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Most companies are now facing dynamic challenges that require not only well-planning capacity, but 

also robust supply chain networks (SCN) that allow the members involved to address and respond any changes 

in a short notice. In particular, when inventory is stuck in the various stages of the supply chain, the 

company may be forced to operate at critical cash flow levels. On the other hand, among the various activities 

involved in SCN, purchasing is one of the most strategic functions because it provides opportunities to 

reduce costs across the entire supply chain. An essential task within the purchasing function is supplier 

selection. This comes from the fact that the cost of raw materials and component parts represents the largest 

percentage of the total product cost in most industries. From this point of view, this thesis addresses 

issues associated with inventory and supplier selection problem. We study both issues under uncertain 

environment and consider such problem using either stochastic approach or fuzzy approach. 

At the first part, we studies multi-objective problem of periodic review inventory in two-echelon 

supply chain system under uncertainty in demand and lead time. We propose different strategies to solve 

the stock-out problem in serial replenishment system which requires a higher level of coordination. While 

stochastic approach is utilized to tackle the uncertainty, the multi-objective Differential Evolution (DE) 

is applied after giving its new algorithm to work with the problem. We reveal that the coordination strategy   

becomes more effective as the uncertainty increases in the system. Though retailers are required to keep 

a bit high inventory level to maintain a high responsiveness, this stock level is more effective to reduce 

the loss rate of supply chain. 

At the second part, we studied multi-objective supplier selection by considering both qualitative 

and quantitative criteria. The fuzzy approach is applied due to the fact that most information required 

to assess supplier is not always available and/or usually not known precisely over the planning horizon. 

Concerning such characteristics, this research develops an integrated methodology of fuzzy multi-objective 

linear programming model for supplier selection. To improve the methodological process of deriving optimal 

solution, the enhanced two-phase fuzzy programming model has been proposed in this study. Through numerical 

experiment, we show some advantages of our proposed approach over the existing methods in providing a set 

of potential feasible solutions which guide DMs to select the best solution according to their preference. 

At last part, we present multi-objective possiblistic mixed integer programming (MOPMIP) model of 

periodic review inventory problem in multi-manufacturer multi-retailer SCN. We attempt to develop a 

multi-objective model in a mixed imprecise and/or uncertain environment by incorporating the fuzziness 

of demand, lead time and cost parameters. A solution procedure is developed using the Torabi and Hassini 

method to solve the model and to provide a systematic framework that facilitates the fuzzy decision-making 

process while enabling the DM to adjust the decision and obtaining a more preferred satisfactory solution. 

The proposed solution procedures obtain a promising result which produces more balanced feasible   

solutions and provide decision support to identify critical objective in both decentralized and centralized 

SCN. 

Moreover, as a supplementary consideration, we consider daily planning for three echelon SCN 

considering inventory conditions. To cope with the problem, we applid a practical hybrid meta-heuristic 

method that supports decision making at a tactical and operational level. Its solution procedure is 

developed by means of two modified heuristic methods known as the saving method and tabu search together 

with the graph algorithm of minimum cost flow problem. Finally, to enhance usability of the method, 

visualization of result is also realized by virtue of Google map API. Numerical experiments are carried 

out to validate effectiveness of the proposed approach. 
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Chapter 1 
 

 

 

 

 

INTRODUCTION 

 

 

 

1.1. Background 

 

In today’s competitive environment characterized by low profit 

margins and high responsiveness to consumer demand for high qua-

lity products and shorter lead-times, companies are forced to ma-

nage their competitive advantage and opportunity to optimize their 

business processes. Manufacturing enterprises along with their dis-

tribution systems face dynamic challenges that require not only well-

planning capacity, but also robust SC networks with coordination 

mechanisms that allow the members involved in such networks to 

address and respond to any changes in a short notice. From radical 

volume changes in customer demand, to variations in prices of raw 

material and finished products due to currency fluctuations in the 

global marketplace, to increases in transportation costs due to 

speculation in the price of crude oil, any number of factors can have a 

serious effect on corporate revenue projections. In particular, when 

inventory is stuck in the various stages of the supply chain, the com-
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pany may be forced to operate at critical cash flow levels. As known, 

high inventory levels increase the responsiveness of the supply chain 

but decrease its cost efficiency because of the cost of holding inven-

tory. In this situation, the ability to intelligently address critical is-

sues through effective supply chain inventory and distribution strat-

egies not only keeps the wheels of business turning, but it also gives 

the company a relative advantage over its competitors in being able 

to address supplier concerns and consumer needs in a way that 

slower, less agile manufacturers are unable to do. Hence, a relevant 

problem in SC network is to determine the appropriate levels of in-

ventory at the various stages involved in a supply chain. 

Of the various activities involved in SC network, purchasing is 

one of the most strategic functions because it provides opportunities 

to reduce costs across the entire supply chain. An essential task with-

in the purchasing function is supplier selection, given that the cost of 

raw materials and component parts represents the largest percent-

age of the total product cost in most industries. For instance, in high 

technology firms, purchased materials and services account for up to 

80% of the total product cost [1]. In contemporary supply chain 

management, companies maintain long term partnership with sup-

pliers, and use fewer, but more reliable suppliers. The performance 

of potential suppliers is evaluated against multiple criteria rather 

than considering a single factor [2]. 

Given the prevalence of both inventory decisions and supplier 

selection in a supply chain, this study addresses both problems sepa-

rately by studying a multi-objective inventory control problem and 

supplier selection problem in a typical two-echelon SC under uncer-

tainty.  
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1.2. Research Scope and Objectives 

 

Investment in inventory should neither be excessive nor inade-

quate. It should just be optimum. Maintaining optimum level of in-

ventory is the main aim of inventory control system. Excessive in-

vestment in inventory slips the economical efficiency. At the same 

time, insufficient investment in inventory creates stock-out problems, 

interruption in production and selling operation. Therefore, the firm 

may loose the customers as they shift to the competitors. 

While inventory has always been important, establishing and 

maintaining long term partnership with suppliers has also become 

important over the past several decades. Selecting the right supplier 

not only gives the companies the opportunity to reduce material cost, 

but also helps the companies to receive necessary products in a time-

ly and effective manner to help maintain competitive advantage. 

Based on the above description, this research addresses inven-

tory control and supplier selection problem as follows: 

In the first part, we develop multi-objective inventory control 

problem in two echelon supply chain under uncertainty in demand 

and lead time and proposes two inventory replenishment strategies, 

beside conventional strategy, with alternative supply possibilities to 

fulfill the shortage which involve different level of coordination 

mechanism between manufacturers and retailers. A multi-objective 

Differential Evolution (MODE) is introduced to solve the problem 

and multi-objective analysis is carried out to evaluate the perfor-

mance of the system by simultaneously minimizing total cost and 

loss rate of the supply chain. The aim is to examine the situation 

when such coordination is profitable for all members in the system. 
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In the second part, we study a multi-objective supplier selec-

tion to determine the order quantity in a multi-sourcing environ-

ment. Specifically, this research focuses on fuzzy multi-objective lin-

ear programming (fuzzy MOLP) for solving supplier selection prob-

lem.  Both quantitative and qualitative criteria are considered during 

the selection process and the fuzzy approach is utilized to cope with 

uncertainty issue. This research introduces an enhanced two-phase 

fuzzy MOLP to help obtain more reasonable compromise solutions. 

In the third part, a periodic review inventory model in a typical 

SC system with multiple-manufacturer, multiple-retailer is consid-

ered. The aim of this paper is to develop a multi-objective periodic 

review inventory model in uncertain environment by simultaneously 

incorporating uncertainty in critical parameters. Unlike the research 

in the first part, which tackles the uncertainty using a stochastic ap-

proach, this research applies a fuzzy approach in coding the impre-

cise nature of demand, lead time and cost parameters. The problem 

is to determine ordering policy of raw material and the safety stock 

level of each manufacturer, and the order allocation and target stock 

level of each retailer that yield satisfactory minimum total cost while 

maintaining low loss rates. Several alternative solutions are obtained 

by solving a proposed multi-objective possibilistic mixed integer 

programming (MOPMIP) inventory model. 

Towards future real world applications, it is of special im-

portance to concern operational problems besides strategic ones 

considered in the above. Noticing such circumstance, and to enrich 

the prospects of this thesis, we also present a daily optimization of 

three echelon logistics as a supplemental concern. Developing a hy-

brid approach for efficient solution, we analyze an issue of inventory 

associates with demand deviations. 
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In detail, the main objectives of the proposed research are 

summarized as follow: 

1. Develop a multi-objective inventory control model for two eche-

lon supply chain under uncertainty utilizing three different sce-

narios of replenishment to fulfill the shortage and apply multi-

objective Differential Evolution to yield several compromised so-

lutions. 

2. Develop solution procedures by enhancing a two-phase approach 

to solve the multi-objective supplier selection in a fuzzy envi-

ronment incorporating both quantitative and qualitative criteria 

simultaneously. 

3. Propose an integrated solution procedure of multi-objective pos-

sibilistic mixed integer programming (MOPMIP) inventory model 

to facilitate the fuzzy decision-making process in a multi-

manufacturer multi retailer supply chain. 

 

1.3. Overview of Thesis 

 

This thesis is composed of seven chapters. The first chapter de-

scribes the introduction. It includes background, objectives of the 

thesis and overview of the thesis. Chapter two is concerned with lit-

erature review. This review includes the supply chain concepts, un-

certainty in supply chain, inventory in supply chain, supplier selec-

tion, and the concept of multi-objective optimization. Chapter three 

presents a multi-objective Analysis of Periodic Review Inventory 

Problem with Coordinated Replenishment in Two-echelon Supply 

Chain System. Chapter four studies an enhanced two-phase fuzzy 

programming model for multi-objective supplier selection problem. 

Chapter five focuses on the application of possibilistic programming 
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to solve fuzzy multi-objective inventory problem in two-echelon 

supply chain system. The conclusion and recommendation for fur-

ther study are briefly discussed in Chapter six. Lastly, we present a 

hierarchical approach to optimize a daily logistics problem associat-

ed with inventory control against demand deviations in Appendix 

section. 
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Chapter 2 
 

 

 

 

 

LITERATURE REVIEW 

 

 

2.1. Supply Chain 

 

The study about supply chains has grown very fast during this 

decade. Even so, there is no explicit description of supply chain man-

agement or its activities in the literature [3]. Each research defines 

the term supply chain, its processes and the complexities of the sup-

ply chain in different ways. The literature in this section starts by 

giving the definition of the supply chain and supply chain manage-

ment and then describes the main process and the levels of the sup-

ply chain system. 

 

2.1.1. Definition of Supply chain 

Supply chains represent a coordinated network of firms inter-

acting to provide a product or service to the end customer. They op-

erate across functions within organizations, company boundaries, 

and national borders. A diagram illustrating the basic components of 

a supply chain is presented in Figure 2.1. Most of the supply chains 

have three basic components: suppliers, producers, and customer. 
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Supply chains often contain distributors and retailers along with ser-

vice and support functions. The components of the supply chain 

must interact in a coordinated manner to achieve the ultimate goals: 

the delivery of goods and services resulting in the creation of cus-

tomer satisfaction. Products and services generally flow from 

sources of supply to sources of demand, while information and cash 

payments generally flow in the reverse direction [4]. 

For many reasons, an interest in logistic and supply chain man-

agement has grown explosively in the last few years. Supply chain 

management is considered to be an extension of traditional logistics. 

Whereas logistics investigates the flow of information, materials, 

capital and manpower in the internal supply chain owned by a single 

firm; supply chain management deals with the coordination of lo-

gistic processes with in the external supply chain. The main goal of 

both traditional logistics and supply chain management is to deliver 

superior customer value at less cost to the supply chain as a whole. 

Unlike traditional logistics, supply chain management involves the 

coordination of independently managed companies who seek to 

maximize their own profits. Although overall performance of the 

supply chain depends on the company’s joint performance, the oper-

ational goals may conflict and result in inefficiency for the entire 

chain. Therefore, one of the main issues in supply chain management 

Producers
Distributor Retailer

Supplier
(source of supply)

Customer
(source of demand)

Flow of products and services

Flow of demand and information

Flow of cash payment

 

Figure 2.1. Supply chain 
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is to find suitable mechanisms for coordinating the logistical pro-

cesses that are controlled by various independent companies in or-

der to achieve overall minimal cost and maximum profit. 

Other interesting definitions of supply chain management are 

described by the following research. Simchi-Levi et al. [5] defined 

supply chain management as a set of approaches utilized to efficient-

ly integrate suppliers, manufacturers, warehouses, and stores, so 

that merchandise is produced and distributed at the right quantities, 

to the right locations, and at the right time, in order to minimize sys-

tem wide costs while satisfying service level requirements. 

Scott and Westbrook [6] and New and Payne [7] described 

supply chain management as a chain linking each element of the 

manufacturing and supply process from raw materials through to the 

end customer, encompassing several organizational boundaries. Ac-

cording to this broad definition, supply chain management encom-

passes the entire value of the chain and addresses materials and 

supply management from the extraction of raw materials until the 

end of its useful life. Supply chain management focuses on how firms 

utilize their supplier’s processes, technology, and capability to en-

hance competitive advantage and the coordination of the manufac-

turing, logistics, and materials management functions within and or-

ganization. When all strategic organizations in the value chain ‘inte-

grate’ and act as a single unified entity, performance is enhanced 

throughout the system of suppliers. 

 

2.1.2. Supply Chain Process 

As briefly described earlier, a supply chain is an integrated 

manufacturing process wherein raw materials are converted into fi-

nal products and then delivered to the customer. A supply chain is 
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comprised of two basic, integrated processes: 1) the production 

planning and inventory control process, and 2) the distribution and 

logistics process.  

1. The production planning and control process encompasses 

manufacturing and storage sub-processes, and their interface. In de-

tail, production planning describes the design and management of 

the entire manufacturing process, including raw material scheduling 

and acquisition, manufacturing process design and scheduling and 

material handling design and control. Inventory control describes 

the design and management of storage policies and procedures for 

raw materials, work-in-process and final products inventory. 

2. The distribution and logistics process determines how prod-

ucts are retrieved and transported from the warehouse to the retail-

er. These products may be transported to retailers directly, or may 

first be moved to distribution facilities, which, in turn, transport 

products to the retailers. This process includes the management of 

inventory retrieval, transportation, and final product delivery. 

Both processes interact with one another to produce an inte-

grated supply chain [8].  These processes are illustrated in Figure 2.2, 

providing the basic framework for the conversion and movement of 

raw materials into final products. 

Supplier
Distribution 

Center

Retailer
Transp.  
Vehicles

Storage 
Facility

Manufacturing 
Facility

Production Planning 
& Inventory Control

Distribution and logistics

 

Figure 2.2. Supply chain process 
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2.1.3. Supply Chain System 

The supply chain system as described by Harland [9] can be di-

vided into 4 levels according to the scope of study of each researcher 

so that the term ‘supply chain’ represents different concepts relating 

to different spans of influence. The levels of supply chain system are 

illustrated in Figure 2.3. 

1. Internal chain: the first level is the internal chain, which re-

fers to the processes inside a manufacturing organization starting 

from ordering and receiving materials through the transformation 

processes of production, to the dispatch and physical distribution of 

the product to the customers.  

2. Dyadic Relationship: the second level of supply chain system 

is called dyadic relationship, and is concerned with the relationship 

of two echelons in the supply chain, including the flow of material 

and information, purchasing procurement, stock level etc. Most of 

the research in a supply chain system focuses on this level. 

3. External chain: the third level in a supply chain system is 

called an external chain. This views supply chains more holistically 

as the total chain of exchange from original source of raw material, 

Level 1 : Internal Chain

Level 4 : Network

Level 3 : External Chain

Level 2 : Dyadic Relation Ship

 

Figure 2.3. Levels of the supply chain 
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through the various firms involved in extracting and processing raw 

materials, manufacturing, assembling, distributing and retailing to 

ultimate end customers.  

4. Network level: this level has undergone increased attention 

on the total focal firm network, not only concerned in a single chain. 

For example, it is the network of relationships that a firm has with its 

suppliers, its supplier’s supplier and so on in upstream, and its cus-

tomers and its customer’s customer and so on in downstream. 

 

2.2. Uncertainty in the supply chain system 

 

Uncertainty rules the supply chain. Uncertainties in supply, 

process and demand are recognized to have a major impact on the 

supply chain. Uncertainty propagates throughout the network and 

leads to inefficient processing and non-value adding activities. Sales 

deviate from forecast, components are damaged in transit, fabrica-

tion yields fail to meet plan, shipments are held up in customs, are 

the most common events as direct results of uncertainty. 

 

2.2.1. Types of uncertainty 

Supply chain uncertainty can be classified into four general 

types: process, supply, demand, and control uncertainty. Below is the 

description of each type of uncertainty as cited from Geary et al. [10]. 

Process uncertainty. Process uncertainty affects a company’s inter-

nal ability to meet a production delivery target. The amount of pro-

cess uncertainty can be established by understanding each work 

process’s yield ratios and lead time estimates for operations. Also, if 

the particular product delivery process is competing against other 
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value streams for resources, then the interaction between these must 

be studied and codified. 

Supply uncertainty. Supply uncertainty results from poorly per-

forming suppliers due to their inability to meet company’s require-

ments and thereby handicapping value-added processes. It can be 

evaluated by looking at supplier delivery performance, time series of 

orders placed or call-offs and deliveries from customers, actual lead 

times, supplier quality reports, and raw material stock time series. 

Demand uncertainty. Demand uncertainty can be thought of as the 

difference between the actual end-marketplace demand and the or-

ders placed with a company by its customers. Demand uncertainty 

can also be quantified by measuring how well companies meet cus-

tomer demand. For example, poor on-time delivery or fill rates are 

often a result of demand uncertainty, though this is not always the 

case. If a customer suddenly places a weekly order that is twice the 

typical order size, it may be the result of a shift in underlying de-

mand or it may just be that the customer has modified safety stocks 

or ordering rules. 

Control uncertainty. Control uncertainty is associated with infor-

mation flow and the way an organization transforms customer or-

ders into production targets and supplier raw material requests. The 

level of control uncertainty can be determined by comparing cus-

tomer requirements, supplier requests to deliver, and production 

targets over the same time periods. Control uncertainty is driven by 

the algorithms an control systems that are used to transfer the cus-

tomer orders into production targets and supplier raw material re-

quests. In a pure demand-pull environment, the linkage between 

supply and demand is clear and control uncertainty is eliminated. 

However, companies typically use order batching and lot sizing, 
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which obscures the linkage between demands placed and true re-

quirements. 

Each of these uncertainties creates a drag on operational per-

formance. However, supply chain professionals are often so busy 

dealing with the fallout from uncertainty (such as stock-outs, missed 

shipments, and oversupply) that they do not have time to attack the 

root cause of the problem. The issue has been complicated even fur-

ther over the course of the last decade by the movement away from 

the vertically integrated supply chain. Now, rather than confronting 

the uncertainty generated just by activities within the operational 

domain of a single organization, we must manage uncertainty across 

a host of supply chain participants. Outsourcing, the virtual organiza-

tion, and modular manufacturing all contribute to supply chain un-

certainty issues. All of this makes it more important to understand 

the relationship between supply chain performance and uncertainty 

 

2.2.2. Modeling uncertainty in the supply chain 

With the growing attention paid in recent years to supply chain 

uncertainty, it is worth examining in more detail different models 

employed in the literatures to cope with uncertainty. There have 

been three broad philosophies on which several methods for optimi-

zation under uncertainties can be categorized: stochastic program-

ming, fuzzy mathematical programming and chance constrained 

programming [11]. In this thesis, only the first two-approach will be 

discussed. 

 

1. Stochastic programming model 

Stochastic programming is a typical method of generating an 

operational plan within an uncertain environment when the precise 
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probability distribution of future uncertainty is known in advance. 

Stochastic programming formulations assume that the probability 

distributions governing the uncertain data are known or can be es-

timated [12]. This means that historical record for the uncertain data 

is available, and this data is analyzed using statistical approach to 

approximate its future trend. 

MirHassani et al. [13] considered a two-stage model for multi-

period capacity planning of supply chain networks. Here the first 

stage decisions, comprised of openings and closings of the plants and 

distribution centers and setting their capacity levels, are to be decid-

ed prior to the realization of future demands. Then, based upon the 

particular demand scenario realized, the production and distribution 

decisions are to be decided optimally. The overall objective is to min-

imize the cost of the first-stage strategic decisions and the expected 

production and distribution costs over the uncertain demand scenar-

ios. The authors used Benders decomposition to solve the resulting 

stochastic integer program, and presented computational results on 

supply chain networks involving up to 8 plant sites, 15 distribution 

centers, 30 customer locations, and with 100 scenarios. 

Georgiadis et al. [14] considered a two-stage stochastic pro-

gramming model for supply chain network design under demand un-

certainty. The authors developed a large-scale mixed-integer linear 

programming model for this problem, and presented a case study 

using a European supply chain network involving 14 products, 18 

customer locations, 6 distribution center locations, and 3 demand 

scenarios. 

Alonso-Ayuso et al. [15] proposed a branch-and-fix heuristic 

for solving two-stage stochastic supply chain design problems. Com-
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putational results on networks involving 6 plants, 12 products, 24 

markets, and 23 scenarios were presented. 

 

2. Fuzzy programming model 

Fuzzy mathematical programming is proliferated by Zimmer-

mann [16, 17] by formulating mathematical programming model 

that takes into account (a) the decision maker's expectations of a 

target range of objective values and (b) soft constraints based on de-

cision making in a fuzzy environment. In this approach, uncertain 

parameters are treated as fuzzy numbers and constraints are treated 

as fuzzy sets. The degree of satisfaction of a constraint is defined in 

terms of a normalized membership function of the constraint and a 

small extent of constraint violation is allowed while objective func-

tions may be either a fuzzy goal or a crisp function. The advantage of 

fuzzy approach over the other two approaches mentioned earlier is 

that fuzzy approach neither assumes that the uncertain parameters 

have to follow any statistical distribution nor allows the final deter-

ministic equivalent formulation of the uncertain model to blow up in 

size with increase in number of uncertain parameters. The disad-

vantage of the fuzzy approach lies in its inability to represent the ex-

act nature of the uncertainty and the results could depend on the 

fuzzification approach. 

Mitra et al. [11] formulated the mid-term planning problem in a 

multi-site, multi-product, multi-period supply chain under uncertain-

ty using the fuzzy mathematical programming approach. They 

demonstrate that the fuzzy approach is quite generic, relatively sim-

ple to use and can be adapted for bigger size planning problems, as 

the equivalent deterministic problem does not blow up in size with 
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increase in number of uncertain parameters while using fuzzy ap-

proach. 

Liu and Sahinidis [18] solved a single objective capacity plan-

ning problem under uncertainty using fuzzy and two stage stochastic 

programming approaches and compared the performance of the two. 

Selim et al. [19] used fuzzy goal programming approaches in han-

dling the multi-objective collaborative production–distribution plan-

ning problems in both centralized and decentralized supply chain 

design structures to make a comparative analysis between them. 

Chen et al. [20] studied a multi-objective supply chain design 

problem for locating warehouses using two-phase fuzzy approach 

where they have used scenario-based approach to represent uncer-

tainty in demand. Liang [21] developed an interactive fuzzy multi-

objective linear programming method to simultaneously minimize 

the total distribution costs and the total delivery time with reference 

to fuzzy available supply and total budget at each source, and fuzzy 

forecast demand and maximum warehouse space at each destination. 

 

2.3. Inventory in the Supply Chain System 

 

Inventory is the stock of any resource used in a company. An 

inventory system is the set of policies and controls that monitor lev-

els of inventory and determine what levels should be maintained, 

when stock should be replenished, and how large orders should be. 

By convention, manufacturing inventory generally refers to 

items that contribute to or become part of a company’s product out-

put. Manufacturing inventory is typically classified into raw materi-

als, finished products, component parts, supplies, and work-in-

process. In distribution, inventory is classified as in-transit, meaning 
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that it is being moved in the system, and warehouse, which is inven-

tory in a warehouse or distribution center. Retail sites carry invento-

ry for immediate sale to customers. In services, inventory generally 

refers to the tangible goods to be sold and the supplies necessary to 

administer the service. 

 The basic purposes of inventory analysis are to specify (1) 

when items should be ordered and (2) how large the order should be. 

Many firms are tending to enter into longer-term relationships with 

vendors to supply their needs for perhaps the entire year. This 

changes the “when” and “how many to order” to “when” and “how 

many to deliver.” 

Inventory decisions involve high risk and high impact for the 

supply chain management. Inventory committed to support future 

sales, drives a number of anticipatory supply chain activities. With-

out a proper inventory assortment lost sales and customer dissatis-

faction may occur. Likewise, inventory planning is critical to manu-

facturing. Material or component shortages can shut down a manu-

facturing line or force modification of a production schedule, which 

creates added cost and potential finished goods shortage. Just as a 

shortage can disrupt planned marketing and manufacturing opera-

tions, inventory overstocks also create operating problems. Over-

stocks increase cost and reduce profitability as result of increasing 

warehousing, working capital, insurance, taxes, and obsolescence. 

This section reviews the inventory management according to differ-

ent configuration structure of supply chain as follow: 

 

2.3.1. Inventory in the Dyadic Supply Chain 

Newhart et al. [22] designed an optimal supply chain using a 

two- phase approach. The first phase combines mathematical pro-



19 

 

gram and heuristic model with the objective of minimizing the num-

ber of distinct product types held in inventory throughout the supply 

chain. The second phase is a spreadsheet based inventory model, 

which determines the minimum amount of safety stock required to 

absorb demand and lead time fluctuations. 

Pyke and Cohen [23] developed a heuristic algorithm for de-

termining reorder at warehousing and orders up to levels S for re-

tailer. The system is a three level supply chain, consisting of one 

product, one manufacturer, one warehousing and one retailer. 

Warehouse uses (Qn, R) system where retailer uses periodic review 

with order up to level (T, S). The model minimizes total cost, subject 

to a service level constraint, and holds the set up times, processing 

times, and replenishment lead times constant.  

Pyke and Cohen [24] furthered their study on integrated pro-

duction and distribution for multi-products in the three echelons 

supply chain system. The system consists of a factory, a finished good 

stockpile and a single retailer. The finished good stockpile uses a (Q, 

R) system to control inventory, factory orders at Q when stock reach 

reorder point R and a retailer uses a base stock inventory with an 

order up to level S or (T, S) policy. The system allows the retailer to 

make a second order if shortage has occurred. They developed an 

algorithm to determine order up to level at the retailer, normal and 

expedite replenishment reorder point and normal and expedite re-

plenishment batch size for each product. 

Altiok and Ranjan [25] considered a production and distribu-

tion system. The system experiences demand for finished products 

according to a compound Poisson process. The inventory levels for 

inventories are controlled according to a continuous review (R, r) 

inventory policy. Backorders are allowed in their study. 
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Ishii et al. [26] developed a deterministic model, known as a 

demand process, for determining the base stock levels and lead-

times associated with the lowest cost solution and integrated with 

the lowest cost solution for an integrated supply chain on a finite 

horizon. The stock levels and lead-times are determined in such a 

way as to prevent stock out, and to minimize the amount of obsolete 

inventory at each stock point. 

Khouja et al. [27] tried to solve the economic lot size-

scheduling problem (ELSP) for multi-products system by using Ge-

netic Algorithm (GA). They used a GA to solve the optimal floating 

cycle time and economic lot size or integer multipliers of a basic pe-

riod for each product. They compared the result of using GA with the 

result from using dynamic programming. Dynamic Programming 

(DP) allows for a time-varying lot size approach with a fixed cycle 

time, but GA optimizes floating cycle time and fixed economic lot size 

for the whole cycle time. They concluded that the resulting solutions 

from GA were better than those obtained using DP. 

 

2.3.2. Inventory in the Supply Chain network  

Ganeshan [28] presented a near-optimal (s, Q) type of invento-

ry-logistics cost minimizing model for a production/distribution 

network with multiple suppliers supplying a distribution center, 

which in turn distributes to a large number of identical retailers. The 

decisions in the model were made through a comprehensive distri-

bution-based cost framework that includes the inventory, transpor-

tation, and transit components of the supply chain.  

Gjerdrum et al. [29] studied the replenishment control system 

in a supply chain network. The agent types in this supply chain net-

work consists of two factories, two warehouses, external logistic, in-
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ternal logistic, spot market and transportation. The objective of this 

supply chain network system is to reduce operating cost, while main-

taining a high level of customer order fulfillment. 

Miranda and Garrido [30] studied three echelon supply chain 

network in which a single plant supplied products to multi-regional 

warehouses, and distributed products to multi-retailers or custom-

ers. They proposed a simultaneous approach to incorporate invento-

ry control decisions which are economic order quantity and safety 

stock. They presented a nonlinear mixed integer model and a heuris-

tic solution approach, based on Lagrangian relaxation and the sub-

gradient method. They found that the potential cost reduction, com-

pared to the traditional approach, increases when the holding cost 

and/or the variability of demand are higher. 

Seferlis and Giannelos [31] studied the four-echelon supply 

chain network that consisted of two production modes, two ware-

house nodes, four distribution centers and sixteen retailer nodes. 

The optimization-based control scheme aimed at adjusting the deci-

sion variables in the supply chain (e.g. transportation load, produc-

tion inventory) to satisfy the customer orders with the least operat-

ing cost over a specified rolling time horizon using a detailed differ-

ent model of the system. Simulation results exhibited good dynamic 

performance under both stochastic and determination variation. 

 

2.4. Suppliers Selection 

 

Supplier selection is the process by which companies identify, 

evaluate, and contract with suppliers. The supplier selection process 

deploys a tremendous amount of a company’s financial resources. In 
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return, companies expect significant benefits from contracting with 

suppliers offering high value. 

Several factors make new suppliers important. First, there may 

exist new suppliers that are superior in some way to a company’s ex-

isting suppliers. For example, a new supplier may have developed a 

novel production technology or streamlined process which allows it 

to significantly reduce its production costs relative to predominate 

production technology or processes. Or, a new supplier may have a 

structural cost advantage over existing suppliers, for example, due to 

low labor costs or favorable import/export regulations in its home 

country. Second, existing suppliers may go out of business, or their 

costs may be increasing. Third, the buyer may need additional sup-

pliers simply to drive competition, reduce supply disruption risks, or 

meet other business objectives such as supplier diversity. In recogni-

tion of these reasons, buyers and their internal customers may be 

obliged by company policy to locate a minimum number of viable, 

potential suppliers for every product or service procured. 

Finding a viable new supplier is challenging due to the need to 

verify the supplier’s ability to meet the buyer’s requirements [32].  

Supplier non-performance on even the most basic level, and for the 

most-simple commodity, can have dire consequences for the buyer. 

Boeing’s 787 Dreamliner production schedule was significantly 

affected by shortages of fasteners, essentially bolts that secure sec-

tions of the fuselage together [33]. In consumer products many 

product safety issues have been traced back to suppliers failing to 

meet a buyer’s requirements, resulting in dangerous lead paint in 

toys [34], unsafe car tires [35], and pet food containing poisonous 

chemicals [36].  
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Production delays due to parts shortages and recalls of faulty 

products produced by noncompliant suppliers have cost buyer firms 

millions of dollars through recalls, warranty costs, and associated 

inventory adjustments, and have inflicted untold damage on their 

reputations and future sales potential. New Jersey based tire import-

er Foreign Tire Sales traced field failures of its tires to an unauthor-

ized design change made by its supplier, whose design engineer de-

cided to omit gum strips, apparently unaware of their role in pre-

venting tread separation [35]. A surprised Foreign Tire Sales was 

forced by U.S. government authorities to recall a quarter of a million 

tires, and risked bankruptcy as a result [37]. 

 

2.4.1. Supplier Selection Criteria 

Supplier selection decisions are complicated by the fact that 

various criteria must be considered in the decision making process. 

The analysis of criteria for selection and measuring the performance 

of suppliers has been the focus of many scientists and purchasing 

practitioners since 1960’s.  

Supplier selection criteria for a particular product or service 

category should be defined by a “cross-functional” team of repre-

sentatives from different sectors within the company. In a manufac-

turing company, for example, members of the team typically would 

include representatives from purchasing, quality, engineering and 

production. Team members should include personnel with tech-

nical/applications knowledge of the product or service to be pur-

chased, as well as members of the department that uses the pur-

chased item. 

An interesting work, which has been adopted as reference for 

the majority of papers dealing with supplier problem, was presented 
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Table 2.1. Dickson’ 23 criteria for supplier selection 

Rank Criteria Rating Evaluation 
1 Quality 3.508 Extreme importance 
2 Delivery 3.147  
3 Performance history 2.998  
4 Warranty and claim policies 2.849  
5 Production facility and capacity 2.775 Considerable importance 
6 Price 2.758  
7 Technical capability 2.545  
8 Financial position 2.514  
9 Procedural compliance 2.488  

10 Communication system 2.426  
11 Reputation and position in industry 2.412  
12 Desire of business 2.256  
13 Management and organization 2.216  
14 Operating controls 2.211  
15 Repair service 2.187 Average importance 
16 Attitude 2.120  
17 Impression 2.054  
18 Packaging ability 2.009  
19 Labor relations record 2.003  
20 Geographical location 1.872  
21 Amount of past business 1.597  
22 Training aids 1.537  
23 Reciprocal arrangement 0.006 Slight importance 

 

 

by Dickson [38]. Dickson’s study was based on questionnaires sent to 

273 purchasing agents and managers selected form the membership 

list of the National Association of Purchasing managers. The list in-

cluded purchasing agents and managers from the United States and 

Canada. From the returned 170 questionnaires, the total of 23 crite-

ria was regarded to be the most considered criteria for supplier se-

lection. Indeed, the 23 criteria are ranked with respect to their im-

portance observed in the beginning of the sixties. At the time (1966), 

the most significant criteria were “quality” of the product, the ”on-

time delivery”, the “performance history” of the supplier and the 

warranty policy used by the supplier. The complete list of there cri-

teria can be found in Table 2.1.  

In [39], the authors present a classification of all the articles 

published since 1966 according to the treated criteria. Based on 74 
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papers, they observed that “price”, ”delivery”, ”quality” and “produc-

tion capacity and location” are the criteria most  often treated in the 

literature. 

Overall, the 23 criteria presented by Dickson still cover the ma-

jority of the criteria presented in the literature until today. On the 

other hand, the evolution of the industrial environment modified the 

degrees of the relative importance of these criteria. For example, 

Weber [39] insists on the high importance of the geographical posi-

tion of the supplier in Just-in-Time environment, whereas this crite-

rion appeared in the 20th position in 1966. Also, the criterions in the 

10th, 12th, 13th position (communication system, desire of business, 

management and organization), of the Dickson’s study, are very im-

portant for the actual industrial environment. Indeed, the actual sit-

uation requires a perfect coordination and a durable cooperation be-

tween various actors of the supply chain. 

 

2.4.2. Supplier Selection Methods 

Several well-known supplier selection methods have been de-

veloped and classified by numerous scholars over the years. Certain 

methods have been popular selection choices for years, while other 

methods have only emerged recently. 

As cited from Ho et al. [40], the classification of supplier selec-

tion methods are described briefly in as follow. 

1. Data envelopment analysis (DEA) 

Braglia and Petroni [41] applied DEA to measure the efficien-

cies of alternative suppliers. Nine evaluating factors were proposed 

to measure each supplier rating. To avoid selecting a sub-optimal or 

‘‘false positive” supplier, both cross-efficiency and Maverick index 

were measured. 
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Narasimhan et al. [42] applied DEA model to evaluate alterna-

tive suppliers for a multinational corporation in the telecommunica-

tions industry. Eleven evaluating factors were considered in the 

model, in which there are six inputs related to the supplier capability, 

and five outputs related to the supplier performance. Based on the 

performance score, the suppliers were classified into four categories: 

high performers and efficient, high performers and inefficient, low 

performers and efficient, and low performers and inefficient. 

Ross et al. [43] used DEA to evaluate the supplier performance 

with respect to both buyer and supplier performance attributes. 

Three sensitivity analyses were carried out. The first analysis was to 

compute the supplier efficiency scores without considering the eval-

uation team’s weights and bounds. The second analysis considered 

the evaluation team’s preferences on the supplier performance at-

tributes, whereas the third analysis considered the buyer’s prefer-

ences on the supplier performance attributes. 

Wu et al. [44] presented a so-called augmented imprecise DEA 

for supplier selection. The proposed model was able to handle im-

precise data (i.e., to rank the efficient suppliers) and allow for in-

creased discriminatory power (i.e., to discriminate efficient suppliers 

from poor performing suppliers). A web-based system was devel-

oped to allow potential buyers for supplier evaluation and selection. 

2. Mathematical programming 

Hong et al. [45] presented a mixed-integer linear programming 

model for the supplier selection problem. The model was to deter-

mine the optimal number of suppliers, and the optimal order quanti-

ty so that the revenue could be maximized. The change in suppliers’ 

supply capabilities and customer needs over a period of time were 

considered. 
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Ghodsypour and O’Brien [46] formulated a mixed integer non-

linear programming model to solve the multi-criteria sourcing prob-

lem. The model was to determine the optimal allocation of products 

to suppliers so that the total annual purchasing cost could be mini-

mized. Three constraints were considered in the model. 

Karpak et al. [47] constructed a goal programming (GP) model 

to evaluate and select the suppliers. Three goals were considered in 

the model, including cost, quality, and delivery reliability. The model 

was to determine the optimal amount of products ordered, while 

subjecting to buyer’s demand and supplier’s capacity constraints. 

Narasimhan et al. [48] constructed a multi-objective program-

ming model to select the optimal suppliers and determine the opti-

mal order quantity. Five criteria were proposed to evaluate the per-

formance of suppliers. Before solving the model to optimality, the 

relative importance weightings of five criteria were derived in ad-

vance. The authors suggested that AHP could be one of the possible 

ways for generating the weightings. 

3. Case-based reasoning 

Choy and Lee [49] presented a generic model using the CBR 

technique for supplier selection. Various evaluating criteria were 

grouped into three categories: technical capability, quality system, 

and organizational profile. The model was implemented in a con-

sumer products manufacturing company, which had stored the per-

formance of past suppliers and their attributes in a database system. 

The proposed model would then retrieve or select a supplier who 

met the specification predefined by the company most. 

Choy et al. [50] applied the CBR-based model to aid decision 

makers in the supplier selection problem again. The approach was 

very similar to that proposed in Choy and Lee [51], including the 
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supplier selection workflow. In addition, the model was deployed to 

the same company. 

4. Analytical hierarchy process (AHP) 

Muralidharan et al. [52] proposed a five-step AHP-based model 

to aid decision makers in rating and selecting suppliers with respect 

to nine evaluating criteria. People from different functions of the 

company, such as purchasing, stores, and quality control, were in-

volved in the selection process. 

Akarte et al. [53] developed a web-based AHP system to evalu-

ate the casting suppliers with respect to 18 criteria. In the system, 

suppliers had to register, and then input their casting specifications. 

To evaluate the suppliers, buyers had to determine the relative im-

portance weightings for the criteria based on the casting specifica-

tions, and then assigned the performance rating for each criterion 

using a pairwise comparison. 

Chan [54] developed an interactive selection model with AHP 

to facilitate decision makers in selecting suppliers. The model was 

so-called because it incorporated a method called chain of interac-

tion, which was deployed to determine the relative importance of 

evaluating criteria without subjective human judgment. AHP was on-

ly applied to generate the overall score for alternative suppliers 

based on the relative importance ratings. 

5. Fuzzy set theory 

Chen et al. [55] presented a hierarchy model based on fuzzy-

sets theory to deal with the supplier selection problem. The linguistic 

values were used to assess the ratings and weights for the supplier 

evaluating factors. These linguistic ratings could be expressed in 
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trapezoidal or triangular fuzzy numbers. The proposed model was 

capable of dealing with both quantitative and qualitative criteria. 

Sarkar and Mohapatra [56] suggested that performance and 

capability were two major measures in the supplier evaluation and 

selection problem. The authors used the fuzzy set approach to ac-

count for the imprecision involved in numerous subjective character-

istics of suppliers. A hypothetical case was adopted to illustrate how 

the two best suppliers were selected with respect to four perfor-

mance-based and ten capability-based factors. 

Florez-Lopez [57] picked up 14 most important evaluating fac-

tors from 84 potential added-value attributes, which were based on 

the questionnaire response from US purchasing managers. To obtain 

a better representation of suppliers’ ability to create value for the 

customers, a two-tuple fuzzy linguistic model was illustrated to com-

bine both numerical and linguistic information. Besides, the pro-

posed model could generate a graphical view showing the relative 

suitability of suppliers and identifying strategic groups of suppliers. 

6. Integrated approaches 

Sevkli et al. [58] applied an integrated AHP–DEA approach for 

supplier selection. In the approach, AHP was used to derive local 

weights from a given pairwise comparison matrix, and aggregate lo-

cal weights to yield overall weights. Each row and column of the ma-

trix was assumed as a decision making unit (DMU) and an output, 

respectively. A dummy input that had a value of one for all DMUs was 

deployed in DEA to calculate the efficiency scores of all suppliers. 

However, the authors pointed out that the approach was relatively 

more cumbersome to apply than the individual AHP. 

Kull and Talluri [59] utilized an integrated  AHP – Goal Pro-

gramming approach to evaluate and select suppliers with respect to 
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risk factors and product life cycle considerations. In the proposed 

model, AHP was used to assess suppliers along the risk criteria, and 

to derive risk scores. The GP model was then constructed to evaluate 

alternative suppliers based on multiple risk goals and various hard 

constraints. 

Xia and Wu [60] incorporated AHP into the multi-objective 

mixed integer programming model for supplier selection. The model 

applied AHP to calculate the performance scores of potential suppli-

ers first. The scores were then used as coefficients of one of the four 

objective functions. The model was to determine the optimal number 

of suppliers, select the best set of suppliers, and to determine the op-

timal order quantity. 

Chan and Kumar [61] also used a fuzzy AHP for supplier selec-

tion as the case with Kahraman et al. [50]. In the proposed approach, 

triangular fuzzy numbers and fuzzy synthetic extent analysis method 

were used to represent decision makers’ comparison judgment and 

decide the final priority of different criteria. 

Amid et al. [62] developed a fuzzy multi-objective linear pro-

gramming model for supplier selection. The model could handle the 

vagueness and imprecision of input data, and help the decision mak-

ers to find out the optimal order quantity from each supplier. Three 

objective functions with different weights were included in the mod-

el. An algorithm was developed to solve the model. 

 

2.5. Multi-objective Optimization 

 

A multi-objective problem (MOP) deals with more than one ob-

jective function. Most real world problems involve the simultaneous 

optimization of two or more (often conflicting) objectives. The solu-
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tion of such problems (called “multi-objective”) is different from that 

of a single-objective optimization problem. The main difference is 

that multi-objective optimization problems normally have not one 

but a set of solutions which are all equally good. 

 

2.5.1. Multi-objective Optimization Problem 

As cited from Shimizu et al. [63], a MOP can be described as a 

triplet like (x, f, x), similar to the usual single-objective optimization. 

However, it should be noticed that the objective function in this case 

is not a scalar but a vector. Consequently, the MOP is written, in gen-

eral, by 

 

[Problem] min f(x) = {f1(x), f2(x), . . . , fN(x)} 

subject to x  X, 

 

where x denotes an n-dimensional decision variable vector, X a feasi-

ble region defined by a set of constraints, and f an N-dimensional ob-

jective function vector, some elements of which conflict and are in-

commensurable with each other. 

The conflicts occur when  one tries to improve a certain objec-

tive function, at least one of the other objective functions deterio-

rates. As a typical example, if one weighs on the economy, the envi-

ronment will deteriorate, and vice versa. On the other hand, the term 

incommensurable means that the objective functions lack a common 

scale to evaluate them under the same standard, and hence it is im-

possible to incorporate all objective functions into a single objective 

function. For example, environmental impact cannot be measured in 

terms of money, but money is usually used to account economic af-

fairs. 
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To grasp the entire idea, let us illustrate the feature of MOP 

schematically. Figure 2.4 describes the contours of two objective 

functions f1 and f2 in a two-dimensional decision variable space. 

There, it should be noted that it is impossible to reach the minimum 

points of the two objective functions p and q simultaneously. 

Here, let us make a comparison between three solutions, A, B 

and C. It is apparent that A and B are superior to C because f1(A) < 

f1(C), and f2(A) = f2(C), and f1(B) = f1(C), and f2(B) < f2(C). We call A 

and B as non-dominated solution. Thus we can rank the solutions 

from these comparisons. However, it is not true for the comparison 

between A and B. We cannot rank these as just the magnitudes of the 

objective values because f1(A) < f1(B), and f2(A) > f2(B). Likewise, a 

comparison between any solutions on the curve, p − q, which is a tra-

jectory of the tangent of both contour curves is impossible. These so-

lutions are known as Pareto optimal solutions. Such a Pareto optimal 

solution (POS) becomes a rational basis for MOP since any other so-

lutions are inferior to every POS. It should be also recalled, however, 

that there exist infinite POSs that are impossible to rank. Hence the 

final decision is left unsolved. 

To understand intuitively the POS as a key issue of MOP, it is 

depicted again in Figure 2.5 in the objective function space when N = 

 

Figure 2.4. Optimal solution in decision space 
        (Source: Shimizu et al.[63]) 
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2. From this, we also know that there exist no solutions that can 

completely outperform any solution on the POS set (also called Pare-

to front). For any solution belonging to the POS set, if we try to im-

prove one objective, the rest of the objectives are urged to degrade. 

It is also apparent that it never provides a unique or final solu-

tion for the problem under consideration. For the final decision un-

der multi-objectives, therefore, we have to decide a particular one 

among an infinite number of POSs. For this purpose, it is necessary to 

reveal a certain value function of decision maker (DM) either explic-

itly or implicitly. This means that the final solution will be derived 

through the tradeoff analysis among the conflicting objectives by the 

DM. In other words, the solution process needs a certain subjective 

judgment to reflect the DM’s preference in addition to the mathemat-

ical procedures [63].  

 

2.5.2. Multi-objective versus single-objective Optimization 

Besides having multiple objectives, there are a number of fun-

damental differences between single-objective and multi-objective 

optimization. 

+  

Figure 2.5. Idea of solution procedure in objective space 
(Source: Shimizu et al.[63]) 
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In single objective optimization, there is one goal – the search 

for the optimum solution. Although the search space may have a 

number of local optimal solutions, the goal is always to find the glob-

al optimal solution. However, in multi-objective optimization, there 

are clearly two goals. Progressing toward the optimal front is cer-

tainly an important goal. However, maintaining a diverse set of solu-

tions in the Pareto front is also essential [64]. An algorithm that finds 

a closely packed set of solution in Pareto optimal front satisfies the 

first goal of convergence of the solutions, but does not satisfy 

maintenance of a diverse set of solutions. Since all objective are im-

portant, the diverse set of the obtained solutions close to the Pareto 

front provide a variety of optimal solutions, trading objective differ-

ently.  

Since both goals are important, an efficient multi-objective op-

timization algorithm must work on satisfying both of them. It is im-

portant to realize that both of these tasks are somewhat orthogonal 

to each other. The achievement of one goal does not necessarily 

achieve the other goal. Explicit or implicit mechanisms to emphasize 

convergence near the optimal Pareto front and the maintenance of a 

diverse set of solutions must be introduced in an algorithm. Because 

of these dual tasks, multi-objective optimization is more difficult 

than single objective optimization. 

Another difficulty is that multi-objective optimization involves 

two search space, instead of one. In single objectives optimization, 

there is only one search space – the decision variable space. An algo-

rithm works in this space by accepting and rejecting solutions based 

on their objective function values. Here in addition to the decision 

variable space, there also exists the objective or criterion space. Alt-

hough these two spaces are related by a unique mapping between 
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them, often the mapping is non-linear and the properties of the two 

search spaces are not similar. For example, proximity of two solu-

tions in one space does not mean proximity in the other space. Thus, 

while achieving the second task of maintaining diversity in the ob-

tained set of solutions, it is important to decide the space in which 

the diversity must be achieved. 

In any optimization algorithm, the search is performed in the 

decision variable space. However the proceeding of an algorithm in 

the decision variable space can be traced in the objective space. In 

some algorithms, the resulting proceedings in the objective space are 

used to steer the search in the decision variable space. When this 

happens, the proceedings in both spaces must be coordinated in such 

away that the creation of new solution is complimentary to the di-

versity needed in the objective space. This, by no means, is an easy 

task and depends on the mapping between the decision variables 

and the objective function values. 

 

2.5.3. Search and decision making 

In solving an MOP, two conceptually distinct types of problem 

difficulty can be identified [65]: search and decision making. The 

former refers to the optimization process in which the feasible set is 

sampled for Pareto optimal solutions. Even in single-objective opti-

mization, large and complex search spaces can make search difficult 

and preclude the use of exact optimization methods like linear pro-

gramming [66]. The latter addresses the problem of selecting a suit-

able compromise solution from the Pareto-optimal set. The decision 

maker is necessary to make the often difficult trade-offs between 

conflicting objectives. 
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Depending on how optimization and the decision process are 

combined, multi-objective optimization methods can be broadly 

classified into three categories [67, 68]: 

 Decision making before search: The objectives of the MOP are 

aggregated into a single objective which implicitly includes pref-

erence information given by the decision maker. 

 Search before decision making: Optimization is performed 

without any preference information given. The result of the 

search process is a set of (ideally Pareto-optimal) candidate solu-

tions from which the final choice is made by the decision maker. 

 Decision making during search: The decision maker can artic-

ulate preferences during the interactive optimization process. 

After each optimization step, a number of alternative trade-offs 

is presented on the basis of which the decision maker specifies 

further preference information, respectively guides the search. 

The aggregation of multiple objectives into one optimization 

criterion has the advantage that the classical single-objective optimi-

zation strategies can be applied without further modifications. How-

ever, it requires profound domain knowledge which is usually not 

available. For example, in computer engineering design space explo-

ration specifically aims at gaining deeper knowledge about the prob-

lem and the alternative solutions.  

Performing the search before decision making overcomes this 

drawback, but excludes DM’s preference articulation which might 

reduce the search space complexity. Another problem with this and 

also the third algorithm category might be the visualization and the 

presentation of non-dominated sets for higher dimensional MOPs. 

Finally, the integration of search and decision making is a promising 



37 

 

way to combine the other two approaches, uniting the advantages of 

both [68]. 

 

2.5.4. Concept of domination 

Most multi-objective optimization algorithms use the concept 

of domination. In these algorithms, two solutions are compared on 

the basis of whether one dominates the other solution or not. We as-

sume that there are M objective functions. In order to cover both 

minimization and maximization of objective functions, we use the 

operator ◁ between solution i and j as i ◁ j to denote that solution i is 

better than solution j on a particular objective. Similarly, i ▷ j for a 

particular objective implies that solution i is worse than solution j on 

this objective. For example, if an objective function is to be mini-

mized, the operator ◁ would be mean the “<” operator, whereas if the 

objective function is to be maximized, the operator ◁ would mean the 

“>” operator. The following definition covers mixed problems with 

the minimization of some objective functions and maximization of 

the rest of them. 

A solution x(1) is said to dominate the other solution x(2), if both 

condition 1 and 2 are true: 

1. The solution x(1) is no worse than x(2) in all objectives, or fj(x(1)) 

▷  fj(x(2)) for all j = 1,2,…,M. 

2. The solution x(1) is strictly better than x(2) in at least one objec-

tive, or fj(x(1)) ◁  fj(x(2)) for at least one j  {1,2,…,M}. 

If any of the above condition is violated, the solution x(1) does 

not dominate the solution x(2). If x(1) dominates the solution x(2), it is 

also customary to write any of the following: 

 x(2) is dominated by x(1); 
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 x(1) is non-dominated by x(2), or; 

 x(1) is non-inferior to x(2). 

Let us consider a two-objective optimization with five different 

solutions shown in the objective space, as illustrated in Figure 2.6. 

Let us also assume that the objective function 1 is needs to be max-

imized while the objective function 2 needs to be minimized. Five so-

lutions with different objective function values are shown in this fig-

ure. Since both objective functions are of important to us, it is usually 

difficult to find one solution which is the best with respect with both 

objectives. However, we can use the above definition of domination 

to decide which solution is better among any two given solutions in 

term of both objectives. For example, if solution 1 and 2 are to be 

compared, we observe that solution 1 is better than solution 2 in ob-

jective function 1 and solution 1 is also better than solution 2 in ob-

jective function 2. Thus, both the above conditions are satisfied and 

we may write the solution 1 dominates solution 2. We take another 

instance of comparing solution 1 and solution 5. Here, solution 5 is 

better than solution 1 in the first objective and solution one is no 

worse (in fact they are equal) than solution 1 in the second objective. 

Thus, both the above conditions for domination are also satisfied and 
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Figure 2.6. Illustration of domination concept 



39 

 

we may write that solution 5 dominates solution 1. Moreover, if we 

compare solution 1 and solution 4, we can see that solution one is 

better than solution 4 in objective function 1, but solution 1 is worse 

than solution 4 in objective function 2. Thus, the above conditions 

are violated. In this case, we say that solution 1 and solution 4 are 

non-dominated solutions. 
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Chapter 3 
 

 

 

 

 

MULTI-OBJECTIVE PERIODIC REVIEW 

INVENTORY WITH COORDINATED REPLE-

NISHMENT IN TWO-STAGE SUPPLY CHAIN 

TROUGH DIFFERENTIAL EVOLUTION 

 

 

 

3.1. Introduction 

 

In today’s globalization, every supply chain is expected to min-

imize the system wide cost including inventory cost along the supply 

chain while minimizing loss rate to meet customer demand as much 

as possible. This is because recent innovative technologies have 

shortened the product life cycle and increased the demand variabil-

ity. The excess inventory in the supply chain block the cash flow and 

indeed gives an adversely effect on the enterprise. 

It is difficult to determine an optimal inventory policy for a 

multi-echelon supply chain system due to the interaction among the 

different levels with different goals. Moreover, such policy depends 

on the structure of the system and should be based on the states of 
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the whole system. Even if such a policy can be identified, it usually 

has a very complex structure and is not suitable for implementation. 

Therefore it is reasonable to consider simple, cost-effective heuristic 

policies, which can be readily applicable in practice [69]. 

Among inventory control policies, periodic review inventory 

system is commonly implemented in practice. In the survey of Sim-

chi-Levi et al. [70], material managers indicate the effectiveness of 

periodic review systems for reducing inventory levels in the supply 

chain. However, just as same as the others, one of the disadvantages 

of the periodic review is that the stock out is normally occurs before 

receiving the new replenishment due to the demand and lead time 

variations in the system. 

To overcome this disadvantage, an idea of alternative supply in 

inventory system has been studied extensively in the literature. The 

majority of the papers in this area deal with either the concept of 

emergency supply modes [71, 72], or the concept of expedited sup-

ply modes [73]. Along with this idea, coordination and information 

sharing between members in the supply chain have recently become 

other key issues. Many companies undertake initiatives directed to 

re-engineering their supply chain to reduce costs while being more 

responsive to customer demand. Recent research carried out in this 

direction include Sinha and Sarmah [74], Ouyang [75], Zhou and Ben-

ton [76], Sarmah et al [77], and Gupta and Weerawat [78]. 

In this study, we note two inventory replenishment strategies 

in two-level supply chain with alternative supply possibilities which 

involve different level of coordination mechanism between manufac-

turers and retailers. Then, we compare the performance of these 

strategies with that of a traditional one where ordering from only 

one of manufacturers is allowed for each retailer. 
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Under normal circumstances, orders from a retailer are fulfilled 

by only one manufacturer which is designated to serve that retailer. 

However, in the case where the corresponding manufacturer cannot 

fully satisfy the order, a centralized decision can be made to assign 

another manufacturer in the chain to cover the shortage. This re-

search also proposes another strategy which implies a higher level of 

coordination between manufacturer and retailer. In the case where 

another manufacturer cannot cover the shortage due to insufficient 

stock, the shortage is considered as backorder to the manufacturer 

which can serve faster. Under these circumstances, in this study, a 

multi-objective inventory analysis is proposed to evaluate the per-

formance of the system by simultaneously minimizing total cost and 

loss rate of the supply chain. The aim is to examine the situation 

when such coordination is profitable for all members in the system. 

 

3.2. System description 

 

The supply chain operates under the make-to-stock environ-

ment, in which stochastic demand and lead-time are considered. The 

Manufacturer Retailer customerSupplier

n n

1 1

2 2

Central company

demand
shipment

.

.

.
.
.
.

 

Figure 3.1. System Configuration with n-serial lines 
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system is controlled by a single major company which operates n-

serial sub systems, as depicted in Fig. 3.1. Each serial subsystem con-

sists of one manufacturer which serves one retailer. 

In what follows, characteristic of the supply chain systems con-

cerned here will be described briefly. For each member in the system, 

the following assumptions are introduced: 

1. The manufacturer uses periodic review system with safety stock 

and lot sizing policy to control its inventory. 

2. The retailer uses periodic review system with target stock level 

(T, S) to control its inventory. 

3. Only a single product is considered in the model. Without loss of 

the generality, the manufacturer uses one unit of raw material to 

produce one unit of finished product. 

4. End customer’s demand and delivery lead-time are randomly 

generated based on the normal distribution. 

5. Production rate of the manufacturer is assumed to be fixed and 

higher than the mean demands. 

6. Unfulfilled demand at manufacturer is considered as backorder 

while unfulfilled demand at retailer is considered as loss. 

 

The system model is described based on the following notation 

listed for major parameters. 

Index 

T Number of planning horizon. 

N Number of serial lines. 

t Period (t = 1,2,…,T). 

i Manufacturer ( i∈N) 

j Retailers ( j∈N). 
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Parameters of Manufacturer 

FDi,t Forecast demand of manufacturer i at period t 

tp Number of days in each period 

PRi Production rate of Manufacturer i 

  ̃  Mean lead time of raw material delivery to manufacturer i 

lmi,t Actual lead time of raw material delivery to 

 manufacturer i at period t 

  ̃  Mean delivery lead time from manufacturer i 

lri,t Actual delivery lead time from manufacturer i at period t 

Qpi,t Production quantity of manufacturer i during supplier’s  

 late delivery at period t 

Qpri,t  Production quantity at manufacturer i at period t 

Bsi,t Beginning stock level of raw materials of manufacturer i  

 at period t 

Sri,t Amount of raw material left at manufacturer i after 

 production during supplier’s late delivery at period t 

Esi,t Ending stock level of raw materials of manufacturer i at 

 period t 

BSSi,t Beginning safety stock level of manufacturer i at period t 

ESSi,t Ending safety stock level of manufacturer i at period t 

Qmi,t Ordering quantity of manufacturer i at period t 

Qfi,t Quantity to fill back the safety stock of manufacturer i 

 at period t 

Qai,t Available quantity of manufacturer i at period t 

Qbi,t Backorder quantity of manufacturer i at period t 

Qshi,t shortage quantity of manufacturer i at period t 

Qsli,t Sales volume of manufacturer i at period t 

BIi,t Beginning inventory level of manufacturer i at period t 

EIi,t Ending inventory level of manufacturer i at period t 
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Parameters of Retailer 

Dj,t Total customer demand of retailer j at period t 

dj,t Customer demand at retailer j before receiving  

 replenishment at period t 

Brj,t Beginning inventory level of retailer j at period t 

Ioj,t Inventory level left at retailer j during manufacturer’s  

 lead time  at period t 

Qsj,t Shortage quantity at retailer j during manufacturer’s lead  

 time at period t 

Qrej,t Replenishment quantity received by retailer j at period t 

Irj,t Ending inventory level of retailer j at period t 

Qshj,t Shortage quantity of retailer j at period t 

Qorj,t Ordering quantity of retailer j at period t 

Qsej,t Sales volume of retailer j at period t 

Cost Parameters 

Comi Ordering cost of manufacturer i 

Cpi Unit purchasing cost of manufacturer i 

Cpri Unit production cost of manufacturer i 

Chri Unit holding cost of raw material of manufacturer i 

Chfi Unit holding cost of finished product of manufacturer i 

Cbi Unit backordering cost of manufacturer i 

Ctri Unit transportation cost of manufacturer i 

Cpuj Unit purchasing cost of retailer j 

Choj Unit holding cost of finished product of retailer j 

Csj Unit shortage cost of finished product of retailer j 

Decision Varibales 

LSi Lot sizing policy of manufacturer i 

SSi Safety stock level of manufacturer i 



47 

 

Rj Target stock level of retailer j 

 

Manufacturer 

The inventory level of the manufacturer is reviewed at every 

period t, over totally T periods (planning horizon). Each period con-

sists of tp days. The manufacturer receives raw materials from an 

outside supplier which has unlimited capacity, transforms it to the 

finished product and then distributes the product to corresponding 

retailer. However, under uncertainty in the delivery lead-time, the 

supplier may delay the supply of raw materials to the manufacturer. 

Therefore, the manufacturer has to select the appropriate material 

ordering policy and hold some safety stock of finish product. 

The ordering quantity of the manufacturer is directly influ-

enced by the lot sizing policy (LSi) which is adopted for ordering raw 

material. For instance, the first policy is to place an order in every 

period. The second policy is to place an order at the first period and 

combine the orders of remaining periods together, and so on. After 

the best pattern of LSi is selected, the manufacturer checks current 

inventory level at the beginning of the period. If the inventory level is 

less than the sum of the forecasted demand, the quantity to fill back 

the safety stock and the backorder quantity, then the manufacturer 

will place an order. Otherwise no order will be issued (Eq. 3.1).  

 

 ti,ti,ti,1ti,ti,ti, BsBIQbQfFD,Qm  0max  (3.1) 

 

It is assumes that we always starts reviewing the inventory at 

time t. Then the manufacturer start producing the product at the 

lead-time contract t +   ̃  . When late delivery occurs (lmi,t >   ̃ ), the 

manufacturer still can start the production at time t +   ̃  if there is 
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beginning raw material on hand. Otherwise, the manufacturer has to 

wait until it receives replenishment from the supplier at time t + lmi,t. 

The production quantities during late delivery of supplier and 

amount of raw material left after production during supplier’s late 

delivery are calculated using equations (3.2) and (3.3), respectively. 

Consequently, we can determine the total production quantity (Eq. 

(3.4)) and ending stock level of raw material as shown in equation Eq. 

(3.5). 

Ending inventory level (EIi,t) is the amount of finished product 

left after fulfilling retailer’s demand and the use of safety stock. The 

safety stock of the manufacturer is used only when the order quanti-

ty of the retailers is greater than the sum of the production quantity 

(Qpri,t) and amount of beginning inventory of finished products (BIi,t). 

The EIi,t and ESSi,t are calculated using Eq. (3.6) and Eq. (3.7), respec-

tively. 
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As shown in Eq. (3.6) and Eq. (3.7), the ending safety stock level 

(ESSi,t) and the ending inventory level (EIi,t) have different meanings. 

The ESSi,t is the amount of safety stock left at the end of each period 

while EIi,t is the number of finished products that is produced beyond 

the retailer’s demand and is left from fulfilling the safety stock. The 

sales volume (Qsli,t) of the manufacturer is determined based on total 

order quantity of retailer (Eq. (3.8)). When the total order quantity of 

the retailer exceeds the available quantity on hand, the shortage 

quantity (Qshi,t) will be backordered the next period (Qbi,t). 

 

Retailer 

The retailer periodically places the order to a corresponding 

manufacturer to raise up its inventory to the target stock level. The 

order quantity (Qorj,t) is determined by comparing the ending stock 

level (Irj,t) at period t with the desired target stock level (Rj) , which 

is equal to (Rj - Irj,t) . The target stock level is not only for covering  

the end customer’s demand but also to cover the effect of end cus-
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tomer demand’s fluctuation as well as the late delivery and unful-

filled quantity of products from the manufacturer. 

After placing the order to the corresponding manufacturer, the 

retailer receives replenishment after some lead time. At the begin-

ning of the period, each retailer uses beginning inventory of finished 

product (Brj,t) to fulfill end customer demand during replenishment 

lead time. Due to uncertainty in the system, sometimes the retailer 

may not receive a full replenishment from corresponding retailer. 

When this situation occurs, the manufacturer promises to deliver the 

remaining quantity the next period. The inventory that is left and the 

amount of shortage during this time are shown in equation (3.9) and 

(3.10). Consequently, ending inventory, total shortage quantity and 

sales volume of retailer after receiving replenishment can be calcu-

lated using equation (3.11), (3.12) and (3.13), respectively. 

 

 0max ,dBrIo tj,tj,tj,   (3.9) 

 0max ,BrdQs tj,tj,tj,   (3.10) 
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Any stock-out that the retailer faces is considered as a total lost 

due to the fact that in today high competitive market, the customers 

have a plenty of choices to acquire products, especially for retailers 

such as department stores, supermarkets or conventional stores. 

Consequently, the situation in which the customers buy the same 

product from a second shop when there is the stock-out occurs at the 

first shop is quite common in the real world business. 

This study considers two objective functions to evaluate the 

system performance. The first objective minimizes system total cost 

(ZTCS) consisting of total cost of manufacturers (TCMi) and total cost 

of retailers (TCRj). The second objective function minimizes loss rate 

of supply chain (ZLRS) calculated from total shortage of retailers. 

These two objectives require a trade-off in solution as they are con-

flicting with each other. As the system faces uncertainty, one way to 

maintain the responsiveness (minimum loss rate) to the customer 

demand is holding inventory in higher volume. However, this causes 

an increase in system total cost as an excess inventory blocking sys-

tem cash flow. On the contrary, holding lower inventories give the 

opposite consequence. 

 

3.3. Replenishment Strategy 

 

The details of each replenishment strategy will be described in 

this section. 

 

3.3.1. Replenishment  Strategy 1 (S1) 

The inventory flow of strategy 1 is shown in Fig.1. It is assumed 

that manufacturer 1 is the only source of supply for retailer 1, manu-

facturer 2 is the only source of supply of retailer 2 and so forth. If a 
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retailer places an order to its corresponding manufacturer and that 

manufacturer holds insufficient quantity, the retailer’s order is par-

tially backordered with the corresponding manufacturer. Then, the 

unfulfilled quantity is delivered by the corresponding manufacturer 

the next period. In the rest of this paper, this strategy is referred to 

as a traditional strategy which is common for the inventory systems 

with single manufacturer and single retailer. In general, the objective 

function of the multi-objective optimization problem for p objectives 

can be described as minimizing F = {F1, F2, F3,…, Fp}. In the present 

problem, we give the objective function as follows: 

 

   LRSTCS21 ,, Minimize ZZFF   (3.14) 

 

where ZTCS is given by 
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and ZLRS is given by 



54 

 


 
















J

1j

T

1t tj,

tj,

LRS
D

Qsh
Z  (3.18) 

 

3.3.2.  Replenishment Strategy 2 (S2) 

Under circumstance of strategy 1, manufacturers only fulfill the 

demands of their corresponding retailers. However, under strategy 2, 

a retailer may receive an alternative supply from another manufac-

turer in the chain if the corresponding manufacturer fails to meet the 

demand. This alternative supply is illustrated in Fig. 3.2. 

When a certain retailer n does not receive full replenishment 

from manufacturer n as its corresponding manufacturer, the central 

decision maker will check the remaining inventory of the finished 

product of other manufacturers (say manufacturer k) after supplying 

their corresponding retailer and then assign one of them to serve re-

tailer n. The required quantity is backordered to manufacturer n if no 

other manufacturers can supply all quantity of shortage. 
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Figure 3.2. Replenishment Strategy 2 
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Since each retailer can possibly receive a product from more 

than one manufacturer, a new transportation cost from manufactur-

er to the retailer should be added to the first objectives function. 

Thus for each manufacturer, there are two types of transportation 

cost that are incurred which correspond to the transportation cost to 

regular retailer and to other retailer, where the latter is more costly 

due to non-regular delivery. On the other hand, the other objective 

function remains the same. 

 





T

1i
tl,iiii QsaCtaTCMTCM (1)(S2)  (3.19) 





T

1i
tj,kjjj QsaCpuTCRTCR (1)(S2)  (3.20) 

 

where 

Qsai–›l,t Sales volume of manufacturer i to retailer l at period t, 

 l≠j where l, j ϵ J (unit). 

Ctai Unit transportation cost of manufacturer i to other 

 retailer ($). 

 

3.3.3. Replenishment Strategy 3 (S3) 

This strategy works in the same way as strategy 2 except for 

the situation where one manufacturer experiences a shortage while 

the other manufacturers hold inadequate inventory to fulfill this 

shortage. 

Unlike strategy 2, in which the shortage is backordered partial-

ly to the corresponding manufacturer when the stock-out occurs, this 

strategy proposes different coordination mechanism. The central de-

cision maker examines the supplier’s lead time for the upcoming de-
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livery and the current inventory status of finished product of all 

manufacturers. This information is used to determine the time re-

quired to produce the products to fulfill the shortage. Supplier’s lead 

time affects the starting time of production and the inventory status 

determines the quantity of product to be produced. Lastly, a manu-

facturer which has a shorter lead time is assigned to fulfill the short-

age and the backordered quantity is delivered as soon as production 

is finished. 

Accordingly, the new transportation cost for additional replen-

ishment is added to the cost of manufacturers while others remain 

the same as strategy 2 after adjusting the backorder cost at manufac-

turer (Refer to Fig.3.3). 
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Figure 3.3. Replenishment Strategy 3 
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Qpxi,t Non-regular production quantity of manufacturer i at 

 period t to fulfill  shortage (unit). 

Ctxi Unit transportation cost of manufacturer i to fulfill 

 shortage quantity of manufacturer i, 

 where ctri< ctai< ctxi ($). 

tfi,t Total time to produce backorder at manufacturer i at 

 period t (days). 

It should be noted in Eq. 3.21 that for a manufacturer which is 

suffered from stock-out, there is no cost component of transporta-

tion (∑            
 
       because the non-regular production 

quantity is designated to fulfill its own requirement. On the other 

hand, the cost component of backorder is not applied (∑     
 
   

               for manufacturers which are assigned as backup re-

source. 

 

3.4. Multi-objective Differential Evolution (MODE) 

 

Differential Evolution (DE) is a recent optimization technique 

in the family of evolutional algorithms. It is proposed as a variant of 

genetic algorithms to achieve the goal of robustness in optimization 

 

Figure 3.4. Pseudo code of DE (Strategy: DE/rand/1/bin) 
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and faster convergence [79, 80]. DE uses a self-organizing scheme to 

take the different vector of two or more vector to create a mutant 

vectors. So that a few input is required from the user and it eases to 

implement DE to solve the problem. The pseudo code of DE can be 

seen in Figure 3.4. 

One of the most commonly applied strategies of DE to solve the 

problem is “DE/rand/1/bin”. Notation “rand/1” means one different 

set of vector (from 2 vectors) is randomly chosen in the populations 

to be mutated. Then “bin” means the independent binomial experi-

ment is used for crossover schemes. 

The detailed of DE’s algorithm is summarized as follow: 

1. Randomly generate the initial population to yield target vector 

(xi,G) by using Eq. (3.22). 

 

 M,...,,ix Gi, 21  (3.22) 

 

where M = population size 

2. Apply mutation to generate the mutant vector by adding the 

weight difference between target vectors to the third target vec-

tor as show in Eq. (3.23). 

 

 G1,G2,G3,1Gi, xxFxv   (3.23) 

 

where F is a scaling factor which control controls the amplifica-

tion of the differential variation (x2,G – x1,G) 

3. Apply the crossover operation to generate the trial vector by 

mixing some elements of the target vector with the mutant vec-

tor through comparison between random value and crossover 

rate. 
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where rand(j) is a random number, CR is crossover rate ∈ [0, 1] 

and rnbr(i) is a randomly chosen index (1,2,…,n) which ensure 

that the trial vector gets at least one element from the mutant 

vector. 

4. Perform the selection operation by comparing the target vector 

and the trial vector. If the trial vector is better than the target 

vector, the trial vector replaces the target vector at the next gen-

eration. Otherwise, the target vector is remained. Then check 

pre-specified stopping criteria. If it is satisfied, stop and return 

the overall best vector as a final solution. Otherwise, go back to 

step 2 by incrementing the generation number by 1. 

In the single-objective DE, the selection process is straightfor-

ward. The vector which has optimal solution is chosen. In the multi-

objective case, however, the selection process becomes more compli-

cated. This is because the need of “Pareto optimal solutions”. Previ-

ous research attempted to deploy DE to a multi-objective problem 

and showed that DE can be attractive alternative for multi-objective 

optimization [81, 82, 83, 84]. However, handling multi-objective DE 

poses certain difficulties in its implementation. Besides preserving a 

uniformly spread front of non-dominated solutions, it is also neces-

sary to decide when to replace the parent (target vector) with the 

candidate solution (trial vector). Reddy and Kumar [85] proposed 

another methodology (MODE) to resolve these difficulties by com-

bining Pareto Dominance principles with DE and using elitism in its 
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evolution. The main algorithm consists of initialization of population, 

evaluation, Pareto dominance selection, performing DE operations 

and repeating the search on population to reach the Pareto optimal 

solutions. One of the crucial points of this method is that the use of 

external archive to store the non-dominated solutions found so far 

over the generation. 

In this study, we propose a new procedure with a different se-

lection mechanism to discover the set of Pareto optimal solutions. 

Start

Generate initial target vectors (TV)

Archive non-dominated TV

i = 1

Choose one TV

Generate mutant vector (MV)
Create trial vector (TiV)

Non-dominated selection
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TiV
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Figure 3.5. Flowchart of the proposed MODE 



61 

 

Since this procedure uses a single and fixed size population during 

the entire process, the algorithm becomes much simpler than the 

conventional one. All vectors are first evaluated and checked using 

domination relation to distinguish those into non-dominated and 

dominated classes. Thereafter, in order to select the new population 

for the next generation, a unique selection mechanism is applied be-

tween the target vector and the trial vector. The proposed MODE 

methodology is described as follows (See also Fig.3.5): 

Step 1. Input the necessary DE parameters. Generate n-

dimensional initial vectors (M) in the population randomly 

within the bounds of specified decision variables. Clear the 

archives. 

Step 2. Evaluate each vector in the population. 

Step 3. Perform non-dominated sorting. Apply the concept of dom-

inance to identify vectors that become non-dominated vec-

tor in the current population, and archive them as non-

dominated vectors. 

Step 4. Perform mutation and crossover operations for every tar-

get vectors xi,G in the population as same as the single-

objective DE, i.e., 

a. Select three different vectors randomly from the cur-

rent population other than the target vector. 

b. Calculate a mutant vector using Eq. (3.23). 

c. Create a trial vector by mixing some element from tar-

get vector and mutant vector using crossover rate 

(eq.3.24). 

d. Restrict the variables to its boundaries if any variable 

is outside the lower or upper bound. 

Step 5. Evaluate each target vector 
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Step 6. Perform the selection operation based on the dominance 

concept according to the following cases: 

Case 1 : The trial vector dominates the target vector 

- Select trial vector as candidate parent for the next genera-

tion. 

- Check the status of the target vector. If the target vector is 

previously non-dominated, keep it in the population by 

randomly removing one dominated target vector. Other-

wise, remove the target vector from population. 

Case 2 : The target vector dominates the trial vector 

- Select the target vector as a candidate parent for the next 

generation. 

- Remove the trial vector from the population. 

Case 3 : Neither vector are dominated by the other 

- Check the status of the target vector. If the target vector 

was previously non-dominated, keep it in the population 

by removing one dominated target vector and select a tri-

al vector as the candidate parent. 

- Otherwise, select randomly avector (target vector or trial 

vector) to be the candidate parent. 

Step 7. Increment the generation counter, G to G + 1. Check the 

stopping criteria. If it is not satisfied, then go to step 3. Oth-

erwise, return the non-dominated solutions. 

 

3.5. Numerical Experiment 

 

In practice, a single decision could hardly be formulated to 

handle problems characterized by different situations. The nature of 

the situation typically changes the characteristic of the problem 
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causing the decision needs to be adjusted. The problem becomes 

more complicated when the decision maker faces several objectives, 

which is normally conflicting and need to be optimized simultane-

ously. 

This research attempts to address such situation mentioned 

above. This numerical experiment evaluates the three replenishment 

strategies by solving a stock out problem for a given supply chain 

system and deciding the optimal inventory control policy for each 

strategy. Then we compare the performance of the system for three 

different uncertain situations and analyzed how the decision is ad-

justed for each of them. Since we approach the problem using multi-

objective decision making, the comparison is carried out based on 

the Pareto solution set. 

A numerical experiment was carried out for a system consisting 

of two-serial lines using the input parameters shown in Table 3.1. 

The experiment was performed according to the following  steps: 

1. Apply the proposed MODE to find a set of Pareto optimal solu-

tion of each proposed strategy by determining appropriate or-

dering policy and inventory level of each member. 

2. Apply sensitivity analysis to Pareto front to see the effectiveness 

of the proposed strategy under different uncertain situations 

given by standard deviations of demand. Here the demand is se-

lected as an uncertain parameter because variability affects 

greatly the whole system. 

3. Examine the effect of each strategy for the appropriately selected 

compromised solution regarding the holding cost and backorder 

cost of manufacturers, and holding cost and shortage cost of re-

tailers. 
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3.5.1. Coding and setting of lower/upper Bound 

In this experiment, the decision variables consist of ordering 

policy of raw material (LSi) and safety stock level (ssi) of each manu-

facturer, and target stock level (Si) of each retailer. 

In order to generate initial population, lower and upper bound 

Table 3.1. Parameters values for Numerical Experiment 

Input parameters M1 M2 
T 6 period 
tp 7 days 

FDi,t 250 unit / day 
    

 25, 50, 100 25, 50, 100 

  ̅̅̅̅   3 days 
      Normal(3,1) 
PRi 360 unit 400 unit 

Input parameters R1 R2 
Dj,t 250 unit / day 
   

 25, 50, 100 25, 50, 100 

  ̅  3 days 
      Normal(3,1) 

Cost Parameters M1 M2 
Comi $200 / order 
Cpi $10 / unit 
Cpri $20 / unit 
Chri 0.15 * (Cpi) 
Chfi 0.20 * (Cpi + Cpri) 
Cbi $15 / unit $17 / unit 
Ctri $13 / unit $15 / unit 
Ctai $20 / unit 
Ctxi $30 / unit 

Cost Parameters R1 R2 
Cpuj $77 / unit 
Choj 0.15 * (Cpui) 
Csj $20 / unit 

DE Parameters  
Np 300 
CR 0.5 
F 0.8 
G 5000 
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of each decision variable should be set as follows: 

For LSi, the manufacturer has to decide whether to make the 

order at the beginning of every period or combine the order in a big 

batch. Therefore, the binary coding is applied to represent the value 

of LSi. For example, with 6 periods planning horizons, 111100 means 

lot-for-lot policy is used for period 1, 2 and 3. For period 4 to 6, the 

order is combined and it is placed at period 4. 

For ssi and Si, These decision variables are considered as the 

amount of safety stock at the manufacturer and the amount of target 

stock retailer, respectively. Thefore, the integer coding is used to 

represent these values. 

Let   ̅ ,   ̅̅ ̅̅  ,    
 and     

 are the mean and standard deviation 

of the end customer demand and forecast demand, respectively, and, 

    
 and     

 are standard deviation of the delivery lead time of raw 

material and product, respectively. 

- The lower bound of ssi is set to 0 or no safety stock is hold at 

the manufacturer. 

- The upper bound of ssi is calculated by the using Eq. (3.25). In 

order to maintain the minimum loss rate (higher service lev-

el) and to make sure that all searching space is bounded, the 

upper bound of ssi is set at the value corresponding z = 4. (see 

[86] for further information). 

 

  √(  ̅̅̅̅       

 )  (  ̅̅ ̅̅  
      

 ) (3.25) 

 

- The lower bound of Si should be at least or equal to the ex-

pected demand during the review time plus delivery lead time 

contract, which is equal to  ̅  (     ̅ ). 
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- The upper bound of Si can be determined in the same way as 

done by [4], which is equal to: 

 

 ̅  (     ̅ )    √(  ̅     

 )  ( ̅ 
      

 ) (3.26) 

 

 

3.5.2. Results and analysis 

 

a. Pareto Optimal Solutions 

Figure 3.6 shows Pareto optimal solution sets for each strategy 

under various standard deviations of demand. Each plot is normal-

ized between 0.0 and 1.0 using the maximum and/or minimum val-

ues all over the computations. In every case, we can obtain favorable 

features of Pareto front using the developed MODE method. 

Under the small standard deviations of demand (σ = 25), strat-

egies 2 and 3 have less influence to the system performance since 

only slight difference can be seen at Pareto front as shown in Fig. 3.6 

(a). This is because when the demand is relatively steady, a shortage 
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such that the proposed coordination can be effectively applied is 

rarely occurred. In other words, each serial line can cope with its 

own market without cooperating with each other. In this case, the 

decision can be made not to introduce such coordination strategy in 

the system.  

However, as variations of demand increase (σ = 50, 100), the 

different strategies produce remarkably distinct Pareto optimal solu-

tions (Figures 3.6(b) and (c)). This indicates that strategies 2 and 3 

 

(b). Std. Deviation of Demand = 50 

 

 

(c). Std. Deviation of Demand = 100 

Fig.3.6. Normalized Pareto Optimal Solution 
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are more suitable compared to strategy 1 since the Pareto optimal 

solution of both strategies move down toward the lower region and 

spread widely over the decision space. Eventually, this means strate-

gy 3 is the one. 

 

b. Uncertainty Effect on Each Objective Function 

The final goal of multi-objective decision-making should be to 

present decision maker a unique solution known as preferentially 

optimal solution that will be derived through multi-objective optimi-

zation. 

Table 3.2.  Objective Function Values and Decision Variable of 
 Selected Pareto Solution 

  Std. Dev. demand = 25 

  Strategy 1 Strategy 2 Strategy 3 

TCSC ($-thousand) 2,372 2,363 2,368 

LRSC (%) 5.23 4.88 4.57 

DLS 1111 11011 1111 

ss (unit) 961 821 767 

S (unit) 1825 1890 2013 

  Std. Dev. demand = 50 

  Strategy 1 Strategy 2 Strategy 3 

TCSC ($-thousand) 2,403 2,381 2,359 

LRSC (%) 6.31 6.19 3.81 

DLS 10111 111 1011 

ss (unit) 1058 825 529 

S (unit) 1878 1838 2044 

  Std. Dev. demand = 100 

  Strategy 1 Strategy 2 Strategy 3 

TCSC ($-thousand) 2,404 2,373 2,254 

LRSC (%) 6.05 5.28 4.75 

DLS 1011 1011 1100 

ss (unit) 1036 954 608 

S (unit) 2072 2169 2568 
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During the multi-objective optimization, we assume to take a 

posteriori approach that is search and then proceed to the actual de-

cision-making in which the decision is made without any prior pref-

erence information. At the search stage, the result is a set of Pareto 

optimal solutions. The final choice will be made at the decision-

making stage. To show how the uncertainty analysis is available for 

the preferential optimal solution, it is necessary to have a reference 

or a sample from the Pareto optimal front. 

Presently, assuming that both goals are of equal importance 

(w1 = w2 = 0.5, for instance), we derive a reference solution from the 

 

Figure 3.7. Comparison of Backorder cost of Manufacturer 
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following objective functions: 

LRSCTCSC ZZ 0.50.5Minimize   

As suggested by the strategies in Table 3.2, as the demand vari-

ation increases, decision can be made for both manufacturers to or-

der raw material in a big batch and to hold moderate amount of safe-

ty stock rather than to order using lot for lot policy and to hold high 

amount safety stock. This decision avoid both manufacturers from 

experiencing frequent backorder. Figure 3.7 proves that strategies 2 

and 3 produce lower backorder cost compared to strategy 1 while 

 

Figure 3.9. Comparison of Holding cost of Retailer 

 

 

Figure 3.10. Comparison of Shortage cost of Retailer 

 

Average Holding Cost of 

Retailers

5000

13000

21000

29000

37000

45000

25 50 100

S td. D eviation of D emand

H
o

ld
in

g
 C

o
s

t 
($

)

Model 1 Model 2 Model 3

Average Shortage Cost of 

Retailers

0

6000

12000

18000

24000

30000

25 50 100

S td. D eviation of D emand

S
h

o
rt

a
g

e
C

o
s

t 
($

)

Model 1 Model 2 Model 3

Strategy 1 Strategy 2 Strategy 3

Strategy 1 Strategy 2 Strategy 3



71 

 

strategy 3 outperforms strategy 2 in two cases (σ = 50, 100). 

It can also be noticed from Table 3.2 that the optimal quantity 

of safety stock under strategy 3 is always the lowest in every cases. It 

is reflected in Figure. 3.8 where strategy 3 is superior in reducing the 

holding cost in most cases. Moreover, reduction in holding cost is 

driven by the fact that fulfilling the shortage quantity experienced by 

one manufacturer leads to reducing excess inventory of the donor 

manufacturer and hence reducing inventory in the system. However, 

retailers require setting slightly high target stock level to maintain 

the responsiveness to the customer demand. Even though this deci-

sion increases the average holding and shortage costs as shown in 

Figure. 3.9 and 3.10, respectively, this stock level is more effective to 

reduce the loss rate of the supply chain. 

 

3.6. Conclusion 

 

A multi-objective analysis of a periodic review inventory prob-

lem for two-echelon supply chain system was investigated. Three 

strategies of coordinated replenishment are proposed to manage in-

ventory in efficient way while trying to improve the system perfor-

mance by simultaneously minimizing total cost and loss rate of the 

supply chain. For this purpose, a multi-objective DE was adopted to 

the problem in question and applied for each of the three strategies. 

Finally, the most profitable situation was examined in which all 

members in the chain can achieve proportional satisfaction under 

these conflicting goals. 

The result shows that the coordination strategy becomes more 

effective as the uncertainty increases in the system. By cooperating, 

manufacturers can avoid frequent backorder and reduce excess in-
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ventory in the system. Even though retailers are required to keep a 

bit high inventory level to maintain the good responsiveness to the 

customer demand, this stock level is more effective to reduce the loss 

rate of supply chain. 

Future studies should be devoted to more general and compli-

cated configurations of the supply chain system in real world. Rely-

ing on the ability of the proposed MODE revealed in this study, this 

seems to be straightforward. It is also meaningful to move on the 

multi-objective optimization to derive the preferentially optimal so-

lution by revealing value system of the central decision maker. 
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Chapter 4 
 

 

 

 

 

AN ENHANCED TWO-PHASE FUZZY PRO-

GRAMMING MODEL FOR MULTI OBJECTIVES 

SUPPLIER SELECTION PROBLEM 

 

 

4.1. Introduction 

 

In global and competitive market, the need for establishing a 

longer-term relationship that fosters cooperation among suppliers 

and their customers has been highlighted. However, many purchasers 

find it difficult to determine which suppliers should be targeted as 

each of them has varying strengths and weaknesses in performance. 

Moreover, the importance of each criterion tends to vary from one 

purchaser to others. This problem becomes more complicated as the 

simultaneous evaluation is required in terms of qualitative and quan-

titative criteria. So, every decision must be integrated by trading off 

performances of different suppliers at each supply chain stage. 

One of the main characteristic of supplier selection is that this 

task is characterized by an imprecision and incomplete of data which 

results in vagueness of information related to decision criteria. Sto-
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chastic models are usually based on representation of existing uncer-

tainty by probability concepts and are, consequently, limited to tack-

ling the uncertainties captured [87]. Moreover, the estimation of 

probability distribution is difficult to carry out in a fuzzy environ-

ment because of the imprecision of the data. This is why, Fuzzy set 

theory (FST) is suggested as an appropriate tool to handle this prob-

lem effectively. 

A number of studies have been devoted to examining supplier 

selection methods. Quantitative techniques have become increasingly 

applied recently. A comprehensive review of numerous quantitative 

techniques used for supplier selection has been done by Weber et al. 

[1]. They found that linear weighting models, mathematical pro-

gramming models and statistical/probabilistic approaches have been 

most common approaches. 

Some researches used a single objective, such as cost, to evalu-

ate suppliers. Kaslingam & Lee [88] developed an integer program-

ming model to select suppliers and to determine order quantities 

with the objective of minimizing total supplying costs which include 

purchasing and transportation costs. Caudhry at al. [89] used linear 

and mixed binary integer programming to minimize aggregate price 

considering both all unit and incremental quantity discount. 

As an extension of single objective techniques, multi-objective 

mathematical programming has been proposed to solve a more com-

plex supplier selection problem. Weber et al. [90] combined multi-

objective programming (MOP) and Data Envelope Analysis (DEA) to 

deal with non-cooperative supplier negotiation strategies where the 

selection of one supplier results in another being left out of the solu-

tion. Dahel [91] studied a multi-objective mixed integer program-

ming model to select suppliers and allocate product to them in multi-
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product environment. Xia & Wu [92] improved the Analytical Hierar-

chy Process (AHP) using rough set theory and multi-objective mixed 

integer programming to determine the best suppliers and optimal 

quantity allocated to each of them in the case of multiple sourcing, 

multiple product with multiple criteria. Kokangul & Susuz [93] pro-

posed an integration of analytical hierarchy process (AHP) and non-

linear integer MOP to determine the best supplier and optimal order 

quantity among them that simultaneously maximize total value of 

purchase and minimize total cost of purchase. Chamodrakaz et al. 

[94] provided new approach of two-stage supplier selection problem. 

At the first stage, an initial screening is performed through the en-

forcement of hard constraint on the selection criteria, and in the sec-

ond stage, final selection is performed using a modified variant of 

fuzzy preference programming (FPP). Eroll & Farell [95] used quali-

tative and quantitative factors in the supplier selection. A fuzzy QFD 

(Quality function Deployment) is used to translate linguistic input 

into qualitative data and then combine it with other quantitative data 

to develop a multi-objective mathematical programming model. 

This research focuses on fuzzy multi-objective linear program-

ming (fuzzy MOLP) to deal with the supplier selection problem. Ku-

mar et al. [96] developed a fuzzy multi-objective integer program-

ming approach for vendor selection problem subject to constraints 

including buyer’s demand, vendors’ capacity, and derived an optimal 

solution using max-min operator (Zimmermann’s approach). To 

evaluate the performance of the model, they perform sensitivity 

analysis on the order allocation and objective function by changing 

the degree of uncertainty in vendor capacity. Amid et al. [97] solved 

fuzzy MOLP supplier selection problem by applying weighted addi-

tive method to facilitate an asymmetric fuzzy decision making tech-



76 
 

nique. Since they found the performance of such a method to be in-

adequate to support decision making process, α-cut approach is then 

proposed to improve the resulted achievement level. Later on, Amid 

et al. [98] applied weighted max-min approach in supplier selection 

problem and compared the performance of the proposed approach 

with max-min operator and weighted additive model. They found 

that the ratio of achievement level of objectives matches the ratio of 

the objectives weight. 

Although there are a number of publications adopting fuzzy 

programming models in supplier selection problem in the literature, 

most of them rely on the application of the existing methods and very 

few papers are concerned with the improvement in the methodologi-

cal process of deriving the optimal solution. Kagnicioglu [99] pro-

posed super-transitive approximation to determine the weights of 

objectives and constraint in formulating fuzzy MOLP model in sup-

plier selection and solved the model using max-min operator and 

weighted additive model. Yucel & Guneri [100] proposed a new 

method of weights calculation in fuzzy MOLP supplier selection. Both 

researches mentioned above only focus on the process for weights 

calculation for fuzzy objective and constraints. 

It has been verified that solving fuzzy MOLP using max-min op-

erator may not result in an optimal solution (Tzeng & Tsaur [101]; 

Tzeng & Chen [102]; Li, [103]). Such a limitation has been resolved 

by Li et al. [103] who proposed two-phase approach to compute effi-

cient solutions of fuzzy MOLP problems as the improvement of com-

promise approach of Wu & Guu [104]. They found that the perfor-

mance of compromise approach decreases when the DM prefers to 

choose the minimum acceptable achievement level closer or equal to 

the most optimistic value. In their proposed method, the minimum 
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acceptable achievement level is set to the solution of max-min opera-

tor. In this sense, the performance of compromise approach can be 

improved and, on the other hand, the disadvantage of max-min oper-

ator can be overcome. However, the two-phase approach will face the 

same obstacle if max-min operator outputs the result closer or equal 

to the most optimistic value, and hence, cannot provide the im-

provement. To tackle the above-mentioned shortcomings and to help 

obtain a more reasonable compromise solution, this paper proposes 

an enhanced two-phase approach of fuzzy MOLP by introducing ad-

ditional variables which control the relaxation of resulted overall 

achievement level and apply it to solve supplier selection problem. 

For that purpose, a supplier selection model is proposed in 

which net cost minimization, service level maximization and pur-

chasing risk minimization are incorporated as fuzzy goals. The first 

two criteria are cited most often in ordering decision [105]. Purchas-

ing risk is included as one objective to measure the risk of potential 

loss incurred if purchaser allocates a certain amount of product to 

purchase to a certain supplier. To this end, the Taguchi loss function 

(TLF) is used to quantify this risk. AHP is employed to determine the 

relative important between fuzzy goals and constraints. 

 

4.2. Problem Formulation 

 

In this section, we formulate a mathematical model of fuzzy 

MOLP supplier selection. The following notations are defined in or-

der to describe the model. 

i = index for supplier (i = 1, 2, .., N) 

D = demand of buyer (unit) 

B = total budget of buyer to purchase product ($) 
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𝑥𝑖  = order quantity to supplier i (unit) 

𝑝𝑖 = unit price of supplier i ($) 

𝑓𝑖  = service level of supplier i (% fulfillment) 

𝑟𝑖 = purchasing risks of supplier i (% risk) 

𝐶𝑖 = capacity of supplier i (unit) 

The MOLP model for supplier selection is as follow: 





n

1i
ii1 xpZMin  (4.35) 





n

1i
ii2 xfZMax  (4.36) 





n

1i
ii3 xrZMin  (4.37) 

subject to: 





n

1i
i Dx  (4.38) 





n

1i
ii Bxp  (4.39) 

ii Cx   (4.40) 

0ix  (4.41) 

Eq. (4.19) minimizes the net cost for ordering product to satisfy 

demand. Eq. (4.20) maximizes the service level of suppliers. Eq. 

(4.21) minimizes the purchasing risk when the firm allocates a cer-

tain amount of product to purchase to a certain supplier. Eq. (4.22) 

puts restriction that order quantity assigned to suppliers must satis-

fy the total demand. Eq. (4.23) ensures that the total cost of purchas-

ing does not exceed the amount of budget allocated by the firm. Eq. 

(4.24) guarantees that the order quantity assigned to each supplier 

will not exceed supplier capacity limit. Eq. (4.25) is non-negativity 

constraint. 
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4.3. The proposed Integrated Method 

 

This section presents all methods involved in the proposed 

fuzzy MOLP model. First, Taguchi loss function is described to quan-

tify the risk associated with purchasing decision, followed by AHP to 

calculate a relative importance of sub-criteria used to measure risk 

as well as the relative importance between objectives and constraints 

in the final formulation. Next, fuzzy MOLP supplier selection model 

and an enhanced two-phase approach are presented. 

 

4.3.1. Taguchi loss function 

In a traditional system, the product is accepted if the quality 

measurement falls within the specification limit. Otherwise, the 

product is rejected. The quality losses occur only when the product 

deviates beyond the specification limits, therefore becoming unac-

ceptable [106]. Taguchi suggests a narrower view of quality accepta-

bility by indicating that any deviation from the quality target value 

results in a loss. If the quality measurement is the same as the target 

value, the loss is zero. Otherwise, the loss can be measured using a 

quadratic function [107]. 

There are three types of Taguchi loss functions: “target is best” 

(two-sided equal specification or two-sided unequal specifica-

tion), ”smaller is better” and ”larger is better”. If L(y) is the loss asso-

ciated with a particular value of quality y, m is the target value of the 

specification, and k is the loss coefficient whose value is constant de-

pending on the cost at the specification limits and the width of the 

specification, then for “target is best – two sided equal specification” 

type, “target is best – two sided unequal specification” type, “smaller 

is better” type, and “larger is better” type, the formulation of L(y) are 
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given is Eq.(4.1)-(4.4), respectively. 

 

2m)k(yL(y)   (4.1) 

 

2
2

2
1 m)(ykL(y)orm)(ykL(y)   (4.2) 

 

2k(y)L(y)   (4.3) 

 

2k/yL(y)   (4.4) 

 

4.3.2. Analytical hierarchy process 

The analytic hierarchy process (AHP) was developed to provide 

a simple but theoretically multiple-criteria methodology for evaluat-

ing alternatives [108]. The major reasons for applying AHP are be-

cause it can handle both qualitative and quantitative criteria and be-

cause it can be easily understood and applied by the DMs. AHP in-

volves decomposition, pair-wise comparisons, and priority vector 

generation and synthesis. The procedures of AHP to solve a complex 

problem involve six essential steps [109]: 

1. Define the unstructured problem and state clearly the objectives 

and outcomes; 

2. Decompose the problem into a hierarchical structure with deci-

sion elements (e.g., criteria and alternatives); 

3. Employ pair-wise comparisons among decision elements and 

form comparison matrices; 

4. Use the eigen value method to estimate the relative weights of 

the decision elements; 

5. Check the consistency property of matrices to ensure that the 

judgments of decision makers are consistent; and 
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6. Aggregate the relative weights of decision elements to obtain an 

overall rating for the alternatives. 

 

4.3.3. Fuzzy multi-objective linear programming 

A linear multi-objective problem can be stated as: find vector x 

in the transformed form 𝑋𝑇 = |𝑥1, 𝑥2, … , 𝑋𝑛| which minimize objec-

tive function 𝑍𝑘 and maximize objective function 𝑍𝑙  with 

 





n

1i
ikik p1,2,...,k,xcZ  (4.5) 





n

1i
ilil q2,...,p1,pl,xcZ  (4.6) 

subject to: 

 m...,2,1,r,bg(x)xX,Xx rdd   (4.7) 

 

where 
d

X  is the set of feasible solution that satisfy the set of system 

constraints. 

Zimmermann [110] first adopted the fuzzy programming model 

proposed by Bellman and Zadeh [111] into conventional LP prob-

lems. The fuzzy formulation for (4.5)-(4.7) can be stated as 

 





n

1i

0
kikik p1,2,...,k,Z~xcZ  (4.8) 





n

1i

0
lilil q2,...,p1,pl,Z~xcZ  (4.9) 

subject to: 

  



n

1i
ririr h1,2,...,r,b~xaxg~  (4.10) 
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  



n

1i
pipip m1,...,hp,bxaxg  (4.11) 

n....,2,1,i0,xi   (4.12) 

 

The above fuzzy MOLP is characterized by a linear membership 

function whose value changes between 0 and 1. The membership 

function for fuzzy objectives are given as 
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 (4.14) 

 

and the linear membership function for fuzzy constraints is given as 

 

 
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d
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if

 (4.15) 

 

where 𝑑𝑟 is subjectively chosen tolerance interval expressing the lim-

it of the violation of the r-th inequalities constraints. In the above 

formulation, 𝑍𝑘
𝑚𝑎𝑥 , 𝑍𝑙

𝑚𝑎𝑥 , 𝑍𝑘
𝑚𝑖𝑛 and 𝑍𝑙

𝑚𝑖𝑛 means the maximum value 

(worst solution) and the minimum value (best solution) of 𝑍𝑘 and 𝑍𝑙 , 

respectively.  They are obtained by solving a single objective optimi-
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zation problem respectively under each objective function [112].  

Zimmermann [110] proposed a max-min operator approach to 

solve the above fuzzy MOLP. The Eq. (4.5)-(4.7) can be transformed 

into the following crisp formulation by introducing additional varia-

ble 𝜆 which represent an overall achievement level for both fuzzy ob-

jectives and constraints. 

 

λMax  (4.16) 

Subject to: 

objectives fuzzy for21,),( q...,,jxμλ zj   (4.17) 

sconstraint fuzzy for21,),( h...,,rxμλ gr   (4.18) 

sconstraint   for1,)( crispm,...,hpbxg pp   (4.19) 

[0,1]21,  λμμn..,,i0,x grzji ,,and  (4.20) 

 

4.3.4. An enhanced two-phase fuzzy programming 

Li et al. [103] proposed a two-phase approach to compute effi-

cient solutions of fuzzy MOLP as the improvement of compromise 

approach of Wu et al. [104]. The steps of two-phase approach are as 

follow: 

Step 1: Solve the max-min operator problem and output the optimal 

value, say 𝑥0. 

Step 2: Set the lower bound 𝜆 
𝑙 =     𝑥

0) for objective function and 

 𝑟
𝑙 =   𝑟 𝑥

0) for fuzzy constraints and solve the following model to 

get a final solution x. 





h

r
rr

q

j
jj γβλω

11

Max  (4.21) 

subject to: 
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q...,2,1,j(x),μλλ zjj
l
j   (4.22) 

h...,2,1,r(x),μγγ grr
l
r   (4.23) 

m,...1,hp,b(x)g pp   (4.24) 

n..,2,1,i0,xi   (4.25) 

[0,1]γ,λ rj   (4.26) 

0β,ω1,βω rj

q

1j

h

1r
rj  

 

 (4.27) 

It should be noted that the value of minimum acceptable 

achievement level is a compromised preference value of decision 

maker. However, this method may not necessarily yield a feasible so-

lution when the minimum acceptable achievement level is closer or 

equal to the most optimistic value. Moreover, due to the problem 

structure of supplier selection under consideration, formulating line-

ar programming model requires a careful parameter setting because 

selection criteria are quantified using wide range of numerical input. 

Inappropriate parameter setting may also result in infeasible solu-

tion. To release the above-mentioned shortcomings and to help ob-

tain a more reasonable compromise solution, therefore, this research 

proposes an enhanced two-phase approach of fuzzy MOLP.  There-

fore, we propose to solve the following model to get the final solution 

x: 
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q

1j
jj δεpγβλωp)(1Max  (4.28) 

Subject to: 



85 
 

q...,2,1,j(x),μλελ zjjj
l
j   (4.29) 

h...,2,1,r(x),μγδγ grrr
l
r   (4.30) 

m,...1,hp,b(x)g pp   (4.31) 

[0,1] rji γ,λandn..,2,1,i0,x  (4.32) 

0β,ω1;βω rj

q

1j

h

1r
rj  

 

 (4.33) 

l
rr

l
jj γδ0;λε0   (4.34) 

where 𝜀  and 𝛿𝑟  are  augmented variables to relax the overall 

achievement level resulted from the foregoing max-min operator 

problem , respectively, and p is a weighting factor which control the 

original objective function value and the relaxation value. Apparently, 

it is desirable such relaxation is as small as possible as long as the 

feasibility is hold. 

 

4.3.5. Solution procedures 

The proposed fuzzy MOLP supplier selection problem is con-

structed through the following steps: 

Step 1: Define the criteria for supplier selection problem 

Step 2: Construct the MOLP supplier selection problem according to 

defined criteria (minimize purchasing cost, maximize service level, 

and minimize purchasing risk) and constraint of the buyer and sup-

pliers. The purchasing risk is quantified as followed: 

a. Define sub-criteria 

b. Measure the relative important of each sub-criteria using AHP 

c. For each sub-criterion, define a target value, calculate loss coeffi-

cient and Taguchi loss 
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d. Find the weighted Taguchi loss by employing the output of AHP. 

This value is used in MOLP model as the coefficient of objective of 

minimizing purchasing risk 

Step 3: Find membership function for each selection criteria and 

constraint. 

a. Determine a lower bound of each objective by solving MOLP as a 

single objective supplier selection problem using each time only 

one objective. 

b. As in a), determine an upper bound of each objective by solving 

MOLP as a single objective supplier selection problem using each 

time only one objective. 

Step 4: Calculate the relative importance of criteria and constraints 

using AHP. 

Step 5: Reformulate the MOLP supplier selection into equivalent 

crisp model using the enhanced two-phase fuzzy MOLP and find the 

set of feasible solution. 

 

4.4. Numerical Experiment and Analysis 

 

Suppose that one firm should manage three suppliers for one 

product. Management wants to improve the efficiency of the purchas-

ing process by evaluating their suppliers. The management considers 

three objective functions i.e. minimizing net cost, maximizing service 

level and minimizing purchasing risk, subject to constraints regard-

ing the demand of product, supplier capacity limitation, firm’s budget 

allocation, etc. The estimated value of suppliers’ net price, service 

level and suppliers’ capacity are given in Table 4.1. An allocated 

budget of the firm to purchase the product is $20,000. The demand is 

a fuzzy number and is predicted to be about 1400 unit with refrac-
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Table 4.1. Suppliers’ quantitative information 

  Net Cost/unit 
($) 

Service Level 
(% fill rate) 

Capacity 

(unit) 

Supplier 1 10 75 500 
Supplier 2 12 90 600 

Supplier 3 9 85 550 

 

Table 4.2. The specification limit and range of five leading criteria 

Criteria Target Value Range 
Specification 

Limit 

Quality (% defect rate) 0% 0-3% 3% 
Order fulfillment 100% 80%-100% 80% 

On-time delivery (days) 0 -10 to 0 and 
0 to 5 

10 days earlier, 
5 days delay 

Distance/Proximity (miles) The closest 0-40% 40% 

 

tion of -100 and 150 units.  

Purchasing risk is measured from four sub-criteria: quality, or-

der fulfillment, on-time delivery, and distance/proximity. Concerning 

product quality, DM set the target value of defect parts at zero and 

the upper specification limit at 3% to indicate the allowable devia-

tion from the target value. Zero loss will occur for 0% defective parts 

and 100% loss will occur at the specification limit of 3% defective 

parts. For order fulfillment rate, the loss will be zero for the supplier 

who fulfills all order quantity (100%) and the total loss will occur if 

supplier can only satisfy 80% of total order. For on-time delivery, the 

specification limit of delivery is 10 days and 5 days for early and de-

Table 4.3.  Actual value of the four sub-criteria 

Supplier 
Quality 

(% defect) 

Order Ful-
fillment 
(% unit) 

On-time 
delivery 

(days) 

Distance/ 
Proximity 

(miles) 

1 1.0% 90% 2 6 
2 1.2% 95% 4 7 
3 1.5% 97% -1 9 
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lay shipment, respectively. The DM will tolerate the shipment for a 

maximum of 5 days delay and 10 days early. In this case, the manu-

facturer will incur 100% loss if shipment is delayed for 5 days or ear-

lier for 10 days from scheduled shipment, and on contrary, no loss 

incurred if the shipment is on time. For distance/proximity, a zero-

loss will occur at the closest supplier and the specification limit is up 

to 40% of the closest supplier. It means that the manufacturer will 

incur 100% loss if there are other suppliers in consideration whose 

distance reaches the specification limit. The specification limit and 

range value of each selection criterion are presented in Table 4.2. 

Calculating the value of k from Eq. (4.1)-(4.4) gives 1111.11, 

0.64, and 6.25 for quality, order fulfillment, distance/proximity, re-

spectively. For on-time delivery, k1 = 4 and k2 = 1 (since an unequal 

two side specification is considered for on-time delivery, there exists 

two loses coefficients, k1 and k2). The actual values in Table 4.3, to-

gether with the value of loss coefficient k previously calculated for 

these four sub-criteria, are used to calculate the individual Taguchi 

Loss for each supplier for each criterion using Eq. (4.1)-(4.4). For ex-

ample, the actual quality value of supplier A is 1.0% defective rate, 

which means 1.0% deviation from the target value. Individual 

Taguchi loss is then calculated by entering this value into eq. (3.1)-

(3.4). The result is shown in Table 4.4. 

Suppose the pair-wise comparison matrix and local weight for 

Table 4.4. Taguchi loss (   )) 

Supplier Quality 
Order Ful-

fillment 
On-time 
delivery 

Distance/ 
Proximity 

Weighted 

Taguchi 

Loss 

Normalized 

Taguchi 

Loss 

1 11.11  79.01  16.00  0.00  34.078 0.284 
2 16.00  70.91  64.00  18.06  43.627 0.363 
3 25.00  68.06  1.00  156.25  42.411 0.353 
    Total 120.116 1.000 
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each of these four sub-criteria using AHP is that shown in Table 4.5a. 

The consistency Ratio (CR) of table 5 is 0.0971 (less than 0.1). The 

weighted Taguchi loss is then calculated using Taguchi losses and the 

local weight of criteria (Table 4.5a). Table 4.4 shows the weighted 

Taguchi loss and the normalized Taguchi loss for each supplier. The 

normalized Taguchi loss, which represents the loss score, is then 

used as a coefficient of purchasing risk in fuzzy MOLP. Based on sup-

pliers’ data in Table 4.1 and the normalized Taguchi Loss in Table 4.4, 

the fuzzy MOLP supplier selection of the presented problem is con-

structed according to Eq. (4.8)-(4.12) as follow:  

 

0
13211 ~91210Min ZxxxZ   

0
23212 ~0.850.90.75Max ZxxxZ   

0
33213 ~0.3530.3630.284Min ZxxxZ   

Subject to: 

1400321  ~xxx  

2000091210 321  xxx  

5001 x  

Table 4.5. Pair-wise comparison matrix 

a) Sub-criteria Quality 
Order Ful-

fillment 
On-time 
delivery 

Distance / 
Proximity 

Local 
Weight 

Quality 1 2 2 5 0.417 
Order Fulfillment 1/2 1 3 5 0.334 
On-time delivery 1/2 1/3 1 5 0.191 

Distance/Proximity 1/5 1/5 1/5 1 0.058 

b) Criteria 
Net 

price 
Service 

Level 
Purchasing 

Risk 
Demand 

Local 
Weight 

Net Cost 
Service Level 

Purchasing risk 
Demand 

1 
1/2 
1/3 
1/3 

2 
1 

1/2 
1/3 

3 
2 
1 

1/2 

3 
3 
2 
1 

0.447 
0.282 
0.164 
0.106 
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6002 x  

5503 x  

0i x  

 

The criteria and constraint can be considered equally important 

and added together for comparison. However, such a comparison is 

generally unfair due to certain criteria that that may be more im-

portant than others. In this model, the weight of cost, service level, 

purchasing risk and demand are derived from AHP. Table 4.5b shows 

the pair-wise comparison matrix and local weights for criteria and 

constraint. The consistency Ratio (CR) is 0.026 (less than 0.1). 

Calculating the membership function using max-min operator 

(Eq. (4.16)) gives 0.566, 0.566 and 0.566 for  𝑧1 𝑥
0),  𝑧2 𝑥

0) , 

 𝑧3 𝑥
0), respectively. The crisp formulation of the above fuzzy MOLP 

using the enhanced two-phase approach according to Eq. (4.28)-

(4.34) is given as 

 

 
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
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0200012x16x12x 321   

5001 x  

6002 x  

5503 x  

11321  βωωω  

0.8470.566,0.566,0.566, 1321  δεεε  

0,,,,,,

1][0,,,,

1321321

1321





βωωωxxx

γλλλ

 

 

In this problem, the original two-phase approach fails to yield a 

feasible solution. The constraint associated with 𝜆1 cannot be satis-

fied because the value of 𝜆1equal to 0.526 which is lower than the 

designated value of its lower bound (𝜆1
𝑙 =0.566). 

Table 4.6 provides a set  of the feasible solutions resulted by uti-

lizing the proposed method which includes the overall achievement 

level, individual achievement level, ordering plan and the objective 

value of the equivalent crisp model along with the upper and lower 

bounds of fuzzy objectives and constraint. As shown in the Table 4.6, 

the overall achievement level of the proposed approach is known to 

be better than that of Max-min operator (𝜆 = 0.566) when value of p 

is lower than 0.5. When p is equal or greater than 0.5, the overall 

achievement level decreases. A lower p value indicates the model at-

tempts to find a solution by relaxing more the critical objective relat-

ed to the corresponding constraint to achieve a better achievement 

level of the other objective. 

In this model, the service level (𝑍2) and the purchasing risk (𝑍3) 

are a critical objectives as the corresponding constraints are relaxed 

for almost any p value (critical constraint).  This implies that the 
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model tends to sacrifice the performance of these objectives because 

it is at less of cost decreasing the performance of these objectives ra-

ther than decreasing other. The greatest relaxation is occurred when 

p is 0.10. The achievement level of 𝑍2 is totally relaxed ( 𝑧2= 0) to 

achieve a better achievement level for 𝑍1  followed by 𝑍3 . The 

achievement level of 𝑍2reaches the best possible value for the entire 

value of p when 3Z is relaxed for p is equal to 0.54 and 0.6. Moreover, 

𝑍1is free from relaxation as it is the most important objective, whose 

assigned weight is the highest, according to the DM’s preference 

(𝜔1 ≫ 𝜔2 > 𝜔3). 

In this fuzzy formulation, all suppliers are selected to supply the 

product to the firm. Moreover, upon more careful observation, it is 

revealed that ordering to Supplier 1 and Supplier 3 is more prefera-

ble. It is inferred form the order quantity assigned to these suppliers 

as they receive the biggest amount of order quantity which is 

equal/closer to their full capacity. In this case, it is not profitable to 

order more quantity to Supplier 2 because it offers the most expen-

sive price and the highest purchasing risk among others. As men-

tioned above, the price (net cost) is put as the main concern of the 

DM (the highest weight). Thus, placing a smaller order quantity to 

supplier 2 is the best decision. 

Without loss of generality, suppose that the DM wants to select p 

equals 0.10. In this solution,  𝑧1 and  𝑧3 improve to 0.991 and 0.980, 

respectively, which results in the best value of 𝑍1 and 𝑍3. However, 

the DMs should carefully notice that the achievement level of service 

level, the second most important criteria, declines toward the worst 

performance ( 𝑧2 = 0). Eventually, final decision should be made by 

the DM to choose the most favorable decision among the feasible al-

ternative solutions according to his/her preference. 
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4.5. Conclusion 

 

Supplier selection is an essential task within the purchasing 

function that needs careful screening under some qualitative and 

quantitative criteria. Moreover, most information required to assess 

supplier is usually not known precisely and typically fuzzy in nature 

over the planning horizon. Concerning such characteristics, this re-

search proposes integrated methodology for FMOLP model for sup-

plier selection. 

In formulated problem, the most common fuzzy objectives and 

parameter in practical ordering decision have been presented. AHP is 

used to facilitate the subjective judgment on qualitative/quantitative 

criteria and TLF is employed to quantify the purchasing risk. For the 

purpose of solving the FMOLP problem, the enhanced two-phase 

fuzzy programming model has been developed. Through numerical 

experiment, we demonstrate the promising advantage of our pro-

posed approach over the max-min operator (Zimmermann’s ap-

proach). Finally, this integrated approach provides a set of potential 

feasible solutions which guide DMs to select the best solution accord-

ing to their preference. This also refers to a multi-objective optimiza-

tion problem that should be concerned in future studies. 

 

 

 

 

 



95 
 

Chapter 5 
 

 

 

 

 

POSSIBILISTIC PROGRAMMING MODEL 

FOR FUZZY MULTI-OBJECTIVE PERIODIC 

REVIEW INVENTORY IN TWO-STAGE SUP-

PLY CHAIN 

 

 

5.1. Introduction 

 

In today’s global market, innovative technologies have short-

ened the product life cycle and increased the demand variability 

along the supply chain system. This ultimately forces enterprises to 

increasingly focus on the role of inventory. The excess inventory in 

the supply chain blocks the cash flow and indeed gives a tremendous 

impact on the enterprise while insufficient inventory results in poor 

responsiveness to the customer demand. In the context of supply 

chain (SC) system, determining inventory control policy is quite chal-

lenging due to the interaction among the different levels with differ-

ent goals. Even such a policy can be identified, it usually has a very 

complex structure and is not suitable for implementation. Therefore, 

it is reasonable to consider simple, cost-effective heuristic policies, 
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which can be readily applicable in practice [113]. In this regard, the 

periodic review inventory system plays an important role because of 

its simplicity and easiness in implementation, and therefore, it is 

mostly employed at different levels of the supply chain network 

[114]. 

The issue of considering uncertainty in inventory control has 

received a great deal of concern in the field of production/inventory 

management. In the context of periodic review inventory system, 

many research have focused on the use of stochastic approach under 

different concerns. While the usefulness of stochastic approach has 

been documented, it is not always applicable in coding the infor-

mation regarding the imprecision of data and vagueness of goals. To 

avoid this drawback, the fuzzy approach is employed for modeling 

uncertain parameters and goals in inventory problem. The fuzzy ap-

proach copes with the uncertainty related to imprecision due to una-

vailability and incompleteness of data as well as vagueness of goals 

in which the use of conventional probability distribution is impossi-

ble in this case. Moreover, it is frequently emphasized in the litera-

ture that fuzzy approach has had a great impact in preference model-

ing and multi-objective problem and has helped bring optimization 

techniques closer to the users’ needs [115]. Recently, the fuzzy ap-

proach has also been employed extensively for the modeling of pa-

rameters in periodic review inventory system. Petrovic et al. [116] 

considered fuzzy demand in a single product inventory control of 

distribution supply chain of single-warehouse, multiple-retailer in 

which inventory of each member is replenished by adopting periodic 

review system. They proposed interactive method to determine the 

optimal review period and order-up-to level inventory that give the 

lowest total cost in the fuzzy sense characterized by linear member-
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ship function. Vijayan and Kumaran [117] examined the impact and 

sensitiveness of the impreciseness of fuzzy cost components to the 

ordering quantity in periodic review and continuous review invento-

ry models in which a fraction of demand is backordered, and the re-

maining fraction is lost during the stockout period. Lin [118] provid-

ed a solution procedure to find the optimal review period and opti-

mal lead time in periodic review inventory model considering the 

fuzziness of expected demand shortage and backorder rate and used 

the signed distance method to defuzzify the total expected annual 

cost. Dey and Chakraborty [114] developed the periodic review in-

ventory model with a constant lead-time in a mixed fuzzy and sto-

chastic environment by incorporating the customer demand as a 

fuzzy random variable. The aim is to determine the optimal invento-

ry level and the optimal period of review such that the total fuzzy ex-

pected annual cost which is defuzzified by its possibilistic mean is 

minimized. Chang et al. [119] studies a mixtures model of periodic 

review inventory for single-retailer single-supplier involving varia-

ble lead time with backorders and lost sales by further considering 

the fuzziness of lead-time demand and annual average demand. Us-

ing centroid method for defuzzification, they found the optimal solu-

tion for order quantity and lead time in the fuzzy sense such that the 

total cost has a minimum value. 

Earlier research of fuzzy periodic review system in the SC were 

limited in implementation in that the inventory problem is solved for 

a simple SC structure to satisfy a single objective problem. In current 

globalization, however, the SC network has become dynamic and 

complex in a structure which imposes a high degree of uncertainty 

and this significantly influences the overall performance of the SC 

network [120]. Moreover, it is mostly the case that each SC member 
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considers more than one factor in their goals to sustain or improve 

their competitive position. The nature of operations makes one goal 

often conflicts with each other and complexity in SC structure makes 

it is difficult to align all of these goals. 

This research proposes a periodic review inventory model in a 

typical SC system where multiple manufacturers, multiple retailers is 

considered. The aim of this paper is to develop a multi-objective pe-

riodic review inventory model in an uncertain environment by sim-

ultaneously incorporating the imprecise nature of some critical pa-

rameters such as demand, lead time and cost parameters. N this 

model, each retailer places orders periodically to multiple manufac-

turers and each manufacturer is replenished periodically from an 

external supplier. The problem is to determine the ordering policy 

for raw material and the safety stock level of each manufacturer, and 

the order allocation and the target stock level of each retailer that 

can yield satisfactory minimum total cost while maintaining low loss 

rates. Several alternative solutions are obtained by solving a pro-

posed multi-objective possibilistic mixed integer programming 

(MOPMIP) inventory model. 

This research contributes to the existing literature in the fol-

lowing ways. First, it presents a comprehensive and practical, but 

tractable, MOPMIP inventory model for two-stage supply chain sys-

tem considering the imprecision of some critical data. And second, it 

introduces an integrated solution procedure which provides a sys-

tematic framework to facilitate the fuzzy decision-making process, 

enabling the DM to adjust the decision and to obtain a more pre-

ferred satisfactory solution in both decentralized and centralized SC 

system. 
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5.2. Model Formulation 

 

5.2.1. System description 

The model has the following assumptions. 

1. Only a single product is considered in the model. Without loss of 

the generality, the manufacturer uses one unit of raw material to 

produce one unit of product. 

2. For both manufacturer and retailer, only one order is allowed to 

place at any period. 

3. The production rate of the manufacturer is assumed fixed and 

higher than the average demands. 

4. Unfulfilled demand at the manufacturer is considered as 

backorder while unfulfilled demand at the retailer is considered 

as shortages. 

5. Due to incompleteness and/or unavailability of required data over 

the specified planning horizon, uncertainty in demand, lead time 

and cost parameter are assumed to be imprecise (fuzzy) in nature 

with a triangular pattern. 

The supply chain in this study operates under the make-to-

stock environment, in which imprecise parameters such as demand, 

Manufacturer Retailer customer

Supplier

i j
 

Figure 5.1. Supply chain Network 
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lead-time and cost parameters are considered. The supply chain con-

sists of supplier, manufacturer, retailer and the end customers of 

which each of these members is a representative different supply 

chain echelons. However, this research focuses on a relationship be-

tween manufacturer and retailer (suppliers and end customers are 

considered as external members in the chain) as shown in Figure 5.1. 

 

- Manufacturer 

The manufacturer uses the periodic review system to control 

the inventory and orders raw material based on the discrete lot siz-

ing policy. In addition, the manufacturer also holds some safety stock 

to cover the effect of uncertainty in demand and delivery lead-time. 

This safety stock will only be used when a normal inventory level 

cannot satisfy the retailers’ demand and it must be filled back as 

soon as possible after having used. 

 

- Retailer 

The retailer uses the periodic review with order up to the tar-

get stock level (T, R) policy. The retailer makes a single order in eve-

ry cycle to the manufacturer to raise up its inventory to the target 

stock level. In addition, since the retailer may receive replenishment 

from more than one manufacturer, the retailer must determine the 

appropriate strategy to allocate the order quantity to each manufac-

turer. Any unfulfilled demand is considered as lost sales due to the 

fact that in practice the customers have a plenty of choices to acquire 

the products and buy the same product from other shops when the 

stock out occurs at the first shop, especially when the retailer is 

viewed as department stores, supermarkets or conventional stores. 
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5.2.2. Formulation of the model 

In this section, we develop a multi-objective mix-integer pro-

gramming inventory model stated in the previous section. The model 

is described based on the following notation listed for major parame-

ters. 

Index 

T = Number of planning horizon 

t = Period (t = 1,2,…,T). 

i = Number of manufacturer 

j = Number of retailer 

tp = Number of days in each period 

Parameters of Manufacturer 

 ̃    Forecast demand of manufacturer i at period t. 

Qi,t Order quantity of manufacturer at period t. 

Qpi,t Production quantity of manufacturer i during supplier’s late  

  delivery at period t. 

Sri,t Amount of raw material left at manufacturer i after  

  production during supplier’s late delivery at period t. 

PRi Production rate of Manufacturer i. 

  ̃    lead time of supplier to manufacturer i at period t. 

Qpri,t Production quantity of manufacturer i at period t. 

Esi,t Ending stock of raw materials of manufacturer i at period t. 

Essi,t Ending safety stock of manufacturer i at period t. 

Qmi,t Ordering quantity of manufacturer i at period t. 

Qbij,t Backorder quantity of manufacturer i for retailer j at period t. 

Qslij,t Sales volume of manufacturer i at period t. 

Qai,t Available quantity of product at manufacturer i at period t. 

EIi,t Ending inventory of manufacturer i at period t. 
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Parameters of Retailer 

 ̃    Total end customer demand at period t. 

dbj,t End customer demand at retailer j at period t before  

  receiving replenishment. 

drj,t End customer demand at retailer j at period t after receiving 

  replenishment. 

  ̃    Lead time of manufacturer i to retailer j at period t. 

Ir t Ending inventory of product of retailer j at period t. 

Qsrj,t Shortage quantity of retailer j at period t after receiving 

  replenishment. 

Qorji,t Order quantity of retailer j to manufacturer i at period t. 

LRj Loss rate of retailer j. 

Cost Parameters 

 ̃    Order cost of manufacturer i at period t ($). 

 ̃    Unit purchasing cost of manufacturer i ($). 

 ̃    Unit production cost of manufacturer i ($). 

 ̃    Unit holding cost of raw material of manufacturer i ($). 

 ̃    Unit holding cost of product of manufacturer i ($). 

 ̃    Unit backorder cost of manufacturer i ($). 

 ̃    Unit transportation cost of manufacturer i ($). 

 ̃    Unit purchasing cost of retailer j ($). 

 ̃    Unit holding cost of finished product of retailer j ($). 

 ̃    Unit shortage cost of finished product of retailer j ($). 

TCMi Total Cost of manufacturers ($). 

TCRj Total Cost of retailers ($). 

Decision Variables 

LSi Lot sizing policy of manufacturer i,  LSi = 1 if manufacturer i  
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  place the order, and LSi  = 0 if not place the order but 

  combine it to foregoing order placement. 

SSi Safety stock level of manufacturer i (unit). 

Rj Target stock level of retailer j (unit). 

OAji Order allocation of retailer j to manufacturer i. 

It should be noted that the notations with wave signed on it in-

dicate parameters tainted with uncertainty (imprecise parameters). 

 

5.2.3. The objective Functions 

In today’s dynamic globalization, competition among organiza-

tions exhibits a dynamic nature and it is based on various factors 

such as cost, time, service level, quality, etc. In such environment, the 

organization may formulate one or more factors in their goals to sus-

tain or improve their competitive position. In this sense, it is as-

sumed for the case problem we deal with that the manufacturers 

consider cost while the retailers consider cost and loss rate as the 

core factors of their competitiveness. 

Following are the objective functions for the proposed invento-

ry model. 
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where 
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The ordering quantity of manufacturer (Qi,t) is directly influ-

enced by lot sizing policy (LSi) which is adopted for ordering raw ma-

terial. For example, if there are 6 planning horizon, there are 2T-1 or 

32 possible ordering policies for manufacturer to choose. In this case, 

the first policy may follow lot for lot or place order at every period. 

The second possible policy may combine order of period 1, 2 and 3 

and then use lot for lot the rest four periods. After the best pattern of 

LSi is selected, the manufacturer will check the amount of inventory 

on hand at the beginning of the period (Eq. 5.4). If the amount on 

hand is less than the sum of the demand and the amount to fill back 

the safety stock, then the manufacturer will place the order to sup-

plier. Otherwise no order will be issued. 

The uncertainty of the delivery lead-time from the supplier has 

an influence on the production quantity of manufacturer. Normally, 

production time at period t is equal to the review period deducted by 

actual delivery lead time of the supplier. However, when late delivery 

happens, the manufacturer can still start producing the product 

(Qpi,t) if raw material is available on hand. Otherwise, the manufac-

turer has to wait for new replenishment. Consequently, we can de-

termine total production quantity and ending raw material on hand 

with Eq. (5.5) and Eq. (5.6), respectively. 

As shown in Eq. (5.7) and (5.8), the ending safety stock (ESSi,t) 
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and the ending inventory of finished product (EIi,t) have different 

meanings. Essi,t is the amount of safety stock left at the end of each 

period while EIi,t is the number of finished products that is produced 

beyond the retailer’s demand and is left from fulfilling the safety 

stock. The sales volume (Qsli,t) of the manufacturer is determined 

based on total order quantity of retailer (Eq. (5.9)). When total order 

quantity of retailer exceeds the available quantity on hand, the short-

age quantity will be backordered next period (Qbi,t). 

The retailer makes a regular order to the manufacturer period-

ically to raise up the inventory to the target stock level. The order 

quantity (Qorj,t) is determined by comparing the ending inventory 

(Irj,t-1) with the desired target stock level (Rj), which is equal to (Rj-

Irj,t-1). As stated in Eqs. (5.10) and (5.11), the end customer demand 

( ̃   ) at retailer is divided into two types: the demand before receiv-

ing replenishment (dbj,t) and the demand after receiving replenish-

ment (drj,t). The shortage occurred when end customer demand ex-

ceeds the inventory and the shortage quantity (Qsrj,t) is considered 

as a full lost. 

 

5.3. Solution methodology 

 

Generally, fuzzy programming can be classified into flexible 

programming and possibilistic programming [121]. Flexible pro-

gramming deals with flexibility in the given target value of the objec-

tive function and the elasticity of constraints while the possibilistic 

programming handle the uncertainty related to ill-known parameter 

due to the lack of historical data. The possibilistic programming uses 

possibility distribution to measure the occurrence of possible value 
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for each of uncertain parameter. This value is mostly determined 

based on available data as well as experts’ knowledge. Based on the 

above definition and since we are dealing with imprecise parameters, 

possibilistic programming is used to handle imprecise parameters 

such as demand, lead time and cost parameters in the proposed in-

ventory model. Thus, our proposed inventory model is a multi-

objective possibilistic mixed integer programming (MOPMIP) inven-

tory model. 

Subsequently, a solution procedure is proposed to solve MOP-

MIP inventory model. First, MOPMIP inventory model is transformed 

into the auxiliary crisp MOPMIP model. This step adopts modified S-

curve membership functions to represent all objective functions. The 

Torabi and Hassini’s aggregation function is then proposed to solve 

the auxiliary crisp MOMIP model. 

 

5.3.1. The equivalent auxiliary crisp MOPMIP model 

Solving optimization problem requires a condition in which all 

variables and parameters involved must be defined in crisp form. 

Therefore, in the case where fuzziness is embedded to optimization 

problem, such fuzziness should be cleared up by transforming the 

problem into equivalent crisp formulation before moving to the solu-

tion stage. In this research, this transformation is carried out using 

possibilistic programming. For this purpose, one method of possibil-

istic programming named Jimenez method is applied due to its com-

putational efficiency [122]. The Jimenez method is based on the defi-

nition of the “expected value” and the “expected interval” of a fuzzy 

number. 

Assume that  ̃ is a triangular fuzzy number. The following 

equation can be defined as the possibility distribution of  ̃. 
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where     ,       and      are the three prominent points (the most 

likely, the most pessimistic and the most optimistic value), respec-

tively. Eq. (5.13) and (5.14) define the expected interval (EI) and the 

expected value (EV) of triangular fuzzy number  ̃. 
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Assuming all imprecise parameters in this model follow the tri-

angular pattern, according to Eq. (5.13) and (5.14) the auxiliary crisp 

formulation of the proposed inventory model (except for Eq. (5.7), 

(5.8) and (5.9)) can be reformulated as follows. 
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5.3.2. The modified S-curve membership function 

Membership function is a function which represent of satisfac-

tion degree (possibility degree) of a certain variables. There are 

many types of membership function such as linear, exponential, etc. 
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In this research, the modified s-curve membership function (Figure 

5.2) is employed because it is considered much more easily in han-

dling compared to other membership functions [123]. The modified 

s-curve membership function is a particular case of the logistic func-

tion with specified parameters and its formulation is defined as fol-

low: 
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where μ is the degree of satisfaction. The term δ determines the 

shape of membership function μ(x), where δ > 0. The larger the value 

of parameter δ, the greater the vagueness is. As can be seen in Figure 

5.2, the degree of satisfaction is redefined as 0.001 ≤ μ(x) ≤ 0.999. 

This range is chosen because we assume that the availability of sup-

ply of resources (raw material and product) are not necessarily be 

always 100% of the requirement which, at the same time, implies 

that the total cost and the unsatisfied demand will not be 0% at both 

manufacturers and retailers. In this research this type of member-
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Figure 5.2.   Modified S-Curve Membership Function 
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ship is applied to represent the fuzzy goals: minimizing total cost of 

manufacturer, minimizing the total cost of retailer, and minimizing 

the loss rate of retailers. 

 

5.3.3. Torabi and Hassini aggregation function 

Torabi and Hassini [124] proposed a new aggregation function 

of fuzzy approach (TH method). This method has been proven to 

yield an efficient solution [127]. According to Torabi and Hassini, a 

fuzzy multi-objective model could be transformed in a single objec-

tive model as follows: 

[0,1]

tosubject

)(1Max





 

γ,μ,λ

μλ:

μwγγλ

k

k

k

Z0

Z0

k
Zk0

 (5.23) 

where     and        {   } denote the satisfaction degree of k-th 

objective (individual satisfaction degree of each objective) and the 

minimum satisfaction degree of the objectives, respectively. Moreo-

ver, wk and γ indicate the relative importance of the k-th objective 

function and the coefficient of compensation, respectively. 

The wk parameters are determined by the decision maker based on 

her/his preferences so that ∑ wk = 1, wk > 0. This aggregation func-

tion results in a compromise value between the max-min operator 

and weighted-sum operator based on the value of γ. 

 

5.3.4. The integrated solution procedures 

As mention earlier, our proposed inventory model is a fuzzy 

multi-objective model which belongs to a possibilistic mixed-integer 

programming (MOPMIP) problem. To solve the problem, we propose 

integrated solution procedures which provide a systematic frame-
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Figure 5.3. Flowchart of Solution Procedures 

work that facilitates the fuzzy decision-making process as shown in 

Figure 5.3. 

Since the proposed MOPMIP inventory model is typically diffi-

cult to solve optimally in most real-life cases, performing the above 

procedure to search satisfactory solutions in the proposed MOPMIP 

model requires a tough computational experience. Hence, in order to 

alleviate such computational complexity, the model is solved with a 

Differential Evolution (DE). The DE is a kind of evolutional search 

methods and known as a practical and effective method to solve such 



113 
 

problems [79, 80]. 

The steps of the proposed solution procedures are summarized 

as follows: 

Step 1: Formulate the fuzzy multi objectives mixed-integer pro-

gramming (MOMIP) periodic review inventory model (Eqs. (5.1) – 

(5.11)). 

Step 2: Convert the MOMIP inventory model into an equivalent crisp 

MOPMIP model. To this end, all the imprecise cost parameters in the 

objective functions as well as the demand and lead time parameters 

are converted into the crisp ones using Jimenez method (see section 

5.3.1). 

Step 3: Determine the rage of each objective function by calculating 

the upper bound (UB) and lower bound (LB) of each objective func-

tion. To do so, equivalent crisp MOPMIP model should be solved each 

time only one objective. 
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Step 4: Develop the modified S-curve membership function for the 

objective functions using Eq. (5.22). 
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Step 5: Transform the equivalent crisp MOPMIP model into a single-

objective model based on the TH method. Employing the TH method 

in Eq. (5.23), the single objective formulation of the inventory model 

can be formulated as follow. 
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Step 6: Determine the weight of the k-th objective (wk) and the value 

of coefficient of compensation ( ), and solve the corresponding sin-

gle-objective model using the Differential Evolution algorithm (See 

Chapter 3 Section 2.4). 

Step 7: Present the set of compromise solution to the DM. If the de-

cision maker(s) is satisfied with the current solution, stop. Otherwise, 

search another solution by repeating step 6. 

 

5.4. Computational Experiment and Analysis 

 

In this research, a hypothetically constructed SC system con-

sisting of multi-manufacturer and multi-retailer is developed for 
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Table 5.1. Input Parameters 
Input Pa-
rameters 

Value 
M1 M2 

 ̃ (unit) 
 

{3661, 3950, 4476}a, 
{3011, 3500, 4036}, 
{3611, 4450, 4808}, 
{3276, 3900, 4404}, 
{3105, 3700, 4202}, 
{3252, 4050, 4550} 

{3214, 3500, 4050}, 
{3246, 3900, 4544}, 
{3654, 4450, 4985}, 
{3545, 4100, 4665}, 
{3589, 4200, 4721}, 
{3108, 3700, 4280} 

  ̃ (day) 
 

{3, 4, 6},{3, 4, 6},{1, 3, 7}, 
{3, 4, 6},{1, 4, 8},{3, 4, 6} 

{1, 3, 6},{2, 4, 8},{1, 3, 5}, 
{2, 4, 7},{1, 3, 6},{1, 3, 6} 

  ̃ (day) 
 

to R1:  {1, 3, 5},{3, 6, 8},{4, 6, 9}, 
         {2, 4, 6},{2, 4, 7},{1, 3, 5}, 

to R2:  {4, 6, 9},{1, 3, 5},{2, 4, 6}, 
        {4, 6, 9},{3, 5, 8},{1, 3, 5} 

to R3:  {2, 4, 6},{1, 3, 5},{2, 4, 7}, 
        {1, 3, 5},{4, 6, 9},{4, 7, 9} 

to R1:   {3, 5, 7},{1, 3, 5},{1, 3, 5}, 
             {4, 6, 8},{5, 7, 9},{1, 3, 5}, 
to R2:   {1, 3, 5},{5, 7, 9},{3, 5, 7}, 
             {1, 3, 5},{2, 4, 6},{5, 7, 9} 
to R3:   {5, 7, 9},{4, 6, 8},{1, 3, 5}, 
             {3, 6, 8},{2, 4, 6},{1, 3, 5} 

 R1 R2 R3 

 ̃  (unit) 
 

{1576, 2500, 2976} 
{1836, 2300, 2836} 
{1908, 2700, 3208} 
{1504, 2200, 2804} 
{1702, 2500, 3020} 
{1850, 2800, 2650} 

{2081, 2800, 3462} 
{2254, 3000, 3399} 
{1952, 2500, 2921} 
{2184, 2800, 3442} 
{1602, 2400, 2931} 
{2650, 3200, 3684} 

{2050, 2500, 2922} 
{1996, 2700, 3252} 
{2291, 3000, 3511} 
{1854, 2600, 3220} 
{1540, 2200, 2931} 
{2050, 2700, 3280} 

 

computational experiment. To illustrate the usefulness of the fuzzy 

MOPMIP inventory model using the proposed solution procedure, 

the model is implemented to solve the SC system consisting of two 

manufacturers and three retailers and the result is reported in this 

section utilizing parameters shown in Table 5.1 and 5.2. It is as-

Table 5.2. Cost Parameters 
Cost 

Parameters 
Value 

M1 M2 
 ̃ ($) {80, 100, 130} {70, 110, 140} 
 ̃ ($) {3, 5, 7} {3, 5, 7} 
 ̃ ($) {3, 5, 8} {3, 6, 9} 

 ̃ ($) {0.11, 0.15, 0.17} {0.11, 0.15, 0.17} 

 ̃ ($) {0.3, 0.4, 0.5} {0.3, 0.4, 0.5} 

 ̃ ($) {8, 10, 14} {8, 10, 14} 

 ̃ ($) to R1: {3, 5, 7} 
to R2: {3, 6, 8} 
to R3: {4, 6, 8} 

to R1: {3, 5, 7} 
to R2: {3, 6, 8} 
to R3: {4, 6, 8} 

 R1 R2 R3 
 ̃ ($) to M1: {15, 20, 25} 

to M2: {15, 20, 25} 
to M1: {15, 20, 25} 
to M2: {15, 20, 25} 

to M1: {15, 20, 25} 
to M2: {15, 20, 25} 

 ̃ ($) {0.1, 0.3, 0.5} {0.1, 0.3, 0.5} {0.1, 0.3, 0.5} 
 ̃ ($) {17, 20, 23} {17, 20, 23} {17, 20, 23} 
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sumed that all members belong to one central major enterprise. It is 

also assumed that the DM of each member determines the estimation 

of the possibility distribution of the imprecise parameters by decid-

ing three prominent values (i.e., the most likely, the most pessimistic 

and the most optimistic values) based on their available data and 

knowledge.  

In this SC configuration, each manufacturer has a similar char-

acteristic except that they are distinguished by their production ca-

pabilities. As a result, production rate of manufacture 1 (450 units) is 

slightly higher than that of manufacturer 2 (400 units). Planning 

horizon for 6 periods are provided in which each period consists of 

10 days (tp). Without loss of generality, the SCs control is measured 

based on the aggregate performance i.e., the measures is aggregated 

for all manufacturers and for all retailers. To provide the DMs with 

the broad decision spectrum, several results with different value of 

variable of compensation is (γ-level) are provided in performance 

testing, and for each γ value a solution set is generated by the aid of 

the TH method (Table 5.3). 

As seen, the proposed fuzzy inventory model is referred to the 

mixed-integer programming problem which is very difficult to solve 

in real-life cases. Hence, some alternative fuzzy solution methods 

such as LH method [125], SO method [126], etc., are developed in lit-

eratures. Among them, the SO method is employed in this study by 

means that the effectiveness of the proposed model using TH method 

is compared with that of using the SO method (see Appendix). 

The modified S-curve membership function for all fuzzy objec-

tives has adopted the same values for B, C and δ parameters. These 

values are B = 1; C = 0.001001 and δ = 13.813 [123]. Supposed the 

relative importance of objectives is provided from linguistic state-
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ment that all are equivalent i.e., ω1 = ω2 = ω3. Based on this relation-

ship the weight vector is set as: ω = (0.33, 0.33, 0.33) which means 

that all the objectives are equally important as each other. Due to the 

nature of problem dependence, key parameters (M, CR and F) in DE 

should be chosen wisely and appropriately to get fast convergence 

and avoid the problem of premature convergence. According to our 

preliminary experiments, an appropriate value of M, CR, F and G are 

set as follows: M = 100, F = 0.8 and CR = 0.5 and G = 5000. 

 

- Consideration from the major interest 

According to Table 5.3, the TH method has a superiority over 

the SO method in terms of the value of minimum satisfaction degree 

of objectives because the solutions derived from the TH method are 

more balanced compared to those of SO method. Particularly, the so-

lutions provided by the SO method are unbalanced in low γ-levels 

(i.e., 0.0-0.4), that is to say that the comprehensive satisfaction de-

gree of objectives is small and the method pays more attention to 

some specific objectives rather than to comprehensive satisfaction 

degree. 

In this model, the satisfaction degree (μz1) of the first objective 

(Z1) is always the lowest compared to (μz2) and (μz3) in all γ-levels. 

This indicates that the first objective is a critical objective as it 

bounds the minimum satisfaction degree of objectives involved. Con-

sequently, the method attempts to maximize the satisfaction degree 

of the second and the third objective while giving less attention to 

the performance of the first objective. As a result, for the lower γ-

levels the SO method provides totally unsatisfactory solution for the 

first objective whose value likely move toward its worst possible 
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Figure 5.4. Holding cost of Manufacturers 
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value. However, in the high γ-levels, the performance of the two 

methods is quite similar and both of them find the solutions with in-

significant differences while the TH method provides more evenly 

acceptable results. 

According to information provided in Table 5.3, changing the γ-

level does not give significant influences on decision adjustment in 

the TH method. However, regarding the SO method, ordering raw 

material in a big batch, holding higher volume of safety stock and set-

ting a higher volume of target stock level were found to cause the 

poor performance of the first objective in low γ-levels due to the in-

crease in of inventory holding cost. As can be seen in Figure 5.4, the 

aggregate holding cost of manufacturers in SO method reported sig-

nificantly higher in the low γ-levels. On the contrary, the TH method 

provides more equitable result by proposing to order raw material in 

big batches and small lots, holding more moderate amount of safety 

stock and setting lower level of target stock. 

From the above illustrative case, decision making support can 

be provided to improve the performance of Z1 as a critical objective. 

From strategic level, this can be done by giving the main concern to 

prioritize more Z1 than to other objectives. In this case, the DM in 
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major enterprise plays an important role to formulate the relative 

importance of each objective. On the other hand, from the tactical 

level, the improvement can also be achieved by adjusting the deci-

sion toward reducing the inventory level by ordering raw material in 

a smaller lot and lowering the amount of safety stock. 

 

- Consideration from the extended interest 

The minimum satisfaction degree of objective represents the 

comprehensive satisfaction degree by which all objectives involved 

are guaranteed to have the same value of satisfaction degree. This 

value is controlled by γ to ensure yielding both balanced and unbal-

anced compromise solution. Higher γ-levels mean more concern is 

given to achieve a higher minimum satisfaction degree of objectives 

(λ0) and hence more balanced solution is derived. On the contrary, 

low γ-levels indicate that the method pays more attention to maxim-

ize the satisfaction degree of some specific objectives than to com-

prehensive satisfaction degree and accordingly more unbalanced so-

lution.  In this case, we can distinguish the unbalanced solutions from 

the least unbalanced solution (γ = 0.9) to the most unbalanced solu-

tion (γ = 0.0). 

With the viewpoint of decision making, the γ-level controls the 

power of the DM to the solution. While the balanced solutions indi-

cate no contribution of the DM to the solutions, the most unbalanced 

solution (the lowest γ-level, i.e., γ = 0.0) allows a complete authoriza-

tion of the DM to make a decision according to his preferences. Con-

sequently, we think that all unbalanced solutions and the balanced 

solution may represent a typical decentralized and centralized SC sys-

tem, respectively. In the decentralized system, various operational 

decisions are made at different companies or a certain group of com-
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Table 5.4. Result obtained for some weight combinations 

Item 
Problem instances 

1 2 3 4 5 6 
ω1 0.5 0.3 0.3 0.4 0.4 0.2 
ω2 0.3 0.5 0.2 0.2 0.4 0.4 
ω3 0.2 0.2 0.5 0.4 0.2 0.4 

       μz1 0.992 0.933 0.921 0.946 0.950 0.807 
μz2 0.965 0.995 0.892 0.878 0.990 0.996 
μz3 0.955 0.966 0.998 0.995 0.958 0.990 

       Z1 473248 723853 743132 695743 687176 862316 
Z2 593354 302512 764512 782876 416440 283816 
Z3 31.60% 30.73% 11.50% 17.16% 30.28% 21.25% 

 

pany in the same stage which tries to optimize their own objectives. 

More specifically, the company such as regional distributor of auto-

motive products performs collaborative operational decision with 

other regional distributors in order to improve their responsiveness 

to the customer demand. To this end, this study assumes that the 

members in the same SC stage collaborate as the independent group 

of enterprise in which all operational decision are made on their own 

authority while the major enterprise focuses more in a strategic 

planning. In most situations, however, the major enterprise may be 

urged to decide which member(s) should be prioritized in order to 

improve their performance(s). 

Generally speaking, in the centralized SC, the major enterprise 

attempts to make a centralized decision for synchronizing produc-

tion and distribution flows across the SC. For this purpose, the DM of 

major enterprise determines the relative importance of objectives 

and this will result in different weight combinations as presented in 

Table 4. From Table 5.4 we know that the loss rate of retailers (Z3) is 

almost insensitive to the weight structures. While changing the 

weights influences the loss rate of retailers slightly, it causes consid-

erable changes in the total cost of manufacturers (Z1) and the total 
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cost of retailers (Z2) especially in low weight level. This can be seen 

from Table 5.4 that while changing the weight from 0.2 to 0.5 causes 

μz3 to slightly change from 0.955 to 0.998, it generates significant 

change of μz1 from 0.807 to 0.992 and μz3 from 0.878 to 0.995. There-

fore, the major enterprise as a central DM should carefully consider 

these behaviors when choosing the weight combination to make the 

right decisions. 

 

5.5. Conclusion 

 

This study has proposed MOPMIP model of periodic review in-

ventory problem in multi-manufacturer multi-retailer SC system. A 

solution procedure is developed to solve the model and to provide a 

systematic framework that facilitates the fuzzy decision-making pro-

cess, enabling the DM to adjust the decision and to obtain a more 

preferred satisfactory solution. The computational experiment indi-

cates that the proposed solution procedures obtain a promising re-

sult which produces more balanced solutions set based on the DM’s 

preferences. It also provides decision support to identify critical ob-

jective and provides a realistic recommendation for improvement 

from the perspective of strategic and operational aspect by offering 

the flexibility to adjust the decision considering the DM’s preference. 

Moreover, noticing that the proposed solution method has a specific 

feature to control the authority of the DM, it is also becomes feasible 

to apply the result in both decentralized and centralized SC system. 

This research is an anticipating works in the design of periodic 

review inventory control under uncertainty in the context of SC sys-

tem using possibilistic programming approach. Therefore many pos-

sible researches can be developed in this scope. For example, ad-



123 
 

dressing collaborative planning in SC system such as supplier selec-

tion-inventory control and inventory control-transportation plan-

ning will becomes an attractive research avenue with significance 

practical relevance. 

 

 

Appendix 5.1 

 

Selim and Ozkarahan Method: 
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In this model,    denotes the difference between the satisfaction de-

gree of k-th objective (individual satisfaction degree of each objec-

tive) with the minimum satisfaction degree of the objectives 

(         ). 
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Chapter 6 
 

 

 

 

 

CONCLUSION 

 

 

6.1. Concluding remark 

 

Most companies are now facing dynamic challenges that re-

quire not only well-planning capacity, but also robust SC networks 

that allow the members involved to address and respond any chang-

es in a short notice. In particular, when inventory is stuck in the vari-

ous stages of the supply chain, the company may be forced to operate 

at critical cash flow levels. On the other hand, of the various activities 

involved in SC network, purchasing is one of the most strategic func-

tions because it provides opportunities to reduce costs across the 

entire supply chain. An essential task within the purchasing function 

is supplier selection, given that the cost of raw materials and compo-

nent parts represents the largest percentage of the total product cost 

in most industries. 

From this point of view, this thesis addresses some issues in in-

ventory and supplier selection problem. To be more practically rele-

vant, we study both issues under uncertain environment and ap-
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proach such problem using either stochastic approach or fuzzy app-

roach. 

Chapter 3 investigated a multi-objective problem of periodic 

review inventory in two-echelon supply chain system under uncer-

tainty in demand and lead time. In this study, we propose different 

strategies to solve the stock-out problem - beside the traditional 

mechanism - in serial replenishment system which require a higher 

level of coordination. While stochastic approach is utilized to tackle 

the uncertainty, the multi-objective Differential Evolution (DE) is ap-

plied after giving its modified algorithm to work with the problem. It 

was found that the coordination strategy is become more effective as 

the uncertainty increases in the system. By cooperating, manufactur-

ers can avoid frequent backorder and reduce excess inventory as a 

whole. Though retailers are required to keep a bit high inventory 

level to maintain the good responsiveness to the customer demand, 

this stock level is more effective to reduce the loss rate of supply 

chain. 

Chapter 4 studied multi-objective supplier selection problem 

by considering both qualitative and quantitative criteria under un-

certainty. Unlike Chapter 1 which applied stochastic approach, this 

research incorporated fuzzy approach is proposed due to the fact 

that most information required to assess supplier is not always 

available and/or usually not known precisely over the planning hori-

zon. Concerning such characteristics, this research proposes inte-

grated methodology for fuzzy multi-objective linear programming 

model for supplier selection. To improve in the methodological pro-

cess of deriving optimal solution, the enhanced two-phase fuzzy pro-

gramming model has been developed in this study. Through numeri-

cal experiment, we show some promising advantage of our proposed 
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approach over the existing methods in providing a set of potential 

feasible solutions which guide DMs to select the best solution accord-

ing to their preference. 

Chapter 5 presented a multi-objective possiblistic mixed inte-

ger programming (MOPMIP) model of periodic review inventory 

problem in multi-manufacturer multi-retailer Supply Chain system. 

Possibilistic programming is one method under Fuzzy Set Theory 

(FST) which is designed to handle the uncertainty related to ill-

known parameters due to the lack of precise data. Specifically, we 

attempt to develop a multi-objective periodic review inventory mo-

del in a mixed imprecise and/or uncertain environment by incor-

porating the fuzziness of demand, lead time and cost parameters. A 

solution procedure is developed using the Torabi and Hassini (TH) 

method to solve the model and to provide a systematic framework 

that facilitates the fuzzy decision-making process, enabling the DM to 

adjust the decision and to obtain a more preferred satisfactory solu-

tion. Then the solutions are derived by the aid of Differential solution. 

The proposed solution procedures obtain a promising result which 

produces more balanced solutions and provide decision support to 

identify critical objective. It is also becomes feasible to apply the re-

sult in both decentralized and centralized SC system. 

 

6.2. Future research 

 

Several possible research can be developed to extend the cur-

rent research. Since the proposed research problem is carried out in 

small scale problem, it is more appealing to devote the future re-

search plan to more general and large scale configurations of the 

supply chain system. Moreover, combining two or more idea of the 
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current researches into collaborative planning in SC will becomes an 

attractive research avenue with significance practical relevance.  
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DAILY PLANNING FOR THREE ECHELON 

LOGISTICS CONSIDERING INVENTORY 

CONDITIONS 

 

 

A.1. Introduction 

 

Due to agility, greenness and service innovation, daily logistics 

optimization is becoming extremely important especially for small 

businesses like convenience stores or super markets in Japan.  Re-

cently, a review of articles published in the last decade within the 

context of supply chain management has been considerably emerged 

[128].  Thereat, they reveal a scarcity of models that capture dynamic 

aspects relevant to real-world applications, and emphasize an in-

creasing need for extensive studies on such topic. 

Noticing such circumstance, and to enrich the prospects of this 

thesis, we present a daily logistics optimization at a tactical and op-

erational level. Specifically, we associate with vehicle routing prob-

lem (VRP) considering a substantial inventory issue. 
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Moreover, taking into account dynamic demand and inventory 

of warehouse, we try to give an operational and practical approach 

amenable to innovative resolution to the daily logistics optimization. 

The final scope of this study refers to an integrated decision support 

system with formation system that can dynamically manage appro-

priate data based on the inventory of resources and the demand of 

products (See Figure A.1).   

 

A.2. Problem statement 

 

A.2.2. Review of related studies 

Regarding the transportation among the depots and customers, 

each vehicle must take a circular route from its depot as a starting 

point and a destination at the same time. This generic problem has 

been studied popularly as VRP [129]. The VRP is a well-known NP-

hard combinatorial optimization problem, which minimizes the total 

distance traveled by a fleet of vehicles under various constraints. Re-

cent studies on VRP application can be roughly classified into the fol-

lowing four kinds.   

 

Figure A.1. Global idea of DSS on logistics planning 
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One of them is an extension from the generic customer demand 

satisfaction and vehicle payload limit. For examples, practical condi-

tions such as customer availability or time window [130, 131], pick 

up [132], split and mixed deliveries [133] are concerned not only 

separately but in a combined manner [134]. The second is known as 

the multi-depot problem that tries to deliver from multiple depots 

[135, 136, and 137]. The thirds are concerned in the multi-objective 

formulation for the single depot and multi-depot problems [138-

143]. Though these three classes might belong to an operational level, 

the last one [144, 146, 147 and 147] corresponds to a tactical con-

cern. That is, the decision on the allocations of depot is involved be-

sides VRP. 

Though many of those studies are solved by using a certain me-

ta-heuristic method [148, 149], a certain local search is applied in the 

literature [150]. To effectively reduce the computational difficulty, a 

hybrid algorithm of Benders’ decomposition with genetic algorithm 

is also proposed [151]. Due to the difficulty of solution, however, on-

ly small problems with no less than a hundred customers are solved 

to validate the effectiveness except for the literature [150]. Moreover, 

though actual transportation cost depends not only on the distance 

but also load (Ton-Kilo basis), those studies consider only distance 

(Kilo basis) to derive the route.  Hence, the tactical concerns men-

tioned above are unfavorable to make a generic and consistent deal-

ing over the multiple decision levels, i.e., allocation problem and VRP. 

 

A.2.2. Problem formulations 

Taking a global logistics network composed of distribution cen-

ter (DC), depots, and customers, we try to decide the available depots, 

paths from major DCs to sub-DCs or depots (RS) and circular routes 
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from every depot to its client customers (See Delivery section in Fig-

ure A.1).  

 

Index set 

I index for DC 

J index for depot 

K index for customer 

V index for vehicle 

P  = J ∪K 

T index for planning horizon 

Variables 

fij(t) load from DC i to depot j at period t 

gpp’v(t) load of vehicle v on the path from p∈P to p’∈P at period t 

rj(t) take over inventory at depot j at period t 

sj(t) consume  from inventory at depot j at period t 

xj(t) = 1 if depot j is open; otherwise 0 at period t 

yv(t) = 1 if vehicle v is used; otherwise 0 at period t 

zpp’v(t) = 1 if vehicle v travels on the path from p∈P to p’∈P; 

 otherwise 0 at period t 

Parameters 

Cij transportation cost per unit load per unit distance from DC i  

 to depot j  

cv transportation cost per unit load per unit distance of 

 vehicle v 

Dk(t) demand of customer k at period t 

Dpp’ path distance between p∈P and  p’∈P 

Fv fixed charge to operating vehicle v 
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Haj handling cost per unit load at depot j 

Hoj holding cost per unit load at depot j 

Hpi shipping cost per unit load from DC i 

Hsj shipping cost per unit load from depot j 

M auxiliary constant (Large real number) 

  
    maximum load available at DC i 

  
    minimum load required to ship from DC i 

Qv own weight of vehicle v 

Qj maximum capacity at depot j 

Sj maximum inventory at depot j 

Wv maximum capacity of vehicle v 

 

The goal of this problem is to minimize total cost for daily logis-

tics over planning horizon T.  This problem is formulated as the fol-

lowing mixed-integer programming problem under mild assump-

tions, e.g., round-trip transport between DC and depot; uni-modal 

transport; averaged time invariant unit costs and system parameters 

except for demand and inventory, independency or decision per each 

planning period, etc. 

 

Minimize for every T 
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In (A.1), the objective function is composed of round-trip 

transportation costs between every DC and depot, circular transpor-

tation costs for traveling to every customer, shipping costs at DC, 

holding, handling and shipping costs at depot, and fixed operational 

charge of vehicles.  Several constraints are applied: vehicles cannot 

visit a customer twice (Eq.(A.2)); vehicles entering a location must 

leave it (Eq.(A.3)); no travel between distribution centers (DCs) 

(Eq.(A.4)); material balance (Eq.(A.5)); upper bound of  the capacity 

at depot (Eq.(A.6)); upper bound of the load capacity  for vehicle 

(Eq.(A.7)); each vehicle must travel on a certain path (Eq.(A.8)); ve-

hicles return to the depot empty (Eq.(A.9)); customer demand is sat-

isfied (Eq.(A.10)); sum of inlet good must be greater than that of out-

let by its demand (Eq.(A.11)); each vehicle leaves only one depot and 

returns back there  (Eq.(A.12) and (A.13)); and the amounts of good 

available from DC are bounded (Eq.(A.14)); and the amounts of in-

ventory are upper bounded (Eq.(A.15)).  We also assume the follow-

ing inventory control policy. 
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where ζ (<1) and Rj are a fouling rate of unsold goods and an order-

ing point at depot j, respectively. 

We know that it is almost impossible to solve the above prob-

lem with practical size using any currently available commercial 

software.  Against this, we have successfully solved various logistics 

optimization problems under complicated situations resulting from a 

variety of real-life conditions, by using a method called hybrid Tabu 

search (HybTS) [152, 153].  This is a two-level solution method in 

which the upper level sub-problem optimizes the selection of availa-

ble depots while the lower level sub-problem optimizes the paths 

from DCs to customers via depots so as to minimize the total cost.  

Since HybTS is not only a practical and powerful method but flexible 

and suitable for a variety of extensions, we will deploy the similar 

idea to solve the problem under consideration. 
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Figure A.2. Flowchart od Solution Procedures 
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A.3. Daily decision associated with inventory condition 

 

A.3.1. Multi-level approach incorporating vehicle routing problem 

A For the daily logistics optimization, it is meaningful to take 

into account the use of inventory control at every depot.  To make 

the foregoing hierarchical approach available for the present case, 

we have majorly invented two new ideas and integrated them into 

the similar framework of our hybrid method.  In our best knowledge, 

such global approach has not been reported anywhere. 

In its first level, we choose the available depots using the modi-

fied Tabu search.  Then, in the second level, we tentatively obtain 

round trip paths from DCs to customers via depots using a graph al-

gorithm for the minimum cost flow (MCF) problem.  Assigning the 

customers thus allocated as the clients for each depot, we derive eve-
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Figure A.3. Example of MCF graph 
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ry vehicle route of depot using the modified saving method and mod-

ified Tabu search.  The result thus obtained is fed back to the first 

level to evaluate another set of available depots.  This procedure will 

be repeated until a given convergence condition has been satisfied.  

The procedure of this algorithm is illustrated in Figure A.2.  

In developing the above algorithm, we need to obtain the MCF 

graph that considers the inventory at each the depot.  For example, 

the case where |I|=|J|=|K|=2 is illustrated in Figure A.3.  In Table A.1, 

we summarized information required to put on the edges and nodes 

in the graph.  In terms of the MCF graph thus derived, we can solve 

the original allocation problem extremely fast through a graph algo-

rithm like RELAX4 [154] together with its sensitivity analysis.  The 

sensitivity analysis is amenable to repeatedly solve the problem with 

slightly different parameters one after another.  After all, we can effi-

ciently allocate each depot to its client customers on the Ton-Kilo ba-

sis. 

Then, to solve the VRP in terms of Ton-Kilo basis, we applied 

the hybrid approach composed of the modified saving method and 

the modified Tabu search in a hybrid manner [155, 156].  Thereat, 

Table A.1. Labeling on the edge for MCF graph 

Edge (from to) Cost Capacity Case in Fig.3 
Source - ∑ (Dummy) －M ∑i∈I Pi

min #1 - #2  

Source - DC i  0 Pi
max －Pi

min #1 - #3, #1 - #4 

∑ - DC i  0 Pi
min #2 - #3, #2 - #4 

DC i - RS j  Cijd1ij +Hpi Pi
max #3 - #5, #3 - #6, etc. 

Between double nodes of RS j Hsj Qj #5 - #7, #6 - #8 
Stock - RS j Haj Sj #11 - #5, #12 - #6 
Source - Stock j 0 2Sj #1 - #11, #1 - #12 
Stock j - Sink  Hoj Sj #11 - #13, #12 - 

#13 
RS j - Customer k  cvd2jk Dj #7 - #9, #7 - #10, 

etc. 
Customer k - Sink  0 Dk #9 - #13, #10 - #13 
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we noted that the fixed operational cost for the working vehicle 

should be involved in the economic evaluation.  After all, the algo-

rithm of the modified saving method is outlined as follows. 

Step 1: Create round trip routes from the depot to all customers. 

Compute the saving value by si,j = (d0,j－d0,i－di,j)Dj + (d0,j+di,0－di,j)w, 

where Dj, q and  dij denotes the demand at location j, weight of vehi-

cle itself and distance between locations i and j, respectively.  

Step2: Order these pairs in descending order of savings. 

Step3: Merge the path following the order as long as the feasibility is 

satisfied and the saving is greater than -Ctf/cv, where Ctf denotes the 

fixed operational cost of the vehicle.  

However, since the modified saving method derives only an 

approximated solution, we move on the modified Tabu search to up-

date such initial solution. The modified Tabu search is a variant that 

probabilistically accepts the degraded candidate like simulated an-

nealing in its local search. 

Here, we can emphasize such an advantage that transportation 

costs are able to be accounted on the same Ton-kilo basis at the up-

per (first and second) and lower (third) level procedures in Figure 

A.2. 

 

A.3.2. Analysis of inventory level on demand variation 

It is commonly known holding too much inventory slips the 

economical efficiency while the stock-out or opportunity loss will 

happen in the opposite case.  For the daily logistics, therefore, it is of 

special importance to correctly estimate the demand and properly 

manage the inventory.  Generally speaking, however, correctly esti-
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mate the demand is almost impossible in many cases while it is pos-

sible to roughly estimate the extent of deviation from experience.   

Under such circumstance, it is relevant and practical to try to 

reveal the relation between the extent of demand deviation and the 

inventory level through parametric approach.  Through such anal-

yses, we can setup a reliable inventory level to maintain the econom-

ically efficient logistics while preventing from the state of stock-out.  

Though such consideration is able to present many prospects for the 

robust and reliable logistic systems, it has not been almost con-

cerned in the network optimization of logistics so far due to compu-

tational difficulties. 

 

A.4. Numerical experiment 

 

A.4.1. Setup of test problem 

To examine some performance of the proposed method, we 

provided several benchmark problems with different problem sizes, 

i.e., {|I|, |J|, |K|}.  Every system parameter are set randomly within the 

respective prescribed interval as summarized in Table A.2.  Location 

of every member is also generated randomly, and distances between 

Table A.2. Notes on parameter setup 

Member Item Range Remarks 

DC 

Hp 100×[0.2, 0.8] <3> 
Pmax 1000×[0, 1]+ 

Pmin 
<5>, Total  Pmax >Total capacity 
of RS 

Pmin 1000×[0.2, 0.8] <5>, Total  Pmin > Total demand 

RS 

Hs 100×[0.2, 0.8] <3> 
Ha 50×[0.2, 0.8] <3> 
Ho 100×[0.2, 0.8] <5> 
Q p×[0.2, 0.8] <5>, p=100×|K|/|J| 
S x×[0.5, 0.7] <3>, Varying at each time 

RE D 100×[0.2, 0.8] <3>, Total demand < Total capacity 
of RS 

Cij = 3, cv = 1, Wv = 500, Fv = 50000, qv = 10; <n> multiple of n 
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them are calculated as the Euclidian distance. 

 

A.4.2. Result for leading condition 

Regarding each demand, we randomly changed the amount dai-

ly within 100(1±α)% from the foregoing day.  On the other hand, the 

unsold goods at each depot are remained as the inventory and it is 

possible to use them in the following days.  However, it is supposed 

to be spoiled randomly within ζ and the goods are supplied to the 

upper limit when the inventory level becomes below the prescribed 

safety level (Rj=βSj).   

First, we solved the smaller size problems like |I|=3, |J|=10 and 

|K|=100 over 30 days and |I|=5, |J|=20 and |K|=200 over 10 days. Pa-

rameters α, β and ζ are set at 0.3, 0.5 and 0.1, respectively.  Figures 

A.4 and A.5 illustrate the changes of demands and inventory during 

the planning horizon.  Under these conditions, we derive the optimal 

cost that broadly changes with the demand fluctuation as shown in 

 

Figure A.4. Variations of demand 

 

 

Figure A.5. Variations of inventory 

|I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100 |I|=5, |J|=20, |K|=200|I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100|I|=3, |J|=10, |K|=100

|I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100 |I|=5, |J|=20, |K|=200|I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100|I|=3, |J|=10, |K|=100
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Figure A.6.  In Figure A.7, we can see that the change of working 

numbers of depot is moderated and kept nearly constant (around 

60%).  However, working rate of each depot differs greatly as shown 

in Figure A.8.  This observation is available for considering the re-

structuring of logistics at the next stage.  That is, the depots of low 

working rate may be integrated into the other higher ones. 

Moreover, we solved the larger problems to examine the neces-

sary computation time.  Fixing the planning horizon at 1, |I|=10, and 

|J|=30, we solved the problems like |K|={250, 500, 1000, 1500, 2000, 

2500}. As expected a priori, the required CPU time increases expo-

nentially with the problem size as shown in Figure A.9.  Even for 

these larger size problems, however, we can obtain the result within 

a reasonable time or around several hours. 

Figure A.10 shows the convergence profile for the largest prob-

lem.  We can confirm the sufficient convergence.  From all of these 

 

Figure A.6. Trend of optimal cost 

 

 

Figure A.7. Variations of number of working depot 

|I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100 |I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100

|I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100 |I|=5, |J|=20, |K|=200|I|=3, |J|=10, |K|=100
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results, we can claim the significance of the approach and computa-

tional effectiveness of the proposed method. 

 

A.4.3. Results over wide range of deviations 

To analyze the effect of inventory condition against demand 

deviations, we carried out a parametric study regarding ordering 

 

Figure A.8. Working rate of each RS 

 

Figure A.9. CPU time vs. Problem size 

 

Figure A.10. Solution convergence 
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points using a small model like |I|=2, |J|=5, |K|=100 over 30 days.  

Actually, we solved every pair of problem with five different ordering 

points (β={0.1, 0.2, 0.3, 0.4, 0.5}) and four different ranges of demand 

variation (α={0.2, 0.3, 0.4, 0.5}).  This comes to that 600 optimization 

problems were totally solved.   Now, we show the results in Figure 

A.11 and A.12 by applying the same value setting as before. 

Figure A.11 shows feature of total cost regarding the range of 

demand deviation and the level of ordering point.  Due to the non-

deterministic parameter setting, complicatedly winding profile is ob-

served.  But its trend is plausible since the region where the mini-

mum cost locates will move on the higher ordering point according 

 

Figure A.11. Total cost with demand deviation range and ordering point 

 

 

Figure A.12. Inventory cost with demand deviation range & ordering point 
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to the increase in the deviation ranges as a whole.  This fact suggests 

that it is important to control the ordering point or inventory level 

according to the demand deviation in the cost management.  When 

we cut off only the inventory cost from the total cost, its changes are 

rather simple as shown in Figure A.12.  Since higher stock level 

needs more holding cost, the cost increases proportionally with the 

ordering point regardless of the deviation ranges of demand. 

Finally, from these parametric studies, we claim the adequate-

ness of the applied model behind the mathematical formulation.  

Plausibility of the results can support the significance of the ap-

proach if the realistic parameters were used in real world optimiza-

tion. 

 

A.4.4. Prospect as a working tool 

To realize the planning system illustrated in Figure A.1 as a 

goal, it is essential to provide a user friendly interface to manage the 

system.  At the planning section in production side, this goal is close-

ly related to data handling and visualization of the circumstance at 

hard.  Regarding this matter, we can effectively utilize some software 

developed by Google Maps API.  By now, we have deployed the fol-

lowing step-wise procedure by making Java scripts and appropriate 

free software. 

Step 1: Collect the address of members in an Excel spread sheet or 

text sheet. 

Step 2: Add the information of longitude and latitude of every one 

into the sheet. We are available a free software named AGtoKML 

[157]) for this purpose. 

Step 3: Calculate the distance between every pair of members using 

a procedure of Google Map API known as Gio-coding. 
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Step 4: Solve the optimization problem by the developed method. 

Step 5: Display the routes obtained from Step 4 in Google map. 

In the result of the illustrative problem with |I|=1, |J|=3 and 

|K|=17, every depot has a single route.  In Figure A.13, for simplicity, 

only the routing paths from depot 1 are shown in terms of the popup 

marks (A(=L) – B –…– K – L(=A)). We can see this kind of visual in-

formation is upmost for some tasks at operational level.  However, 

there still remain many possibilities to add more amenable service 

information using GIS applications and Google Map API. 

 

A.5. Conclusion 

 

We have proposed a hierarchical approach to optimize a daily 

logistics problem including inventory control at depots and vehicle 

routing for customer delivery.  For this purpose, we have extended 

 

 

Figure A.13. A part of display of result (Route from Depot 1 (Popup mark L)) 
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our two-level method by virtue of the modified saving method and 

the modified hybrid tabu search together with the graph algorithm to 

solve the MCF problem in a hybrid manner.  In the numerical exper-

iments, we have shown the proposed method can solve the compli-

cated and manifold problem that has never been solved previously 

within a reasonable computation time.  To enhance the solution 

speed for larger problems in advance, we can apply the parallel com-

puting technique deployed previously [158].  We also mentioned 

about the Web application referred to Google Maps API targeting at a 

practical usability.  Eventually, this claims the effectiveness of the 

proposed idea and the prospect of the present challenge. 

Future studies should be devoted to relax the conditions as-

sumed here.  The step-wise procedures for visualization are favored 

to be integrated into the series of Java script.  Eventually, we aim at 

establishing a total decision support system as illustrated in Fig.1 for 

daily optimization associated with low carbon logistics. 
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