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Abstract 

 

In this thesis, the behavior of articulatory feature (AF) as linguistic feature representation of the 

speech waveform in the task of both phoneme recognition (PR) and voice conversion (VC) is 

studied. Over the past few years, several studies have been conducted on the design of an 

optimal hidden Markov model (HMM) configuration for automatic speech recognition (ASR). 

Most of these studies are based on spectral-representation feature vectors. On the other hand, 

phonetic features, such as articulatory features (AF), have proved their robustness across 

speakers, against co-articulatory effects, and against noise. Despite these advantages, the 

literature on the design of an optimal parameter set for AF-based HMM speech recognition is 

still limited. Subsequent to our previous works of an AF extractor, the first part of this thesis 

will describe further our experimental studies on the design of an optimal AF-HMM-based 

classifier. 

In the beginning of the thesis, while we also intend to improve the phoneme recognizer 

performance, the main goal is rather to observe the behavior of AF as the speech representation 

for PR task. Several strategies for designing the optimal parameter set in AF-HMM-based PR 

are investigated. These strategies will consider extending sub-word unit from monophone to 

triphone, adding number of HMM states, conducting vowel group separation, tuning insertion 

penalty (IP), and applying Bakis HMM topology. Mel-frequency cepstral coefficient (MFCC)-

HMM-based PR experiments were also conducted for comparison purpose.  

Both of the PR systems experienced accuracy degradation during the extension from 

monophone-based PR to triphone-based PR. A large number of insertion errors were occurred, 

mostly during the recognition of fricative and vowel sound. Adding number of HMM states and 

conducting vowel group separation reduce the insertion errors on both of the AF-HMM and 

MFCC-HMM-based PR. The analysis showed different behavior between AF-HMM-based PR 

and MFCC-HMM-based PR in terms of their reaction to IP value. IP was imposed to reduce the 

insertion error, by balancing insertion error and deletion error. Compared to MFCC-HMM-

based PR, AF needs larger insertion penalty value to be imposed.  

Morever, we found that compared with the linear topology, the Bakis topology worked well for 

improving both the correct rate and the accuracy of the AF-HMM and MFCC-HMM-based PR. 

AF-based PR with 5-state HMMs, separated vowel, triphone subword, Bakis topology, and 



  

 

optimal insertion penalty provides the highest accuracy among the experiments, i.e., 81.38% for 

the JNAS speech database. 

Furthermore in this thesis, the behavior of AF is also used to realize AF-based VC system. We 

focus our goal of this section to implement AF-based VC for a small number of target-speaker 

training data. VC transforms the voice from the source-speaker onto the target-speaker. When a 

source-speaker utters a certain sentence, the converted speech will sound as if a target-speaker is 

speaking the same sentence. The trend of VC has moved from text-dependent VC, in which it 

needs parallel utterances between source and target-speakers, into text-independent VC. 

However, this newer system still needs source speaker utterances as the training data. 

The flexibility of AF as speaker independent representation, as showed in PR task, can be used 

to extend the capability of an AF-based VC application. AF can be used in speaker adaptation 

technique to develop a VC application which maps features from arbitrary speakers into those of 

the expected target speakers. During the training process, our approach does not require source-

speaker data to build the VC model. 

We propose VC based on AF to vocal-tract parameters (VTP) mapping. An artificial neural 

network (ANN) is applied to map AF to VTP and to convert a speaker’s voice to a target-

speaker’s voice. In order to investigate the effect of ANN architecture and different VTP orders 

on the performance of AF-ANN-based VC, six ANN architectures correspond to different VTP 

orders were compared. The architecture that provided the best result compared with other 

architectures was chosen for the remaining experiments. In addition to the feature vector 

mapping process, two types of F0 conversions were also conducted. The first F0 conversion was 

done using time stretching subsequent to sample rate transposing technique. Moreover, the 

second F0 conversion was done using F0 extraction and re-synthesis technique using MLSA 

filter. 

For comparison, a baseline VC system based on Gaussian mixture model (GMM) approach was 

conducted. Two types of evaluations were performed, i.e., objective evaluations and subjective 

evaluations. For objective evaluation, spectrum distortion (SD) is calculated to measure the 

distance between target-speaker spectrum and converted spectrum. Furthermore, for subjective 

evaluations, three listening tests were performed, i.e. the similarity test, XAB test, and mean 

opinion score (MOS) test. For the overall performance, AF-ANN-based VC outperforms 

MCEP-GMM-based VC for a small number of target-speaker training data. The proposed VC 

application was also realized for arbitrary source-speakers. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Research 

Over the past few years, several studies have been conducted on the design of an optimal hidden 

Markov model (HMM) configuration for automatic speech recognition (ASR). Most of these 

studies are based on spectral-representation feature vectors, e.g., linear predictive coding (LPC) 

coefficients and mel-frequency cepstrum coefficients (MFCC) [1], [2], [3], [4]. On the other 

hand, phonetic features, such as articulatory features (AF), have proved their robustness across 

speakers, against co-articulatory effects, and against noise [5], [6]. Despite these advantages, the 

literature on the design of an optimal parameter set for AF-based HMM speech recognition is 

still limited. Subsequent to our previous works of a distinctive phonetic feature (DPF) extractor, 

or an AF extractor [7], [8], the first part of this thesis will describe further our experimental 

studies on the design of an optimal AF-HMM-based classifier. 

For instance, the well-known explanation from Rabiner, which comprehensively describes 

HMM configurations [1], is based on LPC vectors. A more recent investigation has also yielded 

as an MFCC-based approach to determine acoustic model (AM) topology, i.e., the number of 

Gaussian mixture model (GMM) components per state and the total number of clustered states. 

This topic was explored in [3], where variational Bayesian estimation and clustering was 

implemented for large-vocabulary continuous speech recognition (LVCSR). Mitchell et al. [2] 

used cepstral-based vectors to investigate a variety of change functions as the cost of making a 

transition from one phoneme to another during Viterbi alignment. 

AFs are closely linked to the physiology of a speech production mechanism. The distinctive 

phonetic feature (DPF), or distinctive feature, is also the most basic unit of the phonological 

structure, analyzed in phonological theory [9], [10], and represents the manner of articulation 

(e.g., vocalic, nasal, or continuant) and the tongue position (e.g., high, anterior, or back). 

Phonemes are viewed as a shorthand notation for a set of features that describe the behavior of 

the articulators required for producing distinctive aspects of a speech sound; e.g., the phonemes 

/p/ and /b/ are produced in ways that differ only in the state of the vocal folds. The phoneme /p/ 

is produced without vibration (unvoiced), while /b/ requires the vibration of the vocal folds 
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(voiced). In the distinctive feature representation, only the feature “voice” differs for these two 

sounds. 

The principle of distinctive features was first proposed in the work of Jacobson et al. [9], 

wherein they introduced the classification scheme of the distinctive features. While Espy-

Wilson and Bitar [11] measured the properties of the signal, such as energy, in certain frequency 

bands and formant frequencies, and defined the phonetic features as functions of these acoustic 

measurements. Kirchhoff  et al. [12] proposed a system in which a neural network is used to 

predict manner and place features. The work showed that the feature-based recognizer 

performed comparatively better under noisy conditions and that a combination of a phone-based 

recognizer and feature recognizer was better than either alone. Eide [13] described, in his work, 

that combining the distinctive feature representation with the standard cepstral representation 

improved automatic speech recognition performance. 

The flexibility of AF has drawn the interest of some researches to investigate the cross-language 

or universal application [14], [15]. By believing that AF can be a common knowledge resource 

that is fundamental and sharable across languages, the paper in [14] described their effort to 

design a universal phone recognizer (UPR) which can decode a new target language with 

neither adaptation nor retraining. A more recent research on phone recognition based AF 

(described as attribute features in the paper) investigated the use of AF in deep neural network 

(DNN) [16]. While their AF-based approach didn’t perform as expected, they concluded their 

work as the need of incorporating temporal overlapping (asynchrony) characteristic in their 

future works. 

The first part of this thesis will describe our experimental studies on the design of an optimal 

HMM-based classifier. Subsequently, in this thesis, we also investigate the flexibility of AF for 

voice conversion (VC) application. VC is one of the important technologies in the field of 

speech processing. VC transforms the voice from the source-speaker onto the target-speaker. 

When a source-speaker utters a certain sentence, the converted speech will sound as if a target-

speaker is speaking the same sentence. There are several potential applications for VC, e.g., 

voice restoration in old documents/movies, dubbing television program, and speech-to-speech 

translation. Moreover, the result of VC can be applied to speech synthesizers in which we can 

expand the variety of speakers and make the synthesizer more flexible and cost-efficient. 

One of the most widely used VC methods is the statistical parametric approach, Gaussian 

mixture model (GMM)-based algorithm [17], [18], [19]. While this Gaussian system is 
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recognized as effective in individuality conversion, the speech quality of conventional GMM-

based VC is not satisfactory, particularly in small number of training data. This might be owing 

to two main limitations of the conventional GMM-based VC, i.e., discontinuity and over 

smoothing. The first limitation comes from the fact that conventional GMM-based VC is 

conducted as a frame by frame operation, while the second limitation occurs because the system 

can only capture gross detail of the converted spectra. Therefore, most research on GMM-based 

VC were conducted to overcome these limitations, e.g., by combining dynamic features and 

incorporating global variance (GV) into the system. The newest improvement in this approach is 

the implementation of real-time GMM-based VC [20]. 

From a different perspective, another transformation paradigm was also conducted, namely 

frequency warping. This transformation function maps significant positions of the frequency 

axis (e.g., central frequency of formants) from the source-speaker to the target-speaker. As this 

method does not modify the fine spectral details of the source spectrum, it preserves very well 

the quality of the converted speech [21]. However, it is less accurate than that of GMM-based 

VC.  

On the other hand, there exists other issues in typical VC systems, that is, they are text-

dependent and need parallel training utterances of source and target-speaker. Because such 

parallel data may not always be feasible, there have been some approaches proposed in [22], 

[23], [24], [25], which do not need parallel data. However, even though these text-independent 

VC approaches do not need parallel data, they still require speech data from source-speakers to 

build the VC model. Regarding to this issue, some researches on VC application for arbitrary 

speakers have been proposed [26], [27]. These approaches do not require any speech data from 

a source-speaker in building the VC model, and hence can be used to transform an arbitrary 

speaker voice into a predefined target-speaker voice. 

Another approach to solve this issue is introduced by mapping speaker-independent 

representation of a speech signal onto speaker-specific representation of a speech signal. The 

speaker-independent representation is expected to bring only linguistic information, while the 

speaker-specific representation is expected to bring both linguistic and speaker information. The 

study in [27] has an idea similar to our approach. It uses the lower order of linear prediction 

(LP) spectrum to capture the linguistic information of the signal, and mel-cepstrum (MCEP) to 

capture both the linguistic/message and speaker information. Meanwhile, we use articulatory 

features (AF) as the speaker-independent representation [28] and vocal-tract parameter (VTP), 

represented by LPC coefficients, as the speaker-specific representation. Moreover, recent study 
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from the same group of LP-to-MCEP approach [27] came up with AF-based VC as well, 

resulted AF-to-MCEP VC approach [29]. 

While the previous works of VC use spectrum origin features that include various factors, such 

as speakers, phoneme contexts, ambient noise, etc., our proposed VC is based on the sparse 

representation of articulatory features. This also underlines our different perspective of 

addressing VC problems from previous research. We also do not need manual efforts to 

carefully prepare training data. 

In this thesis, we not only avoid the training process for source speaker, but also focus on 

making VC application with a small number of target-speaker training data. For this purpose, 

speaker adaptation technique was conducted. Because this approach requires a small number of 

target-speaker training data, the proposed VC process is expected to be more user-friendly. 

1.2 Objectives of the Thesis 

This thesis investigates the use of articulatory feature in two speech processing research fields, 

i.e., phoneme recognition (PR) and voice conversion (VC). For the PR application, the aim of 

this work is to establish the design of AF-based HMMs through a comparative investigation of 

AF-based PR and the MFCC-based approach. We focus on PR rather than word recognition to 

develop ASR systems that can adapt to out-of-vocabulary (OOV) words in the near future. Our 

goal is to conduct comparative study of the AF-HMM-based PR behavior. This comparative 

study is done by investigating the optimal parameters that affect the AF-based PR, i.e., sub-

word units, number of HMM states, vowel group separation, tuned insertion penalty (IP), and 

HMM topologies. 

For the voice conversion application, articulatory feature-based voice conversion is proposed. 

We focus on making VC application with a small number of target-speaker training data. First, 

two methods of fundamental frequency (F0) conversions are investigated, i.e., F0 conversion by 

bitrate and length conversion, and F0 conversion by re-synthesizing feature vector and 

converted F0. In this thesis, these methods are compared and evaluated. Furthermore, the 

mapping process of AF to vocal-tract parameter (VTP) is investigated. A complete VC system 

is developed by combining F0 conversion and AF to VTP conversion.  Finally, this complete 

VC system is evaluated by using objective and subjective evaluation. 



  Chapter 1   Introduction 

 

Page 5 

1.3 Contributions 

Several new developments or methods have been introduced in this thesis. The major 

contributions are: 

1. Investigation of optimal parameter set for PR based on AF-HMMs. 

The first part of this thesis is a comparison study between AF-HMM-based PR and 

MFCC-HMM-based PR. This is a contribution because the literature on the design of an 

optimal parameter set for AF-based HMM speech recognition is still limited. Besides 

aiming to improve the phoneme accuracy performance, the main purpose is to investigate 

the behavior of AF-HMM-based PR. 

2. Development and evaluation of AF-based VC arbitrary speakers. 

While the typical existing system needs parallel database, i.e., the same utterances 

between the source speaker and the target speaker, we develop a VC system that not only 

text-independent, in which it does not need parallel utterances between source and target-

speakers, but it can also be used for an arbitrary speakers. 

3. Development and evaluation of AF-based VC for low number of target speaker training 

data. 

We develop a VC system that is more user friendly for both of the source speaker and the 

target speaker. Normally, the existing VC system needs around 40-50 parallel utterance 

from the source speaker and the target speaker. In our case, no source speaker training 

data is needed. Furthermore, the experiment results suggest that our VC system, due to its 

adaptation technique, can be conducted with lower number of target speaker training data. 

  

1.4 Organization of Thesis 

This thesis consists of seven chapters. The relationship among those chapters are shown in 

Figure 1.1 and described as following: 

 Chapter 1 explains the problem discussed in this thesis and defines the goals of the work. 

In this chapter, some historical background and the development of both the PR and VC 

system is provided. The objectives of this thesis are also explained, subsequent to the 

explanation of this thesis’ contribution. This chapter also presents the organization of 

thesis. 
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 Chapter 2 gives an overview of feature representations, i.e., AF and vocal tract 

parameter (VTP), used in this thesis. The overview in this chapter provides important 

theoretical foundation for other chapters. Some useful background information about 

each feature representation for PR and VC application is explained. Subsequently, each 

feature extraction process is described. 

 Chapter 3 outlines the improvement of AF – hidden Markov models (AF-HMM) based 

PR. At first, it will provide the fundamental information about HMM-based PR. 

Furthermore, this chapter will discuss our strategies to improve AF-HMM based PR. In 

this chapter, our strategies will consider sub-word unit extension, number of HMM 

states addition, vowel group separation, insertion penalty and HMM topology in AF-

HMM based PR.  

 Chapter 4 introduces the outline of our AF-based VC. Each module in AF-based VC, 

e.g., AF to VTP converter, fundamental frequency (F0) converter, and LPC digital filter 

re-synthesizer, is described. Different artificial neural network (ANN) architectures in 

AF to VTP converter are investigated. Furthermore, the F0 conversion process is also 

improved to overcome an issue found in the previous F0 conversion module.  

 Chapter 5 draws general conclusions of this thesis and proposes possible improvements 

and directions to future research.  
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CHAPTER 2 

FEATURE REPRESENTATIONS 

 

2.1 Introduction 

The purpose of feature extraction stage is to provide a compact encoding of the speech 

waveform. Feature vectors are typically computed every 10 ms using an overlapping analysis 

window of around 25 ms. In the field of speech recognition, one of the simplest and most 

widely used encoding schemes uses mel-frequency cpestral coefficients (MFCCs) [30]. While 

we also use this MFCC vectors for comparison purpose, this chapter will describe more about 

the feature vectors used in our articulatory feature (AF)-based applications, i.e., the AF itself 

(for both of phoneme recognition application and voice conversion), and the vocal tract 

parameter (VTP) for voice conversion.  The objective of this chapter is to explain the feature 

extraction stages in AF-based PR and AF-based VC application. We first present the overview 

of human speech production process. This section will give background information and help 

reader to understand the steps used to extract AF and VTP. 

2.2 Human Speech Production 

Speech sound is a wave of air that originates from complex actions of the human body, 

supported by three functional units: generation of air pressure, regulation of vibration, and 

control of resonator. The lung air pressure for speech results from functions of the respiratory 

system during a prolonged phase of expiration after a short inhalation. Vibrations of air for 

voiced sounds are introduced by the vocal folds in the larynx. The oscillation of the vocal folds 

converts the expiratory air into intermittent airflow pulses that result in a buzzing sound. The 

narrow constrictions of the airway along the tract above the larynx also generate transient source 

sounds; their pressure gives rise to an airstream with trubulence or burst sounds. The resonators 

are formed in the upper respiratory tract by the paharyngeal, oral, and nasal cavities. These 

cavities act as resonance chambers to transform the laryngeal buzz or turbulence sounds into the 

sounds with special linguistic funcitons. The main articulators are the tongue, lower jaw, lips, 

and velum.  
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When we talk, air from the lungs goes up the trachea and into the larynx, at which point it must 

pass between two small muscular folds called the vocal folds (also known popularly as vocal 

cords). If the vocal folds are adjusted so that there is only a narrow passage between them, the 

airstream from the lungs will set them vibrating. The air passages above the larynx are known as 

the vocal tract. The vocal tract of the average adult male is approximately 17 cm in length when 

measured from the vocal folds to the lips [31]. A side view of the vocal tract with labels for 

some of the parts is given in Figure 2.1. Another name for the airway at the level of the vocal 

cords is the glottis and the sound production involving glottis is called glottal. 

 

Figure 2.1   A side view of the vocal tract with labels for some of the parts [32] 
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Figure 2.2   The configurations of the vocal tract for vowel [ɑ], [i], and [u] [32]. 

The parts of the vocal tract that can be used to form sounds are called articulators. Articulatory 

organs are composed of the rigid organ of the lower jaw and soft-tissue organs of the tongue, 

lips, and velum. These articulators adjust the shape and volume of the oral cavity to form 

different phonemes. The active articulator, e.g., lip and tongue, is the part of the vocal tract that 

moves in order to form a constriction, while the passive articulator, e.g., roof of the mouth and 

upper teeth, is the part of the vocal tract that the active articulator comes closest to in forming 

the constriction. The configurations of the vocal tract for vowel [ɑ], [i], and [u] are shown in 

Figure 2.2. Sounds produced when the vocal folds are vibrating are said to be voiced, as 

opposed to those in which the vocal folds are apart, which are said to be voiceless / unvoiced. 

The articulators that form the lower surface of the vocal tract are highly mobile. They make the 

gestures required for speech by moving toward the articulators that form the upper surface. 

Phonemes can be described by the place of their articulatory gestures, e.g., labial, coronal, 

dorsal. Moreover, they can also be described by their manner of articulation, e.g., oral stop, 

nasal stop, affricative, approximant, etc. More details about place of articulatory gestures and 

manners of the articulation can be seen in the next section. 

We observe the properties of speech production in two different ways to solve two different 

fields in speech processing, i.e., speech recognition and voice conversion. For speech 

recognition approach, places of articulatory gestures and manners of articulation are observed to 

extract articulatory features. While for the voice conversion approach, the process of sound 

production from the lung to the vocal tract is modeled as source-filter model. This model will 

later be used to extract VTP as one of our VC application feature vectors. 
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2.3 Articulatory Features 

2.3.1 Places of articulatory gestures and manner of articulation 

Phonemes are the smallest units of sound that make a difference in meaning. Changing a single 

phoneme in the word cat is sufficient to make another word which is recognizably different to a 

speaker of English. When two sounds can be used to differentiate words they are said to belong 

to different phonemes. For example, the words bat, kit, and cad are each minimally different 

from the word cat but are recognizably different words to an English speaker.  

On the other hand, some phoneme symbols may represent different sounds when they occur in 

different contexts. For example, the symbol /t/ may represent a wide variety of phones. In the 

word tap / tæp / it represents a voiceless alveolar stop, however, the /t/ in eight /eɪtɵ/ maybe 

made on the teeth, because of the influence of the following voiceless dental fricative /ɵ/. 

The primary articulators that can cause and obstruction in most languages are the lips, the 

tongue tip and blade, and the back of the tongue. Speech gestures using the lips are called labial 

articulations; those using the tip or blade of the tongue are called coronal articulations; and 

those using the back of the tongue are called dorsal articulations. Plosive is defined as a stop 

made with a pulmonic airstream mechanism, such as in English [p] or [b]. 

At most places of articulation there are several basic ways in which articulatory gesture can be 

accomplished. Continuants are described in terms of sustained obstruction of airflow through 

the oral cavity. Vowels and semivowels are example of continuant sounds. Semivowel is 

articulated in the same way as a vowel, but not forming a syllable on its own, as in [w] in we or 

[j] in yet. If the air is stopped in the oral cavity but the soft palate is down so that air can go out 

through the nose, the sound produced is a nasal stop. Sounds of this kind occur at the beginning 

of the words my and nigh and at the end of the word sang. If the distance between two 

articulators is narrowed so that the airstream is partially obstructed and a turbulent airflow is 

produced, the sound is a fricative. The consonants in thigh, sigh, zoo, and shy are examples of 

fricative sounds. The production of some sounds involves more than one of these manners of 

articulation. The kind of combination of a stop immediately followed by a fricative is called an 

affricate. Voiced affricate occurs at the beginning and end of judge [33]. 

A phoneme can be described in terms of a matrix of features, which are called distinctive 

phonetic features (DPF) or articulatory features (AF). A traditional AF set was previously 

described with the eleven elements, i.e., high, low, anterior, back, coronal, plosive, continuant, 
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fricative, nasal, voiced and semi-vowel. Two AF elements of ‘vocalic/non-vocalic’ and 

‘consonantal/non-consonantal’ in the traditional Japanese AF set [34] were replaced by ‘semi- 

vowel/non-semi-vowel’ and ‘fricative/non-fricative’. 

Table 2.1   AF-set for classifying Japanese phonemes 
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Because this traditional AF was not designed for ASR system, the feature vector space 

composed of the traditional-AF was not necessarily suitable for classifying speech signals. In 

our previous work by Fukuda [35], a novel AF set with 15 elements, which is designed by 

modifying a Japanese traditional AF set [34] was introduced. As Windheuser and Bimbot 

proposed an AF set in which a balance of distances among phonemes is adjusted for classifying 

English phonemes [36], [37], the design concept of our Japanese AF set follows this idea.Table 

2.1 describes the Japanese AF set used in this thesis, described in terms of a matrix of features 

[38]. These features are binary features, where “binary” means that features can have two 

different values, ‘+’ or ‘-‘, meaning that the feature in question is present or absent. These 

features describe a phoneme’s manner of articulation (vocalic, consonantal, continuant, etc.) and 

place of articulation (tongue position, oral, or nasal, etc.). In this table, present and absent 

elements of the AF, which are indicated by “+” and “-“ signs, are called positive and negative 

features, respectively. 

2.3.2 AF extraction 

In our previous studies, Fukuda et. al [37], [48], [49], [50] proposed AF extraction methods that 

used a single multilayer neural perceptron to extract AFs. Though these AF-based extractors (i) 

give robust features to different acoustic environments with fewer mixture components in the 

HMMs and (ii) improve the margin between acoustic likelihoods, it shows some 

misclassification caused by co-articulation. Moreover, an AF extractor based on a single MLP 

cannot resolve speakers’ variability [48], [50] and cannot show higher performance at low 

signal-to-noise ratios (SNRs) conditions. Since these drawbacks were caused by the 

implementation of AF-based system using a single MLP, M. N. Huda [35] continued the 

research by investigating the implementation of different types of neural networks. 

The idea of implementing AF-based systems by using tandem MLP can be used to reduce 

training times and number of parameters, however, Sivadas et. al [51] pointed out that their 

feature extraction method based on tandem MLPs does not show a higher recognition accuracy 

over a single MLP. Similar with Robinson in [52], Huda [53] introduced methods that are based 

on a recurrent neural network (RNN). Even though the work was later extended into hybrid 

neural network between an RNN and an MLP in [54], he concluded that two MLP performed 

the best accuracy among the experiments. The second MLP was used to reduce misclassification 

at phoneme boundaries by constraining the AF context.  

Furthermore, Inhibition/Enhancement network was also introduced in [39] to discriminate the 

AF dynamic patterns of trajectories, whether the trajectories are convex or concave. It was  
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Figure 2.3   Four stages of AF extractor 

found that for noise corrupted data, output AF patterns generated by neural network based DPF 

extractor show many ripples and hence, it is very difficult to discriminate convex or concave 

patterns. If falsely detected convex pattern are enhanced and concave patterns are inhibited, the 

recognizer provides poor performance in noisy environments. This inhibition/enhancement 

network also show good performance on clean condition database because some false AF 

fluctuations are also obtained due to the context effects (co-articulation) in clean acoustic 

environment. 

AF describes the articulatory manners and places in human speech production at given time t, 

and is combined with its preceding and following time. In our system, this AF sequence is 

represented by three time frames of a current frame, previous frame (t - 3), and following frame 

(t + 3). To generate AF from the speech signal, two stages of signal processing are needed 



Chapter 2   Feature Representations 
 

Page 15 

(Figure 2.3). The first stage employs the local feature (LF) extractor [40]. The second stage of 

AF extractor comprises three MLPs.  All the MLPs comprise four layers, including two hidden 

layers. These MLPs are trained using the back-propagation algorithm with AF vectors (derived 

from label data) as their correct target. 

The first MLP requires a 75 dimension LF as input and generates 45-dimension discrete-like AF. 

The second MLP reduces misclassification at phoneme boundaries by constraining the AF 

context. It requires 135-dimension AF and its contextual frames as input, and generates a 45-

dimension AF. The third MLP uses delta and delta-delta AF as input and generates a 45-

dimension final AF.  

Delta and delta-delta coefficients are also known as differential and acceleration coefficients, 

respectively. Delta coefficients describe the dynamics, i.e., the trajectories of the coefficient 

over time. Delta coefficients indicate the first order coefficients. The delta coefficients are 

computed using the following formula. 

    
∑             

 
   

 ∑    
   

 (2.1) 

where    is a delta coefficient at time   computed in terms of the corresponding static 

coefficients      to     , while   is the window length of delta calculation (we use 3 as the 

value of  ). Delta-delta (acceleration) coefficients are calculated in the same way, but they are 

calculated from the deltas, not the static coefficients. 

More detail explanation about AF extractor, especially for the input of HMM-based phoneme 

recognition, can be seen in Figure 2.4. Speech signal is sampled at 16 kHz and framed using a 

25-ms Hamming window for every 10 ms. Subsequently, a 512-point fast Fourier transform 

(FFT) is applied. Power and delta power is calculated from the resultant FFT power spectrum. 

Moreover, a 24-ch band pass filter (BPF) with mel-scaled center frequencies is applied to the 

resultant FFT. The BPF output undergoes three-point linear regression along the time and 

frequency axes [8], [40], [41]. We use LFs for the input of multi-layer perceptron (MLP), 

because our previous study showed that LFs provide better performance than MFCC as input to 

this MLP [41]. Subsequently, discrete cosine transform (DCT) is applied to the output of linear 

regression. Then, with the delta power been previously calculated, a 25-dimension LF is 

generated. LFs are acoustic features that represent variation in a spectrum pattern along time 

and frequency axes. 
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Figure 2.4   AF Extractor to HMM 

The resulted AF vectors from the 3 stage MLPs are then modified by inhibition/enhancement 

network. Inhibition enhancement is the mechanism proposed in [39] to enhance AF peak values 

up to a certain level and suppresses AF dip values accordingly so that a distinction between a 

peak and a dip is clear and easy to classify. The Gram Schmidt (GS) algorithm is used to décor- 
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Figure 2.5   Articulatory feature sequence /jiNkooeisei/ (artificial satellite) 

 

relate the three context vectors before inserting into the HMM-based classifier. Figure 2.5 

shows an example of the AF sequence for the utterance /jiNkooeisei (artifical satellite)/. In the 

figure, 15 elements of Japanese AFs are shown. For instance, phoneme /N/ is described as nasal, 

voiced, and continuant. A  “solid thin line” represents ideal segmentation, whereas a “solid bold 

line” represents the extracted AF sequences at the first stage of the AF extractor. 

2.4 Vocal Tract Parameter (VTP) 

2.4.1 Source-filter model of human speech production 

The process of speech production in human can be summarized as air being pushed from the 

lungs, through the vocal tract, and out through the mouth to generate speech. In this type of 

description the lungs can be thought of as the source of the sound and the vocal tract can be 

thought of as a filter that produces the various types of sounds that make up speech. In general, 

such a model is called a source-filter model of speech production. The illustration of source-

filter model can be seen in Figure 2.6. 

 



Chapter 2   Feature Representations 

 Page 18 

 

 

 

 

 

 

 

 

Figure 2.6   Physical model of speech production and its corresponding terminology in source-

filter model 

The vibration of vocal cords produces quasi-periodic, multi-frequency sound source. Vocal tract 

tube has certain vocal tract shape-dependent resonances that tend to emphasize some 

frequencies of the excitation relative to others. The resonances of the vocal tract tube shape 

these sound sources into the phonemes. If a vocal tract is shaped for the production of the schwa 

vowel /ə/, it is analogous to a tube system closed at one end, open at the other end, and uniform 

in cross-sectional dimensions throughout its length. When excited by the complex quasi-

periodic, multi-frequency sound source, this vocal tract shape allows resonances within the tube 

to occur at around 500 Hz, 1500 Hz, 2500 Hz, and 300 Hz (with vocal tract length 17 cm and 

sound velocity 340 m/second) [31]. The vowel sound heard will be the schwa vowel /ə/. 

The sounds created in the vocal tract are shaped in the frequency domain by the frequency 

response of the vocal tract. The resonance frequencies resulting from a particular configuration 

of the articulators form the sound corresponding to a given phoneme. These resonance 

frequencies are called the formant frequencies (the first dormant, second formant, and third 

formant) of the sound [42]. 

2.4.2 VTP extraction 

Based on the source-filter model, the sampled speech signal was modeled as the output of a 

linear, slowly time-varying system excited by either quasi-periodic impulses (during voiced 

speech), or random noise (during unvoiced speech).  Over short time intervals, the vocal tract 

(VT) linear system is described by an all-pole system function of the form: 
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  ∑    
   

   

 (2.1) 

 

In linear predictive analysis, the excitation is defined implicitly by the vocal tract system model, 

i.e., the excitation is whatever is needed to produce  [ ] at the output of the system. The major 

advantage of this model is that the gain parameter,  , and the filter coefficients {  } can be 

estimated by the method of linear predictive analysis. 

 

 

 

 

 

 

 

Figure 2.7   Model of linear predictive analysis of speech signals 

This inverse filtering analysis model was proposed in [43] as a direct estimation of the vocal 

tract shape by inverse filtering of acoustic speech waveforms. Through the method, it is possible 

to extract the vocal tract area function (therefore estimating vocal tract shape). It is shown that 

the filtering process can be derived from a non-uniform acoustic tube model of the vocal tract. 

A set of reflection coefficients (will be described later as PARCOR coefficients) in the acoustic 

tube model is shown to be deliverable by inverse filter processing of speech. 

For the system in the Figure 2.7,  [ ] by the difference equation 

  [ ]  ∑    [   ]    [ ]

 

   

 (2.2) 

A linear predictor with prediction coefficients,   , is defined as a system whose output is 

  ̃[ ]  ∑    [   ]

 

   

 (2.3) 
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and the prediction error, defined as the amount by which  ̃[ ] fails to exactly predict sample 

 [ ], is 

  [ ]   [ ]   ̃[ ]   [ ]  ∑    [   ]

 

   

 (2.4) 

From equation (2.4), it follows that the prediction error sequence is the output of an FIR linear 

system whose system function is 

  [ ]    ∑    
  

 

   

 
    

    
 (2.5) 

By comparing Equations (2.2) and (2.4) that if the speech signal obeys the model of Equation 

(2.2) exactly, and if      , then  [ ]    [ ]. Thus, the prediction error filter,      will be 

an inverse filter for the system,     , i.e.,  

      
 

    
 (2.6) 

The basic problem of linear prediction analysis is to determine the set of predictor coefficients 

{  } that will minimize the mean-squared prediction error over a short segment of the speech 

waveform. The short-time average prediction error is defined as 

   ̂  〈  ̂
 [ ]〉  〈(  ̂

 [ ]  ∑     ̂[   ]

 

   

)

 

〉 (2.7) 

Where   ̂[ ] is a segment of speech that has been selected in a neighborhood of the analysis 

time  ̂, i.e., 

   ̂[ ]   [   ̂]          (2.8) 

After some manipulations, the minimum mean-squared prediction error can be shown to be [42] 

   ̂    ̂[   ]  ∑     ̂[   ]

 

   

 (2.9) 

where 

   ̂[   ]  〈  ̂[   ]  ̂[   ]〉 (2.10) 

The basic approach is to find a set of predictor coefficients that will minimize the mean-squared 

prediction error over a short segment of the speech waveform. There are two methods that can 

be used to compute the prediction coefficients, i.e., the covariance method and the 
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autocorrelation method. The autocorrelation method which solved the optimum set of {    by 

recursion is chosen for our purpose. 

In the autocorrelation method, the analysis segment   ̂[ ] is defined as 

   ̂[ ]  {
 [   ] [ ]

 
 

        

          
 (2.11) 

where the analysis window  [ ] defined the analysis segment to be zero outside the interval 

        . The Levinson-Durbin algorithm determines by recursion the optimum ith-

order predictor from the optimum (i – 1)th-order predictor. The Levinson-Durbin algorithm is 

specified by the following steps. 

 

    [ ] (E.1) 

for            

   ( [ ]  ∑  
     

 [   ]

   

   

)      (E.2) 

  
   

    (E.3) 

if     then for              

  
    

     
       

     
 (E.4) 

End  

          
         (E.5) 

End  

     
   

              (E.6) 

 

where 

   ̂[ ]  ∑   ̂[ ]  ̂[   ]

 

    

 (2.12) 
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Figure 2.8   Lattice structures derived from the Levinson-Durbin recursion. (a) Prediction error 

filter A(z). (b) Vocal tract filter H(z) =1/A(z) 

The parameters    for           play a key role in the Levinson-Durbin recursion. They 

called the     parameters, partial correlation (PARCOR) coefficients [42]. Specifically, from 

Equation (E.5) of the algorithm, it follows that since mean-squared prediction error is strictly 

greater than zero for predictors of all orders, it must be true that         for all  . It means 

that this algorithm guarantees that PARCOR coefficients are bounded by ±1. 

After some manipulations, the interpretation of the Levinson-Durbin algorithm in terms of a 

lattice filter structure as in Figure 2.8. The PARCOR parameter plays a key role in the Levinson 

Durbin recursion and also in the lattice filter interpretation. Itakura and Saito [44], [45] showed 

that the parameters    in the Levinson-Durbin recursion and the lattice filter interpretation 

obtained from it also could be derived by looking at linear predictive analysis form a statistical 

perspective.  

The lattice structure itself can be derived from acoustic principles applied to a physical model 

composed of concatenated tube [46]. The coefficients     behave as reflection coefficients at the 

tube boundaries [47], [48], [46]. If a vocal tract shape is modeled as concatenation of lossless 

acoustic tubes (Figure 2.9). Then    are the reflection coefficients at the tube junctions where 

   is the area of the  -th tube. 

    
       

       
 (2.13) 
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Figure 2.9   Concatenation of lossless acoustic tubes as a model of sound transmission in the 

vocal tract 

2.5 Conclusions 

An overview of feature representations used in this thesis has been discussed. At first, human 

speech production was explained to provide the background for subsequently more detail 

explanation of feature representation for PR and VC. This chapter explained the historical flow 

of AF to be used in ASR, including some related works. Articulatory features were derived from 

the observation of places of articulatory gestures and manner of articulation. The traditional AF 

needed to be modified because it was not designed for ASR system. In the end of the AF 

explanation, the detail of AF extractor process was described. On the other side, VTP was 

derived from the source-filter model of human speech production. This chapter also explained a 

brief about source-filter model and how to derive the knowledge into LPC analysis. 
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CHAPTER 3 

IMPROVEMENT OF AF – HIDDEN MARKOV MODEL 

(HMM) BASED PHONEME RECOGNITION 

 

 

3.1 Introduction 

The purpose of this chapter is to establish the design of AF-based HMMs through a comparative 

investigation of AF-based PR and the MFCC-based approach. The behavior of AF-HMM-based 

PR is investigated and compared with the behavior of MFCC-HMM-based PR. In this work, we 

focus on PR rather than word recognition to develop ASR systems that can adapt to out-of-

vocabulary (OOV) words in the near future. The task of PR is to convert speech to a phoneme 

string rather than words. In Figure 3.1, a phoneme recognizer is expected to assist ASR systems 

in resolving this OOV-word problem via a short interaction (talk-back) by automatically adding 

the word into a word lexicon from the phoneme string of an input utterance [49], [50], [51]. 

 

 

 

 

 

 

 

 

 

Figure 3.1   An ASR with OOV detection 
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3.2 Basic Principle in HMM-based Phoneme Recognition 

The principal components of a ASR are illustrated in Figure 3.2. The input audio waveform 

from a microphone is converted into a sequence of fixed-size acoustic vectors           , in 

a process called feature extraction. The decoder then attempts to find the sequence of words 

          that is most likely to have generated    , i.e., the decoder is tries to find  

  ̂        
 

[      ] (3.1) 

However, since        is difficult to model directly, Bayes’ rule is used to transform Equation 

(3.1) into the equivalent problem of finding 

  ̂        
 

[          ] (3.2) 

The likelihood        is determined by an acoustic model and the prior      is determined 

by a language model. The basic unit of sound represented by the acoustic model is the phone. 

The spoken words in   are decomposed into a sequence of basic sounds called base phones. 

Each base phone   is represented by a continuous density hidden Markov model (HMM) of the 

form illustrated in Figure 3.3 with transition parameters       and output representation 

distribution       . The latter are typically mixtures of Gaussians 

       ∑                 

 

   

 (3.3) 

 

 

 

 

 

 

 

 

Figure 3.2   Architecture of an HMM-based recognizer 
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Figure 3.3   HMM-based phone model 

where   denotes a normal distribution with mean  
  

 and covariance    , and the number of 

components   is typically in the range 10 to 20. Since the dimensionality of the acoustic 

vectors   is relatively high, the covariances are usually constrained to be diagonal. The entry 

and exit states are non-emitting and they are included to simplify the process of concatenating 

phone models to make words. 

The acoustic model parameters        and        can be efficiently estimated from a corpus of 

training utterances using expectation maximization (EM) [52]. For each utterance, the sequence 

of base forms is found and the corresponding composite HMM constructed. A forward-

backward alignment is used to compute state occupation probabilities and the means and 

covariances are then estimated via simple weighted averages. This iterative process can be 

initialized by assigning the global mean and covariance of the data to all Gaussian components 

and setting all transition probabilities to be equal. This gives a so-called flat start model. The 

number of component Gaussians in any mixture can easily be increased by cloning, perturbing 

the means and then re-estimating using EM. 

In order to define an HMM, followings elements are needed. 

 The number of states of the model,   

 The number of observation symbols in the alphabet,  . If the observations are continuous, 

then   is infinite. 
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 A set of state transition probabilities        ,  

                    ,                   

where    denotes the current state 

 A probability distribution in each of the states,           

                   ,                ,                   

where    denotes the  th
 observation symbol in the alphabet, and    the current parameter 

vector 

 The initial state distribution,        

where           ,                

We can use the compact notation λ           to denote a HMM with discrete probability 

distributions, while λ                     to denote one with continuous densities (i.e., 

probability distribution is represented by Gaussian mixture in Equation (3.3)). Once we have an 

HMM, there are three problems of interest, as described below.  The solution of those problems 

can be seen in Table 3.1. 

1. The evaluation problem  

Given an HMMλand a sequence of observation          , what is the probability that 

the observations are by the model? 

2. The inference/decoding problem  

Given a modelλand a sequence of observations          , what is the most likely 

state sequence           in the model that produced the observations? 

3. The learning problem  

Given a modelλand a sequence of observations          , how should we adjust the 

model parameters         in order to maximize     λ ? 

 

Table 3.1  Basic operations in HMMs 

Problem Calculation Algorithm 

1.  Evaluation      λ  Forward – backward [53] 

2.  Decoding / inference  ̂        
 

[      ] Viterbi decoding [54] 

3.  Learning λ
̂

       
λ

[    λ ] Baum-Welch (EM) [52] 
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Figure 3.4   AF-based phoneme recognition engine 

3.3 The Problem of Insertion Error in HMM-based Speech Recognition 

In ASR research, insertion error corresponds to the case where an additional word is recognized, 

even though the user has not said anything. The problem of large number of insertion errors is 

appeared because of two major reasons, i.e., the existence of non-speech segment in the testing 

data and the conventional HMM characteristics. Due to the noise in non-speech signal portions, 

it is reasonable to expect additional insertion errors in low SNR condition [55], [56]. Moreover, 

a conventional HMM, as used in this thesis, has the tendency to recognize shorter words (or 

phonemes, in the case of phoneme recognition task). Hidden Markov models incorporate an 

implicit duration model, coded by the self-transition probabilities of the states. If the self-

transition probability of a state   is denoted by   , then the probability that the models stays in 

state   for   steps (the duration of   frames) is 
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Figure 3.5   Fitting a duration histogram by various pdfs [57]. 

The advantage of this exponential duration model is that it can be calculated recursively and fits 

the dynamic programming framework of HMMs, with the formula                  . 

However, in practice the duration of phonemes does not follow an exponential distribution, as 

can be seen from Figure 3.5. 

Since the phoneme recognition task assigned in this thesis used clear (non-noisy) database, the 

existence of noise or non-speech signal portion is not taken into our consideration. Moreover, 

regarding the HMM tendency to recognize shorter words (or phonemes), some research have 

discussed about incorporating explicit duration modelling in HMM-based speech recognition in 

[58], [57], [59]. In our case, because we focus in investigating the AF behavior in PR task, we 

consider this matter in more straightforward approach. 

3.4 AF-based Phoneme Recognition 

The proposed speech recognition engine is divided into two parts: an AF extractor, which 

converts input speech into AFs [8], and an AF-based HMM classifier (Figure 3.4). To generate 
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AF from the speech signal, two stages of signal processing are needed. The first stage employs 

the local feature (LF) extractor [40]. The second stage of AF extractor comprises three MLPs. 

The first MLP requires a 75 dimension LF as input and generates 45-dimension discrete AF. 

The second MLP reduces misclassification at phoneme boundaries by constraining the AF 

context. The third MLP uses delta and delta-delta AF as input and generates a 45-dimension 

final AF. All the MLPs comprise four layers, including two hidden layers. These MLPs are 

trained using the back-propagation algorithm with AF vectors (derived from label data) as their 

correct target. 

The resulted AF vectors from the 3 stage MLPs are then modified by inhibition/enhancement 

network. Inhibition enhancement is the mechanism proposed in [39] to enhance AF peak values 

up to a certain level and suppresses AF dip values accordingly so that a distinction between a 

peak and a dip is clear and easy to classify. The Gram Schmidt (GS) algorithm is used to de-

correlate the three context vectors before inserting into the HMM-based classifier. The output of 

the AF extractor still contains temporal variability, which is handled by the second part of our 

speech recognition. For this issue, we use the conventional HMM approach. On the HMM-

classifier side, some information is needed to define a single HMM, i.e., the type of observation 

vector, number of states, and transition matrix. 

In the baseline experiment, we use a simple left–to-right HMM with three emitting states (five 

states in total, including an entry state and an exit state with no self-loop), so that the transition 

matrix for this model has five rows and five columns. 

Flat-start initialisation is used, in which the global mean and variance are assigned to every 

Gaussian distribution in every phoneme HMM. This implies that during the first cycle of the 

embedded re-estimation, each training utterance will be uniformly segmented. Subsequently, the 

Baum–Welch training process is adopted to estimate the parameters of the HMMs from 

examples of the data sequences that correspond to the models. We use embedded training in 

which the training simultaneously re-estimates the occupation probability in a complete set of 

subword HMMs. For each input utterance, all the subword HMMs corresponding to the phone 

list in that utterance are joined to make a single composite HMM. This composite HMM is used 

to collect the necessary statistics for the re-estimation. 

For model refinement, we use a typical approach, i.e., the conversion of a set of initialised and 

trained context-independent monophone HMMs to a set of context-dependent models. We 

conducted triphone construction, which involved cloning all monophones and then re-estimating 
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them using the data for which monophone labels have been replaced by triphone labels. We 

built a set of word internal context-dependent (triphone) models in which the word boundaries 

in the training transcriptions are marked. 

Given a recognition network, its associated set of HMMs, and unknown utterances, we can 

calculate the probability of any path through the network. The task of a decoder (Viterbi) is to 

find the most likely paths. In the end, we evaluate the performance of the phoneme recognizer 

using a test database and a set of reference transcriptions to compute the correct rate and the 

accuracy of phoneme recognition. 

As described in the Chapter 2, in our previous studies, T. Fukuda et. al [41], [60], [61], [62] 

proposed AF extraction methods that used a single multilayer neural perceptron to extract AFs. 

He investigated LF and showed that LF was outperformed MFCC as the input of the MLP.  

However, the result of his work not only showed some misclassification caused by co-

articulation, but also cannot resolve speakers’ variability [60], [62] and cannot show higher 

performance at low signal-to-noise ratios (SNRs) conditions. Since these drawbacks were 

caused by the implementation of AF-based system using a single MLP, M. N. Huda [38], [63], 

continued the research by investigating the implementation of different types of neural networks. 

He concluded that two MLPs performed the best accuracy among the experiments. The second 

MLP was used to reduce misclassification at phoneme boundaries by constraining the AF 

context. Inhibition/enhancement network was also introduced [39] to make the recognition 

systems more robust to noise and co-articulation issue. 

The task of phoneme recognition is to convert speech to a phoneme string rather than words. 

While ASR relies heavily on contextual constraints (i.e., language model (LM)) to guide the 

search algorithm, the phoneme recognition task is much less constrained than word decoding, 

and therefore, the error rate (even when measured in terms of the phoneme errors for word 

decoding) is considerably high. Even though improvement on the performance of phoneme 

recognition system can be seen in [38], it was mainly measured by phoneme correct rate 

percentage. Another measure for phoneme recognition is accuracy, which calculated similarly 

as the correct rate. The main difference between these measures is that the calculation accuracy 

also takes insertion error into account, while the correct rate ignores the insertion error. Back to 

the work in [39], the phoneme accuracy in phoneme recognition system was not very good, 

lower than the baseline (MFCC 38 dimension). To improve the phoneme recognition 

performance, we conduct several approaches as described below. 
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3.5 Extending Sub-word Unit in HMM-based Phoneme Recognition 

The typical motivation of extending sub-word unit comes from the classical idea of co-

articulation, i.e., the concept that speech sound is influenced by its preceding or following 

speech sound. For example, the base form pronunciations for ‘mood’ and ‘cool’ would use the 

same vowel for ‘oo’, yet in practice the realizations of ‘oo’ in the two contexts are very different 

due to the influence of the preceding and following consonant. Context-independent phone 

models are referred to as monophones. 

When all the speech utterances are represented by concatenating a sequence of phone models 

together, this approach to acoustic modeling is often referred to as the beads-on-a-string model. 

The major problem with this is that decomposing each vocabulary word into a sequence of 

context-independent base phones fails to capture the very large degree of context-dependent 

variation that exists in real speech. 

A simple way to mitigate this problem is to use a unique phone model for every possible pair of 

left and right neighbors. The resulting models are called triphones and, if there are   base 

phones, there are logically    potential triphones. To avoid the resulting data sparsity problems, 

the complete set of logical triphones   can be mapped to reduce set of physical models   by 

clustering and tying together the parameters in each cluster. This mapping process is illustrated 

in Figure 3.6 and the parameter tying is illustrated in Figure 3.7 where the notation x-q+y 

denotes the triphone corresponding to phone q spoken in the context of a preceding phone x and 

a following phone y. 

3.6 Number of HMM States 

One major challenge of HMMs is that the topology (i.e. the number of states and the transitions 

between these states) has to be determined prior to the training and remains fixed during the 

training phase. Training with the EM algorithm optimizes the parameters of the HMMs while 

the topology remains untouched. It is therefore essential to specify a good topology in advance. 

In this thesis, beside extending monophone HMMs to triphone HMMs, we extend 3-state (3-

loop) HMMs to 5-state (5-loop) HMMs and evaluate their performance. 

3.7 Phonemere Recognition Considering Long Vowel 

In Japanese, vowel duration can distinguish the meaning of words. A Japanese learner must 

discover that the words /obasan/ (aunty) and /obaasan/ (grandmother) differ only in the duration 
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Figure 3.6   Context-dependent phone modeling [64] 

 

 

 

 

 

 

 

 

 

Figure 3.7   Formation of tied-state phone models [64] 

of the middle vowels. In the case of phonemic duration, long vowels should be significantly 

longer than short vowels. To deal with the difference in the standard deviations, we separated 

the short vowels and the long vowels using labeled data. A vowel that has larger pronunciation 

duration than its class average value will be relabeled as a long vowel, and vice versa. These 

separated vowels will be treated as different phonemes during the HMM training and the 
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beginning of the testing phase. However, these separated vowels will be re-unified after the 

recognition phase. 

Japanese phoneme duration was previously investigated in [65]. This study reveal that, for 

normal speaking rate, the average duration of phoneme can be seen in Table 3.2. Moreover, the 

average five vowels and long-vowels duration for normal speaking rate can be seen in Table 3.3. 

There were no long vowel samples for /a/ in the speech material.  

The knowledge of phoneme duration in Table 3.2 and Table 3.3 is used only for reference. 

Moreover, we investigated phoneme duration in JNAS database (the database used in phoneme 

recognition experiments). The phoneme duration in JNAS database, sorted from the largest 

standard deviation value can be seen in Table 3.4. As we can see here, phonemes with large 

standard deviation are typically vowels. 

 

Table 3.2   Average duration of consonant and vowel [65]. 

Type of phoneme Duration (ms) 

Consonant 50.0 

Vowel 99.0 

 

 

Table 3.3   Average duration of vowels and long vowels [65]. 

Vowel Duration (ms) Long vowel Duration (ms) 

/a/ 116.5 /aa/ - 

/i/ 85.3 /ii/ 233.3 

/u/ 87.7 /uu/ 145.7 

/e/ 117.8 /ee/ 168.8 

/o/ 88.1 /oo/ 161.4 
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Table 3.4   Phoneme duration in JNAS database sorted from the largest standard deviation value 

Number phoneme mean duration (ms) standard deviation 

1 silE 456.64 359.09 

2 silB 458.26 306.32 

3 Sp 284.36 205.74 

4 W 103.27 58.47 

5 O 92.26 49.24 

6 A 74.71 45.27 

7 U 60.88 42.37 

8 E 75.49 41.95 

9 H 80.56 38.75 

10 S 97.51 36.74 

11 I 64.14 36.16 

12 Sh 113.09 35.71 

13 N 72.23 34.63 

14 Q 86.02 34.24 

15 Ts 105.38 31.34 

16 Ky 109.36 31.17 

17 Ch 113.41 30.64 

18 J 93.27 30.30 

19 F 83.37 29.19 

20 Y 66.98 29.00 

21 Ny 98.32 28.87 

22 Hy 88.30 28.63 

23 My 93.33 25.75 

24 Z 78.85 25.43 

25 By 92.02 23.51 

26 Gy 82.71 22.99 

27 M 72.45 22.92 

28 Ry 71.30 22.87 

29 K 82.69 22.42 

30 P 78.14 21.96 

31 G 63.04 20.21 

32 B 67.67 18.31 

33 T 69.82 17.71 

34 Py 84.78 15.38 

35 n 47.68 15.37 

36 R 46.12 14.62 

37 D 56.71 13.92 

38 Dy 70 12.90 
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3.8 Insertion Penalty 

In HMM-based ASR, the most likely word sequence  ̂ given a sequence of feature vectors 

           is found by searching all possible state sequences arising from all possible word 

sequences for the sequence that was most likely to have generated the observed data  . An 

efficient way to solve this problem is to use dynamic programming. Let 

                                 , i.e., the maximum probability of observing the 

partial sequence         and then being in state   at time   given the model  . This 

probability can be efficiently computed using Viterbi algorithm 

                              (4.1) 

In practice, direct implementation of the above algorithm becomes unmanageably complex for 

continuous speech. As we use HTK toolkit [66] to construct the acoustic model, in the toolkit, 

decoding is controlled by a recognition network compiled from a word-level network, a 

dictionary, and a set of HMMs. To build a phoneme recognizer, a word-level network is defined 

in the usual manner, except that each “word” in the network represents a single phoneme. The 

structure of the network will typically be a loop in which all phonemes loop back to each other 

(Figure 3.8).  

In the figure, the oval frames denote the HMM instances and the square frames denote the 

phoneme-end nodes. In this network, the Token Passing algorithm [54] is applied to find the 

best path and generate the hypothesis. In every HMM state, the tokens are examined, and only 

the token with the highest probability is preserved.  

As a token is propagated from the exit state of a phoneme to the entry state of another, this 

transition represents a potential phoneme boundary. At this point, a fixed (insertion) penalty β is 

added to the tokens emitted from the corresponding phoneme-end node. For example, adding an 

insertion penalty (IP) of –30 means adding a value of –30 to the tokens emitted from the 

corresponding phoneme-end node.  

Within HMM, transitions are determined from the HMM parameters, whereas for the phoneme-

end, transitions are controlled by scaling the language model likelihoods and adding a fixed 

penalty.  
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Figure 3.8   Recognition network of (a) monophone and (b) word internal triphone 

 

 

 

 

 

 

 

 

Figure 3.9   Schematic representation of linear and Bakis HMM topologies 
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Almost all large vocabulary continuous speech recognition (LVCSR) systems have several 

parameters, such as the language model weight and insertion penalty. Word insertion penalty 

(WIP) is used as another heuristic in order to compensate for the word length dependency of n-

gram modelling. In many cases, the parameters are determined empirically or through 

preliminary recognition tests. Some research discussed the heuristic balancing between acoustic 

and linguistic probabilities by trying to estimate the language weight and WIP [67], [68]. Since 

we focus on the acoustic model, we do not implement the language model. Therefore, adding a 

fixed penalty would require a more significant value than the typical one. This fixed penalty will 

control the relative levels of the insertion and deletion errors of the phoneme recognizer. 

3.9 HMM Topology 

In the experiments, two HMM topologies were used, i.e., a linear HMM topology and the 

Bakis topology (Figure 3.9). In the linear HMM topology, only the transitions to the next state 

and the current state are possible with some positive probability. Using the self-transitions or 

loops, the model is able to capture variations in the temporal extension of the patterns described.  

The linear HMM topology is the simplest model. Linear models represent the most efficient 

model topology, as for the other models, not only does the parameter training become more 

difficult for a large number of successors per model state but the effort needed in decoding is 

also increased [69]. Meanwhile, the Bakis topology allows larger flexibility in the modeling of 

the duration by making it possible to skip the individual states. 

3.10 Experiments 

3.10.1 Speech database  

The following three clean speech datasets are used in our experiments. 

1. D1 dataset for training MLP 

This dataset contains 4503 sentences from subset A of the Acoustic Society of Japan (ASJ) 

Continuous Speech Database [70]; the sentences were uttered by 30 male speakers (16 kHz, 

16 bit). 

2. D2 dataset for training HMM 

This dataset contains 5000 sentences that have been taken from the Japanese Newspaper 

Article Sentences (JNAS) [71] Continuous Speech Database; the sentences have been 

uttered by 33 different male speakers (16 kHz, 16 bit).  

3. D3 dataset for testing HMM 
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This test dataset comprises 2379 JNAS sentences uttered by 16 male speakers (16 kHz, 16 

bit). Speakers in the D3 dataset are different from those in the D2 dataset. 

3.10.2 Experimental setup 

The frame length and the frame rate were set to 25 ms and 10 ms, respectively. For the AF 

extractor, four layers MLPs were used, each includes two hidden layers. Each MLP has 45 

output units (15x3) corresponding to a context-dependent AF. The two hidden layers comprise 

256 units and 96 units, respectively.  

Since the task is phoneme recognizer, no language model is used. The monophone experiment 

has no language constraint, while triphone has context constraints. The phoneme recognizer 

performance was measured by its correct rate and accuracy. The correct rate is the percentage of 

correct labels out of the total number of labels, without taking insertion errors into consideration. 

Its formulation is defined as 

               
     

 
        (3.4) 

where   is the total number of labels in the reference transcriptions,   is deletion error, and   is 

substitution error. On the other hand, accuracy is considered as a more representative figure of 

recognizer performance, because it also takes insertion errors ( ) into account, as defined below 

           
       

 
        (3.5) 

For vowel-unified Japanese monophones, the D2 dataset was used to design 38 HMMs, whereas 

for the separated Japanese monophones, the D2 dataset was used to design 43 Japanese 

monophones. Unified vowels were reused during the recognition. In the HMMs, the output 

probabilities were represented in the form of Gaussian mixtures, and diagonal matrices were 

used. The number of mixture components in the HMM was varied among 1, 2, 4, 8, and 16. 

Two different feature vectors were used to evaluate this phoneme recognition system. The first 

type of feature vector used is the standard MFCC-feature set, which consists of a vector with 39 

dimensions (12 MFCC + log energy of the speech signal, Δ and ΔΔ coefficients). The second 

one is the AF-vector with 45 dimensions (15 preceding-context AF patterns, 15 current-frame 

AF patterns, and 15 following-context AF patterns) for each input frame. 

3.11 Experimental Results and Discussion 

The typical motivation of extending monophone to triphone comes from the classical idea of 

coarticulation, i.e., the concept that speech sound is influenced by its preceding or following 
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speech sound. Even though during the extraction of AF we incorporated three context-

dependent frames (in order to solve the coarticulation problem), in the experiment, we still 

found an improvement in the correct rate when extending monophone to triphone. However, 

this improvement was not followed by an accompanying improvement of accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10   Extending monophone HMMs to triphone HMMs 

 

 

Figure 3.11   Extending sub-word unit from monophone to triphone on 3-state HMMs  
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Figure 3.12   Extending sub-word unit from monophone to triphone on 3-state HMMs (16 

mixtures) 

The accuracy of phoneme recognition decreased significantly (Figure 3.11). Figure 3.12 shows 

the accuracy degradation in 16 mixtures of HMM-based PR. This accuracy degradation while 

extending monophone to triphone indicates that a large insertion error occurred. Insertion errors 

occur when the system recognizes phonemes that do not occur. These errors are different from 

the deletion errors, which arise when the system fails to recognize the occurrence of phonemes 

within a stream of data. A better performance of phoneme recognition can be obtained by 

balancing the deletion errors and the insertion errors. To balance these two errors, the insertion 

penalty value can be tuned into its optimal value. These tuned penalty results will be discussed 

later. 

The number of states in the HMM configuration is a matter of choice. A low number of states 

makes it easier to learn the model but may cause underfitting, whereas too many states make it 

harder to learn and may overfit the noise. In the experiment, we compare the performance of 3-
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state HMMs to 5-state HMMs. As can be seen from Figure 3.13, extending 3-state HMMs to 5-

state HMMs decreased the correct rate performance, yet increased the accuracy. Figure 3.14 

shows the effect only in 16 mixtures of HMM-based PR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13   AF-based accuracy improvement form 3-states HMM to 5-states HMMs 
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Figure 3.14   AF-based accuracy improvement from 3-state HMMs to 5-state HMMs (16 

mixtures) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15   AF-based phoneme recognition accuracy improvement from unified vowels to 

separated vowels 
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Figure 3.16   AF-based 5-state (16 mixtures) HMM phoneme recognition accuracy 

improvement from unified vowels to separated vowels 

Since accuracy measurement takes insertion error into account, it describes the phoneme 

recognition performance more comprehensively than does the correct rate. We focus on 

improving the accuracy of the phoneme recognition; thus, the next approach will follow 5-state 

HMMs.  Figure 3.15 shows the accuracy for AF-based 5-state HMM phoneme recognition. By 

separating vowels into short vowels and long vowels, we can improve the accuracy of phoneme 

recognition. On the monophone side, this vowel separation technique also improves the correct 

rate of phoneme recognition. Figure 3.16 shows the accuracy for 16 mixtures AF-based 5-state 

HMM PR. 

A closer look into the recognition result of AF-HMM and MFCC-HMM-based PR over 

different experiments can be seen in Figure 3.17. In this figure, a large number of insertion 

errors occurred during the extension of sub-word unit, from monophone to triphone. From these 

insertion errors, a significant portion came from the error during the recognition of fricative and  
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Figure 3.17   Example of recognition result of AF-HMM and MFCC-HMM-based PR over 

different the experiments 

vowel sound which has large standard deviation of phoneme duration. This kind of insertion 

error occurred because HMM tend to recognize phoneme with shorter duration. Therefore, the 

strategy of adding number of HMM state and separating short vowel and long vowel reduced 

the insertion errors.  

Another strategy to reduce the insertion error is by imposing insertion penalty. The insertion 

penalty is a tuning parameter to control the transition from the end state of one phoneme to the 

start states of all the other phonemes. The insertion penalty penalizes insertions that occur 

between phonemes. We gave large negative values of the insertion penalty, which lowers the 

probability of a phoneme so that a large number of phonemes are not hypothesized randomly. 

This may decrease insertion errors but may increase the deletion errors. 

Figure 3.18 shows the advantage of AF compared with MFCC. This figure shows that we can 

improve the accuracy of the AF-based phone recognition by tuning the insertion penalty without 

significantly decreasing its correct rate. On the MFCC side, this tuning reduces the correct rate 

significantly. Moreover, in this figure, compared with the 3-state HMM phoneme recognizer, 

the 5-state HMM phoneme recognizer is shown to be less sensitive to insertion error as it is 

more unlikely to recognize additional longer sequences of HMM. This also occurs in a typical  

EXTENSION FROM MONOPHONE TO TRIPHONE

vowel state silB h a ch o j i ch i h o u t o sp b u N k a

3 AF monophone silB h a hy o u by i ch i myo t o q d o N k a

3 AF triphone silB h a q h hy o o o u y i ch ch i m o o o t a u q b u N k a

3 MFCC monophone silB h a r sh gy o u j i ch gy w o o g o h b o N k a

3 MFCC triphone silB h a k h ch y o o u g i q ch y a o w o o h t o a u b u k a

AF: USING SEPARATED VOWEL

silB h a ch o j i ch i h o u t o sp b u N k a

5 monophone silB h a hy o i ch i m o t o q d o N k a

5 triphone silB h a hy o o by i ch i m o o o p a u q d u N k a

separated 5 monophone silB h a hy o g i ch i m o o p u d u N k a

separated 5 triphone silB h a hy o g i ch i m o o p u d u N k a

MFCC: USING SEPARATED VOWEL

silB h a ch o j i ch i h o u t o sp b u N k a

5 monophone silB h a hy o u i ch ry o h g o h sp b o N k a

5 triphone silB h a ts sh o u g i ch y o o u g o u b u N k a

separated 5 monophone silB h a ts ch o i ch e o o u a u b u N k a

separated 5 triphone silB h a ts ch o i ch e o o u a u b u N k a
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Figure 3.18   Phoneme recognition accuracy vs correct rate at different insertion penalty (IP) 

values on triphone HMM unified vowels. 
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HMM speech recognizer, where the speech recognizer tends to favor shorter words during 

insertion error. 

The larger IP value occurred in AF means that the transition from the end state of one phoneme 

to the start states of all the other phonemes is more likely to happen. One of the hypotheses is 

due to the number of dimension used in the experiment. Because the number of dimension used 

in the experiment of AF-HMM-based PR and MFCC-HMM-based PR is different, it is needed 

to investigate the behavior of IP value on different number of dimension. Continuing from the 

previous result, Figure 3.19 shows the IP values on MFCC-HMM-based PR for different 

number of dimension of feature vectors. The optimal IP value on MFCC-HMM-based PR seems 

to depend on the number of feature vectors dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19   Phoneme recognition accuracy vs correct rate at different insertion penalty (IP) 

values on triphone HMM unified vowels. 
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Figure 3.20   Examples of MFCC and AF distribution 

Tracing back to the average log likelihood per frame of each experiment, Table 3.5 shows that 

AF has positive log likelihood per utterance. The positive log likelihood happened because AF 
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Table 3.5   Comparison of the average log likelihood per frame over different number of 

dimension of feature vectors on monophone 3-state HMM. 

Mixtures 

Number of feature vectors dimension 

MFCC AF 

13 26 39 45 

1 -39.71 -61.9 -72.54 40.80 

2 -39.39 -61.54 -72.03 49.99 

4 -39.27 -61.29 -71.8 55.95 

8 -39.27 -61.4 -71.63 60.80 

 

Table 3.6   Comparison of the average log likelihood per frame on monophone AF-HMM-based 

PR. 

Mixtures 
3 state 5 state 

AF Scaled AF AF Scaled AF 

1 40.80 -135 38.56 -137 

 

Table 3.7   Comparison of the average log likelihood per frame on triphone AF-HMM-based PR. 

Mixtures 
3 state 5 state 

AF Scaled AF AF Scaled AF 

1 51.27 -124.78 52.77 -123.29 

2 60.75 -115.15 63.77 -112.33 

4 67.51 -108.54 70.10 -106.13 

8 73.12 -102.79 74.58 -101.41 

 

has very small variance as its characteristics.  As described in [61], our previous version of AF 

also has non Gaussian data distribution. As several processing steps are added [39], our current 

version of AF, as can be seen in graph (a), Figure 3.20, has different distribution than that of 

described in [61]. To investigate the effect of positive log likelihood to the value of IP needed 

for balancing insertion and deletion error in AF-HMM-based PR, AF value is multiplied by 50. 

This scaled AF distribution can be seen in graph (b), Figure 3.20. 
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Table 3.8   Comparison of the average log likelihood per frame on triphone 3-state AF-HMM-

based PR 

Insertion 

penalty (IP) Mix 

3 states HMM 

Correct Rate Accuracy 

usual Scaled AF usual Scaled AF 

0 1 86.69 86.69 48.77 48.66 

2 87.20 87.21 52.98 52.86 

4 87.40 87.37 58.27 58.11 

8 87.52 87.51 60.12 60.04 

16 87.89 87.93 62.05 62.19 

-30 1 85.67 85.70 63.85 63.78 

2 86.10 86.12 68.58 68.42 

4 86.34 86.31 71.12 71.09 

8 86.50 86.47 72.96 72.86 

16 86.90 86.96 74.63 74.53 

-80 1 83.60 83.61 74.13 74.06 

2 84.24 84.20 77.35 77.26 

4 84.46 84.44 78.55 78.51 

8 84.64 84.64 79.59 79.57 

16 85.00 85.06 80.57 80.62 

-100 1 82.62 82.63 75.56 75.52 

2 83.28 83.27 78.50 78.43 

4 83.55 83.56 79.49 79.44 

8 83.73 83.70 80.24 80.20 

16 84.05 84.11 81.02 81.04 

 

Table 3.6 and Table 3.7 show that by scaling the value of AF, the variance of AF distribution is 

increased and the average log likelihood per frame on triphone AF-HMM-based PR can be 

reduced into negative value. However, further investigation shows that this change of log 

likelihood value doesn’t affect the behavior of AF-HMM-based PR in terms of its IP value. The 

performance of AF-HMM-based PR over different IP value is nearly the same, between the AF 

and scaled AF experiment (Table 3.8 and Table 3.9). 
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Table 3.9   Comparison of the average log likelihood per frame on triphone 5-state AF-HMM-

based PR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result of insertion penalty tuning, Figure 3.21 shows the phoneme recognition performance 

(for both accuracy and correct rate) improvement obtained by extending a monophone to a 

triphone. A more straightforward graph (only for 16 mixtures of HMM-based PR) is shown in 

Figure 3.22. 

 

Insertion 

penalty (IP) Mix 

5 states 

Correct Rate Accuracy 

usual Scaled AF usual Scaled AF 

0 1 84.33 84.33 69.05 69.07 

2 84.85 84.83 70.90 70.87 

4 85.24 85.16 72.54 72.48 

8 85.67 85.74 74.01 74.04 

16 86.22 86.17 75.30 75.26 

-30 1 83.47 83.49 72.27 72.31 

2 84.06 84.03 75.02 75.01 

4 84.45 84.44 76.26 76.29 

8 84.85 84.93 77.52 77.64 

16 85.41 85.38 78.72 78.72 

-80 1 81.51 81.52 75.03 75.04 

2 82.19 82.15 77.76 77.78 

4 82.67 82.65 78.79 78.77 

8 82.92 82.95 79.58 87.57 

16 83.30 83.32 80.33 80.39 

-100 1 80.56 80.56 75.36 75.33 

2 81.27 81.23 77.94 77.95 

4 81.67 81.64 78.82 78.81 

8 81.86 81.85 79.38 79.37 

16 82.18 82.23 80.04 80.11 
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Figure 3.21   Phoneme recognition performance improvement by tuning optimal insertion 

penalty 

 

 

 

 

 

 

 

 

Figure 3.22   3-state (16 mixtures) HMM phoneme recognition performance improvement by 

tuning optimal insertion penalty. 
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Previous experiments were conducted on the linear topology of HMM. After determining that 

separating vowels and increasing HMM states to 5-states result in an accuracy improvement, we 

also investigated the influence of the HMM topology on the phoneme recognizer performance.  

Figure 3.23 shows that, compared with the linear topology, the Bakis topology worked well for 

improving both the correct rate and the accuracy of the AF-based PR. The effect on PR 

accuracy is not very clear on MFCC-HMM-based PR. These improvements result from the 

flexibility of Bakis topology, i.e., the possibility of skipping the individual states. This 

flexibility allows us to model duration, particularly when phonemes do not have similar 

durations. This Bakis length modeling method optimizes the predefined number of HMM states. 

We have conducted some combinations from the parameters explained. The performance 

improvement of the AF-based HMM phoneme recognizer for 16 components of Gaussian 

mixtures is described in Figure 3.24.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23   MFCC-based (left) and AF-based (right) phoneme recognition performance from 

linear topology to Bakis topology 



Chapter 3   Improvement of AF-HMM based Phoneme Recognition 

 Page 54 

It is widely known that in order to have good speech recognition performance, we must balance 

the acoustic (insertion penalty) and linguistic (language weight) parameters. The IP in a 

phoneme model controls the transition from the final state to the initial state of the following 

phoneme model. Because in the 3-state triphone model based on AF, the difference between 

averaged vectors in the final state and in the succeeding state is very small, the accuracy of the 

3-state triphone model before tuning the IP value is very low and is improved largely after 

tuning (IP=100). The same control is also realized by adding states (from 3-state HMM to 5-

state HMM); a more detail effect of adding states has been described in Figure 3.18. 

Furthermore, as phoneme recognition in this thesis does not use a language model, the insertion 

penalty plays a significant role. Ignoring this penalty causes worse accuracy, as shown by the 

second parameter set of Figure 3.24. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24   Performance progress of AF-based HMM phoneme recognizer on 16 components 

of Gaussian mixtures for different parameter sets. 



Chapter 3   Improvement of AF-HMM based Phoneme Recognition 
 

Page 55 

3.12 Conclusions 

Several strategies to improve the phoneme recognition performance have been conducted. The 

main purpose was to compare the behavior of AF-HMM-based PR to MFCC-HMM-based PR 

on extended subword unit (monophone to triphone), different number of HMM states (3 

emitting states and 5 emitting states), vowel group separation (by considerating long vowel), 

tuning insertion penalty, and different topology (linear and Bakis). The conclusion of this 

chapter can be drawn as: 

 A large insertion error occurred, mostly during the recognition of fricative and vowel sound. 

Adding number of HMM states and conducting vowel group separation reduced the 

insertion errors on both of the AF-HMM and MFCC-HMM-based PR. 

 Besides accuracy improvement along the experiments, the analysis showed different 

behavior between AF-HMM-based PR and MFCC-HMM-based PR in terms of their 

reaction to insertion penalty (IP) value. The accuracy of the AF-based phone recognition 

could be improved without significantly decreasing its correct rate by tuning the insertion 

penalty. 

 Both of the AF-HMM and MFCC-HMM PR systems experienced accuracy degradation 

during the extension from monophone-based PR to triphone-based PR. The correct rate 

improvement followed by the accuracy degradation while extending monophone to 

triphone indicates that a large insertion error occurred. A better performance of phoneme 

recognition could be obtained by balancing the deletion errors and the insertion errors. 

Normally, the insertion penalty itself should be balanced with the language weight, 

however, because we didn’t use language model, the insertion error was controlled only 

from the insertion penalty. 

 Scaling was applied on AF to alter its distribution form and consequently, also resulted in 

the change of the average log likelihood per frame. However, over different IP values, the 

performance of AF-HMM-PR was similar compared to the non-scaled AF.  

 Compared with the linear topology, the Bakis topology worked well for improving both the 

correct rate and the accuracy of the AF-based phoneme recognition. 

 AF-based phoneme recognition with 5-state HMMs, separated vowel, triphone subword, 

Bakis topology, and optimal insertion penalty provides the best accuracy among the 

experiments, i.e., 81.38% for the JNAS speech database. This result suggest that AF-

HMM-based PR is comparable with the standard MFCC-based phoneme recognition for 

triphone subword, 3-state HMMs, and 16 Gaussian mixtures. 
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CHAPTER 4 

AF-BASED VOICE CONVERSION 

 

4.1 Introduction  

In this chapter, we propose voice conversion (VC) based on articulatory features (AF) to vocal-

tract parameters (VTP) mapping. An artificial neural network (ANN) is applied to map AF to 

VTP and to convert a speaker’s voice to a target-speaker’s voice. The proposed system is not 

only text-independent VC, in which it does not need parallel utterances between source and 

target-speakers, but it can also be used for an arbitrary source-speaker. This means that our 

approach does not require source-speaker data to build the VC model. We are also focusing on a 

small number of target-speaker training data. For comparison, a baseline system based on 

Gaussian mixture model (GMM) approach is conducted [72].  

The concept of AF to VTP conversion was previously explored in our previous work, by 

Kimura [73]. In the paper, the concept of AF to VTP conversion was introduced to an HMM-

based text-to-speech synthesis system. HMM-based AF generator was used to produce the 

corresponding AF sequence from the input (text). The resultant AF was converted into VTP and 

then synthesized with CELP coder by implementing LSP synthesizer. 

The work in this chapter differs from that work in several aspects. First, a VC system is 

conducted, instead of an SS system. While the paper in [73] received text as input, the work in 

this chapter receive speech signal as the input of the system. Second, HMM is not utilized in 

this work. Moreover, PARCOR was used instead of LSP as VTP. Because, the residual signal 

can be obtained by inverse LPC of the input speech, CELP coding is not conducted. The re-

synthesis is done using ordinary LPC digital filter. 

4.2 Outline of GMM-based VC 

The outline of a GMM-based VC system, comprising training and testing module, is shown in 

Figure 4.1. VC can be defined as mapping the source feature vector    into the target feature 

vector   , at each time  . The typical feature vectors used in GMM-based VC is mel cepstrum 

(MCEP). At the training module, acoustic feature vectors from both the source and target 

speakers are extracted and aligned by dynamic time warping (DTW). The source vectors are 
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augmented with the corresponding target features as    [  
   

 ]  and the GMM is estimated 

for the augmented vectors. The means and covariances of the GMM of the augmented vectors 

are given as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1   Outline of GMM-based VC. 
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where vectors   
  and   

 
 denote the mean of the source and target entries of the augmented 

vector in Gaussian  , respectively, and the superscripts of the covariance matrices denote their 

respective covariances and cross-covariances. In the conversion, for  -component Gaussian 

mixture model, the mapped target vector  ̂  is formed from the source vector    as 

  ̂  ∑     [  
 
   

     
           

  ]

 

   

 (5.3) 

where      is the posterior probability that the  -th Gaussian has produced the   -th observation, 

calculated using the source vector   , mean   
  and covariance   

   as 

      
          

     
   

∑           
     

    
   

 (5.4) 

The joint density mapping Eq. (5.4) is the maximum-likelihood estimate of the target vectors 

given the source vectors. For this thesis, we have conducted GMM-based VC experiments on 

the VC setup built in FestVox distribution [74]. This VC setup is based on the study in [72], and 

supports the conversion considering the correlation between frames, Maximum Likelihood 

Parameter Generation (MLPG) and Global Variance (GV) of spectral trajectory. 

4.3 AF-based VC 

Our approach maps speech signal onto speaker-independent representation of an AF sequence 

first, then the AF is converted to speaker-specific representation of a speech signal. Because the 

AF sequence is expected to bring only linguistic information, source-speaker training data is not 

required during the training process. In our proposed approach, we use AF as the speaker-

independent representation and VTP as the speaker-specific representation.  

The VC system consists of a training module and a testing module. Each of the module can be 

divided into the training stage of VTP and residual signal/F0 conversion (Figure 4.2). While 

pre-stored speakers utter a large number of training data, the target speaker only utters a low 
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number (different utterances) training data. There are two different aspects that is different 

between the baseline and the proposed system, i.e., the approach itself (GMM vs ANN) and the 

type of feature vectors used in the experiment (MCEP vs AF). However, a direct comparison 

between baseline and the proposed system is difficult to conduct (i.e., the idea of using MCEP 

for ANN-based VC, by conducting adaptation technique), because AF has the unique 

characteristic which make it possible to conduct adaptation technique (without parallel 

database). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2   Training and testing modules of proposed VC system. 
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Figure 4.3   Architecture of a three layered ANN with N input nodes, M output nodes, and K 

nodes in the hidden layers. 

4.4 AF to VTP Converter 

The mapping of AF to VTP is conducted using an ANN model. The ANN consists of 

interconnected processing nodes, where each node represents the model of an artificial neuron, 

and the interconnections among nodes have weights associated with them.  

A multi-layer feed forward neural network with one or two hidden layers is used in the 

experiment. The ANN is trained to map AF onto the target speaker VTP. The back-propagation 

learning law is used to adjust the weights of the neural network to get the minimum mean 

squared error between the desired and the actual output values. Fig. 4.3 shows the ANN 

architecture used to obtain the transformation function to map speaker-independent AF onto 

target speaker VTP. The adjusted weight on every interconnection among nodes represents the 

mapping function between speaker-independent AF and target speaker VTP.  

As can be seen in Figure 4.4, there are three phases in the AF to VTP converter neural network; 

pre-adaptation, adaptation, and testing. Here, the MLP used for as the adaptation module has the 

same architecture as that described as the pre-adaptation module (Figure 4.3). This adaptation 

technique enables VTP to use only a small number of target-speaker training data. While 

training phase requires a large amount of utterances from pre-stored voices, adaptation phase 

requires only several utterances from the target-speaker. In the testing phase, one utterance of an 

arbitrary source-speaker can be input to produce the converted VTP, which later will be 

synthesized into converted speech. After AF is converted into target-speaker VTPs, then with 

the residual signal, it will be resynthesized using the LPC digital filter. 
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Figure 4.4  The adaptation phase 

4.5 F0 Conversion 

A residual signal has speaker individuality, especially in the term of fundamental frequency. 

Therefore, in the testing phase, it is important to manipulate the source speaker residual signal 

so that the converted speech will have a similar fundamental frequency contour to the target 

speaker. This fundamental frequency (F0) manipulation is conducted using a sample rate 

transposing technique, subsequent to a time stretching technique. A time stretching technique is 

conducted to increase or decrease the length of a waveform without affecting its F0. This time 

stretching technique can be done using a phase vocoder. Moreover, a sample rate transposing 

technique is conducted by changing the sampling rate of a waveform. As the sampling rate 

changes, the F0 of a waveform also changes. By conducting these two techniques, the F0 of a 

waveform can be converted while maintaining the original duration.  

We conducted the F0 conversion using library built by SoundTouch [75]. This F0 conversion is 

straightforward, based on the mean of the target speaker training utterances and the source 

speaker testing utterance, as indicated as follows: 

             
               

       

      (5.5) 
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Figure 4.5   F0 conversion with time stretching subsequent to sample rate transposing 

 

Table 4.1   Architectures of an ANN model 

No 

ANN architecture Number of neurons in 

VTP order Input layer 

(IL) 

Hidden layer 

(HL) 

Output layer 

(OL) 

1 45(IL) 450(HL) x(OL) 

45 450 20 20 

45 450 40 40 

45 450 60 60 

2 45(IL) 450(HL) 3x(OL) 

45 450 60 20 

45 450 120 40 

45 450 180 60 

3 45(IL) 3x(HL) 3x(OL) 

45 60 60 20 

45 120 120 40 

45 180 180 60 

4 45(IL) 6x(HL) 3x(OL) 

45 120 60 20 

45 240 120 40 

45 360 180 60 

5 45(IL) 45(HL) 3x(HL) 3x(OL) 

45 45 60 60 20 

45 45 120 120 40 

45 45 180 180 60 

6 45(IL) 90(HL) 6x(HL) 3x(OL) 

45 90 120 60 20 

45 90 240 120 40 

45 90 360 180 60 
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4.1 Architectures of an ANN Model 

In order to investigate the effect of ANN architecture and different VTP orders on the 

performance of AF-ANN based VC, six ANN architectures are compared, all with 45 nodes in 

the input layer (IL), representing a 45-dimension AF (Table 4.1). To simplify the table, the VTP 

order is symbolize with x. The number of neuron in hidden layer (HL) can be fixed or varies 

according to number of neuron in output layer (OL). The number of neuron in OL represents the 

number of VTP order or three times VTP order. For example, the architecture 45(IL), 6x(HL) 

3x(OL) means: for VTP order 20 (x = 20), the ANN architecture consist of 45 neurons in input 

layer, 120 neurons in hidden layer, and 60 neurons in output layer. 

4.2 Improvement of F0 Conversion 

For the F0 conversion, we use the traditional approach of F0 transformation, as used in a GMM-

based transformation. However, because our system uses an LPC digital filter, the converted F0 

has to be processed into LPC residual signal before it can be resynthesized with the converted 

VTP into speech output. Figure 4.6 describes the detail of residual signal conversion module. 

Subsequent to F0 extraction, a logarithmic Gaussian transformation is used to transform the F0 

of a source-speaker to that of a target-speaker, as indicated in the following equation: 

 

                      
       

       
                         (6.1) 

where         and         are the mean and standard deviation, respectively, of the F0 in 

logarithmic domain for the source-speaker,         and         are the mean and standard 

deviation, respectively, of the F0 in logarithmic domain for the target-speaker,           is the F0 

of the source-speaker and         is the converted F0. 

 

 

 

 

 

Figure 4.6   F0 extraction and conversion. 
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4.3 Experiments 

4.8.1 Speech database  

Speech data used in the experiment is sampled with 16 kHz. Several data sets were used in this 

work. One was used as the training data set for the AF extractor, and others were used for the 

training and test data sets for the AM-to-VTP converter module. We used three speech 

databases for three phases of AF to VTP conversion, i.e., pre-stored speakers for the pre-

adaptation phase, target-speakers for the adaptation phase, and source-speakers for the testing 

phase.  

When people have to differentiate or identify some speakers, they will find it easier if they 

already know the speakers. Therefore, because we aim to have subjective evaluation 

respondents from our lab member and surroundings, we recorded “Labmate database”, instead 

of using the existing database. There were five persons for the overall Labmate database, three 

persons (END, NIS, and IRI) as source-speakers, and two persons (KZH and SUG) as target-

speakers. In total, there were six pairs of speakers available from the Labmate database. The 

same database (source and target-speakers) is also used for GMM-based VC experiments. For 

comparison, we also asked target-speakers to utter the same sentences as those in Labmate2. 

However, this recording will be used only for subjective evaluation and for calculating spectral 

distortion (SD) during the objective evaluation. 

The following data sets are used in our experiments.  

1. D1 training data: AF extractor training data 

Table 4.2   D1 training data. 

 Training 

Database A subset of ASJ Continuous Speech 

Number of sentences 4,503 

Number of speakers 30 (male) 

 

2. D2 training and testing data: AF to VTP converter training and testing data. 

Please note that for MCEP-GMM-based VC, the training data consist of 20 parallel 

utterances of non-phonetically balanced. While for  AF-ANN-based VC, the training 

data consist of 6 speakers of ATR phonetically balanced and 20 target speaker training 

utterances (without source speaker training utterance). The adaption data (on AF-ANN-

based VC) is the target speaker database. 
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Table 4.3   D2 training and testing data. 

Type of speakers Database Number of  

Speakers 

Utterances 

/speaker 

Pre-stored speakers ATR PB 6 (male) 50 

Target speaker Labmate1 1 (male) 20 

Source speaker Labmate2 1 (male) 5 

 

3. D3 training and testing data: AF to VTP converter training and testing data for 

improvement of AF-based VC experiment. 

Please note that for MCEP-GMM-based VC, the training data consist of 20 parallel 

utterances of non-phonetically balanced. While for  AF-ANN-based VC, the training 

data consist of 6 speakers of ATR phonetically balanced and 20 target speaker training 

utterances (without source speaker training utterance). The adaption data (on AF-ANN-

based VC) is the target speaker database). 

Table 4.4   D3 training and testing data. 

Type of speakers Database Number of  

speakers 

Utterances 

/speaker 

Pre-stored speakers ATR PB 6 (male) 50 

Target speaker Labmate1 2 (male) 20 

Source speaker Labmate2 3 (male) 5 

 

4.8.2 Experimental setup 

In this study, two types of voice conversion approach are compared. In our proposed approach, 

two types of feature vectors, i.e., AF and VTP, are used. We use a 45-dimension AF vector, 

comprising a 15-dimension preceding context, 15 dimensions of current frame, and 15-

dimension following context of AF patterns for each input frame as AF representation. For VTP 

representation, LPC analysis was conducted to produce PARCOR parameter. On the other side, 

MCEP was extracted for the feature vectors of GMM-based VC. The feature extraction and VC 

experiments were conducted using FestVox distribution [74].  

Two evaluations are performed, objective and subjective. For objective evaluations, spectrum 

distortion (SD) is calculated to measure the distance between target-speaker spectrum and 

converted spectrum. We use this measure to check the performance of mapping obtained by an 

ANN or a GMM model. SD is computed as follows: 
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where   is the number of frames,   is the number of frequency bins, and       and         are 

the log amplitude of converted and target-speaker spectra, respectively. 

For subjective evaluations, three types of listening tests were performed, the similarity test, 

XAB test, and mean opinion score (MOS) test.  

For a more comprehensive assessment of our VC, we extended the MOS test into a quality test 

(MOS-Q) and an intelligibility test (MOS-I). The intelligibility test was conducted to evaluate 

whether the message can be conveyed regardless of the quality of the converted speech. 

In the similarity test, we present the listeners with the source-speaker utterance, target-speaker 

utterance, and each converted utterance from AF-ANN and MCEP-GMM models. The listeners 

would be asked to provide a score indicating how similar the converted speech with either the 

source-speaker or target-speaker. The range of similarity score is from 1 to 5, where a score of 1 

indicates that the converted speech sounds very similar to source-speaker and score 5 indicates 

that the converted speech sounds very similar to the target-speaker. 

For the XAB test, we present the listeners with X, a natural utterance of the target-speaker, to be 

compared against an AF-ANN converted speech and an MCEP-GMM converted speech. To 

ensure that the listener is not biased, we shuffle the position of the AF-ANN/MCEP-GMM 

converted speech, i.e., A and B, with X always given at the beginning of the test. The listeners 

would be asked to select what they perceive to be closer, A or B, to the target utterance X.  

The last subjective test is MOS test where listeners evaluate the speech quality of the converted 

voices using a 5-point scale (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). Furthermore, in some 

of the MOS test, the listeners were asked their opinion about the quality of the converted speech 

(MOS-Q) and whether they could recognize what the speakers uttered (MOS-I). In the MOS test, 

the opinion score was set to a 5-point scale (1: very bad, 2: poor, 3: fair, 4: good, 5: very good). 

The voice conversion experiments are basically conducted as follows: 

1. Preliminary AF-based voice conversion experiments. 

These experiments were conducted using D1and D2 dataset. To produce VTP, 40 order 

of LPC analysis was conducted. The performance of voice conversion is evaluated 
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using objective evaluation (spectrogram, fundamental frequency contour, and spectral 

distortion) and subjective evaluations. The subjective evaluation tests were conducted 

with 7 listeners. 

2. Improvement of AF-based voice conversion using D1 and D3 dataset. 

These experiments were conducted using D1and D3 dataset. Several orders of LPC 

analysis were conducted to produce PARCOR parameters as VTP. The performance of 

voice conversion is evaluated using objective evaluation (spectral distortion) and 

subjective evaluation. The subjective evaluations tests were conducted with 9 listeners. 

 

4.4 Experimental Results and Discussion 

4.9.1 Preliminary AF-based VC experiments 

In order to determine the effect of AM-to-VTP ANN, the sound spectrograms of the source 

speaker, the target speaker, and the converted speech were compared. Since formant frequencies 

describe the characteristics of a specific speaker, Figure 4.7 shows these sound spectrograms 

complemented with the plot of formant frequencies on them. This figure shows the spectrogram 

for the chunk of utterance /yumeo-egaitaeo-genNkaNnikakeru/ (“Hang a picture of dream on a 

wall at the entrance”). The converted speech’s formants do not look as clear as the original 

source speaker’s and target speaker’s formants. This occurred because the fundamental 

frequency conversion is conducted using time stretching and sample rate transposing. Due to 

this process, there is some minor time shifting in the F0-converted signal that results in another 

minor time mismatch between the residual signal and the vocal tract parameter. 

A brief view of this spectrogram may be misleading as the converted speech is synthesized 

using the F0-converted source speaker’s residual signal. This means that the prosody of the 

converted speech is similar to the source speaker rather than the target speaker. However, if we 

look carefully from its formant tracks, where there are some significant formant frequencies 

different between the source speaker and the target speaker, the converted speech has more 

similar characteristics to the target speaker rather than the source speaker. In Figure 4.7, these 

significant formant frequency positions are shown by small circles. The result of fundamental 

frequency conversion can be seen in Figure 4.8. This figure indicates that the fundamental 

frequency conversion has been successfully conducted. 
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Figure 4.7   Sound spectrogram of source speaker, time-aligned target speaker, and converted 

speech. 

Even though changing the F0 of the source speaker has a significant influence to the similarity 

with the target speaker, however, conducting merely F0 conversion is not sufficient. We also 

consider that both of the ANN and GMM based VC systems conduct F0 conversion and 

generate converted F0 close to the desired target speaker’s F0. Therefore, rather than choosing 

the source speaker and the target speaker that have the same F0, we prefer to directly compare 

the result of ANN based VC with the state-of-the-art GMM based VC. For more comprehensive 

evaluation, log spectral distortion (LSD) is measured between the converted speeches and the 

time-aligned target speaker original utterances. As indicated in Table 4.5, the proposed method 

has smaller LSD compared to GMM-based VC [72]. 
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Figure 4.8   Fundamental frequency contour of source speaker, target speaker, and converted 

speaker. 

Table 4.5  Spectral distortion (SD) for 5 parallel training utterances. 

 ANN GMM 

LSD (dB) 9.18 9.40 

 

Figure 4.9 shows the result of subjective evaluation. The MOS-Q test that measures the quality 

of converted speech shows that the voice quality has degraded. This degraded quality is affected 

by minor timing mismatch between the F0-converted residual signal and VTP. However, most 

of the listeners agree that the converted speech is intelligible, as indicated by the MOS-I test. 

This means that converted speech is understandable and the message that the source speaker is 

trying to convey can be captured by the listeners. The MOS test and similarity test indicate that 

the ANN-based VC system performs as good as that of the GMM-based VC system. The 

similarity test indicates that most of our listeners perceive the converted speech as being spoken 

by target speakers.  
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Figure 4.9   Subjective evaluation of voice conversion from MOS test and similarity test. 

4.9.2 Improvement of AF-based VC 

LPC analysis is dependent upon its filter order, i.e., the number of LPC coefficients. The order 

of LPC filter is typically estimated by starting with a heuristic value according to the sampling 

frequency. This heuristic value is equal to the sampling rate in kHz, with 4 or 5 additional 

coefficients [48]. Since our speech data is sampled with 16 kHz, a 20-order of LPC analysis is 

chosen for VTP. We aim to investigate the effect of ANN architecture and different VTP orders 

on the performance of AF-ANN based VC. Six ANN architectures are compared, all with 45 

nodes in the input layer, representing a 45-dimension AF.  

The first architecture uses only one hidden layer and x output layers, where the value of x 

represents the number of LPC order to generate VTP. For example, for the VTP 40, the ANN 

architecture would be 45 input nodes, 450 hidden layer nodes, and 20 output nodes. From the 

second to the sixth architecture, we considered augmenting VTP with contextual frames, i.e., 

appending VTP from previous and next frames to the current frame of VTP. Hence, the number 

of output nodes is three times that of the VTP order, i.e., 60 output nodes for VTP 20, 120 

output nodes for VTP 40, and 180 output nodes for VTP 60. In this thesis, we investigate three-

layer and four-layer ANNs, i.e., one input layer (IL), one or two hidden layers (HL), and one 

output layer (OL). 
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Table 4.6   SD obtained on one-utterance END-KZH for different architectures of an ANN 

model. 

No ANN architecture SD (dB) 

VTP 20 VTP 40 VTP 60 

1 45(IL) 450(HL) x(OL) 9.96 9.44 9.02 

2 45(IL) 450(HL) 3x(OL) 8.68 9.27 9.14 

3 45(IL) 3x(HL) 3x(OL) 9.06 9.06 9.25 

4 45(IL) 6x(HL) 3x(OL) 9.68 9.04 9.31 

5 45(IL) 45(HL) 3x(HL) 3x(OL) 10.16 9.87 9.99 

6 45(IL) 90(HL) 6x(HL) 3x(OL) 10.16 9.53 9.31 

 

Table 4.7   Averaged SD obtained for six pairs-of-speakers. 

 ANN GMM 

SD (dB) 12.93 13.97 

 

From the second to the sixth architecture, we considered augmented VTP, i.e., appending VTP 

from previous and next frames to the current frame of VTP. Hence, the number of output nodes 

was three times that of the VTP order, i.e., 60 output nodes for VTP 20, 120 output nodes for 

VTP 40, and 180 output nodes for VTP 60. In this thesis, we experimented with three-layer and 

four-layer ANNs, i.e., one input layer (IL), one or two hidden layers (HL), and one output layer 

(OL). 

Table 4.6 provides SD scores of END-KZH for three VTP orders and six ANN–model 

architectures. From this table, we see that three-layered architecture 45(IL) 450(HL) 3x(OL) for 

VTP 20 provides a better result when compared with other architectures. We also confirmed this 

result by listening to the resultant speech. Hence, for the remaining experiments reported in this 

thesis, the three-layered architecture 45(IL) 450(HL) 60(OL) is used. The overall SD scores for 

six pairs of speakers of both AF-ANN and MCEP-GMM-based VC are shown in Table 4.7,  

which indicate that the AF-ANN-based VC outperforms MCEP-GMM-based VC. From the 

objective evaluation, SD of GMM-based VC has more than 1 dB difference than that of AF-

ANN-based approach. 

The typical voice conversion evaluation measured SD only from the spectral envelope [76]. In 

our case, because we compare two approaches with different feature vectors, we calculate SD 

from the resulted converted speech, i.e., by considering both of the converted features and the 

converted F0 component. For this reason, the value of SD seems higher than usual. 
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Figure 4.10   SD scores of VC based on AF-ANN and MCEP-GMM for six pairs of speakers. 

 

 

 

 

 

 

 

 

 

Figure 4.11   Similarity, XAB, and MOS scores of VC based on AF-ANN and MCEP-GMM for 

six pairs of speakers. 
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We conducted the first training of AF to VTP converter using 6 sets of phonetically balanced 

database. In this step, AF to VTP converter learns to convert any phoneme, represented by AF, 

into VTP. Subsequently, the adaptation phase is conducted with small number of adaptation 

data. Based on the analysis in [77], the nasal sounds (e.g., N, n, m, ny, my) and the vowel part 

has relatively high correlations with the perception (speaker identity). Therefore, in our 

approach, we can conduct adaptation phase with a small number of target-speaker training data. 

The most important is to have adaptation data containing nasal sounds and all the needed 

vowels. 

To determine the effect of the number of training utterances for the VC models, we performed 

the experiments by varying the target-speaker training data from 5 to 20 utterances. Please note 

that our AF-ANN approach also needed pre-stored data (non-parallel with the target-speaker 

utterances), while MCEP-GMM approach needed parallel training utterances of source and 

target-speakers. GMM-based VC performance is expected to improve as the number of training 

utterances increases [27]. However, since we are focusing in building VC for a small number of 

target-speaker training data, the experiments were conducted until 20 training utterances. From 

Figure 4.10, we observe that as the number of training utterances increase, the SD scores 

obtained by MCEP-GMM decreased, especially for 20 parallel training utterances. For AF-

ANN, the SD scores seem to be more stable and even have the lowest value for 15 training 

utterances. 

In voice conversion, objective measures do not always support subjective evaluations [78]. 

Currently, the most accurate method for evaluating speech quality is through subjective 

listening tests [79]. Thus, subjective evaluation is needed to confirm the result of objective 

evaluation. 

In this section, we provide subjective evaluation results for AF-ANN and MCEP-GMM-based 

VC systems. We conducted similarity, XAB, and MOS tests to evaluate the performance of the 

AF-ANN-based transformation against the MCEP-GMM-based transformation. A total of 9 

respondents were asked to participate in the experiments. Figure 4.11 provides the similarity, 

XAB, and MOS scores for six pairs of speakers (END-KZH, NIS-KZH, IRI-KZH, END-SUG, 

NIS-SUG, and IRI-SUG). The testing is done on the test set of 30 utterances (5 utterances per 

speaker). The overall similarity scores indicate that for AF-ANN based VC, the respondents 

perceived that the converted speech is more similar to the target-speaker than to the source-

speaker. The XAB scores indicate that compared with the MCEP-GMM-based VC system, the 

AF-ANN-based VC system performs better for a small number of target-speaker training data. 
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MOS test is also performed to confirm that the resulting speech of AF-ANN based VC system is 

intelligible. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12   SD scores of VC based on AF-ANN and MCEP-GMM over six pairs of speakers. 

 

 

 

 

 

 

 

 

 

Figure 4.13   Similarity scores of VC based on AF-ANN and MCEP-GMM over six different-

pairs of speakers 
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Figure 4.14   MOS scores of VC based on AF-ANN and MCEP-GMM over six different-pairs 

of speakers. 

To show that the ANN-based transformation can be generalized over different databases, we 

conducted objective and subjective evaluations for six pairs of speakers. Figure 4.12 shows SD 

scores of AF-ANN and MCEP-GMM based VC systems for six pairs of speakers. This figure 

shows that for most pairs of speakers, SD scores of AF-ANN-based VC are lower than those of 

MCEP-GMM-based VC system. 

Moreover, Figure 4.13 and Figure 4.14 show similarity and MOS scores of AF-ANN and 

MCEP-GMM-based VC systems for different pairs of speakers. While for MOS scores, AF-

ANN-based VC system outperforms MCEP-GMM-based VC system in most cases, for 

similarity scores, AF-ANN-based VC system always outperforms MCEP-GMM-based VC 

system. 

4.5 Conclusions 

We have proposed articulatory-based voice conversion that does not require any speech data 

from source speakers and hence could be considered as independent of the source speaker. The 

conclusion can be summarized as: 
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 The F0 conversion has been successfully conducted. However, due to some minor time 

mismatch between the residual signal and the vocal tract parameter, the spectrogram of 

converted speech didn’t look as clear as that of the original source speaker and target 

speaker. A better quality of converted speech could be achieved by improving the F0 

conversion process. 

 From the spectrogram formant tracks, the converted speech had more similar 

characteristics to the target speaker rather than the source speaker. 

 Even though SD values between converted speech and target speaker’s speech (1 pair of 

speakers) show that AF-ANN-based VC outperform GMM-based VC, the MOS test 

showed that the listeners preferred the GMM-based VC converted utterances to AF-ANN-

based VC converted utterances. 

 The XAB test showed comparable performance between AF-ANN and GMM-based VC. 

 Three-layered ANN architecture 45(IL) 450(HL) 3x(OL) for VTP 20 provided a better 

result when compared with other ANN architectures. This result was also confirmed by 

directly listening to the resultant speech. Hence, for the remaining experiments reported in 

this thesis, the three-layered architecture 45(IL) 450(HL) 60(OL) was used. 

 As the number of training utterances increased, the SD scores obtained by MCEP-GMM 

decreased, especially for 20 parallel training utterances. For AF-ANN, the SD scores 

seemed to be more stable (and lower than that of MCEP-GMM-based VC) since the lowest 

target speaker training data (5 utterances). 

 The overall similarity scores indicated that for AF-ANN based VC, the respondents 

perceived that the converted speech was more similar to the target-speaker than to the 

source-speaker.  

 The XAB scores indicated that compared with the MCEP-GMM-based VC system, the AF-

ANN-based VC system performed better for a small number of target-speaker training data.  

 MOS test was also performed to confirm that the resulting speech of AF-ANN based VC 

system was intelligible. 

 For the overall performance, AF-ANN-based VC outperformed MCEP-GMM-based VC 

for a small number of target-speaker training data. 
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CHAPTER 5 

CONCLUSIONS 

 

This thesis investigates the behavior of AF as linguistic feature representation of the speech 

waveform in the task of both PR and VC. For the PR application, several strategies for 

designing the optimal parameter set in AF-HMM-based PR are investigated. While for the voice 

conversion application, articulatory feature-based voice conversion is proposed. We focus on 

making VC application for arbitrary speakers with a small number of target-speaker training 

data. 

In Chapter 2, the author reviewed about human speech production system and how the 

knowledge of human speech production can be derived to extract two main feature vectors used 

in this thesis, i.e., articulatory feature (AF) and vocal tract parameter (VTP). Some frameworks 

to extract AF that represent articulatory gestures in linguistic theory were explained. 

Furthermore, human speech production was modeled to extract VTP. This chapter provides 

fundamental background information for the next chapters. 

In Chapter 3, the author described about the basic principle in HMM-based phoneme 

recognition. This chapter showed the implementation details of existing phoneme recognition 

methods. Some strategies to improve AF-HMM-based phoneme recognition were explained in 

this chapter. Based on the classical idea of co-articulation, sub-word unit was extended from 

monophone to triphone. Even though the AF extraction is already conducted by considering 

context, however, we still found an improvement in the correct rate when extending monophone 

to triphone. This improvement was not followed by an accompanying improvement of accuracy. 

A large insertion error occurred, mostly during the recognition of fricative and vowel sound. 

Adding number of HMM states and conducting vowel group separation reduce the insertion 

errors on both of the AF-HMM and MFCC-HMM-based PR. Compared with the 3-state HMM 

phoneme recognizer, the 5-state HMM phoneme recognizer is shown to be less sensitive to 

insertion error as it is more unlikely to recognize additional longer sequences of HMM. 

Besides accuracy improvement along the experiments, the analysis showed different 

behavior between AF-HMM-based PR and MFCC-HMM-based PR in terms of their reaction to 

insertion penalty (IP) value. Both of the AF-HMM and MFCC-HMM PR systems experienced 
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accuracy degradation during the extension from monophone-based PR to triphone-based PR. As 

mentioned before, the correct rate improvement followed by the accuracy degradation while 

extending monophone to triphone indicates that a large insertion error occurred. A better 

performance of phoneme recognition can be obtained by balancing the deletion errors and the 

insertion errors by imposing IP.  

Since AF designed to be speaker invariant by emphasizing the linguistic information and 

reduce the speaker variability, the variance among AF data is very small. If not taken into 

account, this characteristic will result a positive likelihood during the HMM-based recognition. 

Scaling can be applied on AF to alter its distribution form and consequently, also resulted in the 

change of the average log likelihood per frame. However, further investigation shows that over 

different IP values, the performance of AF-HMM-PR is similar compared to the non-scaled AF. 

Normally, the IP itself should be balanced with the language weight, however, because we don’t 

use language model in PR task, the insertion error is controlled only from the insertion penalty. 

Our experiments showed that by tuning the insertion penalty, the accuracy of AF-based PR can 

be improved without significantly decreasing its correct rate. Compared to MFCC-HMM-based 

PR, AF needs larger insertion penalty value to be imposed. 

By tuning insertion penalty and extending monophones to triphones, the phoneme 

recognition performance (for both accuracy and correct rate) improved. For the last strategy, we 

conducted Bakis topology and compared it with the linear topology. Compared to the linear 

topology, the Bakis topology worked well for improving both the correct rate and the accuracy 

of the AF-based phoneme recognition. AF-based phoneme recognition with 5-state HMMs, 

separated vowel, triphone subword, Bakis topology, and optimal insertion penalty provides the 

best accuracy among the experiments, i.e., 81.38% for the JNAS speech database. This result 

suggest that at least AF-HMM-based PR is comparable with the standard MFCC-based 

phoneme recognition for triphone subword, 3-state HMMs, and 16 Gaussian mixtures. 

In Chapter 4, voice conversion (VC) based on AF to vocal-tract parameters (VTP) mapping 

was proposed. An artificial neural network (ANN) is applied to map AF to VTP and to convert a 

speaker’s voice to a target-speaker’s voice. For comparison, a baseline system based on 

Gaussian mixture model (GMM) approach is conducted. On this chapter, the residual signal 

conversion was conducted to transform the fundamental frequency (F0) of the converted speech 

into target speaker’s F0. The F0 was transformed by using a sample rate transposing technique, 

subsequent to a time stretching technique. The F0 conversion has been successfully conducted. 

However, due to this process, there is some minor time shifting in the F0-converted signal that 
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results in another minor time mismatch between the residual signal and the vocal tract parameter. 

The converted speech quality was not very good, as indicated by the subjective MOS test. 

However, from the LSD scores and the subjective similarity test, the AF-ANN based VC 

showed good performance.  

Moreover, we describe our effort on improving F0 conversion for AF-based VC based on 

the conclusions drawn in the previous chapter. For the F0 conversion, traditional approach of F0 

transformation, as used in a GMM-based transformation was used. However, because the 

proposed system used an LPC digital filter, the converted F0 has to be processed into LPC 

residual signal before it can be resynthesized with the converted VTP into speech output. To 

improve the mapping of AF to VTP, the effect of ANN architecture and different VTP orders on 

the performance of AF-ANN based VC was also investigated. In this chapter, it was showed 

that three-layered ANN architecture 45(IL) 450(HL) 3x(OL) for VTP 20 provides a better result 

when compared with other ANN architectures. This result was also confirmed by directly 

listening to the resultant speech. Hence, for the remaining experiments reported in this thesis, 

the three-layered architecture 45(IL) 450(HL) 60(OL) is used. After choosing the best ANN 

architecture and improving the F0 conversion, the AF-ANN-based VC was again compared 

with GMM-based VC. As the number of training utterances increase, the SD scores obtained by 

MCEP-GMM decreased, especially for 20 parallel training utterances. For AF-ANN, the SD 

scores seem to be more stable (and lower than that of MCEP-GMM-based VC) since the lowest 

target speaker training data (5 utterances). The overall similarity scores indicate that for AF-

ANN based VC, the respondents perceived that the converted speech is more similar to the 

target-speaker than to the source-speaker. The XAB scores indicate that compared with the 

MCEP-GMM-based VC system, the AF-ANN-based VC system performs better for a small 

number of target-speaker training data. MOS test is also performed to confirm that the resulting 

speech of AF-ANN based VC system is intelligible. For the overall performance, AF-ANN-

based VC outperforms MCEP-GMM-based VC for a small number of target-speaker training 

data. 

The findings of this thesis includes the following 

(A) Both of the AF-HMM and MFCC-HMM PR systems experienced accuracy degradation 

during the extension from monophone-based PR to triphone-based PR. 

(B) A large insertion error occurred during the recognition of fricative sound and vowel. Adding 

number of HMM states and separating short-vowel and long-vowel reduce the insertion 

errors on both of the AF-HMM and MFCC-HMM-based PR. 
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(C) Besides accuracy improvement along the experiments, the analysis showed different 

behavior between AF-HMM-based PR and MFCC-HMM-based PR in terms of their 

reaction to insertion penalty (IP) value.  

(D) IP was also imposed to reduce the insertion error, by balancing insertion error and deletion 

error. The accuracy of the AF-based phone recognition can be improved without 

significantly decreasing its correct rate by tuning the insertion penalty. Compared to MFCC-

HMM-based PR, AF needs larger insertion penalty value to be imposed. 

(E) Scaling was applied on AF to alter its distribution form and consequently, also resulted in 

the change of the average log likelihood per frame. However, over different IP values, the 

performance of AF-HMM-PR is similar compared to the non-scaled AF. 

(F) Compared with the linear topology, the Bakis topology worked well for improving both the 

correct rate and the accuracy of the AF-based phoneme recognition. 

(G) AF-based phoneme recognition with 5-state HMMs, separated vowel, triphone subword, 

Bakis topology, and optimal insertion penalty provides the highest accuracy among the 

experiments, i.e., 81.38% for the JNAS speech database. 

(H) In AF-ANN-based VC, three-layered ANN architecture 45(IL) 450(HL) 3x(OL) for VTP 20 

provides a better result when compared with other ANN architectures. This result is also 

confirmed by directly listening to the resultant speech. 

(I) Compared with SD scores of GMM-based VC, AF-ANN-based VC provides lower SD 

scores even since the lowest target speaker training data (5 utterances). 

(J) After choosing the best ANN architecture and improving the F0 conversion, for the overall 

performance, AF-ANN-based VC outperforms MCEP-GMM-based VC for a small number 

of target-speaker training data. 

In the AF-HMM-based PR, AFs distribution was assumed as Gaussian. The investigation 

can be extended by considering HMM classifier with other probability distribution types which 

best match with AF distribution. When aiming for the best accuracy on HMM-based speech 

recognizer, duration modeling technique can also be considered to reduce the tendency of HMM 

to recognize shorter word, and in consequences, will also reduce the tendency of HMM for 

having unbalance insertions errors compared to deletion errors.  

It would be also interesting to investigate the flexibility of AF for cross-lingual PR. For that 

purpose, the first challenge would be designing the universal AF. Then, in the future, the author 

would like to investigate hybrid AF-based DNN-HMM speech recognizer. For the VC system, 

the nearest future work is to improve the residual signal conversion. Moreover, as the current 
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VC is design only for male speakers, developing a cross-gender VC is also need to be done. If 

the above design of the universal AF for PR is successful, it can also be used to develop cross-

lingual VC. 
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