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Abstract  

  
Due to the complexity of customer requirements coupled with drastic 

technological changes, development of products and processes is becoming 

increasingly knowledge intensive. Specifically, retrieving product and 

process information and making effective use of it requires similarity 

measures. 

Similarity measures are concerned with quantifying of the likeness of 

the things that are compared. Similarity measures have been practically 

applied in a wide variety of fields ranging from data mining, case-based 

reasoning system, image interpretation and pattern recognition. Several 

researchers have proposed similarity measures that evaluate the likeness 

between values of numeric properties. However, in many applications some 

attributes are non-numeric. One solution is to use syntactic similarity 

measures that calculate the similarity between two words. However, 

syntactic approaches are limited as they fail to produce good matches when 

confronted with the meaning associated to the words they compare. 

To overcome the above drawbacks semantic similarity measures are 

been investigated. A semantic similarity measure is a function that quantifies 

the degree of likeness between two things based on the meaning associated 

to each thing being compared. This research contributes to the field of 

semantic similarity measures for products and processes. A novel approach 

has been proposed in this research, based on Formal Concept Analysis (FCA) 

and a set of criteria for the characterization of products and processes called 

Formal Attribute Specification Template (FAST). 

This research focuses on countable objects that are represented in 

terms of their physical aspects and processes in which they are involved. 

Processes can be intentional or unintentional. In an intentional process, a 
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particular objective is accomplished. Unintentional processes include natural 

phenomena and undesired processes such as harmful explosions or fires.  

The proposed approach is composed of semantic similarity measures 

that compare classes in a taxonomy obtained with FCA and a template for the 

specification of formal attributes (FAST). 

The semantic similarity measures of the proposed approach compare 

classes of products or processes. The comparison is based on the assumption 

that the more common attributes that are shared by two classes the more 

similar they are. Therefore, a class is 100% similar to another class if both 

classes have exactly the same attributes. In particular, the attributes are the 

formal attributes from the FCA. For this purpose, several similarity equations 

are investigated in this research by using formal attributes as the sets they 

compare. 

Class taxonomies are defined by means of the subclass relation. A class 

is a subclass of another class if every member of the subclass is also a 

member of the super class. Formal Concept Analysis (FCA), which is a 

method based on applied lattice and order theory, is selected as the 

taxonomy generator. 

FAST helps to describe the formal attributes common to all members of 

a given class that distinguish them from members of another class. The 

product formal attributes are expressed in terms of its mereological and 

topological structure and its involvement with one or more processes. The 

process formal attributes are expressed in terms of: (1) objects that are 

always changed by the process (a.k.a inputs); (2) objects that are always 

produced by the process (a.k.a outputs); (3) participating physical objects 

(including locations, agents, and performer) other than inputs and outputs; 

(4) sub-activities that compose the process (a.k.a sub-activities).  

The proposed approach was evaluated against edge-counting and 

information -based similarity measures. In order to quantify the efficacy of 

each similarity measure, the degree of correlation with human judgment was 
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used. The results of the evaluation show that the proposed approach 

performed better than existing similarity measures. 

The proposed approach is illustrated with two case studies. The first 

case study demonstrates the use of FAST for the construction of an ontology 

for machining processes. The resulting machining processes ontology was 

evaluated and compared against a third-party ontology. The degree of 

correlation with Internet -search engine using the value of the Normalized 

Google distance evaluated the accuracy of each ontology. The results of 

evaluation show that the ontology obtained with FAST is slightly better than 

the existing ontology. It was also found that FAST can provide the design 

rationale of the ontology.  

The second case study focused on the application of the proposed 

semantic similarities for selecting the service strategy for Product-Service 

systems (PSS) at the early stage of design. It is often the case that the PSS 

designer is faced with limited amount of knowledge at the early stage of 

design. One solution is to use the case-based reasoning (CBR) system to 

facilitate the service strategy selection in which PSS design problems are 

solved by using or adapting previously obtained design solutions. Existing 

CBR-systems use numerical similarity measures to search the relevant 

solution to the problem to be solved. In this case study, a semantic CBR-

system was developed by incorporating product-class-comparison based on 

the proposed semantic similarities. The results of evaluation show that the 

proposed approach proved useful when some details of information are not 

available. 
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Glossary 

 

Case-based reasoning 

system (CBR) 

is one way to solve problem in which problems are 

solved by using or adapting previously design solutions 

to old problems. 

Edge-based measure similarity measure that relies on the use of subclass links 

(edges) between classes. 

False positive is the errors of retrieving results that are not fulfill 

the condition. 

Feature-based 

measure 

similarity measure that take into account the features 

that are common to two classes. 

Formal Concept 

Analysis (FCA) 

is a method based on applied lattice and order theory 

that can be used to generate lattice 

Information -based 

measure 

similarity measure that depends on information content. 

 

Mereology expresses the part-whole relations of an object  

Mean Absolute 

Percentage Error 

(MAPE) 

is a measure to determine the accuracy of a series in 

statistics. 

Ontologies describes a shared understanding about the meanings of 

objects by means of classes of objects, taxonomy, 

relation between classes, properties of objects in each 

class and axioms. 

OWL is a language for processing web information. 

(http://www.w3schools.com ) 

Process is ȰÁÎ ÏÐÅÒÁÔÉÏÎ ÏÒ Á ÓÅÒÉÅÓ ÏÆ ÏÐÅÒÁÔÉÏÎÓȱ ÔÈÁÔ ȰÃÁÕÓÅ Á 

physical or chemical change in a substance or mixture of 

ÓÕÂÓÔÁÎÃÅÓȱ. 
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Product  is a something that is the result of  a process. 

Product-service 

system 

is a mix of both products and services aimed at better 

sustainability of both production and consumption. 

Root Mean Squared 

Error  (RMSE) 

is a measure that determine the differences between 

predicted and observed value. 

Similarity  is a term to enclose whether two things, or two 

situations are similar or dissimilar. 

Semantic similarity is a term to quantify the degree of likeness between two 

things based on the meaning. 

Synset is a collection of one or more words and phrases 

("collocations") collectively referred to as "word forms" 

that can all share the similar meaning (synonym). 

(http://lyle.smu.edu/~tspell/jaws/doc  

/edu/smu/tspell/wordnet/Synset.html ) 

Topology refers to the connectivity between objects 
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1.1.   Similarity measures 

 

Generally, ȰsÉÍÉÌÁÒÉÔÙȱ ÉÓ Á ÔÅÒÍ ÔÏ ÅÎÃÌÏÓÅ whether two things, 

or two situations are similar or dissimilar. According to [1] , 

similarity plays an important role in studies of theories of cognition 

and how people make comparisons. According to [2] , Ȱsimilarity is a 

core element for learning, knowledge and thought, for only our sense 

of similarity allows us to order things into kinds so that these can 

function as stimulus meanings reasonable expectation depends on 

the similarity of circumstances and on our tendency to expect that 

similar cause will have similar effectsȱ.  

According to Holt [3] , similarity is important for humans to 

understand the existence of objects, structure and actions together 

with their connections in reality. The degree to which we determine 

if two things are similar is both intuitive and based on our 

knowledge. For example, when an individual plans to use a toaster 

on the dining table as shown in Fig. 1-1, he or she will imagine the 
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result of using the toaster, which is related to the function performed 

by the product. The memory, which has some prior knowledge, 

organizes the information and somehow translates it into 

associations such as bread and toaster, toasted bread and toaster. 

Based on memory of the past, a toaster is always used to toast the 

bread. 7ÈÅÎ ÃÏÍÐÁÒÉÎÇ Á ÔÏÁÓÔÅÒ ÁÎÄ ÌÅÔȭÓ ÓÁÙ Á ÐÉÚÚÁ ÏÖÅÎȟ ×Å ÁÒÅ 

inclined to look at common aspects such as the use of heat to 

produce warm and somehow crispy bread. 

 

 

Fig. 1-1 The function of a product are the desired behavior of a product 

 
 

In addition, if only a few objects are given, it is easy for a human 

to identify how close two objects are by finding their common 

aspects. However, it becomes more complex for a large numbers of 

objects.    

Therefore many practical applications require computational 

similarity measures. As a matter of fact, the computational 

approaches for measuring similarity that emphasize imitate the 
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human ability of assessing similarity between two things date back 

to [4] .  

The past decade has seen the development of computational 

similarity measure that are based on geometric models that assume 

objects are represented by points in some coordinate space. The 

similarity of these approaches is calculated by the metric distance 

between respective points.  However, one of major problems with 

this approach is the inappropriateness to represent the dimensional 

representation for qualitative properties of thing being compared [5] . 

In recent years, there has been an increasing interest in using 

feature comparison to quantify the degree of likeness of the things 

that are compared. Tversky and Gati [5]  identif ied similarity as a 

function that quantifies the degree to which two sets of features 

match each other. They proposed a similarity that considers both 

common and distinct features which are known as the contrast 

model. Their contrast model explained that the similarity should not 

be viewed as a symmetric relation such as a is similar to b than b is 

similar to a. For ÅØÁÍÐÌÅȟ ÐÅÏÐÌÅ ÓÁÙ ȰÔÈÅ ÓÏÎ ÒÅÓÅÍÂÌÅÓ ÔÈÅ ÆÁÔÈÅÒȱ 

ÒÁÔÈÅÒ ÔÈÁÎ ȰÔÈÅ ÆÁÔÈÅÒ ÒÅÓÅÍÂÌÅÓ ÔÈÅ ÓÏÎȱȠ ȰÔÈÅ ÐÏÒÔÒÁÉÔ ÒÅÓÅÍÂÌÅÓ 

ÔÈÅ ÐÅÒÓÏÎȱ ÁÎÄ ÎÏÔ ȰÔÈÅ ÐÅÒÓÏÎ ÒÅÓÅÍÂÌÅÓ ÔÈÅ ÐÏÒÔÒÁÉÔȱ. Russel and 

Norvig [6]  defined similarity as an evaluation of the common 

intrinsic  features shared by two things. The intrinsic  features are the 

important features that belong to a thing. If the thing is described 

without this feature, the meaning of the thing is incomplete. 

Similarity measures play an important role in information 

retrieval process, information extraction, information integration 

and other applications involving comparison two things. In an 

information retrieval system, determining the optimal match 

between a queries and stored information is the fundamental 
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operation that highly depends on similarity measures. In such 

systems, the retrieved information is sorted in order of their 

decreasing similarity. High-ranked information is likely to have 

similar properties to the query. 

Also, similarity measures can be used for problem solving. For 

example the case-based reasoning systems use reasoning that draw 

conclusion by similarity. It imitates human reasoning for solving a 

problem by making use of the previous experiences. 

Similarity measures in pattern recognition are used for 

classifying sets of objects into classes. Similar objects are grouped 

within the same cluster and dissimilar objects in different cluster.  

In numerous multimedia processing systems and applications, 

assessment of image similarity is important for image copy detection, 

retrieval and recognition problem. Similarity measures are used to 

interpret  the characteristics of an image that compared against its 

variations versions such as contrast/brightne ss-variation.  

Although numerous concept of similarity measures have been 

applied in many scientific fields and presented in many forms and 

interpretation s, they all have in common of comparing two objects, 

two situations, for various reasons including knowledge, biases and 

goals [7] . 

   Most similarity measures evaluate differences between values 

of numeric attributes such as in the numerical difference between 

two given diameter values. However, many applications require non-

numeric similari ties as well. For example, case-based reasoning 

systems for the conceptual design of products and processes must be 

developed to work with a limited knowledge about the products and 

processes.  
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   Nearly all of non-numeric similarity measures are based on 

syntactic grounds. For example, the Levenshtein distance [16] , [17]  

can be used to calculate the similarity between two words, in terms 

of the minimum number of operations that are needed to transform 

one of the words into the other. However, from the point of view of 

the meaning of the words that are compared, existing syntactic 

similarity -measures often result in incorrect matches.  

Semantic similarity measures can be used in order to overcome 

the limitations of syntactic approaches. A semantic similarity is a 

function that assigns a numeric value to the similarity between two 

classes of objects based on the meaning associated to each of the 

objects [18] . For a review of semantic similarity metrics, the reader 

is referred to the paper of Cross and Hu [19] . 

Recently, the use of ontologies for evaluating similarity has 

been reported in the literature [20] , [21] . Ontologies are formal 

models that use mathematical logic to disambiguate and define 

classes of things [22] . Specifically, ontologies describe a shared and 

common understanding of a domain in terms of classes, possible 

relations between things, and axioms that constrain the meaning of 

classes and relations [23] . A class represents a set of things that 

share the same attributes. A relation is used to represent a 

relationship among two or more things. Examples of relations are 

less than, connected to, and part of. Class taxonomies are defined by 

means of the subclass relation. A class is a subclass of another class if 

every member of the subclass is also a member of the super class. 

Axioms are typically represented as logic constructions that formally 

define a given class or relation.  

Most semantic similarities are defined in terms of the number 

of edges between the classes that they compare. The research to date 
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has tended to focus semantic similarities that are defined in terms of 

features but uses synsets for the comparison between words rather 

than classes. Most of the existing similarities measures use a large 

database such as WordNet for general purpose and Mesh for medical 

purpose for evaluating the word comparison.  

In this thesis, a comprehensive approach towards the similarity 

measures for products and processes information that can deal with 

non-attribute information is developed. 

 

1.2.   Why are similarity measures necessary for p roducts and 

processes?  

   

A product is defined as something that is the result of a process. 

On the other hand, typical chemical engineering textbooks define a 

ÐÒÏÃÅÓÓ ÁÓ ȰÁÎ ÏÐÅÒÁÔÉÏÎ ÏÒ Á ÓÅÒÉÅÓ ÏÆ ÏÐÅÒÁÔÉÏÎÓȱ ÔÈÁÔ ȰÃÁÕÓÅ Á 

ÐÈÙÓÉÃÁÌ ÏÒ ÃÈÅÍÉÃÁÌ ÃÈÁÎÇÅ ÉÎ Á ÓÕÂÓÔÁÎÃÅ ÏÒ ÍÉØÔÕÒÅ ÏÆ ÓÕÂÓÔÁÎÃÅÓȱ 

[8] . Textbooks also explain that processes commonly have several 

steps, each of which represents a specific physical or chemical 

change. Such definitions assume that during the realization of a 

process, a particular objective is accomplished. In other words, 

according to these definitions, a process has a design intention.  

However, unintentional phenomena are also of concern to  

engineers. For example, explosions (such as those that result in 

property damage) may happen as a result of an abnormal situation 

rather than a well-designed series of steps. Despite differences 

related to whether an objective is involved or not, both intentional 

and unintentional processes share the ability to transform material 

or energy through one or more changes. This research addresses 

both kinds of processes.  
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Due to the complexity of customer requirements coupled with 

drastic technological changes, development of products and 

processes is becoming increasingly knowledge intensive.  It brings 

about change in the way industries organize products and processes. 

The market demands industries to effectively manage the know-how 

about products and processes as a means to differentiate the 

business competitions. Information about products and processes 

has to be considered as a rather special resource [9] : it does not get 

lost when it is used, and the costs for generating and procuring 

information are high compared to the costs for its storage and 

dissemination. 

Product development which is a multi -disciplinary in nature 

requires a variety of product life-cycle knowledge [10] . Specifically, 

design teams face a considerable challenge in making effective use of 

increasing amounts of information that is stored in several 

information systems. Also, it is often the case that product designers 

can reuse past designs rather than designing from scratch [11] . Thus 

it would be very important to have the ability to retrieve product 

data. 

As mentioned above, information retrieval consists of 

translating and matching a query against a set of information objects. 

The information retrieval system responds to the query using a given 

algorithm and a similarity measure. Particularly, information 

retrieval plays an important role in areas such as product family 

design [12] , product embodiment, and detailed design [13] . Shah et 

al. [14]  present a combination framework that consists of software 

engineering, data engineering and knowledge engineering and 

design theory. 
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In order to support product and process information retrieval 

and reuse, some authors suggest the use of case-based reasoning 

(CBR) in which design problems are solved by using or adapting 

previous design solutions [13] , [15] .  

A CBR system is composed of domain knowledge, a case base 

and a search mechanism based on a similarity measure. Domain 

knowledge refers to knowledge about the features of the different 

objects or entities that a case is about. A case base contains a set of 

cases, each of which describes a problem and a solution to the 

problem. The problem is typically defined in terms of specific 

features of objects. Finally, a similarity measure quantifies the 

differences that exist between objects [7] . CBR uses similarity 

measures to identify cases which are more relevant to the problem 

to be solved. 

 

1.3.   Overview of the proposed approach   

 

The objective of this thesis is to develop a more effective 

semantic similarity method for products and processes. The 

proposed approach is composed of semantic similarity measures 

that compare classes in a taxonomy obtained with Formal Concept 

Analysis (FCA) and a template for the specification of formal 

attributes. 

The proposed approach is based on two main pillars. One is a 

semantic similarity measure based on Formal Concept Analysis 

(FCA). The semantic similarity measure of the proposed approach 

compare classes of products and processes. The semantic similarity 

measure is emphasized on the common formal attributes that are 

obtained from FCA. It is a method based on applied lattice and order 
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theory, is selected as the taxonomy generator. The underlying 

principle in this research is that if a class represents a set of things 

that share the same attributes (such as a class in a taxonomy), we can 

state that a class is equivalent to another class if both classes have 

exactly the same attributes. This implies that the more common 

attributes that are shared by two classes the more similar they are. 

For this purpose, several similarity equations are investigated in this 

research by using formal attributes as the sets they compare. It 

became clear that the sets of features could be replaced with sets of 

formal attributes from the FCA. 

The second pillar is a new way to specify the formal attributes 

required by FCA. This method is referred to as Formal Attribute 

Specification Template (FAST). FAST identifies the product formal 

attributes by considering its mereological and topological structure 

and its involvement with one or more processes. FAST also identifies 

the formal attributes of processes.  

The proposed semantic similarity method consists of two steps: 

taxonomy generation and similarity calculation.  

FAST is used in the taxonomy generation for formal attribute 

identification which is later used in FCA to generate a lattice.  The 

resulting lattice and formal attribute information obtained with FCA 

are later used to create a class hierarchy.   

In the second step, similarity between two classes of this 

taxonomy is calculated using a semantic similarity measure , in 

which the taxonomy structure and formal attribute information are 

used as input. For this purpose, the edge-counting and information-

based similarity measures were used to evaluate and compare 

against the proposed approach. In order to quantify the efficacy of 

each similarity measure, the degree of correlation with human 
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judgment and NGD similarity were used. The results of the 

evaluation show that the proposed approach performed better than 

existing similarity measures.  

 

1.4.   Thesis outline  

 

The remainder of this thesis consists of six chapters followed 

by bibliography. Topics discussed in every chapter are as follows: 

Chapter 2 contains a comprehensive description on concept of 

semantic similarity and presents an overview of common semantic 

similarity  measures.  

 

Chapter 3 describes the contribution of this research. This chapter 

introduces the semantic similarity equation and the Formal Attribute 

Specification Template (FAST) of the proposed approach.  

 

In chapter 4, the proposed approach is evaluated and compared 

against the existing similarity measures. The correlation of each 

similarity score is compared against the human similarity ratings.  

 

Chapter 5 describes the application of the proposed approach for 

constructing machining process ontology. The resulted machining 

ontology was evaluated and compared against a third-party ontology. 

The degree of correlation with Internet-search engine using the 

value of the Normalized Google distance evaluated the accuracy of 

each ontology.  

  

Chapter 6 demonstrates a real-world application in product-service 

system. In this research, the existing CBR systems that use numerical 
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similarity measures for service strategy selection for product-service 

system (PSS) was modified by incorporating the product-class-

comparison based on the proposed semantic similarities. The results 

of evaluation show that the proposed approach proved useful when 

some details of information are not available.  

 

Chapter 7: summarizes the main contribution of this thesis and 

draws conclusions on the conducted research. Finally, some possible 

improvements are discussed.  
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Chapter 2  LITERATURE REVIEW 

 
 
 
 
 

LITERATURE REVIEW 
 

 

   

This chapter presents a brief review on semantic similarity, and 

describes the existing approaches to determine the similarity of two things in 

a hierarchical structure. Finally, the role of FCA for building the class 

hierarchy is explained.  

 

2.1.   Semantic similarity measures  

 

Semantic similarity is used for providing necessary semantic context 

information for information retrieval applications and in a variety of 

applications including word sense disambiguation, classification and ranking, 

detection of redundancy, and detection of malapropisms [24] , [25] . To date, 

the existing similarity measures in the literature proposed for measuring 

similarity in a taxonomy between words. Some of researchers take the 

advantage of combination of taxonomy with corpus to measure the similarity. 

In this thesis, we use the term semantic similarity measures to denote 

the quantifying of the degree of likeness between two things based on the 

meaning associated to each thing being compared. 

In the literature, the term similarity and relatedness are very often used 

interchangeably. However, there is a difference between them. The term 

similarity is concerned about likeness, while relatedness seeks to determine 

the relationship between two things.  
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Resnik [30]  defined similarity as a special case of relatedness. For 

example, the bicycle and cyclist appear to be more closely related than the 

terms car and bicycle, even though car and bicycle are more similar. In this 

example, Ȱbicycle is related to cyclistȱ is based on the functional relationship 

such as cyclist rides bicycle. The notion of relatedness emphasizes on the 

various kind of lexical relationship such as meronymy (bicycle-wheel) and 

antonymy (large-small), or functional relationship or frequent association 

(camel-desert) [31] .  

Another common term is distance. Distance is inversely proportional to 

similarity. Cross defined distance is the inverse of both similarity and 

relatedness. The less distance between two things, increase the similarity 

between two things. 

The computational approach regarding similarity requires a consistent 

type of relation between things being compared such as the hierarchical 

relation (i.e. is-a, part-whole), associative relation (i.e. cause-effect) and 

equivalence relation (i.e. synonymy) [26] . Among these approaches, the 

hierarchical relation is a well-studied technique and has been widely applied 

in computing the similarity between two things. Using this relation, it shows 

how well the computational models imitate the human cognitive view of 

classification [26] .  

When the things that are compared correspond to classes in a 

taxonomy, a semantic similarity is a function that assigns a numeric value to 

the similarity between two classes of objects [32] . The classes in a taxonomy 

are related by means of a subclass relation also known as is-a relation or 

subsumption relation. A class ὅ is said to be a subclass of ὅ (ὅ is a 

superclass of ὅ) if all the members of ὅ are also members ofὅ. It is worth 

ÍÅÎÔÉÏÎÉÎÇ ÔÈÁÔ ×ÈÅÎ ÔÁÌËÉÎÇ ÁÂÏÕÔ ȬÔÈÅ ÓÉÍÉÌÁÒÉÔÙ ÂÅÔ×ÅÅÎ Ô×Ï ÃÌÁÓÓÅÓ ὅ 

andὅȟȭ ÉÎ ÒÅÁÌÉÔÙ ÔÈÅ ÃÏÍÐÁÒÉÓÏÎ ÉÓ ÁÂÏÕÔ Ô×Ï ÇÅÎÅÒÉÃ ÍÅÍÂÅÒÓ ÏÆ ÔÈÏÓÅ 

classes ὼɴ ὅ and  ώ ɴ ὅ. Thus the similarity between two classes is based 

on how closely they are related in the taxonomy. 
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According to the type of knowledge sources that used to assess the 

semantic similarity assessment, the semantic similarity measures can be 

divided into three families of functions: [1] those based on the taxonomical 

structure (Section 2.1.1); [2] those relying on the information content (Section 

2.2.1); [3] those based on the set of features (Section 2.1.3). 

 

2.1.1.   Edge-based measures 

 

Edge counting measures are based on the distance between two classes. 

The most primitive edge-based similarity measure is that which computes 

the distance of the shortest path length between two classes [33] . The 

distance can be measured by the number of edges that links the two classes 

via is-a links in the taxonomy. The shorter the path from one node to the 

other, the more similar they are. For example, the length of the shortest path 

between node K and L in Fig. 2-1 is 4. The path length between E and B is 4. 

The similarity between these two cases is the same according to the path-

length measures. However, in a more realistic scenario, similarit ies between 

any two adjacent nodes are not necessarily equal. To address this limitation 

some authors assign weights to each edge that connects two classes.  

 

 
Fig. 2-1 A sample taxonomy lattice 
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Leacock and Chodorow [34]  introduced the maximum depth of classes 

hierarchy.   

 

( )
D

length
CCsimLC

2
log, 21 =         (Equation 1) 

 

where length is the shortest path length between two synsets and D is the 

maximum depth of the taxonomy in which a lowest common ancestor (LCA) 

is found. 

Wu and Palmer [35]  proposed the following similarity measure that 

relies on the use of subclass links (edges) between classes. In the above-

mentioned examples, the similarity between K and L is less than the 

similarity between E and B as the latter two classes are in a lower level in the 

hierarchy structure. They are scaling the proposed method to the relative 

position of the word in the taxonomy. 

 

( )
321

3

21

2
,

NNN

N
CCsim rWuandPalme

++
=                    (Equation 2) 

 

where 
1N  and 

2N  are the number of subclass edges from 
1C  and 

2C to their 

closest common superclass; 
3N  is the number of subclass edges from the 

closest common superclass of 
1C  and 

2C to the root class in the taxonomy. For 

example, the similarity between classes A  and E  in Fig. 2-1 is calculated as 

follows. As their closest common superclass are F , 
1N  and 

2N  are 2 and 1 

respectively, and 
3N  is 3. Note that the similarity measure of Wu and Palmer 

is not defined for the case in which the closest common superclass happens 

to be the root class. For example, the calculation of the similarity for classes 

A and B  in Fig. 2-1 returns 0. 

The advantage of edge-based measures is their simplicity. These 

measures also involve a low computational cost as no corpus is required 

during the similarity evaluation.  
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However, edge-based approaches highly depend on the degree of 

completeness, homogeneity and coverage of the semantic links represented 

in the taxonomy [36] . Moreover, this approach exclusively uses the shortest 

path between two classes to their common ancestor. For example, when they 

are applied in ontologies with  multiple inheritances, only the shortest path is 

taken into consideration. Consequently, large amounts of knowledge 

available in the taxonomy maybe ignored.  

Another problem is that many edge-counting approaches take only "is-

a" into account although other relationship types may represent a substantial 

fraction of the total number of edges. In other words, these approaches rely 

on the notion that all links in the taxonomy represent a uniform distance [37] .  

 

2.1.2.   Information -based measures 

 

Similarity measures based on information content rely on functions 

that determine the degree of specificity of a class. This approach was 

originally introduced by Resnik [38]  who stated that the concept of similarity 

depends on the amount of information shared between two classes.  Resnik 

[38]  emphasized that the more specific a class that subsumes the class being 

compared (lowest common subsume), the more similar they are. 

 

ίὭά ( ) ( ) ()( )CICCC corpusCCS 21,21 max, =                      (Equation 3) 

 

where Ὓὧȟὧ  are the set of concepts that subsume ὧ and ὧ and corpusIC is 

the corpus-based information content for a concept C.  

This approach has successively been refined by Lin [32] . Lin states that 

the similarity between two concepts is measured by the ratio between the 

amount of information needed to state the commonality between the two 

concepts being compared and the information needed to fully describe what 

the two concepts are. ,ÉÎȭÓ similarity measure is defined as 



Chapter 2 

 

17 
 

 

( )
( )

( )( )21

3

21

2
,

CCIC

CIC
CCsimLin

+
=                                (Equation 4)  

                   
where IC is the information content and

3C  is the closest common superclass 

(lowest common ancestor in edge-based measure).  

)Î ÔÈÉÓ ÔÈÅÓÉÓ ÆÏÒ ÔÈÅ ÃÁÌÃÕÌÁÔÉÏÎ ÆÏÒ ,ÉÎȭÓ ÓÉÍÉÌÁÒÉÔÙ ÍÅÁÓÕÒÅȟ ÔÈÅ 

approach proposed by Seco et al. [41]  for the estimation of the IC of a concept 

is used . Therefore, equation (4) becomes 

 

( )
( )

() ( )21

3
21

2
,

CgCg

Cg
CCsimLin

+
=                         (Equation 5) 

 

where )(Cg  is a function that depends on the structure of the ontology and is 

defined as  

 

()
()( )
( )maxlog

1log
1

C

Ch
Cg

+
-=                                                     (Equation 6) 

 

where  Ὤὅ is the number of subclasses of C and 
maxC is the total number of 

classes in the taxonomy. For example, the calculation for the similarity 

between classes 1 and 5 in Fig 2-2 is calculated as follows. Both classes 1 and 

5 do not have any subclasses, Ὤὅ is 0 and subsequently the Ὣὅ  and Ὣὅ  

is 1. Class 3 is their closest common superclass in which the Ὣὅ   is 0.102 

with Ὤὅ is 4.  Thus, the similarity measure for classes 1 and 5 is 0.102. Note 

that, the similarity measure of Lin is influenced by the number of subclass 

(Ὤὅ) of a class. Let takes another example such as the similarity between 

classes 2 and 5. The Ὤὅ values are 0.613 and 1 for class 2 and class 5 

respectively. Therefore, the similarity measure between classes 2 and 5 is 

0.127. 
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Fig. 2-2 A sample taxonomy for information-based similarity 

 

Jiang and Conrath [26]  proposed a distance measure that is computed 

by subtracting the sum of IC of each term from the IC of their LCA. 

        

( ) () ( ) ( )32121 2, CICCICCICCCdistJC ³-+=       (Equation 7) 

 
The information-based approaches allow us to compute the similarity 

using the corpus [39] . Using the available corpus data, these measures 

outperform the shortest-path measures [26] .  

Some authors proposed a similarity measure that relies on the whole 

hierarchical structure and applied it  to a WordNet. In this measure, the 

assumption is that the WordNet is organized in a meaningful way based on 

the principle of cognitive saliency [40] . They argue that the more hyponyms a 

concept has the less information it provides, otherwise there would be no 

need to further differentiate. Likewise, concept at the leaf nodes, are the most 

specified and provides maximal information. Therefore, the function of this 

similarity is determined by the number of hyponyms and/or their relative 

depth in the taxonomy. For example, Seco et al. [41]  proposed an IC 

calculation based on the number of hyponyms. 

             

()( )
( )nodes
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CsimSeco

maxlog

1log
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where hypo(C) is the number of hyponyms of a class C and max_nodes is a 

constant that is set to the maximum number of concepts that exist in the 

taxonomy. 

The disadvantage of this approach is whenever changes in the 

taxonomy or in the corpus, re-calculation of the affected branches are 

required [42] . Moreover, the structure of the taxonomy has a great influence 

on the similarity scores. Therefore, this approach requires the taxonomy 

must be as complete as possible. In other words, the taxonomy should 

include most of the specializations of a specific class in order to provide 

reliable results. As a result, partial taxonomies with a limited scope may not 

be suitable for this purpose [37] . 

 

2.1.3.   Feature -based measures 

 

The feature-based measures are introduced to overcome the limitation 

of uniform distance assumption in edge-based measures and corpus 

dependent approaches in information-based measures. In fact, the 

taxonomical links in an ontology do not necessary represent uniform 

distance. Feature-based similarities have their origin in the work of Tversky 

[43]  whose similarity measure is based on set theory. Feature-based 

approach takes into account the features that are common to two classes 

being compared and also the specific differentiating features of each class. 

4ÖÅÒÓËÙȭÓ ÓÉÍÉÌÁÒÉÔÙ ÍÅÁÓÕÒÅ ÉÓ ÄÅÆÉÎÅÄ ÁÓ 

 

( )
122121

21

21
\\

,
CCCCCC

CC
CCsimTversky

ba ++Æ

Æ
=         (Equation 9) 

 

where ὅ and ὅare sets of features, ȿὅ ʌὅȿ is set of features in ὅ but not in 

ὅ and ȿ# ʌ#ȿ is set of features in ὅ not in ὅ. The ‌ and ‍ are parameters 

that account for the relative importance of the non-common features. 

Rodriguez and Egenhofer  [45]  defined ɻ ÁÎÄ ɼ as function: 
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ab -=1                              (Equation 11) 

 

This similarity returns a score within the range of [0, 1]. The score increases 

if two classes have more common attributes and decreases with the high 

number of asymmetrical attributes between the two concepts. 

Some recent feature-based approaches rely on information that is 

available in ontologies. Petrakis et al. [44] , proposed the X-similarity , that 

ÒÅÌÉÅÓ ÏÎ ÔÈÅ ÍÁÔÃÈÉÎÇ ÂÅÔ×ÅÅÎ ÓÙÎÓÅÔÓ ÁÎÄ Á ÃÏÎÃÅÐÔȭÓ ÇÌÏÓÓÅÓ ÅØÔÒÁÃÔÅÄ 

from WordNet. The two terms are said to be similar if their synsets and 

glosses of their concepts and those of the concepts in their neighborhood 

(terms that a connected with semantic relation) are lexically similar. Their 

proposed similarity function is represented as 

 

( )

( ){ ( )} ( )îí
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=

>
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0,_;,,,max
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baSifbaSbaS

baSif
sim

synsetglossesodsneighborho
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simx      (Equation 12) 

where the similarity for glosses and synsets as well as similarity for semantic 

neighbors, Ὓ  are calculated as 
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where A and B denote the set of synsets or glosess for term a and b. The 

similarity between term neighborhoods is computed differently based on 
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their semantic relationship (is-a and part-of in WordNet) and the maximum 

(the union of the synsets of all terms up to the root each term hierarchy) is 

taken.  

Also, Rodriguez and Egenhofer [45]  proposed a similarity measure by 

computing the weighted sum of similarities between synsets, features and 

neighbor concepts. 

 

( ) ( ) ( ) ( )21212121 ,,,, CCSwCCSwCCSwCCsim odsneighborhovfeaturesusynsetwRE Ö+Ö+Ö=  

 (Equation 15) 

 

where ύ , ύ  and ύ  are the weight  of each component and the summation of 

weight is equal to 1.  

2ÏÄÒÉÇÕÅÚ ÁÎÄ %ÇÅÎÈÏÆÅÒȭÓ similarity measure is only applicable to the 

noun and a verb category in WordNet whereas a term can be represented by 

others features such as attributes associated to the terminology. 

 

2.2.   Semantic similarity measures using multiple ontologies  

 

The semantic similarity methods presented so far assume that the 

classes being compared are from the same ontology. However, the numbers 

of ontologies are increasing due to the advent of semantic web in which the 

developed ontology is used to formalize the conceptualization behind the 

idea of semantic web [46] . Although the topic is out of scope of this research, 

in this section, we provide a brief discussion on how the similarity methods 

can be used to compare classes from different ontologies which is referred to 

as cross-ontology similarity methods in the literature . 

According to Cross and Hu [19] , a cross-ontology similarity method is 

an approach that is based on establishing association links between the 

classes have been proposed. The foundation for many existing approaches is 

the use of 4ÖÅÒÓËÙȭÓ ÍÏÄÅÌ ÏÆ ÓÉÍÉÌÁÒÉÔÙ ×ÉÔÈ ÖÁÒÉÏÕÓ ÆÅÁÔÕÒÅÓ ÏÆ ÃÌÁÓÓÅÓ [19] . 
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The more properties of two classes share in common, the more links there 

are between the classes and the more closely related they are [47] . Recently, 

the cross-ontology similarity methods have been proposed in very promising 

research area of the matchers of ontology alignment system to support the 

semantic interoperability. Ontology alignment (OA) systems focus on finding 

a set of mapping pairs between source ontology, OS and target ontology, OT 

with each pair having a similarity degree in the range of  0 and 1 [48] . Many 

proposed methods use background knowledge sources, WordNet, UMLS or 

both as a reference ontology with semantic similarity measure. There are 

several systems have been introduced to facilitate the ontology alignment 

process such as OLA, ASMOV, CIDER, Anchor-Flood [46]  and 

AgreementMaker [48] . 

Cross, Silwal and Morell [48]  show a very recent experiment using 

reference ontologies (it is also known as mediating ontologies) to improve 

the ontology alignment process. They incorporated semantic similarity in 

reference ontologies to determine indirect mappings where source and 

target classes map to different concepts in mediating ontology. Their work  

extends the AgreementMaËÅÒȭÓ ÍÅÄÉÁÔÉÎÇ ÍÁÔÃÈÅÒ (MM) by incorporating 

the semantic similarity measures within the reference ontolgy and it is called 

mediating matcher semantic similarity measurement (MMSS). For this 

purpose, the Adult Mouse Ontology (MA) and Human Anatomy (HA) were 

used for the evaluation of the proposed approach.  

The first step is to determine the mapping set between source and 

target classes on the same class in the reference ontology. In this step, the 

base similarity matcher with lexicon (BSMlex) is used to compose mapping 

from the source and target classes to produce an exact match on the bridge 

classes in the mediating ontology, MST.  

Also, they consider the sets of unmapped source classes, US in the 

mapping set from source to mediating ontology and the sets of unmapped 

target classes, UT in the mapping set from target to mediating ontology. For 
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each pair (s, t) in US x UT, the semantic similarity measure is used to compute 

the similarity between all bridge classes for s and all bridge classes for t. The 

standard Lin semantic similarity measure is used with IC is defined by [41]  

was used in their experiment. They use maximum aggregation operator to 

determine the enhanced mapping set, EST. The final mapping is MST ᷾  EST. The 

results of the experiment show that the MMSS discovers more correct 

mapping than the MM. 

 

2.3.   FCA and class hierarchy generation   

 

To emulate the human ability in assessing similarity between things, 

computational models require a support from knowledge sources. 

Knowledge sources represent the concepts of the real world domain that are 

defined formally with relationships they share with the other concepts of the 

same domain. Some of the knowledge sources are taxonomy (class hierarchy), 

ontology, thesaurus and domain corpora. 

The proposed approach requires a taxonomy of classes of products or 

processes. Typically, however class hierarchies are developed in an ad-hoc 

fashion, lacking the rational of their structure. To resolve this issue, this 

thesis proposes a class hierarchy development based on Formal Concept 

Analysis (FCA).  

FCA is an analysis technique for knowledge processing based on 

applied lattice and order theory [27] . 

Several efforts have been reported on the use of FCA in products and 

processes. For example, Fu and Cohn [28]  suggest the use of FCA to support 

the development of municipal utility domain to overcome the limitation of 

current mapping information. In another related effort, Nanda et al. [18] 

proposed the use of FCA for providing a systematic guideline for constructing 

product families domain. Stumme [29]  described the use of FCA to manage 

the knowledge related to business processes across department and 
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company boundaries.  

On the other hand, several works have been proposed to measure the 

similarity of classes obtained with FCA such as in Formica [30], Tadrat et al. 

[31], Alqadah and Bhatnagar [32], Zhao and Halang [33], Saquer and Deogun 

[34] and Souza et al. [35]. Formica [30] proposes a similarity based on the 

informati on-based approach to calculate the classes with a weight [0,1] 

which is user-defined. Alqadah and Bhatnagar [32] improve the Jaccard 

coefficient, Sorenesen coefficient (or Dice coefficient) and Symmetric 

difference based on set theory where the zero-induced is incorporated. In 

addition, Zhao and Halang [33] develop a similarity measure for FCA by 

ÍÏÄÉÆÙÉÎÇ ÔÈÅ 4ÖÅÒÓËÙȭÓ ÆÅÁÔÕÒÅ-based similarities. They replaced the sets of 

features with a rough lower approximation which is represented only with 

the sets of objects of the two concepts. Tadrat et al. [31] propose a similarity 

measure that characterizes by a vector of frequencies of the object and 

attributes between two concepts in FCA. Their approach was based on vector 

model of information retrieval.  

FAST is used to define the formal attributes that can later be used in the 

FCA. This research uses FCA to generate lattice in which, FCA requires 

information to be organized in a formal context. For this purpose, the list of 

potential classes (formal object) and formal attributes are added to the 

context table. Context table represents the object and attribute information 

and their relation in FCA that are organized in incidence matrix. If a formal 

object has a formal attribute, a checkmark is inserted in the corresponding 

cell. Subsequently, a lattice is generated. The next step is an iterative process 

for analyzing the resulting lattice and resolving inconsistencies. All concept-

subconcept relation in lattice is analyzed. If an inconsistency is found, the 

context table is revised by adding or removing attributes. A new lattice is 

generated if the context table is modified. The resulting lattice and formal 

attribute -information are used to create a class hierarchy and convert it into 

a computer-processable form. A taxonomy structure and formal attribute 
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information came as the results of taxonomy generation step. Appendix A 

provides the description of FCA in which the proposed approach is based on. 
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Chapter 3  THE PROPOSED APPROACH  

 

 

 

 

 

THE PROPOSED APPROACH 
 

 

 

 

3.1.   Introduction  

 

Theoretical frameworks for products and processes refer to the world 

view with which products and processes can be represented. Such a 

theoretical framework is useful for determining formal attributes. For this 

purpose several existing theoretic frameworks for products and processes 

were studied.  

#ÈÁÎÄÒÁÓÅËÁÒÁÎȭÓ ÅØÔÅÎÓÉÖÅ ×ÏÒË ÏÎ &ÕÎÃÔÉÏÎÁÌ ÒÅÐÒÅÓÅÎÔation (FR) 

[50]  defined FR is a device-centered description of the product that is 

organized in structure (what it is), function (what the device is intended to 

do) and behavior (how the artifact does what it does). FR is a top-down 

approach in which the function of the device is specified first and the 

behavior of device components is specified in terms of how they contribute 

to the individual functions.  

In order to achieve the function of interest, a function is represented by 

describing its application, the initiating conditions and the predicates that the 

product has to satisfy. How a product achieves its functions is described by 

using Casual process description (CPD) or by using passive function 
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characterizes the structural properties of a device. A CPD is represented as a 

directed graph in which the nodes represent the states (process variables 

and device states) while the arcs represent state transitions.  

On the other hand, behavior-structure representation distinguishes 

structural and behavioral aspects of the artifact based on general systems 

theory [51] , which identifies structure and behavior descriptions of complex 

systems. In VEDA [52] , [53]  information models describe the artifact in terms 

of material (e.g. pipes, tanks) and phenomenological entities. The behaviors 

of individual structure subsystems together with their structural 

interrelations generate the behavior of the whole system. The structure 

systems are classified into devices and connections. In this representation, 

behavior refers not to the behavior of the device but to physicochemical 

phenomena that takes place in a device. 

Several efforts have been made to find a reusable representation of 

processes. Sowa [62]  describes a process according to time points that 

mark the beginning and ending of the process and the changes that take 

place in between. To Sowa, a process can be caused by one or more 

agents over some time interval. Here, an agent is an animate entity that 

is capable of doing something to fulfill a specific intention.  

A process is defined in the SUMO Ontology [63]  ÁÓ ȰÔÈÅ ÃÌÁÓÓ ÏÆ ÔÈÉÎÇÓ 

ÔÈÁÔ ÈÁÐÐÅÎ ÁÎÄ ÈÁÖÅ ÔÅÍÐÏÒÁÌ ÐÁÒÔÓ ÏÒ ÓÔÁÇÅÓȢȱ ! process may have 

participants which are objects, such as the machine, circuit boards, 

components, and solder in a soldering process. In SUMO, an object can denote 

a physical object or a geographical region. Agent, instrument, resource, and 

result are objects that participate in the process. An agent is defined as an 

active determinant (either animate or inanimate) of the process, with or 

without voluntary intention. A resource is something that is present at the 

beginning of a process, is used by the process, and as a consequence is 

changed by the process. An instrument is used by an agent to perform a 

process and is not affected by that process. A resource differs from an 
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instrument in that its internal or physical properties are altered in some way 

by the process.  

A process in IDEFØ [64]  is described in terms of activity building blocks. 

Fig. 3-1 shows an activity is characterized by its inputs, outputs, constraints, 

and mechanisms. Input is the information, material or energy that is 

converted to the output of an activity. An output is the information, material 

or energy produced by or resulting from the activity. A constraint or control is 

the information, material or energy that constrains and regulates an activity. 

A mechanism represents the resources, such as people, equipment, or 

software tools that perform an activity. Furthermore, an activity can be 

composed of other activities (mereology). 

 

 
Fig. 3-1 Activity representation in IDEF0 

 

ISO 15926 defines activity as a possible individual that has its life cycle 

bounded by beginning and ending events [65]  as shown in Fig. 3-2. In 

addition, an activity brings about change by causing an event (an event occurs 

at an instant in time). A participation  relation is used to express that a 

possible individual is involved in an activity. Because ISO 15926 uses a four-

dimensional view of the world, an activity consists of temporal parts of those 

members of possible individuals that participate in the activity. For example, 

in creating a blind hole on a metal piece using a hand drill, the drilling activity 

shares the temporal parts of the worker and the hand drill that participates 

to change the shape of the piece. In this example, the drilling activity causes 
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the hole to come into existence.  

 

 

Fig. 3-2 Activity in Upper ontology based on ISO 15926 

 

WPML is an ontology-based language designed to represent work 

processes [66] , [67] . WPML is based on OntoCAPE [68] , which was originally 

developed as a comprehensive ontology for the chemical process engineering 

domain. WPML defines an action as a building block that describes a step in a 

work process. Actions are characterized by their causal and temporal aspects. 

On the other hand, the changing nature of the action is described by means of 

the so-called OperationalFunction. Therefore, valve_opening, drilling, 

material_charging can all be defined as subclasses of OperationalFunction. 

Gero and Kannengieser [69]  propose the use of the structure-behavior-

function (SBF) world-view to characterize a process. The notion of function 

of a process is related to the goal of providing a given process, which assumes 

that processes can be designed. Behavior attributes refer to those attributes 

of a process that allow comparison on a performance level. Examples of 

behavior attributes of processes are speed, rate of convergence, cost, amount 

of space required, and accuracy. The structure of a process is described in 

terms of its inputs, outputs, and subprocesses.  

One common denominator in all these approaches is the existence of an 

elementary element to define the process that is used together with relations 
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that associate the process with other objects. The most common relations are 

those for identifying the objects that are transformed by the process (the 

input), those for representing the objects that are produced by the process 

(the output), those for identifying the tools or the actors that participate in 

the process, the relations for indicating the location of the process, part-

whole relations for describing the process structure, and time duration. Table 

3-1 summarizes these common elements. 
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3.2.  Product representation  

 

In this thesis, the theoretical framework for representing a product is 

based on the ISO 15926 standard which specifies an upper ontology for long-

term data integration, access and exchange [60] . It was developed in ISO 

TC184/SC4-Industrial Data by the EPISTLE consortium (1993-2003) and 

designed to support the evolution of data through time. The upper ontology 

was developed as a conceptual data model for the representation of technical 

information of process plants including oil and gas production facilities but it 

was designed to be generic enough for any engineering domain [61] . The 

theoretical framework is illustrated in Fig. 3-3. 

 

producestransforms

process

(activity)

physical  object

process

physical object physical object

performer

participates in
is located at

is composed of

participates in
physical object

 

Fig. 3-3 Composition of device and its relation to processes. 

 

In this theoretical framework, the physical object is represented in 

terms of its physical parts as well as in terms of its relation to some process 

(activity).  

The physical part of a product is represented by physical object that is 

defined in terms of a distribution of matter, energy, or both. A physical object 

can be described in terms of its parts (Fig. 3-4). This is possible through a 

mereological relation that refers to the relationship that a part has in regards 

to the whole of an object. Mereological relations are reflexive, antisymmetric, 
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and transitive. 

  

physical object

physical object

physical object

is composed of
physical object

is connected to

 is located at

 
 

Fig. 3-4 Composition of device presentation 

 

Physical objects exist in reference to a specific place. The location 

relation (relative location in ISO 15926) is a kind of mereological relation 

that is used to locate objects in a particular place. 

The function of a product can be defined as an intended process 

associated to the device. For example, the function associated to a sofa is 

represented as the process of seating in which the sofa is involved along with 

a person that sits on it. 

Similarly, the function of an electric fan is to generate cool air. In this 

case, the description of the device includes information about the home 

appliance and the cooling process. The cooling process is in turn composed of 

other processes such as conversion of electricity into rotary movement, 

convection, diffusion and heat transfer. Therefore information about the 

process or processes associated to the device is an indispensable element to 

complete the description of the product.  

Different objects can participate in a process. Participating physical 

objects include those objects that are transformed by the process, those 

objects that are produced by the process, those objects that are not affected 

by the process (the device itself, other tools or instruments), as well as agents 

(such as a person or a control system) that participate or execute the process. 

As in with a physical object, a process is also described in terms of its 

relative location and its mereology. 
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3.3.   Process representation  

 

The theoretical framework for processes is the same as that for 

products (Fig. 3-3). In general, a process changes an object that exists before 

the execution of the process to produce another object. In a four-dimensional 

view, these objects correspond to the temporal parts of the object before and 

after the process. In addition, among the objects that participate in a process 

we can distinguish those entities that are not intended to be affected by the 

activity but that are used by the activity. Therefore, four types of objects that 

participate in a process can be identified: the objects that are transformed by 

the process (the inputs), the objects that are produced by the process (the 

outputs), the objects that are used for the execution of the process (the 

performers) and the objects that accommodate the process (the location of 

the process). 

 For example, a drilling process always transforms a solid object (the 

so-called blank or work piece) and produces a solid object that has at least 

one hole. A performer in this case is a cutting tool that is pressed against the 

solid object and rotated in a given way so as to produce the hole. In this 

example, the location of the process is the machine that holds the cutting tool 

that is also perpendicular to the work piece. One can argue that both the 

performer and the location may be affected by the process (e.g. deteriorated) 

but they are not intended to be modified, which makes them different from 

the other two types of objects.  

The Performer corresponds to the concept of instrument in SUMO. It 

indicates an object that is used by the process but that is not intended to be 

changed by the process.  

In addition, a process can be composed of other subprocesses. For 

example, a given hole-making process can include a cooling sub-process in 

order to reduce the wear of the cutting tool as a result of friction force. 
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3.4.   Formal Attribute Specification Template (FAST)  

 

The Formal Attribute Specification Template has been developed for 

identifying the formal attributes of a given class. FAST is a systematic 

guideline to characterize the classes of products and processes and 

represents the relationship between the products and processes.  

In FAST, a product has the following kinds of formal attributes: 

¶ the classes of objects that compose the product (the product 

parts) 

¶ the classes of places where the product is required to be 

¶ the classes of process in which the product participates 

Fig. 3-5 shows the steps for the selection of formal attributes of a 

given class of product. 

Similarly, FAST identifies five kinds of formal attributes required for 

describing a process: 

¶ the classes of objects that are always transformed by the 

process (the input of the process) 

¶ the classes of objects that are always produced by the process 

(the output of the process) 

¶ the classes of performers that are always used by the process 

¶ the classes of locations that always accommodate the process 

¶ the classes of process composition (the parts of the process) 
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Fig. 3-5 Flow diagram for the formal attribute selection of a given class of product 
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Fig. 3-6 Flow diagram for the attribute identification of a given candidate class 

 

 Based on these five characteristics the formal attributes of a given 

class of product or process can be identified . Fig. 3-6 shows the steps for the 

selection of formal attributes of a given class of process. For example, to 

characterize a fusion welding process, the objects that are transformed by 

the activity are solid physical objects. The object produced by any member of 

this class of activity is a physical object that is made of the welded parts. As 

heating is always involved in a fusion welding, it is a part of the activity. 

4ÈÅÒÅÆÏÒÅȟ ÔÈÅ ÁÔÔÒÉÂÕÔÅÓ ÏÆ ÔÈÅ ×ÅÌÄÉÎÇ ÐÒÏÃÅÓÓ ÂÅÃÏÍÅȡ ȰÔÒÁÎÓÆÏÒÍÓ ÓÏÌÉÄ 

physical objectÓȟȱ ȰÐÒÏÄÕÃÅÓ Á ÐÈÙÓÉÃÁÌ ÏÂÊÅÃÔȟȱ ÁÎÄ ȰÃÏÍÐÏÓÅÄ ÏÆ ÈÅÁÔÉÎÇȢȱ  

On the other hand, if we are given a class of product such as printer 

that is involved in printing. The objects that are transformed by the 

particular printing process of a printer are: data, paper and electricity. The 

object that is produced is printed paper. Injecting is always involved as a part 

in the printing process in which the printer is involved in using inkjet as 

performer.  Thus, the attributes of the printer become: consumes data, 
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consumes paper, converts electricity, involved in using inkjet and produces 

printed paper. 

Each formal attribute in the FCA context table is seen as a constraint 

about the meaning of a particular class of product or process and it is not an 

attribute in the sense of a property of a specific instance. 

 

3.5.   Procedure  for taxonomy construction with FCA  

 

This thesis follows the general steps proposed by Stevens et al. [70] 

that include, identification of purpose and scope, knowledge acquisition, 

conceptualization, integration, encoding, documentation, and evaluation but 

we use FAST to guide the knowledge acquisition and conceptualization 

stages.  

The proposed methodology aims at facilitating the developing of 

taxonomy in such a way that the developer can justify the rationale behind 

the involved decisions. The procedure for taxonomy construction consists of 

the following steps: 

Step 1. Identification of the purpose and scope of the project. 

The purpose and scope are necessary to identify the domain of 

interest that the taxonomy will cover. For example, developing a taxonomy 

for electric home appliances. 

 

Step 2. Identification of the potential classes to be defined under the 

scope of the project. 

This step refers to the identification of candidate classes that may or 

may not appear in the final taxonomy and the object column of a FCA context 

table is populated with these classes. 

 

Step 3(a). Compile and organize definitions of each class. 

Information sources such as scientific papers, technical reports, and 
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Internet resources are consulted to define each class in natural language. 

When several definitions are found preference is given to those that explicitly 

describe participating objects, objects transformed by the process (inputs), 

objects produced by the process (outputs) and/or subactivities. When 

contradictions among several definitions of a given class occur experts can be 

consulted to disambiguate. 

 

Step 3(b). Identification of formal attributes. 

Formal attributes are identified using the FAST. 

 

Step 4. Add the attributes and incidence information to the context 

table. 

The formal attributes are added to the context table created in Step 2. 

If a class has always an attribute, a checkmark is inserted in the 

corresponding cell. 

 

Step 5. Use the FCA to generate a concept lattice. 

After adding the formal attributes, the context table is completed and 

a lattice is generated. Lattices in this paper were generated by means of the 

Grail algorithm [71] (a simpler algorithm is illustrated in Appendix B). Finally, 

the lattice is used to create the ontology. The naming of each class is done 

based on object or attributes labels from the nodes in the lattice.  

 

Step 6. Analyze the lattice and resolve inconsistencies.  

The first thing to be done is to check the concept-subconcept relation. 

Analysis of the lattice is done using object exploration [72]. The ontology 

designer analyzes the consistency of formal objects by tracing all paths in the 

lattice. The tracing starts from the root node, then to the next lower node and 

continuing until reaching the bottom node. If the relation between objects in 

a concept and objects in its subconcept is found to be inconsistent, then 
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inconsistency is resolved by adding or removing attributes. In case of new 

attributes, the context table is revised. If the context table is modified then a 

new concept lattice is generated. This procedure is repeated until all concept-

subconcept relations have been explored. 

 

Step 7. Create a class hierarchy and convert it into a computer-

processable form. 

   In this step, the resulting lattice and formal-attribute information 

obtained in the previous step are used to create a class hierarchy of an 

ontology. The naming of each class is done after the names of object and 

attributes that correspond to the concept on which the class is derived. An 

ontology editor such as the Protégé ontology editor [27] can be used for 

carrying out this and the remaining steps. 

 

Step 8. Connect the class hierarchy into an upper ontology 

Integration is carried out by means of aligning the resulting ontology 

with an upper ontology that defines domain-independent classes such as 

physical objects, activities, mereological and topological relations.  

 

The results of all these steps are a taxonomy structure and formal 

attributes information. These results can be used in equation 17-25 to 

evaluate the proposed approach. 

 

3.6.   The semantic similarity measures  of the proposed approach  

 

The semantic similarity measures of the proposed approach compute 

the similarit y of classes of products or processes in a taxonomy by taking into 

account the formal attributes from FCA.  In a given class hierarchy, the formal 

attributes play a crucial role to distinguish one class from another. The 

similarity between two classes is a function of the number of formal 
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attributes they share in common. The more common formal attributes shared 

by the two classes the more similar they are. This means that attribute  

information can be used to justify the design of class hierarchies (i.e. 

taxonomies). Subsequently, similarity measures can be developed based on 

the number of common attributes that are shared between two classes. Also, 

the semantic similarity measures of the proposed approach follow a similar 

ÐÒÉÎÃÉÐÌÅ ÁÓ ÐÒÏÐÏÓÅÄ ÉÎ ÔÈÅ 4ÖÅÒÓËÙȭÓ ÍÏÄÅÌ ɉ%ÑÕÁÔÉÏÎ 9) which considers 

that the similarity between two classes in a taxonomy can be measured as a 

function of their common and differential features. For this purpose, several 

similarity equations in data mining literature are investigated in this 

research by using formal attributes as the sets they compare.  

 

¶ Formal a ttribute s  

 

The proposed approach emphasizes on the common attributes shared 

by two classes in a taxonomy. The approach assumes that two classes that 

share formal attributes are considered more similar than classes not having 

common attributes. That is, for a given classes, this research considers the 

degree of overlap (common attributes shared by two classes) as a function 

for similarity.  

The attributes in the semantic similarity of the proposed approach refer 

to the formal attributes which obtained using a systematic method by using 

FAST.  

 

¶ Taxonomical  relationship s 

 

In a taxonomy that based on FCA, a class ὃộὕȟὃỚ is said to be subclass 

of another class ὄộὕȟὃỚ  provided that ὃṖ ὃ . In other words, in a given 

hierarchical structure, a class is equivalent to another class if both classes 
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have exactly the same attributes1. The class B is the superclass of A which 

defined an order written ὃ ὄ. The relation  is known as hierarchical 

order of the classes.  

The semantic similarity measure of the proposed approach also 

considers the uses of the multiple-inheritance (a class is subsumed by several 

superclasses). Differently from previous edge-based measures that considers 

only the shortest path-length between two classes, the proposed measure 

allows measuring the similarity between classes by considering the multiple 

taxonomic superclasses belonging to all possible taxonomical paths 

connecting the classes being compared. For measuring the similarity of 

multiple -inheritance, classes are connected through the subsumption (is-a) 

relation. As the subclass-superclass relation is transitive, a subclass inherits 

all the attributes from all its superclasses. Therefore, the semantic similarity 

measures of the proposed approach emphasized on the sets of formal 

attributes associated to the classes includes all those inheritance attributes 

from its superclasses that found traversely going through all the upper 

taxonomical paths modeled in the ontology for that concept. 

 

¶ Similarity measure based on formal attributes  

  

The similarity measure used in the proposed approach is represented 

by equation (16) 

 

( )
( )

( )
( )

ji

ji

ji

ji

ji
AAg

AA
a

AAf

AA
aCCsim

¡¡

¡Æ¡
-+

Æ
=

,
1

,
,     (Equation 16) 

 
where  ὅ ὥὲὨ ὅ are classes in the taxonomy, ὃ  ᷊ὃ is the number of 

common attributes shared by classes ὅ ὥὲὨ ὅ, ὃ ὥὲὨ ὃare the sets of 

attributes of classes ὅ ὥὲὨ ὅrespectively and a takes the values of 0 or 1. 

                                                        
1 The attributes of a class also include those attributes inherited from its parent classes. 
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ίὭάὅȟὅ is a function whose values are in between the range of 0 and 1. 

Value of 1 denotes the two objects are highly similar, while the two objects 

are said to be dissimilar if similarity value is equal to 0.  

Ὢὃȟὃ   is a function of the attributes of classes ὅ ὥὲὨ ὅ. For example, 

when a=1 and Ὢὃȟὃ ὃ  ᷊ὃ ‌ὃ  ʌὃ ‍ὃ  ʌὃ   equation (16) 

ÂÅÃÏÍÅÓ 4ÖÅÒÓËÙȭÓ ÓÉÍÉÌÁÒÉÔÙ 

 

( )
ijjiji

ji

jiTversky
AAAAAA

AA
CCsim

\\
,

ba ++Æ

Æ
=             (Equation 17) 

 

where  ὃ  ʌὃ is the relative complement of ὃ ὥὲὨ ὃȢ Following the 

work of Rodriguez and Egenhoffer [55] , parameters aand b are calculated 

as Equation 10 and 11.  

When 5.0=a  and 5.0=b , Equation (17Ɋ ÂÅÃÏÍÅÓ ÔÈÅ $ÉÃÅȭÓ 

coefficient [56]  which quantifies the overlap of two sets of attributes in 

relation to an estimate of their average size. In other words, the Dice 

coefficient is the number of attributes in common to both classes ὅ ὥὲὨ ὅ 

relative to the average size of the total number of attributes present in 

ὅ ὥὲὨ ὅ. 

 

( )
( )ji

ji

jiDice
AA

AA
CCsim

+

Æ
=

2/1
,                 (Equation 18) 

 

Suppose we are given two classes of scanner and fax modem as shown 

in Fig. 3-3:  
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Fig. 3-7 A sample for similarity calculation 

 

Scanner, ὃ= {distribution of matter or energy or both, consumes 

electricity, consumes paper, uses document, uses film, uses photograph, uses 

graphic, converts electricity, generates digital images, produces data}  

fax modem,ὃ  = {distribution of matter or energy or both, consumes 

electricity, consumes paper, produces data, consumes data, uses telephone 

line, receives data}. 

The cardinality of set of attributes of scanner, ȿὃȿ is 10, while the 

cardinality of set of attributes of fax modem ὃ is 7. The common attributes 

are= {distribution of matter or energy or both, consumes electricity, 

consumes paper, produces data}, then ὃ  ᷊ὃ τ. By equation 16, the 

similarity between scanner and fax modem is (2(4)) /  (10 +7) = 0.471.  

When 0.1==ba , equation (17Ɋ ÂÅÃÏÍÅÓ ÔÈÅ *ÁÃÃÁÒÄȭÓ ÃÏÅÆÆÉÃÉÅÎÔ [57] , 

in which Ὢὃȟὃ  is the cardinality of the union sets of sets ὃ ὥὲὨ ὃ  

 

( )
ji

ji

jiji

ji

Jaccard
AA

AA

AAAA

AA
CCsim

Ç

Æ
=

Æ+Æ

Æ
=21,     (Equation 19) 
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Consider again the set of attributes of scanner, ȿ!ȿ and set of attributes of fax 

modem !  used for in the previous example. The similarity between scanner 

and fax modem using the Jaccard coefficient is 4/13= 0.308. 

*ÁÃÃÁÒÄȭÓ ÃÏÅÆÆÉÃÉÅÎÔ ÉÓ ÒÅÌÁÔÅÄ ÔÏ ÔÈÅ $ÉÃÅȭÓ ÓÉÍÉÌÁÒÉÔÙ ÔÈÒÏÕÇÈ %ÑÕÁÔÉÏÎ 

20: 

 

( ) ( )( )
jiDicejiDiceJaccard AAsimAAsimsim ,2/, -=      (Equation 20) 

 

When a=1 and Æ!ȟ! ÍÉÎȿ!ȿȟ!  equation (16) becomes the 

overlap coefficient [58]  given by Equation 21. The overlap between two set of 

attributes of classes # ÁÎÄ # is equal to the intersection between the two set 

of attributes normalized by the size of the minimum number of attributes. 

 

( )
( )ji

ji

Overlap
AA

AA
CCsim

,min
, 21

Æ
=                                 (Equation 21) 

 
Another variation is the all-confidence similarity [58] . It differs from 

Equation 21 where the two set of common attributes are divided by the 

maximum number of attributes between classes A and B. 

  

ίὭά ( )
( )ji

ji

AA

AA
CC

,max
, 21

Æ
=                      (Equation 22) 

 

When Ὢὃȟὃ  ὃ ὃ  equation 16 becomes a cosine similarity 

with attributes sets instead of vectors. 

 

ίὭά ( )
ji

ji

ji
AA

AA
CC

³

Æ
=,                                         (Equation 23)   
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When a=0 and Ὣὃȟὃ άὭὲȿὃȿȟὃ  equation 16 becomes 

equations 24 which is similar to that of  van der Weken et al. [59]  but using 

formal attribute sets instead of fuzzy sets. 

 

( )
( )ji

ji

jinvanDerWeke
AA

AA
CCsim

¡¡

¡Æ¡
=

,min
,1      (Equation 24) 

 

Another variation is equation 25: 

 

( )
( )ji

ji

jinvanDerWeke
AA

AA
CCsim

¡¡

¡Æ¡
=

,max
,2     (Equation 25) 

 

where 
1A¡and 

2A¡ are the complements of sets of attributes 
1A  and 

2A . Values 

of a, Ὢὃȟὃ and Ὣὃȟὃ are summarized in Table 3-2. 

 

Table 3-2 Association among sets of attributes of classes being compared 

Equation a Ὢὃȟὃ  Ὣὃȟὃ  

simTversky 1 ὃ ᷾ ὃ ‌ὃ ὃʌ

ρ ‌ ὃ

ὃʌ  

 

simDice 1 ρς ȿὃὭȿ ὃὮϳ   

simJaccard 1 ȿὃ ȿ ὃ ὃ ᷊ ὃ   

simOverlap 1 ÍÉÎȿὃȿȟὃ   

simAll confidence 1 ÍÁØȿὃȿȟὃ   

simCosine 1  ji AA³   

simvan der Weken 1 0  ÍÉÎȿὃȿȟȿὃȿ 
simvan der Weken 2 0  ÍÁØȿὃȿȟȿὃȿ 

 
 

For the evaluation of the semantic similarity measures of the proposed 

approach, we also investigate a composite similarity obtained by combining 
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semantic similarities: 

 

( )
2211, simwsimwCCsim jicomposite +=                        (Equation 26) 

 

where ύ and ύ  are weights and ίὭάand ίὭάrepresent two different 

semantic similarity measures of the proposed approach. 

 

Chapter 4 and 5 demonstrate the evaluation of the proposed approach 

against edge-counting and information-based similarity measures. In order 

to quantify the efficacy of each similarity measure, the degree of correlation 

with human judgment and NGD similarity will be used.   
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Chapter 4  EVALUATION OF THE PROPOSED 

APPROACH 

 

 

 

 

EVALUATION OF THE PROPOSED APPROACH 
 

 

 

 

4.1.    A taxonomy  for home electric appliances  

 

This chapter discusses the evaluation on the effectiveness of the 

proposed approach (Chapter 3) and its comparison with respect to edge-

counting and information-based measures. We provide an example for 

evaluating of the proposed approach in the domain of home electric 

appliances. The characteristics of home electric appliances are described in 

terms of processes and participating objects as outlined in Sections 3.3 to 3.6.  

In order to enable fair comparisons, several researches use human 

judgment for evaluating the similarity between word pairs [32] . As a result, 

the degree of correlation obtained against human judgments and the results 

of the computerized similarity measures (i.e. the semantic similarity 

measures of the proposed approach, edge-counting and information-based 

measures) can be used to quantify the likeness of two classes being 

compared. If the degree of correlation of the proposed approach is close to 1, 

the proposed approach properly approximates the judgments of human 

subjects.  
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4.1.1.   Taxonomy  construction  

   

This section describes the development of an electric home appliance 

taxonomy, which is based on the method described in Chapter 3. The list of 

potential classes was extracted from product categories in Amazon.com and 

the formal attribute s information w ere obtained using FAST, using expert 

consultations and brainstorming. In the development of the taxonomy, we 

focused on the process or processes in which the given appliance participates 

or is involved. Therefore, formal attributes include a reference to the process 

or a description of the process in terms of the objects that are transformed by 

the process and the objects that are produced by the process. For example, 

the formal attribute identification of an electric kettle starts by the analyzing 

its main process associated to it, which is a process that produces hot water. 

Heating is a part of that process. In order to produce hot water, the electric 

kettle consumes electricity that is converted into thermal energy that is used 

to heat water. Therefore, the formal attributes of an electric kettle become 

heats; produces hot water; heats water; and consumes electricity.  

With formal attribute s information obtained this way, a context table 

was created (Fig. 4-1). Subsequently, the Grail algorithm [71]  was used to 

generate the concept lattice shown in Fig. 4-2. After analyzing and correcting 

the lattice, the final lattice and formal-attribute information were used to 

develop taxonomy using the Protégé ontology editor [74] . Subsequently, the 

resulting class hierarchy was saved in OWL format [75] .  

Strictly speaking, formal attribute information must be in the form of 

axioms as in the following example.  

Class filtration:  

   SubClassOf:  

       heating_device  

   SubClassOf:  

       produces some hot_water  
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However, for simplicity in the similarity calculation, formal attributes 

were added as OWL properties. For example, the formal attribute for 

ȰÐÒÏÄÕÃÅÓ ÈÏÔ ×ÁÔÅÒȱ ÉÓ ÄÅÃÌÁÒÅÄ ÁÓ ÆÏÌÌÏ×Óȡ 

 

Declaration( ObjectProperty( :produces_hot_water) )  

ObjectPropertyDomain(:produ ces_hot_water :water_heater)  

 

This resulted in an OWL file with 33 classes, 39 properties, and 5 levels 

in the class hierarchy. 
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radiation  

x          x      x   

generates high energy 
frequency waves  
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heats   x x x x  x  x  x x x    x x x  

heats room  x x      x            

heats water  x           x      x  

heats body  x   x                

heats food   x         x x     x x   

removes heat  x      x x      x      

removes heat from room  x       x      x      

removes heat from food  x      x             

removes water  x  x  x x   x           

removes water from hair  x  x                 

removes water from 
clothes  

x    x x              

removes water from 
dishes  

x        x           

removes dirt  x    x    x          x 

removes dirt from clothes  x    x               

removes dirt from dishes  x        x           

removes dirt from 
surfaces  

x                  x 

produces cooked food x         x       x   

bakes x               x x   

produces baked food x                x   

bakes bread x               x    

sucks up dirt  x                  x 

produces toasted bread x          x         

receives tv-signals x            x       

mixes food x              x     

chops food x              x     

delays bacteria growth x      x             

delays mold growth x      x             

produces air circulation x       x      x      

produces food x         x x    x x x   

produces hot water x           x      x  
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4.2.   Evaluation of the proposed approach  

 

The evaluation is carried out by measuring the degree of correlation 

between the calculated similarity scores and scores obtained by human 

judgments. For this purpose, a questionnaire was administered to 30 

respondents. The questionnaire asked each respondent to rank the likeness 

ÂÅÔ×ÅÅÎ ȬÅÌÅÃÔÒÉÃ ËÅÔÔÌÅȭ ÁÎÄ ÅÁÃÈ ÏÆ ρχ ÈÏÍÅ ÅÌÅÃÔÒÉÃ ÁÐÐÌÉÁÎÃÅÓȢ 

Respondents then rated the similarity of the pairs on a 1-17 scale, with lower 

numbers indicating higher similarity.  

The comparison was carried out by calculating the correlation 

coefficient and the sum of squared errors.  

   The level of inconsistency of each questionnaire was calculated with 

the following formula. 

 

ä -=
j

ijiji qd m         (Equation 27) 

 

Where ijq  is the value of the score that participant i submitted for pair j and 

‘  is the mean of the scores of all the users except that of user i for pair j.  

Using Equation 27, questionnaires with values of Ὠ above two standard 

deviations from the mean
id  were excluded from the analysis. The 

inconsistency value per respondent (per each set of questionnaire) is shown 

in Fig. 4-3. It is obvious that respondent id 16, 17 and 19 are unreliable 

because they far away from the others in the curve. Their evaluation was not 

taken into consideration for this experiment. Refer to Appendix C for the 

questionnaire and their results.  
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The average standard deviations of the scores across respondents were 

also evaluated to identify inconsistencies. Since one of the questionnaires had 

a standard deviation lower than average, it was not taken into account. With 

this last change, the sample size was reduced from 30 to 27. 

Finally, individual pair scores with one standard deviation below or 

above the pair mean were eliminated, which accounted for 4% of the total 

data. Fig. 4-4 shows the terms pair integrity and it is observed that all pairs 

are taken into account for this experiment. 

 

 

Fig. 4-4 Terms pair integrity 
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Fig. 4-3 The level of inconsistency for each questionnaire 
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Subsequently, the average scores were normalized using the following 

transformation: 

 

minmax

min

qq

qq
s

j

j
-

-
=         (Equation 28) 

where   represents the similarity of pair j, 17max=q   and  1min =q . Values of 

js   are shown in the first column of Table 4-1. 

 

4.2.1.   Similarity calculation  

 

A program was developed in Java using the ontology library Jena [76] . 

The program reads the ontology and the names of the two classes to be 

compared. Firstly, it extracts the formal attribute information of each class in 

the ontology. Then, the program proceeds to calculate the cardinalities for 

each set of attributes, the minimum and maximum values, the number of 

common attributes, etc. Attributes of a class include those inherited from all 

of its parent classes. Similarity calculations are then carried out using the 

semantic similarity measures of the proposed approach as explained (Section 

3.6). Then the Wu-0ÁÌÍÅÒȭÓ ÁÎÄ ,ÉÎȭÓ ÓÉÍÉÌÁÒÉÔÉÅÓ ÁÒÅ ÃÁÌÃÕÌÁÔÅÄ ÂÙ ÅÄÇÅ 

counting, using the taxonomy structure of the ontology. 

 

4.2.2.   Experiment results  

   

Table 4-1 summarizes the calculation results of the investigated 

similarities rating between 17 class comparisons.  

Initially, the root node in the Wu-Palmerȭs similarity was set to Ȭhome 

electric applianceȭ. For the reason explained in Chapter 2, 3N  becomes 0 for 

several pairs for which their common superclass happens to be the root 

node. Since these pairs clearly contain different classes, the result is 
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incorrect. As a workaround we introduced Ȭdeviceȭ as subclass of physical 

object (defined in ISO 15926) and made Ȭhome electric applianceȭ a subclass 

of Ȭdeviceȭ. From Table 4-1, it can be seen that the Overlap coefficient 

(simOverlap) with R=0.795 followed by the Wu-Palmer similarity with R=0.782, 

the Cosine similarity (simCosine) with  R=0.781, and Dice with (simDice ) with  

R=0.777.   

After considering every possible combination of the similarit y equation 

of Table 3.1 in the composite similarity equation (Equation 29), the best two 

combinations were: 

 
( ) JaccardeCoJaccardeCo simsimCCsim 887.0887.1, sin21sin -=+                (Equation 29)  

 
with  a correlation of R=0.817 and 

 

( ) JaccardDicejiJaccardDice simsimCCsim 966..0966.1, -=+
    (Equation 30) 

 
with a correlation of R=0.816. 

The weights of 1.887 and -0.887 and 1.966 and -0.966 for Equation 32 

and 33, respectively were obtained by numeric optimization so as to 

minimize the residual sum of squares between the composite similarity and 

js of Equation 23. 

 

4.2.3.   Analysis of the results  

 

To eliminate biases in the analysis of the results, we removed those 

pairs that produced squared errors greater than two times the standard 

deviation. The pairs (electric kettle, television set) and (electric kettle, 

electric oven) produced the biggest squared error. After removing both pairs, 

the correlation value of the Overlap coefficient increased to R=0.947. Again,  

simCosine(R=0.922) and  simDice (R=0.919) were second and third in 

performance, respectively. For the combined similarities, simCosine+Jaccard 
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increased to R=0.950 and increased to simDice+Jaccard  R=0.947.     

A hierarchical cluster analysis was also conducted in order to compare 

relatively homogeneous groups of results. The cluster analysis was equally 

applied to both the human assessment results and the results obtained with 

simOverlapȢ #ÌÕÓÔÅÒÉÎÇ ×ÁÓ ÃÁÒÒÉÅÄ ÏÕÔ ÕÓÉÎÇ 7ÁÒÄȭÓ ÍÉÎÉÍÕÍ variance 

algorithm.  

A comparison of the clusters indicates that most of the object pairs that 

belong to one cluster with simOverlap  also belong to a cluster in the results of 

human judgment. As shown in Fig. 4-5, only (electric kettle, television set), 

(electric kettle, air conditioner), and (electric kettle, bread machine) were 

grouped into another cluster. This is probably due to missing attributes in the 

FCA context table. Although another possible reason is that these two pairs 

were particularly difficult to judge during the answering of the questionnaire. 
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Fig. 4-5 Results of the cluster analysis. 
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of similarity of two classes in the application of home electric appliance. The 

results of the experiment show that our approach performs better when compared 

against the Wu-Palmer similarity measure. In addition, while Wu-Palmerôs 

similarity is only defined for trees, our approach can be applied to taxonomies 

containing a class with multiple direct-superclasses (multiple-inheritance). For 

example, similarity between two classes, N and B as shown in Chapter 2 (Fig.2-1)  

without taking any mathematical calculation we can see that the similarity is 0 due 

to both classes shares identical root class and the common superclass.  

The proposed similarity measures are not only based on the taxonomy but 

also on the formal attributes that obtained using FAST in characterizing each class 

in the taxonomy. Consequently, formal attributes information can be used to 

calculate similarities in trees and lattices. Results of the numeric experiments 

showed that in all cases, the proposed semantic measures performed better than 

the similarities of Wu Palmer and Lin similarity measures.  

    In the electric appliance experiment, after removing the least performing 

pairs (electric kettle, television set) and (electric kettle, electric oven), the 

correlation saw an increase of approximately 25%. The reason might be that both 

television set and electric oven were characterized by processes which are 

unfamiliar to the common user. For example, toaster was characterized as a device 

that uses infrared radiation. In this case, infrared radiation was considered as a 

part of heating, which is directly related to toasting bread. Similarly, TV set was 

defined as a device that receives television signals. 

When other devices were characterized in terms of processes and 

participating objects that were more familiar to the common user, the calculated 

similarities were close to the human judgments. However, albeit important to the 

designers, from a user point of view, subprocesses that are not directly perceived 

by the users (i.e. the mechanism with which a product achieves its given function) 

are probably not taken into account. This could be a limitation of the 

questionnaire approach for evaluating the similarities. 

The use of formal concept analysis to develop taxonomy provides a degree 

of flexibility to a designer that is interested in developing something new. Formal 



 

Chapter 4 

 

61 
 

concept analysis can provide the designer with not only the most similar product 

but also with a set of attributes that characterize it. Those attributes can provide an 

insight of the kind of solution (s)he is searching for. For example in the 

conceptual design of a plant, a designer might be interested in a device for heating. 

While specific technologies such as a microwave oven, an electric kettle or a 

water heater could potentially be useful, the designer might find it more useful to 

know about the characteristics of those technologies. As a result this extra 

knowledge could provide the designer the opportunity to think óoutside the boxó. 
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Chapter 5  APPLICATION OF PROPOSED APPROACH 
TO PROCESS ONTOLOGY DEVELOPMENT 

 

 

 

 

 

APPLICATION OF THE PROPOSED APPROACH TO 
PROCESS ONTOLOGY DEVELOPMENT 
 

 

 

5.1.   An ontology for machining processes  

 

 A manufacturing process aims to fulfill given requirements by 

transforming materials into  objects that have specific shapes, structures, and 

other properties [77] . Several kinds of processes are commonly utilized, 

including mass-change, phase-change, structure-change, deformation, and 

consolidation processes. 

A computer representation of manufacturing processes presents a 

range of potential benefits in areas such as product design and process 

planning [78] , [79] , [80] , [81] .  

One approach to the computer representation of processes is by means 

of ontologies, which capture the semantics of things represented in a specific 

domain [82] . Ontologies are useful for knowledge representation and sharing, 

automated reasoning, and human-machine interfaces [83] , [84] .  

In general, a domain ontology is composed of classes, relations and 

axioms [65] . A class represents a set of things that share the same attributes. 

For example, all the members of the class drilling use a drill to remove 
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material and create a hole. A relation is a tuple that indicates a relationship 

between two or more things. Examples of relations are less than, connected 

to, and part of. In particular, the subclass relation is defined for organizing 

classes in the form of a class hierarchy. Axioms are typically represented as 

logical constructions that serve as formal definitions of a given class. 

Several ontologies have been developed for generic knowledge 

representation in the domains of product and manufacturing including 

PRONTO [85] , MASON [86] , and ADACOR [87] . In addition, ontologies have 

been developed for specific manufacturing processes. For example, 

Grüninger and Delaval [88]  developed a cutting process ontology that can be 

used in sheet-metal cutting design. There are a number of methodologies to 

ÄÅÖÅÌÏÐ ÏÎÔÏÌÏÇÉÅÓ ÉÎÃÌÕÄÉÎÇ 5ÓÃÈÏÌÄ ÁÎÄ +ÉÎÇȭÓ ÍÅÔÈÏÄ [89] , Grüninger and 

&ÏØȭÓ ÍÅÔÈÏÄ [90]ȟ .ÏÙ ÁÎÄ -Ã'ÕÉÎÅÓÓȭÓ ÍÅÔÈÏÄ [82] , the METHONTOLOGY 

framework [91] , the Cyc methodology, KACTUS, SENSUS, and the On-To-

Knowledge Methodology [92] . Some of these methodologies are briefly 

described in Appendix D. 

One of the difficulties in ontology development is the lack of systematic 

methods for the design of the class hierarchy. This is caveat because an 

adequate class hierarchy is a key element in accurate and consistent 

ontologies [14]. At present, however, it is the current practice to develop 

class hierarchies in an ad-hoc manner, without the reasons and justifications 

of the class structure. Another technical challenge is how to define the axioms 

that constrain the meaning of the definitions in the ontology.  

This chapter demonstrates the proposed semantic similarity method 

for the construction of an ontology for machining processes. The resulting 

machining processes ontology was evaluated and compared against 

-!ÎÕÆÁÃÔÕÒÉÎÇȭÓ 3ÅÍÁÎÔÉÃÓ /.ÔÏÌÏÇÙ ɉ-!3/.Ɋ [86] . 
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5.1.1.   Ontology construction  

  

Machining processes are commonly used to remove material and to 

modify the surfaces of objects that have usually been produced by other 

means. Several kinds of machining processes exist, including mechanical, 

electrical, chemical, laser, thermal, and hydrodynamic processes [93] , 

[94] . For illustration purposes, the scope of this case study is limited to 

mechanical machining (i.e. those that use mechanical means to remove 

material). In order to develop the ontology, several common textbooks 

[94] , [95] , [96]  and Internet sources were consulted. The potential 

classes are listed in the first column of Table 5-1.  

For the preparation of the Formal Concept Analysis, attributes were 

selected based on FAST. Drilling is a hole-making process that produces a 

holed physical object by using a drill.  The object that is transformed by a 

given drilling is a solid physical object. The object that is produced is also 

a solid physical object but with a hole in it. Next, constraints on 

performers and location are identified. For example, a drill is always 

involved in a drilling. Therefore, the formal attributes for drilling are: 

changes a physical object; produces a holed object; involves a cutting tool 

to remove material; and uses a drill. 

Boring, reaming, taping, counterboring, spot facing, and 

countersinking also change a solid physical object and generate a solid 

physical object with a hole (a holed object). However, these four 

machining processes differ from drilling in that the work piece to be 

machined has already a hole. More differences can be found when we 

focus on the object that is produced by each of these processes: boring 

gives place to a physical object with a concentric axis; tapping produces a 

physical object with a threaded hole; counterboring, spot facing, and 

countersinking produce a physical object in which only a portion of the 

hole is enlarged. However, in counterboring the enlarged portion is also 
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a hole in which the bottom part is flat and square. Therefore, the formal 

attributes of counterboring become: consumes a physical object; changes 

a holed object; produces a holed object in which a portion of the hole is 

enlarged; enlarges a portion of an existing hole to a larger diameter; 

produces a holed object with an enlarged portion that is cylindrical; 

enlarges the end portion of the hole; produces a physical object in which 

the bottom part of the enlarged portion is flat and square; and involves a 

cutting tool to remove material.   

Table 5-1 summarizes the formal attributes for each potential class. 

For the location criterion, we could have referred to the machine where a 

given kind of process takes place. However, in the mechanical machining 

domain, there are different types of machines that range from manual 

lathes to computer numerical control machines. Because none of the 

machining processes always takes place in a given machine, the 

corresponding formal attributes are absent (for the same reason the 

machines are not considered as performers either). Based on the formal 

attributes of Table 5-1, a context table was created (Table 5-2). 

Subsequently, Concept Explorer [97]  was used to generate the concept 

lattice. The resulting lattice is shown in Fig. 5-1. 

After generating the lattice, object exploration was conducted to 

verify the completeness of the lattice. In object exploration, the modeler 

focuses at the relations between objects associated to a concept its 

subconcepts to see if they make sense.  

Therefore, all paths in the lattice of Fig. 5-1are traced starting from 

the root node until reaching the bottom node. 

 During the object exploration, it was noticed that the lattice 

ignores the difference between reaming and boring despite the fact that 

textbooks and machining experts differentiate between them (Fig. 5-1). 

Another possible inconsistency is that counterboring is presented as a 

subclass of reaming. 
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To resolve these inconsistencies, we consulted the textbooks once again 

to disambiguate with more differences. Some textbooks pointed to 

differences on the surface finish of the product which was difficult to account 

for, particularly because tolerances differ among the different sources. A 

clear consistent difference was found in the tool (the performer) employed in 

reaming and boring. Reaming employs a multiple-tooth cutting tool called a 

reamer. On the other hand, boring always uses a single-point cutter (boring 

bar) [94] , [98] . 
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Table 5-1  List of potential classes and formal attributes for machining processes 

 Object that is 
changed by 
the activity 

Object that is 
produced by the 

activity  

Performer Composition 

drilling  physical 
object 

a holed object involves a cutting 
tool to remove 
material, uses a drill 

 

boring physical 
object,   

a holed object 

a holed object , 
enlarged portion is 
cylindrical  

involves a cutting 
tool to remove 
material 

 

enlarges the end portion of 
the hole, enlarges a portion 
of an existing hole to a 
larger diameter 

reaming physical 
object,   

a holed object 

a holed object, 
enlarged portion is 
cylindrical  

involves a cutting 
tool to remove 
material 

 

enlarges the end portion of 
the hole, enlarges a portion 
of an existing hole to a 
larger diameter 

counterboring physical 
object,   

a holed object 

a holed object, 
enlarged portion is 
cylindrical, physical 
object in which the 
bottom part of the 
enlarged portion is 
flat and square 

involves a cutting 
tool to remove 
material 

enlarges the end portion of 
the hole, enlarges a portion 
of an existing hole to a 
larger diameter 

milling    involves a rotating 
cutting tool to 
remove material 

 

blasting physical 
object 

 involves an abrasive 
particles to remove 
material  

 

grinding physical 
object 

 involves an abrasive 
particles to remove 
material 

 

taping physical 
object,   

a holed object 

enlarged portion is 
cylindrical, an 
internal thread hole  

involves a cutting 
tool to remove 
material 

enlarges a portion of an 
existing hole to a larger 
diameter 

turning  physical 
object  

 involves a cutting 
tool to remove 
material 

changed object is rotated 

spot facing physical 
object,   

a holed object 

physical object in 
which the bottom part 
of the enlarged 
portion is flat and 
square,  physical 
object in which the 
enlarged portion 
provides seat for a 
washer 

involves a cutting 
tool to remove 
material 

a holed object  in which a 
portion of the hole is 
enlarged 

lapping physical 
object 

 involves an abrasive 
particles to remove 
material 

 

countersinking physical 
object,   

a holed object 

a holed object, 
physical object in 
which the enlarged 
portion provides a 
recess for a 
countersunk flat heat 
screw or countersunk 
rivet, produces a 
physical object in 
which the bottom part 
of the enlarged 
portion is cone-
shaped 

involves a cutting 
tool to remove 
material 

a holed object in which a 
portion of the hole is 
enlarged, enlarged the end 
portion  
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Table 5-2 Preliminary context table 
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drilling  x  x          x x   
boring x x x  x       x  x   
reaming x x x  x       x  x   
tapping x x x x x       x  x   
counterboring x x x  x x     x x  x   
spot facing x  x   x x       x   
coutersinking x x x     x x  x x  x   
turning  x         x    x   
milling  x             x x  
blasting x               x 
grinding x               x 
lapping x               x 
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Similarly, grinding, lapping, and blasting were also shown as equivalent 

classes in the lattice. To verify this conclusion, textbooks were consulted 

focusing on these three classes, and it was found out that once again the 

difference was in the performer. Grinding is carried out with a tool called 

grinding wheel, which is a circular object made of abrasive materials bonded 

together. Lapping is a process that uses the so-called lap plate upon which 

abrasive slurry is placed. Blasting is characterized by the use of a high-

pressure stream of abrasive particles which in some cases can be replaced 

with another fluid such as air or water [99] .  

Consequently, the inconsistencies can be corrected by adding the 

corresponding attributes which are shown at the dotted box of context table 

in Table 5-3. The revised lattice is shown in Fig. 5-3. 

Note there are eight unnamed nodes (A, B, C, D, E, F, G, and H) in the 

lattice of Fig. 5-3. These are considered as newly discovered classes that can 

be identified based on the individual formal attributes and the parent nodes. 

4ÈÅÓÅ ÁÒÅ ÎÁÍÅÄ ȰÍÁÃÈÉÎÉÎÇ ÐÒÏÃÅÓÓȱȟ ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÕÓÅÓ ÃÕÔÔÉÎÇ ÔÏÏÌȱȟ 

ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÐÒÏÄÕÃÅÓ Á ÈÏÌÅÄ ÏÂÊÅÃÔȱȟ ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÃÈÁÎÇÅÓ Á ÐÏÒÔÉÏÎ 

ÏÆ ÁÎ ÅØÉÓÔÉÎÇ ÈÏÌÅ ÔÏ Á ÌÁÒÇÅÒ ÄÉÁÍÅÔÅÒȱȟ ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÐÒÏÄÕÃÅÓ ÁÎ 

enlarged portion  ÔÈÁÔ ÉÓ ÆÌÁÔ ÁÎÄ ÓÑÕÁÒÅȱȟ ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÅÎÌÁÒÇÅÓ ÔÈÅ ÅÎÄ 

ÐÏÒÔÉÏÎ ÏÆ ÔÈÅ ÈÏÌÅȱȟ ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÐÒÏÄÕÃÅÓ ÁÎ ÅÎÌÁÒÇÅÄ ÐÏÒtion that is 

ÃÙÌÉÎÄÒÉÃÁÌȱȟ ȰÍÁÃÈÉÎÉÎÇ ÔÈÁÔ ÕÓÅÓ ÁÂÒÁÓÉÖÅ ÐÁÒÔÉÃÌÅÓȱ ÒÅÓÐÅÃÔÉÖÅÌÙȢ  

After analyzing and correcting the lattice, the resulting lattice and 

attribute information served as the basis to develop a computer-processable 

ontology using the Protégé ontology editor [100] . Protégé has a graphical 

user interface that facilitates the specification of classes, relations, and 

axioms. After editing the ontology, the user can save the ontologies in the 

OWL language, which is useful for automatic reasoning and integration. The 

resulting classes in the ontology are shown in Fig. 5-4. 
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The top node of the class hierarchy (machining_process) was made a 

subclass of activity in the upper ontology. This paper uses ISO 15926 but 

other upper ontologies can also be used. 

 

 

 

Fig. 5-2 (a) boring enlarges a hole; (b) reaming produces a slightly enlarged a hole that 
has a more accurate diameter; (c) counterboring enlarges a part of the hole so that the 

bottom part of the enlarged portion of the hole is flat and square 

  

(a) (b) (c) 
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Table 5-3 Modified context table.  
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