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Abstract

Due to the complexity of customer requirements coupled with drastic
technological changes, development of products and processes is becoming
increasingly knowledge intensive. Secifically, retrieving product and
process information and making effective use of it requires similarity
measures.

Similarity measures are concerned with quantifying of the likeness of
the things that are compared. Similarity measures have been practicall
applied in a wide variety of fields ranging from data mining, casbased
reasoning system, image interpretation and pattern recognition. Several
researchers have proposed similarity measures that evaluate the likeness
between values of numeric properties However, in many applications some
attributes are non-numeric. One solution is to use syntactic similarity
measures that calculate the similarity between two words. However,
syntactic approaches are limited as they fail to produce good matches when
confronted with the meaning associated to the words they compare.

To overcome the above drawbacks semantic similarity measures are
been investigated. A semantic similarity measure is a function that quantifies
the degree of likeness between two things based ahe meaning associated
to each thing being compared. This research contributes to the field of
semantic similarity measures for products and processes. A novel approach
has been proposed in this research, based on Formal Concept Analysis (FCA)
and a set ofcriteria for the characterization of products and processes called
Formal Attribute Specification Template (FAST).

This research focuses on countable objects that are represented in
terms of their physical aspects and processes in which they are involved.

Processes can be intentional or unintentional. In an intentional process, a



particular objective is accomplished. Unintentional processes include natural
phenomena and undesired processes such as harmful explosions or fires.

The proposed approach is compsed of semantic similarity measures
that compare classes in a taxonomy obtained with FCA and a template for the
specification of formal attributes (FAST).

The semantic similarity measures of the proposed approach compare
classes of products or processe3he comparison is based on the assumption
that the more common attributes that are shared by two classes the more
similar they are. Therefore, a class is 100% similar to another class if both
classes have exactly the same attributes. In particular, the ghutes are the
formal attributes from the FCA. For this purpose, several similarity equations
are investigated in this research by using formal attributes as the sets they
compare.

Class taxonomies are defined by means of the subclass relation. A class
is a subclass of another class if every member of the subclass is also a
member of the super class. Formal Concept Analysis (FCA), which is a
method based on applied lattice and order theory, is selected as the
taxonomy generator.

FAST helps to describe théormal attributes common to all members of
a given class that distinguish them from members of another class. The
product formal attributes are expressed in terms of its mereological and
topological structure and its involvement with one or more processesThe
process formal attributes are expressed in terms of: (1) objects that are
always changed by the process (a.k.a inputs); (2) objects that are always
produced by the process (a.k.a outputs); (3) participating physical objects
(including locations, agens, and performer) other than inputs and outputs;
(4) sub-activities that compose the process (a.k.a suéictivities).

The proposed approach was evaluated against edgeunting and
information -based similarity measures. In order to quantify the efficacy of

each similarity measure, the degree of correlation with human judgment was



used. The results of the evaluation show that the proposed approach
performed better than existing similarity measures.

The proposed approach is illustrated with two case studies.he first
case study demonstrates the use of FAST for the construction of an ontology
for machining processes. The resulting machining processes ontology was
evaluated and compared against a thirgbarty ontology. The degree of
correlation with Internet -search engine using the value of the Normalized
Google distance evaluated the accuracy of each ontology. The results of
evaluation show that the ontology obtained with FAST is slightly better than
the existing ontology. It was also found that FAST can providbe design
rationale of the ontology.

The second case study focused on the application of the proposed
semantic similarities for selecting the service strategy for ProdueService
systems (PSS) at the early stage of design. It is often the case that tIiB&SP
designer is faced with limited amount of knowledge at the early stage of
design. One solution is to use the cadmsed reasoning (CBR) system to
facilitate the service strategy selection in which PSS design problems are
solved by using or adapting prevdusly obtained design solutions. EXxisting
CBRsystems use numerical similarity measures to search the relevant
solution to the problem to be solved. In this case study, a semantic GBR
system was developed by incorporating productlasscomparison based on
the proposed semantic similarities. The results of evaluation show that the
proposed approach proved useful when some details of information are not

available.
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Casebased reasoning
system (CBR)

Edgebased measure

False positive

Feature-based
measure

Formal Concept
Analysis (FCA)
Information -based
measure
Mereology

Mean Absolute
Percentage Error
(MAPE)

Ontologies

OwL

Process

Glossary

is one way to solve problem in which problems are
solved by using or adapting previously design solution:
to old problems.

similarity measure that relies on the use of subclass link:
(edges) between classes

Is the errors of retrieving results that are not fulfill

the condition.

similarity measure that take into account the features
that are common to two classes

is a method based on applied lattice and order theory
that can be used to generate lattice

similarity measure that depends on information content

expresses the parwhole relations of an object
is a measure to determine the accuracy of a series in

statistics.

describes a shared understanding about the meanings ¢
objects by means of classes of objects, taxonomy,
relation between classes, properties of objects in each
class and axioms

is a language for processing web information.
(http://www.w3schools.com )
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physical or chemical change in a substance or mixture o
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Product
Product-service
system

Root Mean Squared
Error (RMSE)
Similarity

Semantic similarity

Synset

Topology

is a something that is the result of a process.

is a mix of both products and services aimed at better
sustainability of both production and consumption.

is a measure that determine the differences bateen
predicted and observed value.

is a term to enclose whether two things, or two
situations are similar or dissimilar.

is a term to quantify the degree of likeness between two
things based on the meaning.

is acollection of one or more words and phrases
("collocations") collectively referred to as "word fams"
that can all share the similaimeaning (synonym).
(http://lyle.smu.edu/~tspell/jaws/doc
/edu/smul/tspell/wordnet/Synset.html )

refers to the conrectivity between objects

Vi
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Chapter 1

Chapter 1.

INTRODUCTION

1.1. Similarity measures

Generally, BET E1 AOEQUG& E O whkthedth®thing®) 1
or two situations are similar or dissimilar. According to [1],
similarity plays an important role in studies of theories of cognition
and how people male comparisons.According to[2], Gimilarity is a
core element for learning, knowledge and thought, for only our sense
of similarity allows us to order things into kinds so that these can
function as stimulus meaningsreasonable expectation depends on
the similarity of circumstances and on our tendency to expect that
similar cause will have similareffectsa

According to Holt [3], similarity is important for humans to
understand the existene of objects, structure and actionstogether
with their connections in reality. The degree to whichwe determine
if two things are similar is both intuitive and based on our
knowledge. For example, when an individualplans to usea toaster

on the dining table as shown in Fig. 11, he or she will imaginethe

AT A1 T O,
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result of using the toaster, which is related tahe function performed
by the product. The memory, which has some prior knowledge,
organizes the information and somehow translates it into
associationssuch as bread and toaster, toasted bread and toaster.
Based on memory of the pasta toaster is always used to toast the
bread.7 EAT AT I PAOET C A O1T AOOAO AT A
inclined to look at common aspects such as the use of heat to

produce warm and somehow crispy bread

Toasting — \Vv//
Toaster + bread
(products) T Toasted bread
JUE N

Use of heat
(process)

Fig.1-1 The function of aproduct are the desired behavior of groduct

In addition, if only a few objects are given, it is egdor a human
to identify how close two objects are by finding their common
aspects However, t becomesmore complex fora large numbers of
objects.

Therefore many practical applications requirecomputational
similarity measures. As a matter of fact, lhe computational

approaches for measuring similarity that emphasize imitaie the

1 A06 O OAlL
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human ability of assessing similarity between two things date back
to [4].
The past decade has seen théevelopment of computational
similarity measurethat are based ongeometric modelsthat assume
objects are represented by points in some coordinate spac&he
similarity of these approachess calculated by the metric distance
between respective points. However, me of major problemswith
this approachis the inappropriateness to represent the dimensional
representation for qualitative properties of thing being compared[5].
In recent years, there has been an increasing interest umsing
feature comparison toquantify the degree of ikeness of the things
that are compared.Tversky and Gati[5] identified similarity as a
function that quantifies the degree to which two se$ of features
match each other.They proposed a similarity that considersboth
common and distinct features whichare known as the contrast
model. Their contrast model explainedthat the similarity should not
be viewed as a symmetric relation such aais similar to b than b is
similar to a. For A@AT D1 Ah DPAT P1 A OAUOBOEAADEAODA
OAOEAO OEAT OOEA AEAQERAOEDAORODAOAGOOBAC
OEA PAOOITo6 ATA 110 OOEA Roskadbamii OAOGAIT A
Norvig [6] defined similarity as an evaluation of the common
intrinsic features shared by two things. Théntrinsic features are the
important features that belong to a thing. If the thing is described
without this feature, the meaning of the thing is incomplete.
Smilarity measures play an important role in information
retrieval process, information extraction, information integration
and other applications involving comparison two things In an
information retrieval system, determining the optimal match

between a queries and stored information is the fundamental
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operation that highly depends on similarity measures. In such
systems, he retrieved information is sorted in order of their
decreasing similarity. Highranked information is likely to have
similar properties to the query.

Also, similarity measurescan be usel for problem solving. For
example the casébased reasoning systersuse reasoning that draw
conclusion by similarity. It imitates human reasoning for solving a
problem by making use othe previous experiences.

Similarity measures in pattern recognition are used for
classifying sets of objects into classes. Similar objects are grouped
within the same cluster and dissimilar objects in different cluster.

In numerous multimedia processing systems and applications,
assessment of image similarity is impadant for image copy detection,
retrieval and recognition problem. Similarity measures are used to
interpret the characteristics of an image that compared against its
variations versions suchas contrastbrightne ss-variation.

Although numerous concept of similaritymeasureshave been
applied in many scientific fields and presented in many forms and
interpretation s, they all have in common of comparing two objects,
two situations, for various reasonsincluding knowledge, biasesand
goals[7].

Most similarity measures evaluate differences between values
of numeric attributes such as in the numerical difference between
two given diameter values. However, many applications require nen
numeric similarities as well. For example, caskased reasoning
systems for the conceptual design of products and processes must be
developed to work with a limited knowledge about the products and

processes.
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Nearly all of nonnumeric similarity measures are based on
syntactic grounds. For example, the Levenshtein distand&6], [17]
can be used to calculate the similarity between two words, in terms
of the minimum number of operations that are needed to transform
one of the words into the other. However, from the point of view of
the meaning of the words that are compared, existing syntactic
similarity -measures often result in incorrect matches.

Semantic similarity measures can be used in order to overcome
the limitations of syntactic approaches. A semantic similarity is a
function that assigns a numeric value to the similarity between two
classes of objects based on the meaning associated to each of the
objects [18]. For a review of emantic similarity metrics, the reader
is referred to the paper of Cross and H[19].

Recently, the use of ontologies for evaluating similarity has
been reported in the literature [20], [21]. Ontologies are formal
models that use mathematical logic to disambiguate and define
classes of thingg22]. Specifically, ontologies describe a shared and
common understanding of a domain in terms of classepossible
relations between things, and axioms that constrain the meaning of
classes and relations[23]. A class represents a set of things that
share the same attributes. A relation is used to represent a
relationship among two or more things. Examples of relations are
less than, connected to, and part of. Class taxonomies are defined by
means of the subclass relation. A class is a subclass of another class if
every member of the subclass is also a member of the super class.
Axioms are typically represented as logic constructions that formally
define a given class or relation.

Most semantic similarities are defined in terms of the number

of edges between the classes that they compare. The research to date
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has tended to focus seantic similarities that are defined in terms of
features but uses synsets for the comparison between words rather
than classes. Most of the existing similarities measures use a large
database such as WordNet for general purpose and Mesh for medical
purpose for evaluating the word comparison.

In this thesis, a comprehensive approach towards the similarity
measures for products and processes information that can deal with

non-attribute information is developed.

1.2. Why are similarity measures necessary for p roducts and

processes?

A productis defined as something that is the result of a process.
On the other hand, typical chemical engineering textbooks define a
POl AAGO AO OAT 1PAOAOGEIT T0O0 A OAOEAO 1 &
DEUOEAA]T 1T 0 AEAI EAAI AEAT CA EI A OOAOOAT A
[8]. Textbooks also explen that processes commonly have several
steps, each of which represents a specific physical or chemical
change. Such definitions assume that during the realization of a
process, a particular objective is accomplished. In other words,
according to these dahitions, a process has a design intention.
However, unintentional phenomena are also of concern to
engineers. For example, explosions (such as those that result in
property damage) may happen as a result of an abnormal situation
rather than a well-designed series of steps. Despite differences
related to whether an objective is involved or not, both intentional
and unintentional processes share the ability to transform material
or energy through one or more changes. This research addresses

both kinds of processes.
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Due to the complexity of customer requirements coupled with
drastic technological changes, development of products and
processes is becoming increasingly knowledge intensivelt brings
about change in the way industries organize products and pcesses.
The marketdemands industries to effectively manage th&now-how
about products and processes as a means to differentiate the
business competitions. Information about products and processes
has to be considered as a rather special resour¢®]: it does not get
lost when it is used, and the costs for generating and procuring
information are high compared to the costs for its storage and
dissemination.

Product development which is a multi-disciplinary in nature
requires a variety of product life-cycle knowledge[10]. Specifically,
design teams face a considerable challenge in making effective use of
increasing amounts of information that is stored in several
information systems. Also, it is often the case that product designers
can reuse past designs rather than designing from scratghl]. Thus
it would be very important to have the ability to retrieve product
data.

As mentioned above, nformation retrieval consists of
translating and matching a query against a set of information objects.
The information retrieval system responds to the query using a given
algorithm and a similarity measure. Particularly, information
retrieval plays an important role in areas such as product family
design[12], product embodiment, and detailed desigiil3]. Shah et
al. [14] present a combination framework that consiss of software
engineering, data engineering and knowledge engineering and

design theory.
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In order to support product and processinformation retrieval
and reuse, some authors suggest the use of cds&sed reasoning
(CBR) in which design problems are solwk by using or adapting
previous design solutiong[13], [15].

A CBR system is composed of domain knowledge, a case base
and a search mechanism based on a similarity measure. Domain
knowledge refers © knowledge about the features of the different
objects or entities that a case is about. A case base contains a set of
cases, each of which describes a problem and a solution to the
problem. The problem is typically defined in terms of specific
features d objects. Finally, a similarity measure quantifies the
differences that exist between objects[7]. CBR uses similarity
measures to identify cases which are more relevant to the problem

to be solved.

1.3. Overview of the proposed approach

The objective of this thesis is to develop a more effective
semantic similarity method for products and processes. The
proposed approach is composed of semantic similarity measures
that compare classes in a taxonomy obtained witlrormal Concept
Analysis (FCA) and a template for the specification of formal
attributes.

The proposed approach is based onwio main pillars. One is a
semantic similarity measure based on Formal Concept Analysis
(FCA). The semantic similarity measure of the proposed appiach
compare classes of products and processeBhe semantic similarity
measure is emphasized on the common formal attributes that are

obtained from FCAIt is a method based on applied lattice and order
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theory, is selected as the taxonomy generatorThe underlying
principle in this research is that if a class represents a set of things
that share the same attributes (such as a class in a taxonomy), we can
state that a class is equivalent to another class if both classes have
exactly the same attributes. Ti8 implies that the more common
attributes that are shared by two classes the more similar they are.
For this purpose, several similarity equations are investigated in this
research by using formal attributes as the sets they compardt
became clear that he sets of features could be replaced with sets of
formal attributes from the FCA.

The secondpillar is a new way to specify theformal attributes
required by FCA. This method is referred to asormal Attribute
Specification Template (FAST). FAST identiethe product formal
attributes by considering its mereological and topological structure
and its involvement with one or more processes. FASAIso identifies
the formal attributes of processes

The proposed semantic similarity method consists of two step
taxonomy generation andsimilarity calculation.

FAST is usedn the taxonomy generation for formal attribute
identification which is later used in FCA to generata lattice. The
resulting lattice and formal attribute information obtained with FCA
are later used to createaclass hierarchy.

In the second step similarity between two classes of this
taxonomy is calculated using a semantic similarity measure in
which the taxonomy structure and formal attribute information are
used as input. For this purpose, he edgecounting and information-
based similarity measures were used to evaluate and compare
against the proposed approach. In order to quantify the efficacyfo

each similarity measure, the degree of correlation with human
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judgment and NGD similarity were used. The results of the
evaluation show that the proposed approach performed better than

existing similarity measures.

1.4. Thesis outline

The remainder of this thesis consists ofsix chapters followed
by bibliography. Topics discussed in every chapter are as follows:
Chapter 2 contains a comprehensive description on concept of
semantic similarity and presents an overview of common semantic

similarity measures.

Chapter 3describes the contribution of this research. This chapter
introduces the semantic similarity equationand the Formal Attribute

Specification Template (FAST) of the proposed approach.

In chapter 4, the proposed approachis evaluated and compared
against the existing similarity measures.The correlation of each

similarity score is compared against the human similarity ratings.

Chapter 5 describes the application of the proposed approach for
constructing machining process otology. The resulted machining
ontology was evaluated and compared against a thirgarty ontology.
The degree of correlation with Internetsearch engine using the
value of the Normalized Google distance evaluated the accuracy of

each ontology.

Chapter 6 demonstrates arealworld application in product-service

system.In this research the existingCBR systera that use numerical

10
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similarity measuresfor service strategy selectionfor product-service
system (PSS was modified by incorporating the product-class
comparison based on the proposed semantic similaritie§ he results
of evaluation show that theproposed approach proved useful when

some details of information are not available.
Chapter 7: summarizes the main contribution of this thesis and

draws conclusiors on the conducted researchFinally, some possible

improvements are discussed.

11
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Chapter 2

LITERATURE REVIEW

This chapter presents a brief review on semantic similarity, and
describes the existing approaches to determine the similarity of two things in
a hierarchical structure. Finally, the role of FCA for building the class

hierarchy is explained
2.1. Semantic similarity measures

Semantic similarity is used for providing necessary semantic context
information for information retrieval applications and in a variety of
applications including word sense disambiguation, classification and ranking,
detection of redundancy, and detectiorof malapropisms[24], [25]. To date,
the existing similarity measures in the literature proposed for measuring
similarity in a taxonomy between words. Some of researchers take the
advantage of combination of taxonomy with corpus to measure the similarity.

In this thesis, we use the term semantic similarity measuret denote
the quantifying of the degree of likeness between two things bad on the
meaning associated to each thing being compared.

In the literature, the term similarity and relatedness are very often used
interchangeably. However, there isa difference between them. The term
similarity is concerned about likeness, while relaédness seeks to determine

the relationship between two things.

12
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Resnik [30] defined similarity as a special case of relatedness. For
example, the bicycle and cyclist appear to be more closely relatéidan the
terms car and bicyde, even though car and bicycle are more similar. In this
example,Gicycle is related to cyclisbis based on the functional relationship
such as cyclist rides bicycle. The notion of relatedness emphasizes on the
various kind of lexical relationship suchas meronymy (bicyclewheel) and
antonymy (large-small), or functional relationship or frequent association
(camel-desert) [31].

Another common term is distance. Distance is inversely proportional to
similarity. Cross defined dstance is the inverse of both similarity and
relatedness. The less distance between two things, increase the similarity
between two things.

The computational approach regarding similarity requires a consistent
type of relation between things being compard such as the hierarchical
relation (i.e. isa, partwhole), associative relation (i.e. causeffect) and
equivalence relation (i.e. synonymy)[26]. Among these approaches, the
hierarchical relation is a wellstudied techniqueand has been widely applied
in computing the similarity between two things. Using this relation, it shows
how well the computational models imitate the human cognitive view of
classification[26] .

When the things that are cmpared correspond to classes in a
taxonomy, a semantic similarity is a function that assigns a numeric value to
the similarity between two classes of object$32]. The classes in a taxonomy
are related by means of a subabks relation also known ass-a relation or
subsumption relation. A classd is said to be a subclass af (0 is a
superclass of ) if all the members of6 are also members ab . It is worth
i ATOETITEI ¢ OEAO xEAT OAlI EET C AAI600
andhd ET OAAI EOU OEA AT I BPAOEOIT EO
classesoM 0 and wN 0 . Thus the similarity between two classes is based

on how closelythey are related in the taxonomy.
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According to the type of knowledge source that usedto assess the
semantic similarity assessment, the semantic similarity measures cabe
divided into threefamilies of functions [1] those based on the taxonomical
strucure (Section2.1.]); [2] those relying on the information content (Section
2.2.7); [3] those based on thetsof features (Sectiaa1.3.

2.1.1. Edge-based measures

Edge counting measures are based on the distance between two classes.
The most primitive edge-based similarity measure is that which computes
the distance of the shortest path length between two classes[33]. The
distance can be measured byhe number of edgeghat links the two classes
via is-a links in the taxonomy. Theshorter the path from one node to the
other, the more simibr they are. For example, thdength of the shortestpath
between node K and L irFig. 21 is 4. The path length between E and B is 4
The similarity between these two cases ighe same according to the path
length measures. Howeverin a more realistic senario, similarities between
any two adjacent nodes are not necessarily equalo address this limitation

some authorsassign weighs to eachedge that connecs two classes

root

Fig.2-1 A sample taxonomy lattice

14
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Leacock and Chodorow34] introduced the maximum depth of classes

hierarchy.

length
2D

sim.(C,,C,)=log (Equation 1)
where length is the shortest path length between two synsets anD is the
maximum depth of the taxonomy in which a lowest common ancestor (LCA)
is found.

Wu and Palmer[35] proposed the following similarity measure that
relies on the use of subclass links (edges) between classés.the abowe-
mentioned examples, the similarity between K and L is less than the
similarity between E and B as the latter two classesre in a lower level in the
hierarchy structure. They are scaling the proposed method to the relative

position of the word in the taxonomy.

2N,

- Equation 2
N+ N, + N, (Eq )

SimNuandPalme(Cl’CZ)
where N, and N, are the number of subclass edges fror@, and C,to their

closest common superclassN, is the number of subclass edges from the
closest common superclass of, and C,to the root class in the taxonomy. For

example, the similarity between classe#\ and E in Fig. 21 is calculated as

follows. As their closest common superclass arg, N, and N, are 2 and 1
respectively, andN, is 3. Note that the similarity measure of Wu and Palmer

is not defined for the case in which the closest common superclass happens
to be the root class. For example, the calculation of the similarity for classes
A and B in Fig. 21 returns 0.

The advantage ofedgebased measures is their simplicity. These
measures also involve alow computational cost as no corpus is required

during the similarity evaluation.
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However, edgebased approacheshighly depend on the degee of
completeness, homogeneity and coverage of the semantic links represented
in the taxonomy [36]. Moreover, this approachexclusively usesthe shortest
path between two classes to their common ancestor. For example, whereth
are applied in ontologieswith multiple inheritances, only the shortest path is
taken into consideration. Consequently, large amoust of knowledge
available in thetaxonomy maybeignored.

Another problem is that many edgecounting approaches take only'is-

a" into account although other relationship types may represent a substantial
fraction of the total number of edges. In other word, these approaches rely

on the notion that all links in the taxonomy represent a uniform distanc¢37].
2.1.2. Information -based measures

Similarity measures based on information content rely on functions
that determine the degree of specificity of a class. This approach was
originally introduced by Resnik[38] who stated that the concept of similarity
depends on the amount of information shared between two classes. Resnik
[38] emphasizedthat the more specific a class that subsumes the class being

compared (lowest common subsume), the morsimilar they are.
i Q4 (C,C,)=maxge ) (ICempudC)) (Equation 3)

where "Y®M) are the set of concepts that subsume and & and IC,, s

the corpus-based information content for a concepC.

This approach has successivelgeenrefined by Lin [32]. Lin states that
the similarity between two concepts is measured by the ratio between the
amount of information needed to state the commonality between the two
concepts being compared and the information needed to fully describe what

the two concepts are, E Isitif@rity measure is defined as
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ST (G Co) = )

= W (Equation 4)

where ICis the information content andC, is the closest common superclass

(lowest common ancestor in edgebased measure)
)T OEEO OEAOEO & O OEA AAI AOI AOGEIT A
approach proposed by Seco et g¥1] for the estimation of the IC of a concept

is used . Therefore, equatio (4) becomes

sim,.(C..C,)= o)+ olc) (Equation 5)

where g(C) is a function that depends on the structure of the ontology and is

defined as

g(C) =1- % (Equation 6)

where "Q0 is the number of subclasses of and C,__,is the total number of

classes in the taxonomy. For example, the calculation for the similarity
between classes 1 and 5 in Fig-2 is calculated as follows. Both classes 1 and
5 do not have any subclasse¥06 is 0 and subsequently théQ6 and™Q0

is 1. Class 3 is their closest common superclass in which ti@®0 is 0.102
with "Q6 is 4. Thus, the similarity measure for classes 1 and 5 is 0.102. Note
that, the similarity measure of Lin is influenced by the number of subclass
("Q0 ) of a class. Let take another example such as the similarity between
classes 2 and 5. Th®0 values are 0.613 and 1 for class 2 and class 5
respectively. Therefore, the similarity measure between classes 2 and 5 is
0.127.
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class2
class4

Fig. 2-2 A sample taxonomy fanformationbased similarity

Jiang and Conrati26] proposed adistance measure thatis computed

by subtracting the sum of IC of eacterm from the IC of their LCA.

dist,.(C,,C,)=1C(C ) +IC(C,)- 23 I1c(C,) (Equation 7)

The information-based approacles allow us to compute the similarity
using the corpus [39]. Using the available corpus data, these measures
outperform the shortest-path measures [26] .

Some authors proposeda similarity measure thatrelies on the whole
hierarchical structure and applied it to a WordNet. In this measure, the
assumption is that the WordNet is organized in a meaningful way based on
the principle of cognitive saliency[40]. They argue that the more hyponyms a
concept has the less information it provides, otherwise there would be no
need to further differentiate. Likewise, concept at the leaf nodes, are the ntos
specified and provides maximal information.Therefore, the function of this
similarity is determined by the number of hyponyms and/or their relative
depth in the taxonomy. For example, Seco et al[41l] proposed an IC

calculation based on the number of hyponyms.

log(hypdC)+1)
log(maxnodeg

sim,.(C) =1- (Equation 8)
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where hypo(C) is the number of hyponyms of a clasS and max_nodess a
constant that is set to the maximum number of concepts thagxist in the
taxonomy.

The disadvantage of this approach is whenever changes in the
taxonomy or in the corpus, recalculation of the affected branches are
required [42]. Moreover, the structure of the taxonomy has a great ilnience
on the similarity scores. Therefore, this approach requires the taxonomy
must be as complete as possible. In other wosd the taxonomy should
include most of the specializations of a specific class in order to provide
reliable results. As a resultpartial taxonomies with a limited scope may not

be suitable for this purpose[37].

2.1.3. Feature -based measures

The feature-based measures are introduced to overcome the limitation
of uniform distance assumption in edgebased measures and corpus
dependent approaches in informationbased measures. In fact, the
taxonomical links in an ontology do not necessary represg uniform
distance. Feature-based similarities have their origin in the work of Tversky
[43] whose similarity measure is based on set theory. Featurebased
approach takes into account the features that are common to two classe
being compared and also the specific differentiating features of each class.

~ . ar N = s N P RN

4 OAOOCEUSO OEI EIl AOEOU 1 AAOCOOA EO AAEET AA |

S|rn|- ka C ): |C1 '£EC2|
VeSOt T2 C, AEC,|+alC \ C, |+ BIC, \ C

(Equation 9)
where 6 and 6 are sets of features®® » 0 sis set of features in0 but not in
0 andg# A~ # sis set of features ind not in 6 . The| andf are parameters
that account for the relative importance of the norcommon features

Rodriguez and Egenhofer{45] defined | A 1 fAas function:
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é deptHC,) L dentlc e (e
a —j depﬂ(Cl) + deptf(Cz) I _dep }( 1) ¢ ( 2) _ t. .
=i deptHC,) ¢ g (Equation 10)
= 1 tHc,)>(C
1 dept(C,)+ dept{C,) " — HC,)>(C,)
e (Equation 11)

This similarity returns a score within the range of [0, 1].The score increass
if two classes have more common attributes and decreases with the high
number of asymmetrical attributes between the two concepts.
Some recent feature-based approachesrely on information that is
available in ontologies. Petrakis et al[44], proposedthe X-similarity , that
OAT EAOG 11 OEA 1 AGAEET ¢ AAOxAAT OUT OAOO AT/
from WordNet. The two terms are said to be similar if their synsets and
glosses of their concepts and those of theoncepts in their neighborhood
(terms that a connected with semantic relation) are lexically similar. Their

proposed similarity function is represented as

| gLif _S,nea(ab)>0
Sl - sim =] H
nl( % max{sneighborrmis(a1 b)’SgIosseia’ b)}’ If —_ Ssynse(a1 b) = 0

where the similarity for glosses and synsets as well as similarity for semantic

(Equation 12)

neighbors,™Y are calculated as
%8 |
sla,b) = (Equation 13)
(a.b) ACH
Sirnweighborhrds(al b) = maX|A [EBI| (Equatlon 14)

|ACB|

where A and B denote the set of synsets or glosess for term a and b. The

similarity between term neighborhoods is computed differently based on
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their semantic relationship (is-a and partof in WordNet) and the maximum
(the union of the synsets of all terms up to the root each term hierarchy) is
taken.

Also, Rodriguez and Egenhofefd5] proposed a similarity measure by
computing the weighted sum of similarities betwea synsets, features and

neighbor concepts.

Sirn?E (Cl’ CZ) = Ww C.Ssynse(C:l’ C:2 ) + Wu C'SfeatureiC:l’ C:2 ) + Wv C'Sneighborrmjs(C:l’ CZ)

(Equation 15)

wherev ,0 andy are the weight of each component and the summation of
weight is equal to 1.

21T AOECOAU Al dmi&ig héasufe EArdyGgplicable to the
noun and a verb category in WordNet whereas a term can be represented by

others features such as attributes associated to the terminology.
2.2. Semantic similarity measures using multiple ontologies

The semantic similarity methods presented so farassume that the
classes being compared are from the same ontologgowever, the numbers
of ontologies are increasing due to the advent of semantic web in which the
developed ontology is used to formalizethe conceptualzation behind the
idea of semantic welj46]. Although the topic is out of scope of this research,
in this section, weprovide a brief discussion on howthe similarity methods
can beused to compare classes from differenbntologies which is referred to
ascross-ontology similarity methods in the literature .

According to Cross andHu [19], a cross-ontology similarity method is
an approach that is based on establishing association links betweehet
classes havebeen proposed The foundation for many existing approachess

~ e N = s N 2 A N

theuseof4 OAOOEUB8 O 11T AAT 1T &£ OEI EI AOHOU xEOE
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The more properties of two classes share in common, the more linksete
are between the classes and the more closely related they gé¥]. Recently,
the crossontology similarity methods have been proposed in very promising
research area of the matchers of ontology alignment systeto support the
semantic interoperability. Ontology alignment (OA) systems focus on finding
a set of mapping pairs between source ontology,s@nd target ontology, @
with each pair having a similarity degree in the range of 0 and[#8]. Many
proposed methods use background knowledge sources, WordNet, UMLS or
both as a reference ontology with semantic similarity measureThere are
several systems have been introduced to facilitate the ontology alignment
process such as OLA, ASMOV, CIDERnNnchor-Flood [46] and
AgreementMaker[48].

Cross, Silwal and Morell[48] show a very recent experiment using
reference ontologies (it is also known as mediatingontologies) to improve
the ontology alignment process They incorporated semantic similarity in
reference ontologies to determine indirect mappings where source and
target classes map to different concepts in mediating ontologyheir work
extends the AgreementMa& AO8 O | AAE A M) Iy intoko@aitgA O
the semantic similarity measureswithin the reference ontolgy and it is called
mediating matcher semantic similarity measurement (MMSS) For this
purpose, the Adult Mouse Ontology (MA) and Human Anatomy (HA) were
used for the evaluation of the proposed approach.

The first step is to determine the maping set between source and
target classes on the same class in the reference ontology.this step, te
base similarity matcher with lexicon (BSMx) is used to compose mapping
from the source and target classesto produce an &act match on the bridge
classesn the mediating ontology, Ms.

Also, they consider the sets of unmappedsource classes Us in the
mapping set from source to mediating ontology andhe sets of unmapped

target classesUr in the mapping set from target to mediating ontologyFor
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each pair (s, t) in Wx Ur, the semantic similarity measure is used to compute
the similarity between all bridge classes fors and all bridge classes for.tThe
standard Lin semantic similarity measure is used with IC is defined bj@1]
was used in their expeiment. They use maximum aggregation operatorto
determine the enhanced mapping se&st. The final mapping is Mt~ Est. The
results of the experiment show that the MMSS discovers more correct

mapping than the MM.

2.3. FCA and class hierarchy generation

To emulate the human ability in assessing similarity between things,
computational models require a support from knowledge sources.
Knowledge sources represent the concepts of the real world domain that are
defined formally with relationships they share with the other concepts of the
same domain. Some of the knowledge sources are taxonofajass hierarchy),
ontology, thesaurus and domain corpora.

The proposedapproachrequires a taxonomy ofclasses of productsor
processes. Typically, however class hierarchseare developed in an adhoc
fashion, lacking the rational of their structure. To resolve this issue, this
thesis proposes a class hierarchy development based on Formal Concept
Analysis (FCA).

FCA is an analysis technique for knowledge processing based on
applied lattice and order theory[27].

Several efforts have been reported on the use of FCA in products and
processes. For example, Fu and Coli@8] suggest the use of FCA to support
the development of municipal utility domain to overcome the limitation of
current mapping information. In another related effort, Nanda et al. [18]
proposed the use of FCA for providing a systematic guide&rfor constructing
product families domain. Stumme[29] described the use of FCA to manage

the knowledge related to business processes across department and
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company boundaries.

On the other hand, several works have been proped to measure the
similarity of classes obtained with FCA such as in Formica [30], Tadrat et al.
[31], Algadah and Bhatnagar [32], Zhao and Halang [33], Saquer and Deogun
[34] and Souza et al. [35]. Formica [30] proposes a similarity based on the
informati on-based approach to calculate the classes with a weight [0,1]
which is userdefined. Algadah and Bhatnagar [32] improve the Jaccard
coefficient, Sorenesen coefficient (or Dice coefficient) and Symmetric
difference based on set theory where the zertnduced is incorporated. In
addition, Zhao and Halang [33] develop a similarity measure for FCA by
i TAEEAUET ¢ OEA -Bael 6rdilErities. Oheyahplated hd sets of
features with a rough lower approximation which is represented only with
the sets ofobjects of the two concepts. Tadrat et al. [31] propose a similarity
measure that characterizes by a vector of frequencies of the object and
attributes between two concepts in FCA. Their approach was based on vector
model of information retrieval.

FAST isused to define the formal attributes that can later be used in the
FCA. This research uses FCA to generate lattice in which, FCA requires
information to be organized in a formal context. For this purpose, the list of
potential classes (formal object) andformal attributes are added to the
context table. Context table represents the object and attribute information
and their relation in FCA that are organized in incidence matrix. If a formal
object has a formal attribute, a checkmark is inserted in the caegsponding
cell. Subsequently, a lattice is generated. The next step is an iterative process
for analyzing the resulting lattice and resolving inconsistencies. All concept
subconcept relation in lattice is analyzed. Ifn inconsistency is found, the
context table is revised by adding or removing attributes. A new lattice is
generated if the context table is modified. The resulting lattice and formal
attribute -information are used to create a class hierarchy and convert it into

a computerprocessable form. Ataxonomy structure and formal attribute
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information came as the results of taxonomy generation stepAppendix A

provides the description of FCA in which the proposed approach is based on.
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Chapter 3

THE PROPOSED APPROACH

3.1. Introduction

Theoretical frameworks for products and processes refer to thevorld
view with which products and processes can be represented. Such a
theoretical framework is useful for determining formal attributes. For this
purpose several existingtheoretic frameworks for products and processes
were studied.

#EAT AOAOAEAOAT 60 A@OAT OE OAationi(FRE
[50] defined FR is a deviceentered description of the product that is
organized in structure (what it is), function (what the device is intended to
do) and behavior (how the artifact does what it does). FR is a tegown
approach in which the function of the device is specified first and the
behavior of device componats is specified in terms of how they contribute
to the individual functions.

In order to achieve the function of interest, a function is represented by
describing its application, the initiating conditions and the predicates that the
product has to satigy. How aproduct achieves its functions is described by

using Casual process description (CPD) or by using passive function
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characterizes the structural properties of a device. A CPD is represented as a
directed graph in which the nodes represent the stas (process variables
and device states) while the arcs represent state transitions.

On the other hand, behaviosstructure representation distinguishes
structural and behavioral aspects of the artifact based on general systems
theory [51], which identifies structure and behavior descriptions of complex
systems. In VEDAS52], [53] information models describe the artifact in terms
of material (e.g. pipes, tanks) and phenoanological entities. The behaviors
of individual structure subsystems together with their structural
interrelations generate the behavior of the whole system. The structure
systems are classified into devices and connections. In this representation,
behavior refers not to the behavior of the device but to physicochemical
phenomena that takes place in a device.

Several efforts have been made to find a reusable representation of
processes. Sow§2] describes aprocessaccording to time points that
mark the beginning and ending of the process and the changes that take
place in between. To Sowa, a process can be caused by one or more
agentsover some time interval. Here, aragentis an animate entity that
is capable of doing somethig to fulfill a specific intention.

A processis defined in the SUMO Ontologp3] AO OOEA Al AOO
OEAO EADPDPAT AT A EAOA OAipmiesshby hdvd 000
participants which are objects such as the machine, circuit boards,
components, and solder in a soldering process. In SUMO,dojectcan denote
a physical object or a geographical regiorAgent, instrument, resource and
result are objects that participate in theprocess Anagentis defined as an
active determinant (either animate or inanimate) of theprocess with or
without voluntary intention. A resourceis something that is present at the
beginning of aprocess is used by theprocess and as a consequence is
changed by theprocess An instrument is used by anagent to perform a

processand is not affected by thatprocess A resource differs from an
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instrument in that its internal or physical properties are altered in some way
by the process

A process in IDEF@54] is described in terms ofactivity building blocks.
Fig. 31 shows anactivity is characterized by itsinputs, outputs, constraints
and mechanisms Input is the information, material or energy that is
converted to the output of an activity. Anoutput is the information, material
or energy produced by or resulting from theactivity. Aconstraint or control is
the information, material or energy that constrains and regulates aactivity.
A mechanism represents the resources, such as people,q@pment, or
software tools that perform an activity. Furthermore, an activity can be

composed of other activities (mereology).

(C'ONSTRAINTS (requirements, specifications)

l

INPUT ) 4 ctivity oQurPUT

(information, (transformed

materials, energy) information,
I materials, energy)

MECHANISM (people, tools, equipment)
Fig. 3-1 Activity representation in IDEFO

ISO 15926 definesactivity as apossible individualthat has its life cycle
bounded by beginning and ending events [65] as shown in Fig. 32. In
addition, anactivity brings about change by causing aavent(an eventoccurs
at an instant in time). A participation relation is used to express that a
possible individual is involved in anactivity. Because 1SO 15926 uses a four
dimensional view of the world, anactivity consists of temporal parts of those
members of possible individuals that participate m the activity. For example,
in creating a blind hole on a metal piece using a hand drill, the drilling activity
shares the temporal parts of the worker and the hand drill that participates

to change the shape of the piece. In this example, the drillingtady causes
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the hole to come into existence.

possible_individual 1
| range

participation
i

: i
15-a i domain

[ ] =Relation
Fig.3-2 Activity in Upper ontology based on ISO 15926

i i
| domuin i domain

| ending l | beginning I

| range | range
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WPML is an ontologybased language designed to represent work
processed66], [67]. WPML is based on OntoCAR&S8], which was originally
developed as a comprehensive ontology for the chemical process engineering
domain. WPML defines amction as a building block that desgbes a step in a
work process.Actionsare characterized by their causal and temporal aspects.
On the other hand, the changing nature of thaction is described by means of
the socalled OperationalFunction Therefore, valve opening, drilling,
material_charging can all be defined as subclasses©perationalFunction

Gero and KannengiesdB9] propose the use of the structurebehavior-
function (SBF) world-view to characterize a process. The notion of function
of a process is elated to the goal of providing a given process, which assumes
that processes can belesigned Behavior attributes refer to those attributes
of a process that allow comparison on a performance level. Examples of
behavior attributes of processes are speed, rate of convergence, cost, amount
of space required, and accuracy. The structure of a processdescribed in
terms of its inputs, outputs, and subprocesses.

One common denominator in all these approaches is the existence of an

elementary element to define the process that is used together with relations
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that associate the process with other objects. The most common relations are
those for identifying the objects that are transformed by the process (the
input), those for representing the objects that are produced by the process
(the output), those for identifying the tools or the actors that participate in
the process, the relations for indicating the location of the process, part
whole relations for describing the process structure, and time durationTable

3-1 summarizes these common elements.
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3.2.  Product representation

In this thesis, thetheoretical framework for representing a product is
based on the ISO 15926 standard which specifies an upper ontology for leng
term data integration, access and exchanggQ]. It was developed in ISO
TC184/SC4Industrial Data by the EPISTLE consomim (1993-2003) and
designed to support the evolution of data through time. The upper ontology
was developed as a conceptual data model for the representation of technical
information of process plants including oil and gas production facilities but it
was designed to be generic enough for any engineering domaijél]. The

theoretical framework is illustrated in Fig. 3-3.

performer

physical object

physical object

|
|

participatesin

islocated at
participatesin
process
(activity)
transforms
physical obj ect} | produces { physical object

is composed of

process

Fig.3-3 Composition of device and its relation to processes.

In this theoretical framework, the physical objectis represented in
terms of its physical parts as well as in terms of its relation to some process
(activity).

The physical part of a product is repesented by physical object that is
defined in terms of a distribution of matter, energy, or both. A physical object
can be described in terms of its partgFig. 34). This is possible through a
mereological relation that refers to the relationship that a jart has in regards

to the whole of an object. Mereological relations are reflexive, antisymmetric,
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and transitive.

‘——{ physical object }
islocated at
is connected to S| e

Fig.3-4 Composition of device presentation

is composed of

physical object physical object

Physical objects exist in reference to a specific place. The location
relation (relative location in 1ISO 15926) is a kind of mereological relation

that is used to locate objects in a particular place.

The function of a product can be defined as an intendegdrocess
associated to the device. For example, the function associated to a sofa is
represented as the process of seating in which the sofa is involved along with
a person that sits on it.

Similarly, the function of an electric fan is to generate cool ailn this
case, the description of the device includes information about the home
appliance and the cooling process. The cooling process is in turn composed of
other processes such as conversion of electricity into rotary movement,
convection, diffusion ard heat transfer. Therefore information about the
process or processes associated to the device is an indispensable element to
complete the description of the product.

Different objects can participate in a process. Participating physical
objects include hose objects that are transformed by the process, those
objects that are produced by the process, those objects that are not affected
by the process (the device itself, other tools or instruments), as well as agents
(such as a person or a control systemhat participate or execute the process.

As in with a physical object, a process is also described in terms of its

relative location and its mereology.
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3.3. Process representation

The theoretical framework for processes is the same as that for
products (Fig.3-3). In general, a process changes an object that exists before
the execution of the process to produce another object. In a fodimensional
view, these objects correspond to the temporal parts of the object before and
after the process. In addition, amng the objects that participate in a process
we can distinguish those entities that are not intended to be affected by the
activity but that are used by the activity. Therefore, four types of objects that
participate in a process can be identified: the okgts that are transformed by
the process (the inputs), the objects that are produced by the process (the
outputs), the objects that are used for the execution of the process (the
performers) and the objects that accommodate the process (the location of
the process).

For example, a drilling process always transforms a solid object (the
so-called blank or work piece) and produces a solid object that has at least
one hole. A performer in this case is a cutting tool that is pressed against the
solid object androtated in a given way so as to produce the hole. In this
example, the location of the process is the machine that holds the cutting tool
that is also perpendicular to the work piece. One can argue that both the
performer and the location may be affectedby the process (e.g. deteriorated)
but they are not intended to be modified, which makes them different from
the other two types of objects.

The Performer corresponds to the concept of instrument in SUMO. It
indicates an object that is used by the procedsut that is not intended to be
changed by the process.

In addition, a process can be composed of other subprocesses. For
example, a given holenaking process can include a cooling sdprocess in

order to reduce the wear of the cutting tool as a result dfiction force.
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3.4. Formal Attribute Specification Template (FAST)

The Formal Attribute Specification Template has been developed for
identifying the formal attributes of a given class. FAST is a systematic
guideline to characterize the classes of produst and processes and
represents the relationship between the products and processes.

In FAST, a product has the following kinds of formal attributes:

1 the classes of objects that compose the product (the product
parts)
the classes of places where the prodtics required to be
the classes of process in which the product participates

Fig. 35 shows the steps for the selection of formal attributes of a
given class of product.

Similarly, FAST identifies five kinds of formal attributes required for
describing a pocess:

1 the classes of objects that are always transformed by the
process (the input of the process)

1 the classes of objects that are always produced by the process
(the output of the process)

1 the classes of performers that are always used by the process
the classes of locations that always accommodate the process

the classes of process composition (the parts of the process)
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s every member of this Specify the
physical object composed of classes of every
other physical objects? part.

s every instance of this
physical object always in a
given place?

Specify the class
of spatical
location.

Yes

es every instance of thi
object always participate in
a certain process?

Specify the class
of each process

No

A
Identify the formal
attributes of each
process

No

v
End

Fig.3-5 Flow diagram for the formal attribute selection of a given class of product
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Specify the ) -
classes ofyobj ecls Specify the classes Does every Specify the class
. that are always of objectsthat are instance of this activity of object that is
Begin » always produced . . . .
transformed by by instances of this always involve a certain involved in the
[ f this Y Instance -
instances o activity actor or tool? activity.
activity
Does every .
member of this activity Spe(:lfy the C'?SS
: . of spatial location
always Occur in a given or obiect
place or object ? Ject.
Is every .
member of this activity Spec;yetvr;eryclass
always composed i
of other activities? subactivity

Fig.3-6 Flow diagram for the attribute identification of a given candidate class

Based on these five characteristics the formal attributes of a given
class of product or process can be identifiedFig. 36 shows the steps for the
selection of formal attributes of a given class of process. For example, to
characterize a fusion welding process, the objects that are transformed by
the activity are solid physical objects. The object produced by any mérar of
this class of activity is a physical object that is made of the welded parts. As
heating is always involved in a fusion welding, it is a part of the activity.
4EAOAE OAh OEA AOOOEAOOAO 1T &£ OEA x
physical objecOhd OPOT AOAAO A DPEUOEAAI 1 AE

On the other hand, if we are given a class of product such as printer
that is involved in printing. The objects that are transformed by the
particular printing process of a printer are: data, paer and electricity. The
object that is produced is printed paper. Injecting is always involved as a part
in the printing process in which the printer is involved in using inkjet as

performer. Thus, the attributes of the printer become: consumes data,
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consumes paper, converts electricity, involved in using inkjet and produces
printed paper.

Each formal attribute in the FCA context table is seen as a constraint
about the meaning of a particular class of product or process and it is not an

attribute in the sense of a property of a specific instance.

3.5. Procedure for taxonomy construction with FCA

This thesis follows the general steps proposed by Stevens et al. [70]
that include, identification of purpose and scope, knowledge acquisition,
conceptualization, ntegration, encoding, documentation, and evaluation but
we use FAST to guide the knowledge acquisition and conceptualization
stages.

The proposed methodology aims at facilitating the developing of
taxonomy in such a way that the developer can justify theationale behind
the involved decisions. Theprocedure for taxonomy constructionconsists of
the following steps:

Step 1. Identification of the purpose and scope of the project.

The purpose and scope are necessary to identify the domain of
interest that the taxonomy will cover. For example, developing a taxonomy

for electric home appliances.

Step 2. Identification of the potential classes to be defined under the
scope of the progct.

This step refers to the identification of candidate classes that may or
may not appear in the final taxonomy and the object column of a FCA context

table is populated with these classes.

Step 3(a). Compile and organize definitions of each class.

Information sources such as scientific papers, technical reports, and
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Internet resources are consulted to define each class in natural language.
When several definitions are found preference is given to those that explicitly
describe participating objects,objects transformed by the process (inputs),
objects produced by the process (outputs) and/or subactivities. When
contradictions among several definitions of a given class occur experts can be

consulted to disambiguate.

Step 3(b). Identification of formd attributes.

Formal attributes are identified using the FAST.

Step 4. Add the attributes and incidence information to the context
table.

The formal attributes are added to the context table created in Step 2.
If a class has always an attribute, a checkma is inserted in the

corresponding cell.

Step 5. Use the FCA to generate a concept lattice.

After adding the formal attributes, the context table is completed and
a lattice is generated. Lattices in this paper were generated by means of the
Grail algorithm [71] (a simpler algorithm is illustrated in Appendix B). Finally,
the lattice is used to create the ontology. The naming of each class is done

based on object or attributes labels from the nodes in the lattice.

Step 6. Analyze the lattice and resolvi@aconsistencies.

The first thing to be done is to check the concegubconcept relation.
Analysis of the lattice is done using object exploration [72]. The ontology
designer analyzes the consistency of formal objects by tracing all paths in the
lattice. The tracing starts from the root node, then to the next lower node and
continuing until reaching the bottom node. If the relation between objects in

a concept and objects in its subconcept is found to be inconsistent, then
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inconsistency is resolved by addig or removing attributes. In case of new
attributes, the context table is revised. If the context table is modified then a
new concept lattice is generated. This procedure is repeated until all concept

subconcept relations have been explored.

Step 7. Crete a class hierarchy and convert it into a computer
processable form.

In this step, the resulting lattice and formalattribute information
obtained in the previous step are used to create a class hierarchy of an
ontology. The naming of each class is denafter the names of object and
attributes that correspond to the concept on which the class is derived. An
ontology editor such as the Protégé ontology editor [27] can be used for

carrying out this and the remaining steps.

Step 8. Connect the class hierghy into an upper ontology
Integration is carried out by means of aligning the resulting ontology
with an upper ontology that defines domainindependent classes such as

physical objects, activities, mereological and topological relations.

The results ofall these steps are a taxonomy structure and formal
attributes information. These results can be used in equation 1Z5 to

evaluate the proposed approach.

3.6. The semantic similarity measures of the proposed approach

The semantic similarity measures of the proposed approach compute
the similarit y of classes of product®r processesin a taxonomyby taking into
account theformal attributes from FCA. In a givenclass hierarchy theformal
attributes play a crucial role to distinguish one class fromanother. The

similarity between two classes is a function of the number of formal
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attributes they share in common. The more common formal attributes shared

by the two classes the more similar they areThis meansthat attribute

information can be used to ystify the design of class hierarchies (i.e.

taxonomies). Subsequently, similarity measures can be developed based on

the number of common attributes that are shared between two classealso,

the semantic similarity measures of theproposed approach follow a similar

DOET AEDPI A AO DPOI PT OAA EIT 90ahidh can@ide©@OEUBS O |
that the similarity between two classes in a taxonomyan be measured as a

function of their common and differential features.For this purpose, several

similarity equations in data mining literature are investigated in this

research by using formal attributes as the sets they compare.

1 Formal attribute s

The proposed approach emphasizes on the common attributes shared
by two classesin a taxonomy. The approach assunes thattwo classesthat
share formal attributes are considered more similarthan classes not having
common attributes. That is, for a given lasses, this research considerthe
degree of overlap (common attributes shared by two classes) as a function
for similarity.

The attributes in the semantic similarity of the proposed approach refer
to the formal attributes which obtained using a systematic method by using
FAST

1 Taxonomical relationship s

In a taxonomythat based onFCA aclassd@ M (s said to be sullass
of another classd @ B Oprovided that 6 P 6 .In other words, in a given

hierarchical structure, a class is equivalent to another class if both clees
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have exactly the same attributes The classB is the superclass of A which
defined an order written® 6. The relation is known as hierarchical
order of the classes.

The semantic similarity measure of the proposed approach also
considersthe uses of the multipleinheritance (a class is subsumed by several
superclasses)Differently from previous edge-based measures that considers
only the shortest pathlength between two classes, the proposed measure
allows measuring the similarity between classes by considering the multiple
taxonomic superclasses belonging to all possible taxonomical paths
connecting the classes being compared. For measuring the similarity of
multiple -inheritance, classes are connected through the subsumption {&
relation. As the subclassuperclass relation is transitive, a subclass inherits
all the attributes from all its superclasses. Therefore, theemantic similarity
measures of the proposed approachemphasized on the set of formal
attributes associated to theclassesincludes all those inheritance attributes
from its superclasses that foundtraversely going through all the upper

taxonomical paths modeled in the ontology for that concept.
1 Similarity measure based on formal attributes

The similarity measure usedin the proposed approachis represented

by equation (16)

simlC .C, )= a% +(1- a)‘gi?% (Equation 16)

where 0 w¢& & are classes in the taxonomyo = 0 is the number of
common attributes shared by classeé we& ®,0 wé Qare the sets of

attributes of classesd & Qrespectively and a takes the vdues of 0 or 1.

1 Theattributes of a class also include those attributes inherited from its parent classes.
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i "Qé M is a function whosevalues are in between the range of0 and 1.
Value of 1 denotes the twabjects are highly similar, while the two objects
are said to be dissimilar if similarity value is equal to O.

QO M is a function of the attributes of classeé @£ &. For example,

when a=1and Q6 6., 6 | 6r~06 1 d6r06 equation (16)

Sim...4(C,.C, )= A A (Equation 17)

A /EA|+a|A\A|+b|A A

where 0 " 0 is the relative complement ofd & &€ @ 8Following the
work of Rodriguez and Egenhoffe[55], parameters a and b are calculated
as Equationl0 and 11.

When a =05 and =05, Equation 7q AAAT i A0 OEA
coefficient [56] which quantifies the overlap of two se$ of attributes in
relation to an estimate of their average size. In other words, the Dice

coefficient is the number ofattributes in common to both classe® @& @

relative to the average size of the total number of attributes present in
0 we Q.

Sirni)ice(ci ’Cj )_ ‘A /CEAI ‘

=1 A +‘A,-‘ (Equation 18)

Suppose we are given two classes of scanner and fax modem as shown
in Fig.3-3:
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Fig.3-7 A sample for similarity calculation

Scanner0 = {distribution of matter or energy or both, consumes
electricity, consumes paper, uses document, uses film, uses photograph, uses
graphic, converts electricity, generates digital images, produces data}

fax modemp = {distribution of matter or energy or both, consumes
electricity, consumes paper, produces data, consumes data, uses telephone
line, receives data}.

The cardinality of set of attributes of scanner® sis 10, while the
cardinality of set of attributes of fax modemo is 7. The common attibutes
are= {distribution of matter or energy or both, consumes electricity,
consumes paper, produces data}, them = 0 1. By equation 16, the
similarity between scanner and fax modem is (2(4)J (10 +7) = 0.471.

P e T P

When a = =10, equation(17q AAAT i AO OEA *BAAAOASO AT/

~ e

in which "Q0 ho is the cardinality of the union sets of set® @& &

A&A| A &A|

sim = =
A ZEA|+|A EA| A CA|

Jaccard(Cl ! C2 )

(Equation 19)
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Consider again the set of attributes of scanned sand set of attributes of fax
modem ! used forin the previous example The similarity between scanner
and fax modem usinghe Jaccard coefficient is 4/13= 0.308.
*AAAAOAGO AT AEEAEAEARAG O EBI DIAAAHAA OF OIOG
20:

Sim.]accard = Sirn)ice (A ! Aj )/(2 - Sirnjice (A ’ Aj » (Equation 20)

When a=1 and® h i E® sh! equation (16) becomes the
overlap coefficient[58] given by Equation21. The overlap between two set of
attributes of classes# AT #Ais equal to the intersection between the two set

of attributes normalized by the size of thaninimum number of attributes.

A A

. (Equation 21)
min{ A |,‘Aj‘

Sin‘bverlap(Cl’ CZ ) =
Another variation is the allconfidence similarity [58]. It differs from
Equation 21 where the two set of common attributes are divided by the

maximum number of attributes between classes A and.B

[ Qé (c.c,)= ‘A;EA]" (Equation 22)
max{a][ 4]
When'Q6 0 0 equation 16 becomes acosine similarity

with attributes sets insteadof vectors.

i Qa (C,Cj):w (Equation 23)

A
1 A 3 \/K
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ey

When a=0 and "Q0 ho G Q& hod  equation 16 becomes

equations 24 which is similar to that of van der Weken et al[59] but using

formal attribute sets instead of fuzzy sets.

sim, (C. C.): ‘Ai /EA” (Equation 24)
anDerWekd \™i ' ~j min AIHA}‘
Another variation is equation :
Sirn/anDerWekQ (CI ’Cj ) = ‘Al /EA]‘ (Equation 25)

max A 4]

where Ajand Aj are the complements of sets oattributes A and A,. Values

~ e

ofa,"Qd M and"'Qd M are summarized in Table 2.

Table 3-2 Association among set of attributes of classes being compared

Equation a Q6 Q06 D
Sim'I'versky 1 0 ) 0 | O A 0
p I O
"o
Sirrbice 1 pJ S g)é 6*(2
SiMyaccard 1 s 0O 0, 0
SimOverlap 1 = AB) S’v]o
SiMAll confidence 1 I A@ o
SimCosine 1 \/K:” \/K
Sirn\/an der Weken 1 0 |' E B) S’Q)
SiMvan der Weken 2 0 | A@® 9 s

For the evaluation of the semantic similarity measures of the proposed

approach, we also investigate a composite similarity obtained by combining
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semantic similarities:
SirQompositici ’Cj ) = Wlsinl + WZSirnz (Equation 26)

where 0 and 0 are weights andi "‘Qandi "Qdepresent two different

semantic similarity measures of the proposed approach.

Chapter 4 and 5 demonstrate lie evaluation of the proposed approach
against edgecounting and information-based similarity measures. In order
to quantify the efficacy of each similarity measure, the degree of correlation

with human judgmentand NGD similarity will beused.
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Chapter 4

EVALUATIONOFTHE PROPOSED APPROACH

4.1. Ataxonomy for home electric appliances

This chapter discusses the evaluation on the effectiveness ofthe
proposed approach (Chapter 3) and its comparison with respect to edge
counting and information-based measwes. We provide an example for
evaluating of the proposed approachin the domain of home electric
appliances. The characteristics of home electric appliances are described in
terms of processes and participating objects as outlined iGectiors 3.3to 3.6.

In order to enable fair comparisons, several researches use human
judgment for evaluating the similarity between word pairs[32]. As a result,
the degree of correlation obtained against human judgments and the results
of the computerized similarity measures (i.e. the semantic similarity
measures of the proposed approach, edgmunting and information-based
measures) can be used to quantify the likeness of two classes being
compared. If thedegree of correlation of the poposed approach is close to 1,
the proposed approach properly approximates the judgments of human

subjects.
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41.1. Taxonomy construction

This section describes the development of an electric home appliance
taxonomy, which is based on the method described i€hapter 3 The list of
potential classes was extracted from product categories in Amazon.com and
the formal attribute s information were obtained using FAST using expert
consultations and brainstorming. In the deelopment of the taxonomy, we
focused on the process or processes in which the given appliance participates
or is involved. Therefore, formal attributes include a reference to the process
or a description of the process in terms of the objects that are tra&formed by
the process and the objects that are produced by the process. For example,
the formal attribute identification of an electric kettle starts by the analyzing
its main process associated to it, which is a process that produces hot water.
Heatingis a part of that process. In order to produce hot water, the electric
kettle consumes electricity that is converted into thermal energy that is used
to heat water. Therefore, the formal attributes of an electric kettle become
heats produces hot waterheats water and consumes electricity

With formal attribute s information obtained this way, a context table
was created Fig. 4-1). Subsequetly, the Grail algorithm [71] was used to
generate the concept lattice shown irig. 4-2. After analyzing aml correcting
the lattice, the final lattice and formalattribute information were used to
develop taxonomy using the Protégé ontology editof{74]. Subsequently, the
resulting class hierarchywas saved in OWL formaf75].

Strictly speaking, formal attribute information must be in the form of
axioms as in the following example

Class filtration:
SubClassOf:
heating_device
SubClassOf:
produces some hot_water
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However, for simplicity in the similarity calculation, formal attributes
were added as OWL properties. For example, the formal attribute for
OPOI AODAAO ET O xAOAOGe EO AAAI AOAA AO A 111 x¢

Declaration( ObjectProperty( :produces_hot_water) )
ObjectPropertyDomain(:produ ces_hot_water :water_heater)

This resulted in an OWL file with 33 classes, 39 properties, and 5 levels

in the class hierarchy.
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home electric
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4.2. Evaluation of the proposed approach

The evaluation is carried out by measuring the degree of correlation
between the calculated similarity scores and scores obtained by human
judgments. For this purpose, a questionnaire was administered to 30
respondents. The questionnaireasked each respondent to rank the likeness
AAOx AAT OA1 AAOOEA EAOOI A6 AT A AAAE
Respondents then rated the similarity of the pairs on a-17 scale, with lower
numbers indicating higher similarity.

The comparison was carried out by calculating the correlation
coefficient and the sum of squared errors.

The level of inconsistency of each questionnaire was calculated with

the following formula.

d :é}‘qij - ’73‘ (Equation 27)

Where g; is the value of the score that participant submitted for pair j and

is the mean of the scores of all the users except that of usdor pair j.
UsingEquation 27, questionnaires with values oK) above two standard

deviations from the meand were excluded from the analysis. The

inconsistency value per responden{per each set of questionnaire) is shown
in Fig. 4-3. It is obvious that respondent id 16, 17 and 19 are unreliable
because they far away from the others in the curv&heir evaluation was not
taken into consideration for this experiment. Refer to Appendix C for the

guestionnaire and their results.
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The level of inconsistency for each questionaire
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Fig.4-3 The level of inconsistency for each questionnaire

The average standard deviations of the scores across respondents were
also evaluated tadentify inconsistencies. Since one of the questionnaires had
a standard deviation lower than average, it was not taken into account. With
this last change, the sample size was reduced from 30 to 27.

Finally, individual pair scores with one standard deviabn below or
above the pair mean were eliminated, which accounted for 4% of the total
data. Fig. 4-4 shows the terms pairintegrity and it is observed that all pairs

are taken into account for this experiment.

Standard deviation

Pair integrity
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Fig.4-4 Terms pair integrity
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Subsequently, the average scores were normalized using the following
transformation:
q _ qmin
-

S| = —mex  min
qg—-q

(Equation 28)

]

where represents the similarity of pair j,g"™ =17 and g™ =1. Values of

s; are shown in the first column ofTable 4-1.

4.2.1. Similarity calculation

A program was developed in Java using the ontology library Je{i&].

The program reads the ontology and the names of the two classes to be

compared. Firstly, it extracts the formal attribute information ofeach class in

the ontology. Then, the program proceeds to calculate the cardinalities for

each set of attributes, the minimum and maximum values, the number of

common attributes, etc Attributes of a class include those inherited from all

of its parent classes. Similarity calculations are then carried out using the

semantic similarity measures of the proposed approachs explained(Section

3.6). Then the Wu0 A1 I AO6O AT A |, ET 60 OEI EI AOEOEAC

counting, using the taxonomy structure of the ontology.

4.2.2. Experiment results

Table 41 summarizes the calculation results of the investigated
similarities rating between 17 classcomparisons
Initially, the root node in the Wu-Palmer® similarity was set to @ome

electric applianced For the reason explainedn Chapter 2 N, becomes Ofor

several pairs for which their common superclass happens to be theoot

node. Since these pairs clearly contain differentclasses, the result is

55



Chapter 4

incorrect. As a workaround we introduced@evicedas subclass ofphysical
object (defined in 1ISO 15926)and made®ome electric appliancéa subclass
of @eviced From Table 41, it can be seen thatthe Overlap coefficient
(Simoveriap) With R=0.795 followed by the WuPalmer similarity with R=0.782,
the Cosine similarity (Simcosing With R=0.781, and Dice with (simice ) with
R=0.777.

After considering every possible combination ofhe similarity equation
of Table 3.1 in thecomposite similarity equation (Equation 29), the best two

combinations were:

Sin’bosinHJaccard(Cl’ CZ) :1'887Sirrbosine - 0'887SimJaccard (Equation 29)
with a correlation of R=0.817 and
SiMbicer saccardlCi » C; ) = 1.9665iMp, - 0..9665IM, g (Equation 30)

with a correlation of R=0.816

The weightsof 1.887 and-0.887 and 1.966 and-0.966 for Equation 32
and 33, respectively were obtained by numeric optimization so as to
minimize the residual sum of squares between the composite similarity and

s, of Equation23.

4.2.3. Analysis of the results

To eliminate biases in the analysis of the results, we removed those
pairs that produced squarederrors greater than two times the standard
deviation. The pairs (electric kettle, television set) and (electric kettle,
electric oven) produced the biggest squared error. After removing both pairs,
the correlation value ofthe Overlap coefficientincreasedto R=0.947. Again,
SiMcosindR=0.922) and simpice (R=0.919) were second and third in

performance, respectively. For the combined similarities, Si@bsine+Jaccard
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increased to R=0.95@nd increasedto Simpice+JaccardR=0.947.

A hierarchical cluster aralysis was also conducted in order to compare
relatively homogeneous groups of results. The cluster analysis was equally
applied to both the human assessment results and the results obtained with
simovera8 #1 OOOAOET ¢ xAO AAOOEAA vaiiatc® OOEIT ¢
algorithm.

A comparison of the clusters indicates that most of the object pairs that
belong to one cluster withsimoveriap @lso belong to a cluster in the results of
human judgment. As shown inFig. 4-5, only (electric kettle, television set),
(electric kettle, air conditioner), and (electric kettle, bread machine) were
grouped into another cluster. This is probably due to missing &tbutes in the
FCA context table. Although another possible reason is that these two pairs

were particularly difficult to judge during the answering of the questionnaire.
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Human Judgement

Fig.4-5 Results of the cluster analysis.
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Conclusions
This chapter presented semantic similarity measurals the proposed

approachbased on taxonomy that developed using RGAletermine the degree

4.3.
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of similarity of two classesn the application of home electric appliandée
results of the experiment show that our aagh performs better when compared
against the WiPalmer similary measure In addition, while WeP a | ®mer 6
similarity is only defined for trees, our approach can be applied to taxonomies
containing a class with multiple direstiperclasses (multipi@heitance). For
example similarity between two classes, N and B as show@hapter 2 ig.2-1)
without taking any mathematical calculation we can see that the similarity is O due
to both classes shares identical root class and the common superclass.

The proposed similarity measures are not only based on the taxonomy but
also on thdormal attributes that obtained using FAST in characterizing each class
in the taxonomy.Consequentlyformal attributes information can be used to
calculate similaritiesn trees and latticeResults of the numeric experiments
showed that in all cases, the proposed semantic measures performed better than
the similarities of Wu Palmer and Leimilarity measures

In the electric appliance experiment, after removing the least performing
pairs (electric kettle, television set) and (electric kettle, electric oven), the
correlation saw an increase of approximately 25%. The reason might be that both
television set amh electric oven were characterized by processes which are
unfamiliar to the common usdfor example, toaster was characterized as a device
that uses infrared radiation. In this case, infrared radiation was considered as a
part of heating, which is diregtirelated to toasting bread. Similarly, TV set was
defined as a device that receives television signals.

When other devices were characterized in terms of processes and
participating objects that were more familiar to the common user, the calculated
similarities were close to the human judgments. However, albeit important to the
designers, from a user point of view, subprocesses that are not directly perceived
by the users (i.e. the mechanism with which a product achieves its given function)
are probably nb taken into account. This could be a limitation of the
guestionnaire approach for evaluating the similarities.

The use of formal concept analysis to devdbmnomyprovides a degree

of flexibility to a designer that is interested in developing somethévg Formal
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concept analysis can provide the designer with not only the most similar product
but also with a set of attributes that characterize it. Those attributes can provide an

insight of the kind of solution (s)he is searching for. For example in the

conceptual design of a plant, a designer might be interested in a device for heating.

While specific technologies such as a microwave oven, an electric kettle or a
water heater could potentially be useful, the designer might find it more useful to
know almut the characteristics of those technologies. As a result this extra

knowledge could provide the designer the opportunitytotiink t si de t he
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Chapter 5

APPLICATION OF THE PROPOSED APPROACHO
PROCESS ONTOLOGY DEVELOPMENT

5.1. An ontology for machining processes

A manufacturing process aims to fulfill given requirements by
transforming materials into objectsthat have specific shapes, structures, and
other properties [77]. Several kinds of processes are commonly utilized,
including masschange, phasehange, structurechange, deformation, and
consolidation processes.

A computer representaton of manufacturing processes presents a
range of potential benefits in areas such as product design and process
planning [78],[79],[80],[81].

One approach to the computer representation of processes is by means
of ontologies, which capture the semantics of things represented in a specific
domain [82]. Ontologies are useful for knowledge representation and shag,
automated reasoning, and humammachine interfaces[83], [84] .

In general, a domain ontology is composed of classes, relations and
axioms[65].A class representsa set of things that share the same attributes.

For example, all the members of the class drilling use a drill to remove
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material and create a hole. A relation is a tuple that indicates a relationship
between two or more things. Examples of relations areess than, connected
to, and part of. In particular, the subclass relation is defined for organizing
classes in the form of a class hierarchy. Axioms are typically represented as
logical constructions that serve as formal definitions of a given class.

Seveml ontologies have been developed for generic knowledge
representation in the domains of product and manufacturing including
PRONT(J85], MASONS86], and ADACOR87]. In addition, ontologies have
been developed for specific manufacturing processes. For example,
Gruninger and Delaval88] developed a cutting process ontology that can be
used in sheetmetal cutting design.There are a number of methodologies to
AAGAT T B T1TO1TTTCEAO ET Al OA®], GrintngeAdad 1 A AT A
&1 @80 [PRAOEI AU AT A - A' (Ge2] theOMETHONTORGEY i A
framework [91], the Cyc methodology, KACTUS, SENSUS, and thel®n
Knowledge Methodology [92]. Some of these methodologies are briefly
described in AppendixD.

One of the difficulties h ontology development is the lack of systematic
methods for the design of the class hierarchy. This is caveat because an
adequate class hierarchy is a key element in accurate and consistent
ontologies [14]. At present, however, it is the current practiceo develop
class hierarchies in an aghoc manner, without the reasons and justifications
of the class structure. Another technical challenge is how to define the axioms
that constrain the meaning of the definitions in the ontology.

This chapter demonstrates the proposed semantic similarity method
for the construction of an ontology for machining processesrhe resulting
machining processes ontology was evaluated and compared against

s~ A A~ N oA

-1 T OEAAOOOET ¢80 3AI1 Ai[BBEAO /. OT 1T CcU j-13/
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5.1.1. Ontology construction

Machining processes are commonly used to remove material and to
modify the surfaces of objects that have usually been produced by other
means. Several kinds of machining processes exist, including mechanical,
electrical, chemical, laser, thermal, and hydrodynamic processg93],
[94]. For illustration purposes, the scope of this case study is limited to
mechanical machining (i.e. those that use mechanical means temove
material). In order to develop the ontology, several common textbooks
[94], [95], [96] and Internet sources were consulted. The potential
classes are listed intie first column of Table5-1.

For the preparation of the Formal Concept Analysis, attributes were
selected based orFAST. Drilling is a hole-making process that produces a
holed physical object by using a drill. The object that is transformed by a
givendrilling is a solid physical object. The object that is produced is also
a solid physical object but with a hole in it. Next, constraints on
performers and location are identified. For example, a drill is always
involved in a drilling. Therefore, the formd attributes for drilling are:
changes a physical objecproduces a holed objectinvolves a cutting tool
to remove material anduses a drill

Boring, reaming, taping, counterboring, spot facing, and
countersinking also change a solid physical object andgenerate a solid
physical object with a hole (a holed object). However, these four
machining processes differ from drilling in that the work piece to be
machined has already a hole. More differences can be found when we
focus on the object that is producd by each of these processes: boring
gives place to a physical object with a concentric axis; tapping produces a
physical object with a threaded hole; counterboring, spot facing, and
countersinking produce a physical object in which only a portion of the

hole is enlarged. However, in counterboring the enlarged portion is also
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a hole in which the bottom part is flat and square. Therefore, the formal
attributes of counterboring become:consumes a physical objecthanges

a holed object produces a holed objedan which a portion of the hole is
enlarged enlarges a portion of an existing hole to a larger diameter
produces a holed object with an enlarged portion that is cylindrical
enlarges the end portion of the holeproduces a physical object in which
the bottom part of the enlarged portion is flat and squareand involves a

cutting tool to remove material

Table 5-1 summarizes the formal attibutes for each potential class.
For the location criterion, we could have referred to the machine where a
given kind of process takes place. However, in the mechanical machining
domain, there are different types of machines that range from manual
lathes to computer numerical control machines. Because none of the
machining processes always takes place in a given machine, the
corresponding formal attributes are absent (for the same reason the
machines are not considered as performers either). Based on thermal
attributes of Table 5-1, a context table was created(Table 5-2).
Subsequently, Concept Exploref97] was used togenerate the concept
lattice. The resulting lattice is shown inFig. 51.

After generating the lattice, objectexploration was conducted to
verify the completeness of the lattice. In object exploration, the modeler
focuses at the relations between objectassociated to a concept its
subconcepts to see if they make sense.

Therefore, all paths in the lattice ofFig. 5-1are traced starting from
the root node until reaching the bottom node.

During the object exploration, it was noticed that the lattice
ignores the difference between reaming and boring despite the fact that
textbooks and machining experts differentiatebetween them (Fig. 51).
Another possible inconsistency is that counterboring is presented as a

subclass of reaming.
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To resolve these inconsistencies, we consulted the textbooks once again
to disambiguate with more differences. Some textbooks pointed to
differences on the surface finish of the product which was difficult to account
for, particularly because tolerances differ among the different sources. A
clear consistent difference was found in the tool (the performer) employed in
reaming and boring. Reanmg employs a multipletooth cutting tool called a
reamer. On the other hand, boring always uses a singb®int cutter (boring
bar) [94],[98].
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Table5-1 List of potential classes and formal attributes for machining processes

Object that is

Object that is

Performer

Composition

changed by produced by the
the activity activity
drilling physical a holed object involves a cutting
object tool to remove
material, uses a drill
boring physical a holed object , involves a cutting enlarges the end portion of
object, enlarged portion is tool to remove the hole, enlarges a portion
cylindrical material of an existing hole to a
a holed object larger diameter
reaming physical a holed object, involves a cutting enlarges the end portion of
object, enlarged portion is tool to remove the hole, enlarges a portion
cylindrical material of an existing hole to a
a holed object larger diameter
counterboring physical a holed object, involves a cutting enlarges the end portion of
object, enlarged portion is tool to remove the hole,enlarges a portion
cylindrical, physical material of an existing hole to a
a holed object object in which the larger diameter
bottom part of the
enlarged portion is
flat and square
milling involves a rotating
cutting tool to
remove material
blasting physical involves an abrasive
object particles to remove
material
grinding physical involves an abrasive
object particles to remove
material
taping physical enlarged portion is involves a cutting enlarges a portion of an
object, cylindrical, an tool to remove existing hole to a larger
internal thread hole material diameter
a holed object
turning physical involves a cutting changed object is rotated
object tool to remove
material
spot facing physical physical object in involves a cutting a holed object in which a
object, which the bottom part  tool to remove portion of the hole is
of the enlarged material enlarged
a holed object portion is flat gnd
square, physical
object in which the
enlarged portion
provides seat for a
washer
lapping physical involves an abrasive
object particles to remove
material
countersinking  physical a holed object, involves a cutting a holed object in which a
object, physical object in tool to remove portion of the hole is

aholed object

which the enlarged
portion provides a
recess for a
countersunk flat heat
screw or countersunk
rivet, produces a
physical object in
which the bottom part
of the enlarged
portion is cone-
shaped

material

enlarged, enlarged the end
portion
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Table5-2 Preliminary context table
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Similarly, grinding, lapping, and blasting werealso shown as equivalent
classes in the lattice. To verify this conclusion, textbooks were consulted
focusing on these three classes, and it was found out that once again the
difference was in the performer. Grinding is carried out with a tool called
grinding wheel, which is a circular object made of abrasive materials bonded
together. Lapping is a processhat uses the secalled lap plate upon which
abrasive slurry is placed. Blasting is characterized by the use of a high
pressure stream of abrasive partites which in some cases can be replaced
with another fluid such as air or water[99] .
Consequently, the inconsistencies can be corrected by adding the
corresponding attributes which are shown at the dotted box of context table
in Table5-3. The revised lattice is shown irFig. 53.
Note there are eight unnamed nodes (A, B, C, D, E, F, G, and H) in the
lattice of Fig. 53. These are considered as newly discovered classes that can
be identified based on the individual formal attrbutes and the parent nodes.
AEAOA AOA TAI AA OiI AAEETET C DPOI AAOO6h OI .
Of AAEETEI ¢ OEAO DPOI AGAAOG A EIT 1 AA 1TAEAAQDG
I £ Al A@QEOOETI ¢ EITTA O A 1AOGCAO AEAIAO
enlargedporion OEAO EO &A1 AO AT A ONOAOA6h Of AAEE
pi OOEIT 1T &£/ OEA EIT1A6h O AAE GibrEthaGCis OEAO B
AUl ET AOEAAI 6h Oi AAEET ET ¢ OEAO OOAO AAOAO
After analyzing and correcting the lattice, the resulting lattice and
attribute information served as the basis to develop a computeprocessable
ontology using the Protégéontology editor [100]. Protégé has a graphical
user interface that facilitates the specification of classes, relations, and
axioms. After editing the ontology, the user can save the ontologies in the
OWL language, which is useful for automatic reasoning and integration. The

resulting classes in the ontology are shown ifig. 54.
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The top node of the class hierarchy (machining_process) was made a
subclass of activityin the upper ontology. This paper uses ISO 15926 but

other upper ontologies can also be used.

(b)

Fig.5-2 (a) boring enlarges a hole; (b) reaming produces a slightly enlarged a hole tha
has a more accurate diameter; (c) counterboring enlarges a part of the hole so that th
bottom part of the enlarged portion of the hole is flat and square
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Table 5-3 Modified context table.
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