterion for a reduction of

processing time. Finally, the research of throughput prediction will be emphasized for

the efficient use of the Internet.
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cumara Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys,

Bin Yao, Debra Hensgen, and Richard F. Freund. A comparison of eleven

static heuristics for mapping a class of independent tasks onto heterogeneous dis-

tributed computing systems. J. Parallel Distrib. Comput., 61(6):810–837, June

2001. ISSN 0743-7315.

[118] InTrigger https://www.intrigger.jp/wiki/index.php/InTrigger.

[119] Global Environment for Network Innovations (GENI), http://www.geni.net/.

[120] Kei Ohmura, Yoshiaki Tamura, Toru Yuguchi, and Satoshi Moriai. Rapid vm syn-

chronization with I/O emulation logging-replay (in Japanese). IPSJ SIG Notes,

2011(16):1–8, 2011.



Bibliography 144



Acknowledgements 145

Acknowledgements

Many friends and colleagues have contributed to my research work, and I thank them

all here.

First, I would like to thank my first supervisor, Professor Kyoji Umemura for his guid-

ance, support, patience, and encouragement, which enabled me to overcome many ob-

stacles and finish my thesis. I am deeply indebted to my second supervisor at Professor

Toshio Hirotsu at the Faculty of Computer and Information Sciences, Hosei University

for his time, support and professional assistance. He introduced me to the deep sea of

research and led to research areas at undergraduate student. I highly acknowledge the

marvelous support, encouragement and counseling from Associate Professor Hirotake

Abe at the Department of Computer Science, University of Tsukuba who is my third su-

pervisor. He always supported me morally and technically when I used to be in trouble,

and helped like an elder brother.

Second, I should thank Professor Masaki Aono who is the chairman of dissertation

committee and Professor Hideyuki Uehara who is a member of dissertation committee

for their helpful comments and advices.

Third, thanks to Assistant Professor Masayuki Okabe and members of Umemura Labo-

ratory for various kinds of support and help from them, I have finished my thesis. I wish

to express my sincere appreciation to Ms. Masako Hata who is secretary of Umemura

Laboratory. I also very appreciate JSPS KAKENHI, the Global COE program for many

research supports, and the Ministry of Education, Culture, Sports, Science, and Tech-

nology for financial support through the award of Monbukagakusho Scholarship.

Finally, I will not be doing justice if I cannot acknowledge the tireless services, care

and support of my wife Sunock Chang throughout my research work. Her patience,

countless sacrifices and understanding remained a prime catalyst for the timely comple-

tion of this work. I should also be very grateful to Ms. Yukiko Shimizu who always

remained supportive for me, and helped like a mother. I am indebted to my parents and

parents-in-law. All of them provided me with constant understanding, encouragement,

and support.

January 2013

Chunghan Lee



List of publications 146

List of publications

• Journals

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Ana-

lytical Modeling of Network Throughput Prediction on the Internet”, IEICE

Trans. (D), Vol.E95-D, No.12, pp. 2870 - 2878, Dec. 2012.

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Traffic

Anomaly Analysis and Characteristics on a Virtualized Network Testbed”,

IEICE Trans. (D), Vol.E94-D, No.12, pp. 2353 - 2361, Dec. 2011.

• International conferences with referred

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Perfor-

mance Implications of Task Scheduling by Predicting Network Throughput

on the Internet”, The 11th IEEE International Symposium on Parallel and

Distributed Processing with Applications (ISPA-13), (submitted 2013/03/01).

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “A Sta-

tistical Approach for Selecting Throughput Prediction Parameters on the In-

ternet”, The 6th Edition of the International Conference on Ubiquitous In-

formation Technologies & Applications (CUTE 2011), pp. 37 - 40, Seoul,

Korea, Dec. 2011.

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Pre-

dicting Network Throughput for Grid Applications on Network Virtualiza-

tion Areas”, Proc. IEEE/ACM SC’11 The first International Workshop on

Network-Aware Data Management (NDM 2011), pp. 11 - 20, Seattle, USA,

Nov. 2011.

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Es-

timating Traffic Anomalies for Throughput Prediction on Network Virtual-

ization”, Proc. IEEE/IPSJ SAINT’11 The Second Workshop on High Speed

Network and Computing Environments (HSNCE 2011), pp. 267 - 273, Mu-

nich, Germany, Jul. 2011.

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Anal-

ysis of Anomalies on a Virtualized Network Testbed”, The 10th IEEE Inter-

national Conference on Computer and Information Technology (CIT’10),

pp. 297 - 304, Bradford, UK, Jun. 2010.



List of publications 147

• International conferences

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “A Pro-

posal for Improving Network Throughput Predictability over the Internet”,

The Pacific Rim Application and Grid Middleware Assembly (PRAGMA)

21 workshop, Sapporo, Japan, Oct. 2011. [Poster presentation]

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Char-

acteristics of Internet Traffic Anomalies over a Virtualized Network Testbed”,

The 7th Korea-Japan e-Science Symposium, Hongcheon, Korea, Jul. 2010.

• Domestics conferences with referred

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Recent

Empirical Evaluation of Aggregate Throughput using Parallel Transfers on

the Internet”, Computer & System Symposium 2012 (ComSys2012), pp. 53

- 58, Tokyo, Japan, Dec. 2012.

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “A

PCA Analysis for Traffic Anomaly Estimation”, Internet Conference 2010

(IC2010), pp. 93 - 98, Tokyo, Japan, Oct. 2010.

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Eval-

uation of the Throughput Measurement Method using Connection Pairs”,

The 10th Workshop on Internet Technology (WIT2009), Furano, Japan, Jun.

2009.

• Domestics conference

– Chunghan Lee, Hirotake Abe, Toshio Hirotsu, and Kyoji Umemura, “Inter-

net Traffic Characteristics of Virtual Machine on Amazon EC2”, IPSJ SIG

Notes (SIGOS 117), pp. 1 - 7, Okinawa, Japan, Apr. 2011.

• Research Award

– Best Paper Honorable Mention in NDM2011, the 1st workshop on Network-

aware Data Management (held in conjunction with IEEE/ACM SC11)


