### γ-Al<sub>2</sub>O<sub>3</sub>/Si(100)基板上の

Pb(Zr,Ti)O3薄膜焦電型赤外線センサの集積化

に関する研究

(Study on Integration of Pb(Zr,Ti)O<sub>3</sub> Thin Film Pyroelectric

Infrared Detectors on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si(100) Substrate)

2015年1月

博士 (工学)

### 大石 浩史

豊橋技術科学大学

# γ-Al<sub>2</sub>O<sub>3</sub>/Si(100)基板上の Pb(Zr,Ti)O<sub>3</sub>薄膜焦電型赤外線センサの集積化に関する研究

#### 論文要旨

本研究は結晶配向 Pb(Zr,TiO)O<sub>3</sub> (PZT)薄膜赤外線センサと CMOS (complementary metal oxide semiconductor) 回路を $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ集積化するために必要な要素技術を確立することを目的として研究を行った。 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si と CMOS 回路との集積化におけるプロセス適合性を調査した。また焦電型赤外線センサ応用へ向けた積層赤外線吸収膜の検討、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 上へ PZT 薄膜の形成を行い、赤外線センサとしての評価を行った。

有機金属化学気相成長法(MOCVD 法)により成長した Si 基板上の結晶配向 γ-Al<sub>2</sub>O<sub>3</sub> 薄膜について、CMOS 回路作製工程のアニールプロセスを行い、γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性を調査した。結晶性は高速反射電子線回折、X 線回折を用い分析 した。また構成元素の結合状態、表面状態の変化をX 線光電子分光、走査型電 子顕微鏡を用いて調べた。 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜は結晶配向 PZT 薄膜を Si 基板上に集積 化するための重要な下地材料であるが、CMOS 作製プロセスにおけるアニール プロセスの温度は  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の成長温度に比べて高く、再結晶化や雰囲気ガ スによる化学反応等による結晶性、膜質の変化が考えられる。結果より、H<sub>2</sub>O vapor 雰囲気における 1000°C のアニールにより  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 表面に SiO<sub>2</sub> が形成される等膜質の変化を確認できた。この膜質変化を防ぐため H<sub>2</sub>O 分子を 通さない Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 膜を  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 上の保護膜として提案し、その有用性を確認 した。そしてこれらの結果から  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜を集積化した際の CMOS 回路特性 について評価した。

結晶配向 PZT 薄膜赤外線センサを γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板へ形成するデバイスの応用

として、PZT 薄膜に適合する赤外線吸収膜の検討・設計・作製・評価を行った。 赤外線センサに用いる 8 µm から 14 µm の波長帯で赤外線吸収特性をもつ CMOS 適合材料を積層させた SiO<sub>2</sub>/SiN 積層膜を設計・作製して PZT 薄膜赤外線センサ 上へ形成した。その結果、平均が 86%となるような赤外線吸収率が得られた。 また検出感度向上に向けて有限要素法を用いた過渡伝熱解析に基づき、センサ 構造の設計を行った。本センサの赤外線応用評価を行った結果、1.15 x 10<sup>7</sup> cmHz<sup>1/2</sup>/W の比検出能 D\*が得られ、デバイス応用に用いることができる値であ った。

最後にγ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ PZT 薄膜赤外線センサと CMOS 回路の集積化を行った。全 140 工程、マスク 20 枚を要してデバイスの作製を行った。全工程後の PZT 薄膜の強誘電体特性及び CMOS 回路特性を評価した結果、両方とも特性の 劣化なく作製することに成功し、結晶配向 PZT 薄膜赤外線センサを CMOS 回路 と集積化するプロセスの確立に成功した。

本研究により、CMOS 回路と PZT 薄膜赤外線センサを γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ集 積化するためのプロセスを確立した。これらの研究成果より、γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板 上の結晶配向した PZT 薄膜を用いることで赤外線センサと CMOS 回路の集積化 デバイス実現への見通しが得られた。

### Study on Integration of Pb(Zr,Ti)O<sub>3</sub> Thin Films Pyroelectric Infrared Detectors on γ-Al<sub>2</sub>O<sub>3</sub>/Si(100) substrate

#### Abstract

In this study, integration processes of crystalline orientated Pb(Zr,Ti)O<sub>3</sub> (PZT) film infrared detectors and complementary-metal-oxide-semiconductor (CMOS) circuits on a  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate was investigated. The process compatibility of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si and CMOS circuits was investigated. A multilayer-stack infrared absorber was proposed, designed, fabricated, and characterized in order to apply on a PZT film infrared detector on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate. The infrared detectivity of the fabricated detector with the proposed infrared absorber was characterized.

The crystallinities of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film grown by metal organic chemical vapor deposition were investigated after anneal processes in CMOS fabrication. The crystallinities were analyzed by rflection high energy electron diffraction and x-ray diffraction. The chemical bonding state of the film surface was analyzed by x-ray photoelectron spectroscopy. As a result, anneal of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si at 1000°C in H<sub>2</sub>O vapor atmosphere appeared to change condition of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film. In order to prevent the annealed effect, Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> passivation films which H<sub>2</sub>O molecules are not able to penetrate through the films were proposed. The effect of the annealing process on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate was proposed and considered based on above experimental results. Circuit characteristics of fabricated transistors integrated on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate were evaluated.

An infrared absorber for an application of crystalline PZT film infrared

detectors on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate was proposed, designed, fabricated, and characterized. SiO<sub>2</sub>/SiN multilayer-stack film based on CMOS compatible materials which possess infrared absorption in the wavelength rage from 8 to 14  $\mu$ m was designed and fabricated on the PZT film infrared detectors. Average infrared absorptance of 86% was obtained on the proposed multilayer-stack film integrated PZT film detectors. Detector structures were also designed based on transient heat analysis using finite element model in order to improve sensitivity of the PZT film detectors. Specific detectivity of 1.15 x 10<sup>7</sup> cmHz<sup>0.5</sup>/W, a useful value for device applications for infrared detector, was achieved at 30 Hz on the fabricated PZT pyroelectric detector.

At last, the integration of the PZT thin film infrared detectors and CMOS circuits based on $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate was carried out. 140 processes and 20 masks were required to fabricate the device. The characterization on the polarization of the PZT thin film and CMOS circuits after all fabrication processes were obtained without inferior characteristics. The fabrication processes of PZT thin film infrared detector integrated on CMOS circuits were successfully established.

In conclusion, integration processes of CMOS circuits and PZT film infrared detector on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate were established. The research results suggest that realization of high performance infrared detector based on integration of CMOS circuits and PZT film infrared detector using  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si substrate.

### 目次

| 第1章  | 序論                                                                                             | 1  |
|------|------------------------------------------------------------------------------------------------|----|
| 1.1  | 赤外線センサ                                                                                         | 1  |
| 1.2  | MEMS 技術による Si 基板上へのデバイス形成                                                                      | 2  |
| 1.3  | 強誘電体薄膜の MEMS 応用                                                                                | 3  |
| 1.4  | センサ応用としての Pb(Zr <sub>1-x</sub> ,Ti <sub>x</sub> )O <sub>3</sub> (PZT)強誘電体薄膜                    | 4  |
| 1.5  | Si 基板上の結晶配向 PZT 薄膜形成                                                                           | 6  |
| 1.6  | γ-Al <sub>2</sub> O <sub>3</sub> 薄膜を用いた結晶配向 PZT 薄膜センサデバイス                                      | 7  |
| 1.7  | 本研究の目的                                                                                         |    |
| 1.8  | 本論文の構成                                                                                         | 10 |
| 参考了  | 文献                                                                                             | 11 |
| 第2章  | γ-Al <sub>2</sub> O <sub>3</sub> /Si 基板上の PZT 薄膜赤外線センサ作製技術                                     | 14 |
| 2.1  | Si 基板上の結晶配向 PZT 薄膜作製技術                                                                         | 14 |
| 2.1. | 1 γ-Al <sub>2</sub> O <sub>3</sub> の結晶構造                                                       | 15 |
| 2.1. | 2 Si 基板上へのγ-Al <sub>2</sub> O <sub>3</sub> 薄膜のエピタキシャル成長                                        | 16 |
| 2.1. | 3 有機金属化学気相成長法による γ-Al <sub>2</sub> O <sub>3</sub> 薄膜の成長                                        | 17 |
| 2.1. | 4 γ-Al <sub>2</sub> O <sub>3</sub> /Si 基板上への Pt エピタキシャル成長                                      |    |
| 2.1. | 5 Pt/γ-Al <sub>2</sub> O <sub>3</sub> /Si 基板上への PZT 薄膜のエピタキシャル成長                               |    |
| 2.1. | 6 Sol-gel 法による PZT 薄膜の成膜                                                                       | 19 |
| 2.2  | 薄膜評価技術                                                                                         | 21 |
| 2.2. | 1 反射高速電子線回折                                                                                    | 21 |
| 2.2. | 2 X 線回折                                                                                        | 23 |
| 2.2. | 3 X 線光電子分光                                                                                     |    |
| 2.2. | 4 走査電子顕微鏡                                                                                      |    |
| 2.2. | 5 フーリエ変換赤外線分光光度計                                                                               | 27 |
| 参考了  | 文献                                                                                             |    |
| 第3章  | Si(100)基板上への γ-Al <sub>2</sub> O <sub>3</sub> 薄膜形成と CMOS 回路インテグレーション                           |    |
| 3.1  | 緒言                                                                                             |    |
| 3.2  | CMOS プロセスにおける高温プロセス                                                                            |    |
| 3.3  | Si 基板上の γ-Al <sub>2</sub> O <sub>3</sub> 薄膜アニールサンプルの作製                                         |    |
| 3.3. | 1 Si 基板上への γ-Al <sub>2</sub> O <sub>3</sub> 結晶成長                                               |    |
| 3.3. | 2 γ-Al <sub>2</sub> O <sub>3</sub> 薄膜のアニール                                                     |    |
| 3.3. | 3 Si <sub>3</sub> N <sub>4</sub> /SiO <sub>2</sub> 膜による γ-Al <sub>2</sub> O <sub>3</sub> 薄膜の保護 |    |
| 3.4  | 反射高速電子線回折及びX線回折を用いたγ-Al <sub>2</sub> O <sub>3</sub> 薄膜の結晶性評価                                   | 34 |

| X線光電子分光及び走査型電子顕微鏡を用いたγ-Al <sub>2</sub> O <sub>3</sub> 薄膜の表面元素分析と表面        |  |  |  |
|---------------------------------------------------------------------------|--|--|--|
|                                                                           |  |  |  |
| 41                                                                        |  |  |  |
| γ-Al <sub>2</sub> O <sub>3</sub> 薄膜を形成した Si(001)基板上への CMOS 回路素子作製及び回路特性評価 |  |  |  |
|                                                                           |  |  |  |
| 45                                                                        |  |  |  |
| 46                                                                        |  |  |  |
| ⁄サの作製・                                                                    |  |  |  |
|                                                                           |  |  |  |
| 47                                                                        |  |  |  |
| 48                                                                        |  |  |  |
| 52                                                                        |  |  |  |
| 55                                                                        |  |  |  |
| 57                                                                        |  |  |  |
| 60                                                                        |  |  |  |
| 64                                                                        |  |  |  |
| 65                                                                        |  |  |  |
| 67                                                                        |  |  |  |
| 67                                                                        |  |  |  |
| 67                                                                        |  |  |  |
| 69                                                                        |  |  |  |
| 70                                                                        |  |  |  |
| 70                                                                        |  |  |  |
| 72                                                                        |  |  |  |
| 73                                                                        |  |  |  |
| 75                                                                        |  |  |  |
| 76                                                                        |  |  |  |
| 93                                                                        |  |  |  |
|                                                                           |  |  |  |

### 第1章 序論

#### 1.1 赤外線センサ

赤外線は可視光よりも長い電磁波であり温度を持つすべての物体から放射されている。 赤外線のエネルギーは物体の温度に相関があり、物体から放射される赤外線の波長も物体 の温度が低いほど長くなることが分かっている。人体の温度は約 37℃ であり、放射される 赤外線は波長 10 μm において最も強く放射されている[1]。よってその波長付近の赤外線を 検知するセンサによる人体検知や、監視やナイトビジョンなどのセキュリティデバイス、 医療や環境モニタなどモニタリングデバイスとして幅広く応用が期待されている。

赤外線センサは物体から放射される赤外線を検知することで物体の温度情報を間接的得 ることのできるデバイスである。赤外線センサはその検出方式から量子型(冷却型)と熱 型(非冷却型)の主に二つに分類される。量子型センサは赤外線の光のエネルギーをフォ トンとして直接検出をするため感度が非常に高く、高速に応答が可能である[2]。しかしそ のためにはセンサを極低温で動作させる必要があり、冷却装置など装置が大型になる。ま たセンサ材料によって感度の波長依存性がある。一方、熱型センサは赤外線を熱に変換し、 センサ材料の温度上昇を物性値変化として赤外線を間接的に検出する。熱型センサには冷 却装置が不要なため、デバイスの小型化が期待でき、幅広い分野への応用が期待され様々 な熱型赤外線センサが 1990 年代頃から活発に研究されてきた[3-5]。

熱型センサは半導体集積回路技術と微細加工技術などの MEMS (Micro-electro-mechanical systems) 技術の発展により、性能の向上がなされてきた。MEMS 技術により微小構造のセンサ薄膜と基板との熱分離構造を形成することで、センサからの熱の逃げを劇的に減らすことが可能になったためである。図 1-1 に熱型赤外線センサの基本構造を示す。熱型赤外線センサはセンサ薄膜、赤外線吸収膜、熱分離構造(中空構造)で構成される。センサ薄膜は基板との熱分離をするために、宙に浮いた構造となっている。センサは梁により支持及び配線されて、信号を読み出す。またセンサ上には照射された赤外線を効率良く吸収し、熱に変換するための赤外線吸収膜が形成される。このように熱型赤外線センサでは 3 次元 微細構造を基板表面に形成する MEMS 技術によってその性能を大きく向上させてきた。



図 1-1 熱型赤外線センサの基本構造

#### 1.2 MEMS 技術による Si 基板上へのデバイス形成

MEMS はその名の通り、微細な機械構造や信号処理回路を一つの基板上に集積させたデ バイスシステムのことであり、センサやアクチュエータなどへ主に応用されている。MEMS は様々な半導体集積回路製造技術、特殊な微細加工技術、各種材料技術等を駆使して製造 される。そして MEMS の最大の特徴は様々な機能を有したデバイスの小型化や集積化を実 現している点である。例えば、センサは微細化することで軽量化、省スペース化でき、イ メージセンサのようなセンサアレイの場合、高解像な出力画像を得ることができる。また センサの直近に信号処理回路を形成することで、微小な信号を低雑音で得ることができる。 さらに異種材料を組み合わせることで異種のセンサやアクチュエータを集積化でき、単体 では得られない機能や性能を得ることができるため、新しいシステムの創出につながる等 のメリットがある。MEMS は情報通信、医療・バイオ、自動車、環境など多様な分野にお ける小型、高精細で省エネルギー性に優れた高機能デバイスとして期待されている。

MEMS に使われる材料としては、Si 基板上へ CMOS (complementary metal-oxide-semiconductor) 集積回路を形成する点から、CMOS 適合材料としてのSi 材料がよく用いられている。Si 系の材料を用いた MEMS デバイスは微細加工技術により高精度に微細構造体を作製することができ、CMOS 構造を用いた光センサなど小型、高精細、多機能な集積回路を搭載したイメージセンサが実現されている[6]。アクチュエータについてもSi の微細な3 次元構造体を形成し、静電引力により構造を物理的に変位させるマイクロミラーなど様々な応用が報告されている[7]。一方Si とは異なる材料を用いた MEMS デバイスでは、材料特有の電気特性を用いることができるため、Si では得られないような機能や性

能を得ることが可能となる。このような Si とは異なる材料を用いて様々な機能を実現でき る材料を機能性材料と呼ぶ。従来の Si 材料のみを用いる場合は微細化や構造の改良により、 デバイスの性能向上が図られてきた。しかしながら微細化や構造改良にも限界があるため、 機能性材料を Si 基板上に集積化させて、材料特有の性能を用いることで多機能、高性能な MEMS デバイスを実現させることが期待されている。このように MEMS デバイスでは材料 開発や Si 基板上への機能性材料をインテグレーション(一体化)するプロセス技術が重要 となる。

#### 1.3 強誘電体薄膜の MEMS 応用

強誘電体は自発分極(外部電界がなくても存在している分極)を有しており、外部電界 により分極が反転する物質である。図 1-2 に強誘電体薄膜の分極ヒステリシスの模式図を示 す。強誘電体薄膜はその電気的、機械的な特性により機能性材料として広く知られており、 圧電特性、焦電特性、高誘電率を有することからセンサ、アクチュエータ、メモリなどへ の応用が広く研究されている[8-10]。

強誘電体薄膜は上述の通りデバイスとして様々な機能を有することから、Si 基板上へ形成して、集積回路とのインテグレーションができるように数々の研究がされている。例えば Baek らの研究では MEMS デバイス応用に向けて SrTiO<sub>3</sub> 薄膜、SrRuO<sub>3</sub> 薄膜をバッファ層として、Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> (PMN-PT)薄膜の Si 基板上へのインテグレーションが報告されている[3]。圧電定数としては非常に高い e<sub>31</sub> = 27 C/m<sup>2</sup>程度のものが得られている。また Yin らは Si 基板上に SrTiO<sub>3</sub> 薄膜をバッファ層として単結晶 Pb(Zr<sub>0.52</sub>,Ti<sub>0.48</sub>)O<sub>3</sub> (PZT)薄膜の形成について報告している[9]。Niu らは強誘電体メモリへの応用に向け、Si 基板上に SrTiO<sub>3</sub> 薄膜をバッファ層として BaTiO<sub>3</sub> 薄膜のエピタキシャル成長を報告している[10]。このように Si 基板上に機能性材料として良質な強誘電体薄膜を形成することは多くの注目を集めており、インテグレーションの研究がされている。



図 1-2 強誘電体の分極ヒステリシスの模式図

#### 1.4 センサ応用としての Pb(Zr<sub>1-x</sub>, Ti<sub>x</sub>)O<sub>3</sub> (PZT) 強誘電体薄膜

数多くある強誘電体薄膜の中でも特によく用いられている材料としてジルコン酸チタン 酸鉛(PZT)薄膜が挙げられる。PZT は 1952 年に Shirane らによって発見された、PbZrO<sub>3</sub> と PbTiO<sub>3</sub>の混晶であり、Zr と Tiの組成比により結晶構造が相転位することが報告された[11]。 それ以降様々な研究がされてきて、高い圧電特性、焦電特性、高誘電率を有し、機能性材 料として認知されている。

PZT 薄膜の電気特性は組成比、結晶性やプロセス条件を制御することで向上が可能であ る。Kesim らは Si 基板上に形成した PZT 薄膜の組成比とプロセス温度による焦電特性への 影響について報告している[12]。700°C のプロセス温度において、Zr:Ti = 30:70 や 40:60 の組 成比で 4.3 x 10<sup>8</sup> C/cm<sup>2</sup>K 程度の焦電係数が得られ、他の組成比に比べて高い焦電係数が得ら れた。Shi らは PZT などのペロブスカイト構造を持つ強誘電体薄膜の結晶性と焦電特性につ いて調査した結果を報告しており、Pt(111)/Ti/SiO<sub>2</sub>/Si 上に 700°C で形成した組成比 Zr:Ti = 50:50 の PZT(111)において焦電係数 6.10 x 10<sup>8</sup> C/cm<sup>2</sup>K が得られている[13]。また Sun らは組 成比 Zr:Ti = 30:70 の PZT 薄膜についてプロセス温度の焦電特性に与える影響を報告してい る。プロセス温度の増加にしたがって焦電係数が増加を確認しており、700°C のプロセス温 度で焦電係数 3.3 x 10<sup>8</sup> C/cm<sup>2</sup>K が得られている[14]。このように PZT 薄膜の電気特性は組成 比、結晶性、プロセス条件により大きく影響を受けるため高性能なセンサデバイスを作製 するにはこれらのプロセスを Si 基板上で確立する必要がある。

焦電特性が組成比、結晶性、プロセス条件により向上できることが知見として得られた が、この中でも結晶性を向上させたものは焦電係数が高い値が得られた。これは結晶性良 い薄膜の場合は表面に現れる分極値が大きくなるため、焦電効果における電荷変化量が大 きかったためであると考えられる。結晶の配向が一方向に揃っている PZT 薄膜では強誘電 体の自発分極が多結晶のものに比べて大きくなることが報告されている[15]。 焦電効果を用 いる赤外線センサの出力は焦電係数に比例するため、結晶性の良い PZT 薄膜を Si 基板上に 形成することはセンサ応用を考えた場合、効果的な特性向上の手法となる。Giebeler らは結 晶配向させたPZT(111)薄膜を用いて Si 基板上で焦電型赤外線センサを実現し、D\* = 8.5 x 10<sup>8</sup> cmHz<sup>0.5</sup>/W という高い検出能を持つ赤外線センサが作製できることを報告している[16]。こ れに対し結晶性を考慮していない Chang らの報告で作製された Si 基板上の PZT 薄膜では赤 外線センサの検出能として D\* = 2 x 10<sup>6</sup> cmHz<sup>0.5</sup>/W と低い値が報告されている[17]。 これは結 晶性を考慮していないために多結晶 PZT 薄膜になっているからであると考えられる。多結 晶 PZT 薄膜表面に現れる電荷は結晶配向した PZT 薄膜の表面電荷に比べて少ないため、温 度変化が起こった際の電荷の変化量も小さくからである。以上のような報告、及び焦電効 果の原理からも結晶性は焦電型赤外線センサの感度を向上させる重要な要素であると言え る。

焦電型赤外線センサとして様々な材料を用いて研究がなされてきており、その感度の指 標となる比検出能 (Specific detectivity)は様々である。焦電型赤外線センサの報告をまとめた 表を表 1-1 に示す。表を見ると、膜厚が 1 µm 以下の薄膜センサは赤外線センサの検出周波 数が低い領域で感度のある検出特性になっているのに対し、バルクセンサでは検出周波数 が高い領域で感度が高いことが分かる。これはバルクセンサでは膜厚が厚いため、熱分離 が薄膜センサほど十分でないことが原因であると考えられる。またバルクでは結晶性の良 い基板材料をそのまま利用している単素子のセンサに対し、薄膜では Si 基板への集積化を しているという特徴もある。薄膜センサは 1990~2000 年初頭に報告が集中しており、Si 基 板上の回路と集積化した報告が多い。一方バルクはここ数年で再び報告が増えてきており、 単結晶基板をミリングにより薄くし薄膜化を目指す方向に研究が進んでいることが分かる。 以上のことより焦電型赤外線センサの研究動向は様々なアプローチから薄膜の赤外線セン サを実現することを重要視している傾向にあることが分かる。

|           | Authors                 | Material           | year | Thickness | Specific detectivity<br>(D*) [cmHz <sup>1/2</sup> /W] |
|-----------|-------------------------|--------------------|------|-----------|-------------------------------------------------------|
|           | C. C. Chang et al.[17]  | PZT                | 1998 | 500 nm    | 2 x 10 <sup>6</sup> (1 Hz)                            |
|           | W. Liu et al.[18]       | PZT                | 2003 | 550 nm    | 1.7 x 10 <sup>8</sup> (10 Hz)                         |
| Thin film | C. Giebeler et al.[16]  | PZT                | 2009 | 800 nm    | 5.0 x 10 <sup>8</sup> (10 Hz)                         |
|           | L. Pham et al.[19]      | PbTiO <sub>3</sub> | 1994 | 360 nm    | 2 x 10 <sup>8</sup> (30 Hz)                           |
|           | N. Fujitsuka et al.[20] | PVDF               | 1998 | 700 nm    | 2.4 x 10 <sup>7</sup> (40 Hz)                         |
|           | Q. X. Peng et al.[21]   | PZT                | 2013 | 30 µm     | 6.34 x 10 <sup>8</sup> (110 Hz)                       |
|           | C. G. Wu et al.[22]     | PZT                | 2014 | 17 µm     | 1.75 x 10 <sup>8</sup> (537 Hz)                       |
| Bulk      | C. G. Wu et al.[23]     | PZT/PVDF           | 2014 | 20 µm     | 1.9 x 10 <sup>8</sup> (137 Hz)                        |
|           | M. Schossig et al.[24]  | LiTaO <sub>3</sub> | 2009 | 20.9 µm   | 2.32 x 10 <sup>8</sup> (10 Hz)                        |
|           | Z. Wendong et al.[25]   | LiTaO <sub>3</sub> | 2010 | 10 µm     | 4 x 10 <sup>8</sup> (10 Hz)                           |

表 1-1 焦電型赤外線センサ性能比較

#### 1.5 Si 基板上の結晶配向 PZT 薄膜形成

前節で述べたとおり、焦電型赤外線センサの特性を改善するには結晶配向 PZT 薄膜が有 用である。PZT 薄膜を Si 基板上へ形成するにはその下部に成膜される電極や Si 基板とのバ ッファ層についても特定の結晶配向膜を成膜(エピタキシャル成長)させる必要がある。 PZT 薄膜を用いたセンサを作製する場合、図 1-3 に示すように PZT 強誘電体薄膜を電極で 挿んだキャパシタ構造を Si 基板上の絶縁膜上に配置する。しかし Si 集積回路において一般 的に用いられる絶縁膜である SiO<sub>2</sub>はアモルファス構造であるため、PZT 薄膜のバッファ層 としてこの SiO<sub>2</sub>膜を利用できない。よって Si 基板上に成長可能な結晶性絶縁膜を利用する 必要がある。

Si(100)基板上にエピタキシャル成長できる絶縁膜として γ-Al<sub>2</sub>O<sub>3</sub>, HfO<sub>2</sub>, SrTiO<sub>3</sub> 等様々な PZT 薄膜のバッファ層が報告されてきた[26-28]。SrTiO<sub>3</sub>は Si 上のバッファ層としてよく用 いられる絶縁体であるが、強誘電体膜であるため Si との界面を構成するとバンドオフセッ トが大きく、電子デバイスの設計が複雑になる。また HfO<sub>2</sub>や SrTiO<sub>3</sub>は構成する元素が特殊 な材料である。一方これらの中でも γ-Al<sub>2</sub>O<sub>3</sub>は Al と O のみからなる酸化物であるため、Si 集積回路材料としても用いられる原子であり、扱い易いという利点がある。また資源やコ ストの観点からも有用であるといえる。

これまでに我々の研究室ではSi 基板上への $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の結晶成長ついて研究してきており、様々な報告がされてきた。最初のSi 基板上への $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の成長は1988年にIshida らによってLPCVD法により実現された[29]。またその後 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜上へSi を結晶成長さ せてSemiconductor-on-insulator (SOI)構造を形成することに成功している[30]。Sawada らに よってTMAとN<sub>2</sub>Oを用いたMOMBE法によりSi(100)基板上へ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(001)、Si(111)基板 上へ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(111)が成長することが報告された[31]。またKimura らによりMOCVD法を用い てSi(001)基板上へ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(001)が成長できることが報告された[32]。これらの成長法の中で それぞれ長所や短所があるが、MOCVD法は成長速度が速く、大面積に成長ができ、結晶性 も良いものが得られることから有用な成長法である。以上のようにSi 基板上への $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜成長は、PZTの下地となる下部電極Pt 薄膜のバッファ層として非常に有用な技術であ る。



図 1-3 結晶配向 γ-Al<sub>2</sub>O<sub>3</sub>薄膜を用いた Si 基板上への PZT 薄膜形成

#### 1.6 γ-Al<sub>2</sub>O<sub>3</sub>薄膜を用いた結晶配向 PZT 薄膜センサデバイス

γ-Al<sub>2</sub>O<sub>3</sub>を結晶成長させた Si 基板上に CMOS 集積回路を作製し、更に結晶配向 PZT 薄膜 を形成したセンサデバイスをインテグレーションすると、高感度センサと高機能な電子回 路を同一基板上に作製できるため、小型で高機能なセンサチップが実現できる。これまで もこのようなデバイス実現するための様々な研究を進めてきた[33-37]。図 1-4 にデバイスの 概略図を示す。センサの構造は PZT 薄膜を電極で挿んだものであり、Si(001)基板上へ結晶 性絶縁膜であるγ-Al<sub>2</sub>O<sub>3</sub>(001)をエピタキシャル成長させ、その上へ Pt(001)、PZT(001)薄膜を 結晶配向させることでセンサの高感度化を図っている。このような PZT 薄膜インテグレー ションデバイスの応用として焦電型赤外線センサについて研究を行ってきており、最終的 には Si 基板上の CMOS 回路と結晶配向された PZT 薄膜をインテグレーションさせて赤外線 センサとして評価することが目的である。

結晶配向された PZT 薄膜において、PZT(111)結晶配向薄膜を Si 基板上に形成し、焦電型 赤外線センサとして評価している研究は数多くあるが、Si(001)基板上へ PZT(001)結晶配向 膜を形成して焦電型赤外線センサとして評価している例は非常に少ない。更にその結晶配 向 PZT 薄膜を CMOS 集積回路とインテグレーションさせたという研究の報告はない。本研 究では PZT(001)薄膜を γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上で CMOS 集積回路とインテグレーションさせるこ とで高い感度で性能の良い回路一体型赤外線センサの作製ができると考えており、その実 現を目指している。



図 1-4 γ-Al<sub>2</sub>O<sub>3</sub>薄膜/Si 基板上に結晶配向 PZT 薄膜センサを 集積化したデバイスの概略図

また結晶配向 PZT 薄膜と CMOS 回路を Si 基板上へ集積化する研究を確立することにより、 焦電型赤外線センサデバイスのみならず、高機能な圧電アクチュエータ、強誘電体メモリ などをワンチップに集積化することが可能になると考えられる。図 1-5 に種々の強誘電体デ バイスと Si 集積回路を融合した概念図を示す。本デバイスには温度を検知する赤外線セン サの他に、機械的な振動を起こすアクチュエータ、また強誘電体メモリが Si 集積回路と一 緒に集積化されている。このデバイスの一つの応用として新たな細胞観察デバイスなどが 考えられる。例えば圧電アクチュエータを用いた骨芽細胞の刺激デバイスが報告されてお り、細胞に刺激を与えて観察をするような研究分野がある[38]。このような分野において微 小な赤外線センサやアクチュエータをアレイ状に配置し、その上に細胞などを配置して細 胞温度分布観察、細胞への機械的刺激、記録をするデバイスなどに応用できると考えられ る。強誘電体という様々な機能を持った材料を小型な Si 基板に集積化することで、従来に ないような高機能、多機能なデバイスチップが実現でき、新たな応用の創出に繋がること を期待される。



図 1-5 強誘電体薄膜デバイスと Si 集積回路の融合デバイス概念図

#### **1.7** 本研究の目的

本研究では  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜/Si 基板上へ PZT 薄膜赤外線センサと CMOS 集積回路をインテグ レーションさせる技術を確立させることが最終的な目的である。そこでその基盤技術とな る  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜と CMOS 集積回路のインテグレーションプロセスについて調査する。センサ 高感度化の鍵となる良質な結晶配向 PZT 薄膜が結晶性の良い  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜/Si 基板上へ成長 させる必要があるが、CMOS 回路作製プロセスを経ても、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性を PZT 薄膜 成膜まで維持ができるプロセスを確立する必要がある。具体的には CMOS 回路作製プロセ スの様々なアニールプロセスにおいて  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の膜質に劣化が生じることが懸念されて おり、そのメカニズムを調査し、劣化を防止するプロセスを確立することが目的である。 また Si に対して異種材料である  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜をインテグレーションした Si 基板において CMOS 回路が設計通り正常に動作するかを確認する必要がある。

更にPZT薄膜をγ-Al<sub>2</sub>O<sub>3</sub>薄膜に成膜して赤外線センサを構築したデバイスの赤外線センサ としての評価を行うためには、照射される赤外線を効率よく吸収する赤外線吸収膜が重要 な役割を果たす。そしてその赤外線吸収膜は PZT 薄膜センサに適応するプロセスで作製し なければならない。一般的な赤外線吸収膜では作製プロセスが複雑であり、また物理的に 壊れやすいという欠点がある。そこで本研究では壊れにくく、シンプルなプロセスで高い 赤外線吸収率を有する積層赤外線吸収膜を提案し、設計、製作、及び赤外線センサに適応 した際の赤外線応答評価をおこなった。この成果により γ-Al<sub>2</sub>O<sub>3</sub>薄膜/Si 基板上へ PZT 薄膜 赤外線センサと CMOS 集積回路をインテグレーションさせる技術を確立させる技術が揃う ことになり、今後の PZT 薄膜赤外線センサと CMOS 集積回路のインテグレーションデバイ ス作製に有用なプロセス技術となる。

本研究の目的は次の2点である。

- 1. Si(001) 基板上の結晶配向  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜と CMOS 回路インテグレーションを目指し、 CMOS 回路作製プロセスの  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性に与える影響を調査し、インテグレー ションプロセスを確立する。
- γ-Al<sub>2</sub>O<sub>3</sub>/Si(001)基板上の結晶配向 PZT 薄膜の焦電型赤外線センサ応用に向けた、積層赤 外線吸収膜の作製し、赤外線センサの作製・評価を行う。

#### **1.8** 本論文の構成

本論文は以下の構成とした。

第1章では序論として本研究の研究背景について概要を説明する。

第2章では本研究で用いた成膜技術及び薄膜評価技術について述べる。γ-Al<sub>2</sub>O<sub>3</sub>薄膜の成 膜技術として有機金属気相成長法、PZT 薄膜の成膜技術として sol-gel 法について述べ、成 膜装置の構成を示す。薄膜評価技術としては高速反射電子線回折、X線回折、X線光電子分 光、及び走査型電子顕微鏡についてそれぞれ、原理・特徴を述べる。

第3章ではSi基板上に $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜とCMOS回路のインテグレーションプロセスの確立 を試みる。特に $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の結晶性が維持されるかに焦点を置き、CMOS回路作製プロセ ス中の各種アニールプロセスにより $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si基板にどのような影響を与えるかを調査す る。また $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜をインテグレーションしたSi基板において、CMOS回路を作製した 場合回路素子が設計通り正常に動作するかを評価する。

第4章では PZT 薄膜焦電型赤外線センサに適用できる簡易なプロセスで作製可能な積層 赤外線吸収膜の提案、設計、作製、評価を行う。光学計算により吸収膜の設計を行い、最 適な積層構造を導きだす。センサのレイアウトについて有限要素法を用いた過渡伝熱解析 を行い、その結果に基づき、PZT 薄膜焦電型赤外線センサの構造を設計する。実際に積層 赤外線吸収膜をインテグレーションさせた PZT センサの作製を行い、赤外線センサとして の赤外線応答感度評価を行う。

第5章では前章までに確立してきたデバイス作製プロセスを統合して、γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上 へ PZT 薄膜焦電型赤外線センサと CMOS 回路を集積化したデバイスの作製を試みる。全工 程後の PZT 薄膜の強誘電体特性と CMOS 回路素子の回路特性を評価し、集積化プロセスの 確立を行う。

第6章では本論文の総括をする。

#### 参考文献

- [1] W. L. Wolfe, G. J. Zissis, The Infrared Handbook, Infrared Information and Analysis Center, 1978.
- [2] A. Rogalski, "Infrared detectors: status and trends," Prog. Quant. Electron., 27 (2003) 59.
- [3] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu and T. Akin, "Low-cost uncooled infrared detectors in CMOS process," Sens. Actuators A, 109 (2003) 102.
- [4] A. D. Oliver and K. D. Wise, "A 1024-element bulk-micromachined thermopile infrared imagin array," Sens. Actuators A, 73 (1999) 222.
- [5] N. Fujitsuka, J. Sakata, Y. Miyachi, K. Mizuno, K. Ohtsuka, Y. Taga and O. Tabata, "Monolithic pyroelectric infrared image sensor using PVDF thin film," Sens. Actuators A, 66 (1998) 237.
- [6] Y. Oike and A. E. Gamal, "CMOS Image Sensor With Per-Column ΣΔ ADC and Programmable Compressed Sensing," IEEE J. Solid-st. Circ., 48 (2013) 318.
- [7] T. Sasaki and K. Hane, "Initial deflection of silicon-on-insulator thin membrane micro-mirror and fabrication of varifocal mirror," Sens. Actuators A, 172 (2011) 516.
- [8] S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. H. Blick, C. B. Eom, "Giant Piezoelectricity on Si for Hyperactive MEMS," Science, 334 (2011) 958.
- [9] S. Yin, G. Niu, B. Vilquin, B. Gautier, G. Le Rhun, E. Defay, and Y. Robach, "Epitaxial growth and electrical measurement of single crystalline Pb(Zr<sub>0.52</sub>Ti<sub>0.48</sub>)O<sub>3</sub> thin film on Si(001) for micro-electromechanical systems," Thin Solid Films, 520 (2012) 4572.
- [10] G. Niu, S. Yin, G. Saint-Girons, B. Gautier, P. Lecoeur, V. Pillard, G. Hollinger, and B. Vilquin, "Epitaxy of BaTiO<sub>3</sub> thin film on Si(001) using a SrTiO<sub>3</sub> buffer layer for non-volatile memory application," Microelectron. Eng., 88 (2011) 1232.
- [11] G. Shirane, K. Suzuki and A. Takeda, "Phase Transitions in Solid Solutions of PbZrO<sub>3</sub> and PbTiO<sub>3</sub> (II) X-ray Study," J. Phys. Soc. Jpn., 7 (1952) 12.
- [12] M. T. Kesim, J. Zhang, S. Trolier-Mckinstry, J. V. Mantese, R. W. Whatmore, and S. P. Alpay,
  "Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses,"
  J. Appl. Phys., 114 (2013) 203101.
- [13] C. Shi, L.Meidong, L. Churong, Z. Yike, and J. D. Costa, "Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films," Thin Solid Films, 375 (2000) 288.
- [14] L. L. Sun, W. G. Liu, O. K. Tan, and W. Zhu, "Effect of annealing temperature on the sol-gel

derived  $Pb(Zr_{0.3}Ti_{0.7})O3$  thin films for pyroelectric application," Mater. Sci. Eng. B, 99 (2003) 173.

- [15] C. T. Q. Nguyen, M. D. Nguyen, M. Dekkers, E. Houwman, H. N. Vu, and G. Rijnders, "Process dependence of the piezoelectric response of membrane actuators based on Pb(Zr<sub>0.45</sub>Ti<sub>0.55</sub>)O<sub>3</sub> thin films," Thin Solid Films, 556 (2014) 509.
- [16] C. Giebeler, J. Wright, S. Freebom, N. Conway, T. Chamberlain, M. Schreiter, R. Koehler, and P. Clark, "High performance PZT based pyro-detectors with D\* of 2x10<sup>9</sup> cmHz<sup>1/2</sup>/W for presense, gas and spectroscopy applications," Proc. SENSOR+TEST Conf., 2009, pp. 185-189.
- [17] C. C. Chang and C. S. Tang, "An integrated pyroelectric infrared sensor with a PZT thin film," Sens. Actuators A, 65(1998) 171.
- [18] W. Liu, L. L. Sun, W. Zhu and O. K. Tan, "Noise and specific detectivity of pyroelectric detector using lead titanate zirconate (PZT) thin films," Mcroelectron. Eng., 66 (2003) 785.
- [19] L. Pham, W. Tjhen, C. Ye, D. L. Polla, "Surface-micromachined pyroelectric infrared imaging array with vertically integrated signal processing circuitry", IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41 (1994) 552.
- [20] N. Fujitsuka et al., "Monolithic pyroelectric infrared image sensor using PVDF thin film", Sens. Actuators A, 66 (1998) 237.
- [21] Q. X. Peng, C G. Wu, W. B. Luo, C. Chen, G. Q. Cai, X. Y. Sun and D. P. Qian, "An infrared pyroelectric detector improved by cool isostatic pressing with cup-shaped PZT thick film on silicon substrate," Infrared Phys. Techn., 61 (2013) 313.
- [22] C. G. Wu, X. Y. Sun, J. Meng, W. B. Luo, P. Li, Q. X. Peng, Y. S. Luo and Y. Shuai, "Fast and wide-band response infrared detector using porous PZT pyroelectric thick film," Infrared Phys. Techn., 63 (2014) 69.
- [23] C. G. Wu, P. Li, G. Q. Cai, W. B Luo, X. Y. Sun, Q. X. Peng and W. L. Zhang, "Quick response PZT/P(VDF-TrFE) composite film pyroelectric infrared sensor with patterned polyimide thermal isolation layer," Infrared Phys. Techn., 66 (2014) 34.
- [24] M. Schossig, V. Norkus and G. Gerlach, "High-Performance Pyroelectric Infrared Detectors," SENSOR+TEST Conference, 2009, pp191-196.
- [25] Z. Wendong, T. Qiulin, L Jun, X Chenyang, X Jijun and C Xiujian, "Two-channel IR gas sensor with two detectors based on LiTaO<sub>3</sub> Single-crystal," Opt. Laser Technol., 42 (2010) 1223.
- [26] L. Tan, W. Wang, J. Wang, Y. Yu, Z. Liu and L. Lin, "Fabrication of novel double-hetero-epitaxial SOI structure Si/γ-Al<sub>2</sub>O<sub>3</sub>/Si," J. Cryst. Growth, 247 (2003) 255.
- [27] T. Moon, M. Ham, M. Kim, I. Yun and J. Myoung, "Growth and characterization of MOMBE grown HfO<sub>2</sub>," Appl. Surf. Sci., 240 (2005) 105.
- [28] G. Niu, W. W. Peng, G. Saint-Girons, J. Penuelas, P. Roy, J. B. Brubach, J. Maurice, G. Hollinger and B Vilquin, "Direct epitaxial growth of SrTiO<sub>3</sub> on Si (001): Interface,

crystallization and IR evidence of phase transition," Thin Solid Films, 519 (2011) 5722.

- [29] M. Ishida, I. Katakabe, T. Nakamura and N. Ohtake, "Epitaxial Al<sub>2</sub>O<sub>3</sub> films on Si by low-pressure chemical vapor deposition," Appl. Phys. Lett., 52 (1988) 1326.
- [30] M. Ishida, K. Sawada, S. Yamaguchi, T. Nakamura and T. Suzuki, "Heteroepitaxial Si/Al<sub>2</sub>O<sub>3</sub>/Si structures," Appl. Phys. Lett., 55 (1989) 556.
- [31] K. Sawada, M. Ishida, T. Nakamura and N. Ohtake, "Metalorganic molecular beam epitaxy of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> films on Si at low growth temperatures," Appl. Phys. Lett., 52 (1988) 1672.
- [32] T. Kimura, A. Sengoku and M. Ishida, "Fabrication of Si/Al<sub>2</sub>O<sub>3</sub>/Si Silicon on Insulator Structures Grown by Ultrahigh-Vacuum CVD Method," Jpn. J. Appl. Phys., 35 (1996) 1001.
- [33] D. Akai, K. Sawada and M. Ishida, "Fabrication of Pb(Zr,Ti)O<sub>3</sub> films on epitaxial γ-Al<sub>2</sub>O<sub>3</sub>(001)/Si(001) substrates," J. Cryst. Growth, 259 (2003) 90.
- [34] D. Akai, K. Hirabayashi, M. Yokawa, K. Sawada and M. Ishida, "Epitaxial growth of Pt(001) thin films on Si substrates using an epitaxial γ-Al<sub>2</sub>O<sub>3</sub>(001) buffer layer," J. Cryst. Growth, 264 (2004) 463.
- [35] D. Akai, K. Hirabayashi, M. Yokawa, K. Sawada, Y. Taniguchi, S. Murashige, N. Nakayama, T. Yamada, K. Murakami and M. Ishida, "Pyroelectric infrared sensors with fast response time and high sensitivity using epitaxial Pb(Zr,Ti)O<sub>3</sub> films on epitaxial γ-Al<sub>2</sub>O<sub>3</sub>/Si substrates," Sens. Actuators A, 130-131 (2006) 111.
- [36] Y. Guo, D. Akai, K. Sawada and M. Ishida, "The performance of Pt bottom electrode and PZT films deposited on Al<sub>2</sub>O<sub>3</sub>/Si substrate by using LaNiO<sub>3</sub> film as an adhesion layer," Solid State Commun., 145 (2007) 413.
- [37] M. Ito, N. Okada, M. Takabe, D. Akai, K. Sawada, and M. Ishida, "High sensitivity ultrasonic sensor for hydrophone applications, using an epitaxial Pb(Zr,Ti)O<sub>3</sub> film grown on SrRuO<sub>3</sub>/Pt/γ-Al<sub>2</sub>O<sub>3</sub>/Si," Sens. Actuators A, 145-146 (2008) 278.
- [38] C. Frias, J. Reis, F. C. Silva, J. Ptes, J Simoes and A. T. Marques, "Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation," J. Biomech., 43 (2010) 10611.

# 第2章 γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上の PZT 薄膜赤外線センサ 作製技術

#### 2.1 Si 基板上の結晶配向 PZT 薄膜作製技術

本研究で用いた焦電型赤外線センサを構成する種々の薄膜材料について、その作製技術 及び評価技術について述べる。作製する焦電型赤外線センサは図 2-1 に示すように Si 基板 上に絶縁体である γ-Al<sub>2</sub>O<sub>3</sub>薄膜、下部電極の Pt 薄膜を成膜して、強誘電体として PZT 薄膜 を成膜する。結晶配向 PZT 薄膜を形成するための材料として Si 基板上の γ-Al<sub>2</sub>O<sub>3</sub>薄膜を用 いている点が特色である。結晶配向膜を得るためには下地となる膜の結晶構造が重要であ り、γ-Al<sub>2</sub>O<sub>3</sub>薄膜を用いるのは、その結晶格子が PZT 薄膜の結晶格子とマッチング(格子整 合)することが主な理由である。センサ構造として PZT/Pt/γ-Al<sub>2</sub>O<sub>3</sub>/Si の構造は Si 基板上に 結晶配向した絶縁膜、電極膜、強誘電体膜を実現でき、本構造を用いて赤外線センサデバ イスへ応用することが研究の課題である。本章では焦電型赤外線センサを構成するこれら の薄膜材料の構造、作製技術、及び評価技術について述べる。



図 2-1 Si 基板上への結晶配向 PZT 薄膜の形成

#### 2.1.1 γ-Al<sub>2</sub>O<sub>3</sub>の結晶構造

γ-Al<sub>2</sub>O<sub>3</sub>の結晶構造は正方晶の欠損スピネル構造であると報告されており格子定数は  $a_0 = b_0 = 7.95$  Å、 $c_0 = 7.79$  Å と報告されている[1,2]。また別の報告では a = 7.9 Å (c/a = 0.983/0.987) とも報告がなされている[3,4]。スピネル構造は立方晶であり、単位胞中が 24 個のカチオン と 32 個の O<sup>2-</sup>アニオンで構成されている。A-site と呼ばれる酸素 4 面体に囲まれた四配位位 置に 8 個、B-site と呼ばれる酸素 8 面体に囲まれた六配位位置が 16 個のカチオンが存在す る (図 2-2)。しかし欠損スピネル構造を持つγ-Al<sub>2</sub>O<sub>3</sub> ではカチオンが A-site の 2/3 と B-site を占めており Al<sup>3+</sup>が 21 と 1/3 個存在する。しかし、3 価の Al が 2 価のカチオンを占めるべ き A-site を置換しており、格子中に空孔を含んでいるため c 軸が歪み、結晶構造は立方晶で はなく正方晶になっている。これは X 線回折の結果とも一致する[5]。欠損スピネル構造を もつγ-Al<sub>2</sub>O<sub>3</sub>の結晶構造及び各層の原子配列を図 2-3 に示す。



図 2-2 スピネル構造における O の立方細密充填中の(a) A-site と(b) B-site



図 2-3 γ-Al<sub>2</sub>O<sub>3</sub>の結晶構造の各層の原子配列[6]

#### 2.1.2 Si 基板上へのγ-Al<sub>2</sub>O<sub>3</sub>薄膜のエピタキシャル成長

γ-Al<sub>2</sub>O<sub>3</sub>をSi基板上に結晶成長させるためにはγ-Al<sub>2</sub>O<sub>3</sub>とSiの格子定数が近いことが望ま しい。しかし、異なる2つの材料間で格子定数が近くないことは多い。このときエピタキ シャル成長のし易さとして一般に次式に示す格子不整合率*f*を考える。

$$f = \frac{\left|a_{sub} - a_{film}\right|}{a_{sub}} \times 100 \,[\%] \tag{2-1}$$

ここで  $a_{sub}$ は基板の格子定数、 $a_{film}$ は成長膜の格子定数である。 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の格子定数は 7.95 Å、Si の格子定数は 5.43 Å であるため、Si 基板への  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜のエピタキシャル成 長についての格子不整合率は 46%と非常に大きくなる。しかし、これまでに Si 基板上への  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>のエピタキシャル成長は報告されている。これは高次整合(high-order-matching)と呼 ばれ、単位格子を 1 対 1 の関係で考えず、複数の単位格子間での格子不整合関係を考察す る。この関係では  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> と Si(001)のエピタキシャル成長は図 2-4 に示す 2 つの結晶方位(a) と(b)が考えられ、これまでにエピタキシャル成長が確認されている[7]。(a)では Si 原子 3 個 と $\gamma$ -Al<sub>2</sub>O<sub>3</sub>の格子点 2 個で格子不整合率は 2.4% となり、整合性が良いことが分かる。(b)では Si 原子の対角線方向への間隔と  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>の単位格子 1 個で格子不整合率が 3.5% と整合性が 良い。



#### 2.1.3 有機金属化学気相成長法による γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の成長

γ-Al<sub>2</sub>O<sub>3</sub>薄膜の成長には有機金属化学気相成長法(MOCVD: Metal Organic Chemical Vapor Deposition)を用いた。MOCVD法では有機金属を原料として、気相における化学反応を用いて物質を基板上に成長させる。この方法は均一な膜質のエピタキシャル膜が成長可能であり、成長面積が大きく、成長速度が速いなどの利点から広く用いられている。CVD法は、装置の壁までを含めて加熱するHot-Wall型と、試料とその支援台のみを加熱するCold-Wall型に分類されるが本研究ではCold-Wall型のCVD装置を用いている。Cold-Wall型は反応質の側壁などが比較的低温のため、薄膜の原料となるガスが分解に必要な温度まで加熱された基板以外では分解しないため、反応室側壁への反応生成物の堆積を抑え、パーティクルの発生を低減でき、反応の再現性を高められるという利点がある。

本研究で用いた Cold-Wall CVD 装置の概略図を図 2-5 に示す。成長室、交換室がゲートバルブで区切られており、成長室はターボ分子ポンプ(TMP)とロータリーポンプ(RP)からなる 真空ラインと、TMP とドライポンプ(DP)からなる真空ラインの 2 つのラインから真空排気 が可能である。ヒータはベルジャーによって成長室と分離されており、ベルジャー内も TMP と RP のラインで真空排気させている。ガス種としては TMA (Trimethyle Aluminum:トリメ チルアルミニウム)と O<sub>2</sub>ガスを用いている。液相の有機金属である TMA ボンベは 20°C の 恒温槽に入っており、N<sub>2</sub>ガスのバブリングによりガスを成長室に導入している。



図 2-5 γ-Al<sub>2</sub>O<sub>3</sub>成長に用いた MOCVD 装置の構成

#### 2.1.4 γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上への Pt エピタキシャル成長

強誘電体の電極材料として電気抵抗が低く、耐熱性、低反応性、拡散バリア性が高い電 極材料として Pt が一般的に用いられる。Pt は面心立方構造をとり、格子定数は a=3.92 Å で ある。図 2-6 に γ-Al<sub>2</sub>O<sub>3</sub>上の Pt の格子整合関係を示す。Pt(001)面の場合では γ-Al<sub>2</sub>O<sub>3</sub>の単位 格子 1 個と Pt の単位格子 2 個で格子不整合率が 0.68% となる。またこれまでの研究で Pt(001) の結晶配向膜は γ-Al<sub>2</sub>O<sub>3</sub> (001)上へ実現できており、実際にエピタキシャル成長が可能である。 本研究ではスパッタ法により γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ Pt 薄膜のエピタキシャル成長を行った。



図 2-6 γ-Al<sub>2</sub>O<sub>3</sub>(001)上への Pt(001)の成長

#### 2.1.5 Pt/y-Al<sub>2</sub>O<sub>3</sub>/Si 基板上への PZT 薄膜のエピタキシャル成長

強誘電体である PZT は図 2-7 のようなペロブスカイト構造をとる。これは格子の頂点の 位置に鉛原子、面心の位置に酸素原子、体心の位置に Zr もしくは Ti 原子が配置された構造 である。キュリー点以下においては Zr もしくは Ti が中心からわずかにずれているため、電 荷の偏りが生まれ自発分極をもつ。この結晶体に分極軸方向に沿って電界を印加すること で、Zr もしくは Ti が分極方向に移動し、分極の向きを変えることができる。

PZT の格子定数は Zr と Ti の組成比や結晶配向によってわずかに変動することが報告され ている[9,10]。例えば Zr/Ti = 40/60 の PZT(001)では a = b = 4.03 Å, c = 4.18 Å であり、Zr/Ti = 52/48 の PZT(001)では a = b = 4.07 Å, c = 4.15 Å と報告されている。PZT(111)では a = b = 4.04 Å, c = 4.14 Å である。Pt(001)上と Zr/Ti = 40/60 の PZT(001)の格子整合関係を図 2-8 に示す。 Pt の単位格子 1 個と PZT の単位格子 1 個で整合し、格子不整合率は 2.8% となる。実際に結 晶配向 PZT(001)は Pt(001)上に成膜できている。



図 2-8 Pt(001)上への PZT(001)の成長

#### 2.1.6 Sol-gel 法による PZT 薄膜の成膜

液体中に固体微粒子が均一に分散した「ゾル(Sol)」から、微粒子間に引力相互作用が働いて3次元網目構造が発達して固化した「ゲル(gel)」を経て、ガラスやセラミクスを得る方法を「ゾルゲル法」という[11]。この方法は、従来のガラスやセラミクス製造法と比べて低温プロセスであることから注目され、薄膜の作製法としても広く用いられている。ゾルゲル法による薄膜作製プロセスは、次の3つの段階に分けられる。

ゾルゲル法による薄膜作製フローを図 2-9 に示す。まず RTA アニールにより基板をアニ ールする。溶液(ゾル)を基板にコーティングし、乾燥させるとゲル膜が形成される。形成さ れたゲル膜を熱処理すると、溶媒の蒸発、残存有機物の分解、緻密化、結晶化が起こって 薄膜が得られる。残留有機物の分解や緻密化を目的とする 300~500℃ の熱処理を仮焼成、 最後の膜の結晶化を目的とする 400~800℃ の熱処理を本焼成と呼ぶ。コーティングごとに 仮焼成を行い、十分な膜厚を得た後に本焼成を行うプロセスと、コーティング毎に本焼成 までを行うプロセスがあり、必要とする膜厚や膜質によってそのプロセスを選択する。



図 2-9 sol-gel プロセスフロー

#### 2.2 薄膜評価技術

#### 2.2.1 反射高速電子線回折

RHEED (反射高速電子線回折)では電子ビームを平坦な試料表面にほぼ平行に入射させ、 回折ビームを蛍光スクリーンに照射して観察する (図 2-10)。一般的に 10 keV 以上のエネ ルギーの電子を高速電子と呼ばれる。高速電子の結晶中の平均自由工程は数十 nm となるた め、垂直入射した場合ではバルクの情報が優勢となってしまい、表面の薄膜の情報が見え なくなってしまう。このため高速電子回折では電子線を表面に対して非常に浅い角度で入 射することで薄膜の情報を得ている。得られる回折像は試料表面の 2 次元の結晶に支配さ れて回折し、電子線の波数ベクトルの大きさで与えられるエバルト球と結晶の逆格子との 交点で与えられる。高速電子線回折で得られる回折パターンは図 2-11 のような種類があり、 それぞれにおいて表 2-1 に示すような試料の表面状態が分かる[12,13]。

図 2-12 に本研究で MOCVD 法により Si 基板上にエピタキシャル成長させた γ-Al<sub>2</sub>O<sub>3</sub> 薄膜 の RHEED 観察画像を示す。15 keV の電子線を γ-Al<sub>2</sub>O<sub>3</sub>/Si サンプル表面に照射した結果、綺 麗なスポットパターンが得られた。このことから作製した γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の表面は電子線が透 過する程度の凹凸があり、3 次元結晶成長をしていることがといえる。また電子線入射方位 <110>と<100>からのスポットパターンが90°回転させるごとに得られることから4回対称の 結晶であることも分かる。このように RHEED は薄膜表面の結晶情報を調べる非常に有用な 評価法である。







図 2-11 得られる RHEED パターン。(a) リング状に広がるスポットパターン、(b) ストリ ークパターン、(c) 透過型スポットパターン、(d) ハローパターン、(e) リングパターン

| 回折パターン                   | 表面状態                        | 逆格子とエバルト球の関係                                                       |
|--------------------------|-----------------------------|--------------------------------------------------------------------|
| リング状に広が<br>るスポット<br>パターン | 無限サイズの2次元<br>結晶平坦表面         | 逆格子は完全なロッドで与えられ、<br>エバルト球との交点は同心円状に<br>広がるスポットとなる。                 |
| ストリーク<br>パターン            | 有限サイズの 2 次元<br>結晶表面         | 逆格子は幅を持ったロッドで与え<br>られ、エバルト球との交点は縦に伸<br>びたストリーク状となる。                |
| 透過型スポット<br>パターン          | 電子線が透過する程度の<br>凹凸がある3次元結晶表面 | 逆格子は3次元格子によって与えら<br>れ、エバルト球との交点はスポット<br>になり逆格子の並びを反映したス<br>ポットとなる。 |
| ハローパターン                  | アモルファス表面                    | 逆格子は定義できないため、電子が<br>どの方向にも散乱し、ぼやけた像が<br>得られる。                      |
| リングパターン                  | 3 次元多結晶表面                   | 逆格子は同心の球殻状で与えられ、<br>エバルト球とは同心円状に交わる。                               |

表 2-1 RHEED パターンと表面状態の関係



図 2-12 MOCVD 法により Si 基板上にエピタキシャル成長させた y-Al<sub>2</sub>O<sub>3</sub>(100)薄膜

#### 2.2.2 X 線回折

XRD(X線回析)の原理について示す。用いるX線波長は1Å程度であり、一般的な原 子間隔の2~3Åと比較するとやや小さい。よって結晶格子はX線に対して回折格子となり、 入射したX線はある原子の結晶面で反射されたX線が互いに強めあい干渉する。X線回折 ではこの干渉により特定方向の強度が大きくなり結晶構造を反映した回折図形が生ずる。 図 2-13にX線回折の原理図を示す。X線回折はブラッグの条件式に従い、ある原子面から なる面指数(hkl)を持つ平行な格子面が無数にあり、それらはdの格子面間隔を持っている とすると、この結晶に対しX線を入射すると、

#### $2d\sin\theta = n\lambda$

(2-2)

の関係を持つ時に、その強度は強めあう。ここでλは入射する X 線の波長であり、n は整数 である。回折波は格子面間隔 d による n 次反射が、格子面に平行でその間隔が d/n となる面 からの高次反射であるとも考えることができる。これより波長がλである X 線回折方向は格 子定数 d で決まることが分かる。またλは既知であるので回折線が現れる θを手がかりに格 子定数を知ることもできる[14]。



図 2-13 X 線回折の原理図

図 2-14、図 2-15 に実際に  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上に作製した Pt 薄膜と PZT 薄膜の XRD 結果を 示す。Pt 薄膜はスパッタ法により基板温度を 600°C で 35 nm 成膜した。20 = 47°付近におい て Pt(002)の強いピークが確認できることから、結晶配向 Pt 薄膜が成膜できていることが分 かる。また図 2-15 の Sol-gel 法による PZT 薄膜成膜についても PZT の結晶については PZT(001)および PZT(002)の配向が確認できることから、結晶面(001)の PZT 薄膜が Pt/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 上に作製できていることが確認できる。



図 2-14 スパッタ法により γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上に成膜した Pt 薄膜(膜厚 35 nm) XRD 結果



図 2-15 Sol-gel 法により Pt/γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上に成膜した PZT 薄膜(膜厚 450 nm) XRD 結果

#### 2.2.3 X線光電子分光

物質に X 線を入射することで物質中の電子が光電子として放出される。そしてその放出 された電子のエネルギースペクトルを電子分光器で検出して固体の表面状態を分析する方 法が X 線電子分光法(XPS)である[15,16]。電子分光により化学結合状態分析を行うため Electron Spectroscopy for Chemical Analysis (ESCA)とも呼ばれる。図 2-16 に XPS の信号発生 課程の模式図を示す。X 線を入射した際に放出される電子のエネルギーは原子によって異な るため、検出される光電子のエネルギースペクトルから試料の元素を同定できる。放出さ れた電子は試料表面から数 nm しか飛び出せないため物質の最表面の分析が可能であり薄 膜の分析に適している。

XPS で発生する光電子の運動エネルギーを物質間で比較する場合、次の式(2-2)で表される。

$$E_{kin} = h\nu - E_b \tag{2-3}$$

ここで *E<sub>kin</sub>* は発生した光電子の運動エネルギー、*hv* は入射した X 線のエネルギー、E<sub>b</sub> は放 出した電子の試料中における結合(束縛)エネルギーである。観測される電子のエネルギ ー分布は内殻や価電子帯の情報をもっており、各軌道の電子の結合エネルギーは元素ごと に異なるので *E<sub>kin</sub>* を測定することにより、原子の同定ができる。また XPS では試料の構成 元素同定だけでなく、原子の結合状態も同定できる。同一元素、同一軌道の結合エネルギ ーは注目している原子の周りの状態により微妙に変化する。この変化量を測定することに より元素の結合状態分析が可能である。

X線照射により生成する光電子は固体試料の内部深くまで生成する。しかしこの発生した 光電子は散乱により容易にエネルギーを失ったり、方向を変えたりして大部分は試料に再 び吸収されてしまう。よって光電子の脱出深さが非常に短いために、表面の光電子しか検 出できないことが XPS において表面分析を可能にしている。



図 2-16 XPS の信号発生課程の模式図

#### 2.2.4 走查電子顕微鏡

SEM(走査電子顕微鏡)は電子線を試料に走査させ、その時に出てくる2次電子を結像 することで表面の顕微鏡像を観察する。数µm 程度のパターンであれば容易に観察が可能で ある。図2-17に SEM の原理を示す。電子銃から出る電子線束を電子レンズで集束し偏向コ イルで2次元的に試料を走査し、試料面から発生する2次電子を検出器で集める。その信 号を電子プローブと同期し、走査する CRT に送り走査像を得る。この時の SEM の倍率は試 料表面の走査幅と CRT 上の走査幅の比で決まる。



図 2-17 SEM の原理[17]

#### 2.2.5 フーリエ変換赤外線分光光度計

FT-IR(フーリエ変換赤外線分光光度計)は化合物の構造推定を行う分析装置である。分子に赤外線を照射すると、分子を構成している原子間の振動エネルギーに相当する波長の赤外線を吸収する。この吸収度合を調べることで化合物の構造推定や定量分析を行うことができる[18]。

FT-IR は半透鏡 (ビームスプリッター) 及び2枚の平面鏡で構成されるマイケルソン干渉 計から成る。2枚の平面鏡のうち1枚は平行に移動する機構が備えられている。入射された 赤外線は半透鏡で一部を透過し、残りを反射して2つの経路に分割される。その後平面鏡 で反射され、半透鏡に戻りふたたび合成される。移動鏡をある速度で動かすとその速度と 入射した光の波数に比例した周波数に変調された光を出力として得る。光源が連続光の場 合、それぞれの波数に比例した周波数に変換されて、出力されるので各周波数の信号強度 を分析すればそれぞれの波数の光の強度を知ることができることになる。

本研究では FT-IR の反射率測定から、薄膜試料の赤外線吸収率を評価する手法を提案し、 測定を行った。測定系の概略図を図 2-18 に示す。赤外線をほぼ 100%反射する反射膜の上に 試料膜を成膜し、赤外線を試料膜に垂直に入射させる。入射された赤外線は空気と試料膜 の界面である程度反射され、試料膜を透過した赤外線は反射膜で再び反射されて、試料/空 気界面で再び反射、透過が起こる。反射膜では赤外線はほとんど透過しないため、赤外線 の反射率を測定することで、反射率の減少がそのまま試料膜の吸収と考えることができる。 このように赤外線反射率の十分大きな膜を下地に用いることで FT-IR の反射率測定のみか ら赤外線吸収率を評価することができる。ただし、試料膜と反射膜の屈折率差は十分大き い必要があることに注意が必要である。





#### 参考文献

- [1] 田部浩三、清山哲郎、笛木和雄、金属酸化物と複合酸化物 (講談社サイエンティフィク、 1978).
- [2] Ralph W. G. Wyckoff, Crystal Structures vol. 3, 2<sup>nd</sup> ed, Interscience, New York, 1965).
- [3] I. Levin and D. Brandon, "Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences," J. Am. Ceram. Soc., 81 (1998) 1995.
- [4] B. C. Lippens and J. H. De Boer, "Study of Phase Transformations during Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction," Acta Crystallogr., 17 (1964) 1312.
- [5] H. Yanagida and G. Yamaguchi, "Thermal Effects on the Lattices of η- and γ-Aluminum Oxide," Bull. Chem. Soc. Jpn., 37 (1964) 1229.
- [6] 岡田貴行 豊橋技術科学大学 博士学位論文 (2007)
- [7] K. Sawada, M. Ishida, N. Ohtake and T. Nakamura, "Metalorganic molecular beam epitaxy of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> films on Si at low growth temperatures," Appl. Phys. Lett., 52 (1988) 1672.
- [8] 伊藤幹記 豊橋技術科学大学 博士学位論文 (2008)
- [9] I. Kanno and H.Kotera, "Crystallographic characterization of epitaxial Pb(Zr,Ti)O<sub>3</sub> films with different Zr/Ti ratio grown by radio-frequency-magnetron sputtering," J. Appl. Phys., 93 (2003) 4091.
- [10] K. Uchino, Advanced Piezoelectric Materials, Woodhead Publishing, Cornwall, 2010.
- [11] 權田俊一、21 世紀版 薄膜作製応用ハンドブック、エヌ・ディー・エス、2003.
- [12] 日本表面科学会 編、表面分析選書 ナノテクノロジーのための表面電子回折法、丸善株式会社、1998.
- [13] 三宅静雄 編、実験物理講座 21 電子回折·電子分光、共立出版、1991.
- [14] B. D. Cullity、新版 X線回折要論、アグネ、1980.
- [15] 日本表面科学会 編、表面分析技術選書 X 線光電子分光法、丸善株式会社、1998.
- [16] 吉原一紘、吉武美智子、表面分析入門、裳華房、1997.
- [17] 日本電子顕微鏡学会関東支部 編、走査電子顕微鏡、共立出版株式会社、2000.
- [18] 田隅三生 編、FT-IR の基礎と実際(第2版)、東京化学同人、1994.

# 第3章 Si(100) 基板上への γ-Al<sub>2</sub>O<sub>3</sub> 薄膜形成と CMOS 回路インテグレーション

#### 3.1 緒言

本章ではSi 基板上へCMOS 回路と結晶配向 PZT 薄膜センサをインテグレーションするた めの基盤プロセスとなる γ-Al<sub>2</sub>O<sub>3</sub>薄膜とCMOS 回路のインテグレーションプロセスについて 述べる。インテグレーションの実現には次の 2 つの重要な点が挙げられる。1 つ目は PZT を結晶性良く Si 基板上に形成するための下地となる γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性を、CMOS 回路 作製プロセスを通して維持することである。γ-Al<sub>2</sub>O<sub>3</sub>薄膜形成を CMOS 回路作製プロセスの 前に行う理由はプロセス温度が高く、CMOS 回路素子の特性に設計値とのずれが生じてし まうてしまうからである。そして2つ目はSiに対して異種材料である γ-Al<sub>2</sub>O<sub>3</sub>が成膜されて いる基板で CMOS 回路が設計通り正常に動作することである。これまでに、インテグレー ションプロセスの確立を試みてきたが、CMOS回路作製プロセスにおける γ-Al<sub>2</sub>O3薄膜の結 晶性が維持されるかについては詳細に調べられていない。特に MOCVD 法により成膜した γ-Al<sub>2</sub>O<sub>3</sub>について CMOS 回路と同一基板上に作製し、詳しく分析、評価した例はほとんどな く、これを行うことが Si 基板上へ PZT 薄膜をインテグレーションさせるために重要でなる。 そこで本章では Si 上へ結晶配向させた γ-Al<sub>2</sub>O<sub>3</sub> 薄膜について、CMOS 回路作製工程による 結晶性評価、元素・組成分析、表面状態観察を RHEED、XRD、XPS、SEM により評価し、 γ-Al<sub>2</sub>O<sub>3</sub>薄膜への影響とそのメカニズムを考察する。更にγ-Al<sub>2</sub>O<sub>3</sub>が成膜された基板に作製し た CMOS 回路素子について回路特性を評価し、設計した回路特性と比較する。[1]

まず、図 3-1 に結晶配向 PZT 薄膜と CMOS 回路インテグレーションデバイスの作製プロ セス断面図を示す。最初に Si 基板上のセンサを形成するエリアに SiO<sub>2</sub> をマスクとして  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜を MOCVD 法により結晶成長させる。次に CMOS 回路を同一 Si 基板上に形成 させる。そして最後に post-CMOS プロセスとして、結晶配向電極膜、PZT 薄膜を  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜上に成膜してセンサを形成する。ここで PZT 薄膜を結晶性良く形成するためには下地 材料となる  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性が重要になる。しかしながらプロセスの最初に成膜する  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の成長温度は 960°C であり、これ以上に高い温度のアニールプロセスがある CMOS 回路作製プロセスでは $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性や表面状態を劣化させてしまう恐れがあ る。CMOS 回路作製プロセス後に  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の成長ができれば問題ないが、前述したよう に 960°C という高い成長温度が必要なため、形成した Si の well やソース/ドレインなどの不 純物(ドーパント)を拡散させてしまい、作製する回路が設計値通り動作しなくなってしまう。
本プロセスで作製する γ-Al<sub>2</sub>O<sub>3</sub> 薄膜は CMOS 回路形成前に成膜しなければならないため、ア ニールプロセスによる影響を調査する必要がある。



1.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> growth on Si substrate

図 3-1 デバイス作製プロセス断面図

#### 3.2 CMOS プロセスにおける高温プロセス

CMOS 回路作製プロセスは  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜成長温度を超える複数の高温プロセスがあり、 様々なガス雰囲気で行われる。表 3-1 に代表的な CMOS 作製工程の高温プロセス条件を示 す。 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 成膜温度を超える CMOS 作製工程の高温プロセスは、不純物拡散を目的とした ドライブイン (Drive-in)工程、素子分離のための local oxidation of silicon (LOCOS)工程、MOS 構造形成のための gate 酸化工程など、O<sub>2</sub> や H<sub>2</sub>O vapor 雰囲気中でのアニールなどがある。 Drive-in 工程は 1150°C、O<sub>2</sub> 雰囲気で 540 min アニールを行うプロセス(Drive-in anneal)である。 これはプロセス中で最も温度が高く、時間の長いプロセスである。LOCOS 工程は 1000°C、 H<sub>2</sub>O vapor 雰囲気で 240 min アニールを行うプロセス(Gate oxidation)である。こ のように CMOS プロセスでは様々な雰囲気での高温アニールにより化学的な反応や $\gamma$ -Al<sub>2</sub>O<sub>3</sub> の再結晶化が起こり、膜質の変化が懸念される。そこでこれらのアニールの中でも特に温 度の高く時間の長い、Drive-in アニール(O<sub>2</sub> 雰囲気)及び Wet oxidation アニール(H<sub>2</sub>O vapor 雰 囲気)の 2 つのアニールについて  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板へ与える影響を評価・分析した。

表 3-1 CMOS プロセス中の主なアニールのプロセス条件

| Process                                         | Temperature | Gas source              | Pressure | Time    |
|-------------------------------------------------|-------------|-------------------------|----------|---------|
| $\gamma$ -Al <sub>2</sub> O <sub>3</sub> growth | 960°C       | TMA, $O_2$              | 500 Pa   | 6 min   |
| Drive-in anneal                                 | 1150°C      | $O_2$                   | 1 atm    | 540 min |
| Wet oxidation anneal                            | 1000°C      | H <sub>2</sub> O vapors | 1 atm    | 240 min |
| Gate oxidation                                  | 1000°C      | $O_2$                   | 1 atm    | 90 min  |

#### 3.3 Si 基板上の y-Al<sub>2</sub>O<sub>3</sub>薄膜アニールサンプルの作製

アニール実験を行うための γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板サンプルの作製手順について述べる。

#### 3.3.1 Si 基板上への γ-Al<sub>2</sub>O<sub>3</sub>結晶成長

実験に用いた Si 基板は抵抗率 3~4 Ω/cm の Si(001)基板である。まず Si 基板表面のパーティクル及び有機物除去を行うためにアンモニア水、過酸化水素水、超純水の混合溶液であ

る APM (Ammonium hydrogen-peroxide mixture) 溶液 (NH<sub>4</sub>OH:H<sub>2</sub>O<sub>2</sub>:H<sub>2</sub>O = 0.05:1:5)により洗 浄を行った。その後金属イオン除去を行うために塩酸、過酸化水素水、超純水の混合溶液 である HPM (hydrochloric hydrogen-peroxide mixture) 溶液 (HCl:H<sub>2</sub>O<sub>2</sub>:H<sub>2</sub>O = 1:1:6)により洗浄 した。最後に希フッ酸と超純水の混合溶液である DHF (diluted hydrofluoric acid) 溶液 (HF:H<sub>2</sub>O = 1:50)により Si 基板表面の自然酸化膜除去を行った。

γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の成長は原料として TMA と O<sub>2</sub> ガスを用いた MOCVD 法により行った。液相 の有機金属である TMA は 20°C の恒温槽に入っており、N<sub>2</sub> ガスのバブリングによりガスを 成長室に導入している。ヒータは 1200°C まで昇温し、その時の Si 基板表面を放射温度計で 測定した温度は 960°C であった。γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の成長は 960°C、圧力 500 Pa、時間 6 min の 条件で行った。原料ガスは TMA 流量 15 sccm、O<sub>2</sub> 流量 14 sccm で導入した。表 3-2 に γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の成長条件を示す。本プロセスにより成長させた γ-Al<sub>2</sub>O<sub>3</sub> 薄膜は分光エリプロメーター による測定により膜厚 50 nm、屈折率 1.76 であることが分かった。

| Parameters              | Condition |
|-------------------------|-----------|
| TMA gas flow            | 15 sccm   |
| O <sub>2</sub> gas flow | 14 sccm   |
| Temperature (substrate) | 960°C     |
| Temperature (heater)    | 1200°C    |
| Pressure                | 500 Pa    |
| Growth time             | 6 min     |
| Thickness               | 50 nm     |
| Refractive index        | 1.76      |
|                         |           |

表 3-2 MOCVD 法による γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の成長条件

#### 3.3.2 γ-Al<sub>2</sub>O<sub>3</sub>薄膜のアニール

アニールによる γ-Al<sub>2</sub>O<sub>3</sub>薄膜への影響は、O<sub>2</sub>雰囲気で最も温度が高い Drive-in アニールと H<sub>2</sub>O vapor 雰囲気で最も温度が高い Wet oxidation アニールを行い調査した。Drive-in アニー ルは大気圧中で O<sub>2</sub>を流量 4.2 L/min で導入し、1150°C で 9 時間アニールを行った。Drive-in アニールは Si にイオン注入などによって導入した不純物を熱により拡散させて、基板深く まで不純物を拡散させるための熱拡散プロセスである。不純物濃度が回路特性を決めるパ ラメータとなるため、CMOS 回路を作製する上で重要なプロセスである。不純物としては B や P が一般的に用いられるが、Si 中の不純物拡散速度と SiO<sub>2</sub>中の拡散速度を比較すると 2 ケタほどSi中の拡散速度が速い[2]。したがって、熱処理をO<sub>2</sub>雰囲気中で行うことで、形成 される酸化膜が拡散に対しマスクとしての役割を果たし、不純物をSi中に閉じ込めること ができるため効果的に拡散ができる。また新たな不純物が添加され拡散される恐れもなく なるのでO<sub>2</sub>雰囲気はDrive-inアニールにおいて重要である。またWet oxidationアニールは 大気圧中でO<sub>2</sub>とH<sub>2</sub>ガスをそれぞれ流量4.2 L/minで導入し、燃焼をさせることでH<sub>2</sub>O vapor 雰囲気を作りだし、1000°C で4時間アニールを行った。Wet oxidationアニールは LOCOS 工程においてSi 基板上の回路素子分離を実現するためのプロセスである。LOCOS 工程では Si 表面を部分的に酸化するために、マスクとしてSi<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>膜を用いている。Si<sub>3</sub>N<sub>4</sub>は非常 に緻密な膜でありH<sub>2</sub>O やO<sub>2</sub>ガスなどが膜中を通過できない。したがって局所的な酸化が可 能になる。下地のSiO<sub>2</sub>はアニールした時の基板への応力を緩和するためのバッファ層とし ての役割を果たす[3]。よってSi<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>膜はO<sub>2</sub>やH<sub>2</sub>Oによる反応を防ぐための保護膜とし て有用である。

#### 3.3.3 Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 膜による γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の保護

γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の保護膜として Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 膜が有用であると考えた。γ-Al<sub>2</sub>O<sub>3</sub> 薄膜上の保護膜 として Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>膜を成膜し、保護膜としての役割を果たすかについて調査した。成長した γ-Al<sub>2</sub>O<sub>3</sub>薄膜上へ成膜する Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>膜は LPCVD 法(低圧化学気相成長法)を用いて成膜し た。 表 3-3 に LPCVD 法による Si<sub>3</sub>N₄膜、SiO₂膜の成膜条件を示す。 SiO₂膜は 720°C 、37 Pa で TEOS (Tetraethyl orthosilicate)と O<sub>2</sub>ガスを原料として 200 nm 成膜した。TEOS と O<sub>2</sub>の流 量はそれぞれ 30 sccm と 300 sccm である。この SiO2 膜には 2 つの役割がある。SiO2 膜は一 般的に Si<sub>3</sub>N4 膜と反対方向の応力を有するために、全体の応力を緩和するためのバッファ層 として役割がある。もう1つの役割はアニール後の保護膜エッチングにおける緩衝膜とし ての役割である。γ-Al<sub>2</sub>O<sub>3</sub> 薄膜上に Si<sub>3</sub>N<sub>4</sub>を直接成膜してしまうと、RIE (reactive ion etching) により Si<sub>3</sub>N₄膜をエッチングする時に、γ-Al<sub>2</sub>O₃薄膜表面がエッチングに荒れてしまい、表面 状態が劣化してしまう恐れがある。SiO2 膜が間にあれば Buffered HF (BHF)溶液による Wet エッチングが可能であるので、Si<sub>3</sub>N₄膜を RIE でエッチングした後に SiO₂膜を BHF でエッ チングでき、γ-Al<sub>2</sub>O<sub>3</sub> 薄膜表面へのプラズマダメージを小さくすることができると考えられ る。γ-Al<sub>2</sub>O<sub>3</sub> 薄膜はその上への成膜する結晶配向薄膜の結晶性を左右する重要な下地膜とな るので表面状態を維持すること重要である。Si<sub>3</sub>N₄膜は 820℃、29 Pa で SiH<sub>2</sub>Cl<sub>2</sub>と NH<sub>3</sub>ガ スを原料として 200 nm 成膜した。SiH<sub>2</sub>Cl<sub>2</sub>と NH<sub>3</sub>の流量はそれぞれ 40 sccm と 400 sccm で ある。Si<sub>4</sub>N₄膜については、O<sub>2</sub>やH<sub>2</sub>Oが膜を拡散できない緻密な膜であるので、雰囲気ガス の γ-Al<sub>2</sub>O<sub>3</sub> 薄膜までの侵入を防ぐ役割がある。よってこれら Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 膜を γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板 上に成膜することで、アニールによる影響を防ぐことの保護膜として用い、保護膜なしの 場合と比較を行った。

| Parameter                                 | SiO <sub>2</sub> | Si <sub>3</sub> N <sub>4</sub> |
|-------------------------------------------|------------------|--------------------------------|
| TEOS gas flow                             | 30 sccm          | -                              |
| O <sub>2</sub> gas flow                   | 300 sccm         | -                              |
| SiH <sub>2</sub> Cl <sub>2</sub> gas flow | -                | 40 sccm                        |
| NH <sub>3</sub> gas flow                  | -                | 400 sccm                       |
| Temperature                               | 720°C            | 820°C                          |
| Pressure                                  | 62 Pa            | 43 Pa                          |
| Time                                      | 30 min           | 40 min                         |
| Thickness                                 | 180 nm           | 200 nm                         |

表 3-3 LPCVD 法による Si<sub>3</sub>N<sub>4</sub>, SiO<sub>2</sub> 成膜条件

## 3.4 反射高速電子線回折及び X 線回折を用いた γ-Al<sub>2</sub>O<sub>3</sub>薄膜の結晶

#### 性評価

薄膜の結晶性評価を反射高速電子線回折(RHEED)と X 線回折(XRD)を用いて行った。 Drive-in アニールおよび Wet oxidation アニールをした γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の RHEED 観察結果を図 3-2 に示す。それぞれ電子線の入射方位は<110>である。図 3-2(a)の結果より、γ-Al<sub>2</sub>O<sub>3</sub> の as-grown 膜では透過型スポットパターンが得られていることから 3 次元成長した結晶が得 られていることが分かる。図 3-2 (b)の結果では Drive-in アニールした γ-Al<sub>2</sub>O<sub>3</sub> 薄膜では少し ぼやけたているがスポットパターンが確認できた。一方、図 3-2 (c)の Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜を成 膜したサンプルでは as-grown 膜同様の RHEED パターンが得られた。Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜の除 去には CF<sub>4</sub> と O<sub>2</sub> ガスを用いた RIE により Si<sub>3</sub>N<sub>4</sub> 膜をエッチングした後に、BHF 溶液により SiO<sub>2</sub> 膜をエッチングした。RHEED 観察結果より、Drive-in アニールにおいては γ-Al<sub>2</sub>O<sub>3</sub> 薄膜 表面の結晶性は多少変化するが、3 次元の結晶を維持していると考えられる。

Wet oxidation アニールをした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の RHEED 観察結果を図 3-2(d)に示す。図 3-2(e) の Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜ありの場合と比較すると、保護膜を成膜したサンプルでは as-grown 膜 同様の RHEED パターンが得られたが、保護膜のない  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜においてはスポットパタ ーンがぼやけており、明らかに  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性に変化が見られた。RHEED の回折パ ターンの観察結果より Drive-in アニールおよび Wet oxidation アニールでは  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の膜 質に影響を与えていることが示唆された。



図 3-2 γ-Al<sub>2</sub>O<sub>3</sub>薄膜の RHEED 観察結果(電子線入射方位<110>)。(a) As-grown 膜、(b) Drive-in annealed 膜、(c) Drive-in annealed 膜 (Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜有り)、(d) Wet oxidation annealed 膜、(e) Wet oxidation annealed 膜 (Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜有り)

図 3-3 に Drive-in アニールおよび Wet oxidation アニールをした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の XRD (X 線 回折)結果を示す。図 3-3(a)の結果より、as-grown 膜において  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(400)のピークが確認 できることから  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜は  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(400)に平行な結晶面に優先的に配向をしていること が示された。なお他のピークとしては  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(004)や  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(220)が確認できた。いずれの ピークも幅のあるピークであることが分かった。ピーク幅については一般的に原因をはっ きりとは決めることは困難であるが、結晶粒子の大きさや膜の歪による影響等が考えられ る。結晶粒子とは単結晶とみなせる集まりのことであり、結晶粒子の大きさが小さくなる ほど X 線回折ピークの幅は広がる。これは異なる  $\theta$  角を有する結晶子が多く存在すると、 得られるピークが幅を持つためである。ピーク強度についてはブラッグの条件を満たす格子の数が減るために弱くなる。一方、膜にかかる応力が原因の場合、歪で結晶の間隔が膜 中で変化し、幅を持つピークが低角側で鋭くなっており、一方  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(004)のピークは小さくな

っていることが確認できた。これは 1150°C という高温を要する Drive-in アニールにより、 結晶配向膜の結晶粒子の大きさが変化、または膜に歪がかかり、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(400)のピークが先 鋭になったことが考えられる。図 3-3(c)の Wet oxidation アニールした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜でも  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(400)のピークが多少先鋭になっていることが確認できた。しかしながら低角側 (20°~30°)に現れた  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>以外のピークの出現やこれらの強度の増加など、膜質が明らかに as-grown 膜と Drive-in 膜とは異なっていることが確認できた。これらのピークは SiO<sub>2</sub> (quartz) や AlO(OH)のピークであると考えられる[4,5]。Wet oxidation アニールによる反応により現れ たピークだと考えられる。よって XRD の結果についても RHEED の結果と同じように Wet oxidation アニールをした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 結晶配向膜としての膜質の劣化が確認できた。



図 3-3 γ-Al<sub>2</sub>O<sub>3</sub>薄膜の XRD 結果。(a) As-grown 膜、(b) Drive-in annealed 膜、(c) Wet oxidation annealed 膜

## 3.5 Wet oxidation アニールした γ-Al<sub>2</sub>O<sub>3</sub>薄膜の BHF によるエッチン

#### グ耐性

XRD の結果で分かった通り、Wet oxidation アニールした γ-Al<sub>2</sub>O<sub>3</sub> 薄膜では SiO<sub>2</sub> が膜中に 存在している可能性がある。そこで BHF 溶液を用いて膜中の SiO<sub>2</sub> がエッチングされるかを 調べた。通常 γ-Al<sub>2</sub>O<sub>3</sub> 薄膜は BHF 溶液に対しては化学反応を起こさないため、エッチング はされない。しかしながら、Wet oxidation アニールした γ-Al<sub>2</sub>O<sub>3</sub> 薄膜を BHF 溶液に 2 min ほ ど浸した結果、表面の膜が溶液中で剥離していくことを確認した。そこで再び RHEED によ り薄膜の電子線回折の観察を行った。図 3-4(a)、(b)にそれぞれ BHF 溶液に 2 min 浸す前と 後の Wet oxidation アニールした γ-Al<sub>2</sub>O<sub>3</sub>/Si サンプルの RHEED 観察結果を示す。結果として、 アモルファス膜を表すハローパターンが得られた。更にこのサンプルを BHF 溶液へ追加し て浸したら Si 基板の表面が表れた。本実験で Wet oxidation アニールした γ-Al<sub>2</sub>O<sub>3</sub> 薄膜は本 来エッチングされないはずの BHF 溶液により剥離されたことが確認されたことから、 γ-Al<sub>2</sub>O<sub>3</sub> 薄膜中に SiO<sub>2</sub> が存在していることが考えられる。一方 Wet oxidation アニールをした 保護膜のある γ-Al<sub>2</sub>O<sub>3</sub> 薄膜は BHF に浸しても剥離はされなかった。以上より、Wet oxidation アニールした保護膜のない γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板では BHF 溶液による γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の剥離が明らか になった。





図 3-4 Wet oxidation アニールした γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板を BHF 溶液へ投入。(a) Wet oxidation anneal 後、(b) BHF 溶液へ 2 min 浸した後

## 3.6 X線光電子分光及び走査型電子顕微鏡を用いた γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の

#### 表面元素分析と表面観察

Wet oxidation アニールした保護膜のない  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板においてどのような化学反応が起きたかを調べるために XPS による表面元素分析を行った。まず as-grown  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の XPS によるフイドスキャン結果を図 3-5 に示す。ワイドスキャンでは構成元素の同定を目的に行う。エネルギースペクトルを広く鳥瞰できるため、構成元素の同定が容易にできる。ワイドスキャンの結果より、As-grown  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜には O1s、C1s、Al1s, Al2pのピークがあることから、O、C、Alの元素が存在している事が確認できた。OとAlについては $\gamma$ -Al<sub>2</sub>O<sub>3</sub>の 構成元素である。一方 Cの元素が確認できたが、これは MOCVD 法で成膜した  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>の原料ガスである TMA 中の有機物であると考えられる。



図 3-5 XPS による As-grown  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜のワイドスキャン

次に図 3-6、3-7 にそれぞれ Al 2p および Si 2p のスペクトル周辺のナロースキャン結果を 示す。As-grown  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜と Wet oxidation annealed  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜をプロットして比較をした。 図 3-6 の Al 2p スペクトル付近のナロースキャン結果より、75 eV 付近に  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 特有の Al-O 結合のピークが確認できた[6]。これは As-grown 膜と Wet oxidation annealed 膜の両方で同じ 形のピークであることが確認できた。一方、図 3-7 の Si 2p スペクトル付近のナロースキャ ン結果からは As-grown 膜と Wet oxidation annealed 膜で異なる結果が得られた。結果から、 Wet oxidation annealed 膜では 103 eV 付近に SiO<sub>2</sub>特有の Si-O 結合のピークがはっきりと検出 されていることが分かる[7]。XPS では膜の最表面の情報しか得られないため、この SiO<sub>2</sub>は  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜最表面に存在していることを示している。

しかしながら、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜を H<sub>2</sub>O vapor 雰囲気でアニールするだけでは SiO<sub>2</sub>は直接表面 には生成されない。Si 原子は基板にしかないため、SiO<sub>2</sub>は  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜と Si 基板の界面で まず生成されると考えられる。そしてその SiO<sub>2</sub>が成長して  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜表面まで達したと考 えられる。



図 3-6 XPS による Al 2p 周辺スペクトルの γ-Al<sub>2</sub>O<sub>3</sub>薄膜のナロースキャン



図 3-7 XPS による Si 2p 周辺スペクトルの γ-Al<sub>2</sub>O<sub>3</sub> 薄膜のナロースキャン

次に走査型電子顕微鏡(SEM)を用いて薄膜の表面観察を行った。図 3-8 に SEM による  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜表面の電子顕微鏡画像を示す。SEM では電子線の加速電圧により試料内での電子線散乱強度が異なる。入射する電子線の加速電圧が大きいほど試料内での散乱は大きく なるため表面のみでなく、深さ方向の情報も入ってきてしまう。よって表面のみの情報が 欲しい場合は加速電圧をなるべく小さくすることが望ましい。電子線の加速電圧は 1 kV に して観測を行った。図 3-8 の結果から分かるように、As-grown の  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜ではコントラ ストがはっきりとしており、凹凸のある 3 次元の結晶であることが分かる。一方 Wet oxidation アニールをした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜では表面の凹凸は小さくなっていることが考えられる。



図 3-8 SEM による表面観察。(a) As-grown  $\gamma\text{-}Al_2O_3$ 、(b) Wet oxidation annealed  $\gamma\text{-}Al_2O_3$ 

### 3.7 y-Al<sub>2</sub>O<sub>3</sub>/Si 基板のアニールモデル考察

これまでの実験結果より、CMOS 作製工程の Wet oxidation アニールプロセスにおいて  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の表面に SiO2 が形成され、BHF 溶液中において剥離が起こることが分かった。 この SiO<sub>2</sub> は  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板の界面で生成され、それが表面まで成長してくることが予想さ れた。そこで Drive-in アニール及び Wet oxidation アニールプロセスそれぞれにおける  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板のアニールモデルを考察した。

図 3-9 に  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板のアニールモデルのイラストを示す。まず Drive-in アニールにつ いては図 3-9(a)に示す。Drive-in アニールは O<sub>2</sub> 雰囲気で行われるため、O<sub>2</sub>分子が  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 膜 中の結晶粒界などを侵入してゆき、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 界面に到達する。Si 表面において(3-2)式のよ うに反応が起き、SiO<sub>2</sub>が生成される。過去の研究でも  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板に O<sub>2</sub> 雰囲気でアニー ル(1000°C)を行うと  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> と Si 界面に酸化膜が形成されるという報告がされている。 Drive-in アニールにおいてはこれと同様に SiO<sub>2</sub>が形成されていると考えられる[8]。

$$\text{Si} + \text{O}_2 \rightarrow \text{SiO}_2$$
 (3-2)

ー方、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板の Wet oxidation アニールモデルは複雑である。Wet oxidation アニー ルモデルを図 3-9(b)に示す。まず H<sub>2</sub>O vapor 雰囲気において H<sub>2</sub>O 分子が  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 膜中の結晶 粒界などを通り、侵入していく。そして  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 界面に到達した際に(3-3)式のように  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> と Si 界面で反応が起き、SiO<sub>2</sub> が形成される。ここで SiO<sub>2</sub> の形成の他に H<sub>2</sub> が生成さ れる。

$$\mathrm{Si} + 2\mathrm{H}_2\mathrm{O} \to \mathrm{SiO}_2 + 2\mathrm{H}_2 \tag{3-3}$$

そして、この生成された H<sub>2</sub> が γ-Al<sub>2</sub>O<sub>3</sub> 薄膜と反応し、(3-4)式のような Al と H<sub>2</sub>O が生成され る。そして Al と H<sub>2</sub>O が再び反応し、 (3-5)式のように AlO(OH)と H<sub>2</sub>の生成をする反応を繰 り返す。 更に(3-2)式の反応が同時に進行することで SiO<sub>2</sub> が γ-Al<sub>2</sub>O<sub>3</sub>の結晶粒界を通って成長 してゆくと考えられる。

$$Al_2O_3 + 3H_2 \rightarrow 2Al + 3H_2O$$
 (3-4)  
 $Al + 4H_2O \rightarrow 2AlO(OH) + 3H_2$  (3-5)

ここで AlO(OH)が生成されることは XRD の結果で説明ができ、SiO<sub>2</sub> が  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜表面ま で成長してくることは XPS の結果で説明ができる。最後にこの Wet oxidation アニールした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板を BHF に浸すと SiO<sub>2</sub> の部分がエッチングされてゆき、結果的に  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜

が剥離を起したと考えられる。Wet oxidation アニールしたサンプルでは BHF 溶液中で  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜が剥離した結果をこのようなモデルで説明ができる。

以上の結果・考察より、Wet oxidation アニールした  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板では  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の膜 質が劣化することが分かった。 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板において CMOS 回路作製プロセス中に $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性を維持するには O<sub>2</sub> や H<sub>2</sub>O の  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜への侵入を防ぐ保護膜が必要であり、 本実験で導入した Si<sub>3</sub>N<sub>4</sub>(200 nm)/SiO<sub>2</sub>(200 nm)膜はインテグレーションプロセスにおいて非 常に有用であることが確認できた。



(b) Wet oxidation anneal of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film in H<sub>2</sub>O vapor atmosphere



 $\begin{array}{l} \mathrm{Al_2O_3 + 3H_2 \rightarrow 2Al + 3H_2O} \\ \mathrm{Al + 4H_2O \rightarrow 2AlO(OH) + 3H_2} \\ \mathrm{Si + H_2O \rightarrow 2SiO_2 + 2H_2} \end{array}$ 

 $SiO_2$  etching by hydrofluoric acid which stripped  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> films

図 3-9 γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板のアニールモデル

## 3.8 γ-Al<sub>2</sub>O<sub>3</sub>薄膜を形成した Si(001)基板上への CMOS 回路素子作製

#### 及び回路特性評価

γ-Al<sub>2</sub>O<sub>3</sub>薄膜はSiに対しては異種材料であるため、γ-Al<sub>2</sub>O<sub>3</sub>薄膜を形成させた基板にCMOS 回路を作製した場合、AIの拡散などで回路素子が設計通り動かなくなることが懸念される。 そこで γ-Al<sub>2</sub>O<sub>3</sub> 薄膜(膜厚 50 nm、成長温度 960°C)を形成した Si 基板上に作製した CMOS 回 路素子の特性評価を行った。CMOS 回路素子としては n 型 Enhancement MOSFET (nEMOSFET)、p型 Enhancement MOSFET (pEMOSFET)、n型 Depletion MOSFET (nDMOSFET) を作製した。ゲート長L、ゲート幅Wはそれぞれ 10 μm および 30 μm であり L/W=10/30、 ゲート酸化膜の膜厚は 60 nm である。n 型 Si(100)基板 (resistivity 3.85 ~ 4.15 Ω cm)を用いて おり、n型 MOSFET は p-well 領域上に、p型 MOSFET は n型 Si 基板上に作製した。ゲート 電極は n 型 poly Si である。作製した回路素子の光学顕微鏡写真を図 3-10 に示す。図 3-11 にこれらの回路素子評価結果(Ip-VGS特性)を示す。n 型 Si 基板の電位は 5V、p-well 領域 の電位は 0V に固定した。γ-Al<sub>2</sub>O<sub>3</sub>薄膜をインテグレーションした Si 基板上(γ-Al<sub>2</sub>O<sub>3</sub>/Si)で回 路特性との比較として、γ-Al<sub>2</sub>O<sub>3</sub>薄膜をインテグレーションしていない SiO<sub>2</sub>/Si 基板上の回路 素子特性を重ねてプロットした。結果より、nEMOSFET、pEMOSFET、nDMOSFETのそれ ぞれ、γ-Al<sub>2</sub>O<sub>3</sub>薄膜の有無に関係なく回路が正常に動作していることが確認できた。閾値電 圧(設計値は nEMOSFET、 pEMOSFET、 nDMOSFET に対してそれぞれ 0.82 V, -0.75 V, -0.90 V) はシフトなどなく一致しており、Sファクタはそれぞれ 138 mV/dec、127 mV/dec、130 mV/dec であった。Sファクタは理想的な条件下では 60 mV/dec となりそれよりも高い値であるが、 回路素子特性としては問題ない値である。以上より、γ-Al<sub>2</sub>O<sub>3</sub>薄膜は CMOS 回路とのインテ グレーションプロセスとの適合性があることも確認できた。図 3-12 に CMOS インバータの 入出力特性を示す(Vdd = 5V)。nEMOSFET とゲート幅を2倍にした pEMOSFET を組み合わ せた CMOS インバータについても正常動作を確認できた。よって CMOS 回路を γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上に問題なく構築できることが確かめられた。



(a) nEMOSFET
(b) pEMOSFET
(c) nDMOSFET
図 3-10 作製した回路素子(MOSFET)の光学顕微鏡画像
(ゲート長 L/ゲート幅 W=10/30)、酸化膜膜厚 60 nm



図 3-11 作製した CMOS 回路素子の I<sub>D</sub>-V<sub>GS</sub>特性。γ-Al<sub>2</sub>O<sub>3</sub>薄膜を形成した Si 基板(γ-Al<sub>2</sub>O<sub>3</sub>/Si) を SiO<sub>2</sub>/Si 基板と比較。(a) n 型 Enhancement MOSFET (nEMOSFET)、(b) p 型 Enhancement MOSFET (pEMOSFET)、(c) n 型 Depletion MOSFET (nDMOSFET)



図 3-12 作製した CMOS インバータの入出力特性

#### 3.9 結言

Si(001)基板上への $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜とCMOS 回路のインテグレーションプロセス適合性につい て、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜結晶性維持及び CMOS 回路特性を調べた。CMOS 回路作製プロセスにおい ては代表的なアニール工程である Drive-in アニール(O<sub>2</sub>雰囲気)と wet oxidation アニール(H<sub>2</sub>O vapor 雰囲気)を行い、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性評価、構成原子の結合状態分析、表面観察を行 った。MOCVD 法により Si 基板上へ成長させた $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜は wet oxidation アニールにおい て膜質の劣化が明らかになった。構成原子の結合状態を分析した結果、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜中を H<sub>2</sub>O 分子が拡散し、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜/Si 界面で SiO<sub>2</sub> 膜を形成しながら  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜を還元し、SiO<sub>2</sub> 膜 が  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜表面まで成長してしまうというアニールモデルを考察した。以上の結果より wet oxidation アニールは  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の膜質を劣化させてしまう、CMOS 回路作製プロセス であり、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜上に H<sub>2</sub>O 分子を通さない保護膜として Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 膜が  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜の 結晶性を維持するために非常に有用であることが明らかになった。また  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜をイン テグレーションさせた Si(001)基板上へ CMOS 回路を作製・評価した結果、閾値電圧シフト などの不具合は一切なく、設計値通りの CMOS 回路をインテグレーションするプロセスの 確立をした。

#### 参考文献

- K. Oishi, D. Akai and M. Ishida, "Integration of crystalline orientated γ-Al<sub>2</sub>O<sub>3</sub> films and complementrary metal-oxide-semiconductor circuits on Si(100) substrate," Solid State Electron., 103 (2015) 110.
- [2] Andrew S. Grove、半導体デバイスの基礎、オーム社、1995.
- [3] 永田穣、柳井久義、新版 集積回路工学(1)、コロナ社、2005.
- [4] H. Fujishita, M. Hayashi, T. Kanai, T. Yamada, N. Igawa and K. Kihara, "Study of quantum effects on atomic displacements in quartz," J. Phys. Chem. Solids, 71 (2010) 1285.
- [5] L. Farkas and P. Gado, "The structure refinement of boehmite (γ-AlO(OH) and the study of its structural variability based on Guinier-Hagg powder data," Mater. Res. Bull., 12 (1977) 1213.
- [6] B. R. Strohmeier, "Gamma-Alumina ( $\gamma$ -Al<sub>2</sub>O<sub>3</sub>) by XPS," Surf. Sci. Spectra, 3 (1994) 135.
- [7] J. Finster, E. -D. Klinkenberg and J. Heeg, "ESCA and SEXAFS investigations of insulating material for ULSI microelectronics," Vacuum, 41 (1990) 1586.
- [8] M. Ishida, H. Hori, F. Kondo, D. Akai and K. Sawada, "Fabrication of the Si/Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/Si structure using O<sub>2</sub> annealed Al<sub>2</sub>O<sub>3</sub>/Si structure," Jpn. J. Appl. Phys., 39 (2000) 2078.

# 第4章 積層赤外線吸収膜と γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上の PZT 薄膜焦電型赤外線センサの作製・評価

本章では γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上に形成した PZT 薄膜焦電型赤外線センサへ向けた積層赤外線 吸収膜について検討し、その設計、製作、及び赤外線センサとしての評価について述べる[1]。

#### 4.1 緒言

強誘電体 PZT 薄膜の応用として有用だと考えられている一つのデバイスは赤外線センサ である。赤外線センサは 2 次元アレイ化することでナイトビジョン、監視、医療モニタや 環境モニタなど様々な応用への期待がされている。強誘電体を用いた赤外線センサは焦電 効果を利用して実現されることから焦電センサとも呼ばれている。焦電センサは強誘電体 の温度変化時の分極電荷の変化を検知することを利用して温度検知をする。よってセンサ 材料である強誘電体にいかに効率よく温度変化を起こさせるかが焦電センサの作製におい て重要になる。温度変化を起こさせるにはセンサにできるだけ熱を蓄える必要がある。よ ってセンサで熱を出来るだけ保持し、センサの温度を上げることが性能の良い赤外線セン サの実現には重要である。

赤外線センサの最も重要な要素の1 つとなるのが赤外線吸収膜である。赤外線吸収膜は センサに照射された赤外線を吸収し、熱に変換させるものであり、センサ感度向上のため の重要な役割を果たす。赤外線吸収膜として一般的に用いられるものに metal-black 膜、SiN 膜やメタマテリアルなどがある[2-6]。これらの中でも metal-black 膜として有名な Au-black 膜は porous (多孔質)形状であることから、幅広いスペクトルで 90%以上の赤外線吸収率を有 し、最もよく使われている赤外線吸収膜である。しかしながら、その形状は物理的に脆く 通常のフォトリソグラフィープロセスが使えない等、パターニングが難しいという欠点が ある。これまでに Au-black をパターニングするプロセスとして lift-off、stencil lithography、 laser ablation など様々なプロセスが試みられてきたが、アライメント精度の悪さやプロセス 時間が長くなり生産性が下がるなど、MEMS 作製プロセスに適しているとは言えない[7-9]。 よって Au-black 膜利用は作製プロセスの複雑化につながるのである。

一方、積層膜を用いた赤外線吸収膜は、その壊れにくい構造や簡単なプロセスなどの利 点がある。Laamanen は Mo と Al<sub>2</sub>O<sub>3</sub>薄膜の積層構造を用いて可視光、及び近赤外光の赤外 線吸収膜を報告している[10]。これは積層膜による光の干渉を利用しており、膜の構造を制 御することで吸収率の増大が図られている。また単純な膜としては SiN 膜もよく用いられ ているが、これは metal との bilayer 構造にした membrene として用いられており、高吸収率 を得るためには基板との間に空洞を精度よく作らなくてはならない[11]。これは一般的に membrane 直下の空洞厚さを波長の 1/4 にすることでその波長に対して反射や透過を制御す る原理を用いているため、広いスペクトルで高い赤外線吸収率を得ることには向かない。

そこで本研究では γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上の PZT 薄膜焦電型赤外線センサ上へインテグレーシ ョン可能な CMOS 適合材料を用いた赤外線吸収膜として SiO<sub>2</sub>/SiN 積層膜を提案し、設計、 作製、評価を行った。作製した PZT 薄膜赤外線センサに提案した赤外線吸収膜をインテグ レーションし、赤外線応答を測定することで赤外線センサとしての感度評価も行った。

#### 4.2 SiO<sub>2</sub>/SiN 積層赤外線吸収膜の光学設計

積層赤外線吸収膜の材料として用いた膜はプラズマ CVD 装置により成膜した SiO<sub>2</sub>と SiN 膜である。プラズマ CVD 装置は成膜温度が 300°C 程度と低温なため、センサである PZT 薄膜などへの熱の影響が少ない利点がある。SiO<sub>2</sub> と SiN 膜についてはターゲットとしてい る赤外線の波長帯 (8 - 14 μm)で赤外線吸収特性を有しており、Si 系の材料であるため回路 一体型のデバイス上へ成膜する膜としてもプロセス適合性がある。そして単純な積層膜で あるため、物理的にも壊れにくい構造であり通常のフォトリソグラフィープロセスを利用 可能である。SiO<sub>2</sub> と SiN 膜の赤外線吸収ピークはそれぞれ 10 μm と 12 μm 付近に存在する。 よってこれらの膜を積層させることでブロードなスペクトルで吸収特性を持つ赤外線吸収 膜が形成できると考えられる。

高い赤外線吸収率を得るためには積層吸収膜の膜厚設計が重要である。そこで積層膜の 吸収率を光学計算により見積もりをした。光学計算のモデルを図 4-1 に示す。用意したサン プルは SiO<sub>2</sub>/SiN/Pt/Si である。Pt は赤外線に対して高い反射率を有しており、屈折率も非常 に高い膜である。この Pt 上に屈折率の低い SiO<sub>2</sub>/SiN 膜を成膜したサンプルに赤外線を照射 するとほぼすべての赤外線が膜に入射され、Pt 膜で反射するので、実測の際には反射率の みの測定で吸収率を得ることができる。また計算には複素屈折率を用いた。複素屈折率は 実部と虚部に分かれており、それぞれ屈折率と消衰係数に分けられる。複素屈折率を用い て計算することで膜での赤外線吸収を含めた反射率が計算できるので赤外線がまったく透 過しないと仮定すれば、100%から反射率を差し引くことで吸収率の見積もりができる。多 層膜のモデルにおいて反射係数を最下層の界面から最上層の界面まで求めて行き、最後に その反射係数を 2 乗することでトータルの反射率が求められる。反射率の計算は次に示す 式(4-1)~(4-4)を用いて反射率の計算を行った。

## Incident ray



図 4-1 SiO<sub>2</sub>/SiN 膜の赤外線吸収率計算モデル

$$R = |r_m|^2 = \left| \frac{r_{m+1,m} + r_{m-1} e^{i\Delta m}}{1 + r_{m-1} r_{m+1,m} e^{i\Delta m}} \right|^2 \quad (m > 0)$$
(4-1)

$$r_{i,j} = \frac{n_i^* \cos\theta_i - n_j^* \cos\theta_j}{n_i^* \cos\theta_i + n_j^* \cos\theta_j}$$
(4-2)

$$r_0 = r_{1,0} \tag{4-3}$$

$$\Delta_m = \frac{4\pi n_m^* d\cos\theta_m}{\lambda} \tag{4-4}$$

ここで *R* は反射率、*r* は反射係数であり、*m* は整数であり各層を表している。 $\theta$  は赤外線の入射角と屈折角である。垂直入射の場合は 0°である。*d* は各層の膜厚、 $\lambda$  は赤外線の波長、 *n*\*は複素屈折率である。 $n_4^*$ 、 $n_3^*$ 、 $n_2^*$ 、 $n_1^*$ 、 $n_0^*$ はそれぞれ Air、SiO<sub>2</sub>、SiN、Pt、Si の複 素屈折率を表す。計算に用いた SiO<sub>2</sub>、SiN、Pt の複素屈折率は光の波長によって異なるが、 8 - 14 µm の範囲での文献の値を参考にした[12-14]。図 4-2, 4-3 に文献値から読み取った SiO<sub>2</sub> 及び SiN の屈折率 n 及び消衰係数 k の値を示す。

SiO<sub>2</sub>/SiN の順番に膜を配置した理由はSiO<sub>2</sub>の方がSiNに比較して空気との屈折率差が小 さいため、逆にした構造に比べて反射が低減できるからである。Pt の膜厚は反射率を十分 に有する膜厚である70 nm を用いた。計算を行った結果SiO<sub>2</sub>(550 nm)/SiN(850 nm)の積層膜 構造において赤外線吸収率が最大となった。同じ構造を実際に作製し反射率の測定を行っ た。まずスパッタリング装置を用いて Si 基板上に Pt を 70 nm 成膜する。その後プラズマ CVD 装置を用いて SiO<sub>2</sub>(550 nm)/SiN(850 nm)積層膜を Pt/Si 基板上に成膜した。成膜条件は 表 4-1 に示す。反射率の測定はフーリエ変換赤外線分光光度計(FTIR)を用いて測定した。図 4-4 に赤外線吸収膜の光学計算結果、及び FTIR による測定結果を示す。8 - 14 µm において 計算結果、及び測定結果ともに非常によく一致していることが分かり、作製した赤外線吸 収膜により平均 70%の赤外線吸収率が得られた。以上より SiO<sub>2</sub>(550 nm)/SiN(850 nm)の構造 からなる積層赤外線吸収膜の設計及び作製に成功した。



図 4-2 SiO<sub>2</sub>の屈折率と消衰係数



図 4-3 SiN の屈折率と消衰係数

| Parameter                 | SiO <sub>2</sub> | SiN      |
|---------------------------|------------------|----------|
| SiH <sub>4</sub> gas flow | 65 sccm          | 117 sccm |
| N <sub>2</sub> O gas flow | 120 sccm         | -        |
| NH <sub>3</sub> gas flow  | -                | 6 sccm   |
| N <sub>2</sub> gas flow   | -                | 183 sccm |
| Temperature               | 300°C            | 300°C    |
| Pressure                  | 67 Pa            | 75 Pa    |
| RF power                  | 30 W             | 100 W    |
| Time                      | 10 min           | 14 min   |

表 4-1 プラズマ CVD 装置による SiO<sub>2</sub>, SiN 成膜条件



図 4-4 光学計算、及び実際に測定した SiO<sub>2</sub>/SiN 積層膜における赤外線吸収率

#### 4.3 有限要素法による過渡伝熱解析とセンサ構造の設計

センサ構造やレイアウトは赤外線センサの感度に関わる非常に重要な要素である。よっ て赤外線センサの感度を向上させたい場合、適切なセンサ構造及びレイアウトの設計をし なければならない。そしてその適切な構造の設計には設計の指針が必要である。赤外線セ ンサの出力は物体から照射される赤外線をセンサ部の赤外線吸収膜で熱に変換し、センシ ング材料の温度変化によって、変化する電気的なパラメータを出力信号として読み取る。 ボロメータ、熱電対などを用いた一般的な赤外線センサでは温度の絶対値に比例して出力 が増加するため、センサの温度を効率良く高くできる構造にすることで感度を向上させる ことができる。そのためには基板から熱分離されているセンサを支える梁 (beam)の配線材 料や構造を変更することで、低熱伝導化をしてセンサの高感度化を図っている。一方焦電 センサの場合、出力は焦電流の式(4-5)を見ても分かる通り、温度の時間微分に比例して出 力が増加する。T は温度、t は時間、ρ は焦電係数(定数)である。つまり温度変化を起こし続 けなければ赤外線を照射し続けても出力が 0 になってしまう。よって焦電センサで出力取 得し続けるためには照射される赤外線を一定間隔でチョッピングするメカニカルチョッパ が必要になる。よって赤外線が照射される一定時間においてセンサの温度変化が起こり続 ける必要があり、そのようなセンサ構造を設計する必要があるのである。

$$i = \rho \frac{dT}{dt} \tag{4-5}$$

そこで過渡伝熱解析に基づいてセンサ構造を設計し、センサの温度が赤外線の照射時間 に対してどのように振る舞うかをシミュレーションした。図 4-5 に設計したセンサのレイア ウトを示す。梁の長さを変更することで熱伝導を低くした。梁の長さはそれぞれ 200 µm と 1000 µm であり、幅は両方とも 10 µm である。センサの断面構造を図 4-6、用いた材料と材 料定数は表 4-2 に示す。膜厚やレイアウトの詳細については本論文の付録に示す。入力する 物理量としては、人体から発する赤外線のエネルギーの単位面積当たりの熱流束が 100 W/m<sup>2</sup> であるので、解析ではこの熱流束を赤外線吸収膜の表面に与えた。また赤外線のチョ ッピングを再現するために熱流束が 100 W/m<sup>2</sup> と 0 W/m<sup>2</sup>を繰り返すような矩形波の熱流束 を設定した。

設計したセンサの過渡伝熱解析を行った結果を図 4-7 に示す。赤外線チョッピング周波数 は 10Hz である。結果より、梁長さ 200 µm の時は赤外線を照射している時間 0~50 ms にお いて温度が 200 mK まで上昇したのに対し、梁長さ 1000 µm では 500 mK まで上昇した。梁 長さ 200 µm においては温度が早い段階で飽和しているのに対し、1000 µm では温度が飽和 せず変化し続けている。前述したように焦電センサでは温度の時間微分が重要であり、温 度が飽和せずに変化し続けることが望ましい。よってチョッピング周波数 10Hz では梁長さ 200 μm のセンサは温度が飽和してしまうため、適切なチョッピング周波数ではないことが 分かる。チョッピング周波数を高くしていくと 200 μm でも同等の結果が得られると思われ る。一般的にセンサをアレイにした際のイメージを得るためのフレームレートは 30Hz 程度 で十分とされており、同程度の周波数で動作させるセンサを作製することが望ましい。こ のように焦電センサの構造の設計は過渡伝熱解析により温度変化をあらかじめ見積もるこ とが重要である。



(a) (b) 図 4-5 設計したセンサのレイアウト。センサを支える梁の長さはそれぞれ(a) 200 µm、 (b)1000 µm。



図 4-6 センサの断面構造

| Materials                                | Density [kg m <sup>-3</sup> ] | Thermal Conductivity<br>[W m <sup>-1</sup> K <sup>-1</sup> ] | Specific Heat [J kg <sup>-1</sup> K <sup>-1</sup> ] |
|------------------------------------------|-------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| SrRuO <sub>3</sub>                       | 6489                          | 5.72                                                         | 465.4                                               |
| PZT                                      | 8100                          | 1.52                                                         | 364                                                 |
| Pt                                       | 21500                         | 71.1                                                         | 133                                                 |
| $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 3580                          | 14.6                                                         | 760                                                 |
| Al                                       | 2700                          | 237                                                          | 900                                                 |
| SiO <sub>2</sub>                         | 2330                          | 1.4                                                          | 1000                                                |
| Si                                       | 2500                          | 130                                                          | 700                                                 |

表 4-2 過渡伝熱シミュレーションに用いた材料と材料定数[15-17]



図 4-7 過渡伝熱解析結果(Beam width 10 μm)

## 4.4 デバイス作製

本節では設計した SiO<sub>2</sub>/SiN 積層赤外線吸収膜やセンサ構造を用いて、PZT 薄膜赤外線セ ンサデバイスの作製を行った。作製プロセスの断面図を図 4-8 に示す。まず Si 基板上に MOCVD 法を用いて γ-Al<sub>2</sub>O<sub>3</sub> 薄膜を 50 nm 結晶成長した (図 4-8(a))。これは前章で述べた通 りである。その後、Pt 薄膜をスパッタリング法により 70 nm 成膜する。この時の基板温度 は 600℃ としてあり、高温で成膜することで γ-Al<sub>2</sub>O<sub>3</sub> 薄膜結晶格子にマッチングする結晶配 向膜が成膜される。SrRuO<sub>3</sub>薄膜を同じくスパッタリング法により750°Cで10 nm 成膜する。 SrRuO3 薄膜は酸化物電極として PZT との密着性の良い材料であり、疑似立方晶として Pt や PZT との格子定数に近いため、結晶配向成長が可能なバッファ層である[18]。次に PZT 薄膜を sol-gel 法により 450 nm 成膜を行う。まず Rapid Thermal Anneal (RTA)により O2 雰囲 気で 650℃ でベークを行う。その後 PZT の溶液を Pt/y-Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ塗布し、スピンコ ータでコーティングする。塗布した溶液は三菱マテリアル製の PZT sol-gel 液であり、Zr, Ti 組成比は 40/60 である。その後 150℃、5 min で乾燥を行い、更に 250℃、5 min で熱分解を 行う。そして RTA により O₂雰囲気で 650℃ まで 10 ℃/s で昇温し、90 s アニールを行い PZT 薄膜の焼成を行う。これを所望の膜厚まで繰り返す。本プロセスでは PZT 薄膜を 3 層 sol-gel プロセスを行い、450 nmの膜厚を得た。最後に上部電極となる SrRuO3薄膜を常温で 100 nm 成膜する (図 4-8(b))。 次は成膜した膜を inductive coupled plasma reactive ion etching (ICP-RIE) によりパターニングを行う(図 4-8(c))。そして SiO<sub>2</sub>/SiN 積層赤外線吸収膜をプラズマ CVD 法により SiN を 850 nm、続いて SiO<sub>2</sub> を 550 nm 成膜した(図 4-8(d))。この SiO<sub>2</sub>/SiN 積層赤 外線吸収膜はセンサの上部電極と下部電極の配線を引き出す際の層間絶縁膜及び、Si 基板 上のフィールド絶縁膜としての役割も果たす。次に SiO<sub>2</sub>/SiN 積層膜を RIE によりパターニ ングし、AI で配線を行った(図 4-8(e))。最後にセンサ直下の Si を XeF2 ガスによりエッチ ングして熱分離構造を形成した(図 4-8(f))。最後は基板をダイシングによりチップ化し、 パッケージング、及びチップ上の Al パッドからワイヤボンディングにより外のパッケージ 基板に配線を取り出した。以上のプロセスにより、SiO<sub>2</sub>/SiN 積層赤外線吸収膜を用いた焦電 型赤外線センサを作製した。



図 4-8 SiO<sub>2</sub>/SiN 積層赤外線吸収膜をインテグレーションした PZT 薄膜焦電型赤外線センサ の作製プロセス断面図。(a) γ-Al<sub>2</sub>O<sub>3</sub> 薄膜成長、(b) Pt, SrRuO<sub>3</sub>, PZT 薄膜の成膜、(c) センサ構 造のパターニング、(d) SiO<sub>2</sub>/SiN 積層膜の成膜、(e) SiO<sub>2</sub>/SiN 積層膜のパターニング, Al 配線、 (c) センサの熱分離構造形成

#### 4.5 作製したデバイスの評価

作製した PZT 薄膜焦電型赤外線センサの SEM 観察画像を図 4-9 に示す。図は梁長さ 200 μm のセンサである。センサを支える梁がねじれていることが確認できた。これは Al 膜と SiO<sub>2</sub>/SiN 膜の成膜時に応力が生じ、センサ下部の Si 基板をエッチングした時に応力が解放 されたためだと考えられる。よってこの梁のねじれを解消するにはそれらの膜の成膜条件 を見直す必要がある。しかし、梁はねじれているにもかかわらず、センサの表面は基板に 対して水平を保っている。したがって梁のねじれは本赤外線センサにおいて問題は無い。

作製したセンサの強誘電体ヒステリシスループを図 4-10 示す。強誘電体ヒステリシスル ープは縦軸に分極、横軸に膜にかかる電界をとったグラフであり、強誘電体の特性を評価 する重要な電気的特性である。作製した PZT 薄膜はヒステリシスループを描いており強誘 電性の分極を持っていることが確認できる。また電界が 0 kV/cm の時の分極値(自発分極値 または残留分極値)は梁長さ 200 µm および 1000 µm のセンサにおいてそれぞれ 28  $\mu$ C/cm<sup>2</sup> と 33  $\mu$ C/cm<sup>2</sup>が得られた。これは PZT 薄膜の他の報告に比べて 2 ~ 3 倍程度高い値である [19,20]。自発分極値が大きければ焦電効果における電荷の変化量が大きくなるため、出力は 大きくなるはずであるため、作製した PZT 薄膜センサは焦電センサとして良質な膜である と考えられる。

次に作製したセンサにおける赤外線吸収特性を図 4-11 に示す。比較として Pt/Si 上の SiO<sub>2</sub>/SiN 積層成外線吸収膜の赤外線吸収率をプロットしている。作製したセンサは本研究で 提案した SiO<sub>2</sub>/SiN 積層成外線吸収膜をセンサ上に成膜しており、赤外線は実際には下部電 極の Pt 上にある SiO<sub>2</sub>/SiN/SrRuO<sub>3</sub>/PZT/SrRuO<sub>3</sub>というセンサ構造全体で吸収されるため、赤 外線吸収率が底上げされる。結果より実際に作製したセンサの赤外線吸収率は波長 8 - 14 μm において平均 86%の赤外線吸収率を得られた。このように作製した焦電センサでは高い 赤外線吸収率を実現でき、SiO<sub>2</sub>/SiN 積層赤外線吸収膜が非常に有用であることが確かめられ た。

57



図 4-9 作製した PZT 薄膜焦電型赤外線センサの SEM 観察画像



図 4-10 作製した PZT 薄膜の分極ヒステリシスループ



#### 4.6 赤外線応答感度評価

赤外線センサの赤外線に対する感度の性能を示す重要な値として specific detectivity (比検 出能) D\*がある。これは 1W の光入力があった時のセンサ素子の S/N (signal to noise)がどれ だけであるかと示す値である。検出面積によらず材料の特性を比べられるように、検出素 子面積 1cm<sup>2</sup>、雑音帯域 1Hz で規格化されている。D\*が高いほど感度の良いセンサ素子とい える。D\*は次の式で表される。

$$D^* = \frac{\sqrt{A_S}}{V_N} R_v \tag{5}$$

$$R_V = \frac{v_S}{\Phi_S} \tag{6}$$

ここで  $A_s$  はセンサ面積、 $V_N$ はノイズ電圧。 $R_V$ は responsivity と呼ばれ、出力電圧  $V_s$ 、と 放射パワーS の商で表される。D\*の単位は cmHz<sup>0.5</sup>/W である[21]。焦電センサの出力電圧は メカニカルチョッパと同期させた lock-in アンプを用いて測定するので、電圧の実効値が得 られる。

D\*測定システムのブロック図を図 4-12 に示す。作製された PZT 薄膜焦電センサはディス クリート部品である Junction FET (2SK3796)と抵抗器 (470 kΩ)と一緒にプリント基板にパッ ケージし、図に示してあるようなソースフォロワ回路を形成している。またこの基板を TO-5、 赤外線バンドパスフィルタの付いた金属のフタと一緒にパッケージすることで、可視光や 近赤外光などの光は遮断されるようになっている。図 4-13 にパッケージの外観を示す。ま た TO-5 は金属のボックス内に入れ、赤外線フィルタ窓のみを露出させており、信号は同軸 ケーブルから取り出しているため、コネクタ部分から外部雑音が入らないようにした。こ のフィルタの透過率は波長 6 - 13 μm において平均 70% である。黒体炉はセンサパッケージ 表面から 20 cm 離れた場所に設置し、黒体炉の前にメカニカルチョッパを設置した。ソース フォロワの出力は Lock-in アンプに接続され、Lock-in アンプはメカニカルチョッパの周波 数に同期させた。ソースフォロワの電源電圧は 5 V の直流電源を用いた。

D\*の測定結果を図 4-14 に示す。チョッピング周波数は 45 Hz まで測定した。結果より、 梁長さ 1000 µm のセンサ構造ではチョッピング周波数 20 Hz ~ 40 Hz において D\* 1.15 x 10<sup>7</sup> cmHz<sup>0.5</sup>/W が得られた。また傾向として低周波数側では D\*は小さく、周波数が大きくなる と D\*が増加していくことが分かった。これは図 4-7 の過渡伝熱特性のシミュレーションで もわかる通り、周波数が低いと温度が飽和してしまい、温度の時間微分に比例する出力の 実効値は小さくなってしまうからである。また周波数が高くなると温度飽和の時間が短く なり実効値として大きくなるので出力が上がることからも説明できる。一方、40 Hz より高 い周波数で D\*が下がっている。これは周波数が上がりすぎると温度自体の絶対値も小さく なるため、出力が小さくなるからだと考えられる。焦電センサでは赤外線のチョッピング 周波数でも出力に影響があるため、目標とする周波数に対応するセンサ構造の設計が重要 であるということが分かった。作製したセンサでは梁長さを 200 µm から 1000 µm へ変更す ると D\*は約 1.3 倍になった。図 4-7 のシミュレーション結果では温度は 2 倍以上になって いるが、実際の D\*の変化は小さかった。図 3-5 のグラフの温度の時間微分を縦軸としてプ ロットし、実効値を求めるとそれぞれの温度の時間微分の実効値は 1.78 倍となり、実測の 梁長さを 200 µm から 1000 µm のセンサの比に近い値となった。残る誤差はシミュレーショ ンの厳密性や用いた材料定数などにより生じたものだと考えられる。以上より、提案、作 製をした SiO<sub>2</sub>/SiN 積層成外線吸収膜及び過渡伝熱解析に基づいたセンサ構造設計を用いて 作製した PZT 薄膜赤外線センサの D\*の測定に成功し、D\* 1.15 x 10<sup>7</sup> cmHz<sup>0.5</sup>/W が得られた。

また作製した焦電センサの D\*を他の薄膜焦電型赤外線センサの報告と性能を比較した結 果を表 4-3 に示す。様々な材料、膜厚、周波数での比較になるが、本研究で作製したセンサ の性能は他の報告されている PZT 薄膜赤外線センサと比較して数十分の一程度のD\*である ことが分かった。この原因として、赤外線吸収膜の吸収率が十分でないことが原因である と考えられる。本センサでは CMOS 回路に適合する材料として SiO<sub>2</sub>/SiN 赤外線吸収膜を提 案し作製したが、その赤外線吸収率 86%程度と Au-black などの赤外線吸収膜の吸収率(90% 以上)と比較するとやや低い結果となった。よってさらに赤外線吸収膜の構造を工夫して赤 外線吸収率を向上させることが必要であると考えられる。現在の赤外線吸収膜では波長 8 μm から 9 μm において吸収率が低い。この帯域の赤外線を吸収できる材料を積層させて吸 収膜を形成することで更なる吸収率の向上ができると考えられる。赤外線吸収膜の積層構 造を更に工夫して Au-black 同等の 90%以上の吸収率を実現することがセンサ性能向上に有 効であると考えられる。そして更に性能を向上させる方法として回路素子との集積化が考 えられる。現在はディスクリート部品の回路素子を用いて外部で信号処理をしているが、 これをチップ上に増幅回路などを形成して、信号処理をセンサの近傍で行うことができれ ば、雑音の混入を小さくし、性能を向上させることが可能であると考えられる。回路との 集積化は赤外線センサの性能を向上させる上で重要な要素なのである。

61



図 4-12 D\*測定系のブロック図、及びパッケージしたセンサの回路図



図 4-13 センサパッケージの外観



表 4-3 作製した薄膜焦電型赤外線センサと他の報告との性能比較[22-26]

| Authors             | Material | Thickness [nm] | Specific detectivity [cmHz <sup>1/2</sup> /W] |
|---------------------|----------|----------------|-----------------------------------------------|
| C. Giebeler et al.  | PZT      | 800            | 5.0 x 10 <sup>8</sup> (10 Hz)                 |
| W. Liu et al.       | PZT      | 550            | 1.7 x 10 <sup>8</sup> (10 Hz)                 |
| C. C. Chang et al.  | PZT      | 500            | 2 x 10 <sup>6</sup> (1 Hz)                    |
| L. Pham et al.      | PbTiO3   | 360            | 2 x 10 <sup>8</sup> (30 Hz)                   |
| N. Fujitsuka et al. | PVDF     | 700            | 2.4 x 10 <sup>7</sup> (40 Hz)                 |
| This work           | PZT      | 450            | 1.15 x 10 <sup>7</sup> (30 Hz)                |

#### 4.7 結言

γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上の PZT 薄膜焦電型赤外線センサに適合する、簡単に作製可能な SiO<sub>2</sub>/SiN 積層成外線吸収膜の提案、設計、作製、評価を行い、センサ上へインテグレーションした。 SiO<sub>2</sub>/SiN 積層成外線吸収膜の設計には赤外線吸収を考慮した積層膜の光学計算を行い赤外 線吸収率の見積もりをした。SiO<sub>2</sub>(550 nm)/SiN(850 nm)積層膜の構造で赤外線吸収率が最大 になり、実際に作製した膜と計算した赤外線吸収膜を比較したところ、赤外線吸収特性が 非常によく一致する結果が得られた。その後、有限要素法を用いた過渡伝熱解析の結果に 基づき、センサ構造の設計を行った。センサの梁の構造により 2 倍以上のセンサの温度上 昇が期待できることが分かった。実際にセンサを γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上に作製し、強誘電体 PZT 薄膜の電気特性、及びセンサ SiO<sub>2</sub>/SiN 積層成外線吸収膜をインテグレーションさせたセン サの赤外線吸収率を測定した。センサの赤外線吸収率について、ターゲットとしている赤 外線波長 8-14 μm において平均 86%の赤外線吸収率を得ることができた。よって本研究で 作製した SiO<sub>2</sub>/SiN 積層成外線吸収膜は PZT 薄膜焦電型赤外線センサに有用であることが確 かめられた。最後に赤外線応答感度評価を行い、チョッピング周波数 30Hz において 1.15 x 10<sup>7</sup> cmHz<sup>0.5</sup>/W が得られた。以上の結果より、SiO<sub>2</sub>/SiN 積層成外線吸収膜はシンプルなプロ セスで高い赤外線吸収率を実現できる PZT 薄膜焦電型赤外線センサへの応用に非常に有用 な赤外線吸収膜であるといえる。

#### 参考文献

- K. Oishi, S. Yonemaru, D. Akai and M. Ishida, "SiO<sub>2</sub>/SiN multilayer-stack infrared absorber integrated on Pb(Zr<sub>0.4</sub>,Ti<sub>0.6</sub>)O<sub>3</sub> film pyroelectric sensors on γ-Al<sub>2</sub>O<sub>3</sub>/Si substrate," Sensor Mater., accepted.
- [2] R. R. Neli, I. Doi, J. A. Diniz and J. W. Swart, "Development of process for far infrared sensor fabrication," Sens. Actuators A, 132 (2006) 400.
- [3] C. Chen, "Fully quantitative characterization of CMOS-MEMS polysilicon/titanium thermopile infrared sensors," Sens. Actuators B, 161 (2012) 892.
- [4] Y. Zhao, M. Mao, R. Horowitz, A Majumdar, J. Varesi, P. Norton and J. Kitching, "Optomechanical Uncooled Infrared Imaging System: Design, Microfabrication, and Performance," J. Microelectromech. S., 11 (2002) 136.
- [5] B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel opto-mechanical uncooled infrared detector," Infrared Phys. Techn., 51 (2007) 66.
- [6] N. Zhang, P. Zhou, S. Zou, X. Weng, J. Xie and L. Deng, "Improving the mid-infrared energy absorption efficiency by using a dual-band metamaterial absorber," Nat. Sci. Mater. Int., 24 (2014) 128.
- [7] M. Hirota, Y. Nakajima, M. Saito and M. Uchiyama, "120 x 90 element thermal focal plane array with precisely patterned Au-black absorber," Sens. Actuators A, 135 (2007) 146.
- [8] D. Panjwani, M. Yesiltas, S. Singh, E. D. Barco, R. E. Peale, C. Hirschmugl and J. Sedlemair, "Stencil lithography of gold-black IR absorption coatings," Infrared Phys. Techn., 66 (2014) 1.
- [9] N. Nelms, J. Dowson, N. Rizvi and T. Rohr, "Laser micromaching of goldblack coatings," Appl. Optics, 45 (2006) 6977.
- [10] M. Laamanen, M. Blomberg, R. L. Puurunen, A. Miranto and H. Kattelus, "Thin film absorbers for visible, near-infrared, and short-wavelength infrared spectra," Sens. Actuators A, 162 (2010) 210.
- [11] M. F. Toy, O. Ferhanoglu, H. Torun and H. Urey, "Uncooled infrared thermo-mechanical detector array: Design, fabrication and testing" Sens. Actuators A, 156 (2009) 88.
- [12] A. Andersen, H. Mutschke, T. Posch, M. Min and A Tamanai, "Infrared extinction by homogeneous particle aggregates of SiC, FeO and SiO<sub>2</sub>: Comparison of different theoretical approaches," J. Quant. Spectrosc. Ra., 100 (2006) 4.
- [13] F. Jutzi, D. Wicaksono, G. Pandraud, N. Rooij and P. French, "Far-infrared sensor with LPCVD-deposited low-stress Si-rich nitride absorber membrane-Part 1. Optical absorptivity," Sens. Actuators A, 152 (2009) 119.
- [14] J. H. Weaver, "Optical properties of Rh, Pd, Ir, and Pt," Phys. Rev. B, 11 (1975) 1416.
- [15] S. Yamanaka, T. Maekawa, H. Muta, T. Matsuda, S. Kobayashi and K. Kurosaki, "Thermophysical properties of SrHfO<sub>3</sub> and SrRuO<sub>3</sub>," J. Solid State Chem., 177 (2004) 3484.
- [16] P. P. Donohue and M. A. Todd, "Pulse-extended excimer laser annealing of lead zirconate titanate thin films," Integr. Ferroelectr., 31 (2000) 285.
- [17] G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 15<sup>th</sup> Ed. (Longman Scientific and Technical, 1993).
- [18] W. Lee, K Ahn, S. Yoon, H. Shin, Y. Kim and K. No, "Ferroelectric properties of ultra-thin epitaxial Pb(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> thin films grown on SrRuO<sub>3</sub>/SrTiO<sub>3</sub> substrate," Integr. Ferroelectr., 73 (2005) 125.
- [19] C. Zinck, D. Pinceau, E. Defay, E. Delevoye and D. Barbier, "Development and characterization of membranes actuated by PZT thin film for MEMS applications," Sens. Actuators A, 115 (2004) 483.
- [20] M. Kang, K. Kim and C. Kim, "Recovery of plasma-induced damage in PZT thin film with O2 gas annealing," Thin Solid Films, 398-399 (2001) 448.
- [21] H. Budzier and G. Gerlach: Thermal infrared sensors theory, optimization and practice, Dorte Muller (A John Wiley and Sons, 2011).
- [22] C. Giebeler, J. Wright, S. Freebom, N. Conway, T. Chamberlain, M. Schreiter, R. Koehler, and P. Clark, "High performance PZT based pyro-detectors with D\* of 2x10<sup>9</sup> cmHz<sup>1/2</sup>/W for presense, gas and spectroscopy applications," Proc. SENSOR+TEST Conf., 2009, pp. 185-189.
- [23] W. Liu, L. L. Sun, W. Zhu, O. K. Tan, "Noise and specific detectivity of pyroelectric detector using lead titanate zirconate (PZT) thin films," Mcroelectron. Eng., 66 (2003) 785.
- [24] C. C. Chang, C. S. Tang, "An integrated pyroelectric infrared sensor with a PZT thin film," Sens. Actuators A, 65 (1998) 171
- [25] L. Pham, W. Tjhen, C. Ye, D. L. Polla, "Surface-micromachined pyroelectric infrared imaging array with vertically integrated signal processing circuitry", IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41 (1994) 552.
- [26] N. Fujitsuka et al., "Monolithic pyroelectric infrared image sensor using PVDF thin film", Sens. Actuators A, 66 (1998) 237.

# 第5章 γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上への PZT 薄膜センサと CMOS 回路の集積化

## 5.1 緒言

前章までの結果より、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性を維持した CMOS 回路作製プロセスの確立、  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 上への SiO<sub>2</sub>/SiN 積層赤外線吸収膜を形成させた PZT 薄膜赤外線センサの作製、 及び赤外線センサとしての評価を行ってきた。本章ではこれらの確立されたプロセスを組 み合わせて、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ PZT 薄膜赤外線センサと CMOS 回路を集積化したデバイ スの作製を行い、集積化した際のセンサ特性、回路特性など種々の評価を行った。

# 5.2 PZT 薄膜赤外線センサと CMOS 回路の集積化デバイス作製プ

#### ロセス

PZT 薄膜赤外線センサと CMOS 回路の集積化デバイス作製を試みた。図 5-1 にデバイス の作製プロセスフローを示す。まず Si 基板を酸化して SiO<sub>2</sub> をマスクとなるようにパターニ ングした。そして MOCVD 法により  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜 (膜厚 50 nm)を基板温度 960°C にて Si(100) 基板上へ部分的にエピタキシャル成長させた。次に LPCVD により  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の膜質を保 護するための Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜を  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜上に成膜し、CMOS 回路作製を行った。作製 した CMOS 回路素子は第 3 章同様の素子であり、n型 Enhancement MOSFET、p型 Enhancement MOSFET (pEMOSFET)、n型 Depletion MOSFET (nDMOSFET)を作製した。ゲー ト長 L、ゲート幅 W はそれぞれ 10  $\mu$ m および 30  $\mu$ m であり L/W=10/30、ゲート酸化膜の膜 厚は 60 nm である。n型 Si(100)基板 (resistivity 3.85 ~ 4.15  $\Omega$  cm)を用いており、n型 MOSFET は p-well 領域上に、p型 MOSFET は n型 Si 基板上に作製した。ゲート電極は n型 poly Si を用いた。その後、Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜を除去し、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜上に下部電極 Pt, 強誘電体膜 PZT をスパッタ法、Sol-gel 法によりそれぞれ成膜した。上部電極として SrRuO<sub>3</sub>を成膜し、 センサのパターニングを行った。プラズマ CVD で成膜した赤外線吸収膜としての SiO<sub>2</sub>/SiN 積層膜をセンサ上に成膜、パターニングを行った。その後、センサ及び CMOS 回路素子ぞ れぞれにコンタクトホールを開け、Al のスパッタ及びパターニングを行い、配線を形成し た。最後に Si のエッチングホールを開け、XeF<sub>2</sub>によるセンサ直下の Si をエッチングし、セ ンサを基板からリリースして熱分離構造を形成した。本プロセスには工程数が 140 工程、 使用したマスクは 20 枚、フォトリソ 22 回を要した。また作製した MOSFET のゲート長は 10 μm, ゲート幅は 30 μm である。



図 5-1 PZT 薄膜赤外線センサと CMOS 回路の集積化デバイス作製プロセス

# 5.3 作製したデバイスの特性評価

図 5-2 に作製した PZT 薄膜赤外線センサの SEM 画像をを示す。ウェハやセンサの外景と しては特に膜の剥離などなく、綺麗に作製できたことが確認できた。センサの形は前章と は異なり、長方形(110 µm x 30 µm)でありセンサ面積はこれまで作製してきたセンサの約 1/3 の大きさのものを作製した。これは円系センサにて XeF<sub>2</sub>で Si をエッチングすると等方性エ ッチングのため円形の空洞ができてしまい、センサをアレイ状に並べて MOSFET などを同 ーピクセルに集積化した際の Fill Factor を考慮すると長方形のセンサが最適な形になるから である。センサはしっかり基板からリリースされて作製できている。またセンサは中心が 上方向に撓んだ状態で支えられていることが確認できた。センサを支える配線については 前章同様に、歪んでいることが確認された。配線が短い場合は歪の影響が少ないが、配線 が長いレイアウトの場合は影響が大きくなり、センサの傾きなどに影響してくるため抑制 をする必要があると考えられる。



図 5-2 作製した PZT 薄膜赤外線センサの SEM 観察画像

#### 5.3.1 全工程後の PZT 薄膜の強誘電体特性評価

図 5-3 に作製した PZT 薄膜の分極ヒステリシスループ特性を示す。Al 配線後に測定した ものと XeF<sub>2</sub>による Si エッチング後に測定したものをプロットする。センサの基板からのリ リース後においても同様の特性が得られていることから、熱分離構造形成によるヒステリ シス特性の劣化が無いことが確認できた。自発分極値については配線形成後には 17 µC/cm<sup>2</sup> だったものが 21 µC/cm<sup>2</sup>と約 1.3 倍向上していることが確認できた。前述したセンサ面が上 方向に撓んでいることによる影響であると考えられる。歩留まりとしては 4 inch ウェハ内で 50%程度であった。場所による特性の傾向はあまりなく、直近のセンサ間でも完全にリーク している特性のセンサと綺麗な分極ヒステリシスループを持つセンサが確認でき、PZT 薄 膜の更なる歩留まり向上が必要なことが確認できた。



図 5-3 各プロセス後における PZT 薄膜の分極ヒステリシス特性(PZT 膜厚 450 nm)

#### 5.3.2 全工程後の CMOS 回路素子の回路特性評価

本デバイスには強誘電体薄膜として PZT 薄膜を用いており、含有される Pb の拡散により 集積化した回路素子への影響が懸念される。そこで本デバイスでは Pt や PZT 薄膜の成膜前 に回路素子上に BPSG をプラズマ CVD により成膜し、Pb の拡散を防ぐゲッタリング効果に より回路素子を保護した。図 5-4 に全工程後の CMOS 回路特性を示す。センサ作製前に評 価した回路素子特性と比較して特性をプロットした。また Synopsys 社製のプロセス・デバ イスシミュレータ「TCAD Sentaurus」のシミュレーション結果との比較もプロットした。セ ンサ作製後においても回路素子特性に変化はなく、PZT 薄膜を集積化したデバイスにおい ても CMOS 回路が正常に動作することが確認できた。以上のことから本デバイスでは  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ PZT 薄膜赤外線センサと CMOS 回路を一体化させることに成功したと言える。



図 5-4 全工程後の回路素子の ID-VGS 特性(L/W=10/30) ゲート酸化膜厚 60 nm

全工程後の強誘電体薄膜センサ及び CMOS 回路素子の動作が確認できたため、強誘電体 薄膜センサにて検知した赤外線応答を集積化した信号処理回路により評価が可能となった。 しかしながら今回は評価をすることが出来なかった。その原因は PZT センサのバイアスが 想定していたものと異なっていたため設計した回路が予想通り動作しなかったことが考え られる。今回設計・作製した信号処理回路は前段でソース接地回路(MOSFET + 拡散抵抗) により信号増幅をして、後段のソースフォロワ回路(MOSFET + 拡散抵抗)から信号取り 出す回路である。PZT センサはソース接地回路の MOSFET のゲートに入力されており片方 は接地されているため、取り出される信号としてはバイアス 0 V の小信号であると考慮して ソース接地回路の設計をした。しかしながら、PZT キャパシタによるバイアスが存在する と考えると、回路の動作点がずれてしまい検出した信号を減衰させてしまっていると考え られる。よって今後の対策として、作製した PZT センサのバイアスがどのような状態にあ るかを調査し、適切な回路設計を行うことで集積化チップでの赤外線応答評価が可能にな ると考える。

# 5.4 結言

γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ PZT 薄膜赤外線センサと CMOS 集積回路を集積化したデバイスの作 製を試みた。全 140 工程のデバイス作製を行い、全工程後の特性評価において PZT 薄膜セ ンサを CMOS 回路と集積化することに成功した。強誘電体特性と回路特性ともに劣化なく 作製できたことを確認した。今後は、強誘電体薄膜センサのバイアス条件などを検討し、 集積化した CMOS 回路による信号増幅などを行い、ワンチップでの赤外線応答評価を行う ことが必要である。

# 第6章 総括

本論文では γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板上の結晶配向 PZT 薄膜センサと CMOS 集積回路をインテグレ ーションさせるための技術について結晶性と CMOS 回路素子特性評価、及び PZT 薄膜セン サの作製とその評価について述べた。

第1章では赤外線センサ、Si上の MEMS デバイス、センサ応用としての強誘電体薄膜に ついて述べ、Si 基板上へ PZT 薄膜をインテグレーションさせるための結晶性絶縁膜 γ-Al<sub>2</sub>O<sub>3</sub> 薄膜について説明した。本研究の目的である γ-Al<sub>2</sub>O<sub>3</sub>/Si 基板を用いた、結晶配向 PZT 薄膜 をインテグレーションさせたセンサチップについて述べ、回路一体化の重要性を説明した。 これまでの問題として CMOS 回路作製プロセスにおける γ-Al<sub>2</sub>O<sub>3</sub> 薄膜の膜質の劣化や PZT 薄膜センサに適用する赤外線吸収構造の必要性について述べ、その解決方法を提案し、目 的を述べた。

第2章では本論文で用いた薄膜成膜技術、及び評価技術について述べた。薄膜成膜技術 としては γ-Al<sub>2</sub>O<sub>3</sub>薄膜を Si 基板上に成長させるための MOCVD 法と PZT 薄膜を成膜するた めの sol-gel 法について説明した。評価技術については作製した薄膜の結晶性を評価するた めに用いた RHEED 及び XRD について述べ、実際に本研究で成膜した γ-Al<sub>2</sub>O<sub>3</sub>薄膜、Pt 薄 膜、PZT 薄膜などの結晶性評価結果を示した。表面分析として XPS、及び SEM について述 べた。そして赤外線センサに用いる赤外線吸収膜の特性を評価するための FT-IR について述 べた。

第3章では  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上の結晶配向 PZT 薄膜センサと CMOS 集積回路をインテグレーションさせるため最初の課題として、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜と CMOS 回路のインテグレーションプロセスについて述べた。 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の膜質を劣化させる要因として CMOS 回路作製工程のアニールプロセスに注目し、それぞれのアニールプロセスが  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板にどのような影響を与えるかを調査した。本研究では  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の結晶性評価に反射高速電子線回折、X線回折を用い、構成元素分析及び結合状態分析、表面観察に X線光電子分光及び走査型電子顕微鏡を用いた。これらの結果より  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板のアニールプロセスを考察し、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜の膜質劣化を防止する方法として Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> 保護膜の提案を行い、評価した。最後に $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 薄膜がインテグレーションされた Si 基板に作製した CMOS 回路素子が正常に動作するかを評価し、設計値通り正常に動作することを確認した。

第4章では本研究で作製する PZT 薄膜焦電型赤外線センサの赤外線吸収膜として CMOS プロセス後に適用しやすい、SiO<sub>2</sub>/SiN 積層赤外線吸収膜を提案、設計、作製、評価を行った。 赤外線吸収膜の設計には赤外線吸収を考慮した光学計算を行い、SiO<sub>2</sub>/SiN 積層赤外線吸収膜 の最適な構造を導き出した。また実際に作製し、計算値と実測値の一致を確認した。PZT 薄膜センサのレイアウトについても有限要素法を用いた過渡伝熱解析を行い、そのシミュ レーション結果に基づき、PZT 薄膜焦電型赤外線センサに適するセンサ構造を設計した。 実際に SiO<sub>2</sub>/SiN 積層赤外線吸収膜をインテグレーションさせたセンサの作製を行い PZT 薄膜の電気特性、及び本センサの赤外線応答感度評価を行った。SiO<sub>2</sub>/SiN 積層赤外線吸収膜が PZT 薄膜焦電型赤外線センサに有用であることが確かめられた。

第5章では前章までの結果を踏まえ、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ PZT 薄膜焦電型赤外線センサと CMOS 回路を集積化することを試みた。第3章で議論した  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>薄膜成長後の CMOS 回 路作製プロセスにおいて Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>保護膜用い、センサ作製プロセスでは第4章で確立した 作製プロセス及び SiO<sub>2</sub>/SiN 積層赤外線吸収膜を用い、デバイスの作製を行った。デバイス を作製した結果、PZT の分極ヒステリシスループ特性が全工程後にも得られ、CMOS 回路 特性もセンサ作製工程前に評価した特性と一致するものが得られ、設計値であるデバイス シミュレーション結果とも同等のものが得られた。以上より、 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/Si 基板上へ PZT 薄膜 焦電型赤外線センサと CMOS 回路を集積化するプロセスの確立に成功した。

今後の展望として、信号処理回路の設計、製作、及びワンチップでの赤外線応答評価を することが挙げられる。信号処理回路の設計としては雑音の少ない増幅回路を設計するこ とで赤外線センサシステムの高感度化を期待する。そのためには PZT 薄膜のバイアス条件 などを調査し、作製する PZT 薄膜のバイアスを考慮した回路設計が必要である。適切な信 号処理回路作製が達成できた後は、赤外線のイメージングが実現できると考えられる。本 研究で達成した PZT 薄膜赤外線センサと CMOS 回路の集積化プロセス技術が今後のデバイ ス応用に役立つことを望む。

# 謝辞

本研究の遂行および本論文の作成にあたり適切な御指導と御助言を賜りました豊橋技術 科学大学教授・工学博士 石田誠先生に謹んで感謝の意を表します。

本論文をまとめるにあたり、有益なご教示を頂いた、豊橋技術科学大学教授・工学博士 澤田和明先生、豊橋技術科学大学准教授・博士(工学) 河野剛士先生、豊橋技術科学大学 准教授・博士(工学) 岡田浩先生に謹んで感謝の意を表します。

本研究を進めるにあたり、有益な御指導、御討論ならびに適切な御助言をいただきまし た豊橋技術科学大学助教・博士(工学)赤井大輔先生に謹んで感謝の意を表します。

本研究を進めるにあたり、有益な御討論、激励をいただきました、豊橋技術科学大学准 教授・博士(工学)村上裕二先生、豊橋技術科学大学助教・博士(工学)秋田一平先生、 豊橋技術科学大学講師・博士(工学)高橋一浩先生に心から感謝の意を示します。

また、豊橋技術科学大学 固体機能デバイス施設において各種装置の取り扱いや研究遂 行の際にご便宜いただきましたエレクトロニクス先端融合研究所特命技術職員 足木光昭 先生、テーラーメイド・バトンゾーン教育推進本部研究員 高瀬博行氏、研究支援課技術支 援推進室技術専門職員 飛沢健氏に深く感謝の意を表します。

豊橋技術科学大学 インキュベーション施設においてフーリエ変換赤外線分光光度計を はじめとする、各種評価装置の利用に関してご協力いただいた日置電機株式会社技術本部 開発部・中山直人氏に深く感謝の意を表します。

デバイス作製プロセスに関し、多大な協力をいただいた豊橋技術科学大学修士課程 2 年 高島大輔氏、修士課程1年 米丸翔太氏、学部4年 小林孝央氏に深く感謝いたします。

本研究の遂行において、豊橋技術科学大学大学院修士課程2年赤塚信哉氏、修士課程1 年 山蔭駿平氏、Yu Hongqu 氏、学部4年 鹿取丈朗氏、豊橋技術科学大学大学院博士課程2 年 本間浩章氏、岡部謙志氏、高橋聡氏、に多くの御助言をいただきました。深く感謝いた します。

本研究の開始以来、御協力ならびに御助言いただいた、豊橋技術科学大学石田・澤田・ 河野研究室の諸氏、ならびに電子デバイスの大講座の皆様に深く感謝いたします。

最後に本学においての勉学ならびに日々の生活を支えていただきました両親、家族に深 く感謝いたします。

> 2015 年 1 月 大石 浩史

75

# 付録

# 過渡伝熱シミュレーションに用いたデバイスモデル

| Dumaga           | Matariala                                | Thickness | s External radius Internal ra |      |  |
|------------------|------------------------------------------|-----------|-------------------------------|------|--|
| rurpose          | Materials                                | [nm]      | [µm]                          | [µm] |  |
| Top electrode    | SrRuO <sub>3</sub>                       | 100       | 62.5                          | 12.5 |  |
| Sensor           | PZT                                      | 450       | 62.5                          | 12.5 |  |
| Bottom electrode | Pt                                       | 100       | 95                            | 5    |  |
| Insulator        | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 50        | 95                            | 5    |  |
| Metallization    | Al                                       | 600       | -                             | -    |  |
| IR absorber,     | SiO.                                     | 1400      | 95                            | 5    |  |
| insulator        | 5102                                     | 1400      | 10                            | 5    |  |

表 A-1 過渡伝熱シミュレーションに用いたデバイスレイアウト



図 A-1 過渡伝熱シミュレーションに用いたデバイスモデル

プロセスチャート

| No. | Process                    | Condition                                                                     | Time         | Note          |
|-----|----------------------------|-------------------------------------------------------------------------------|--------------|---------------|
|     |                            | DHF(HF:H <sub>2</sub> O=1:50)                                                 | 20 sec       |               |
|     |                            | DIW                                                                           | 10 min       |               |
| 1   |                            | 王水(HNO3:HCl=1:3)                                                              | 10 min       |               |
|     |                            | DIW                                                                           | 10 min       |               |
|     | 加加出达法                      | APM(NH <sub>4</sub> OH:H <sub>2</sub> O <sub>2</sub> :H <sub>2</sub> O=1:1:6) | 10 min       |               |
|     | 初旁近伊                       | DIW                                                                           | 10 min       |               |
|     |                            | HPM(HCl:H <sub>2</sub> O <sub>2</sub> :H <sub>2</sub> O=1:1:6)                | 10 min       |               |
|     |                            | DIW                                                                           | 10 min       |               |
|     |                            | DHF                                                                           | 20 sec       |               |
|     |                            | DIW                                                                           | 5 min        |               |
| 2   | 初期酸化                       | Dry 1000°C (OX8)                                                              | 60 min       | 50            |
| 2   | 们为政16                      | N <sub>2</sub> 1000°C (OX8)                                                   | 10 min       | ~30 IIII      |
|     |                            | Bake 160°C                                                                    | 5 min        |               |
|     |                            | HMDS & ip3100                                                                 |              | Develop 2 min |
|     |                            | 1 <sup>st</sup> 1000 rpm                                                      | 5 sec        | Rinse 2 min   |
| 3   | フォトリソ 1                    | 2 <sup>nd</sup> 3000 rpm                                                      | 20 sec       | Mask_Mark     |
|     |                            | Prebake 110°C                                                                 | 90 sec       | Mark          |
|     |                            | Intensity : 9.5 (i-line filter)                                               |              | (posi)        |
|     |                            | Postbake 120°C                                                                | 5 min        |               |
|     |                            | RIE                                                                           | 8 min 30 sec |               |
| 1   | SiO /Si エッチング              | SF <sub>6</sub> =10 sccm                                                      |              | 500 nm D/ F   |
| 4   | SiO <sub>2</sub> /Si エッテンク | Pressure=1 Pa                                                                 |              | 500 1111 以上   |
|     |                            | RF Power=100 W                                                                |              |               |
| 5   | レジスト险キ                     | SPM(H <sub>2</sub> SO <sub>4</sub> :H <sub>2</sub> O <sub>2</sub> )=3.1       | 10 min       |               |
| 5   |                            | DIW                                                                           | 10 min       |               |
| 6   | SiO. 除去                    | BHF                                                                           | 1 min 30 sec | 全面除去          |
|     | 5102 MA                    | DIW                                                                           | 5 min        | 王间际五          |
|     |                            | APM                                                                           | 10 min       |               |
|     |                            | DIW                                                                           | 10 min       | 强拍守官田         |
| 7   | 融化前处海                      | HPM                                                                           | 10 min       | 盛い成長市         |
| /   | K211月11761于                | DIW                                                                           | 10 min       | 設TLIKI以限Vノ    |
|     |                            | DHF                                                                           | 20 sec       | 时仍行于          |
|     |                            | DIW                                                                           | 5 min        |               |

|    |                                                        | Wet 1000°C                                                                       | 240 min      |                                        |
|----|--------------------------------------------------------|----------------------------------------------------------------------------------|--------------|----------------------------------------|
|    |                                                        | O <sub>2</sub> 4.2 L/min                                                         |              |                                        |
| 8  | フィールド酸化                                                | H <sub>2</sub> 4.2 L/min                                                         |              | ~750 nm                                |
|    |                                                        | N <sub>2</sub> 1000°C                                                            | 10 min       |                                        |
|    |                                                        | Bake 160°C                                                                       | 5 min        |                                        |
|    |                                                        | HMDS & ip3100                                                                    |              |                                        |
|    |                                                        | 1 <sup>st</sup> 1000 rpm                                                         | 5 sec        | Mask_Al <sub>2</sub> O <sub>3</sub> _1 |
| 9  | フォトリソ 2                                                | 2 <sup>nd</sup> 3000 rpm                                                         | 20 sec       | γ-Al <sub>2</sub> O <sub>3</sub> 領域    |
|    |                                                        | Prebake 110°C                                                                    | 90 sec       | (posi)                                 |
|    |                                                        | Intensity : 9.5 (i-line filter)                                                  |              |                                        |
|    |                                                        | Postbake 120°C                                                                   | 5 min        |                                        |
| 10 | O2アッシング                                                | 200 W, 20 Pa, O <sub>2</sub> 100 sccm                                            | 1 min 30 sec |                                        |
| 11 | sia 除土                                                 | BHF                                                                              | 8 min 45sec  | Etching rate                           |
|    | 5102际去                                                 | DIW                                                                              | 10 min       | ~93.6 nm/min                           |
| 10 | レジット除土                                                 | SPM                                                                              | 10 min       |                                        |
| 12 | レンヘト原云                                                 | DIW                                                                              | 10 min       |                                        |
|    | γ-Al <sub>2</sub> O3成長前洗浄                              | APM(NH <sub>4</sub> OH:H <sub>2</sub> O <sub>2</sub> :H <sub>2</sub> O=0.05:1:6) | 10 min       |                                        |
|    |                                                        | DIW                                                                              | 10 min       |                                        |
| 12 |                                                        | HPM                                                                              | 10 min       |                                        |
| 15 |                                                        | DIW                                                                              | 10 min       |                                        |
|    |                                                        | DHF                                                                              | 20 sec       |                                        |
|    |                                                        | DIW                                                                              | 5 min        |                                        |
|    |                                                        | Pressure 500 Pa                                                                  | 30 min       |                                        |
|    |                                                        | Temperature 981°C                                                                |              |                                        |
| 14 | v-Al₀O₂ 成臈                                             | TMA 2.5 sccm                                                                     |              | ~50 nm                                 |
| 14 | 111203 MAR                                             | O <sub>2</sub> 25 sccm                                                           |              | Cold-wall CVD                          |
|    |                                                        | Carrier N <sub>2</sub> 0.5 slm                                                   |              |                                        |
|    |                                                        | Purge N <sub>2</sub> 250 slm                                                     |              |                                        |
|    |                                                        | APM                                                                              | 10 min       |                                        |
|    |                                                        | DIW                                                                              | 10 min       |                                        |
|    | Si <sub>2</sub> N <sub>4</sub> /SiO <sub>2</sub> (保護膜) | HPM                                                                              | 10 min       |                                        |
| 15 | 成膜前洗净                                                  | DIW                                                                              | 10 min       | センサ部保護                                 |
|    | //////////////////////////////////////                 | DHF                                                                              | 20 sec       |                                        |
|    |                                                        | DIW                                                                              | 5 min        |                                        |
|    |                                                        |                                                                                  |              |                                        |

|            |                  | IPCVD                                    | 30 min       |                                     |
|------------|------------------|------------------------------------------|--------------|-------------------------------------|
|            |                  | Pressure 62 Pa                           | 50 1111      |                                     |
| 16         | SiO。成膜           | Temperature 720°C                        |              | ~180 nm                             |
| 10         |                  | TEOS 30 sccm                             |              | 100 1111                            |
|            |                  | $\Omega_{\rm c}$ 300 sccm                |              |                                     |
|            |                  |                                          | 40 min       |                                     |
|            |                  | Pressure 43 Pa                           | 40 11111     |                                     |
| 17         | Si.N. 成뼙         | Temperature 820°C                        |              | ~200 nm                             |
| 17         | 013114 MAILE     | SiH <sub>2</sub> Cl <sub>2</sub> 40 sccm |              | 200 IIII                            |
|            |                  | NH <sub>2</sub> 400 sccm                 |              |                                     |
|            |                  |                                          | 30 min       |                                     |
|            |                  | Drassura 62 Da                           | 50 1111      |                                     |
| 10         | S:O 라喈           | Temperature 720°C                        |              | 190 nm                              |
| 10         | 5102 成成          | TEOS 30 scom                             |              | ~180 IIII                           |
|            |                  | 1203.50 scent                            |              |                                     |
|            |                  |                                          | 40           |                                     |
|            |                  | LPCVD                                    | 40 11111     |                                     |
| 10         | C: N             | Temperature 820°C                        |              | 200 mm                              |
| 19         | SI31N4           | Sill Cl. 40 sector                       |              | ~200 nm                             |
|            |                  | $SIH_2CI_2 40$ sccm                      |              |                                     |
|            |                  | NH <sub>3</sub> 400 sccm                 |              |                                     |
|            |                  | Bake 160°C                               | 5 min        |                                     |
|            |                  | HMDS & ip3100                            |              |                                     |
|            |                  | 1 <sup>st</sup> 1000 rpm                 | 5 sec        | $Mask_Al_2O_3_2$                    |
| 20         | フォトリソ 3          | 2 <sup>nd</sup> 3000 rpm                 | 20 sec       | γ-Al <sub>2</sub> O <sub>3</sub> 領域 |
|            |                  | Prebake 110°C                            | 90 sec       | (nega)                              |
|            |                  | Intensity : 9.5 (i-line filter)          |              |                                     |
|            |                  | Postbake 120°C                           | 5 min        |                                     |
|            |                  | RIE                                      | 3 min 30 sec |                                     |
| 21         | SiaNaエッチング       | CF <sub>4</sub> :O <sub>2</sub> =20:5    |              |                                     |
|            |                  | Pressure 10 Pa                           |              |                                     |
|            |                  | RF Power 100 W                           |              |                                     |
|            |                  | RIE                                      | 7 min 30 sec |                                     |
| <b></b> 22 | Sillaエッチング       | CHF <sub>3</sub> 45 sccm                 |              |                                     |
| <i>44</i>  | $510_2 - 77 = 7$ | Pressure 2 Pa                            |              |                                     |
|            |                  | RF Power 100 W                           |              |                                     |

|    |                                             | RIE                                   | 3 min 30 sec |            |
|----|---------------------------------------------|---------------------------------------|--------------|------------|
| 22 | C: N エッチンガ                                  | CF <sub>4</sub> :O <sub>2</sub> =20:5 |              |            |
| 23 | S131N4 - 97 99                              | Pressure 10 Pa                        |              |            |
|    |                                             | RF Power 100 W                        |              |            |
|    |                                             | RIE                                   | 7 min 30 sec |            |
| 24 | 24 SiO エッチング                                | CHF <sub>3</sub> 45 sccm              |              |            |
| 24 | 5102 - 97 29                                | Pressure 2 Pa                         |              |            |
|    |                                             | RF Power 100 W                        |              |            |
|    |                                             | ICP-RIE(Clean Cl Chamber)             | 3 min        |            |
|    |                                             | BCl <sub>3</sub> 15 sccm              |              |            |
| 25 | γ-Al <sub>2</sub> O <sub>3</sub> エッチング      | APC 0.5 Pa                            |              |            |
|    |                                             | Antenna 400 W                         |              |            |
|    |                                             | Bias 30 W                             |              |            |
| 24 |                                             | SPM                                   | 10 min       |            |
| 20 | レンスト际云                                      | DIW                                   | 10 min       |            |
| 27 | レジスト塗布                                      | HMDS & ip3100                         |              | 全面         |
|    |                                             | RIE                                   | 7 min 30 sec |            |
| 28 | 裏面 TEOS エッチ<br>ング                           | CHF <sub>3</sub> 45 sccm              |              |            |
|    |                                             | Pressure 2 Pa                         |              |            |
|    |                                             | RF Power 100 W                        |              |            |
|    |                                             | RIE                                   | 3 min 30 sec |            |
| 20 | 裏面 Si <sub>3</sub> N <sub>4</sub> エッチン<br>グ | CF <sub>4</sub> :O <sub>2</sub> =20:5 |              |            |
| 29 |                                             | Pressure 10 Pa                        |              |            |
|    |                                             | RF Power 100 W                        |              |            |
| 20 | しいっていたナ                                     | SPM                                   | 10 min       |            |
| 30 | レンスト际去                                      | DIW                                   | 10 min       |            |
|    |                                             | Bake 160°C                            | 5 min        |            |
|    |                                             | HMDS & ip3100                         |              | M 1        |
|    |                                             | 1 <sup>st</sup> 1000 rpm              | 5 sec        | Mask_pwell |
| 31 | フォトリソ 4                                     | 2 <sup>nd</sup> 3000 rpm              | 20 sec       | p-well 領域  |
|    |                                             | Prebake 110°C                         | 90 sec       | (posi)     |
|    |                                             | Intensity : 9.5 (i-line filter)       |              |            |
|    |                                             | Postbake 120°C                        | 5 min        |            |
|    |                                             | 200 W, 20 Pa, O <sub>2</sub> 100 sccm | 1 min 30 sec |            |
| 32 | 02アッシング                                     |                                       |              |            |

| 22 | SiO. 险丰                           | BHF                                                                | 7 min 45 sec  |        |
|----|-----------------------------------|--------------------------------------------------------------------|---------------|--------|
| 33 | 5102际云                            | DIW                                                                | 5 min         |        |
| 24 | レジスト除去                            | SPM                                                                | 10 min        |        |
| 34 |                                   | DIW                                                                | 10 min        |        |
|    |                                   | APM                                                                | 10 min        |        |
|    |                                   | DIW                                                                | 10 min        |        |
| 25 | 店スと前述法                            | HPM                                                                | 10 min        |        |
| 35 | 》八十八十十八十十                         | DIW                                                                | 10 min        |        |
|    |                                   | DHF                                                                | 20 sec        |        |
|    |                                   | DIW                                                                | 5 min         |        |
| 26 | 36 インプラ保護酸化                       | Dry 1000°C (OX8)                                                   | 60 min        | 50 mm  |
| 50 |                                   | N <sub>2</sub> 1000°C (OX8)                                        | 10 min        | 50 mm  |
| 25 | 人中公社工                             | Boron(BF <sub>3</sub> ) 1x10 <sup>13</sup> cm <sup>-2</sup>        | ~24 sec       |        |
| 31 | イオン注入                             | 60 keV                                                             |               | p-well |
|    |                                   | APM                                                                | 10 min        |        |
|    |                                   | DIW                                                                | 10 min        |        |
| 20 | 炉入れ前洗浄                            | HPM                                                                | 10 min        |        |
| 30 |                                   | DIW                                                                | 10 min        |        |
|    |                                   | DHF                                                                | 20 sec        |        |
|    |                                   | DIW                                                                | 3 min         |        |
| 20 | Duive in                          | Dry 1150°C (OX8)                                                   | 540 min       |        |
| 39 | DIIve-m                           | N <sub>2</sub> 1150°C (OX8)                                        | 10 min        |        |
| 40 | いつ 除土                             | BHF                                                                | 10 min 20 sec | 今五险土   |
| 40 | 5102 麻五                           | DIW                                                                |               | 王田际云   |
|    |                                   | APM                                                                | 10 min        |        |
|    |                                   | DIW                                                                | 10 min        |        |
| 41 | パッド酸化膜成膜                          | HPM                                                                | 10 min        |        |
| 41 | 前洗浄                               | DIW                                                                | 10 min        |        |
|    |                                   | DHF                                                                | 20 sec        |        |
|    |                                   | DIW                                                                | 5 min         |        |
| 42 | パッド和ル                             | Dry 1000°C (OX8)                                                   | 60 min        |        |
| 42 | ハット酸石                             | N <sub>2</sub> 1000°C (OX8)                                        | 10 min        |        |
|    |                                   | LPCVD                                                              | 25 min        |        |
| 43 | Si <sub>3</sub> N <sub>4</sub> 成膜 | Pressure 37 Pa, Temperature 820°C                                  |               | 130 nm |
|    |                                   | SiH <sub>2</sub> Cl <sub>2</sub> 40 sccm, NH <sub>3</sub> 400 sccm |               |        |

|    |                                      | LPCVD                                      | 90 min       |             |
|----|--------------------------------------|--------------------------------------------|--------------|-------------|
|    |                                      | Pressure 36 Pa                             |              |             |
| 44 | SiO2成膜                               | Temperature 720°C                          |              | 270 nm      |
|    |                                      | TEOS 30 sccm                               |              |             |
|    |                                      | O <sub>2</sub> 300 sccm                    |              |             |
| 45 | レジスト塗布                               | HMDS & ip3100                              |              | 全面          |
|    |                                      | RIE                                        | 10 min       |             |
| 16 | 裏面 SiO₂エッチン                          | CHF <sub>3</sub> 45 sccm                   |              |             |
| 46 | グ                                    | Pressure 2 Pa                              |              |             |
|    |                                      | RF Power 100 W                             |              |             |
|    |                                      | RIE                                        | 2 min 30 sec |             |
| 47 | 裏面 Si <sub>3</sub> N4エッチン            | CF <sub>4</sub> :O <sub>2</sub> =20:5 sccm |              |             |
| 47 | グ                                    | Pressure 10 Pa                             |              |             |
|    |                                      | RF Power 100 W                             |              |             |
|    |                                      | RIE                                        | 3 min 30 sec |             |
| 40 | 裏面 Si₃N₄エッチン<br>グ                    | CF <sub>4</sub> :O <sub>2</sub> =20:5 sccm |              |             |
| 48 |                                      | Pressure 10 Pa                             |              |             |
|    |                                      | RF Power 100 W                             |              |             |
|    |                                      | SPM                                        | 10 min       |             |
| 49 | レンスト际去                               | DIW                                        | 10 min       |             |
|    |                                      | Bake 160°C                                 | 5 min        |             |
|    |                                      | HMDS & ip3100                              |              |             |
|    |                                      | 1 <sup>st</sup> 1000 rpm                   | 5 sec        | Mask_Active |
| 50 | フォトリソ 5                              | 2 <sup>nd</sup> 3000 rpm                   | 20 sec       | Active 領域   |
|    |                                      | Prebake 110°C                              | 90 sec       | (nega)      |
|    |                                      | Intensity : 9.5 (i-line filter)            |              |             |
|    |                                      | Postbake 120°C                             | 5 min        |             |
| 51 | O2アッシング                              | 200 W, 20 Pa, O <sub>2</sub> 100 sccm      | 1 min 30 sec |             |
| 50 | いつ ティチング                             | BHF                                        | 50 sec       |             |
| 52 | SIO <sub>2</sub> エッテンク               | DIW                                        | 10 min       |             |
|    |                                      | RIE                                        | 2 min 30 sec |             |
| 53 | Si <sub>3</sub> N <sub>4</sub> エッチング | CF <sub>4</sub> :O <sub>2</sub> =20:5      |              |             |
|    |                                      | Pressure 10 Pa, RF Power 100 W             |              |             |
|    | 1.5%                                 | SPM                                        | 10 min       |             |
| 54 | レンスト际去                               | DIW                                        | 10 min       |             |
|    |                                      |                                            |              |             |

|     |                                          | Bake 160°C                                                  | 5 min   |                    |
|-----|------------------------------------------|-------------------------------------------------------------|---------|--------------------|
|     |                                          | HMDS & ip3100                                               |         | Mask pwall         |
|     |                                          | 1 <sup>st</sup> 1000 rpm                                    | 5 sec   | nMOS channel       |
| 55  | フォトリソ 6                                  | 2 <sup>nd</sup> 3000 rpm                                    | 20 sec  |                    |
|     |                                          | Prebake 110°C                                               | 90 sec  | stopper            |
|     |                                          | Intensity : 9.5 (i-line filter)                             |         | (posi)             |
|     |                                          | Postbake 120°C                                              | 5 min   |                    |
| 5(  | イナンみす                                    | Boron(BF <sub>3</sub> ) 3x10 <sup>13</sup> cm <sup>-2</sup> |         |                    |
| 50  | イオノ住人                                    | 60 keV                                                      |         |                    |
|     |                                          | SPM                                                         | 10 min  |                    |
| 57  | レンスト际去                                   | DIW                                                         | 10 min  |                    |
|     |                                          | Bake 160°C                                                  | 5 min   |                    |
|     |                                          | HMDS & ip3100                                               |         |                    |
|     |                                          | 1 <sup>st</sup> 1000 rpm                                    | 5 sec   | Mask_nwell         |
| 58  | フォトリソ 7                                  | 2 <sup>nd</sup> 3000 rpm                                    | 20 sec  | pMOS channel       |
|     |                                          | Prebake 110°C                                               | 90 sec  | stopper            |
|     |                                          | Intensity : 9.5 (i-line filter)                             |         | (posi)             |
|     |                                          | Postbake 120°C                                              | 5 min   |                    |
| 50  | <b>ノエン沿</b> す                            | Phosphorous(PH <sub>3</sub> ) $3x10^{13}$ cm <sup>-2</sup>  |         |                    |
| 59  | イオン注入                                    | 60 keV                                                      |         |                    |
| (0) | 60 レジスト除去                                | SPM                                                         | 10 min  |                    |
| 00  |                                          | DIW                                                         | 10 min  |                    |
| (1  | SiO2,パッド酸化膜                              | BHF                                                         | 50 sec  |                    |
| 61  | エッチング                                    | DIW                                                         | 10 min  |                    |
|     |                                          | APM                                                         | 10 min  |                    |
|     |                                          | DIW                                                         | 10 min  |                    |
| ()  |                                          | HPM                                                         | 10 min  |                    |
| 62  | LUCUS 酸化即花评                              | DIW                                                         | 10 min  |                    |
|     |                                          | DHF                                                         | 20 sec  |                    |
|     |                                          | DIW                                                         | 5 min   |                    |
|     |                                          | Wet 1000°C                                                  | 240 min |                    |
| 63  | LOCOS 酸化                                 | Dry 1000°C (OX8)                                            | 10 min  |                    |
|     |                                          | N <sub>2</sub> 1000°C (OX8)                                 | 10 min  |                    |
|     |                                          | BHF                                                         | 30 sec  | 窒化膜上の薄             |
| 64  | SIU <sub>2</sub> , Si <sub>3</sub> N4 陈云 | DIW                                                         | 10 min  | V SiO <sub>2</sub> |
|     |                                          |                                                             |         |                    |

|    |            | 熱リン酸                                                       | 50 min |              |
|----|------------|------------------------------------------------------------|--------|--------------|
|    |            | 温純水                                                        | 10 min |              |
| (5 | »          | BHF                                                        | 40 sec | LOCOS の膜厚    |
| 65 | ハット酸化腺病去   | DIW                                                        | 10 min | チェック         |
|    |            | APM                                                        | 10 min |              |
| 66 |            | DIW                                                        | 10 min |              |
|    | 接册款化试验     | HPM                                                        | 10 min |              |
| 00 | 66 犧牲酸化前洗净 | DIW                                                        | 10 min |              |
|    |            | DHF                                                        | 20 sec |              |
|    |            | DIW                                                        | 5 min  |              |
| 67 | 犠牲酸化(ホワイト  | Dry 1000°C (OX8)                                           | 35 min |              |
| 07 | リボン除去)     | N <sub>2</sub> 1000°C (OX8)                                | 10 min |              |
|    |            | Bake 160°C                                                 | 5 min  |              |
|    |            | HMDS & ip3100                                              |        |              |
|    |            | 1 <sup>st</sup> 1000 rpm                                   | 5 sec  | Mask_dMOS    |
| 68 | フォトリソ 8    | 2 <sup>nd</sup> 3000 rpm                                   | 20 sec | dMOS channel |
|    |            | Prebake 110°C                                              | 90 sec | (posi)       |
|    |            | Intensity : 9.5 (i-line filter)                            |        |              |
|    |            | Postbake 120°C                                             | 5 min  |              |
| 60 | イナンける      | Phosphorous(PH <sub>3</sub> ) $2x10^{12}$ cm <sup>-2</sup> |        |              |
| 09 | イオン注入      | 30 keV                                                     |        |              |
|    | レジスト除去     | SPM                                                        | 10 min |              |
| 70 |            | DIW                                                        | 10 min |              |
| 71 | 送供私心世险士    | BHF                                                        | 35 sec |              |
| /1 | 被吐散飞跃所五    | DIW                                                        | 10 min |              |
|    |            | APM                                                        | 10 min |              |
|    |            | DIW                                                        | 10 min |              |
| 77 | ゲート酸化前洗海   | HPM                                                        | 10 min |              |
| 12 |            | DIW                                                        | 10 min |              |
|    |            | DHF                                                        | 20 sec |              |
|    |            | DIW                                                        | 5 min  |              |
| 73 | ゲート酸ル      | Dry 1000°C (OX8)                                           | 75 min | 60 nm        |
| 15 |            | N <sub>2</sub> 1000°C (OX8)                                | 10 min | 00 1111      |
| 74 | nolySi 戓曂  | LP-CVD, 0.50 Torr, 625°C                                   | 80 min | ~500 nm      |
| 74 | polySi 成膜  | $SiH_4  95 \ kg/cm^2$ , $N_2  139 \ kg/cm^2$               |        | ~500 IIII    |

|    |                         | Phosphorous(PH <sub>3</sub> ) $4x10^{15}$ cm <sup>-2</sup>  |              |           |
|----|-------------------------|-------------------------------------------------------------|--------------|-----------|
| 75 | イオン注入                   | 60 keV                                                      |              |           |
|    |                         | Bake 160°C                                                  | 5 min        |           |
|    |                         | HMDS & ip3100                                               |              |           |
|    |                         | 1 <sup>st</sup> 1000 rpm                                    | 5 sec        |           |
| 76 | フォトリソ 9                 | 2 <sup>nd</sup> 3000 rpm                                    | 20 sec       | Mask_poly |
|    |                         | Prebake 110°C                                               | 90 sec       | (nega)    |
|    |                         | Intensity : 9.5 (i-line filter)                             |              |           |
|    |                         | Postbake 120°C                                              | 5 min        |           |
|    |                         | RIE                                                         | 6 min 50 sec |           |
|    |                         | SF <sub>6</sub> =10 sccm                                    |              |           |
| 77 | polySi エッテンク            | Pressure=1.0 Pa                                             |              |           |
|    |                         | RF Power=100 W                                              |              |           |
| -0 |                         | BHF                                                         | 45 sec       |           |
| 78 | ケート酸化胰尿去                | DIW                                                         |              |           |
| 79 | レジスト除去                  | SPM                                                         | 10 min       |           |
|    |                         | DIW                                                         | 10 min       |           |
|    |                         | APM                                                         | 10 min       |           |
|    |                         | DIW                                                         | 10 min       |           |
| 90 | polySi 酸化前洗净            | HPM                                                         | 10 min       |           |
| 80 |                         | DIW                                                         | 10 min       |           |
|    |                         | DHF                                                         | 15 sec       |           |
|    |                         | DIW                                                         | 5 min        |           |
| 01 |                         | Dry 1000°C (OX8)                                            | 75 min       |           |
| 81 | porySI 酸化               | N <sub>2</sub> 1000°C (OX8)                                 | 10 min       |           |
|    |                         | Bake 160°C                                                  | 5 min        |           |
|    |                         | HMDS & ip3100                                               |              |           |
|    |                         | 1 <sup>st</sup> 1000 rpm                                    | 5 sec        | Mask_p+   |
| 82 | フォトリソ 10                | 2 <sup>nd</sup> 3000 rpm                                    | 20 sec       | pMOS S/D  |
|    |                         | Prebake 110°C                                               | 90 sec       | (posi)    |
|    |                         | Intensity : 9.5 (i-line filter)                             |              |           |
|    |                         | Postbake 120°C                                              | 5 min        |           |
| 02 | <del>ا دان را د</del> ( | Boron(BF <sub>3</sub> ) 4x10 <sup>15</sup> cm <sup>-2</sup> |              |           |
| 83 | 1 オン汪人                  | 50 keV                                                      |              |           |
| 84 | O <sub>2</sub> アッシング    | 600 W                                                       | 30 min       |           |

| 95  | レジスト除土               | SPM                                                               | 10 min |                |
|-----|----------------------|-------------------------------------------------------------------|--------|----------------|
| 85  | レンスト除去               | DIW                                                               | 10 min |                |
|     |                      | Bake 160°C                                                        | 5 min  |                |
|     |                      | HMDS & ip3100                                                     |        |                |
|     |                      | 1 <sup>st</sup> 1000 rpm                                          | 5 sec  | Mask_n+        |
| 86  | フォトリソ 11             | 2 <sup>nd</sup> 3000 rpm                                          | 20 sec | nMOS S/D       |
|     |                      | Prebake 110°C                                                     | 90 sec | (posi)         |
|     |                      | Intensity : 9.5 (i-line filter)                                   |        |                |
|     |                      | Postbake 120°C                                                    | 5 min  |                |
| 07  | 人中心汗了                | Phosphorous(PH <sub>3</sub> ) $4x10^{15}$ cm <sup>-2</sup>        |        |                |
| 8/  | イネン住入                | 80 keV                                                            |        |                |
| 88  | O <sub>2</sub> アッシング | 600 W                                                             | 30 min |                |
| 00  |                      | SPM                                                               | 10 min |                |
| 89  | レンスト际云               | DIW                                                               | 10 min |                |
|     |                      | Bake 160°C                                                        | 5 min  |                |
|     |                      | HMDS & ip3100                                                     |        |                |
|     |                      | 1 <sup>st</sup> 1000 rpm                                          | 5 sec  | Masla IEET     |
| 90  | フォトリソ 12             | 2 <sup>nd</sup> 3000 rpm                                          | 20 sec | Mask_JFE1      |
|     |                      | Prebake 110°C                                                     | 90 sec | (posi)         |
|     |                      | Intensity : 9.5 (i-line filter)                                   |        |                |
|     |                      | Postbake 120°C                                                    | 5 min  |                |
| 01  | 人中心汗す                | Phosphorous(PH <sub>3</sub> ) 1x10 <sup>13</sup> cm <sup>-2</sup> |        |                |
| 91  | イネン注入                | 150 keV                                                           |        |                |
| 02  | 人中以注意                | Boron(BF <sub>3</sub> ) 3x10 <sup>13</sup> cm <sup>-2</sup>       |        |                |
| 92  | イネン注入                | 30 keV                                                            |        |                |
| 0.2 |                      | SPM                                                               | 10 min |                |
| 93  | レンスト除去               | DIW                                                               | 10 min |                |
|     |                      | Bake 160°C                                                        | 5 min  |                |
|     |                      | HMDS & ip3100                                                     |        |                |
|     |                      | 1 <sup>st</sup> 1000 rpm                                          | 5 sec  |                |
| 0.4 | フェトリン 12             | 2 <sup>nd</sup> 3000 rpm                                          | 20 sec | $Mask_Al_2O_3$ |
| 94  | ンオトリン 13             | Prebake 110°C                                                     | 90 sec | (posi)         |
|     |                      | Intensity : 9.5 (i-line filter)                                   |        |                |
|     |                      | Postbake 120°C                                                    | 5 min  |                |
|     |                      |                                                                   |        |                |

|     |                                      | RIE                                                   | 7 min 30 sec |             |
|-----|--------------------------------------|-------------------------------------------------------|--------------|-------------|
| 07  |                                      | CF <sub>4</sub> :O <sub>2</sub> =20:5                 |              |             |
| 95  | S1 <sub>3</sub> N <sub>4</sub> エッナンク | Pressure 10 Pa                                        |              |             |
|     |                                      | RF Power 100 W                                        |              |             |
| 96  | O2アッシング                              | 200 W, 20 Pa, O <sub>2</sub> 100 sccm                 | 1 min 30 sec |             |
| 07  | いの除土                                 | BHF                                                   | 2 min 30 sec |             |
| 97  | 5102际云                               | DIW                                                   | 10 min       |             |
|     |                                      | APM                                                   | 10 min       |             |
|     | Anneal 前洗浄                           | HPM                                                   | 10 min       |             |
| 00  |                                      | HPM                                                   | 10 min       |             |
| 90  |                                      | DIW                                                   | 10 min       |             |
|     |                                      | DHF                                                   | 20 sec       |             |
|     |                                      | DIW                                                   | 5 min        |             |
| 99  | 活性化 anneal                           | N <sub>2</sub> 1000°C(OX8)                            | 20 min       |             |
|     |                                      | PE-CVD (A rank)                                       |              |             |
|     |                                      | SiO <sub>2</sub> : 3.0 sccm, O <sub>2</sub> 197 sccm, | 15 min       |             |
|     | TEOS                                 | 40 Pa, 350°C, 150 W                                   |              |             |
| 100 | TEUS                                 | BPSG: 2.0 sccm, TEB 0.25 sccm,                        | 15 min       | <i>(5</i> ) |
| 100 | BP3G                                 | TMP 0.75 sccm, O <sub>2</sub> 197 sccm,               |              | ~650 nm     |
|     | IEUS 成膜                              | 40 Pa, 350°C, 150 W                                   |              |             |
|     |                                      | SiO <sub>2</sub> : 3.0 sccm, O <sub>2</sub> 197 sccm, | 7 min 30 sec |             |
|     |                                      | 40 Pa, 350°C, 150 W                                   |              |             |

## センサ作製前 回路特性評価

| No. | Process        | Condition                             | Time         | Note         |
|-----|----------------|---------------------------------------|--------------|--------------|
| 101 | フォトリソ 14       | Bake 160°C                            | 5 min        |              |
|     |                | HMDS & ip3100                         |              |              |
|     |                | 1 <sup>st</sup> 1000 rpm              | 5 sec        | Mask_contact |
|     |                | 2 <sup>nd</sup> 3000 rpm              | 20 sec       | Contact      |
|     |                | Prebake 110°C                         | 90 sec       | (posi)       |
|     |                | Intensity : 9.5 (i-line filter)       |              |              |
|     |                | Postbake 120°C                        | 5 min        |              |
| 102 | O2アッシング        | 150 W, 20 Pa, O <sub>2</sub> 100 sccm | 1 min 30 sec |              |
| 103 | TEOS/BPSG/TEOS | BHF                                   | 3 min 30 sec |              |
|     | 除去             | DIW                                   | 10 min       |              |

| 104 | レジスト除去          | SPM                                               | 10 min       |            |
|-----|-----------------|---------------------------------------------------|--------------|------------|
|     |                 | DIW                                               | 10 min       |            |
| 105 | 表面除去            | HF                                                | 15 sec       |            |
| 105 |                 | DIW                                               | 3 min        |            |
| 106 | Al-Si スパッタ      | RF スパッタ                                           | 60 min       | 650 nm     |
| 100 |                 | 0.5 kW, 0.2 Pa                                    |              | 050 IIII   |
|     |                 | Bake 160°C                                        | 5 min        |            |
|     | フォトリソ 15        | OMR45cp 塗布                                        |              |            |
|     |                 | 1 <sup>st</sup> 1000 rpm                          | 5 sec        | Mask_Metal |
| 107 |                 | 2 <sup>nd</sup> 4000 rpm                          | 20 sec       | Metal      |
|     |                 | Prebake 110°C                                     | 90 sec       | (posi)     |
|     |                 | Intensity : 1.0                                   |              |            |
|     |                 | Postbake 160°C                                    | 5 min        |            |
|     |                 | RIE(C rank Cl chamber)                            | 7 min 30 sec |            |
| 108 | Al-Si エッチング     | Cl <sub>2</sub> 6 sccm, BCl <sub>3</sub> 14 sccm, |              |            |
|     |                 | N <sub>2</sub> 5 sccm, 1.0 Pa, 100 W              |              |            |
| 109 | <b>O</b> 2アッシング | 200 W 40 sccm (Samco March)                       | 10 min       |            |
| 110 | 回路特性評価          |                                                   |              |            |

センサ作製工程

| No. | Process              | Condition                             | Time         | Note          |
|-----|----------------------|---------------------------------------|--------------|---------------|
|     |                      | Bake 160°C                            | 5 min        |               |
|     |                      | HMDS & ip3100                         |              |               |
|     |                      | 1 <sup>st</sup> 1000 rpm              | 5 sec        | Mast TEOS     |
| 101 | フォトリソ 14             | 2 <sup>nd</sup> 3000 rpm              | 20 sec       | Mask_TEOS     |
|     |                      | Prebake 110°C                         | 90 sec       | (posi)        |
|     |                      | Intensity : 9.5 (i-line filter)       |              |               |
|     |                      | Postbake 120°C                        | 5 min        |               |
| 102 | O <sub>2</sub> アッシング | 200 W, 20 Pa, O <sub>2</sub> 100 sccm | 1 min 30 sec |               |
| 103 | センサ領域周辺開口            | BHF                                   | 2 min 30 sec | 285 mm/min    |
|     |                      | DIW                                   |              | 2831111/11111 |
| 104 | Pt スパッタ              | RF スパッタ                               | 225 min      |               |
|     |                      | 0.5 Pa, 30 W, 600°C, Ar 66 sccm       |              |               |
| 105 | PZT 成膜               | Sol-gel 法                             |              | 2 lovoro      |
|     |                      | PZT 塗布 1 <sup>st</sup> 1000 rpm       | 10 sec       | 5 layers      |

|     |                          | 2 <sup>nd</sup> 3000 rpm        | 30 sec    |                 |
|-----|--------------------------|---------------------------------|-----------|-----------------|
|     |                          | Dry 150°C                       | 5 min     |                 |
|     |                          | Pyro 250°C                      | 5 min     |                 |
|     |                          | RTA 650°C                       | 90 sec    |                 |
|     |                          | スパッタ, 1 Pa, 100 W               | 10 min    |                 |
| 100 | SrRuO <sub>3</sub> × ハック | Ar 12 sccm, Room Temperature    |           |                 |
|     |                          | Bake 140°C                      | 5 min     |                 |
|     |                          | HMDS & OFPR 52cp                |           |                 |
|     |                          | 1 <sup>st</sup> 1000 rpm        | 5 sec     | Mask_upper      |
| 107 | フォトリソ 15                 | 2 <sup>nd</sup> 4000 rpm        | 20 sec    | Upper electrode |
|     |                          | Prebake 110°C                   | 90 sec    | (nega)          |
|     |                          | Intensity : 5.5                 |           |                 |
|     |                          | Postbake 140°C                  | 5 min     |                 |
|     |                          | ICP-RIE(C rank F chamber)       | 3 min x 5 |                 |
| 100 | SrRuO3エッチング              | Ar 15 sccm, 0.3 Pa              |           |                 |
| 108 |                          | Antenna 300 W                   |           |                 |
|     |                          | Bias 70 W                       |           |                 |
| 109 | 02アッシング                  | 200 W 40 sccm (Samco March)     | 10 min    |                 |
|     | フォトリソ 16                 | Bake 140°C                      | 5 min     |                 |
|     |                          | HMDS & OFPR52cp                 |           |                 |
|     |                          | 1 <sup>st</sup> 1000 rpm        | 5 sec     | Mask_PZT        |
| 110 |                          | 2 <sup>nd</sup> 4000 rpm        | 20 sec    | PZT             |
|     |                          | Prebake 110°C                   | 90 sec    | (nega)          |
|     |                          | Intensity : 5.5                 |           |                 |
|     |                          | Postbake 140°C                  | 5 min     |                 |
|     |                          | ICP-RIE(C rank F chamber)       | 3 min x 5 |                 |
| 111 | PZT エッチング                | Ar 15 sccm, 0.3 Pa              | + 2 min   | Total 17 min    |
|     |                          | Antenna 300 W, Bias 70 W        |           |                 |
| 112 | 0₂アッシング                  | 200 W 40 sccm (Samco March)     | 10 min    |                 |
| 113 | フォトリソ 17                 | Bake 160°C                      | 5 min     |                 |
|     |                          | HMDS & ip3100                   |           |                 |
|     |                          | 1 <sup>st</sup> 1000 rpm        | 5 sec     | Mask_lower      |
|     |                          | 2 <sup>nd</sup> 3000 rpm        | 20 sec    | Lower electrode |
|     |                          | Prebake 110°C                   | 90 sec    | (nega)          |
|     |                          | Intensity : 9.5 (i-line filter) |           |                 |

|     |                      | Postbake 120°C                                     | 5 min      |                     |
|-----|----------------------|----------------------------------------------------|------------|---------------------|
|     |                      | ICP-RIE (C rank F chamber)                         | 3 min x 18 |                     |
| 114 | Pt エッチング             | Ar 20 sccm, 0.5 Pa                                 |            |                     |
|     |                      | Antenna 600 W, Bias 30 W                           |            |                     |
| 115 | 02アッシング              | 200 W 40 sccm (Samco March)                        | 10 min     |                     |
| 116 | RTA                  | 650°C, O <sub>2</sub>                              | 90 sec     | 10°C/sec            |
|     |                      | PE-CVD (C rank)                                    | 28 min     |                     |
| 117 | SiN 成膜               | SiH <sub>4</sub> 117 sccm, NH <sub>3</sub> 6 sccm, |            | 850 nm              |
|     |                      | $N_2$ 183 sccm, 75 Pa, 300°C                       |            |                     |
|     |                      | PE-CVD (C rank)                                    | 10 min     |                     |
| 118 | SiO2成膜               | $SiH_4 45$ sccm, $N_2O 120$ sccm,                  |            | 550 nm              |
|     |                      | 67 Pa, 300°C                                       |            |                     |
|     |                      | Bake 160°C                                         | 5 min      |                     |
|     |                      | HMDS & ip3100                                      |            |                     |
|     | フォトリソ 18             | 1 <sup>st</sup> 1000 rpm                           | 5 sec      | Mask_LIL1           |
| 119 |                      | 2 <sup>nd</sup> 3000 rpm                           | 20 sec     | Interlayer inslator |
|     |                      | Prebake 110°C                                      | 90 sec     | (nega)              |
|     |                      | Intensity : 9.5 (i-line filter)                    |            |                     |
|     |                      | Postbake 120°C                                     | 5 min      |                     |
| 120 | SiO2エッチング            | RIE (C rank F 系)                                   | 23 min     |                     |
|     |                      | CHF <sub>3</sub> 45 sccm, 3 Pa, 100 W              |            |                     |
| 121 | O <sub>2</sub> アッシング | 200 W, 40 sccm                                     | 10 min     |                     |
|     |                      | Bake 160°C                                         | 5 min      |                     |
|     | フォトリソ 19             | HMDS & ip3100                                      |            |                     |
|     |                      | 1 <sup>st</sup> 1000 rpm                           | 5 sec      | Mask_LIL2           |
| 122 |                      | 2 <sup>nd</sup> 3000 rpm                           | 20 sec     | Interlayer inslator |
|     |                      | Prebake 110°C                                      | 90 sec     | (nega)              |
|     |                      | Intensity : 9.5 (i-line filter)                    |            |                     |
|     |                      | Postbake 120°C                                     | 5 min      |                     |
| 123 | SiN エッチング            | RIE (C rank F 系)                                   | 5 min      |                     |
|     |                      | CF <sub>4</sub> 20 sccm, O <sub>2</sub> 5 sccm,    |            |                     |
|     |                      | 10 Pa, 100 W                                       |            |                     |
| 124 | 02アッシング              | 200 W, 40 sccm                                     | 10 min     |                     |
| 125 | 7.1 1 11 2 40        | Bake 160°C                                         | 5 min      | Mask_contact        |
|     | フォトリソ 20             | HMDS & ip3100                                      |            | Contact (posi)      |

|     |                                                             | 1 <sup>st</sup> 1000 rpm                          | 5 sec        |            |
|-----|-------------------------------------------------------------|---------------------------------------------------|--------------|------------|
|     |                                                             | 2 <sup>nd</sup> 3000 rpm                          | 20 sec       |            |
|     |                                                             | Prebake 110°C                                     | 90 sec       |            |
|     |                                                             | Intensity : 9.5 (i-line filter)                   |              |            |
|     |                                                             | Postbake 120°C                                    | 5 min        |            |
| 126 | O <sub>2</sub> アッシング                                        | 150 W, 40 sccm                                    | 1 min 30 sec |            |
| 107 | TEOS/BPSG/TEOS                                              | BHF                                               | 3 min 30 sec |            |
| 127 | 除去                                                          | DIW                                               | 10 min       |            |
| 128 | <b>O</b> 2アッシング                                             | 200 W, 40 sccm                                    | 10 min       |            |
| 120 | 丰田除土                                                        | HF                                                | 15 sec       |            |
| 129 | 次回际云                                                        | DIW                                               | 5 min        |            |
| 120 | AI 5: フパッタ                                                  | RF スパッタ                                           | 60 min       | 650 nm     |
| 150 | AI-51 /// 99                                                | 0.5 kW, 0.2 Pa                                    |              | 050 1111   |
|     |                                                             | Bake 160°C                                        | 5 min        |            |
|     |                                                             | OMR45cp                                           |              |            |
|     |                                                             | 1 <sup>st</sup> 1000 rpm                          | 5 sec        | Mask_Metal |
| 131 | フォトリソ 21                                                    | 2 <sup>nd</sup> 4000 rpm                          | 20 sec       | Metal      |
|     |                                                             | Prebake 110°C                                     | 90 sec       | (posi)     |
|     |                                                             | Intensity : 1.0                                   |              |            |
|     |                                                             | Postbake 160°C                                    | 5 min        |            |
|     |                                                             | RIE(C rank Cl chamber)                            | 7 min 30 sec |            |
| 132 | Al-Si エッチング                                                 | Cl <sub>2</sub> 6 sccm, BCl <sub>3</sub> 14 sccm, |              |            |
|     |                                                             | N <sub>2</sub> 5 sccm, 1.0 Pa, 100 W              |              |            |
| 133 | 02アッシング                                                     | 200 W, 40 sccm                                    | 10 min       |            |
|     |                                                             | Bake 140°C                                        | 5 min        |            |
|     |                                                             | HMDS & OFPR52cp                                   |              |            |
|     |                                                             | 1 <sup>st</sup> 1000 rpm                          | 5 sec        | Mash V-F2  |
| 134 | フォトリソ 22                                                    | 2 <sup>nd</sup> 4000 rpm                          | 20 sec       | Mask_Aer2  |
|     |                                                             | Prebake 110°C                                     | 90 sec       | (posi)     |
|     |                                                             | Intensity : 5.5                                   |              |            |
|     |                                                             | Postbake 140°C                                    | 5 min        |            |
| 135 | レーザーダイシング                                                   |                                                   |              |            |
| 126 |                                                             | 200 W, 40 sccm                                    | 5 min        | レジスト残渣     |
| 136 | $\mathbf{U}_2 / \mathscr{Y} \vee \mathscr{Y} / \mathscr{Y}$ |                                                   |              | 除去         |
| 137 | SiO2除去エッチング                                                 | RIE (C rank F 系)                                  | 15 min       |            |

|     |          | CHF <sub>3</sub> 45 sccm, 3 Pa, 100 W |             |  |
|-----|----------|---------------------------------------|-------------|--|
| 138 | Si エッチング | XeF <sub>2</sub> , 2.5 Torr           | 30 sec x 15 |  |
| 139 | O2アッシング  | 200 W, 40 sccm                        | 10 min      |  |
| 140 | パッケージング  | Wire bonding                          |             |  |

# 本研究に関する発表論文

#### 学術論文

- K. Oishi, D. Akai and M. Ishida, "Integration of crystalline orientated γ-Al<sub>2</sub>O<sub>3</sub> films and complementary metal-oxide-semiconductor circuits on Si(100) substrate," Solid State Electron., 103 (2015) 110. (5 pages)
- K. Oishi, S. Yonemaru, D. Akai and M. Ishida, "SiO<sub>2</sub>/SiN Multilayer-stack Infrared Absorber Integrated on Pb(Zr<sub>0.4</sub>,Ti<sub>0.6</sub>)O<sub>3</sub> Film Pyroelectric Sensors on γ-Al<sub>2</sub>O<sub>3</sub>/Si Substrate," Sensor. Mater., 27 (2015) 217. (11 pages)
- Koji Oishi, Shota Yonemaru, Daisuke Akai, and Makoto Ishida, "Transient Heat Transfer Analysis of Pb(Zr,Ti)O<sub>3</sub> Thin Film Infrared Sensor Using Finite Element Model", AIP Conf. Proc., 1649 (2015) 47. (5 pages)

#### 国際会議発表

- K. Oishi, K. Oe, D. Akai and M. Ishida, "Process Development for Monolithic Uncooled Pyroelectric Infrared Detector Array and its Thin Infrared Absorbing Films," Abstract of The Irago Conference 2012, Nov.15-Nov.16, 2012, 15GSS-7. (1 page)
- K. Oishi, D. Akai and M. Ishida, "SiO<sub>2</sub>/SiN infrared absorbing films for uncooled pyroelectric sensor and its fabrication and evaluation," Proceedings on IEEE International Symposium on the Applications of Ferroelectric and Workshop on the Piezoresponse Force Microscopy (ISAF/PFM) 2013, Prague, Czech, Jul. 21-22, 2013, pp.329-331. (3 pages)
- K. Oishi, D. Akai and M. Ishida, "Integration of epitaxial PZT thin film infrared detector array with JFET compatible CMOS process," Abstracts of the Int'l Conf. Solid State Devices and Materials (SSDM2013), Fukuoka, Japan, Sep. 24-27, 2013, pp.328-329. (2 pages)

- 4. K. Oishi, D. Akai and M. Ishida, "Circuits Integration on Crystalline Orientated γ-Al<sub>2</sub>O<sub>3</sub>/Si(001) Substrate and Its Characterization," Abstract of The 7th Asia-Pacific Conf. Transducers and Micro/Nano Technologies (APCOT 2014), Daegu, Korea, Jun.29-Jul.2, 2014, 3-3. (2 pages)
- K. Oishi, K. Oe, D. Akai and M. Ishida, "Crystalline Orientated PZT Infrared Detectors on γ-Al<sub>2</sub>O<sub>3</sub>/Si Substrate with Infrared Absorber Consists of SiO<sub>2</sub> and SiN Films" Abstract of The 7th Asia-Pacific Conf. Transducers and Micro/Nano Technologies (APCOT 2014), Daegu, Korea, Jun.29-Jul.2, 2014, P2-48. (2 pages)
- K. Oishi, S. Yonemaru, D. Akai and M. Ishida, "Transient Heat Transfer Analysis of Pb(Zr,Ti)O<sub>3</sub> Thin Film Infrared Sensor Using Finite Element Model," Abstract of The Irago Conference 2014, Tsukuba, Japan, Nov.6-Nov.7, 2014, 7P-13. (1 page)

## 国内会議発表

- 大石浩史,大江一樹,赤井大輔,石田誠,"焦電型赤外線イメージセンサ応用へ向けた 薄膜赤外線吸収膜の作製,"第73回秋季応用物理学会関係連合講演会(愛媛大学),2012 年9月11日-14日,講演予稿集13a-F7-9.(1 page)
- 大石浩史,赤井大輔,石田誠,"赤外線イメージセンサに向けたエピタキシャル PZT 薄 膜センサと JFET 混載 MOS 一体化プロセスの開発,"第 30回「センサ・マイクロマシ ンと応用システム」シンポジウム(仙台国際センター),2013年11月5日-7日,講演論 文集 5PM1-B-2. (4 pages)
- 大石浩史,赤井大輔,石田誠,"結晶配向 γ-Al<sub>2</sub>O<sub>3</sub>/Si(001)基板への回路インテグレーションと回路特性評価,"第61回春季応用物理学会関係連合講演会(青山学院大学相模原キャンパス),2014年3月17日-20日,講演予稿集18a-E14-2.(1 page)
- 大江一樹,米丸翔太,大石浩史,赤井大輔,石田誠,"赤外線吸収膜として SiON を用いた焦電型赤外線センサの作製と評価,"第61回春季応用物理学会関係連合講演会(青山学院大学相模原キャンパス),2014年3月17日-20日,講演予稿集18a-E14-3.(1 page)

- 5. 米丸翔太,大石浩史,赤井大輔,石田誠,"焦電型赤外線センサの感度向上に向けた配線材料薄膜化,"第75回秋季応用物理学会関係連合講演会(北海道大学札幌キャンパス),2014年9月17日-20日,講演予稿集18p-A19-4.(1 page)
- 大石浩史,赤井大輔,石田誠, "Si(100)基板上への結晶配向γ-Al<sub>2</sub>O<sub>3</sub>薄膜とCMOS回路の インテグレーション及びその評価,"第 31 回「センサ・マイクロマシンと応用システ ム」シンポジウム(くにびきメッセ),2014年10月20日-22日,講演論文集 22am2-A3. (5 pages)