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Abstract 
 

 

Inattentive driving is an important safety problem. More than 25% of crashes are 

attributed to this aspect. Apart from the driver situation, the increased use of 

in-vehicle infotainment systems (IVIS) such as navigation systems, entertainment 

devices, real-time information systems and communications equipment in modern 

automobiles along with personal typical tasks such as eating and talking to 

passengers has further aggravated this problem. One promising solution for this 

problem can be realized by detection and estimation of driver inattention in real-time 

and then using the information together with advanced driver support systems 

(ADSS) to compensate the effects of the inattention or re-direct back the focus of the 

driver to the primary driving tasks. Therefore, the main purpose of this dissertation is 

to study a new robust method capable of detecting inattentive driving in real driving 

situation. 

In the first part of this thesis (Chapter 3), a new method for the analysis of driver 

inattention using the driving operation signals is discussed. The proposed method 

involved with constructing a Nonlinear Autoregressive Exogenous (NARX) model as 

a driver-dependent modeling framework to capture the nominal behavior of the 

drivers. The models are then trained using the experimental data, validated, and used 

to predict the hypothetical nominal action of the drivers when they are actually 

driving with secondary tasks. The differences between the predicted nominal and 

actual distracted actions are analyzed to gain insights into how the secondary tasks 

affect the driver attention. Through assessment of the model residuals, the results 

demonstrate that the proposed method can differentiate and classify clearly between 

neutral and inattentive driving.  

In the second part (Chapter 4), a novel method to detect inattentive driving 

automatically and systematically is proposed. Next, a comprehensive robust system 

for inattentive driving detection is developed. Here, the term ‘robust’ means that the 

system still could execute the detection process even though one of its inputs is 

absent (faulty sensor). In the studies of other researchers, the proposed models are 



usually dependent on the input, where the model cannot predict the output correctly, 

if one of the inputs is not available and hence the overall system is suspended. To 

realize the robust detection system, inputs (sensors) diagnosis method is proposed 

using Dynamical Relational Network (DRN) to verify the state of the inputs (sensors). 

Based on the input available (healthy sensor), an appropriate model is chose to 

evaluate the driver inattention. Through this method the overall system reliability is 

enhanced and high-accuracy detection of inattentive driving is achieved even though 

one of the sensors in the system is malfunction. In conclusion, this study has 

proposed a robust system for inattentive driving detection. The results demonstrate 

that this system can classify driver inattention in real driving environment and can 

change its behavior based on available inputs.  
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Chapter 1 
 
Introduction 
 
1.1 Background 

 

 Driving is a common activity for many people, making driving safety an 

important issue in everyday life. Despite of safety improvements in road and vehicle 

design, the total number of road accidents still increases. The World Health Organization 

(WHO) reported that that every year around the world, more than 1.24 million people are 

died, while 50 million others are injured as a result of road accidents [1]-[4]. If this trends 

remains, report in [5] suggest that by 2030 road traffic deaths will become the fifth 

leading cause of death. Moreover, the costs of dealing with the consequences of these 

road traffic crashes are estimated at over USD100 billion a year [6]. The increasing 

number of road accidents and fatalities demonstrates that driving safety represents a 

persistent and important issue. Reducing crash involvement would benefit millions of 

people across the world.    

  

 Although most crashes are attributed to multiple causes, driver error represents a 

dominant one because drivers are responsible for operating vehicles and avoiding crashes 

[7]-[9]. Among all driver error, the studies found that the negligence of the driver is one 

of the biggest factors that cause accidents [10]-[11]. Miyaji et. al. [12], Hamada [13] and 

National Police Agency in Japan [14] reported in Japan that more than 25% of accidents 

are caused by drivers who lose concentration while driving a vehicle on the road. 

Furthermore, in 2006, National Highway Traffic Safety Administration (NHTSA) stated 

that 80% of crashes and 65% of near-crashes were caused by inattentive driving. The term 
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inattention is usually used to refer to a driver state corresponding either to drowsiness or 

distraction. Drowsiness could be defined as the withdrawal of attention due to the 

physical condition of the driver [15]-[17]. While, distraction is defined as a shift in 

attention from the primary task (driving) to another task [18]-[21]. The problem becomes 

worse with increasing variety of additional infotainments system installed in vehicle that 

could cause the driver focus on driving distracted [22]-[24]. Therefore, the study of driver 

inattention is a key to finding a solution to solve in order to reduce the number of road 

accidents. 

 

 There are several approaches and methods have been employed by the research 

community for monitoring and detection of driver inattention. These approaches can be 

broadly divided into three groups: physiological measures [25]-[42], computer vision 

approaches [43]-[56] and driving performance measures [58]-[62]. The first approach 

utilizes physiological changes of driver for analysis of driver inattention. Physiological 

measures utilize biological signals such as the EOG, EEG, ECG, etc., which are collected 

through electrodes contacting the human body [9-15]. Then, signal processing methods 

were used to find the relationship between these signals and driver state. Heart rate is 

easily determined through Electrocardiogram (ECG) signal and it is used for detecting the 

driver’s inattention. The heart rate increases by acceleration of the sympathetic nerve 

when a driver is imposed with cognitive tasks while driving [35]-[36]. When a driver is in 

a state of cognitive distraction, the effects of conversation, thinking, or other factors 

besides driving has a significant impact in the heart rate, thereby decreasing the RR 

Interval [37]. 

 

 The EEG signal has various frequency bands which includes the delta band 

(0.5–4 Hz) corresponding to the sleep activity, the theta band (4–8 Hz) related with 

drowsiness, the alpha band (8–13 Hz) corresponding to relaxation and creativity, and the 

beta band (13–25 Hz) corresponding to activity and alertness [38]-[39]. Inattention is 

related to Beta band and so researchers have found features of beta band to find if the 

driver is inattentive. In one of the experiments, the power spectrum of the Beta band was 

found to be increasing as the driver got inattentive [40. C.T. Lin et al. [34] used 

Electroencephalography (EEG) power spectra to evaluate the brain dynamics in 
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time-frequency domains, and suggested that theta band has some correlation with driver 

inattention.  

 

 Skin conductance increased when the driver was distracted through both visual 

and cognitive means [41]. Avinash et al. asked the drivers to answer a set of prerecorded 

questions through a cell phone to stimulate cognitive distraction and then they were asked 

to send short message service (SMS) during driving. Considerable increase in skin 

temperature (ST) in the supraorbital region was observed on all participants during both 

cognitive as well as visual distractions. This ST change is an outcome of altered blood 

supply to the supraorbital, which is an indirect measurement of mental activities [42]. 

Although these methods can provide more accurate results, they are impractical in real 

driving situations because they always require attachment of devices to the driver.  

 

The second approach, computer vision is more practical as it is non-intrusive to 

the driver; hence many active studies have been conducted in this field and a number of 

comprehensive methods have been accomplished so far. Eye movement metrics, such as 

eye blinks, pupil dilation and gaze angle have been used to find distraction [43]-[44]. The 

eye blink, the rapid eye closing and opening of the eyelid, is believed to be an indicator of 

both visual and cognitive distraction. It was found out that the eye blink duration or blink 

frequency increased substantially during the driver distraction [44]-[46]. The pupil is the 

part of the iris that allows light to enter the retina. Besides light, the pupil dilates when 

mental or cognitive effort is given. It was observed that the pupil was dilated and the 

diameter of average pupil size increased by 15 % when the driver was distracted [44]. 

Suzuki et. al. [56] in his study, detect eyelids using a neural network from driver’s face 

image, which captured by a camera placed in car, and proposed a method to estimate 

driver alertness based on the movement of eyelids.  

 

Gaze angle is used as a metric to find if the concentration of the driver was on 

driving or if he/she was taking more time in interacting with IVIS or if he/she was 

viewing side mirrors properly. It was noted that, when the driver was distracted, glancing 

at instruments and mirrors decreased significantly [43]. The gaze position and head 

position was measured in the experiment conducted by Engstorm et al. and it was found 



 

 

Chapter 1 Introduction 

   4

that the Standard Deviation (SD) of gaze angle decreased substantially when the driver 

was distracted visually and cognitively [41]. In [51] the authors proposed the use of 

Active Appearance Models to model the driver’s face and extract seven characteristic 

points. Facial analysis was carried using these characteristic points in order to detect 

driver drowsiness. Dinges et al. [33] proposed one of the most widely accepted metrics 

known as Percentage Eyelid Closure (PRECLOS) for the detection and evaluation of 

drowsiness through computer vision approach.  

 

On the third approach, researchers are interested to study the effects of 

inattention driver on driving performance. Similar to computer vision approach, this 

approach also have the advantage of being non-intrusive to the driver compared with the 

first approach. Ishikawa et al. [58] proposed a method to detect inattentive driving with 

secondary tasks using driving behavior signals modeled with a Bayesian network. They 

showed that it is effective to consider driving situations when detecting distracted driving 

involving secondary tasks. Here the primary task is normal driving operation and 

secondary tasks such as talking on a cell phone, reading road sign and searching song on 

the radio are imposed on the driver. However, the proposed method only can achieve up 

to 76% of detection rate and need for the improvement. Kuroyanagi et al. [59], 

furthermore, analyzed hazardous situations in actual driving environment based on level 

of scene danger and driver response. They confirmed that driver response decrease while 

driving with secondary tasks. This shows that secondary task can be a good tool to create 

distraction to driver during actual driving task. In addition to low detection rate, the 

proposed method uses following distance (distance between car) as one of the inputs to 

the model. Following distance is vulnerable to the external environment such as heavy 

rain, snow, etc., which will cause the system capability to be reduced. Pilutti et al. [57] 

studied the relation between drowsiness and driving performance. However, only data 

from simulated environment were used in the study because of the risks of involving 

drowsy drivers in real situation. Moreover, most of the studies described above only 

focused on detecting inattention caused by drowsiness and fatigue. Inattention caused by 

the distraction (cognitive and visual) has been less explored and discussed. 
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 Accurately identifying driver inattention using real driving data is a critical 

challenge in developing driver support systems in order to minimize road accidents. 

However, to our knowledge, the drawbacks of previous studies can be summarized as 

follow: 

 

1. Most of the previous studies only use data from simulated environment because of 

the risks of involving inattentive drivers in real situation.  

2. Methods using physiological measures are not practical to be implemented in real 

driving situations because they always require attachment of devices to the driver. 

3. Most of the studies that used computer vision approach, only focused on detecting 

inattention caused by drowsiness and fatigue. Inattention caused by the cognitive 

distraction has been less explored and discussed. 

4. Some researchers are study the detection of inattention driver using driving 

performance measures since this approach have the advantage of being 

non-intrusive to the driver. However, the detection rate of the proposed method is 

low and need for the improvement. Furthermore, some of the proposed method 

uses external signal (e.g. following distance) as one of the inputs to the model, 

which vulnerable to the external environment such as heavy rain, snow, etc., that 

will result the system capability to be reduced. 

 

 

1.2 Objectives and Contributions 

  

 In this study, in order to improve above problem, a new robust system that can 

perform driver inattention caused by cognitive distraction has been developed. As shown 

in Figure 1.1, the flowchart of the detection system proposed in this research is presented.  

The overall objective of this thesis is to study and develop detection method for 

inattentive driving caused by cognitive. To achieve this overall goal, the following 

objectives will be accomplished. 

 

1. To study and investigate the relation between drivers cognitive distraction and 
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driving performance signal. 

2. To proposed a new method to detect inattentive driving cause by cognitive 

distraction. 

 

 

 

Figure 1.1: The flowchart of the new inattentive driving detection system 

 

The contributions of this thesis include: 

1. Experiment setup and data collection in real driving environment.  

 The data has been use widely as a standard data in multiple research  

 fields related to safety driving,  

2. Investigating how cognitive distraction affected driver performance, 
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3. Develop and establish driver model to detect inattentive driving,  

4. Proposed and develop driving sensor diagnosis method to increase 

 system reliability and detection rate. 

 

1.3 Thesis Organization 

 

 The thesis organization is summarized and shown in Figure 1.2.  

In Chapter 1, the general background, research problem, previous work in the research 

field and its limitation are introduced and discussed.  

In Chapter 2, a detail explanation regarding experiment that has been conducted, type and 

conditions of data collection in real environment is discussed. Two categories of driving 

data were collected; (1) data from ordinary driving and (2) data from driving with 

secondary tasks. Data collected from driving with secondary task was consider as 

inattentive driving data since secondary task has been accepted as important source of 

driver distraction.  

Chapter 3 proposes the new model-based analysis and classification of inattentive driving 

caused by cognitive distraction.  

In Chapter 4, a new in-vehicle sensor diagnosis module to increase overall system 

reliability is proposed and discussed. The sensor diagnosis module using the Dynamic 

Relational Network is developed to analyse and identify faulty sensors through its 

measurement data. Next, the integration between inattention detection system and sensor 

diagnosis module is discussed. The overall driver inattention system was tested with 

actual data from a car driving on highway. The results obtained indicate the effectiveness 

of our proposed method.  

Finally, Chapter 5 summarizes the contributions of this work and highlights some 

suggested directions for future research. 
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Figure 1.2: Outline of the thesis 
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Chapter 2 
 
Description of Experiment and 
Data Collection 
 
2.1 Introduction 

 

 Inattentive driving is an important safety concern, as discussed in the 

previous chapter. Generally, inattentive driving can be caused by two types of 

distraction; visual and cognitive distraction. Visual distraction can be described as 

“eye-off-road” and cognitive distraction as “mind-off-road”. Both of them can 

undermine drivers’ performance [63]-[71]. Visual distraction is straightforward, 

occurring when drivers look away from the roadway (e.g., to adjust a radio), which 

can be reasonably measured by the length and frequency of glances away from the 

road [64]. Unlike visual distraction, cognitive distraction occurs when drivers think 

about something not directly related to the current vehicle control task (e.g., 

conversing on a hands-free cell phone or route planning). However, in this paper we 

are interested to detect inattentive driving caused by driver cognitive distraction. 

There are five types of measures for driver inattention detection [72]-[77]: (1) 

subjective report measures (e.g., survey form); (2) driver biological measures (e.g., 

EEG, ECG); (3) driver physical measures (e.g., PERCLOS, gaze direction); (4) 

driving performance measures (e.g., steering wheel angle, gas pedal, speed); (5) 

hybrid measures. 

 Since cognitive distraction needs to be done in real time and non-intrusively, 

the subjective report measures and driver biological measures are not suitable for a 
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real-life context. 

 

 Therefore, this chapter will discuss the experiments that have been 

conducted, the conditions for collecting driving data so that it is valid to be used for 

inattentive driving detection and other matters regards to data collection. 

 

2.2 Review of Source of Inattentive Driving 

 

 Some drivers are capable of adapting their driving behaviour to meet the 

increased demands of engaging in non-driving tasks while driving. However, under 

certain conditions these adaptive behaviours can breakdown, resulting in a significant 

degradation in driving performance. The potential for a non-driving task to distract 

the driver is determined by the complex interaction of a number of factors including 

task complexity, current driving demands, driver experience and skill and the 

willingness of the driver to engage in the task. A non-driving task that distracts 

drivers and degrades driving in one situation may not do so in another situation and, 

similarly, non-driving tasks may differentially affect drivers from different driving 

populations. Recently, driver distraction research has focused on identifying those 

conditions under which engaging in secondary tasks while driving is most likely to 

distract drivers to the extent that their driving performance and safety is 

compromised. Generally, research has found that as the difficulty of the secondary 

and/or driving tasks increase, the potential for the task to degrade driving 

performance also increases. The distraction caused by interacting with in-vehicle 

devices while driving has been shown to significantly impair a driver’s ability to 

maintain speed, throttle control and lateral position on the road. It can also impair 

drivers’ visual search patterns, reaction times, decision making processes and can 

increase the risk of being involved in a collision. Moreover, research findings suggest 

that drivers are not always aware of the detrimental effects on their driving  
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2.3 Experimental Description 

 

 The driving data utilized in this study are from in-car signal corpus hosted at 

the Center for Integrated Acoustic Information Research (CIAIR), Nagoya University, 

Japan [59]. The experiments were conducted during 2007 and 2008 in collaboration 

with Professor Kazuya Takeda's Laboratory, Nagoya University, Japan. 

Multidimensional and multimodal consists of speech, image, control (driving) and 

physiological data has been recorded under both driving and idling conditions. The 

collection and recording of the data was carried out with the data collection vehicle 

(DCV), an instrumented vehicle specially built to achieve the synchronous capturing 

of multichannel audio, video, and vehicle related data. Figure 2.1 shows the DCV 

and placements of the recording devices. The collected data also is a part of the Large 

Scale Real World Database which aims to promote the research that used real driving 

data. 

 

2.4 Types and Condition of data 

 

 Driving data collected during the experiment can be grouped into two; data 

collected under ordinary driving and under driving with secondary tasks. Secondary 

task is an important source of driver distraction [78] that could cause inattentive 

driving, which may impair the driver even more than intoxication at the legal limit. A 

wide range of secondary tasks have been investigated for their impact on driving 

[72]-[77]. All these and many other investigations have confirmed that secondary  

 tasks have a detrimental effect on driving performance. Therefore, there are 

four different secondary tasks used in this study: 1) a navigation dialog task, 2) an 

alphanumeric reading task, 3) a signboard-reading task and 4) a music retrieval task. 

Table 2.1 shows all twelve experiments, types of road and their conditions during the 

data collection. Figure 2.2 shows the course map used in this study, where mark (1) 

denotes the start location, marks (2) to (7) and (12) to (13) denote city roads and 
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TABLE 2.1. Description of experiments and driving conditions 

 

Experiment 
Type of 

road 
Task Description 

1 - Idling  
2 City Ordinary driving Driving without extra task 

3 City Signboard reading 
Reading aloud information on 
signboards 

4 City Ordinary driving Driving without extra task 

5 City Navigator 
Following navigator instructions in 
an unfamiliar place 

6 City 
Alphanumeric 
verbalization 

Repeating four alphanumeric letters 

7 City Ordinary driving Driving without extra task 
8 Highway Ordinary driving Driving without extra task 

9 Highway 
Alphanumeric 
verbalization 

Repeating four alphanumeric letters 

10 Highway Song retrieving 
Song retrieving by spoken dialog 
interface 

11 Highway Ordinary driving Driving without extra task 

12 City Song retrieving 
Song retrieving by spoken dialog 
interface 

13 City Ordinary driving Driving without extra task 
14 - Idling  

 

 

2.5  Measures Selection 

 

 In general, it is well accepted that driving performance will degrade in 

inattentive driving. This is because the recognition of information needed from visual 

and cognitive attention to correctly and/or safely accomplish the driving task is 

delayed due to non-driving related activity. Since inattentive driving caused by 
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cognitive distraction needs to be done in real time and non-intrusively, driving 

performance measures (e.g., steering wheel angle, gas pedal, speed) were used in this 

study.  A question arises. What type of driving performance data that the most 

affected in inattentive driving? In order to investigate the overall effect of the 

secondary tasks on the driver performance, we calculate the average and standard 

deviation for the operation signals that include (experiments 9 and 10) or do not 

include (experiments 8 and 11 shown in Table 1) secondary tasks for all drivers. 

Figure 2.4, 2.5 and 2.6 show the calculation results, where Figure 2.4 denotes the 

average values of the vehicle speed, Figure 2.5 denotes the average values of the 

synthetic pedal pressure and the Figure 2.6 denotes the standard deviation of the  

steering angle. Based on these values, it is obvious that in the case of the operation 

with a secondary task the average values of vehicle speed and the synthetic pedal 

pressure are smaller than those in case without a secondary task. Compared to this, 

the standard deviation of steering angles has a bigger difference between the cases 

with and without secondary tasks. This means that in the case of a secondary task, the 

steering angle has bigger turbulence than when there is no secondary task and driving 

performance significantly degraded. That is, the steering angle is more sensitive to 

the secondary task. Based on these values, it is obvious that the inattention driving 

have significant effects to some driving performance variables. Among these 

variables, steering angle is the performance variable that most affected by inattention 

driving. 

 

2.6 Conclusions 

 

1. The experiment in this study was design for collecting driver inattention data 

caused by cognitive distraction.  

2. Secondary tasks are use as the source of distraction in the experiment. Four 

different types of secondary task were used in this study.  

3. the experiments were performed using real data collected vehicle (DCV) in 

collaboration with Professor Kazuya Takeda's Laboratory and Center for 
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Integrated Acoustic Information Research (CIAIR), Nagoya University. 

4. Premenelary analysis show that steering angle performance variable has 

significant effect due to inattentive driving.   

 

 

Figure 2.4 The effect of neutral and inattention driving average speed 

Figure 2.5 The effect of neutral and inattention driving average pedal pressure 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Driver

A
ve

ra
g

e
 S

p
e

e
d

 (
m

/s
)

Driving without extra task Driving with extra task

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Driver

A
ve

ra
ge

 P
ed

a
l P

re
ss

u
re

 (
N

)

Driving without extra task Driving with extra task



 

 

Chapter 2 Description of Experiment and Data Collection 

18 
 

 

 

Figure 2.6 The effect of neutral and inattention driving on steering angle 
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Chapter 3 
 
Model-Based Analysis and 
Detection of Driver Inattention 
 
3.1  Introduction 

 
 Chapter 2 described about experimental setup and the condition of driving 

data collection. The data collected during the experiment can be grouped into two; 

ordinary driving data and inattentive driving data. Inattentive driving data was 

obtained by imposes secondary task to the driver. In this section, the data was used to 

develop and verify the proposed model-based analysis and detection of driver 

inattention. 

 

 Many researchers have explored and developed driver model for difference 

purposes. Newcomb and McLean [79]-[80] provide examples of fairly detailed 

modelling of the various components of the driver-vehicle system during longitudinal 

braking. Rompe’s work [81] in addition to Newcomb and McLean also provides a 

useful source of measurements of representative driver model during hard braking. 

The work of Fancher and Bareket [82] is primarily concerned with the headway 

control behaviour of typical drivers and their interaction with Automatic Cruise 

Control (ACC) systems during highway driving. Peng’s recent work [83] using a 

modified version of the Gipp’s model [84] is likewise advancing the modelling effort 

in the headway control area and appears to accurately represent both macroscopic as 
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well as microscopic traffic flow behaviour of human drivers. In summary, all of these 

driver models were developed in order to analyse either vehicle stability or 

longitudinal and lateral control. Only a few researchers develop driver model for the 

purpose of inattention driver analysis. For example, Ishikawa et al. [58] use driving 

behavior signals modeled with a Bayesian network to detect inattentive driving with 

secondary tasks. However, the proposed method at best can achieve a correct 

detection rate of only 76% and so there is need for improvement. Kuroyanagi et al. 

[59], furthermore, analyzed hazardous situations in actual driving environment based 

on level of scene danger and driver response. They confirmed that driver response 

decrease while driving with secondary tasks. This shows that secondary task can be a 

good tool to create distraction to driver during actual driving task. In addition to low 

detection rate, the proposed method uses following distance (distance between car) as 

one of the inputs to the model. Following distance is vulnerable to the external 

environment such as heavy rain, snow, etc., which will cause the system capability to 

be reduced. Therefore, in this study we proposed a new model-based approach to 

analyze inattentive driving. The proposed model utilize driving data such as steering 

angle, pedal pressure and vehicle speed that less dependent to external environment. 

 

 

3.2 A New Model-Based Analysis and Detection of 
 Driver Inattention 
   

 Generally, the driving performance shows a driver’s ordinary behavior and it 

can be shown by the operation signals, such as the gas pedal, brake, steering angle 

signals and car speed. It is well accepted that driving performance will degrade when 

driving with some secondary tasks. In previous chapter, we proved that steering angle 

can be significantly affected by inattentive driving. This is because the recognition of 

information needed from visual and cognitive attention to correctly and/or safely 

accomplish the driving task is delayed due to non-driving related activity. Therefore, 

by analyzing the differences between ordinary driving and driving with some 
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secondary tasks in terms of driving operation signal (such as gas pedal, brake, 

steering angle and car speed), it is possible to detect driver inattention. Through this 

concept, we proposed a model based approach to detect the inattentive driving caused 

by cognitive distraction. To be more specific, a baseline model is developed to 

characterize the normal driving behaviour of a driver when driving without 

secondary tasks. The model is then used in a scenario of driving with a secondary 

task to predict the hypothetical actions of the driver, had there been no secondary 

tasks. The difference between the predicted normal behaviour and the actual 

distracted can provide useful information of inattentive driving. 

 

 In most systems, linear models such as partial least squares (PLS), Auto 

Regressive with Exogenous inputs (ARX) and Auto Regressive Moving Average with 

Exogenous inputs (ARMAX) only perform well over a small region of operations. 

For these reasons, a lot of attention has been directed at identifying nonlinear models 

such as neural networks, Volterra, Hammerstein, Wiener and nonlinear autoregressive 

exogenous input (NARX) model. Among of these models, the NARX model provides 

a powerful representation for time series analysis, modeling and prediction due to its 

strength in accommodating the dynamic, complex and nonlinear nature of real time 

series applications [85]. Therefore, in this work, NARX is used to model ordinary 

driving operation signal. 

 

 

3.2.1 Structure of Driver Model  

 

 In this study, the model output in terms of the driver behavior is assumed to 

be a function of the past and present input, and the past output. Mathematically, this 

relation can be represented as a multivariable nonlinear autoregressive exogenous 

input (NARX) model of the following form: 
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)](),...,1(),(),...,1(),(),(),...,1(),([)(ˆ 111 ktytyktututuktututufty nnn   

(3.1) 

 

where )(tu and )(ty  are the model inputs, )(ˆ ty is the estimated model output, n  

is the number of inputs and k  is the model time delay. In this study, there are three 

input signals ( n =3), where )(1 tu denotes the vehicle speed, )(2 tu denotes the 

synthesis pedal pressure and denotes the steering angle, respectively. The 

general function can be estimated using several identification methods. 

However, we chose to use a neural network-based method due to its capability of 

incremental learning without changing the model structure. Therefore, the function 

)(f  is approximated by a multilayer perceptron (MLP) model with a nonlinear 

transfer function in the middle layer; hence, the model is called a NARX network. 

Based on our previous study [61], a tansig and linear function were used in the 

middle and output layers, respectively, in order to obtain a model with high 

generalization. Figure 4.1 shows the structure of the NARX network used in this 

study. 

 

The NARX network performs its calculations such that the output of the j-th 

neuron in the middle layer is expressed as equation (3.2): 

 

  j

n

i
jijijj njnibuwgh ,...,1,,...,1,

1









 



           (3.2) 

 

where )(tui  is the i-th network input, jiw  is the connection weight from the i-th 

neuron in the input layer to the j-th neuron in the middle layer, jb  is the weight 

from the bias to the j-th neuron,  jg  is a nonlinear activation function in the 

middle layer, which in this study is the tansig function. Then, the network output is 
calculated by the following relation as shown in equation (3.3): 

)(ty

)(f
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to compute the weight vector w


 so that the error )(wE


 in equation (3.4) is 

minimize.  

 

                        2

1

2 ||)(||)()( wfwewE
k

l
l






                  (3.4) 

 

where ,  is the target value and  is the output 

(predicated) value of output neuron l and T
onjooji wwwwwww ],,,,,,[ 212,111 


 . The 

)(wE


 is an objective error function made up of k  individual error terms )(2 wel


. 

By means of the Levenberg-Marquardt algorithm, a new weight vector 1mw


 can be 

obtained from the previous weight vector mw


 as follows: 

                              mmm www
 1                   (3.5a) 

where mw
  is defined as:  
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                 (3.5b) 

 

In equation (3.5b), mJ  is the Jacobian of )(f  evaluated at mw


,   is the 

Marquardt parameter and I  is the identity matrix [61]. In summary, the learning 

algorithm used to train driver model in the form of NARX network can be 

summarized as follows:  

 

(i) Calculate )( mwE


 by using equation (4.4), 

(ii) Begin with a small value of   e.g. 01.0 , 
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(iii) Solve (4.5b) for mw
  and compute )( 1mwE


, 

(iv) If )( 1mwE < target error, then stop the training process, 

(v) If )( 1mwE


> target error and )( 1mwE


≥ )( mwE


, then increase   by a 

factor of 10 and repeat step (iii), 

(vi) If )( 1mwE


> target error and )( 1mwE


≤ )( mwE


, then decrease   by a 

factor of 10, update 1:  mmm www


 and repeat step (iii). 

 

3.3  Model Fitting and Validation  

 

 The operation signals of neutral driving from experiment 8 without the 

secondary task were used for model fitting for each driver. Model fitting was carried 

out by the learning process described in Section 3.2. The model was then validated 

using the operation signals from experiment 11 without the secondary task. The 

driving duration was not exactly the same for all drivers, and therefore the amount of 

data available varied for each driver. The NARX network was used to predict the 

output from three inputs. In this study, the steering angle is used as the model output, 

while the vehicle speed, synthetic pedal pressure and actual steering angle were used 

as inputs since the steering angle is more sensitive to the secondary task than the 

vehicle speed or synthetic pedal pressure. We think it is a novel idea to evaluating the 

difference (model residual) between the actual steering single (which is the input 

signal) and the predicated steering angle (which is the output signal) in order to 

detect the inattentive driving. This is because in the case of inattentive driving, the 

driver operation was different from normal (neutral) driving and has some turbulence, 

hence the model cannot predict correctly and the predicted error becomes bigger. 
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3.4  Inattention Analysis using Driver Model  

 

 As discussed in the previous section, the driver model can predict the output 

very well for new inputs operation signals for neutral driving. In other words, this 

model can capture driver’s operation characteristic patterns, the correlation between 

the inputs and output, and important properties from ordinary driver behavior in 

performing driving tasks. Therefore, when a driver drives normally, the model 

residual, which is the difference between the predicted values and the actual steering 

signal, should have a small standard deviation and be in the form of white noise. 

However, when this model is used data from driving with a secondary task, the 

standard deviation increases showing that the model can differentiate between 

ordinary and inattentive driving. In this study, operation signals from experiment 9 

were used as the inattentive driving data to test the model. In experiment 9, each 

driver is instructed to loudly repeat four randomized alphanumeric letters that are 

given through the driver’s earphone. This process continues until end of the 

experiment. Through this process, the cognitive attention of the driver while driving 

is distracted due to the secondary task. 

 

 Figure 3.3 shows examples of the predicated value and actual value in the 

case of inattentive driving, where (a) shows the result obtained from the driver 1 and 

(b) shows the result obtained from driver 14. As can be seen, the residual value 

between the predicated value and the actual steering signal is bigger. The same result 

can also be obtained from all 15 drivers. These results proved that the proposed 

method was capable of detecting inattentive driving caused by cognitive distraction. 
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                                                (3.6) 

 

where ,  is the model-predicted value at time ,  is the actual 

steering angle at time  and  is the number of data. 

 

 Figure 3.4 shows the RMS value of the model residual in the cases of neutral 

driving (experiment 8 for fitting and experiment 11 for validation process) and 

inattention driving (experiment 9) for all 15 drivers. As can be seen in Figure 3.4, in 

the case of neutral driving, the RMS values for fitting and validation are very small 

for all 15 drivers, which also indicate the effectiveness of the model. That is, the 

model can almost predict the output value exactly even though the difference data 

were used for these processes. Comparing to this, in the case of inattention driving, 

the RMS values are almost more than two times larger than in the case of neutral 

driving. This also indicates the effectiveness of the model for inattentive driver 

detection. 

 

 In addition, we also calculated the percentage of confidence score for the 

model residuals obtained for the cases with and without the secondary task for all 

drivers to observe the effectiveness of the model for inattentive driving detection. 

The percentage of confidence score was calculated based on equation (3.7). 

 

                         [%]                        (3.7) 

 

where  is the percentage of confidence score, , RMS is 

calculated using equation (6) and is a constant value.  

 

Equation (3.7) explained that the percentage of confidence score depends on the 
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Chapter 4 
 
Robust Inattentive Driving 
Detection System with Driver 
Model and Dynamic Relational 
Network 
 
4.1 Introduction 

 

 In Chapter 3, we proposed a new method to identify driver inattention due to 

cognitive distraction using a model-based technique. The method uses in-vehicle 

driving data collected by various sensors to predict output. Driver inattention is 

detected by analyzing the difference between the predicted and actual output, i.e., the 

residual of the model. The results demonstrated that the proposed method could 

differentiate and clearly distinguish between neutral and inattentive driving, however 

the detection rate dropped when one of the input sensors failed. Therefore, sensor 

failure diagnosis is needed in order to obtain an optimum detection rate and to avoid 

false alarms of the detection results. 

  

 Several studies have been done to detect and identify sensor failure. Li et al. 

[89] proposed a linear model to model the process and thus the resultant residual is 

expressed in the form of a linear function. Simani et al [90] used a linear state-space 
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model to create a bank of observers and assumed only one sensor fault in the 

measurement process. Based on the residual generated, this method can identify a 

single faulty sensor. However, many real processes including driver behavior are 

naturally nonlinear. Thus a linear model usually cannot hold the signal distribution 

well and the proposed methods can only give good predictions with some constraints. 

 

 Nevertheless, a dynamic relational network (DRN) has been proposed as an 

effective technique for the abnormality diagnosis of the system with a large number 

of sensors [92]-[96]. It can express a diagnosis object as an inequality limitation 

between variables in the observable condition when the diagnosis object is not 

expressed as a closed equation model. In addition, the DRN can perform the 

diagnosis that reflects the object when it cannot judge the object from a given sensor 

level exactly. Yamada et al. [97] proposed a consistency diagnostic method of front 

vehicle recognition with the DRN using the data obtained by a laser radar and image 

sensor, and confirmed its effectiveness. 

 

 In this chapter a new robust system that can perform driver inattention 

detection will be discussed. Here, the term `robust' means that the system can still 

execute the detection process even when one of its inputs is absent (a faulty sensor). 

To progress towards this objective, this chapter first constructs an in-vehicle sensor 

diagnosis module by DRN using the data from sensors, such as the vehicle speed and 

pedal operation. Then, a driver inattention detection system by combining the sensor 

diagnosis module and the driver model is introduced for the purpose of monitoring 

the state of the driver in the car and the detection of inattentive driving. The 

effectiveness of the proposed system is also evaluated in an actual car driving on an 

expressway by using each operation data in the state that imposes a secondary task 

that causes inattentive driving and the state that does not impose a secondary task. 
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4.2  A New Inattentive Driving Detection System by 
 Using Dynamic Relational Network (DRN) 
 

 As is shown in Chapter 3, when data from inattentive driving is used, the 

driver model cannot predict output well, hence it produces a big residual. However, if 

one of the sensors is damaged or not functioning properly, the proposed model also 

cannot provide good results, and sometimes it even gives the wrong detection result. 

This is because the model assumes that the driver is not driving in a normal condition 

due to wrong data collected by the faulty sensors. This situation can be avoided if we 

can exclude the faulty sensor's signal and only use the signal from the normal sensors 

as inputs into the detection system. Therefore, sensor failure diagnosis is needed in 

order to obtain an optimum detection rate and to avoid false alarm detection. In this 

section, a method of driving sensor diagnosis using the DRN will be discussed. Then 

a new inattentive driving detection system will be introduced. 

 

 

4.2.1 Principe and Dynamics of the Dynamic  
 Relational Network (DRN) 
 

 In this section, the principle of Dynamic Relational Network (DRN) is 

discussed. DRN is a system consisting of different types of nodes that are linked 

together to form a network. One important feature of DRN is that each node can 

evaluate other node or can be evaluated by other node independently and propagates 

its current state, dynamically [99]-[101]. This feature makes the DRN can be used as 

a diagnostic system to detect faulty nodes.  

 

 Suppose that a measurement system is consist of multiple heterogeneous 

nodes,  where 1,2,3, . . , , tied together with a link to form a network. The 

diagnosis of the node whether it is normal or faulty is carried out by determines the  
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intermediate variable and  the test value obtained by  testing . Initially, the 

reliability value  of all nodes at 0 is set to 1. Equations (4.1) and (4.2) are 

renewal equations for converging the network. Equation (4.3) is a sigmoid function 

and this network is known to converge [101]. If  is large, the  is 

converge to 1. Otherwise, if  is small, the  is converge to 0. A node that 

ultimately has low reliability when the network has converged is determined to be 

abnormal.  

 

 

4.2.2 A New DRN Structure for In-vehicle  
 Sensor Diagnosis 
 

 For the purpose of monitoring the condition of in-vehicle sensors that are used 

to collect driving data, the diagnosis algorithm is constructed based on the DRN's 

principle, where nodes in the DRN are replaced with an in-vehicle sensor. At first, the 

sensor network is constructed by connecting all the sensors to each other with virtual 

arcs. In this study, the relationship between each sensor is analysed as follows and the 

DRN network is built.  

 

 Drivers always regulate speed by stepping on the accelerator pedal and the 

brake pedal and repeating this operation. Here the operation quantity of the accelerator 

pedal and the brake pedal, which are measured by different sensors, is treated as one 

pedal operation quantity because they are related to the adjustment of speed. And the 

quantity of the accelerator pedal is defined as a positive value and the quantity of the 

brake pedal is defined as a negative value. Corresponding to this, the two sensors 

measuring the quantities of the conventional accelerator pedal and brake pedal are 

treated as one virtual sensor. Based on the quantity of pedal operation and relation with 

the vehicle speed, the quantity of the pedal operation and vehicle speed are firstly tied 

with an arc. 
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 In this study, we use correlation coefficient to represent the relationship 

between sensors tied in the network. Let Si and Sj are two sensors connected together 

via an arc and  and , are measurement data from normal sensor  and 

, respectively. The correlation coefficient was calculated on every tenth (10) 

sample data xi and xj using the following equation: 

 

                 
∑ ̅ ̅

                    (4.4) 

 

 

Where  is the correlation coefficient, m is the number of sample in a window, 

 and  are standard deviation of data  and , respectively. Then, the 

baseline correlation coefficient ̅  is obtained by averaging of all correlation 

coefficient over M number of windows using the following equation:    

 

                       ̅ ,
∑

                              (4.5) 

 

 In the sensor diagnosis part, the current correlation coefficient,  that is 

calculated using online measurement data  and , of sensors  and  is 

compared with the baseline correlation coefficient ̅ . When ̅ deviates from the 

calculated  by a predetermine amount (called a threshold), the test node,   

is decided as -1. In summary, the test node,  is decided based on the following 

rule: 

 

                        
1,					 ̅

			1,					 ̅                 (4.6) 

 

 

Where  is a constant value, ̅  is baseline correlation coefficient,  is  
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Table 4.1: The interpretation of  and sensor state 

 

 Sensor State 

1 All sensors are OK 

2 3⁄  Problem with pedal sensor 

1 3⁄  Problem with speed sensor 

0 Problem with steering sensor 

 

 

 Figure 4.4 shows the overall concept of the inattentive driving detection 

system. As is shown in Figure 4.4, the system can be divided into three parts: the 

sensor diagnosis module shown in Figure 4.3 and Section 4.2.3, the driver model 

shown in Figure 3.1 and Section 3.2 and the inattention detection part. The sensor 

diagnosis module analyses and identifies a faulty sensor (if any) through its 

measurement data. This module will produce total sensor credibility  that  

indicates the status of the input sensor of the system.  is obtained by using the 

following expression: 

 

                                  (4.7) 

 

Where  is the credibility of steering sensor,  is the credibility of pedal 

sensor and  is the credibility of steering speed sensor. These credibility values 

indicate whether the respective sensor is working properly or not. The , , and 

 values were calculated individually using the sensor diagnosis module. Table 4.1  

shows the interpretation of 	and the sensor state. As can be seen in Table 4.1, 

Equation 4.7 is easily understandable since it gives a direct interpretation about the 

sensor's state. Therefore, 	can be used as a selector to choose a suitable driver 

model for inattentive driving detection. 
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 In the driver model part, three driver models were developed in the system. 

Driver model 1 is a normal model that has three input sensors shown in Section 3.2, 

while driver models 2 and 3 have only two input sensors. Based on Equation (4.7) and 

Table 4.1, if all input sensors are normal, the output of the sensor diagnosis module is 

, thus the output of driver model 1 is chosen. If a pedal sensor is diagnosed as 

having failed, in other words 2 3⁄ , the output of driver model 2 will be used 

to detect inattentive driving. The same concept is applied when 1 3⁄ , which 

means that the speed sensor is faulty, and then the output of driver model 3 will be used 

for the detection. However, if the total sensor credibility	 0, where the steering 

sensor is the problem, then inattentive driving detection cannot be performed because 

the output of each model cannot be computed. 

  

 In addition, in the inattention detection part, the percentage of confidence 

score is calculated by using the driver model residuals, which are obtained for the cases 

with and without a secondary task for all drivers, for inattentive driving detection. 

The percentage of confidence score is calculated based on the following equation: 

 

                              100 	 %                                (4.8) 

 

where C is the percentage of confidence score, = , where  is 

calculated using Equation (3.6) and 40 is a constant value. Equation (4.8) shows 

that the percentage of confidence score depends on the residual's value. If the residual's 

value is small which shows that the driver is driving neutrally, the value of the 

confidence score, C will be high. In contrast, if the residual's value is big which shows 

that the driver is inattentively driving, the value of the confidence score, C will be low. 
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4.3  Confirmation Experiments and Results 
 Discussion 
 

4.3.1 Driving Data 

 

 The driving data utilized in this study were collected in collaboration with 

Professor Kazuya Takeda's Laboratory, Nagoya University, Japan. A real vehicle 

equipped with various sensors and cameras was used for synchronous recording of 

data, which consists of video, speech, driving control and physiological signals. 

The aim of these experiments were to record multimodal driving data on different 

types of roads, such as city roads and expressways, under ordinary driving and with 

four tasks, in order to collect neutral and inattentive driving data. 

 

 The four different secondary tasks are: 1) a navigation dialog task, 2) a 

repeating alphanumeric task, 3) a signboard-reading task and 4) a music retrieval task. 

Figure 2.2 in Chapter 2, shows the course map used in this study, where mark (1) 

denotes the start location, marks (2) to (7) and (12) to (13) denote city roads and marks 

(8) to (11) denote highway roads. Table 2.1 in Chapter 2 shows all twelve portions of 

the experiments that correspond to numbers (2) to (13) shown in Figure 2.2, the types 

of roads and their conditions during data collection. 

 

 On the city road, changes often occur outside of the car, such as pedestrians 

crossing and road traffic signals changing. Besides these, every car performs a variety 

of driving actions such as coming to a complete stop, turning left or right, and going 

slowly. In this study, in order to pay attention to the state of the driver, we want to 

remove elements such as the environment out of the car and the driving condition of 

the car if it is possible. Therefore, the driving data of the Highway are used. The 

operation signals of experiments 8, 11 (without secondary task) and 9 (with a 
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secondary task of alphanumeric repeating), 10 (with a secondary task of music 

retrieval) from 20 licensed drivers were selected as examples, in order to investigate 

the influence of the secondary task on the driver's performance and to confirm the 

difference between inattentive driving and neutral driving. For the same reason, only 

the data when driving straight is treated. 

 

 An example of driving data that was measured from the operation signals in 

experiment 8 is shown in Figure 2.3 in Chapter 2, where the top figure shows the car 

speed, the bottom figure shows the steering angle and the middle figure shows the 

pedal pressure. The sampling rate of the operation signals is 100[Hz]. Note that the 

pedal pressure signal shown in the top figure is a synthetic signal, which was made to 

be the sum of the gas pedal pressure (made to be positive) and the brake pressure 

(made to be negative). In addition, in a part of the Highway, a secondary task such as 

alphanumeric repeating and music retrieval was assigned to the drivers, and driving 

without a task was defined as neutral driving and driving with a secondary task was 

defined as inattentive driving. 

 

 

4.3.2 Faulty Sensor Detection using the Sensor 
 Diagnosis  Module 
 

 There are many types of sensor failure, however here we consider a constant 

fault as an example because this type of failure occurs during the experiments and data 

collection. A constant fault happens when a sensor reports a constant value for a large 

number of successive samples. The reported constant value is either zero, very high, 

very low compared to the normal sensor reading and uncorrelated to the underlying 

physical phenomena. Examples of driving data with this type of sensor failure are 

shown in Figure 4.7, which is neutral driving data of driver 18 with a speed sensor  
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Figure 4.5: Example of neutral driving data of driver 18 with speed sensor failure in 
experiment 8   
 

 

 
Figure 4.6: Average of correlation coefficient from neutral driving, inattentive 
driving and neutral driving with sensor error of driver 18 
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failure. The top figure shows the ped al pressure, the bottom figure shows the steering 

angle and the middle figure shows the car speed.  

 

 Based on the method discussed in Section 4.2.3, faulty sensor diagnosis using 

the sensor diagnosis module can be realized. At first, offline analysis was performed to 

determine the average correlation (threshold) value,  of each driver by Equation 

(4.4) using all driving data from neutral and inattentive driving collected by the 

working sensor. The average correlation, ̅  for each driver was calculated using 

equations (4.5). Figure 4.8 shows the average correlation coefficient for four 

experiments of driver 18. Experiment 8 is neutral driving with a speed sensor failure, 

experiment 11 is neutral driving, experiment 10 is driving with a music retrieval task 

and experiment 9 is driving with an alphanumeric repetition task. As can be seen in the 

figure, the average correlation between the pedal and speed, and speed and steering in 

the experiment 8 decreases due to the speed sensor failure. 

 

 After the threshold value (average correlation), ̅  for each driver has been 

determined, online in-vehicle sensor diagnosis can be performed. Measurement data 

from the speed sensor, pedal sensor and steering sensor are input into the sensor 

diagnosis module. Figure 4.7 shows an example of the diagnosis results of the sensor 

credibility using highway driving data shown in Figure 2.3 in Chapter 2, and Figure 

4.8 shows an example of the diagnosis result of the sensor credibility using driving 

data on the highway shown in Figure 4.5. Figure 4.7 (a) and 4.8 (a) show the credibility, 

 value of each sensor, while Figure 4.7 (b) and 4.8 (b) shows the sensor diagnosis 

module output. In figure (a), the credibility,  is evaluated once every second and 

its magnitude is expressed in binary, either one or zero. In figure (b), the sensor 

diagnosis module outputs a diagnosis result for each sensor every three seconds. This 

is because there is a possibility of momentary signal disorders caused by pebbles on 

the road. As can be seen in Figure 4.7 (b), the sensor diagnosis module can provide 

good diagnosis results. The sensor credibility of the speed, pedal and steering sensors  
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driving data from the 20 drivers to test their model, respectively. All sensors (pedal 

sensor, speed sensor and steering angle sensor) were working properly when collecting 

driving data for drivers 1 to 15, while one of the sensors that measured data for drivers 

16 to 20 were faulty. In other words, we used 15 driving data collected by normal 

sensors and 5 data collected by a faulty sensors (only one of the sensors was faulty) to 

study their effects on the detection result. The obtained results are very encouraging, 

which increased the detection rate and avoided false alarm detection. Figure 4.9 shows 

output from the driver models when input the neutral and inattentive driving data, 

where (a) is the output from the old driver model as discussed in Section 3.2 and (b) is 

the output from the new driver models shown in Section 4.2.4, which are in the driver 

model part of the inattentive driving detection system. As can be seen from Figure 

4.9(a), using the old driver model, the RMS value increased dramatically if one of the 

sensors was faulty, and produced incorrect detections for drivers 16 to 20. However, 

with our new proposed driver models, the system can clearly identify neutral driving 

and inattentive driving even though there was a faulty sensor as shown in Figure 4.9(b). 

These results confirm the effectiveness of the proposed system. 

 

 Figure 4.12 shows the output of the driver inattention detection system, and 

the confidence score obtained by the inattention detection part from neutral driving 

(validation process) and inattentive driving data, where the confidence scores are 

calculated by Equation (4.8). As can be seen, the percentage of the confidence score is 

very high for the all drivers and is more than 80[%] for the neutral operation, whereas 

for inattentive operation the score drops below 70[%]. This result indicates the 

effectiveness of the proposed driver inattention detection system for inattentive 

driving detection and also shows that the percentage of the confidence score obtained 

from the inattention detection part can be used to interpret how much the driver is 

affected by distraction from the given task. Furthermore, the percentage of the 

confidence score differs for each driver. We think this is due to the fact that the 

influence of the secondary task for inattentive driving differs based on different 

driving experiences, and the driver's behaviour. 
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achieve robustness of the system, the sensor diagnosis module by using the DRN was 

developed to analyze and identify faulty sensors (if any) through its measurement data. 

In the driver model part, three driver models were developed. Driver model 1 is a 

normal model that has three input sensors, while driver models 2 and 3 have only two  

input sensors. The built driver inattention detection system was operated with actual 

car driving data on a highway and the diagnosis performance was evaluated. As the 

obtained results, the percentage of the confidence score of system output was very high 

for the all drivers and was more than 80[%] for the neutral operation residual whereas 

for inattentive operation the score dropped below 70[%]. This result indicates the 

effectiveness of the proposed driver inattention detection system for inattentive driving 

detection. 
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Chapter 5 
 
Conclusions and Suggestions 
 

 

5.1 Conclusions 

 

 Inattentive driving is a leading cause of motor-vehicle crashes. Developing 

distraction mitigation systems that adjust their functions to reduce the impairment of 

distraction according to driver state can help to reduce distraction-related crashes.  

For such a system, accurately recognizing inattentive driving is critical. To address 

this need, this study proposed a new robust detection method for inattentive driving 

caused by cognitive distraction using real driving data. 

 

 Accurately identifying driver inattention using real driving data is a critical 

challenge in developing driver support systems in order to minimize road accidents. 

However, to our knowledge, most of the previous studies only use data from 

simulated environment because of the risks of involving inattentive drivers in real 

situation. While simulator may have some advantage, their reliability is often 

questionable which makes interpreting results difficult and perhaps not too practical 

in real driving situation. Numerous previous studies use physiological measures to 

detect driver inattention. Even though the methods could give accurate result, it 

requires attachment of devices to the driver, hence not suitable because intrusive to 

the driver.  
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Some researchers are study the detection of inattention driver using driving 

performance measures since this approach have the advantage of being non-intrusive 

to the driver. However, the detection rate of the proposed method is low and need for 

the improvement. Furthermore, some of the proposed method uses external signal 

(e.g. following distance) as one of the inputs to the model, which vulnerable to the 

external environment such as heavy rain, snow, etc., that will result the system 

capability to be reduced. 

 

 In Chapter 2, the description of experiments and the condition for data 

collection were discussed. The experiments were performed in real driving situation 

using real data collected vehicle (DCV). In order to collect inattentive driving data, 

four secondary tasks have been imposed to distract driver during the experiment. 

Secondary tasks were used as the source of distraction because it could cause 

detrimental effect on driving performance. In this study, four secondary tasks have 

been used: 1) a navigation dialog task, 2) an alphanumeric reading task, 3) a 

signboard-reading task and 4) a music retrieval task. Based on the driving data 

collected through the experiment and statistical analysis that has been done, we found 

that steering angle performance variable has significant effect by to inattentive 

driving.  

 

 A new method to identify driver inattention in driving tasks caused by 

cognitive distraction was proposed in Chapter 3. The method involved constructing a 

neural network-based NARX model for each driver using neutral driver operation 

signals (i.e. without a secondary task). The results obtained show that in the case of 

neutral driving, the percentage of confidence score for the model residuals is very 

high and is more than 90[%] whereas in the case of inattentive driving, the score 

drops below 70[%]. It has been shown that the model is capable of demonstrating the 

effects of inattention on individual drivers through its residual value. Therefore, by 

using the proposed method the inattention in driving caused by cognition distraction 

can be detected, although it is difficult by using traditional method, which focused on 
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detecting inattention caused by fatigue and visual distractions. 

 

 In Chapter 4, a robust driver inattention detection system by driver model and 

dynamic relations network (DRN) using sensor data such as the quantity of vehicle 

speed and pedal operation was proposed. The system can be divided into three parts: 

the sensor diagnosis module, the driver model and inattention detection. In order to 

achieve robustness of the system, the sensor diagnosis module by using the DRN was 

developed to analyse and identify faulty sensors (if any) through its measurement data. 

In the driver model part, three driver models were developed. Driver model 1 is a 

normal model that has three input sensors, while driver models 2 and 3 have only two 

input sensors. The built driver inattention detection system was operated with actual 

car driving data on a highway and the diagnosis performance was evaluated. As the 

obtained results, the percentage of the confidence score of system output was very high 

for the all drivers and was more than 80[%] for the neutral operation residual whereas 

for inattentive operation the score dropped below 70[%]. This result indicates the 

effectiveness of the proposed driver inattention detection system for inattentive 

driving detection. 

  

 The major contribution of this dissertation therefore, is the development and 

evaluation of a model-based inattentive driving detection method with a novel input 

sensor diagnosis module, and evaluated on real world driving data. 

 

 

5.2 Suggestions 

 

 Extending from this work, a promising direction is to generate a 

computational model of human cognitive impairments (distraction, fatigue, and 

aging) in various behaviour fields. In research on driving, there are three dimensions 

to extend this research: impairments (e.g., fatigue and alcohol use), sensor 
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technology (e.g., physiological signals), and algorithms (e.g., Dynamical Bayesian 

Network). Future research could focus on developing and validating real-time 

detection systems for distraction and fatigue using indicative behavioural predictors 

and time-series algorithms. It is recommended that future research should focus on 

comprehensive attention support systems, integrating information from different 

sensors and not only rely on one type of detection. 

 Such approaches could also apply to other domains, including Human 

Computer Interaction (HCI) and medical practice, both of which suffer from 

cognitive impairments of human operators/practitioners and people might benefit if 

the computer system could understand and respond to their state. 
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