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High-precision machining of complex-shaped such as dies, molds, and aerospace

parts with sculptured surfaces requires multi-axis feed drive systems to accurately

follow specified contours. In addition, because computer numerical controlled

(CNC) machines are widely used night and day in manufacturing all over the

world, not only high-speed and high-precision control but consumed energy con-

trol is required. In practice, the tool motion deviates from the desired trajectory

due to the limited bandwidth of the servo drives, as well as disturbances origi-

nating from cutting forces and guide-way friction. For machining, reduction of

contour error is an important issue. Contour error is defined as the component

orthogonal to the desired contour curve, and it represents better indicator of pre-

cision machining. In addition, it is too difficult to calculate the contour error in

real time because it requires solving nonlinear equations in real time. In order to

improve tracking=contouring performance for multi-axis feed drive systems, this

thesis presents several approaches for the following feed drive systems:
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1. Single-axis feed drive system

We presented a novel sliding mode controller with a non-linear sliding surface

to improve the machining accuracy of ball-screw feed drive systems. Unlike

the conventional sliding mode control design, the proposed non-linear sliding

surface varies according to the output (controlled variable) so that the closed

loop system simultaneously achieves low overshoot and a small settling time,

resulting in a smaller error and small energy consumption. The consumed

energy and control input variation were reduced by about 12.9% and 19.1%,

respectively.

2. Biaxial feed drive system

In this section, we have presented a novel algorithm to model predictive

contouring control for biaxial feed drive systems. Model predictive control

(MPC) refers to a class of model-based controllers that uses an explicit pro-

cess model and tracking error dynamics to predict the future behavior of

a plant, making it effective for machine tool feed drive systems that must

achieve high-precision motion and are severely affected by friction, cutting

force and changes in the workpiece mass. To improve contouring perfor-

mance, we propose a new performance index in which error components

orthogonal to the desired contour curve are given more importance than

tracking errors with respect to each feed drive axis. The effectiveness of the

proposed control approach is demonstrated with an experimental biaxial feed

drive system for circular and non-circular trajectories. The proposed con-

touring controller allows the feed drive to follow smooth curves and reduces

contour error. In addition, We proposed a novel sliding mode contouring

controller with a nonlinear sliding surface to improve the machining accu-

racy and reduce the consumed energy of the biaxial feed drive systems. The

advantage of including the contour error in the proposed sliding surface is

that the damping ratio of the system changes from its initial low value to

its final high value as the contour error changes from high value to small

value and vice versa. The proposed approach reduced the control input vari-

ance and consumed energy on average by about 41.2% and 14.9% (for x and

y-axis, respectively) and 23.6% and 5.5% (for x and y-axis, respectively),

respectively.

3. Three-axis feed drive systems
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We presented a new contour error estimation model for three dimensional

machining tasks. The model is based on estimation of the instantaneous

curvature of the reference trajectory and a coordinate transformation ap-

proach. This algorithm is based on an iterative desired contour curve ap-

proximation by circular curves. We extended the approach of sliding mode

contouring controller for biaxial feed drive system to the three-axis case. In

this approach, the normal and bi-normal error components are given more

importance than the tangential component. By using the proposed method,

simulation and experimental results for a desktop three-axis machine show

a significant performance improvement in terms of the contour error.

4. Five-Axis Machines

Conventionally, five-axis machines do its control efforts to minimize the error

components along the driving axis independently. Although many effective

controllers have been applied to the individual axis control loops, elimination

of the tracking errors of each individual axis in multi-axis feed drive systems

may not guarantee the desired contouring accuracy. Even if the tool tip

contour error and tool orientation contour error are very small, a mismatch

between the observed tool tip position and tool-orientation will cause an

over-cut or undercut when these errors are treated independently. To avoid

this mismatch, we present a new definition of the tool orientation contour

error to consider synchronization between the tool-tip contour error and

tool-orientation contour error. Experimental results demonstrate that the

proposed tool orientation contour error reduction is more important than the

reduction of the conventional tool orientation contour error. Based on the

tool orientation contour error estimation method, we designed a novel sliding

mode contouring controller with nonlinear sliding surface and disturbance

observer for five-axis machines. The proposed controller considering the

synchronization of the tool tip and orientation contour errors. . .
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Chapter 1

Introduction

1.1 Introduction

In the aerospace industry, die and mold manufacturing and semiconductor manu-

facturing fields, the need for fast response and high precision becomes the concern

of the machine tool community. In the aerospace industry, high speed machine

tools is required to enable complex parts to be produced in one piece within the

shortest possible time. On the other hand, the die and mold industry demands

machine tools that can cut complex 3-D shapes with speed, accuracy and high-

quality surface finishes. Similarly, automotive manufacturers need high-precision

machines that can perform point-to-point cutting operations in the possible short-

est time [1]. In order to achieve such high accurate machining, computer numerical

controlled (CNC) machines is an essential key.

1.1.1 Computer Numerical Control Machines

CNC is one in which the motions and functions of a machine tool are controlled

by means of a storage program. This program contains coded alphanumeric data,

which is used to control the motions of the workpiece or tool. In addition, the

program includes some input parameters such as feed, depth of cut, speed of the

spindle, and the on/off functions such as turning spindle and turning coolant..

CNC machines have several advantages over the conventional manufacturing ma-

chines such as high accuracy in manufacturing, short production time, greater

1
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Figure 1.1: Application of ball screw feed drive in CNC machines

manufacturing flexibility, simpler fixturing, contour machining (2 up 5-axis ma-

chining), reduced human error, etc. Due to these advantages, CNC machines

are widely used for machine tool area such as milling machine, drill press, lath,

grinding, laser cutting machines, sheet-metal press working machine etc. In ad-

dition, they are used for other areas such as welding machines ( including arc

and resistance), electronic assembly, coordinate measuring machine, tape laying

and filament winding machines for composites, etc. However, CNC has some

drawbacks such as high cost, maintenance, and the requirement of a skilled part

programmers.

1.1.2 Feed drive system

Generally, CNC machines consist of a group of axes, also known as feed drives,

each axis consists of a driving motor which provides the driving forces (for linear

axes) or torques (for rotary axes). This force or torque is transmitted to the axis

through a train of mechanical transmission elements such as gears.
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Figure 1.2: Application of linear motor in CNC machines

The ball screw feed drives are very commonly used in machine tools because of

their relatively high stiffness to cutting force, disturbances, table load variations

and this is due to the gear reduction ratio. They provide thrust and linear motion

of the feed drive by transmitting power from the driving motor through a ball

screw mechanism. In the ball screw feed drive system, the servomotor torque is

transmitted to the ball screw shaft through some transmission mechanism such as

gears. The screw-nut mechanism converts the servomotor rotational motion into

a linear motion and moves the table that holds the workpiece or cutting tool and

attached to the nut as shown in Fig. 1.1. The different shafts in the system are

coupled together through elastic couplings, and bearings are used to support the

shafts and allow the smooth rotational movement [2].

Another method to provide the linear motion of the feed drive is to employ a direct

drives such as linear motors as shown in Fig. 1.2. In which, the linear motion

and thrust directly supplied to the machine tool table without any need of an

intermediary conversion mechanism. Therefore, they have an advantage over ball

screw drives because they involve fewer components and are thus less susceptible

to the influence of undesirable structural modes [1]. Another advantage of the

linear actuators is that they can achieve higher speeds and accelerations with

minimal backlash and friction. On the other hand, direct drives suffer from some

significant drawbacks such as high sensitivity to changes in workpiece mass. In
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Figure 1.3: Contour error in two dimensional machining

addition, their dynamic stiffness depends mainly on the controller settings; it has

little reinforcement from the mechanical structure. As a result, the large forces

that occur during machining could easily excite the dynamics of the control loop

and cause instability in both the controller and the metal cutting process. In

order to mitigate the effects of cutting forces and workpiece mass variations on

the control of direct-driven machines, they are typically over-sized by increasing

the mass of the table and the power of the linear motors. This in turn reduces the

achievable bandwidth and increases the cost of direct-driven machine tools, both

of which are undesirable[1].

In machining applications, the interpolator generates the desired tool motion rela-

tive to workpiece and then decomposes the desired motion into reference position

commands for the individual driving axes. In order to achieve high-speed, high-

precision position control, full-closed feedback control is applied. Several control

approaches have been proposed for such a system. In general, proportional position

control or proportional plus integral velocity control or integral plus proportional

velocity control (P,PI/I-P), which are specific types of proportional plus integral

plus differential control (PID), is applied in many industrial applications. How-

ever, in the case of changing mechanical characteristics of the control target, the

parameters of P,PI/I-PI control must also change in order to maintain good motion

performance [3].
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1.1.3 Control of Multi-Axis Feed Drive Systems

High-precision machining requires multi-axis feed drive systems to accurately fol-

low specified contours [4, 5]. Tracking errors usually appear in many industrial

applications such as X-Y tables, computer numerical control (CNC) machines and

industrial manipulators. For machining, error components orthogonal to the de-

sired contour curve represent better indicators of the precision of machining, and

are defined as ”contour error”. Tracking and contour errors as shown in Fig. 1.3,

are important aspects that significantly affect machining accuracy.

Two main control approaches are used to improve contouring performance: track-

ing control approach and contouring control approach [6–9]. For the tracking con-

trol approach, the control law of each drive axis control loop attempts to minimize

the tracking error independent of other control loops. In addition, disturbances

in one control loop are compensated only by that particular loop. Other control

loops do not receive any information about the disturbance, and they run as if the

disturbed control loop is functioning normally. This lack of coordination causes

error in other axes. However, the contour error of the desired path is evaluated

in real time, and this error is eliminated by feedback control in contouring control

systems.

Research efforts to improve the contouring accuracy in the modern manufacturing

systems have brought out many efficient methodologies in the past years such as:

1.1.3.1 Feedback Controllers

In order to reduce the tracking errors, various control approaches based on the feed-

back principle have been developed. A typical feedback controller, proportional-

integral-derivative (PID) controller is shown in Fig. 1.4. In the PID controller, the
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correction signal is a combination of three components: proportional, integral, and

derivative of the position error. The advantage of the PID controller is that it is

simple to install and easily understood by most engineers. The main problem with

the PID controller in contouring applications is the poor tracking performance at

corners and for nonlinear contours.

1.1.3.2 Feed-forward Controllers

To decrease the tracking errors, a feed-forward controller can be added to the

control loop. To improve the tracking accuracy in each individual axis by elim-

ination of the servo-lag phenomenon, Masory proposed a feed-forward controller

[10], and Tomizuka proposed the zero phase error tracking control [11]. The above

approaches can be applied to effectively reduce tracking errors for single axis or

decoupled motion applications. However, they do not guarantee contouring per-

formance when applied to multi-axis contour-following tasks.

1.1.3.3 Robust Controllers

Examples of robust controllers are the sliding mode controller [12, 13] and the H∞
controllers [14]. These focus on making the control system robust against uncer-

tainties in the drive parameters, maximizing the bandwidth within the physical

limitations of the system, and compensating for external disturbances. However,

these controllers still focus on the improvement of the individual axis performance

only. The main drawback of these methods, which consider the performance of

each axis separately during contouring, is that reducing the individual axis errors

does not necessarily reduce the contour error.

1.1.3.4 Cross Coupling Controllers

The main idea of the cross coupling controller is that the elimination of the con-

tour error is the controller objective, rather than the reduction of the individual

axis errors. Therefore, the cross coupling controller requires the construction of a

contour error model in real time, and its utilization in a control law that reduces

the contour error. By calculating the contour error from the tracking error in

biaxial contour-following tasks, Koren proposed a cross coupled controller (CCC)
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Figure 1.5: Cross coupling controller for a biaxial feed drive system

[15]. Yeh et al. employed a cross-coupled fuzzy logic controller for improving the

contouring accuracy [16]. They utilized a new fuzzy rule-generated method which

is based on a performance index of the contour error model. A block diagram of

a basic biaxial cross coupling controller is shown in Fig. 1.5. The axial position

errors Ex and Ey are used to calculate the contour error ε by being multiplied by

the variable gains, Cx and Cy. The output of the proper control law is decomposed

into two axial components by multiplying by Cx and Cy. These axial components

are then inserted into the individual axis loops with the appropriate sign ensuring

that contour error correction is executed in the proper direction. However, min-

imization of the tracking error in CCC achieved by the axial controller dose not

reduce the contour error, and hence, force the contour controller to contradict it.

As a result, it is difficult to judge which controller dominates the contour error,

hence, some difficulties in adjusting controller parameters will appear.

1.1.3.5 Contouring Controllers

Reduction of error components orthogonal to desired contour curves is an effective

tool for contour following in multi-axis machining tasks. Ho et al. decomposes the

contour error into normal tracking error and advancing tangential error, following

which a dynamic decoupling procedure is applied to the system dynamics [17]. By

transforming the machine tool feed drive dynamics into a moving-task coordinate

frame attached to the desired contour, Chiu and Tomizuka proposed the task co-

ordinate frame approach [18]; Cheng et al. [19] proposed an integrated control

scheme that consists of a feedback controller, a feed-forward controller and a mod-

ified contour error controller (i.e. a CCC equipped with a real-time contour error
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estimator). In addition, they proposed a fuzzy-logic-based feed-rate regulator to

further reduce the contour error. Su and Cheng [20] proposed a position error com-

pensator (PEC) by compensating position errors in advance. To further reduce

the contour error, they employed an integrated motion control scheme consisting

of PEC, a modified version of CCC, and a fuzzy-logic-based feed rate regulator.

Lo and Chung proposed tangential contouring controller for biaxial motion [21].

The proposed controller is based on a coordinate transformation between the X-Y

frame and a tangential-contouring (T -C) frame defined along the contour. Cheng

and Lee proposed a real-time contour error estimation algorithm [22]. Ye et al.

proposed a new cross-coupled path pre-compensation algorithm for rapid proto-

typing and manufacturing systems [23]. To reduce the contour error by optimizing

controller parameters using a genetic algorithm, Tarng et al. presented a cross-

coupled fuzzy-feedrate control scheme [24]. Chin et al. proposed a fuzzy-logic

controller to a proven algorithm in the cross-coupled pre-compensation method,

and using both position and contour error to generate compensation term [25].

Yeh and Hsu [26] proposed an adaptive federate interpolation algorithm based

on the geometric relationship between chord error and curvature constraints. Jee

and Koren proposed an adaptive fuzzy logic controller to reduce contour error

[27]. They adjusted both input and output membership functions simultaneously

within a stable range derived from a stability analysis.

1.2 Sliding Mode Control

1.2.1 Introduction

Sliding mode control (SMC) is a special class of variable structure control with a

high speed, nonlinear feedback that switches discontinuously in time on a specified

sliding surface. SMC originated in the Soviet Union in the late 1950s, however it

was not published outside the Soviet Union until the publications [28] and [29].

After these publications, the list of publications concerning SMC grew rapidly

and SMC has been receiving increasing attention in many control fields such as

electromechanical systems, robotic manipulators and servo systems.
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Sliding mode control has several attractive interests. Among them, its relative

simple design, invariance to systems dynamics characteristics and external dis-

turbances, control of independent motion (as long as sliding conditions are main-

tained), wide variety of operational modes such as regulation, trajectory control

[30], model following [31] and observation [32]. Although SMC has already been

studied in many researches [33–36], surveys [37], or books [38–40], it still remains

many study subjects from the theoretical and applications viewpoints [41].

In order to explain the sliding mode control approach, let us consider the following

first order uncertain system [42]:

ẋ(t) = ax(t) + bu(t) + ρ(x, t). (1.1)

where x(t) ∈ R, u(t) ∈ R are the control variable and control input, respectively.

a and b are known nonzero constants. ρ(x, t) ∈ R refers to unknown uncertainty

and only the bounds of this uncertainty are known. In order to stabilize the system

in (1.1), if the initial value of x(t) is positive then ẋ(t) should be negative and vice

versa. Therefore, depending on the sign of x(t), control law should be altered to
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ensure stabilization of x(t). Consider the following control law:

u(t) = −b−1(ax(t) +Qsgn(x)). (1.2)

where sgn(.) denotes the sign function, and Q > 0 is chosen such that

Q ≥ ρmax. (1.3)

where ρmax represents the upper bound of the uncertainty ρ(x, t). With control

law (1.2), system (1.1) becomes

ẋ(t) = −Qsgn(x(t)) + ρ(x, t). (1.4)

In order to analyze the above closed loop system, consider the following three

different cases; First if the initial condition x(0) > 0. From (1.4) we can see that

ẋ(t) < 0. Therefore, x(t) is decreasing and moving towards the origin x(t) = 0.

Second if the initial condition x(0) < 0, then using (1.4), it implies that ẋ > 0.

Therefore x(t) increasing and approaches x(t) = 0. Third case when x(t) = 0,

the discontinuous part of the control law is not defined. However, the moment the

trajectory crosses the surface x(t) = 0 from either direction, again it is forced back

on x(t) = 0 according to the above mentioned two cases. Therefore in all cases

x(t) is moving towards the point x(t) = 0. Thus, the control law (1.4) forced the

system state x(t) = 0 regardless of the initial conditions.

In order to understand more physically what is happening during sliding mode

control, let us consider the following sliding surface for a second order system:

s(x, t) = kx+ ẋ. (1.5)

where x and ẋ are the states of the system and k is a positive constant. Figure 1.6

shows the state trajectories in the vicinity of the sliding surface s(x, t) = 0. The

sliding mode control has two phases as shown in Fig. 1.6; the initial phase when

the trajectory is forced towards s(x, t) = 0 and it is called the reaching phase;

and the second phase when s(x, t) = 0is called the sliding phase or sliding mode.

During the reaching phase, external disturbance can affect the system performance

while during the sliding phase system motion is insensitive to external disturbance.

Because the control law is discontinuous about s(x, t) = 0 it requires switching
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at very high frequency to maintain the system on the desired sliding surface. If

this switching occurs at a very high frequency then s(x, t) = 0 can be consistently

maintained with this discontinuous control law.

1.2.2 Nonlinear sliding surface design

Generally, designing of sliding mode control consists of two main steps. The

crucial and most important step of sliding mode control design is the construction

of the sliding surface which is expected to response desired control specifications

and performance [43]. The second step in sliding mode control design procedure

is to determine a control law that force the system dynamics the sliding surface

within finite time and then remain on it for a subsequent time. Generally, the

sliding control law consists of two term; the continuous control law that control

the system on the sliding surface; and the discontinuous control law to guarantee

the stability against disturbance effect.

In the conventional sliding mode controller design, a linear sliding surface is uti-

lized which gives a constant damping ratio. In many control applications such as

robotics, electric drives, machine tool control, vehicle and motion control, the most

important requirements are fast response and small overshoot. However, quick re-

sponse produces high overshoot, which causes contour errors and also increases

the consumed energy. On the other hand, low overshoot means slow response,

which leads to significant contour errors. Thus, it is very difficult to achieve small

overshoot with a fast response using the conventional linear SMC method. This

particular problem can be solved by employing the composite nonlinear feedback

(CNF) technique [44]. The nonlinear sliding surface consists of a linear term and

a nonlinear term. The linear term comprises a gain matrix that has a very low

damping ratio, thereby facilitating a fast response [45]. The nonlinear term is in-

troduced to provide a variable damping ratio in order to achieve a small overshoot

and settling time of the closed loop system as the contour error converges to zero.

1.3 Energy Saving in Manufacturing

Manufacturing, the core of industrial activities, has been an essential source of

energy consumption. Hence, it becomes a focal point in environmental impacts
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studies [46]. Reducing the energy consumption of machine tools can significantly

improve the environmental performance of manufacturing processes and systems.

The cutting energy used in the machine tool in material removal process accounts

for 15-25% of the whole energy consumed by the machine [47–49]. This energy

consumption can be categorized as that consumed by the main spindle and by the

feed drives. Recently, researchers have developed several approaches in the process

control level to reduce the energy consumption in machining by improvement in

toolchip contact mechanics.

For example, Zolgharni et al. proposed Diamond-Like Carbon deposited tools to

improve the energy efficiency of machine tools [50]. However, the feed drives have

mean power consumption smaller than the power consumed by the spindle during

roughing operations; they have in-negligible power consumption compared to the

spindle during the finishing operations. In addition, the feed drive is used for other

operations such as returning motion of the tool. Hence, we focus on the feed drive

motion in this study. Moreover, this idea can be applied to most industrial robots

where the energy consumed by the feed drives contributes a large proportion of

the total power consumption

1.4 Study Objectives

This thesis gives a comprehensive discussion on the issue of improving the tracking

and contouring performance for multi-axis feed drive systems. As mentioned in

the previous section, the high accurate motion of the feed drive-axis is highly

demanded to insure high precession machining. In addition, reduction of the

consumed energy of the feed drive system contributes to environmental, natural

resources and energy problems. This thesis presents a novel sliding mode control

design with a nonlinear sliding surface for feed drive systems with single, two,

three and five-axis as follows:

(1) Based on model predictive control, a contouring controller for biaxial feed

drive systems is presented. To improve contouring performance, a new per-

formance index in which error components orthogonal to the desired contour

curve are given more importance than tracking errors with respect to each

feed drive axis.
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(2) A novel sliding-mode controller with a non-linear sliding surface to improve

the machining accuracy of ball-screw feed drive systems is presented. Unlike

the conventional sliding-mode control design, the proposed non-linear slid-

ing surface varies according to the output (controlled variable) so that the

damping ratio of the system changes from its initial low value to its final

high value as the output changes from its initial value to the reference point.

(3) Based on the contour error estimation by coordinate transformation ap-

proach, we proposed a novel sliding mode contouring controller with non-

linear sliding surface to improve the machining accuracy of the biaxial feed

drive systems.

(4) New contour error estimation model for three dimensional machining tasks

to improve the machining quality is presented. The model is based on esti-

mation of the instantaneous curvature of the reference trajectory and coor-

dinates transformation approach. Then a sliding mode contouring controller

with nonlinear sliding surface to improve the machining accuracy for three-

dimensional machining is presented.

(5) Experimental verification of proposed definition of the tool orientation con-

tour error in five-axis machines is conducted. The proposed definition consid-

ers synchronization between the tool-tip contour error and tool-orientation

contour error.

(6) A novel sliding mode contouring controller with a nonlinear sliding surface

for five-axis machining tasks is presented. The controller aims to reduce

the tool tip and tool orientation contour errors. In addition, a design of

disturbance observer to compensate for the effect of modeling error and

external disturbance is introduced.

1.5 Thesis Outline

The reset of this thesis is organized as follows: In Chapter 3, an algorithm to

model predictive contouring control for biaxial feed drive systems is presented. It

should be noted that this is extension of my Master work [51]. In Chapter 2, a

novel algorithm to sliding mode control with nonlinear sliding surface is presented.

Chapter 4 presents a new sliding mode contouring controller with nonlinear sliding
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surface for biaxial feed drive systems. We have extended the proposed controller

presented in Chapter 4 to the three-dimensional machining tasks and presented it

in Chapter 5. Chapter 6 presents a new definition of the tool orientation contour

error to consider synchronization between the tool-tip contour error and tool-

orientation contour error and experimental verification. Base on the definition of

the tool orientation contour error presented in Chapter 6, we presented a novel

sliding mode contouring controller with nonlinear sliding surface and disturbance

observer in Chapter 7. Conclusions and future work are given in Chapter 8.



Chapter 2

Sliding Mode Controller Design

with A Nonlinear Sliding Surface

for Feed Drive Systems

2.1 Introduction

A ball-screw-driven mechanism actuated by servo drives is commonly used in many

industrial applications such as computer numerical control (CNC) machines, pre-

cision assembly equipments and industrial robots to provide high-speed motion

and positioning accuracy. Because most of these applications run for a long time

all over the world, a huge amount of electrical energy is consumed by these ap-

plication. Hence, reduction of the consumed energy by feed drive systems has

become an important issue in modern machining technology.

One important source of increase in energy consumption is torsional and axial

vibrations of the ball screw which result in oscillatory behaviour when the band-

width of the control loop is increased [52]. Feed-forward pre-filtering of trajectory

commands [53–55] or notch filtering of the control signal [56] helps to partially

alleviate this problem by reducing the excitation delivered through the control

signal. However, this attenuation is not perfect, as structural frequencies can also

be excited by external disturbances such as cutting forces or sudden friction tran-

sients. Hence, the control law needs to be robust against varying or unmodelled

axis dynamics [14], as well as the ability to attenuate structural vibrations [57]

15
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and counteract external disturbances, such as cutting forces [58] and friction [59].

Erkorkmaz and Kamalzadeh proposed a bandwidth control scheme for ball screw

drives [60]. They modelled and identified the dynamics of the drive system, which

is comprised of rigid body motion, friction, and torsional vibrations.

The main issue in servo applications is position control, which is essential for many

mechanical motion systems. A positional servo system in a high-performance in-

dustrial application must have fast response, preferably without overshoot, high

steady-state accuracy, good external disturbance rejection, and robustness to pa-

rameter perturbations [61]. Sliding-mode control (SMC), a class of variable struc-

ture control [62], provides a viable and effective method with a strong robustness

property and fast error convergence characteristics for non-linear systems sub-

jected to external disturbances and parameter variations by emulating a prescribed

reduced-order system [63]. In the recent few decades, the SMC with linear sliding

surface technique for mechanical systems has been extensively studied by many

researchers [64–67]. Altintas et al. proposed an SMC applied to a ball-screw feed

drive system [12]. The control system is capable of coping with changing friction

and external disturbances, and uncertainties in the drive inertia. Chen et al. de-

signed an SMC method to reject system disturbances and uncertainties for ball

screw feed drives [68]. To avoid the chattering effect of conventional SMC, they

used an integral-type SMC. Braembussche et al. proposed an H∞ and a sliding-

mode controller for a prototype machine tool axis with a linear motor [69]. Yau

and Yan [70] proposed a proportional-integral switching surface to design an adap-

tive sliding-mode controller in the static and dynamic regimes to achieve improved

precision performance.

However, to ensure high performance, the system should settle quickly without any

overshoot, which can not be achieved with a linear sliding surface. One strategy

of the sliding surface design is the use of non-linear sliding surfaces instead of

linear surfaces of a classical SMC as it is first reported by Rimarez and Bolnar

[71], however the design algorithm was not provided in their study. Jabbari et al.

employed parabolic sliding surfaces to achieve near-minimum time control [72]. In

order to improve the transient response, Lee proposed cubic polynomials [73]. Chu

et al. proposed a technique to design SMC based on non-linear sliding surface that

guarantees asymptotic stability [74]. However finding non-linear functions causes

some analytical difficulties such as choosing structure of the non-linear function

and defining parameters for the non-linear function [75].
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Figure 2.1: Typical ball-screw feed drive system

In this chapter, we propose the application of a sliding-mode controller with a

non-linear sliding surface [42] to a general feed drive mechanism, for its practi-

cal application and understanding. The performance of a classical sliding-mode

controller with a constant, linear sliding surface is improved by using a non-linear

function that has the effect of changing the system closed-loop damping ratio from

its initial low value to its final high value. The variable system closed-loop damp-

ing ratio results in low energy consumption because it provides a fast response

with small overshoot. Furthermore, the non-linear function has a simple geomet-

ric interpretation and its parameters can be tuned easily. In addition, the stability

analysis of the system as well as the stability in the sliding-mode is presented.

2.2 System Modelling and Control Design

2.2.1 System modelling

This study considers a typical ball-screw feed drive system, which is shown in Fig.

2.1. A DC servo motor, which is commonly used in industrial applications, is used

to drive the feed drive system. The feed drive system is generally represented by

the following second-order system:

mẍ+ gẋ = f − d, (2.1)
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Table 2.1: Experimental parameter values

Parameter M C
Value 16.0 Vs2/m 180 Vs/m

wherem(> 0), g (≥ 0), d and f are the mass of the load, viscous friction coefficient,

disturbance with known bounds and driving force along the drive axis, respectively,

and x is the position of the feed drive. A ball-screw is used to convert the angular

motion of the motor to the linear motion of the table. The motor dynamics for

driving the feed drive system is described as follows [76]:

nθ̈ + hθ̇ + τ = u, (2.2)

where θ, n(> 0), h(≥ 0), τ and u are the rotational angle of the motor, motor

inertia, motor viscous friction coefficient, torque needed to drive the feed drive sys-

tem (Eq.(2.1)) and the motor input voltage, respectively. Here, u (V) is applied

to the actuator armature current controller (i.e., the armature current is propor-

tional to the control signal u). The current in the motor armature generates the

motor torque, which is proportional to the armature current. The motor torque is

equivalent to the motor inertia torque (nθ̈), torque dissipated by viscous friction

(hθ̇) and the torque to drive the ball screw (τ). The relationships between the

force f and torque τ , and position x and angle θ are

f =
2πτ

p
, x =

pθ

2π
, (2.3)

where p is the pitch of the ball screw. By combining Eqs. (2.1), (2.2) and (2.3),

the equivalent dynamics can be obtained as follows:

Mẍ+ Cẋ = u− p

2π
d,

M =

(
2π

p
n+

p

2π
m

)
,

C =

(
2π

p
h+

p

2π
g

)
. (2.4)

The equivalent inertia and friction coefficients are a combination of the linear and

rotary friction coefficients. The equivalent inertia and friction coefficients for the

actual system are given in Table 2.1. The state space representation of the above
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system is as follows:

ż = Az + bu− d̃,

y = cT z,

z = [z1, z2]
T , A =

[
0 1

0 − C
M

]
,

b =

[
0,

1

M

]T
, d̃ =

[
0,

pd

2πM

]T
, c = [1, 0]T . (2.5)

where the state z1 represents the position of the feed drive and it is measured by

using a linear encoder with a resolution of 0.1 μm. A low-pass filter with a cutoff

frequency ωf of 75 Hz is employed to estimate the state z2 from z1. d̃ = [d̃1, d̃2]
T

is assumed to be matched (i.e. it lies in the space range of the input matrix b).

2.2.2 Assumptions for controller design

The following items are assumed for the controller design in this study

1. Nominal parameters of M and C in (2.5) are known.

2. Position z1 = x and velocity z2 = ẋ are measurable.

3. d is unknown and bounded.

4. Reference signal for z1 and z2, z1ref and z2ref , are given.

2.2.3 Proposed sliding surface and its stability analysis

To introduce a general idea of the proposed approach a common second order sys-

tem with different damping ratio can be used. Figure 2.2 shows the step response

of three second order systems with different damping ratio; In the System (a) that

has a large damping ratio, the system response is very slow with small energy

consumption and large tracking error; The system (b) has a small damping ratio

to make the system response very fast. The smaller damping ratio increases the

overshoot and hence the energy consumption is increased as well. The system (c)

is a combination of the previous two systems such that smaller damping ratio is

assigned in the beginning to achieve fast response, and the larger damping ratio is
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Figure 2.2: System response with different damping ratios; Sys.(a) with high
damping ratio, Sys.(b) with low damping ratio and Sys.(c) with non-linear

damping ratio

assigned when the output value is close to the reference to prevent the high over-

shoot. The advantage of this combination is to reduce the energy consumption in

most electro-mechanical and robotics systems which are used all over the world

night and day. In this subsection, the design of the sliding-mode controller with

a non-linear sliding surface for ball-screw feed drive systems will be considered.

Using a non-linear sliding surface, the damping ratio of the closed-loop system can

be changed from its initial low value to a final high value. The initial low value of

the damping ratio results in a quick response, while the subsequent high damping

avoids overshoot to minimize energy consumption. The objective of this study

is to show that the significant energy reduction is possible while maintaining the

control performance by selecting the sliding surface appropriately. If the sliding

surface has a similar property with the proposed design, energy reduction may be

possible even by using the standard sliding surface. On the basis of the system

dynamics in (2.5), we propose the following non-linear sliding surface:

S =
[
F −ΨP 1

]
e, S ∈ R,

e = [e1, e2]
T = zref − z, zref = [z1ref , z2ref ]

T . (2.6)

Here e is the tracking error vector of the feed drive system. zref is the desired

trajectory vector. P ∈ R is a positive constant to adjust the damping ratio.

F ∈ R is the linear term of the sliding surface, which is chosen such that the

dominant poles have small damping ratios to achieve a fast response. Ψ ∈ R is a

non-positive non-linear function that depends on the output and desired velocity,

and was used to change the damping ratio of the system. However, the choice of

Ψ is not unique, the function Ψ should has the following properties:
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1. It varies from 0 to a certain negative value (−β), as the error varies from

large value to zero to change the system damping ratio.

2. It is differentiable with respect to z1.

In this study, we have extended the nonlinear function presented in [42] for a

step type reference trajectory and generalized it to the systems with time-variant

reference trajectories as follows:

Ψ =
−β

1− exp(−1)

[
exp(−(1− ζ2))− exp(−1)

]
(2.7)

where β is a tuning parameter that is used to adjust the weight of the non-

linear term. ζ indicates how much the system output changes with respect to

the desired reference. In [42], ζ = (z1 − z1o)/(z1ref − z1o) where z1o is the initial

position. In this study, we have generalized this function where ζ = (z1(iT ) −
z1((i−1)T ))/(z1ref (iT )−z1((i−1)T )) where i and T are the sampling instant and

sapling time, respectively. Here, the function ζ represents how much the system

output changes with respect to the desired reference at a certain time iT . When

the system output achieves the desired reference, ζ becomes one, and Ψ = −β
results in increase of the damping ratio to prevent the overshoot. On the other

hand, if the system output is far from the desired reference, the magnitude of ψ

becomes very small, and it provides small damping ratio to speed up the system

response. Because Eq. (2.7) is not defined for z1ref (i)−z1(i−1)=0, we employ the

linear sliding surface (i.e., Ψ=0) when |z1ref (i) − z1(i − 1)| is very small. In this

case, because the control objective is almost satisfied, the linear sliding surface

may be sufficient.

By applying some control law, which will be presented later, the system can be

forced to the sliding surface. During the sliding-mode S = 0, we have

ė1 = (−F +ΨP )e1. (2.8)

The above equation includes the time variant parameter Ψ.

In order to show the stability of the proposed sliding dynamics, we consider a

Lyapunov function candidate for the system in Eq. (2.8) as follows:

V1 =
1

2
e21. (2.9)
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Table 2.2: Controller parameter values

Parameter K F P β Q
s−1 s−1 s−1 - ms−2

Case No. 1
LSS 80 100 1.5 - 0.3
NLSS 80 100 1.5 175 0.3

Case No. 2
LSS 80 137 1.5 - 0.3
NLSS 80 100 1.5 175 0.3

Using Eq. (2.8), the time derivative of the Lyapunov function candidate becomes

V̇1 = (−F +ΨP )e21. (2.10)

Since Ψ ≤ 0, F > 0 and P > 0, we have

V̇1 < 0. (2.11)

and this ensure the system stability during the ideal sliding-mode. In addition,

comparing the convergence rate between the above function (Eq. (2.10)) and that

without the non-linear term ΨP , we can see that the non-linear term accelerates

the convergence speed of the error e1 than the conventional sliding surface when

the error magnitude is large. On the other hand, when it becomes small, the

convergence speed decreases to reduce the consumed energy.

2.2.4 Controller Design and Stability Analysis

In this subsection, we design a controller to enforce the system Eq. (2.5) to move

from any initial conditions to the desired sliding surface and thereafter remain on

it. Assuming that the reference position, velocity and acceleration are given, and

considering the feed drive dynamics, we design the following controller:

u = −M
[
Γ
{
żref − Az

}
+KS +Qsgn(S)− dΨ

dt
Pe2

]
,

Γ = [F −ΨP, 1]. (2.12)

where K is the controller gain. Q is chosen from the maximum bound of the

uncertainty as follows:

Q ≥ max(d̃2). (2.13)
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For asymptotic stability and to force the tracking error onto the desired sliding

surface as t→∞, the time derivative of the following Lyapunov function must be

negative:

V =
1

2
S2. (2.14)

The time derivative of the Lyapunov function candidate is

V̇ = S

{
Γė− dΨ

dt
Pe1

}
. (2.15)

Using the system (2.5), the tracking error dynamics is

ė = żref − Az − bu+ d̃. (2.16)

Substituting Eq. (2.16) into Eq. (2.15) leads to

V̇ = S

[
Γ
{
żref − Az − bu+ d̃

}− dΨ

dt
Pe1

]
. (2.17)

Using control law (2.12), it can be seen that

V̇ = S
[
−KS −Qsgn(S) + d̃2

]
(2.18)

Thus, with (2.13), it is easy to show that

V̇ < 0. (2.19)

2.3 Simulation results

To verify the effectiveness of the proposed controller, a computer simulation is

conducted for the following reference trajectory:

x = 4 cos
( π
10
t
)
(mm). (2.20)

In order to consider the vibration in ball screw and effects of the disturbance force

due to the change of the load, we consider the following for simulation:
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Figure 2.3: Simulation results; Linear sliding surface (LSS) vs Non-linear
sliding surface (NLSS)

1. A model of screw drive including a higher frequency mode in [76] is used for

simulation model instead of Eq. (2.5). The feed drive is modeled as a two

mass system (m1 andm2) connected by a damper (viscous friction coefficient

c) and a spring (spring constant k). Massm1 andm2 are subjected to viscous

friction with coefficients b1 and b2, respectively. The control input force is

given to the mass m1, and the mass m2 is subjected to external disturbance

d2. The output of the feed drive system is considered as the position of mass

m2. The system dynamics can be represented by the following fourth order

system:

⎡
⎢⎢⎢⎢⎣
ẋ2

ẍ2

ẋ1

ẍ1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0
−k
m2

−c−b2
m2

k
m2

c
m2

0 0 0 1
k
m1

c
m1

−k
m1

−c−b1
m1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x2

ẋ2

x1

ẋ1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

0
u
m1

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
−d2
m2

0

0

⎤
⎥⎥⎥⎥⎦ . (2.21)

2. Disturbance force is added to the control input such that the actual control

input applied to Eq. (2.22) is u = ucon + udis where ucon is generated by Eq.
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Figure 2.4: Simulation results; PD controller vs Proposed controller

(2.12) and udis = 5.0 × 10−3sin(rand(10)) (V) is a disturbance term. Here,

rand(10) refers to a random number from 1 to 10.

3. 50% reduction in the inertia and viscous friction coefficients from those used

in the controller design is applied.

4. Coulomb friction of 0.5V equivalent magnitude is added to Eq. (2.22) used

for simulation.

The proposed controller with a non-linear sliding surface (Eq. (2.12)) and the

controller with a linear sliding surface (i.e., Ψ=0 in Eq. (2.7)) are compared. To

verify the effectiveness of the non-linear term, the controller gain K and the linear

term of the sliding surface F were set to the same values in both controllers. The

controller gain K and the linear term of the sliding surface F were selected to

be 80 s−1 and 100 s−1, respectively, while the non-linear tuning parameter β was

selected to be 175.

Figure 2.3 shows the control input and the tracking error of the feed drive system

for both controllers. It can be seen that the proposed approach achieves smaller

tracking error than the conventional one. In addition, the control input voltage is

almost equal for both controllers.

In addition, the proposed approach is compared with a PD controller under ap-

proximately similar tracking condition as shown in Fig. 2.4. It can be seen that in
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Figure 2.5: Experimental feed drive system

the case of the PD controller, the control input variation and magnitude is higher

than the case of the proposed approach.

It should be noted that elimination of the control input chattering was not consid-

ered in the experiment because the main concern of the study is to achieve lower

overshoot and small settling time, resulting in a smaller error, by changing of the

systems damping ratio from its initial low value to its final high value.

2.4 Experimental Results

The proposed controller was experimentally verified with a ball-screw feed drive

system driven by a DC servo motor as shown in Fig. 2.5. A linear encoder with a

resolution of 0.1 μm was attached to the feed drive to measure the actual position

of the feed drive system. The control law given in Eq. (2.12) was implemented

using the C++ programming language on a personal computer (OS: Windows XP,

CPU: 2 GHz) with a sampling time of 5 ms. In order to provide a fixed sampling

period in a Windows XP environment, we employed a timer on a counter board

of 24-bit up/down counters. To demonstrate the effectiveness of the proposed

approach, the proposed controller was compared with the conventional one for the

reference trajectory given in Eq. (2.20) based on the following two perspectives:

(1) Case No. 1: Tracking error perspective

First, we compared the controller with a non-linear sliding surface (i.e., Eq.

(2.12)) and the controller with a linear sliding surface (i.e., Ψ=0 in Eq.
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Figure 2.6: Experimental results for Case No. 1; (a) Tracking errors, (b)
Control inputs and (c) Mean of the tracking error magnitude

(2.7)). The controller parameters used in this experiment are given in Table

2.2.

Figure 2.6(a) shows that the controller with the non-linear sliding surface

achieved a better performance than the conventional controller with the lin-

ear sliding surface in terms of tracking error. In addition, a smaller control

input was required in the case of the proposed surface, as shown in Fig.

2.6(b). To verify the repeatability of the proposed approach, the same ex-

periments that were performed in Figs. 2.6(a) and (b) were repeated 10

times, and the mean values of the tracking error magnitude were compared

in Fig. 2.6(c). Note that to avoid inaccuracies in the comparison, the run-

ning time in Fig. 2.6(c) was increased from 20 s to 180 s. It can be seen

that the proposed approach reduced the mean value of the error magnitude

by about 35%.

To demonstrate the ability of the proposed approach to reduce the energy

consumption and the control input variance, the consumed energy was mea-

sured and the control input variance was computed for the experiments

shown in Fig. 2.6(c). The consumed energy was measured by a power Hi-

tester (HIOKI 3334 AC/DC), and the control input variance was calculated
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Figure 2.7: Experimental results for Case No. 1; (a) Consumed energy and
(b) Control input variation

as follows:

σ2 =

N∑
i=1

(ui − μ)2

N
(2.22)

where ui denotes the control input value at the ith sampling instant, N is

the total number of sampling instants (i = 1, ..., N), and μ is the mean

of all of the control input values. As shown in Figs. 2.7(a) and (b), the

proposed approach required about 3.2% less energy, and provided a control

input variance that was about 5.1% smaller. In conclusion, the non-linear

sliding surface reduced the tracking error of the feed drive system without

requiring any additional electrical energy.

(2) Case No. 2: Consumed energy perspective In this case, the energy consump-

tion for both controllers was compared for a roughly similar tracking error.

To achieve tracking errors that are similar for both controllers, the linear

term F of the controller with a linear sliding surface was increased to 137

s−1, while the parameters of the proposed approach remained similar to those

in Case No. 1 as given in Table 2.2. As shown in Fig. 2.8(a), a roughly

similar tracking error was achieved for both controllers. However, achieving
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Figure 2.8: Experimental result for Case No. 2; (a) Tracking errors, (b)
Control inputs and (c) Mean of the tracking error magnitude

a similar tracking performance with the linear sliding surface increased the

control input, as shown in Fig. 2.8(b). Figure 2.8(c) verifies the repeatabil-

ity of the proposed approach where the experiments in Figs. 2.8(a) and (b)

were repeated 10 times with a running time of 180 s. It is clear that both

controllers achieved roughly similar tracking performances in terms of the

magnitude of the tracking error.

Now it appears fair to compare both controllers from the viewpoint of the

consumed energy, as shown in Figs. 2.9(a) and (b), where the energy con-

sumed by both controllers is compared based on similar experimental con-

ditions, as shown in Fig. 2.8(c). The consumed energy and control input

variance are reduced significantly (by 12.9% and 19.1%, respectively), with

respect to the conventional linear sliding-surface. In conclusion, the pro-

posed approach reduced the consumed energy and control input variance

more significantly than the conventional method under the similar tracking

performance.

Another advantage of the proposed approach is that it is easy to tune the non-linear

term because only one parameter (β) needs to be tuned. Figure 2.10 shows the

non-linear function Ψ that was used to tune the damping ratio of the closed-loop

system. It can be seen that Ψ has decreased while the tracking error magnitude
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Figure 2.9: Experimental results for Case No. 2; (a) Consumed energy and
(b) Control input variation
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Figure 2.10: Non-linear function Ψ

decreased resulting in an increase of the damping ratio. Here, when the magnitude

of z1ref (i)− z1(i−1) is very small, we employ the linear sliding surface (i.e., Ψ=0)

(this occurs around the time 10s of the experiments).
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2.5 Conclusions

A sliding-mode controller with a non-linear sliding surface is proposed for ball-

screw feed drive systems, and its effectiveness is verified experimentally in this

chapter. Two cases were considered: the first case showed the effectiveness of

the proposed non-linear sliding surface at reducing the tracking error, while the

second one verified the ability of the proposed approach to reduce the consumed

energy and control input variation. For the first case, the mean of the tracking

error magnitude was reduced by 35% without the need for additional electrical

energy or control input variation, while in the second case, the consumed energy

and control input variation were reduced by about 12.9% and 19.1%, respectively.





Chapter 3

Model Predictive Contouring

Controller for Biaxial Feed Drive

systems

3.1 Introduction

Model predictive control (MPC) refers to a class of model-based controllers that

uses an explicit process model to predict future responses of a plant. At each

sampling instant, an optimization problem is solved on-line yielding optimal con-

trol, and only its first portion is applied until the next sampling instant. MPC

was pioneered by Richalet, Rault, Testud and Papon, and Cutler and Ramaker

[77]. Boucher et al. proposed using generalized predictive control (GPC) of the

self synchronous motors in the machine tool field, which incorporates both refer-

ence preview action as well as disturbance rejection in the same control scheme

[78]. This formulation is expandable to tracking error constraints. Zhe and Chen

proposed a cross-coupled generalized predictive control algorithm. This provides

a combined feedback-feedforward controller that results in zero-pole cancellation

of poles that do not correspond to reference models [79]. They presented a new

cost function in which synchronization errors are included. Dumur et al. proposed

complete implementation of axis drives predictive controllers for an industrial ma-

chining center based on a generalized predictive control RST structure [80]. Susanu

and Dumur proposed a hierarchical predictive control architecture, dedicated to

feed drives of machining centers [81], in which the performance index is a weighted

33
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Figure 3.1: Definitions of tracking and contour errors

sum of predicted tracking errors from a minimum prediction horizon to a maximum

horizon and future control signal increments over the control horizon. However,

motion control based only on the tracking ability of each axis in multi-axis feed

drive system does not always guarantee high-precision machining.

To improve the contouring performance in machine tool feed drive systems, this

chapter presents a model predictive contouring controller design based on a coor-

dinate transformation approach. The main advantage of the proposed approach is

that it allows easy adjustment of controller parameters by including transformed

error and input signals in the performance index of MPC. The control law based

on real-time optimization of the performance index is analytically derived so that

the resulting control system provides improved performance in terms of track-

ing and contour errors. In addition, the proposed approach takes into account

the modeling errors of the dynamics, the cutting forces and disturbances such as

friction.
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3.2 Problem Formulation

3.2.1 Definition of contour error

Contour error is defined as the shortest distance between the actual contour and

the desired contour. The relationships between the contour and tracking errors in

each feed drive axis is shown in Fig. 3.1. Two coordinate frames are used. The

first is Σw, whose axes X and Y correspond to feed-drive axes and is the fixed

frame. The curve c is the desired contour curve of the point of a machined part

driven by the feed drive system. The desired position of the point of the machined

part at time t, and defined in Σw, is r = [rx, ry]
T . The actual position of the

feed drive system is represented by x = [qx, qy]
T , which is also defined in the fixed

frame. The second coordinate frame Σl is attached at r and its axes are T and

N . The axis T is in the tangential direction to c at r, and the direction of N is

perpendicular to T . The tracking error in each feed drive axis is defined as

ew = [ex, ey]
T = x− r. (3.1)

This error vector can be expressed with respect to Σl as

el = [et, en]
T = RT ew, R =

[
cos θ − sin θ

sin θ cos θ

]
. (3.2)

where θ is the inclination of Σl to Σw. Because calculating the actual contour error

in real time for complex contour is an intensive computational task, we regard the

error component en as an approximation of the contour error ec, which is the

distance between the actual position x and the nearest point on the desired curve

c [17, 82, 83].

For machining, error components orthogonal to the desired contour curve are more

important than tracking errors with respect to feed drive axes. Contouring con-

troller design gives the designer an opportunity to assign controller gain to reduce

the error along N to a level below that along T by transforming the error ew into

el and using the error el as the feedback signal.
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3.2.2 Modeling of biaxial feed drive system

This study considers a typical biaxial feed drive system, as shown in Fig. 3.2.

Two servo motors, commonly used in industrial applications, are used to drive the

feed drive system. The feed drive system is generally represented by the following

decoupled second order system:

Mẍ+ Cẋ = f,

M = diag{mi}, C = diag{ci}, i = x, y,

f = [fx, fy]
T . (3.3)

where mi(> 0), ci(≥ 0) and fi are the mass of load, viscous friction coefficient and

driving force along the drive axis i, respectively. The notation diag{ai} denotes a
diagonal matrix with the elements ai at the ith diagonal position.

Two ball screws are used to convert angular motion of the motors to linear motion

of the table. The motor dynamics for driving the feed drive system is described

as follows:

Nθ̈mi + Zθ̇mi + τ = Ku,

θmi = [θmx, θmy]
T ,

N = diag{ni}, Z = diag{zi},
K = diag{ki}, i = x, y,

τ = [τx, τy]
T , u = [ux, uy]

T . (3.4)

where θmi, ni(> 0), zi(≥ 0), ki(> 0), τi and ui are the rotational angle of the

motor, motor inertia, motor viscous friction coefficient, torque-voltage conversion

ratio, torque needed to drive the feed drive system [represented by Eq.(3.3)] and

the motor input voltage of the ith axis, respectively. The relationships between

the force fi and torque τi, and position qi and angle θmi are

fi =
2πτi
pi

, qi =
piθmi

2π
. (3.5)

where pi is the pitch of the ball screw.
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Figure 3.2: A typical biaxial feed drive system

The equivalent dynamics of the system can be estimated by combining Eq. (3.3),

(3.4) and (3.5) as follows:

(N +
p2i
4π2

M)θ̈mi + (Z +
p2i
4π2

C)θ̇mi = Ku. (3.6)

Hence, the equivalent friction coefficients are a combination of the linear and rotary

friction coefficients. The linear and rotary friction coefficients for the system are

given in Table 3.1. The linear friction is coming from ball guide friction and

air damping, and it is very small compared to the rotary friction. In addition,

the linear friction coefficients are multiplied by a very small value (p2i /4π
2 =

6.33× 10−7) due to the high reduction gears used in the system.

3.3 Model Predictive Contouring Controller (MPCC)

Design

3.3.1 Model predictive control

Since the discrete-time model is suitable for implementing controllers with digital

computers, we convert the continuous-time model Eqs. (3.3) and (3.4) into a
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discrete-time model. The following transfer function model is used to describe the

biaxial feed drive system:

yi(k) =
q−dBi(q

−1)
Ai(q−1)

ui(k − 1) +
Ci(q

−1)
Ti(q−1)

vi(k),

vi(k) = Δζi(k),Δ = 1− q−1, i = x, y. (3.7)

where k is the sampling instant, yi(k) and ui(k) are the output and the control

input of each feed drive axis, d is the time delay, ζi(k) represents a random distur-

bance, and Ai(k), Bi(k), Ci(k) and Ti(k) are polynomials for each feed drive axis

in the delay operator q−1 . The predicted output of the plant is

ŷi(k + i) =
q−d̂B̂i(q

−1)

Âi(q−1)
ui(k + i− 1) +

Fi

Ĉi

(yi(k)− ŷi(k)). (3.8)

The symbol ”ˆ” denotes estimates, Fi is a polynomial that satisfies the Diophantine

equation
Ci

Ti
= Ei + q−1

Fi

Ti
. (3.9)

where Ei is a polynomial. The purpose of this controller is to allow the feed drive

to follow the reference trajectory as closely as possible. In addition, the following

performance index has been presented [84]:

Ji = (ŷ∗i − w∗i )
T (ŷ∗i − w∗i ) + ρiu

∗
i
Tu∗i ,

ŷ∗i = [Piŷi(k +Hm), ..., Piŷi(k +HP )]
T ,

w∗i = [Pi(1)wi(k +Hm), ..., Pi(1)wi(k +HP )]
T ,

u∗i = [u∗i (k), ..., u
∗
i (k +HP − d̂− 1)]T ,

u∗i (k) =
Qni

Qdi

ui(k). (3.10)

where Pi is a polynomial used to tune the servo behavior of the control system,

Hm and Hp are the minimum cost horizon and prediction horizon, respectively, w∗i
is the reference signal, ρi is a non-negative weighting factor to adjust the control

input, and Qni and Qdi are monic polynomials with no common factors and can

be used to obtain the weighting factor for ui(k).
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3.3.2 Proposed model predictive contouring control

In the previous performance index (3.10), as well as in Ref. [81], only tracking

errors with respect to each feed drive axis are included. The error components

orthogonal to the desired contour curves are more important than tracking er-

rors, and hence, the orthogonal error component is included in the proposed per-

formance index with control inputs in the normal and tangential directions as

follows:

J = ρcn

HP∑
j=Hm

enj

2 + ρct

HP∑
j=Hm

etj
2 + ρn

HP∑
j=Hm

unj

2 + ρt

HP∑
j=Hm

utj
2,

[etj , enj
]T = RT (k)[exj

, eyj ]
T ,

[utj , unj
]T = RT (k)[uxj

, uyj ]
T . (3.11)

where ρcn and ρct are weighting factors to adjust the importance of the error

component in the orthogonal and tangential directions, respectively, ρn and ρt are

weighting factors used to adjust the control inputs in the normal and tangential

directions, respectively, and uxj
, uyj , unj

and utj are the jth control inputs in the

X, Y , N and T directions, respectively. As described in Appendix A, minimization

of the performance index (3.11) gives:

[
uxj

uyj

]
=

[
Πxx Πxy

Πyx Πyy

]−1 [
Γxx

Γyy

]
,

Πxx = MT [(ρcnS
2 + ρctC

2)GT
xGx + (ρnS

2 + ρtC
2)ΦTΦ]M,

Πxy = MTS2C2[(ρct − ρcn)G
T
xGy + (ρt − ρn)Φ

TΦ]M,

Πyx = MTS2C2[(ρct − ρcn)G
T
yGx + (ρt − ρn)Φ

TΦ]M,

Πyy = MT [(ρcnC
2 + ρctS

2)GT
yGy + (ρnC

2 + ρtS
2)ΦTΦ]M,

Γxx = −MT [ΦT ((ρnS
2 + ρtC

2)(Ωũx +ΦNǔx) + SC(ρt − ρn)(Ωũy +ΦNǔy))

+Gx((ρcnS
2 + ρctC

2)(Hxŭx + Fxcx + ζx +GxNǔx − x∗) + (ρcn − ρcn)(Hyŭy

+Fycy + ζy +GyNǔy − y∗))],

Γyy = −MT [ΦT ((ρnC
2 + ρtS

2)(Ωũy +ΦNǔy) + SC(ρt − ρn)(Ωũx +ΦNǔx))

+Gy((ρcnC
2 + ρctS

2)(Hyŭy + Fycy + ζy +GyNǔy − y∗) + (ρct − ρcn)(Hyŭx

+Fxcx + ζx +GxNǔx − x∗))],

S = sinθ(k), C = cosθ(k),. (3.12)
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Figure 3.3: Model predictive contouring controller block diagram

where x and y refer to the corresponding feed drive axis, Gi, Hi and Fi are the

matrices

G =

⎡
⎢⎢⎢⎢⎢⎣

gi0 0 · · · 0

gi1 gi0
. . .

...
...

. . . 0

gi(HP−d̂−1) · · · · · · gi0

⎤
⎥⎥⎥⎥⎥⎦ ,H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Hi(d̂+1)
...

Hij

...

HiHP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fi(d̂+1)
...

Fij

...

FiHP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (3.13)

that consist of the elements of the polynomials Gim, Him and Fim, respectively,

that satisfy the Diophantine equations

B̂i

Âi

= Gim + q−im+d̂Him

Âi

. (3.14)

1

Âi

= Eim + q−j
Fim

Âi

,m = [d̂+ 1, · · · , HP ]. (3.15)

M andN are matrices that consist of plant parameters with dimensionsHP−d̂×Hc

andHP−d̂×nφ+nPi
−Hc, respectively, andHc is the control horizon. The matrices

M and N are
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Table 3.1: Parameter values of the experimental system

Parameter X-axis Y-axis
mi[kg] 8.0 2.5
ni[kgm

2] 0.05 0.05
zi[Nm/(rad/s)]] 0.31 0.31
ki[Nm/V] 1.42 1.42
ci[[Ns/m]] 0.0 0.0
pi[m] 0.005 0.005

[m
m

]

−5 5 
−5

5 

y

−5 5 

[a] [b]

x[mm]

Figure 3.4: Reference trajectories. (a) Circular and (b) non circular

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1
...

...
. . . . . . . . .

0

0 · · · 0 1

0 · · · 0 g1,nG
· · · g1,0

...
...

...
...

0 · · · 0 gj,nG
· · · gj,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.16)

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

...

0 · · · 0

h1,0 · · · h1,nH

...
...

hj,0 · · · hj,nH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.17)
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where j = HP −Hc − d̂, Φ is a lower triangular matrix of dimension (HP − d̂)×
(HP − d̂), Ω is a matrix of dimension (HP − d̂)× nΩ, with nΩ = max(nQni

, nQdi
),

and Φ and Ω contain the elements of the polynomials Φ and Ω, respectively, which

satisfy the Diophantine equation

Qni

Qdi

= Φ+ q−1
Ω

Qdi

. (3.18)

The quantities x∗ and y∗ are

x∗ = P (1)[rx(k +Hm), · · · , rx(k +HP )]. (3.19)

y∗ = P (1)[ry(k +Hm), · · · , ry(k +HP )]. (3.20)

where rx and ry are the reference trajectories in X and Y directions respectively,

and ũ, ǔ, ŭ and c are given by:

ũ =
[

u(k−1)
Qdi

, · · · , u(k−nΩ)
Qdi

]T
. (3.21)

ǔ = [u(k − 1), · · · , u(k +Hc − nφ − nP )]
T . (3.22)

ŭ =
u(k)

Âi

. (3.23)

c = [c(k), c(k − 1), · · · ]T , c(k) = yi(k)− ŷi(k)

Ti
. (3.24)

A problem that can occur when solving uxj and uyj from (3.12) is that the inverse

matrix calculation suffers from singularity if the weighting factors for the control

inputs are zeros. To avoid this problem the following conditions must at least be

satisfied:

Hm ≥ d̂+ 1,

Hc ≤ HP −Hm + 1.

The inverse matrix in (3.12) is of dimension Hc× Hc. Hence, a small control

horizon is preferable for numerical reasons and to save the computational time.

3.3.3 MPCC algorithm

MPC is a strategy that uses an explicit process model and tracking error dynamics

to predict the future behaviour of a plant. The block diagram of the proposed
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contouring control system is as shown in Fig. 3.3. The proposed algorithm can be

summarized as follows:

(1) At each sampling time k, the output of the biaxial feed drive system is

predicted over the prediction horizon HP . This prediction depends on the

future values of the control actions ux and uy and the biaxial feed drive

model (3.7) within a control horizon Hc.

(2) Reference trajectories rx(t+k) and ry(t+k), k=1,..,HP are used to estimate

the future transformed errors êt and ên beyond the prediction horizon using

the predicted tracking errors êx and êy and transformation matrix R(k).

(3) The future control inputs ux(t+ k) and uy(t+ k), k = Hc are calculated by

minimization of the proposed performance index (3.11).

(4) Once the minimization problem is solved, only the first optimized control

inputs [i.e. the first elements of ux and uy in (3.12)] are applied to the

system.

(5) The actual outputs of the system (qx and qy) are used as the initial states of

the model to perform the next iteration.

(6) Shift the horizon and repeat steps 1 to 5 at each sampling instant.

3.4 Experiments

To verify the effectiveness of the proposed controller, the control law given in Eq.

(3.12) was implemented with C++ language by a personal computer (OS: Windows

XP). The control input signal has been applied to a biaxial feed drive system,

that is driven by two DC servo motors via DA board (CONTEC DA12-8(PCI)).

The motors are coupled to, and drive, two ball screws through a high-reduction

gearbox to provide the required high torque. In addition, a linear encoder accurate

to 0.1μm is attached to each feed drive axis to measure the actual position of the

biaxial feed drive system. A pulse counter board (CONTEC CNT24-4D(PCIH))

is used to count the encoder pulses. The nominal parameter values of the biaxial
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Figure 3.5: Experimental results (circular trajectory, ρcn=300). (a) HP=6
and (b) HP=25

feed drive system are shown in Table 3.1. The corresponding discrete-time model

for the biaxial feed drive system is represented by the following polynomials:

Ai(q
−1) = 1.00− 1.97q−1 + 0.97q−2. (3.25)

Bi(q
−1) = 0.28× 10−6q−1 + 0.28× 10−6q−2. (3.26)

This model is obtained from continuous-time model using zero-order hold and

sampling time T = 5.0ms. Two reference trajectories are used to evaluate the
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Figure 3.6: Experimental results (non-circular trajectory, ρcn=300). (a)
HP=6 and (b) HP=25

proposed controller:

(1) Circular reference trajectory

x = 5.0sin

(
t

4

)
[mm],

y = 5.0cos

(
t

4

)
[mm]. (3.27)
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Figure 3.7: Contouring performance under different prediction horizons HP

(2) Non-circular reference trajectory

x = 5.0sin

(
t

6

)
[mm],

y = 5.0sin

(
t

3

)
[mm]. (3.28)

The circular and non-circular reference trajectories are shown in Figs. 3.4(a) and

3.4(b), respectively. For the first reference trajectory, the actual contour error can

be easily calculated using the following equation (note that this equation is used

for verification only and is not used to calculate the controller parameters):

ec = 5−
√
x2 + y2[mm]. (3.29)

An essential advantage of the proposed contouring control strategy is that it takes

into account not only the current values but the future values of the control input

as well as the reference trajectories. Consequently, the prediction horizon HP is

an essential tuning parameter that gives the designer a more optimized control

of performance. To demonstrate the effectiveness of the prediction horizon as

tuning parameter in the proposed controller, experimental results for the cases

of Hp=6[30 ms] and 15[75 ms] for the circular reference trajectory are shown in

Figs. 3.5(a) and 3.5(b), respectively. The weighting factor ρcn = 300, and the

other wighting factors in the performance index are set as given in Table 3.2.

Better control performance is obtained, and maximum and mean magnitudes of

the contour error are reduced in Fig. 3.5(b).
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Figure 3.8: Experimental results (circular trajectory, HP=9). (a) ρcn=50 and
(b )ρcn=650

To verify the effectiveness of the proposed controller to follow non-circular trajec-

tories, the same controllers are applied to the trajectory in Fig 3.4(b). Because it is

difficult to calculate the actual contour error on-line for the non-circular trajectory,

the following minimization problem is solved off-line to calculate the magnitude

of the actual contour error at time tk:

|ec(tk)| = min
t

√
{(rx(tk)− qx)2 + (ry(tk)− qx)2}. (3.30)

Note that this error magnitude is used only for verification purposes. Figure 3.6
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Figure 3.9: Experimental results (non-circular trajectory, HP=9). (a) ρcn=50
and (b )ρcn=650

shows the experimental results for the non-circular trajectory, where the prediction

horizon is set to same values as those used in the experiment shown in Fig. 3.5.

Figure 3.7 summarizes the maximum and mean magnitudes of the contour errors

for circular and non-circular trajectories, where the prediction horizon is changed

from 4 to 25. The weighting factor for error components orthogonal to the desired

contour curve ρcn is set to 300 in the experiments shown in Fig. 3.6.

Weighting factors ρcn, ρct, ρn and ρt are tuning parameters for the proposed con-

touring controllers that allow importance of the performance index terms to be
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Fig. 10 Contouring performance under different weighting factors ρcn

Figure 3.10: Contouring performance under different weighting factors ρcn

Table 3.2: Values of the performance index wighting factors

Parameter Value
ρct 1.00
ρn 6.0× 10−8

ρt 3.0× 10−9

adjusted. Experimental results for the circular reference trajectory, where the

weighting factor for error components orthogonal to the desired contour curve ρcn

is set to 50, are shown in Fig. 3.8(a). The prediction horizon HP is set to 9 from

the result in Fig. 3.7. Because the error components orthogonal to the desired

contour curve are more important than tracking errors with respect to each feed

drive axis, a better contouring performance is obtained by increasing the weighting

factor for error components orthogonal to the desired contour curve. Figure 3.8(b)

shows the experimental results for the case of circular trajectory with ρcn= 650.

Since the model predictive controller has more tuning parameters than the tra-

ditional controllers, it requires more tuning effort. However, a reasonable control

performance can be obtained by simply choosing weighting factors for the perfor-

mance index items. Generally speaking, all weighting factors should be positive.

Since the normal direction error to the desired contour error is more important

than the tangential one, the weighting factors in Eq. (3.11) can be easily adjusted

compared to the conventional X-Y axis independent control approach. In addition,

as shown in our experimental results we can used fixed values for all ρct, ρn and



50 3.4

ρt, and only ρcn are changed to improve the contouring performance. Figure 3.9

shows the experimental results for the non-circular trajectory, where the weighting

factor ρcn is set to same values as those in the results in Fig. 3.8. It is apparent

that the weighting factor ρcn is essential in the proposed contouring controller.

To demonstrate the effect of ρcn, Fig. 3.10 summarizes the maximum and mean

magnitudes of the contour errors, where ρcn varies from 50 to 1000.



Chapter 4

Sliding Mode Contouring Control

Design Using Nonlinear Sliding

Surface for biaxial feed drive

systems

4.1 Introduction

The goal of NC/CNC contouring systems is to control the positions of the cut-

ting tool and workpiece to follow a predetermined path with minimum error with

small energy consumption. Contour error that is defined as the shortest distance

between the actual tool position and desired trajectory gives a better indication

of machining accuracy. In machining, two main control approaches are used to

improve contouring performance: the tracking control approach and the contour-

ing control approach. Although many approaches for reducing tracking errors in

multi-axis feed drive systems have been developed to date [12, 53, 78, 85–89], the

most significant factor in the performance of contouring systems is the accuracy

of the overall system or the contour error of the system [6, 90].

To reduce the contour error, researchers have developed a variety of alternative

control approaches. By calculating the contour error from the tracking errors

in biaxial contour-following tasks, Koren proposed the CCC [15], and Ho et al.

decomposed the contour error into the normal tracking error and the advancing

51
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tangential error [17]. A dynamic decoupling procedure is then applied to the

system dynamics. Yeh and Hsu estimate the contour error as the vector from the

actual position to the tangential line at the reference position [91]. Chen et. al

proposed a contour-tracking controller based on the polar coordinates [92]. One

disadvantage of the CCC methods is that both contour and tracking errors along

the feed drive axes are used to calculate control inputs. This causes degradation

in the contour tracking performance.

To address this problem, Lo and Chung proposed a contouring control method

for biaxial feed drive systems based on a coordinate transformation [21], in which

tracking errors are transformed into errors with components that are orthogo-

nal and tangential to the desired contour curves. Cheng and Lee proposed a

real-time contour error estimation algorithm and employed an integrated motion

control scheme to improve the machining accuracy for contour following tasks [22].

Uchiyama et al. verified that the contouring controller is effective, in that it can

achieve contouring performance comparable to that of a non-contouring controller

with less control input variance[93]. In order to synthesize high contouring perfor-

mance for high-speed machines driven by linear motors, adaptive robust controller

design strategies have been applied to compensate for the effect of parametric un-

certainties and uncertain nonlinearities [94]. Among these strategies, Hu et al.

proposed a discontinuous-projection-based adaptive robust controller for the high-

performance contouring controls of a linear motor [90]. The proposed algorithm

takes into account the dynamic coupling effect and parametric uncertainties and

uncertain nonlinearities. They extended this approach to consider the specific

characteristics of cogging forces in the controller designs and employed a task

coordinate formulation for coordinated motion control [95].

Sliding mode control (SMC) provides a viable and effective method with a strong

robustness property and fast error convergence characteristics for non-linear sys-

tems subjected to external disturbances and parameter variations by emulating

a prescribed reduced-order system [63, 96, 97]. In the conventional sliding mode

controller design, a linear sliding surface is utilized which gives a constant damping

ratio. In control systems, the most important requirements are fast response and

small overshoot. However, quick response produces high overshoot, which causes

contour errors and also increases the consumed energy. On the other hand, low

overshoot means slow response, which leads to significant contour errors. Thus, it
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is very difficult to achieve small overshoot with a fast response using the conven-

tional linear SMC method. This particular problem can be solved by employing

the composite nonlinear feedback (CNF) technique [44]. The nonlinear sliding

surface consists of a linear term and a nonlinear term. The linear term comprises

a gain matrix that has a very low damping ratio value, thereby facilitating a fast

response [45]. The nonlinear term is introduced to provide a variable damping

ratio in order to achieve a small overshoot and settling time of the closed loop

system as the contour error converges to zero.

In our previous work [98], where a single axis case is considered only, we have

verified that increase of the linear gain of the sliding surface results in a reason-

able performance. However, saturation of the control input precludes the designer

to increase the linear gain to achieve smaller error. To improve the contouring

performance in machine tool feed drive systems, we extend our previous approach

to a biaxial feed drive systems. In the current study, a nonlinear sliding mode con-

touring controller for biaxial feed drive systems is designed based on a coordinate

transformation approach. The aim of the proposed controller is to guarantee sta-

bility and enhance the contouring performance of biaxial feed drive systems. The

main advantage of the proposed approach is that it achieves a quick response and

a small overshoot, thereby providing improved performance in terms of contour

errors and consumed energy saving. To verify the effectiveness of the proposed

approach, experiments have been conducted for a biaxial feed drive system. The

experimental results show that by using of the nonlinear term, a significant reduc-

tion in the consumed energy and control input variance is achieved.

4.2 Contour error and Dynamics Modeling

4.2.1 Definition of contour error

Contour error is defined as the shortest distance between the actual contour and

the desired contour. Figure 4.1 shows the relationships between the contour and

tracking errors in each feed drive axis. The coordinate frame Σw is a fixed coordi-

nate frame and its axes x and y correspond to feed-drive axes. The desired position

of the point of the machined part at time t, and defined in Σw, is r = [rx, ry]
T .

The actual position of the feed drive system is represented by q = [qx, qy]
T , which
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Figure 4.1: Contour error definition and estimation

is also defined in the fixed frame. The tracking error in each feed drive axis is

defined as

ew = [ex, ey]
T = q − r. (4.1)

The coordinate frame ΣL is attached at r and its axis directional vectors are t and

n. The axis t is in the tangential direction of the desired trajectory at r, and the

direction of n is perpendicular to t. For the parametric trajectory, vectors t and

n are calculated at a time t as follows:

t = [tx, ty]
T =

ṙ

‖ ṙ ‖ , ṙ �= 0. (4.2)

n = [nx, ny]
T =

ṫ

‖ ṫ ‖ , r̈ �= 0. (4.3)

This tracking error vector can be expressed with respect to ΣL as

eL = [et, en]
T = LT ew,

L =

[
tx nx

ty ny

]
. (4.4)

The normal component en, can be considered as an approximate value of the actual
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contour error. However, this estimation may be inaccurate when the curvature of

the desired trajectory is not small. To avoid this estimation error, we assume

that the distance between the desired position r and the point s on the desired

trajectory is approximately equal to the tangential error et. In addition, the desired

velocity along this segment is nearly constant and equals to the desired velocity

at r. The required time to traverse this segment td is calculated as follows:

td =
et
‖ ṙ ‖ , ṙ �= 0. (4.5)

A new coordinate frame ΣL̃ corresponding to the instantaneous time t̃ = t− td is

defined by two unit vectors as follows:

t̃ =
[
t̃x, t̃y

]T
= t(t̃). (4.6)

ñ = [ñx, ñy]
T = n(t̃). (4.7)

The corresponding error vector eL̃(t) = [ẽt, ẽn]
T is calculated with respect to the

transformed frame ΣL̃ having two axes t̃ and ñ as follows:

eL̃ = [et̃, eñ]
T = L̃T ew,

L̃ = L(t̃). (4.8)

The error vector eL̃ is transformed into a new coordinate frame ΣL∗ as shown in

Fig. 4.1. The transformed error vector can be expressed as follows:

eL∗ = [et∗ , en∗ ]T = L̃T ew + h∗,

h∗ = [0, h∗n] = Jh̃,

h̃ = L̃T
[
r(t̃)− r(t)

]
. (4.9)

where J ∈ R2×2 is a diagonal matrix diag{0,1} and r(t̃) is the desired position at

the instantaneous time t̃.

Because calculating the actual contouring error in real time for complex contour

is an intensive computational task, we regard the error component e∗n as an ap-

proximation of the contouring error ec, which is the distance between the actual

position x and the nearest point on the desired curve.
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4.2.2 Feed drive dynamics modeling

This study considers a typical biaxial feed drive system, as shown in Fig. 4.2.

Two servo motors, commonly used in industrial applications, are used to drive the

feed drive system. The feed drive system is generally represented by the following

decoupled second order system:

Mẍ+ Cẋ = f − d,

M = diag{mi}, C = diag{ci}, i = x, y,

f = [fx, fy]
T ,

d = [dx, dy]
T . (4.10)

where mi(> 0), ci(≥ 0), di and fi are the mass of load, viscous friction coeffi-

cient, external disturbance and driving force along the ith drive axis, respectively.

The notation diag{ai} denotes a diagonal matrix with the elements ai at the ith

diagonal position.

Two ball screws are used to convert angular motion of the motors to linear motion

of the table. The motor dynamics for driving the feed drive system is described

as follows:

Nθ̈mi + Zθ̇mi + τ = Ku,

θmi = [θmx, θmy]
T ,

N = diag{ni}, Z = diag{zi},
K = diag{ki}, i = x, y,

τ = [τx, τy]
T , u = [ux, uy]

T . (4.11)

where θmi, ni(> 0), zi(≥ 0), ki(> 0), τi and ui are the rotational angle of the

motor, motor inertia, motor viscous friction coefficient, torque-voltage conversion

ratio, torque needed to drive the feed drive system in Eq.(4.10), and the motor

input voltage of the ith axis, respectively. The relationships between the force fi

and torque τi, and position qi and angle θmi are

fi =
2πτi
pi

, qi =
piθmi

2π
. (4.12)

where pi is the pitch of the ith ball screw.
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4.3 Contouring Controller Design and Stability

Analysis

4.3.1 Controller design

In the conventional sliding mode control with a linear sliding surface, the damp-

ing ratio of the system remains constant regardless of the error value. Thus the

designer has to consider the trade-off between two important characteristics; fast

response (low damping ratio) and small overshoot (high damping ratio). In order

to handle this trade-off, the sliding surface should be designed in such a way that

the damping ratio may be changed according to the error. Using a nonlinear slid-

ing surface, the damping ratio of the closed loop system can be changed from its

initial low value to a final high value. The initial low value of the damping ratio

results in a quick response and the later high damping avoids overshoot to save

energy consumption. Based on the the dynamics of the feed drive system (4.10),

(4.11) and (4.12), we propose the following nonlinear sliding surface:

S =
[
F −ΨP I

] [ eL∗

ėL∗

]
, S ∈ R2×1. (4.13)

Here, F ∈ R2×2 is the linear term of the sliding surface, which is chosen such that

the dominant poles have small damping ratios to achieve a fast response. P ∈ R2×2

is a positive definite matrix to adjust the final damping ratio. Ψ ∈ R2×2 is a

diagonal matrix with non-positive nonlinear entries depending on the transformed

errors and is used to change the damping ratio of the system. The choice of Ψ is

not unique, and one possible choice is as follows [99]:

Ψ = diag

{
−βi k̄iexp(−ẽi) + k̄iexp(ẽi)

2

}
,

ẽi =

{
ei if |ei| ≤ eimax

eisgn(ei) if |ei| > eimax, i = t∗, n∗
(4.14)

where eimax, βi and k̄i are positive tunning parameters used to adjust the maximum

bound, minimum bound and variation rate of the nonlinear function magnitude

|Ψ|, respectively. sgn(ei) represents the sign function of the error signal ei. By

applying some control law, which will be presented later, the system can be forced
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to the sliding surface. During the ideal sliding surface S = 0, we have

ėL∗ = (−F +ΨP )eL∗ . (4.15)

The above equation includes the time variant parameter Ψ. In order to show

the stability of the proposed sliding dynamics, we consider a Lyapunov function

candidate for the system in Eq. (4.15) as follows:

V1 =
1

2
eTL∗eL∗ . (4.16)

Using Eq. (4.15), the time derivative of the Lyapunov function candidate becomes

V̇1 = (−F +ΨP )eTL∗eL∗ . (4.17)

Since Ψ < 0, F > 0 and P > 0, we have

V̇1 ≤ 0. (4.18)

and this ensure the system stability during the ideal sliding mode.

From the definition of the tracking error ew and system dynamics (Eqs. (4.10),(4.11)

and (4.12)), the tracking error dynamics of the feed drive system in the fixed co-

ordinate frame ΣW are expressed as:

ëw = H−1
[
−Eẋ− d̃+ u

]
− r̈,

H = diag

⎧⎪⎨
⎪⎩
mi + ni

(
2
pi

)2
ki

(
2π
pi

)
⎫⎪⎬
⎪⎭ ,

E = diag

⎧⎪⎨
⎪⎩
ci + zi

(
2
pi

)2
ki

(
2π
pi

)
⎫⎪⎬
⎪⎭ , i = x, y,

d̃ =
[
d̃x, d̃y

]T
=

[
dx
kx
,
dy
ky

]T
. (4.19)

The transformed error dynamics can be estimated by differentiating Eq. (4.9)

twice with respect to time as follows:

ëL∗ = L̃T ëw + 2 ˙̃LT ėw + ¨̃LT ew + ḧ∗. (4.20)
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Based on the proposed nonlinear sliding surface (4.13), assuming that the refer-

ence velocity and acceleration are given, substituting Eq.(4.19) into (4.20), and

considering feed drive dynamics, we design the following controller:

u = H

{
r̈ − L̃

[
(F −ΨP )ėL∗ + ¨̃LT ew + 2 ˙̃LT ėw + ḧ∗ − dΨ

dt
PeL∗

]

− KcS −Qsgn(S)

}
+ Eẋ. (4.21)

Here, Kc ∈ R2×2 is a diagonal gain matrix, sgn(S) contains the signs of the sliding

surface vector S and Q ∈ R2×2 is a diagonal matrix with diagonal elements chosen

from the maximum bound of the uncertainty as follows:

Qi ≥ max(d̂i), i = x, y. (4.22)

where d̂i represents the diagonal elements of L̃TH−1d̃.

4.3.2 Stability analysis

In order to analyze the stability of the proposed controller and insure that the

controller forces the transformed errors onto the desired nonlinear sliding surface

as t→∞, the time derivative of the following Lyapunov function must be negative:

V =
1

2
STS. (4.23)

The time derivative of the Lyapunov function is

V̇ = ST

{
¨eL∗ + (F −ΨP )ėL∗ − dΨ

dt
PeL∗

}
. (4.24)

Substituting Eq. (4.20) into (4.24) leads to

V̇ = ST

{
L̃T
{
H−1(−Eẋ− d̃+ u)− r̈

}
+ 2 ˙̃LT ėw + ¨̃LT ew + ḧ∗ + (F −ΨP )ėL∗

− dΨ

dt
PeL∗

}
. (4.25)
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Figure 4.4: Experimental results:(a) Linear sliding sur-
face with F=diag{110, 165}, (b) Nonlinear sliding surface with
F=diag{10, 50}(Proposed) and (c) Liner sliding surface with with

F=diag{170, 240}

Using control law (4.21), we have

V̇ = ST
{
−KS −Qsgn(S)− L̃TH−1d̃

}
(4.26)

Thus, with (4.22), it is easy to show that

V̇ ≤ −KSTS. (4.27)

Considering Eq. (4.18), the system stability is guaranteed.

4.4 Experimental Results

For verifying the advantage of the nonlinear sliding surface, the following three

controllers have been implemented on a desk-top biaxial feed drive system:
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Table 4.1: Parameter values of the experimental system

Parameter Value
H[kgV/N] diag{16.0,4.6}
E[Vs/m] diag{180,48}

1. The conventional sliding mode controller with linear sliding surface (i.e.,

Ψ=0 in Eq. (4.14)) with a small damping ratio.

2. The proposed controller with nonlinear sliding surface (i.e., Eq.(4.17)).

3. The conventional sliding mode controller with linear sliding surface (i.e.,

Ψ=0 in Eq. (4.14)) with a high damping ratio.

The above controllers were implemented on a biaxial feed drive system using the

C++ language on a personal computer (OS: Windows XP, CPU: 2 GHz) with

sampling time of 5 ms. The biaxial feed drive system used in the experiments

consists of two axes driven by DC servo motors that are coupled to and drive two

ball screws. In addition, a linear encoder whose resolution is 0.1 μm is attached

to each feed drive axis to measure the actual position of the feed drive system.

The nominal parameter values of the machine are given in Table 4.1. In order to

provide a fixed sampling period in Widows XP environment, we employ a timer

on a counter board (CONTEC CNT24-4(PCI)H) with four channels of 24-bit

up/down counters. The following elliptical reference trajectory (Fig. 4.3) is used

in the experiments:

x = 4 cos
( π
10
t
)
mm,

y = 6 sin
( π
10
t
)
mm. (4.28)

The actual contour error magnitude at each sampling time tk is calculated through

an iterative search for the shortest distance between the feed drive position and

the desired path by solving the following off-line optimization problem:

|ec(tk)| = min
t

√
(ri(tk)− qi(tk))2, i = x, y (4.29)

First, we have verified the effectiveness of the proposed approach to reduce the

contour error by comparing the performance of the controllers (a) and (b). In
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Table 4.2: Parameter values of the controllers (a), (b) and (c)

Parameter Controller Controller Controller
(a) (b) (c)

Kc[s
−1] diag{10,50} diag{10,50} diag{10,50}

F [s−1] diag{110,165} diag{10,50} diag{170,240}
P [-] diag{1.5,1.7} diag{1.5,1.7} diag{1.5,1.7}
βt[s

−1] - 10 -
βn[s

−1] - 10 -
kot[mm−1] - 35 -
kon[mm−1] - 300 -

this comparison, the controller gain matrix Kc and the positive definite matrix

P are set to the same values in both controllers to conduct fare comparison. In

this experiment, the controller gain matrix Kc, positive definite matrix P and

the linear term of the sliding surface F have been adjusted as given in Table 4.2.

In the nonlinear sliding surface, the matrix F is selected to have a small values

compared with the linear sliding surface to insure a high damping ratio of the

system to avoid overshoot. The nonlinear tunning parameters βt∗ , βn∗ , k̄t∗ and

k̄n∗ are selected to be 10s−1, 10s−1, 35mm−1, 300mm−1, respectively (explanations

on the selection of these parameters will be given later). In addition, because

the normal error component is more important than the tangential one, we in-

crease the controller gains for the normal error component. Fig. 4.4(a) shows

the experimental results for the controller (a) with a linear sliding surface, where

the control input of the feed drive axis, transformed error components and actual

contour error (Eq. (4.29)) are plotted. In addition, it can be seen that when the

contour error becomes very small (such as at the times 0-2.2s, 8-12.2s, 18-22.2s,

28-32.2s and 38-40s), the control input magnitude starts to increase because the

effect of damping ratio is instantaneously small. The smaller damping ratio leads

to significant overshoot that increases the control input magnitude. On the other

hand, when the contour error increases (such as around the times 5s, 15s, 25s and

35s), the conventional controller could not reduce the error because the effect of

damping ratio is instantaneously relatively larger than expected. This leads to

increase the contour error. This disadvantage of the linear sliding surface hinders

the designer to increase the gain of the system to achieve a better performance.

This problem can be avoided by reducing the damping ratio instantaneously when

the error converges to a small value using a nonlinear sliding surface. The results

for the proposed nonlinear sliding surface (controller (b)) is shown in Fig. 4.4(b).
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Figure 4.5: The control input variance

It can be confirmed that the proposed sliding surface achieves better performance

in terms of the contour error without any increase of the electrical energy or con-

trol input variation. The nonlinear sliding surface allows the damping ratio to be

changed to a high value when the contour error is small (to prevent overshot or sat-

uration) or to a small value when the error is increased (to achieve fast response).

In many researches, for example [95, 100–103], comparisons of the conventional

and enhanced methods are usually based on contour error perspective only and

do not consider the control input. A similar contour error profile to that shown in

Fig. 4.4(b) can be obtained by increasing the damping ratio in the conventional

design. In the controller (c), the values of F ’s components of linear sliding surface

is increased to achieve a performance roughly similar to the controller (b). From

the viewpoint of the consumed energy it appears fair to compare the controllers (b)

and (c) for similar contouring performance. The results of this case are shown in

Fig. 4.4(c) where the linear term F is adjusted to be diag{170, 240}s−1. However,
achieving similar contouring performance using the linear sliding surface increased

the control input as shown in Fig. 4.4(c).

The same experiments with Figs. 4.4(b) and (c) were repeated 10 times. Note

that, to avoid inaccuracies in the comparison, the running time in Fig. 4.4(b)

and (c) was increased to 120 s, and the energy consumption and the control input

variance were verified. The consumed energy was measured by a power Hi-tester
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(HIOKI 3334 AC/DC), and the control input variance was calculated as follows:

σj =

√√√√√√
I∑

i=1

(uji − μj)
2

I
, j = x, y. (4.30)

where uji denotes the control input value at the ith sampling instant of the jth

axis, I is the total number of sampling instants (i = 1, ..., I), and μj is the mean

of all of the control input values of the jth axis. As shown in Fig. 4.5, the

proposed approach provided a control input variance that was about 45.7% and

18.9% smaller for x and y-axis, respectively. Figure 4.6 shows the consumed

electrical energy by the feed drive axes x and y for the controllers (b) and (c). It

is confirmed that the proposed controller with nonlinear sliding surface reduced

the consumed energy by 29% and 12.5% for x and y-axis, respectively.

In addition, the proposed approach is easy to tune the non-linear term because

only the function (Ψ) needs to be tuned. The choice of tunning parameters βt∗ and

βn∗ to be small (10s−1 and 10s−1, respectively) is to ensure a small initial value

of the nonlinear function Ψ. Because the range of the normal error is very small

compared to the tangential error as shown in Fig. 4.4, the tunning parameters k̄t∗

and k̄n∗ are selected to be 35mm−1 and 300mm−1, respectively. The above two
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Figure 4.7: Diagonal elements of the matrix F −ΨP

points allow the nonlinear function to have a small initial value and decrease when

the error values increase to provide sufficient total gain of the sliding surface as

shown in Fig. 4.7.

In order to improve the steady state performance, the proposed sliding surface can

be extended to include integral action. The nonlinear term Ψ is very effective to

achieve high performance with saturated actuators and the integral action is to

ensure invariance against disturbances. The proposed sliding surface (4.13) can

be extended without loss of stability as follows:

S =
[
F −ΨP I Ki

]
⎡
⎢⎢⎣

eL∗

ėL∗∫ t

0
eL∗(t) dt

⎤
⎥⎥⎦ , S ∈ R2×1. (4.31)

where Ki ∈ R2×2 is an integral gain diagonal matrix with positive constant entires.

In order to verify the effectiveness of the proposed nonlinear sliding surface with

integral action, a sliding mode contouring controller based on (4.31) is designed and

compared to the sliding mode controller with a proportional-integral-derivative

(PID) sliding surface presented in [104]. In addition, for fare comparison, the

integral gain matrices are set to the same value for both controllers. The gain

matrices for the velocity error eL∗ are unity matrices for both controller. The

positional gain matrix for the proposed sliding surface varies nonlinearly according

to the function Ψ, and the parameters F , k̄t∗ and k̄n∗ are set to diag{20,50}s−1,
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Figure 4.8: Experimental results: (a) Controller with the proposed NLSS with
integral action Eq. (4.31) and (b) Controller with PID sliding surface presented

in [104]

35mm−1 and 600mm−1, respectively. On the other hand, the positional gain matrix

for the sliding surface in [104] is constant and set to diag{80,120}s−1 to achieve

similar contouring performance with the proposed sliding surface. As shown in Fig.

4.8, the proposed sliding surface reduces the contour error with small control input

because of employing the nonlinear function that increases the system damping

ratio when the contour error converges to a small magnitude to prevent energy

consumption. However, the controller in (b) is based on a constant damping ratio

that is smaller than the optimal damping ratio when the contour error magnitude

is small and vice versa.

4.5 Conclusions

A sliding mode contouring controller with a nonlinear sliding surface for biaxial

feed drive systems based on coordinate transformation is presented in this study.

The advantage of the proposed approach is that the sliding surface varies due

to the contour error so that the damping ratio of the system changes from its
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initial low value to its final high value as the contour error changes from high

value to small value and vice versa so that the system simultaneously achieves

low overshoot and a small settling time, resulting in a smaller error. To verify

the effectiveness of the proposed control approach, we conducted experiments for

elliptical reference trajectories. The results indicated that the proposed controller

can significantly improve the contouring accuracy for smooth contour by adjusting

the tunning parameters of the nonlinear function without any additional electrical

energy. In addition, the proposed approach reduced the control input variance

and consumed energy on average by about 41.2% and 14.9% (for x and y-axis,

respectively) and 23.6% and 5.5% (for x and y-axis, respectively), respectively.



Chapter 5

Sliding Mode Contouring Control

Design Using Nonlinear Sliding

Surface for Three-Dimensional

Machining

5.1 Introduction

High-precision machining and saving of the consumed energy are essential require-

ments for modern computerized numerical control (CNC) machines. For machin-

ing, error components orthogonal to the desired contour curve are called contour

errors and represent good indicators of the machining precision. Tracking and

contour errors are important aspects that significantly affect machining accuracy.

Two main control approaches are used to improve contouring performance: the

tracking control approach and the contouring control approach. Many existing

approaches for reducing tracking errors in multi-axis feed drive systems have been

developed to date [12, 53, 78, 85–87, 89].

The most significant factor in the performance of contouring systems is the accu-

racy of the overall system or the contour error of the system [6]. To reduce the con-

tour error, researchers have developed a variety of alternative control approaches

as presented in the previous chapter. However, in all of the previous contouring

algorithms, the case of three-dimensional contouring control is not considered. To

69
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reduce the contour error in three-axis machines, Lo proposed a three-axis con-

touring controller that operated in a trajectory coordinate basis that is moving

along the tool path trajectory [105]. Other researchers such as Chiu and Tomizuka

introduced transforming machine tool feed drive dynamics into a moving task co-

ordinate frame attached to the desired contour, i.e., the task coordinate frame

at the desired position of the feed drive system. The control system dynamics

are then reformulated with respect to the new coordinate frame [18]. Uchiyama

et al. established a contouring controller for three-dimensional machining based

on a coordinate transformation [93]. In addition, they proposed a method to

reduce the inherent contour error resulting from the coordinate transformation

approach. Recently, Khalick and Uchiyama introduced a contouring controller for

three-dimensional machining based on iterative contour error estimation and a

coordinate transformation approach [106].

To improve the contouring performance in machine tool feed drive systems, a non-

linear sliding mode contouring controller is presented in this chapter based on

iterative contour error estimation and a coordinate transformation approach. We

propose a novel sliding surface, in which the normal and bi-normal error compo-

nents are given more importance than the tangential component, to reduce the

contour error. The aim of the proposed controller is to guarantee stability and

enhance the contouring performance of three-axis feed drive systems. The main

advantage of the proposed approach is that it achieves a quick response and a

small overshoot, thereby providing improved performance in terms of contouring

errors and consumed energy savings. To verify the effectiveness of the proposed

approach, experiments have been conducted for a three-axis CNC machine. The

experimental results show that by adjusting the parameters of the nonlinear term,

the contour error can be significantly reduced.

5.2 Three-Dimensional Contour Error Estima-

tion

This section briefly explains the iterative estimation method for contour errors

in three-dimensional machining, presented by the first two authors [106]. The

contour error is defined as the shortest distance between the actual contour and

the desired one. The relationship between the contour error and the tracking error
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Figure 5.1: Iterative approach for three-dimensional contour error estimation

in each feed drive axis is shown in Fig. 5.1. The curve o is the desired contour

curve of the point of a machined part driven by the feed drive system. The variable

r = [rx, ry, rz]
T is the desired position of the point of the machined part at time t,

and is defined in a fixed frame Σw, whose axes x, y, and z correspond to the feed

drive axes. In addition, we assume that the first and second time derivatives, ṙ

and r̈, of the reference signal r are available. The actual position of the feed drive

system is assumed to be q = [qx, qy, qz]
T , which is also defined in the fixed frame

Σw. The tracking error in each feed drive axis, ew = [ ex, ey, ez]
T , are defined as

follows:

ew = [ex, ey, ez]
T = q − r. (5.1)

The above errors are defined in the coordinate frame Σw. For a parametrically

defined curve, the curvature at the desired position r is calculated as follows [107]:

1

R
=
||ṙ × r̈||
||ṙ||3 , ṙ �= 0. (5.2)
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The iterative algorithm can be summarized as follows:

(1) A local coordinate frame ΣL is defined with origin at r and axes t, n, and b,

as shown in Fig. 5.1. The t-axis is in the tangential direction of o at r, the

n-axis is in the normal direction of o at r, and the b-axis is the bi-normal

component normal to t and n. For the parametric trajectory, the tangential,

normal, and bi-normal vectors, denoted as t, n, and b, respectively, are

calculated at a time t as follows:

t =
ṙ

‖ ṙ ‖ . (5.3)

n =
ṫ

‖ ṫ ‖ . (5.4)

b = t× n. (5.5)

(2) The circle of curvature is located in the t - n plane and perpendicular to b.

The center of the circle c can be estimated using a coordinate transformation

between the fixed and the local coordinate frames:

c = [cx, cy, cz]
T = r + L

[
0 R 0

]T
,

L =
[
t n b

]
. (5.6)

(3) The angle θ can be estimated as follows:

θ = cos−1
a · n

||a|| ||n|| ,

a =
c− q

||c− q|| . (5.7)

(4) A new local coordinate frame ΣL1 is defined at point s1 = r(t1), where the

time t1 can be estimated by assuming a constant velocity throughout the

segment r - s equaling to the desired velocity at r. The time required to

pass the segment r - s is the same as that required to pass the segment r -

s1 on the desired trajectory. The delayed time t1 is calculated as follows:

t1 = t− td.

td =
Rθ

||ṙ|| , ṙ �= 0. (5.8)
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Figure 5.2: Flow chart of the iterative approach for contour error estimation

(5) The three unit vector for the coordinate system ΣL1 corresponding to the

instantaneous reference position, s1, are calculated as follows:

t1 = t(t1). (5.9)

n1 = n(t1). (5.10)

b1 = b(t1). (5.11)

(6) Execute the above approximation procedure by circular curves to obtain

ek, k = 1, 2, ...,m. If the error magnitude ||em|| = ||sm − q|| increases during
the iterative process, we quit this procedure. We can also define the maxi-

mum number of repeat times for quiting this procedure. The flow chart of

this iterative approximation procedure is shown in Fig. 5.2. Executing the

iteration two times seems to yield sufficient results and saves computational

effort.

Since the tangential vector tm is not in the direction of reference point r, the

following approach is intended to adjust the tangential vector. Let us consider a
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vector t̂ in the direction from sm to the desired position r

t̂ =
r − sm
||r − sm|| . (5.12)

In addition, n̂ is in the plane tm - nm and perpendicular to t̂, and hence, perpen-

dicular to bm. This vector n̂ is therefore equal to the cross product of the vectors

t̂ and bm:

n̂ = t̂× bm. (5.13)

Consequently, the third vector of the local coordinate frame ΣL̂ is

b̂ = t̂× n̂. (5.14)

The corresponding error vector with respect to the transformed frame ΣL̂, eL̂(t)

= [êt, ên, êb]
T , is calculated as

eL̂ = L̂T ew,

L̂ =
[
t̂ n̂ b̂

]
. (5.15)

The above error components will be used to design a sliding mode contouring

controller with nonlinear sliding surface in order to improve the contouring per-

formance in three-dimensional machining.

5.3 Modeling of the System and Controller De-

sign

5.3.1 Modeling of three-axis machine

This study considers a three-axis machine with three servo motors which commonly

used in industrial applications to drive the feed drive systems. The feed drive
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Figure 5.3: Experimental three-axis CNC machine

system is generally represented as follows:

ż1 = A11z1 + A12z2,

ż2 = A21z1 + A22z2 +Bu+ ρ,

z1 =
[
qx qy qz

]T
, z2 =

[
q̇x q̇y q̇z

]T
,

u =
[
ux uy uz

]T
, ρ =

[
ρx ρy ρz

]T
. (5.16)

where ˙( ) denotes time derivative, A11 = 0, A12 = I, A21 = 0, A22 = diag(−ci/mi),

and B = diag(ki/mi) are all 3×3 matrices; ci, mi, and ki are the viscous friction

coefficient, mass, and force-voltage conversion ratio of the feed drive axis i (i =

x, y, z), respectively; and p, u, and ρ are the feed drive position, control input, and

disturbance, respectively.



76 5.3

5.3.2 Contouring controller design with nonlinear sliding

surface

In this section, the design of the contouring controller with nonlinear sliding surface

for three-dimensional machining will be considered. Using a nonlinear sliding

surface, the damping ratio of the closed loop system can be changed from its

initial low value to a final high value. The initial low value of the damping ratio

results in a quick response and the later high damping avoids overshoot to save

energy consumption. Based on the regular form in (5.16), we propose the following

nonlinear sliding surface:

S =
[
F −ΨAT

12P I
] [ ef1

ef2

]
, S ∈ R3,

ef1 = L̂T ew,

ef2 =
˙̂
LT ew + L̂T ėw. (5.17)

Here, P ∈ R3×3 is a positive-definite matrix that can be found by solving the

Lyapunov equation given by

(A11 − A12F )
TP + (A11 − A12F )P = −W,W ∈ R3×3 (5.18)

where W is a positive-definite matrix. I is a 3 × 3 identity matrix, F is chosen

such that (A11 −A12F ) has stable eigenvalues and the dominant poles have small

damping ratios to achieve a fast response. Ψ is a 3 × 3 diagonal matrix with

non-positive nonlinear entries depending on the output and is used to change the

damping ratio of the system. One possible choice of Ψ is

Ψ = diag(−βiexp(−ei2)), i = t̂, n̂, b̂. (5.19)
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In this section, the following sliding mode controller is proposed

u = −[L̂TB]−1[−CTH żd + CTHAregz + CT Ḣ(z− zd)− dΨ

dt
AT

12PL̂
T ew

+Qsgn(S) +KcS], Q ∈ R3×3, sgn(S) ∈ R3, Kc ∈ R3×3,

z =
[
zT1 zT2

]T
,

C=
[
F −ΨAT

12P I
]
, CT ∈ R3×6,

H =

[
L̂T 0
˙̂
LT L̂T

]
, H ∈ R6×6,

Areg =

[
A11 A12

A21 A22

]
, Areg ∈ R6×6. (5.20)

Here, żd=[ṙT r̈T ]T consists of the desired velocity and acceleration of the feed drive

axis and sgn(S) contains the signs of the sliding surface vector S. Kc is the gain

matrix. Q=diag(Qi) is a diagonal matrix with diagonal elements chosen from the

maximum bound of the uncertainty as follows:

Qi ≥ max(ρi), i = x, y, z. (5.21)

For asymptotic stability and to force the transformed tracking errors onto the

desired sliding surface, the time derivative of the following Lyapunov function

must be negative:

V =
1

2
STS. (5.22)

The time derivative of the Lyapunov function is

V̇ = ST [(F −ΨAT
12P )ėf1 −

dΨ

dt
AT

12Pef1 + ėf2]. (5.23)

Equations (5.16), (5.20), and (5.23) lead to

V̇ = ST [−CTH żd + CTHAregz + CT Ḣ(z− zd)− dΨ

dt
AT

12PL̂
T ew +Bu+ ρd]

(5.24)

By using control law (5.20), it can be seen that

V̇ = ST [−KcS −Qsgn(S) + ρd] (5.25)
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Table 5.1: Three-axis machine parameter values

Parameter m c
X − axis 16.0 Vs2/m 180 Vs/m
Y − axis 4.6 Vs2/m 48 Vs/m
Z − axis 5.7 Vs2/m 100 Vs/m

−2

2

x [mm]
y [mm]

z 
[m

m
]

−2

−2

2

2

Figure 5.4: Three-dimensional reference trajectory used for simulation and
experiments

Thus, with (5.21), it is easy to show that

V̇ < 0 (5.26)

5.4 Simulation and Experimental Results

We used a desk-top three-dimensional CNC machine to demonstrate the effective-

ness of the proposed approach. This machine consists of three axes driven by DC

servo motors that are coupled to and drive, three ball screws. In addition, a linear
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Figure 5.5: Simulation results of Exp. No. 1; comparison of linear and
nonlinear sliding surfaces, (a) Transformed errors (tangential, normal and bi-
normal) and actual contour error and (b) Control inputs in x,y and z directions

encoder whose resolution is 0.1 μm is attached to each feed drive axis to mea-

sure the actual position of the feed drive system. The nominal parameter values

of the machine are given in Table 5.1. The following three-dimensional reference

trajectory is used in the experiment:

x = 2 cos
( π
10
t
)

mm,

y = 2 sin
( π
10
t
)

mm,

z = 2 sin

(
2π

10
t

)
mm. (5.27)
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Figure 5.6: Experimental results of Exp. No. 1; comparison of linear and
nonlinear sliding surfaces, (a) Transformed errors (tangential, normal and bi-
normal) and actual contour error and (b) Control inputs in x,y and z directions

The control law given in Eq. (5.20) was implemented using the C++ language on

a personal computer (OS: Windows XP, CPU: 2 GHz) with sampling time of 5 ms.

In order to provide a fixed sampling period in Widows XP environment, we employ

a timer on a counter board (CONTEC CNT24-4(PCI)H) with four channels of 24-

bit up/down counters. To demonstrate the effectiveness of the proposed approach,

the following two experiments were conducted:

(1) Exp. No. 1: The effectiveness of the nonlinear sliding surface

In this experiment, we compared the contouring controller with nonlinear

sliding surface (i.e., Eq. (5.20)) and contouring controller with linear sliding

surface (i.e., Ψ=0 in Eq. (5.19)). To provide a fair comparison between

both controllers, controller gains Kc as well as the linear term of the sliding
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Figure 5.7: Simulation results of Exp. No. 2; contouring performance with
different βi, (a) Transformed errors (tangential, normal and bi-normal) and

actual contour error and (b) Control inputs in x,y and z directions

surface F are set to the same values in both controllers. In addition, because

the normal and bi-normal error components are more important than the

tangential one, we have selected the gains in such a way that the normal and

bi-normal components declined faster than the tangential one. The controller

gainKc and matrix F are selected to be diag(30 40 40) and diag(100 140 120),

respectively. In these experiments, we set the maximum number of repeat

times, m, to 2 for quitting the iterative procedure. The main concern of the

proposed approach is achieving low overshoot and settling time, resulting in

a smaller error, by changing of the systems damping ratio from its initial

low value to its final high value. Hence, elimination of the control input

chattering was not considered in the experiments

Simulations and experiments are conducted with the same parameters to
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Figure 5.8: Experimental results of Exp. No. 2; contouring performance
with different βi, (a) Transformed errors (tangential, normal and bi-normal)

and actual contour error and (b) Control inputs in x,y and z directions

verify the effectiveness of the nonlinear term of the proposed controller. Fig-

ures 5.5 and 5.6 show the simulation and experimental results, respectively,

where, the control inputs ux, uy, and uz; the tangential, normal, and bi-

normal error components denoted as êt, ên, and êb, respectively; and the

actual magnitude of the contour error |ec| for both controllers are plotted.

Simulation and experimental results show that the proposed approach gives

a better performance in terms of contour error without any increase of the

required electrical energy as shown in Figs. 5.5 and 5.6.

The actual contour error is calculated through an iterative search for the

shortest distance between the tool position and the actual path by solving

the following off-line optimization problem:

|ec(t)| = min
t

√
(ri(t)− qi)2, i = x, y, z (5.28)

Note that this error is used for verification and not to design the controller.
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(2) Exp. No. 2: The effectiveness of parameter βi

βi is a tuning parameter for the proposed contouring controller that allows

the importance of the nonlinear term to be adjusted by changing the system’s

closed loop damping ratio. Simulation and experimental results for the same

reference trajectory used in Exp. No. 1, where the controller gain Kc and

matrix F are selected to be diag(20 30 30) and diag(80 90 90), respectively,

are shown in Figs. 5.7 and 5.8, respectively.

Two cases of βi were selected and their performance can be compared as

follows:

(a) β1 = [βt βn βb] = [15 18 18].

(b) β2 = [βt βn βb] = [25 38 38].

It is apparent that the weighting factor βi is essential in the proposed non-

linear sliding surface and the contouring performance significantly improves

by adjusting βi.

To verify the repeatability of the proposed approach, the same experiment

as in Figs. 3 and 4 were repeated 10 times and the mean values of |ec|
were compared. Figure 5.9(a) shows a comparison between the proposed

nonlinear sliding surface and the linear sliding surface. It is can be seen

that the proposed approach reduced the mean value of the contour error by

about 30%. In addition, adjusting the tuning parameter βi gives a better

contouring performance in terms of the mean value of the actual contour

error as shown in Fig. 5.9(b).

5.5 Conclusions

A sliding mode contouring controller with nonlinear sliding surface for three-

dimensional machining based on iterative contour error approximation and a co-

ordinate transformation approach is presented in this chapter. The effectiveness

of the proposed control approach is demonstrated through experiments and simu-

lation involving a three-dimensional reference trajectory. Two cases of simulation

and experiments are conducted; the first experiment is to show the effectiveness

of the proposed nonlinear sliding surface a against the linear sliding surface, while

the second one is to show the effect of the tuning parameter of the nonlinear term.
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Figure 5.9: (a) Mean value of the actual contour error with linear and nonlin-
ear sliding surfaces and (b) Mean value of the actual contour error with different

βi

The results indicated that the proposed sliding surface achieve a good performance

compared to linear sliding surface. In addition, contouring performance can be

significantly improved by adjusting the tuning parameter of the nonlinear term.

Extension of the proposed method to a five-axis machine for considering tool tip

and orientation contour errors are left for future work.



Chapter 6

Estimation of Tool Orientation

Contour Errors for Five-Axis

Machining

6.1 Introduction

Five-axis computer numerically controlled (CNC) machines are widely used for

high-precision machining of complex sculptured surfaces in aerospace, automotive

and die/mould industries. Free-form surface machining with machines that offer

more than three degrees of freedom requires synchronization of the tool position

and orientation to avoid overcut and undercut during machining.

Five-axis machines generally employ a control scheme that attempts to minimize

tracking errors along all five driving axes independently. Using the conventional

servo controller results in unavoidable tracking errors between the commanded

and actual positions in each feed drive axis. To reduce these tracking errors,

various advanced control techniques such as sliding mode controllers [12], zero

phase error tracking control [85] and a feed-forward friction compensator [108]

have been developed. Although many effective controllers have been applied to

individual axis control loops, eliminating the tracking errors of each individual

axis does not guarantee the desired contouring accuracy.

As mentioned in the previous chapters, from the viewpoint of machining, eliminat-

ing the contour error, which is defined as the deviation in the normal direction of

85
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the tool from the desired tool path, is more important than eliminating the track-

ing error in each driving axis. One of the approaches that used to eliminate the

contour error is employing a cross coupled controller. In this method, both contour

error and tracking error along each driving axis are considered in the design of the

controller. As a result, it is difficult to determine which controller dominates the

contour error; hence, some difficulties in adjusting controller parameters appear.

To address this problem, Chiu and Tomizuka formulated the contour tracking

problem in a task coordinate frame attached to the desired contour [18]. By

transforming the machine tool feed drive dynamics to this task coordinate frame,

a control law can be formulated to assign different dynamics to the normal and

tangential directions relative to the desired contour. Lo and Chung proposed a

tangential contour controller for biaxial motion based on the coordinate transfor-

mation between a fixed frame and a tangential contour frame that is defined along

the contour [21]. Lo proposed three-axis contouring control which operates in a

trajectory coordinate basis that is moving along the tool path trajectory [105].

Uchiyama et al. proposed a contouring controller for three-dimensional machining

based on coordinate transformation [93]. In addition, they proposed a method to

reduce the inherent contour error resulting from the coordinate transformation ap-

proach. However, in the above contouring algorithms, five-axis contouring control

is not considered.

In five-axis machining, the challenges are more difficult than two/three-axis cases

because of non-Cartesian kinematics, geometrical structure and high flexibility of

the five-axis machines. Lo proposed real-time transformation between the machine

coordinate and workpiece coordinate frames and employed a coupled proportional

integral derivative (PID) controllers [109]. He reduced the deviation and orienta-

tion errors by minimizing the tracking error of each individual axis in the workpiece

coordinates frame instead of minimizing it in the machine coordinates frame. Bo-

hez defined the closed loop volumetric error as the difference between the cutter

contact point on the tool side and the corresponding point on the reference surface

and used this definition to compensate the systematic errors in five-axis machines

[110].

Recently, Sencer et al. proposed an estimation model for tool tip and tool orien-

tation contour errors for five-axis machines [111]. They transformed the tool tip

tracking error using a moving Frenet frame into tangential, normal and bi-normal
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error components. In addition, they applied a sliding mode controller to each indi-

vidual driving axis to verify the proposed estimation models. Sencer and Altintas

utilized the model presented in [111] and proposed a sliding mode tool tip contour

controller and tool orientation contour controller [104]. They showed that the pro-

posed approach reduced the tool tip and orientation contour errors compared to

independent controller. However, there are two shortages in the above two litera-

tures; first, the two controllers run simultaneously and individually consider only

kinematic transformations; second, because it is assumed that the gain assigned

to the error component in the tangential direction is relatively small compared to

the normal and bi-normal error components, a relatively larger tangential error

component is obtained. As a result, reduction in the tool orientation error based

on the definition given in [111] does not guarantee contouring control performance

between the tool tip position and orientation. In other words, even if the tool tip

and tool orientation contour errors are very small, any mismatch between the tool

position and tool orientation will cause an overcut or undercut when these errors

are treated independently.

To address the above problem in [111], this chapter presents a new definition of

the actual tool orientation contour error. In addition, we propose an estimation

model for the tool orientation contour error. The elimination of the proposed error

guarantees synchronization between the tool tip and tool orientation to avoid any

overcut or undercut in a machined surface.

6.2 Kinematics and Contour Error Modeling in

Five-Axis Machines

6.2.1 Kinematics of five-axis machine

The five-axis machine is similar to two cooperating robots, one robot carrying the

cutting tool and one robot carrying the workpiece [112]. In this chapter we consider

the widely used five-axis machines with three translational motions, X, Y , and

Z (represents the robot carrying the cutting tool), combined with two rotations

A and C around X and Z axes, respectively (represents the robot carrying the

workpiece). Generally, the tool position and orientation are represented in the

tool frame coordinate system ΣW as shown in Fig. 6.1. Here, the desired tool tip
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Figure 6.1: (a) Cutting tool configuration in ΣW and ΣM frames, (b) tool-tip
contour error, and (c) tool-orientation contour error

position and tool orientation, defined in the tool coordinate frame ΣW , are P =

[Px Py Pz]
T and O = [Oi Oj Ok]

T , respectively. The orientation results from the

rotation of the rotary drives A and C are with angles of θa and θc, respectively.

The desired tool position and orientation vector P , in the tool coordinate frame

ΣW , is transformed to a position and rotation commands to the physical actuators.

The position and rotation command vector, represented in the machine coordinate

frame ΣQ which is regarded as fixed to the global coordinate system, is given by

q = [qx qy qz qa qc]
T . A kinematics transformation from the machine coordinate

frame ΣM to the tool coordinate frame ΣW is carried out by the transformation

matrix T as follows:⎡
⎢⎢⎣
Px

Py

Pz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−Cc −ScCa SaSc

Sc −CcCa SaCc

0 Sa Ca

⎤
⎥⎥⎦
⎡
⎢⎢⎣
qx

qy

qz

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 −ScSa

0 −CcSa

−1 −Ca

⎤
⎥⎥⎦
[
d4

a2

]
.

(6.1)
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where Si and Ci represent sin(qi) and cos(qi), respectively, i ∈ (a, c). d4 and a2

are the offset between the rotary drive axes. The tool orientation in the spherical

coordinate frame is obtained from the angular motion of the rotary axes as follows:

⎡
⎢⎢⎣
Oi

Oj

Ok

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos qasin qc

cos qacos qc

−sin qa

⎤
⎥⎥⎦ . (6.2)

We define a vector w = [wx wy wz wa wc]
T , with wa=θa and wc=θc, represents the

actual position and rotation of the feed drive axes in the tool coordinate frame ΣW

and it will be used in the controller design later. In order to obtain the velocity

transformation, a partial derivative of Eq. (6.1) is carried out with respect to the

axis position as follows:

Jij =
∂Pi

∂qj
, i ∈ (x, y, z), j ∈ (x, y, z, a, c). (6.3)

and by adding two unity elements on the diagonal for the rotational drive positions,

the following square Jacobian matrix is formed [111]:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Jxx Jxy Jxz Jxa Jxc

Jyx Jyy Jyz Jya Jyc

Jzx Jzy Jzz Jza Jzc

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6.4)

The velocity and acceleration vectors of the cutting tool with respect coordinate

frame ΣW

ẇ = Jq̇. (6.5)

ẅ = Jq̈ + J̇ q̇. (6.6)

6.2.2 Estimation of tool tip contour error

During five-axis machining, the cutting tool deviates from the desired trajectory

due to undesired disturbances such as cutting force, friction and measurement
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Figure 6.2: Definitions of five-axis contour errors (a) tool tip contour error,
and (b) tool orientation contour error

errors. This deviation results in a tool tip contour error (Fig. 6.1(b)) and tool

orientation contour error (Fig 6.1(c)). The tool tip contour error is defined as

the deviation in the normal direction of the tool from the desired tool path. In

the following, we briefly explain estimation model for the tool tip contour error

presented in [111]. In Fig. 6.2, c is the desired trajectory of the cutting tool and

P is the tool tip desired position, with respect the tool coordinate frame ΣW . The

tracking errors with respect to each feed drive axis ew=wref -w=[ex ey ez ea ec]
T .

At the desired position P , the tangent t, normal n, and bi-normal b vectors for

the parametric trajectory c are calculated at time t as follows:

t = [tx, ty, tz]
T =

Ṗ

‖ Ṗ ‖ . (6.7)

n = [nx, ny, nz]
T =

ẗ

‖ ẗ ‖ . (6.8)

b = [bx, by, bz]
T = t× n. (6.9)
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The tracking error ew is transformed to the moving Frenet frame ΣF , whose axes

are t, n, and b, by the transformation matrix F as follows:

eF = F T ew,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tx nx bx 0 0

ty ny by 0 0

tz nz bz 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6.10)

We assume that the distance between the desired position P and nearest point on

the desired trajectory (the dashed segment of the desired trajectory shown in Fig.

6.2) is approximately equal to the length of the tangential error et. In addition,

the desired velocity along this segment is nearly constant and equal to the desired

velocity at P . The required time to traverse this segment td is calculated as follows:

td =
et

‖ Ṗ ‖ . (6.11)

A new coordinate frame ΣF̃ corresponding to the delayed time t̃ = t− td is defined
by three unit vectors as follows:

t̃ = t(t̃). (6.12)

ñ = n(t̃). (6.13)

b̃ = b(t̃). (6.14)

The corresponding error vector eF̃ = [ẽt, ẽn, ẽb, ẽa, ẽc]
T is calculated with respect

to the transformed frame ΣF̃ having three axes t̃, ñ and b̃ as follows:

eF̃ = F̃ T ew,

F̃ = F (t̃). (6.15)

As shown in Fig. 6.2, the vector between the current and the delayed reference

positions is expressed as

h =

⎡
⎢⎢⎣
P − P (t̃)

0

0

⎤
⎥⎥⎦ (6.16)
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where P (t̃) is the desired position at the time t̃ and it can be represented in the

moving frame F̃ as follows:

hF = F̃ Th. (6.17)

The normal and bi-normal components are adjusted according to the new coor-

dinate frame ΣF̃ as shown in Fig. 6.2. Because only the normal and bi-normal

components are considered as contour errors, the tangential component is excluded

by multiplying with W = diag(0, 1, 1, 0, 0) [111]:

h̃F = WhF (6.18)

The tracking errors on the moving frame ΣF̃ become

ẽF = F̃ T ew + h̃F , (6.19)
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6.2.3 Tool orientation contour error

As shown in Fig. 6.2(b), similar to Cartesian contour error approximation, the

orientation contour error vector is predicted by transforming the tracking error to

obtain the vector normal to the reference trajectory as follows [111]:

εo =

⎡
⎢⎢⎣
εoi

εoj

εok

⎤
⎥⎥⎦ = eo − ω

|ω|
eo · ω
|ω| . (6.20)

where ω = [ωi, ωj, ωk]
T is the desired angular velocity, eo = O(t)-Oact(t) is the tool

orientation tracking errors represented in the spherical coordinates, and Oact(t) is

the actual tool orientation. By using normalized angular velocity of the rotary

axis, ω̄ = ω/|ω|, we can rewrite Eq. (6.20) as:

εo = eo − ω̄(eo · ω̄). (6.21)

6.2.4 Proposed definition of tool orientation contour error

A disadvantage of the previous definition of the tool orientation contour error is

that it does not give a true representation of machining precision because it does

not take into account the tool tip contour error. In other words, tool tip contour

error and tool orientation contour error control loops run independently.

To address this problem, we propose a new definition of the tool orientation contour

error to consider the synchronization between the tool position and orientation.

Figure 6.3 is a two-dimensional representation that shows the disadvantage of the

definition of the tool orientation contour error presented in [111]. The desired tool

configuration at the same instant time is ω∗ and q is the actual tool configuration

with some tracking error e∗w. In this two dimensional case, eF ∗ as defined in Eq.

(6.19) is regarded as the position contour error. Although eo is generally regarded

as the tool orientation error, e∗o is preferable as the tool orientation contour error,

to avoid the undercut or overcut in machining. The tool orientation contour error

in Eq. (6.20) can not be used to represent this error because ω/|ω| in Eq. (6.20)

is always equal to ±1 and provides εo = 0 in this two dimensional case.
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Ô

Figure 6.4: Proposed definition of five-axis tool orientation contour errors

6.2.5 Estimation of new tool orientation contour error

In previous approaches to the five-axis tool tip contour control, the tangential

error component is larger than the normal and bi-normal components. On the

other hand, the rotary drives in the five-axis machines attempt to eliminate the

tool orientation tracking error eo and deviation in the normal direction εo from

the desired orientation trajectory, as shown in Fig. 6.2(b). A mismatch between

the desired tool orientation O and the delayed desired orientation Ô, which cor-

responds to a point on the reference trajectory c nearest to the actual tool tip

position (Fig. 6.4), causes an overcut or undercut. In order to avoid this mis-

match, the rotary drive axis must use a control scheme to reduce the actual tool

orientation contour error ε, which is defined as the difference between the actual

orientation Oact and the delayed desired orientation Ô. Because it is an intensive

task to calculate the actual tool orientation contour error ε = [εi, εj, εk]
T in real

time, an approximation of ε can be estimated by the error vector ε̃ = [ε̃i, ε̃j, ε̃k]
T ,

defined as follows:

ε̃ = O(t̃)−Oact(t), t̃ = t− td. (6.22)
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where O(t̃) is the new desired tool orientations. By differentiating Eq. (6.2) with

respect to time and assuming that the orientation errors are compensated by a

controller within the control sampling interval, the actual, proposed and conven-

tional tool orientation contour errors can be estimated from the corresponding

errors in the tool-coordinate frame ΣW as follows [111]:

ε ≈ Joē, ē =
[
ēa ēc

]T
. (6.23)

ε̃ ≈ Joẽ, ẽ =
[
ẽa ẽc

]T
. (6.24)

εo ≈ JoeR, eR =
[
eRa eRc

]T
. (6.25)

Jo =

⎡
⎢⎢⎣
− sin θa sin θc cos θa cos θc

− sin θa cos θc − cos θa sin θc

− cos θa 0

⎤
⎥⎥⎦ . (6.26)

In order to explain the advantage of the proposed estimation model over the con-

ventional method, we consider the case in Fig. 6.5 under the following conditions:

(1) The tangential error exists.
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Figure 6.6: Reference trajectory used in the experiments

Table 6.1: Five-axis machine parameter values

Parameter m c
X − axis 5.33 Vs2/m 25.175 Vs/m
Y − axis 4.545 Vs2/m 24.202 Vs/m
Z − axis 1.72 Vs2/m 71.647 Vs/m
A− axis 0.0023 Vs2/rad 0.022 Vs/rad
C − axis 0.01489 Vs2/rad 0.100 Vs/rad

(2) The tool orientation tracking error is equal to zero or has a very small mag-

nitude.

(3) The tool tip contour error is equal to zero or has a very small magnitude.

Based on the conventional definition, the tool orientation contour error is equal to

zero or has a very small magnitude (from Eq. (6.20)). However, as shown in Fig.

6.5, there is an orientation contour error between the actual orientation (Oref is

the same or very close to Oact in this case) and the orientation O that corresponds

to the nearest position on the desired trajectory. In other words, the cutting tool

should have the same orientation as that corresponding to the nearest position.

Otherwise, overcut or undercut may occur during machining by five-axis machines.

On the other hand, the proposed definition (Eqs. (6.22)) gives a better indication

of the tool orientation contour error because the the new desired orientation Õ and

the actual new desired orientation O are approximately equal when the actual tool

tip contour error is estimated accurately.
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Figure 6.7: Five-axis machine

Table 6.2: Controller parameter values

Parameter Kp Kv

Tangential 900 m/s2 60 m/s
Normal 20164 m/s2 280 m/s

Bi-normal 20164 m/s2 280 m/s
A− axis 14400 rad/s2 240 rad/s
C − axis 14400 rad/s2 240 rad/s

6.3 Five-Axis Contouring Controller Design

Generally, five-axis machines are represented in the drive-axis coordinate frame

ΣM by the following differential equations:

Mq̈(t) + Cq̇(t) = v(t),

M = diag{mi}, C = diag{ci}, i = (x, y, z, a, c),

v(t) = [vx, vy, vz, va, vc]
T . (6.27)

where mi(> 0), ci(≥ 0), and vi are the equivalent inertia, equivalent viscous

friction coefficient, and the control input in the drive axis i, respectively. The

symbol diag{ai} denotes a diagonal matrix with elements ai at the ith diagonal

positions. The acceleration of the feed drive system in the drive-axis coordinate
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frame ΣM , q̈(t), can be calculated by differentiating Eq. (6.3) as follows:

q̈(t) = J−1[ẅ(t)− J̇(t)q̇(t)]. (6.28)

From the definition of the tracking error ew and Eq. (6.27), the tracking error

dynamics of the cutting tool in the fixed coordinate frame ΣW are expressed as:

ëw = P̈ −M−1 [v − Cq̇] . (6.29)

where P̈ is the desired acceleration of the tool tip with respect to the tool coordi-

nate frame ΣW . The transformed error dynamics can be estimated by differenti-

ating Eq. (6.19) twice with respect to time as follows:

¨̃eF = F̃ T ëw + 2 ˙̃F T ėw + ¨̃F T ew + ¨̃hF . (6.30)

Considering Eq. (6.30), assuming that the reference velocity and acceleration are

given, substituting Eq.(6.28) into Eq. (6.27), and considering feed drive dynamics,

we design the following controller:

v =MJ−1[P̈ + F̃−1(KvėF̃ +KpeF̃

+2 ˙̃F ėw + ¨̃Few + ¨̃hF )− J̇ q̇] + Cq̇, (6.31)

where v = [vx, vy, vz, va, vc]
T is the control input vector in the drive-axis coordi-

nate frame ΣM , Kv = diag(kvt, kvn, kvb, kva, kvc) and Kp = diag(kpt, kpn, kpb, kpa,

kpc) are the velocity and position feed back gain matrices, respectively. Note that

in the above controller, minimization of the tool orientation contour error is not

considered to conduct a fare comparison as shown in the Experimental section.

Then, we have the following closed-loop dynamics:

ëF̃ +KvėF̃ +KpeF̃ = 0. (6.32)

Because the elimination of the normal and bi-normal error components is more

important than that of the tangential error component, the design of the controller

is expected to set the velocity and position gains in such a way that the normal

and bi-normal components can be reduced faster than the tangential component.
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Figure 6.8: Experimental results. (a) Actual tool-tip contour error, (b) Actual
and estimated tool orientation contour error in ΣW , (c) Actual and conventional
tool orientation contour error in ΣW , and (d) Discrepancy of the actual tool

orientation contour error in ΣW
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6.4 Experimental Results

In order to demonstrate the validity of the proposed estimation model, a desk-top

five-axis machine developed in our laboratory is used for the five-axis tool path

and orientation shown in Fig. 6.6 and its representation in the tool-coordinate

frame ΣW is as follows:

x = 0.01 sin(2πt)(m),

y = 0.01 sin(2πt)(m),

z = −0.01 cos(2πt)(m),

a =
π

9
sin (πt) (rad),

c =
π

18
cos (πt) (rad). (6.33)

The machine consists of three-axis driven by four linear motors (Y-axis is driven

by two linear motors) as shown in Fig. 6.7 equipped with 0.1 μm resolution linear

encoders. Two rotary axis driven by two DC servo motors are used for the rotary

table with 4.0212 μrad resolution. The dynamics parameters of the drivers are

given in Table 6.1.

In the following discussion, we compare the performance between the proposed

and conventional tool orientation estimation methods under the same contouring

controller. For a fare comparison to the model presented in [111], the controller in

Eq. (6.31) is implemented, which considers only tool tip contouring control and

tracking control for the rotary axis (i.e. tool orientation contouring control is not

applied). This controller forces the cutting tool to follow the desired trajectory

shown in Fig. 6.6 with minimum tool tip contour error and to reduce the tool

orientation tracking error. In addition, because the normal and bi-normal error

components are more important than the tangential one, we have selected con-

troller gains in such away that the normal and bi-normal error components are

reduced faster than the tangential one. The closed loop gains of the system are

set as given in Table 6.2.

Figure 6.8(a) shows the actual contour error calculated by solving a minimization

problem off-line for calculating the shortest distance between the tool position and

the actual tool path. A comparison between the actual tool orientation contour

error ē (Eq. (6.23)) in the tool coordinate frame ΣW and the estimated error ẽ

(Eq. (6.24)) is shown in Fig. 6.8(b). Figure 6.8(c) shows a comparison between
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Iterations

Figure 6.10: Mean of the absolute value of the discrepancy of the actual tool
orientation contour error

actual tool orientation error ē and the estimated tool orientation error eR (Eq.

(6.25)) presented in [111]. It can be seen that the proposed estimation gives

a better indication of the actual error. The discrepancy from the actual tool

orientation contour error is calculated for the proposed method and the model

presented in [111] as es and the results are shown in Fig. 6.8(d). It is clear that

the proposed model has a small estimation error than the conventional model. The
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comparisons in Figs. 6.8(b), (c) and (d) are done for the tool orientation contour

error in the spherical coordinate (Eqs. (6.23), (6.24), and (6.25), respectively) and

the results are shown in Figs. 6.9(a), (b) and (c), respectively. The results show

that the proposed estimation model estimates the actual tool orientation error

more accurately than the conventional method. In addition, the conventional

method shows not only significant discrepancy from the actual tool orientation

contour error but also different shape of error profiles. The reason of this incorrect

tracking is that the conventional method dose not take the tool tip contour error

into account, and it leads to overcut or undercut during machining.

In order to show the repeatability of the proposed approach the above experiments

are repeated ten times. The mean of the absolute value of the discrepancy of

the actual tool orientation contour error es is calculated and compared for the

proposed model and the model given in [111] as shown in Fig. 6.10. The proposed

model gives smaller error than the conventional estimation method, and leads to

a synchronization between the tool tip contour error and tool orientation contour

error to avoid a mismatch between the observed tool tip position and orientation.

6.5 Conclusions

A new definition of tool orientation contour error for five-axis machining tasks is

presented in this chapter. Unlike the conventional definition of the tool orientation

contour error, the proposed model considers the synchronization between the tool

tip contour error and tool orientation contour error to avoid a mismatch between

the actual tool tip position and orientation. The proposed tool orientation estima-

tion model is compared with the conventional one under the same tool tip contour

error and tool tracking controller for a five-axis machine. The experimental results

demonstrated the effectiveness of the proposed model to reduce the mismatch be-

tween the tool tip contour error and tool orientation contour error which causes

overcut or undercut during machining.





Chapter 7

Sliding Mode Contouring

Controller Design with Nonlinear

Sliding Surface for Five-Axis

CNC Machines

7.1 Introduction

The five-axis CNC (computer numerical control) machines are highly flexible com-

pared to those with three-axis and this makes them a popular key factor in mod-

ern industries of valuable parts such as aerospace parts, dies and molds with

sculptures surfaces. In addition, five-axis machines improve machining accuracy,

increase industrial productivity, and increase material removal rate. However, five-

axis machines are more susceptible to disturbance such as friction, cutting force,

measurement noise and modeling errors due to the increased flexibility in their

geometry. These disturbance result in a geometric errors of the machined surface

if these disturbance are not well compensated in the servo controller.

Sliding mode control (SMC), a class of variable structure control, is widely ac-

cepted as a powerful and effective control method with a strong robustness prop-

erty and fast error convergence characteristics for systems subjected to external

disturbances and parameters uncertainties. In the resent few decades, the SMC

with linear sliding surface technique for mechanical systems has been extensively

105
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studied by many researchers [63, 64]. Although, electromechanical servo systems

such as robotics and CNC machines should settle quickly without any overshoot

to reduce the consumed energy and guarantee high performance, which can not

be achieved with a linear sliding surface. Thus, employing of nonlinear sliding

surfaces is presented by Rimarez and Bolnar [71], however the design algorithm

was not provided in their study. In our previous work [98], we verified the effec-

tiveness of employing nonlinear sliding surface for ball screw feed drive systems.

In this study, we extend our previous work [98] to the five-axis machining to re-

duce the tool tip and tool orientation contour errors. The main advantage of the

proposed sliding surface is that it varies according to the contour error vector and

hence achieves a variable system closed-loop damping ratio. The variable system

closed-loop damping ratio results in low energy consumption because it provides a

fast response with small overshoot. In addition, the nonlinear sliding surface has

a simple geometric interpretation and its parameters can be tuned easily.

Because the conventional sliding mode control design includes the sign function in

the control action as a rigid switcher. It causes a discontinuous control action and

hence chattering phenomena will take place when the system operates near the

sliding surface which may lead the system performance to be unstable. One way

to eliminate the chattering is to introduce a thin boundary layer neighboring the

sliding surface [113]. The disadvantage of this method is finite steady state error

will exist. Another way is to attenuate the amplitude of the switching control

signal during the control system design [114]. However, the robustness properties

of the control system are affected and the transient performance will become poor.

Aghababa and Akbarithe proposed a different technique by replacing the discon-

tinuous sign function by the continuous tanh function with the adaptive gain and

steepness [115]. Zhihong and Habibi introduced an adaptive mechanism for rigid

robotic control systems to estimate the upper bound of the norm of input distur-

bance vector and they employed it as an adaptive controller to guarantee that the

effects of the arbitrary bounded input disturbances can be eliminated [116]. In

this chapter, in addition to the contouring controller with nonlinear sliding surface,

we design an adaptive sliding mode disturbance observer based on the concept of

model following and sliding mode compensator. In the proposed approach, the

gain matrix of the disturbance compensator are adapted in such a way that the

error between the actual plant output and plant model output converges to zero.
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7.2 Sliding Mode Contouring Controller Design

7.2.1 Dynamics of Five-Axis Machine

Generally, five-axis machines are represented in the drive-axis coordinate frame

ΣM by the following decoupled second order differential equations:

Mq̈ + Cq̇ = u− d,

M = diag{mi}, C = diag{ci}, i = (x, y, z, a, c),

u = [ux, uy, uz, ua, uc]
T . (7.1)

where mi(> 0), ci(≥ 0), vi and di are the equivalent inertia, equivalent viscous

friction coefficient, the control input, and the equivalent disturbance in the drive

axis i, respectively. The symbol diag{ai} denotes a diagonal matrix with elements

ai at the ith diagonal positions. The acceleration of the feed drive system in the

drive-axis coordinate frame ΣM , q̈(t), can be calculated from Eq. (6.6) as follows:

q̈ = J−1[ẅ − J̇ q̇]. (7.2)

From the definition of the tracking error ew and Eq. (7.1), the tracking error

dynamics of the cutting tool in the fixed coordinate frame ΣW is expressed as:

ëw = ẅref −M−1 [u− d− Cq̇] . (7.3)

where ẅref is the desired acceleration of the tool tip with respect to the tool

coordinate frame ΣW . The transformed error dynamics can be obtained by differ-

entiating Eq. (6.19) twice with respect to time as follows:

¨̃eF = F̃ T ëw + 2 ˙̃F T ėw + ¨̃F T ew + ¨̃hF . (7.4)

In addition, the dynamics for tool orientation tracking error is estimated by dif-

ferentiating of Eq. (6.21) twice with respect to time as follows:

¨̃ε = ¨̃θ − θ̈. (7.5)

Hence, in Eq. (7.5), the last two elements of the reference acceleration should be

replaced by the new desired reference acceleration ¨̃θ.
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7.2.2 Sliding Mode Contouring Controller Design with Non-

linear Sliding Surface

The most important step of sliding mode control design is the construction of the

sliding surface that is expected to response the desired control specifications and

performance. In this subsection, we present a design of sliding mode contouring

control with a nonlinear sliding surface for five-axis machining tasks. The advan-

tage of employing a nonlinear sliding surface is that it allows the damping ratio

of the closed-loop system to be changed according to the tool tip contour error

and tool orientation contour error nonlinearly. The low damping ratio is useful to

speed up the system response when the error is large. Conversely, the high damp-

ing ratio prevents the overshoot when the error becomes smaller. Based on the

dynamics of the feed drive system in Eq. (22), we propose the following nonlinear

sliding surface:

S =
[
Fs −ΨPs I

] [ eF̃
ėF̃

]
, S ∈ 
5×5.

S =
[
Fs −ΨPs I

]{[ F̃ T 0
˙̃F T F̃ T

][
ew

ėw

]
+

[
h̃F
˙̃hF

]}
. (7.6)

Here, F ∈ 
5×5 is the linear term of the sliding surface, which is chosen such that

the dominant poles have small damping ratios to achieve fast response. Ps ∈ 
5×5

is a positive definite matrix to adjust the final damping ratio. Ψ ∈ 
5×5 is a

diagonal matrix with non-positive nonlinear entries depending on the tool tip and

tool orientation contour errors, and is used to change gain of the sliding surface.

The choice of Ψ is not unique, and one possible choice is as follows:

Ψ = diag

{
−βi exp(−k̄iei) + exp(k̄iei)

2

}
,

ei =

{
ei if |ei| ≤ eui .

eui sgn(ei) if |ei| > eui , i = t, n, b, a, c.

(7.7)

where eui , βi and k̄i are positive tunning parameters used to adjust the maximum

bound, minimum bound and variation rate of the nonlinear function magnitude

|Ψ|, respectively. sgn(ei) represents the sign function of the error signal ei.
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The second step in the sliding mode control design procedure is to determine a

control law that forces the system dynamics on the sliding surface within finite

time and then remain on it for a subsequent time. We propose the following sliding

mode contouring controller:

u = MJ−1F

{
CTH

[
ėw

ẅref − J̇ q̇

]
+ CT Ḣ

[
ew

ėw

]
+ CTH

[ ˙̃hf
¨̃hf

]

− ˙̃ΨPs(F
T ew + h̃f ) +KsS

}
+ d̂+ Cq̇,

CT =
[
F −ΨPs I

]
, CT ∈ 
5×10,

H =

[
F̃ T 0
˙̃F T F̃ T

]
, H ∈ 
10×10. (7.8)

where Ks ∈ 
5×5 is a diagonal gain matrix with positive entries and d̂ is the

estimated disturbance by the disturbance observer discussed later.

7.2.3 Stability Analysis

In order to check the stability of the proposed design, the time derivative of the

following Lyapunov function candidate must be negative definite:

V =
1

2
STMS. (7.9)

The time derivative of the Lyapunov function candidate is

V̇ = STM

{
CTH

[
ėw

ëw

]
+ CT Ḣ

[
ew

ėw

]
+ CTH

[ ˙̃hf
¨̃hf

]
− ˙̃ΨP (F T ew

+ h̃f )

}
. (7.10)
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Substituting Eq. (7.4) into (7.10), we have

V̇ = STM

{
CTH

[
ėw

ẅref − JM−1(u− d− Cq̇)− J̇ q̇

]
+ CT Ḣ

[
ew

ėw

]

+ CTH

[ ˙̃hf
¨̃hf

]
− ˙̃ΨP (F T ew + h̃f )

}
.

(7.11)

using control law (7.8)

V̇ = −STMKsS + ST
[
(d− d̂)

]
. (7.12)

Thus, if the disturbance is well estimated by some disturbance observer, V̇ < 0

can be achieved.

7.2.4 Disturbance Observer Design

This subsection presents a disturbance observer to compensate for the model pa-

rameter variations and the external disturbance of the five-axis machine. The

disturbance observer is constructed as follows:

[
˙̂
d

˙̂v

]
= −

[
0 0

M−1 M−1C

][
d̂

v̂

]
+

[
0

M−1

]
u

+

[
Kd

Kv

]
(v̂ − v). (7.13)

where v ∈ 
5×1 is the velocity vector of the feed drive axes in the machine coordi-

nate frame ΣM (i.e. v = q̇ in Eq. (7.1)). d̂ ∈ 
5×1 and v̂ ∈ 
5×1 are the estimated

values of the disturbance and velocity of the feed drive axes. Kd ∈ 
5×5 and Kv

∈ 
5×5 are positive correction gains for estimation. Define the observation errors

as follows:

d̃ = d̂− d. (7.14)

ṽ = v̂ − v. (7.15)
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Substituting Eqs. (7.14) and (7.15) into (7.13) we have

˙̂
d = Kdṽ. (7.16)

˙̂v = Kvṽ +M−1(u− Cv̂ − d̂). (7.17)

In order to check the stability of the proposed disturbance observer, consider the

a Lyapunov function candidate

V1 =
1

2
d̃TM−1K−1

d d̃+
1

2
ṽT ṽ. (7.18)

The time derivative of V1 is

V̇1 = d̃TM−1K−1
d

˙̃d+ ṽT ˙̃v.

= d̃TM−1K−1
d (

˙̂
d− ḋ) + ṽT ( ˙̂v − v̇). (7.19)

By substituting Eqs. (7.1) and (7.19), equation (7.17) can be rewritten as

V̇1 = d̃TM−1K−1
d (

˙̂
d− ḋ) + ṽT

[
Kvṽ +M−1(u− Cv̂ − d̂)

− M−1(u− Cv − d)
]
.

= d̃TM−1K−1
d (

˙̂
d− ḋ) + ṽT

[
Kvṽ +M−1(−Cṽ − d̃)

]
. (7.20)

Assuming that the disturbance change very slowly and considering Eq. (7.16),

Equation (7.20) becomes

V1 = d̃TM−1ṽ + ṽT
[
Kvṽ +M−1(−Cṽ − d̃)

]
= −ṽTM−1Cṽ + ṽTKvṽ

= ṽT (Kv −M−1C)ṽ. (7.21)

Choosing the gain matrix such that Kv−M−1C becomes negative definite, V1 < 0

can be achieved.

7.3 Simulation Results

In order to demonstrate the effectiveness of the proposed approach, a computer

simulation has been conducted for the following five-axis tool path represented in
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Table 7.1: Five-axis machine parameter values

Parameter m c
X − axis 5.33 Vs2/m 25.175 Vs/m
Y − axis 4.545 Vs2/m 24.202 Vs/m
Z − axis 1.72 Vs2/m 71.647 Vs/m
A− axis 0.0023 Vs2/rad 0.022 Vs/rad
C − axis 0.01489 Vs2/rad 0.100 Vs/rad

the tool-coordinate system:

x = 0.01 sin(2πt)(m),

y = 0.01 sin(2πt)(m),

z = −0.01 cos(2πt)(m),

a =
π

9
sin (πt) (rad),

c =
π

18
cos (πt) (rad). (7.22)

The equivalent inertia and viscous friction coefficients of the five-axis machine are

given in Table 7.1. In addition a disturbance to the control input is applied so that

the actual control input uact = u+ddis, where ddis = [0.3, 0.3, 0.5, 0.05, 0.05]T sin(0.1t)

(V) and u is calculated from Eq. (7.8). In this simulation, we compared the

proposed controller with and without the disturbance observer under the same

controller parameters. The gain matrix Fs is set to diag{50, 150, 150, 100, 100}.
The parameters of the nonlinear function, β and k̄, are selected to be [10, 10, 10,

10, 10]T and [5, 50, 50, 0.3, 1]T , respectively. The gain matrix Ks is adjusted

to diag{10, 20, 20, 20, 20}. For the disturbance observer parameters, the gain

matrices Kd and Kv are selected to be diag{100 100 350 0.1 0.1} and diag{0.5 0.5

10 0.001 0.001}, respectively.

Figure 7.1 shows the transformed error (tangential, normal and bi-normal error

components (i.e. Eq. (6.19))) and the tool orientation contour error components

(i.e. Eq. (6.22)). It can be seen that the proposed controller with the disturbance

observer achieves a better performance.
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ẽ n
[μ
m
]

−50

50
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Figure 7.1: Simulation results; with/without disturbance observer
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7.4 Conclusions

In this chapter, we propose a novel sliding mode contouring controller with a non-

linear sliding surface for five-axis machining tasks. The controller aims to reduce

the tool tip and tool orientation contour errors. We design a disturbance observer

to compensate for the effect of modeling error and external disturbance. The

proposed controller with the disturbance observer results in a good performance

compared with the conventional controller in terms of tool tip and tool orientation

contour errors.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In modern CNC machines tools, robotics and industrial applications the need for

fast response and high precision becomes the concern of the machine tool control

community. In order to improve the tracking performance for feed drive systems,

and reduce the consumed energy, this dissertation presented sliding mode control

with nonlinear sliding surface. In addition, to improve the contouring performance

in multi-axis feed drive systems, the dissertation presented a new sliding mode

contouring controller with nonlinear sliding surface for biaxial, three-axis and five-

axis feed drive system. To examine the effectiveness of the proposed controllers,

several free-form contour following tasks experiments and simulation (single-axis,

biaxial, three-axis and five-axis feed drive system) were conducted.

The main contributions of the dissertation are as follows:

(1) A model-based predictive contouring controller for biaxial feed drive systems

based on error and control input coordinate transformation. To verify the

effectiveness of the proposed control approach, we conducted experiments

involving circular and non-circular reference trajectories. The results indi-

cated that the proposed controller can significantly improve the contouring

accuracy for smooth contour by adjusting the prediction horizon and perfor-

mance index weighting factors.
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(2) In order to improve the tracking performance in feed drive system and reduce

the consumed energy, we presented a sliding-mode controller with a non-

linear sliding surface for ball-screw feed drive systems. Then we have verified

the effectiveness of the proposed controller via experiments. Two cases were

considered: the first case showed the effectiveness of the proposed non-linear

sliding surface at reducing the tracking error, while the second one verified

the ability of the proposed approach to reduce the consumed energy and

control input variation. For the first case, the mean of the tracking error

magnitude was reduced by 35% without the need for additional electrical

energy or control input variation, while in the second case, the consumed

energy and control input variation were reduced by about 12.9% and 19.1%,

respectively.

(3) We have extend the proposed sliding mode controller with nonlinear sliding

surface to consider the contour following in biaxial feed drive systems. A

sliding mode contouring controller with nonlinear sliding surface based on

coordinate transformation is presented. The advantage of the proposed ap-

proach is that the sliding surface varies according to the contour error so

that the damping ratio of the system changes from its initial low value to its

final high value as the contour error changes from high value to small value

and vice versa so that the system simultaneously achieves low energy con-

sumption and a small settling time, resulting in a smaller error. To verify the

effectiveness of the proposed control approach, we conducted experiments for

elliptical reference trajectories. The results indicated that the proposed con-

troller can significantly improve the contouring accuracy for smooth contour

by adjusting the tunning parameters of the nonlinear function without any

additional electrical energy. In addition, the proposed approach reduced the

control input variance and consumed energy on average by about 45.7% and

18.9% (for x and y-axis, respectively) and 29% and 12.5% (for x and y-axis,

respectively), respectively. Moreover, and in order to improve the steady

state performance, the proposed sliding surface can be extended to include

integral action. In order to verify the effectiveness of the proposed nonlin-

ear sliding surface composite with integral action, a sliding mode contouring

controller is designed and compared to the the sliding mode controller with

proportional-integral-derivative (PID) sliding surface presented in [104]. The

proposed sliding surface reduces the contour error with small control input
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because of employing the nonlinear function that increases the system damp-

ing ratio when the contour error converges to a small magnitude to prevent

energy consumption. However, the controller with PID sliding surface pro-

vides constant damping ratio that is smaller than the optimal damping ratio

when the contour error magnitude is smaller and vice versa.

(4) In addition, a sliding mode contouring controller with nonlinear sliding sur-

face for three-dimensional machining based on iterative contour error ap-

proximation and a coordinate transformation approach is presented. The

effectiveness of the proposed control approach is demonstrated through ex-

periments and simulation involving a three-dimensional reference trajectory.

Two cases of simulation and experiments are conducted; the first experiment

is to show the effectiveness of the proposed nonlinear sliding surface a against

the linear sliding surface, while the second one is to show the effect of the

tuning parameter of the nonlinear term. The results indicated that the pro-

posed sliding surface achieve a good performance compared to linear sliding

surface. In addition, contouring performance can be significantly improved

by adjusting the tuning parameter of the nonlinear term.

(5) A new definition of tool orientation contour error for five-axis machining

tasks is proposed. Unlike the conventional definition of the tool orientation

contour error, the proposed model considers the synchronization between the

tool tip contour error and tool orientation contour error to avoid a mismatch

between the actual tool tip position and orientation. The proposed tool

orientation estimation model is compared with the conventional one under

the same tool tip contour error and tool tracking controller for a five-axis

machine. The experimental results demonstrated the effectiveness of the

proposed model to reduce the mismatch between the tool tip contour error

and tool orientation contour error which causes overcut or undercut during

machining.

(6) Finally, we proposed a novel sliding mode contouring controller with a non-

linear sliding surface for five-axis machining tasks. The controller aims to

reduce the tool tip and tool orientation contour errors. In addition, we pro-

posed a disturbance observer to compensate for the effect of modeling error

and external disturbance. The effectiveness of the proposed controller with

the disturbance observer has been verified through a computer simulation.

The proposed controller results in a good performance compared with the
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conventional controller in terms of tool tip and tool orientation contour er-

rors.

8.2 Future work

In order to improve the contouring performance in multi-axis feed drive systems,

several suggestions for future research are listed below:

(1) We have verified that employing a nonlinear sliding surface of a sliding mode

control results in improved tracking and performance. The selection of the

nonlinear function of the sliding surface is not unique. However, may be

there are other functions that may produce even improved results. Hence, we

consider the design of an optimal sliding surface based on the minimization

of the tracking/contour error and control input as future work. Based on

the above optimal sliding surface, a sliding mode controller will be designed

for the feed drive systems.

(2) In the proposed sliding mode control for single, two and three-axis feed drive

systems those are presented in Chapters 2, 4 and 5, respectively, the tradi-

tional sign function is still utilized in the controller design to drive the system

onto the sliding surface. This means that the chattering phenomenon will

exist particularly for the feed drive systems. However, such phenomenon

and its corresponding influences should be well addressed. Moreover, the

cutting force is an important source of disturbance causes contour error in

many industrial applications. In order to eliminate the chattering phenom-

ena duo to the discontinues control action and to estimate the cutting force,

we consider a design of an adaptive sliding mode disturbance compensator

based on the concept of model following control as future work.

(3) Implementation of the proposed approach presented in Chapter 7 for five-

axis machine. As presented in Chapter 7, the proposed contouring controller

reduce the contour error and compensate for disturbance. Hence the pro-

posed approach is expected to improve the contouring performance in the

five-axis machining tasks.

(4) Since the simulation and experimental results verified that employing the

nonlinear sliding surface reduces the control input variation and hence reduce
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the vibration of the cutting tool, we like to conduct actual cutting process

by multi-axis feed drive systems in a future work. It is expected that the

consumed energy by the feed drive systems will be much reduced because the

control input variation is very high during actual cutting process compared

to air cutting.
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Appendix A

To tune the servo behaviour of a closed-loop system, the polynomial P is intro-

duced, and two monic polynomials Qn and Qd with no common factors are used

to examine different performance indices [84]. The performance index (3.11) can

be written in terms of tracking errors and control inputs in X and Y direction as

follows:

J =

HP∑
j=Hm

ρcn(e
∗
xS − e∗yC)

T (e∗xS − e∗yC) + ρct(e
∗
xC + e∗yS)

T (e∗xC + e∗yS)

+ρn(u
∗
xS − u∗yC)

T (u∗xS − u∗yC) + ρt(u
∗
xC + u∗yS)

T (u∗xC + u∗yS),

e∗x = x̂∗ − x∗,

e∗y = ŷ∗ − y∗,

x∗ = [P (1)rx(k +Hm), ..., P (1)rx(k +HP )]
T ,

y∗ = [P (1)ry(k +Hm), ..., P (1)ry(k +HP )]
T ,

x̂∗ = [Px̂(k +Hm), ..., P x̂(k +HP )]
T ,

ŷ∗ = [P ŷ(k +Hm), ..., P ŷ(k +HP )]
T ,

u∗x = [u∗x(k), ..., u
∗
x(k +HP − d̂− 1)]T ,

u∗y = [u∗y(k), ..., u
∗
y(k +HP − d̂− 1)]T ,

u∗x(k) =
Qnx

Qdx

ux(k),

u∗y(k) =
Qny

Qdy

uy(k). (A.1)
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The vectors ūx and ūy consist of controller output sequence:

ūx = [ux(k), · · · , ux(k +Hc − 1)]T . (A.2)

ūy = [uy(k), · · · , uy(k +Hc − 1)]T . (A.3)

The relationships between the vectors ūx and ux and between ūy and uy are

ux = Mūx +Nǔx,

ǔx = [ux(k − 1), · · · , ux(k +Hc − nΦ − nP )]
T . (A.4)

uy = Mūy +Nǔy,

ǔy = [uy(k − 1), · · · , uy(k +Hc − nΦ − nP )]
T . (A.5)

where M and N are given in (3.16) and (3.17), respectively. The gradients of

(A.1) with respect to ūx and ūy are

∂J

∂ūx
= [(ρcnS

2 + ρctC
2)(x̂∗ − x∗) + SC(ρct − ρcn)(ŷ

∗ − y∗)]
∂x̂∗

∂ūx

+[(ρnS
2 + ρtC

2)u∗x + SC(ρt − ρn)u
∗
y]
∂u∗x
∂ūx

. (A.6)

∂J

∂ūy
= [(ρcnC

2 + ρctS
2)(ŷ∗ − y∗) + SC(ρct − ρcn)(x̂

∗ − x∗)]
∂ŷ∗

∂ūy

+[(ρnC
2 + ρtS

2)u∗y + SC(ρt − ρn)u
∗
x]
∂u∗y
∂ūy

. (A.7)

The partial derivatives ∂x̂∗/∂ūx, ∂ŷ∗/∂ūy, ∂u∗x/∂ūx, and ∂u
∗
y/∂ūy are

∂x̂∗

∂ūx
= MTGT

x . (A.8)

∂u∗x
∂ūx

= MTΦT . (A.9)

∂ŷ∗

∂ūy
= MTGT

y . (A.10)

∂u∗y
∂ūy

= MTΦT . (A.11)
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The relationships between x̂∗ and ūx, and between ŷ∗ and ūy are given by

x̂∗ = GxMūx +Hxŭx + Fxcx + ζx +GxNǔx. (A.12)

ŷ∗ = GyMūy +Hyŭy + Fycy + ζy +GyNǔy. (A.13)

The relationships between u∗x and ūx, and between u∗y and ūy are given by

u∗x = ΦMūx +Ωũx +ΦNǔx. (A.14)

u∗y = ΦMūy +Ωũy +ΦNǔy. (A.15)

where G, F and H, and ŭ and c are given by (3.13), (3.23) and (3.24), respectively.

A minimum of J with respect to ūx and ūy can be obtained by setting the gradients

(A.6) and (A.7) to zero. This leads to the controller in Eq. (3.12).





Bibliography

[1] C. Okwudire. Modeling and Control of High Speed Machine Tool Feed Drive.

University of British Columbia, Canada, The University of British Columbia,

2009.

[2] L. Alkafafi. Time and Frequency Optimal Motion Control of CNC Machine

Tools. Dr. Eng. Thesis, Technical University of Hamburg, Germany, New

York, 2013.

[3] N. Ushimi K. Tsuruta, K. Sato and T. Fujimoto. High-speed and high-

precision position control using a sliding mode compensator. Electrical En-

gineering in Japan,, 174(2):65–71, 2011.

[4] K. Erkorkmaz and Y. Altintas. High Speed CNC System Design. Part I:

Jerk Limited Trajectory Generation and Quintic Spline Interpolation . In-

ternational Journal of Machine Tools and Manufacture, 41(9):1323–1345,

2001.

[5] S. L. Omirou and A. K. Barouni. Integration of New Programming Ca-

pabilities Into a CNC Milling System. Robotics and Computer-Integrated

Manufacturing, 21:518–527, 2005.

[6] M.A. Mannan R. Ramesh and A.N. Poo. Tracking and contour error control

in cnc servo systems. International Journal of Machine Tools and Manufac-

ture, 45:301–326, 2005.

[7] K. Erkorkmaz and Y. Altintas. High Speed CNC System Design. Part III:

High Speed Tracking and Contouring Control of Feed Drives. International

Journal of Machine Tools and Manufacture, 41:1637–1658, 2001.

[8] Y. Nakatsu Y. Kakino, Y. Ihara and K. Okamura. The Measurement of

Motion Errors of NC Machine Tools and Diagnosis of Their Origins by Using

125



Bibliography A.0

Telescoping Magnetic Ball Bar Method. CIRP Annals-Manufacturing, 36:

377–380, 1987.

[9] A. G. Ulsoy and Y. Koren. Control of Machining Processes. ASME Journal

of Dynamic Systems, Measurement, and Control, 115, 1993.

[10] Masory O. Improving Contouring Accuracy of NC/CNC Systems with Ad-

ditional Velocity Feed Forward Loop. ASME Journal of Engineering for

Industry, 104:227–230, 1986.

[11] M. Tomizuka. Zero phase error tracking control. Journal of Dynamic Sys-

tems, Measurement, and Control, 109(1):65–68, 1987.

[12] Y. Altintas, K. Erkorkmaza, and W. Zhua. Sliding Mode Controller Design

for High Speed Feed Drives. CIRP Annals - Manufacturing Technology, 49:

265–270, 2000.

[13] A. Kamalzadeh and K. Erkorkmaz. Accurate Tracking Controller Design for

High-Speed Drives. International Journal of Machine Tools and Manufac-

ture, 47:1393–1400, 2007.

[14] H. Van Brussel and P. Van Den Braembussche. Robust control of feed drives

with linear motors. Annals of CIRP, 47(1):325–328, 1998.

[15] Y. Koren. Cross-coupled biaxial computer controls for manufacturing sys-

tems. ASME Journal of Engineering for Industry, 102:265–272, 1980.

[16] Y. S. Tarng Z.-MU Yeh and Y. S. Lin. Cross-Coupled Fuzzy Logic Control

for Multi-axis Machine Tools. Journal of Mechatronics, 7(8):663–681, 1997.

[17] Jia-Yush Y. H.C. Ho and S.S. Lu. A decoupled path-following control algo-

rithm based upon the decomposed trajectory error. International Journal

of Machine Tools and Manufacture, 39:1619–1630, 1999.

[18] G.T.-C. Chiu and M. Tomizuka. Contouring control of machine tool feed

drive systems: A task coordinate frame approach. IEEE Transactions on

Control Systems Technology, 9:130–139, 2001.

[19] K.-Han Su M.-Yang Cheng and S.-Feng Wang. Contour Error Reduction

for Free-Form Contour Following Tasks of Biaxial Motion Control Systems.

Robotics and Computer-Integrated Manufacturing, 25(2):323–333, 2009.



Bibliography 127

[20] Ke-Han Sua and M.-Yang Cheng. Contouring Accuracy Improvement Us-

ing Cross-Coupled Control and Position Error Compensator. International

Journal of Machine Tools and Manufacture, 48(12-13):144–145, 2008.

[21] C. C. Lo and C. Y. Chung. Tangential Contouring Controller for Biaxial

Motion Control. ASME, Journal of Dynamic Systems, Measurements, and

Control, 121:126–129, 1999.

[22] M.Y. Cheng and C.C. Lee. On Real-time Contour Error Estimation for

Contour Following Tasks. In Proc. IEEE/ASME International Conference

of Advanced Intelligent Mechatronics, pages 1047–1052, 2005.

[23] X. Ye, X. Chen, X. Li, and S. Huang. A Cross-Coupled Path Precompensa-

tion Algorithm for Rapid Prototyping and Manufacturing. The International

Journal of Advanced Manufacturing Technology, 20:39–43, 2002.

[24] Y. S. Tarng, H. Y. Chuang, and W. T. Hsu. Intelligent Cross-coupled Fuzzy

Feedrate Controller Design for CNC Machine Tools Based on Genetic Al-

gorithms. International Journal of Machine Tools and Manufacture, 39:

1673–1692, 1999.

[25] J.-Hua Chin, Y.-Ming Cheng, and J.-Huei Lin. Improving Contour Ac-

curacy by Fuzzy-Logic Enhanced Cross-Coupled Precompensation Method.

Robotics and Computer-Integrated Manufacturing, 20:65–76, 2004.

[26] Yeh SS and Hsu PL. Adaptive-Feedrate Interpolation for Parametric Curves

with a Confined Chord Error. Computer-Aided Design, 34(3):229–237, 2002.

[27] S. Jee and Y. Koren. Adaptive Fuzzy Logic Controller for Feed Drives of a

CNC Machine Tool. Journal of Mechatronics, 14:299–326, 2004.

[28] U. Itkis. Control Systems of Variable Structure. Wiley, New York, 1976.

[29] Utkin. Variable Structure Systems with Sliding Mode. IEEE Transactions

on Automatic Control, 22(2):212222, 1977.

[30] J. Guldner and V.I. Utkin. Tracking the gradient of artificial potential fields:

Sliding mode control for mobile robots. Modern Machinery Science Journal,

63(3):417–432, 1996.



Bibliography A.0

[31] O.M.E. El-Ghezawi A.S.I. Zinober and S.A. Billings. Multi variable structure

adaptive model-following control systems. Proceedings of IEE, 129:6–12,

1982.

[32] J.K. Hedrick J.J.E. Slotine and E.A. Misawa. On sliding observers for non-

linear systems. Transactions of the ASME: Journal of Dynamic Systems

Measurement and Control, 109:245–252, 1987.

[33] S. Drakunov and V. Utkin. Sliding mode observers. tutorial. In Proceedings

of the 34th Conference on Decision and Control,New-Orleans, LA,, 1995.

[34] B. Drazenovic. The invariance conditions in variable structure systems. Au-

tomatica, 5(3):287–295, 1969.

[35] K. Furuta. Sliding mode control of a discrete system. Systems and Control

Letters, 14:145–152, 1990.

[36] H. Sira-Ramirez. Differential geometric methods in variable-structure con-

trol. International Journal of Control, 48(4):1359–1390, 1988.

[37] S.H. Zak R.A. De Carlo and G.P. Matthews. Variable structure control of

nonlinear variable systems: A tutorial. Proceedings of IEEE, 76:212–232,

1988.

[38] C. Edwards and S. Spurgeon. Sliding Mode Control: Theory and Applica-

tions. Taylor and Francis, 1998.

[39] U. Itkis. Control Systems of Variable Structure. Wiley, New York, 1976.

[40] V.I. Utkin. Sliding Modes in Control Optimization, Communication and

Control Engineering Series. Springer-Verlag, 1992.

[41] W. Perruquetti and J.-P. Barbot. Sliding Mode Control In Engineering.

Springer-Verlag, Berlin Heidelberg, 1 edition, 2009.

[42] F. Deepak B. Bandyopadhyay and K.-S. Kim. Sliding Mode Control Using

Novel Sliding Surfaces. Springer-Verlag, Berlin Heidelberg, 1 edition, 2009.

[43] I. Eker. Sliding mode control with pid sliding surface and experimental

application to an electromechanical plant. ISA Transactions, 45(1):109–118,

2006.



Bibliography 129

[44] Banda S. Lin Z, Pachter M. Toward improvement of tracking performance

nonlinear feedback for linear systems. International Journal of Control, 70:

1–11, 1998.

[45] S. Mondal and C. Mahanta. Nonlinear sliding surface based second order

sliding mode controller for uncertain linear systems. Commun. Nonlinear

Sci. Numer. Simulat., 16:3760–3769, 2011.

[46] R. Imani-Asrai S.T. Newman, A. Nassehi and V. Dhokia. Energy efficient

process planning for cnc machining. CIRP Journal of Manufacturing Science

and Technology, 5(2):127–136, 2012.

[47] J.B. Dahmus and T.G. Gutowski. An Environmental Analysis of Machin-

ing. In Proceedings of ASME International Mechanical Engineering Congress

R&D Exposition, page 1319, 2004.

[48] A. Vijayaraghavan and D. Dornfeld. Automated monitoring of machine

tools. CIRP Annals, 59(1):2124, 2010.

[49] A. Dietmair and A. Verl. Energy consumption forecasting and optimisation

for tool machines. Modern Machinery Science Journal, page 6267, 2009.

[50] R. Bulpett-A.W. Anson M. Zolgharni, B.J. Jones and J. Franks. Energy

efficiency improvements in dry drilling with optimized diamond-like carbon

coatings. Diamond & Related Materials, 17:17331737, 2008.

[51] A. El Khalick M. Contouring Controller Design for Multi-Axis Feed Drive

Systems. Master of Engineering Thesis, Toyohashi University of Technology,

Japan, 2010.

[52] K. K. Varanasi and S. A. Nayfeh. Dynamics of lead-screw drives: Low-order

modeling and experiments. Transactions of ASME, Journal of Dynamic

Systems, Measurement, and Control, 126(2):388–396, 2004.

[53] M. Weck and G. Ye. Sharp corner tracking using the ikf control strategy.

Annals of CIRP, 39(1):437–441, 1990.

[54] K.L. Hillsley and S. Yurkovich. Vibration control of a two-link flexible robot

arm. Proceedings of the IEEE International Conference on Robotics and

Automation, 3:2121–2126, 1991.



Bibliography A.0

[55] J.M. Hyde and W.P. Seering. Using input command pre-shaping to suppress

multiple mode vibration. Proceedings of the IEEE International Conference

on Robotics and Automation, 3:2604–2609, 1991.

[56] A.D. Smith. Ph.D. Thesis: Wide Bandwidth Control of High-Speed Milling

Machine Feed Drives. University of Florida, Department of Mechanical En-

gineering, Florida, 1999.

[57] A. Illarramendi J.L. Azpeitia M. Zatarain, I. Ruiz de Argandoa and

R. Bueno. New control techniques based on state space observers for im-

proving the precision and dynamic behaviour of machine tools. Annals of

CIRP, 54(1):393–396, 2005.

[58] Y. Altintas. Manufacturing automation: Metal cutting mechanics, machine

tool vibrations, and cnc design. Cambridge University Press, 2000.

[59] P. Dupont H.B. Armstrong and D.W.C Canudas. A survey of models, analy-

sis tools and compensation methods for the control of machines with friction.

Automatica, 30(7):1083–1138, 1994.

[60] K. Erkorkmaz and A. Kamalzadeh. High bandwidth control of ball screw

drives. Annals of the CIRP, 55(1):393398, 2006.

[61] B. Veselic and B. P.-Drazenovic. High-performance position control of in-

duction motor using discrete-time sliding-mode control. IEEE Transaction

on Industrial Electronics, 55(11):3809–3817, 2008.

[62] W. Gao J.Y. Hung and J.C. Hung. Variable structure control: A survey.

IEEE Transaction on Industrial Electrons, 4o:2 – 22, 1993.

[63] J. Slotine and S. Sastry. Tracking control of nonlinear systems using sliding

surfaces with application to robotic manipulators. International Journal of

Control, 28(2):465–492, 1983.

[64] A. Rojko and K. Jezernik. Sliding-mode motion controller with adaptive

fuzzy disturbance estimation. IEEE Transaction on Industrial Electrons, 51

(5):963–971, 2004.

[65] K. Maruyama H. Hashimoto and F. Harashima. A microprocessor-based

robot manipulator control with sliding mode. IEEE Transaction on Indus-

trial Electronics, IE-34(1):1118, 1987.



Bibliography 131

[66] O. Kaynak K. Erbatur and A. Sabanovic. A study on robustness property

of sliding mode controllers: A novel design and experimental investigations.

IEEE Transaction on Industrial Electronics, 46(5):10121018, 1999.

[67] W. Chen and M. Saif. Output feedback controller design for a class of mimo

nonlinear systems using high-order sliding-mode differentiators with applica-

tion to a laboratory 3-d crane. IEEE Transaction on Industrial Electronics,

55(1):39853997, 2008.

[68] M.J. Jang C.L. Chen and K.C. Lin. Modeling and high-precision control of

a ball-screw-driven stage. Precision Engineering, 28:483495, 2004.

[69] J. Swevers P. Braembussche and H. Brussel. Design and experimental valida-

tion of robust controllers for machine tool drives with linear motor. Mecha-

tronics, 28:545–562, 2004.

[70] H.-T. Yau and J.-J. Yan. Adaptive sliding mode control of a high-precision

ball-screw-driven stage. Nonlinear Analysis: Real World Applications, 10:

14801489, 2009.

[71] H. S-Ramirez and M. R-Bolivar. Sliding mode control of dc-to-dc power

converters via extended linearization. IEEE Transactions on Circuits and

Systems, 41(10):652–661, 1994.

[72] M. Tomizuka A. Jabbari and T. Sakaguchi. Robust Nonlinear Control of

Positioning Systems with Friction. In Proceedings of the American Control

Conference, USA, pages 1097–1102, 1990.

[73] J.-J. Lee. Adaptive tracking controller of dc servomotors. IEEE Transactions

on Consumer Electronics, 37(4):905–912, 1991.

[74] V.-K. Chu and M. Tomizuka. Sliding Mode Control with Nonlinear Sliding

Surfaces. In International Federation of Automatic Control Congress, pages

481–486, 1996.

[75] H. Temeltas. A Fuzzy Adaptation Technique For Sliding Mode Controllers.

In IEEE International Symposium on Industrial Electronics, volume 1, pages

110–112, 1998.

[76] K. Erkorkmaz and Y. Altintas. High speed cnc system design. part ii: Mod-

eling and identification of feed drives. International Journal of Machine

Tools and Manufacture, 41:14871509, 2001.



Bibliography A.0

[77] J.G. Bekker, I.K. Craig, and P.C. Pistorius. Model Predictive Control of

an Electric Arc Furnace off-gas Process. Control Engineering Practice, 8:

445–455, 2002.

[78] D. Dumur P. Boucher and K.F. Rahmani. Generalised predictive cascade

control (gpcc) for machine tool drives. Annals of the CIRP, 39(1):357–360,

1990.

[79] X. Zhang, K. Zhu, and X. Yang. Cross-Coupled Model Predictive Control for

Multi-axis Coordinated Motion Systems. In 2009 International Conference

on Advanced Computer Control, pages 158–162, 2009.

[80] D. Dumur, M. Susanu, and M. Aubourg. Complex Form Machining with

Axis Drive Predictive Control. CIRP Annals - Manufacturing Technology,

57(1):399–402, 2008.

[81] M. Susanu and D. Dumur. Using Predictive Techniques within CNCMachine

Tools Feed Drives. In IEEE Conference on Decision and Control, pages

5150–5155, 2005.

[82] C.-Li Chen and K.-Chen Lin. Observer-Based Contouring Controller Design

of a Biaxial Stage System Subject to Friction. IEEE Transactions on Control

Systems Technology, 16(2):322–329, 2008.

[83] C. Hu, B. Yao, and Q. Wang. Coordinated Adaptive Robust Contouring

Controller Design for an Industrial Biaxial Precision Gantry With Cogging

Force Compensations. IEE Transactions on Industrial Electronics, 57(5):

322–329, 2010.

[84] R. Soeterboek. Predictive Control A Unified Approach. Prentice Hall Inter-

national Limited, United Kingdom, 1992.

[85] M. Tomizuka. Zero Phase Error Tracking Algorithm for Digital Control.

ASME Jornal of Dynamic Systems, Measurements, and Control, 109:65–68,

1987.

[86] C. Mohtadi D.W. Clarke and P.S. Tuffs. Generalized predictive control: Part

i. the basic algorithm. Automatica, 23(2):137–148, 1987.

[87] C. Mohtadi D.W. Clarke and P.S. Tuffs. Generalized predictive control: Part

ii. extensions and interpretations. Automatica, 23(2):149–160, 1987.



Bibliography 133

[88] Y. Li and Q. Xu. Development and assessment of a novel decoupled xy paral-

lel micro-positioning platform. IEEE/ASME Transaction on Mechatronics,

15(1):125–135, 2010.

[89] J. De Schutter D. Torfs and J. Swevers. Extended bandwidth zero phase error

tracking control of nonminimal phase systems. Journal of Dynamic Systems,

Measurement and Control, Transactions of the ASME, 14:347–351, 1992.

[90] B. Yao C. Hu and Q. Wang. Coordinated adaptive robust contouring con-

troller design for an industrial biaxial precision gantry. IEEE/ASME Trans-

action on Mechatronics, 15(5):728–735, 2010.

[91] S.-S. Yeh and P.-L. Hsu. Estimation of the contouring error vector for the

cross-coupled control design. IEEE/ASME Transaction on Mechatronics, 7

(1):4451, 2002.

[92] H.-L. Liu S.-L. Chen and S. C. Ting. Contouring control of biaxial systems

based on polar coordinates. IEEE/ASME Transaction on Mechatronics, 7

(3):329345, 2002.

[93] T. Nakamura N. Uchiyama and H. Yanagiuchi. The effectiveness of con-

touring control and a design for three-dimensional machining. International

Journal of Machine Tools and Manufacture, 49:876–884, 2009.

[94] C. Hu B. Yao and Q. Wang. An orthogonal global task coordinate frame

for contouring control of biaxial systems. IEEE/ASME Transactions on

Mechatronics, 17(4):622–634, 2012.

[95] B. Yao C. Hu and Q. Wang. Coordinated adaptive robust contouring control

of an industrial biaxial precision gantry with cogging force compensations.

IEEE Transaction on Industrial Electrons, 57(5):17461754, 2010.

[96] T. H. Ho and K. K. Ahn. Speed control of a hydraulic pressure coupling drive

using an adaptive fuzzy sliding-mode contro. IEEE/ASME Transactions on

Mechatronics, 17(5):976–986, 2012.

[97] M. Zeinali A. Fazeli and A. Khajepour. Application of adaptive sliding mode

control for regenerative braking torque control. IEEE/ASME Transactions

on Mechatronics, 17(4):745–755, 2012.



Bibliography A.0

[98] N. Uchiyama A. El Khalick M. and S. Sano. Reduction of Control Input

Variance of Feed Drive Systems Using Sliding-Mode Control with Non-linear

Sliding Surface. In IEEE International Conference on Mechatronics, Vi-

cenza, Italy, pages 5150–5155, 2013.

[99] Dong Sun Y.X. Su and B.Y. Duan. Design of an enhanced nonlinear pid

controller. Mechatronics, 15:1005–1024, 2005.

[100] J. Yang and Z. Li. A novel contour error estimation for position loop-based

cross-coupled control. IEEE/ASME Trans. Mechatronics, 16(4):643–655,

2011.

[101] B. Yao C. Hu and Q. Wang. Contouring Control of Biaxial Based on a

New Task Coordinate Frame. In IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, Canada, 2010.

[102] C.-C. Peng and C.-L. Chen. Biaxial contouring control with friction dynam-

ics usinf a contour index approach. International Journal of Machine Tools

and Manufacturing, 47:1542–1555, 2007.

[103] George T.C. Chiu and B. Yao. Adaptive Robust Contour Tracking of Ma-

chine Tool Feed Drive Systems - A Task Coordinate Frame Approach. In

Proc. of American Control Conference, volume 5, pages 2731–2735, 1997.

[104] B. Sencer and Y. Altintas. Modeling and Control of Contouring Errors

for Five-Axis Machine Tools Part II: Precision Contour Controller Design.

ASME, Journal of Manufacturing Science and Engineering, 131:031007,

2009.

[105] Chih-Ching Lo. Three-axis contouring control based on a trajectory coordi-

nates basis. JSME international journal, 41(2):242–247, 1998.

[106] A. El Khalick M. and N. Uchiyama. Contouring controller design based on

iterative contour error estimation for three-dimensional machining. Robotics

and Computer-Integrated Manufacturing, 27:802–807, 2011.

[107] Einar Hille S.L Salas and John T. Anderson. John Wiley and sons, Inc., 5

edition.

[108] X. Zhang, K. Zhu, and X. Yang. Friction Compensator for Feed Drive

Systems Consisting of Ball Screw and Linear Ball Guide. In The 35th In-

ternational MATADOR Conference, volume 13, pages 311–314, 2007.



Bibliography 135

[109] C.-C. Lo. A Tool-Path Control Scheme for Five-Axis Machine Tools. Inter-

national Journal of Machine Tools and Manufacturing, 41(1):79–88, 2002.

[110] E. L. J. Bohez. Compensating for Systematic Error in 5-Axis Machining.

Computer-Aided Design, 34:391–403, 2002.

[111] B. Sencer, Y. Altintas, and E. Croft. Modeling and Control of Contouring

Errors for Five-Axis Machine Tools Part I: Modeling. ASME, Journal of

Manufacturing Science and Engineering, 131:031006, 2009.

[112] E.L.J. Bohez. Five-Axis Milling Machine Tool Kinematic Chain Design and

Analysis. International Journal of Machine Tools and Manufacture, 42:505–

520, 2002.

[113] W. Gao J.Y. Humg and J.C. Hung. Variable structure control: A survey.

IEEE Transaction on Industrial Electrons, 40:2–22, 1993.

[114] Y.K. Wong H.F. Ho and A.B. Rad. Adaptive fuzzy sliding mode control

with chattering elimination for nonlinear siso systems. Simulation Modelling

Practice and Theory, 17(7):1199–1210, 2009.

[115] M. Aghababa and M. Akbari. A chattering-free robust adaptive sliding

mode controller for synchronization of two different chaotic systems with

unknown uncertainties and external disturbances. Applied Mathematics and

Computation, 218(9):5757–5768, 2012.

[116] M. Zhihong and D. Habibi. A robust adaptive sliding-mode control for rigid

robotic manipulators with arbitrary bounded input disturbances. Journal of

Intelligent and Robotic Systems, 17:371–386, 1996.





Publications

The contents of this thesis are the results of original research and have not been

submitted for a higher degree to any other university or institution.

Much of the work presented in this thesis has been published as journal or confer-

ence papers. Following is a list of these papers.

International Journal Papers

(1) A. El Khalick M. and N. Uchiyama, ”Model Predictive Approach to Pre-

cision Contouring Control for Feed Drive Systems,” Journal of Computer

Science, vol. 6, no. 8, pp. 844-851, 2010. (Impact Factor: 1.350 )

(2) A. El Khalick M. and N. Uchiyama, ”Discrete-Time Model Predictive Con-

touring Control for Biaxial Feed Drive Systems and Experimental Verifica-

tion,” Mechatronics, vol. 21, no. 6, pp. 918-926, 2011. (5-Year Impact

Factor: 1.496 )

(3) A. El Khalick M. and N. Uchiyama, ”Contouring Controller Design Based

on Iterative Contour Error Estimation for Three-Dimensional Machining,”

Journal of Robotics and Computer-Integrated Manufacturing, vol. 27, no.

4, pp. 802-807, 2011. (5-Year Impact Factor: 1.668 )

(4) A. El Khalick M., N. Uchiyama and S. Sano, ”Sliding Mode Contouring Con-

trol Design Using Nonlinear Sliding Surface for Three-Dimensional Machin-

ing,” International Journal of Machine Tools and Manufacturing, vol. 65,

pp. 8-14, 2012. (5-Year Impact Factor: 2.564 )

(5) A. El Khalick M. and N. Uchiyama, ”Estimation of Tool-Orientation Con-

tour Error for Five-Axis Machining,” Journal of Robotics and Computer-

Integrated Manufacturing, vol. 29(5), pp. 271-277, 2013. (5-Year Impact

Factor: 1.668 )

137



Publications A.0

(6) A. El Khalick M., N. Uchiyama and S. Sano, ”Reduction of Electrical En-

ergy Consumed By Feed Drive Systems Using Sliding-Mode Control with

A Non-linear Sliding Surface” IEEE Transaction on Industrial Electronics,

Accepted. (Impact Factor: 5.160 )

International Conferences Papers

(1) A. El Khalick M. and N. Uchiyama, ”Model Predictive Contouring Control

for Biaxial Feed Drive Systems,” Proceedings of the 2010 International Sym-

posium on Robotics and Intelligent Sensors, Nagoya, Japan, 2010.

(2) A. El Khalick M. and N. Uchiyama, ”Model Predictive Contouring Con-

trol for Biaxial Feed Drive Systems Based on Coordinate Transformation,”

Proceedings of the 2010 International Symposium on Flexible Automation,

ASME, Tokyo, Japan, 2010.

(3) A. El Khalick M. and N. Uchiyama, ”Synchronization of Tool Tip and Tool

Orientation Contour Errors in Five-Axis Machining,” The 2012 American

Control Conference (ACC), Montreal, Canada. 2012.

(4) A. El Khalick M., N. Uchiyama and S. Sano, ”Reduction of Control Input

Variance of Feed Drive Systems Using Sliding-Mode Control with Non-linear

Sliding Surface” IEEE International Conference on Mechatronics, Vicenza,

Italy, 2013.

(5) N. Uchiyama, Y. Ogawa, A. El Khalick M. and S. Sano, ”Energy Saving

Control in Five-Axis Machine Tools Using Contouring Control,” The 2013

European Control Conference, Zurich, Switzerland, 2013.

(6) A. El Khalick M., N. Uchiyama and S. Sano, ”Sliding Mode Contouring Con-

troller with a Nonlinear Sliding Surface and a Disturbance Observer for Five-

Axis Machining Tasks,” The 7th International Conference on Leading Edge

Manufacturing in 21st Century, Miyagi, Japan, 2013.

Domestic Conferences Papers

(1) A. El Khalick M., N. Uchiyama and S. Sano, ”Sliding Mode Contouring Con-

trol for Feed Drive Systems Using Nonlinear Sliding Surface,” The 54th japan

Joint Automatic Control Conference, Toyohashi, Japan, 2011.



Publications 139

Abd El Khalick Mohammad Ahmad

Toyohashi University of Technology

November, 2013


