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Abstract

Unmanned aerial vehicles (UAVs) have been used for many applications such as surveillance,

traffic monitoring, and monitoring areas surrounding a damaged nuclear plant, where the risks

to a pilot are relatively high. Rotorcrafts have advantages over fixed-wing UAVs in numerous

applications because of their vertical take-off and landing capability and their augmented pay-

load capacity. A quad-rotor helicopter (quadcopter) is a rotorcraft that has many advantages

over a conventional helicopter. These include compactness, simple mechanical parts, and high

maneuverability. In addition, a quadcopter provides a larger lift-thrust force than a conventional

helicopter, and the payload capacity is greater. However, the quadcopter has highly nonlin-

ear, time-varying behavior and is always influenced by unpredictable disturbances such as wind

gusts, particularly in outdoor applications. Therefore, a robust control strategy is required to

achieve good performance during autonomous flight. For most applications, the quadcopter is

provided with a limited power source. Therefore, an energy-efficient controller is useful for

extending its operating time.

In this thesis, robust and energy-efficient control strategies are designed on the basis of the

sliding mode control algorithm. An underactuated problem, which occurs in the dynamics of

the quadcopter, is solved by designing a cascade control structure that consists of two control

loops: an inner loop and an outer loop. The inner loop handles the rotational motion of the

quadcopter, whereas the outer loop handles translational motion. A least squares algorithm is

utilized to solve an overdetermined problem in the translational dynamics; therefore, all motions

are considered for calculating the control inputs. This control structure has a general structure;

thus, it can be used for designing any control algorithm for the quadcopter.

First, to design a robust controller, we design a standard sliding mode control algorithm. En-

ergy savings are attempted by reducing chatter, which is a common problem in sliding mode

control design, by designing a thin boundary layer around the sliding surface. This technique

is effective in reducing energy consumption, which is experimentally evaluated using an ex-

perimental quadcopter testbed. However, the robustness of the sliding mode control is reduced

because within the boundary layer, the discontinuous control law is replaced with a continuous

one. Nevertheless, the discontinuous control law provides robustness in the sliding mode control

strategy. Second, we improve the performance of the sliding mode control strategy by designing

the nonlinear sliding surface. We propose two nonlinear sliding surfaces, which have different

characteristics. The first nonlinear sliding surface is designed to reduce the time-constant if the

error increases; therefore, the control system responds faster to reduce the error. If the error

converges to zero, the time-constant increases and converges to a constant value. Conversely,

the second nonlinear sliding surface is designed to increase the time-constant when the error

increases, and the time-constant converges to a constant value if the error decreases to zero.
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These techniques are also effective in reducing the energy consumption in the condition of a

disturbance, which is evaluated in the experiment.

Reducing the chatter and designing the nonlinear sliding surfaces are effective in reducing the

energy consumption in the sliding mode control strategy. However, it is also important to main-

tain the discontinuous control input that causes the chatter, because it provides robustness in

the sliding mode condition. A second-order sliding mode control with a super-twisting algo-

rithm (STA) provides a good solution for reducing the chattering phenomenon by maintaining

the discontinuous control portion. The discontinuous control input occurs in the second-order

time-derivative of the sliding surface function, whereas in the standard sliding mode control

strategy, it occurs in the first-order time-derivative. However, the original STA provides strong

behavior only around the origin of the sliding surface. To also provide a strong behavior when

the states are far from the origin of the sliding surface, a generalized-STA is designed to include

a linear stabilizing term. Furthermore, to reduce the energy consumption during the control

operation, we utilize the nonlinear sliding surface. The robustness and energy efficiency of

the generalized-STA with the nonlinear sliding surface are experimentally evaluated using an

experimental quadcopter testbed.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background

In recent years, unmanned aerial vehicles (UAVs) have attracted significant attention because

of their wide range of applications. UAVs provide many advantages over a piloted aircraft,

particularly for applications in areas in which it is difficult or dangerous for humans to oper-

ate, such as monitoring the disaster areas of a damaged nuclear plant. They also have lower

costs than manned vehicles for many applications such as surveillance, traffic monitoring, aerial

photography, and inspection. Rotorcrafts have advantages over fixed-wing UAVs in numerous

applications because of their vertical take-off and landing capability, stationary flight capabil-

ity, and augmented payload capacity. A quad-rotor helicopter (quadcopter) is a rotorcraft that

has many advantages over a conventional helicopter, including compactness, simple mechanical

parts, and high maneuverability. Maneuvers are performed by simply varying the speed of its

propellers. In addition, the quadcopter provides a larger lift-thrust force than a conventional

helicopter, and payload capacity is greater. These advantages qualify the quadcopter as a good

platform for autonomous UAV research.

However, in most applications, the quadcopter is provided with a limited power source. There-

fore, the energy consumption should be considered. If energy can be saved during its operation,

we can lengthen the operating time. Some studies have been conducted to minimize the energy

consumption of a quadcopter. Roberts et al. tackled the energy problem related to aerial explo-

ration in indoor environments using a ceiling attachment feature to maintain a bird’s-eye view,

while allowing the actuators to be shut down; thus, energy can be saved in the performance of

an indoor task because the propellers are stopped [1]. However, this feature is not applicable for

1



Chapter 1. Introduction 2

outdoor applications. Aleksandrov and Penkov optimized the energy of a quadcopter by eval-

uating the optimal gap distance between the rotors of a quadcopter to obtain the optimal thrust

from all rotors [2]. Fresk and Nikolakopoulos designed variable-pitch propellers to replace the

fixed-pitch propeller to make the quadcopter’s actuators power efficient [3]. However, most

studies on energy saving for a quadcopter do not discuss the control algorithm, excluding the

design of the quadcopter’s platform or mechanical parts.

A quadcopter is categorized as an underactuated system because it has six degrees of freedom

(DOF) with only four independent inputs (the inputs number are less than the DOF number).

Consequently, it is not possible to control all the DOF directly and simultaneously. In general,

two control structures are developed for the quadcopter. The first control structure is based on a

block control structure [4–12]. This structure divides the dynamics of the quadcopter into two

main blocks: a fully actuated block that consists of dynamics for altitude and heading motions

and an underactuated block that consists of longitudinal and latitudinal motions. The control

inputs of the fully actuated dynamics are designed independently, whereas the underactuated

dynamics needs a further strategy such as backstepping or block control technique. The second

control structure is a cascade control structure, which constructs the control system into two

loops: an outer loop and an inner loop [13–24]. In this structure, the dynamics of the quadcopter

is divided into two subsystems: translational dynamics (3-DOF) and rotational dynamics (3-

DOF). The rotational dynamics is fully actuated and designed in the inner loop, whereas the

translational dynamics is underactuated and designed in the outer loop. First, to handle the

underactuated parts, the desired outputs are selected as a translational motion coordinate position

and heading. Therefore, the outputs number is equal to the inputs number that is four. The outer

loop provides one control input for translational motion and the desired attitude for the inner

loop through an algebraic calculation.

However, the second control structure is simpler than the first one because all motions can be

treated in the same manner. Therefore, it is possible to use a general method to design the control

law for all motions simultaneously. In the translational motion dynamics of the quadcopter,

there are three equations with only one control input. Therefore, to obtain the control input, an

overdetermined problem occurs. In the references, the control input for translational dynamics

is usually solved by taking into account the equation for altitude motion only, which is fully

actuated or assuming a zero angle heading. However, it is useful if the control input is calculated

by considering all motions and actual states so that an optimal control input is obtained.
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1.1.2 Control of a Quad-Rotor Helicopter

A quadcopter has highly nonlinear and time-varying behavior. It is also influenced by unpre-

dictable disturbances such as wind gusts, particularly in outdoor applications. Therefore, con-

troller design and stabilization to make the quadcopter fully autonomous remain challenging

problems. Many control strategies have been proposed to date. Linear control strategies have

been proposed and implemented in references [25–33]. Pounds et al. designed a proportional-

integral-differential (PID)-based controller to regulate the quadcopter attitude [27, 28]. Bouab-

dallah et al. designed a linear quadratic (LQ) controller and compared it with a classical PID

controller [29]. A PD-based controller was designed in [30, 31] and a PI-based controller was

proposed in [32].

Nonlinear control strategies have also been attempted by many researchers. Feedback lineariza-

tion methods were utilized for controlling a quadcopter in references [14, 18–20, 34–37]. In

[18–20], feedback linearization combined with an observer was utilized to reduce the sensor

parts. Feedback linearization was designed to control a partially dynamic system based on a fully

actuated subsystem and combined with an observer to obtain translational motion information.

Mian and Daobo utilized feedback linearization coupled with a PD controller for controlling the

translational motion of a quadcopter [22]. They also designed a backstepping-based PID non-

linear controller for rotational motion. A backstepping method was also presented in [23, 38].

Saturation nonlinearity, known as nested saturation, was also being examined by researchers to

consider the input saturation [11, 39–41].

However, linear-based controller or feedback linearization strategies cannot deal with the un-

certainty of the quadcopter dynamics and disturbances as well. Sliding mode control (SMC)

is a renowned control strategy because of its robustness against disturbances, uncertainty, un-

modeled dynamics, and invariance during the sliding mode condition. This control strategy

has also been applied to a quadcopter in references [4, 6–8, 10, 12, 14, 17, 21, 24, 42–55]. In

[17, 24, 50], SMC was combined with an observer to increase control performance against an

external disturbance. SMC based on the block control technique was developed in [4, 10] to

solve the underactuated problem.

1.1.3 Sliding Mode Control

Sliding mode control is a class of variable structure control that was first introduced in the

early 1950’s and received much attention after it was published in [56, 57]. SMC is attractive

as a robust controller because of its invariance property, by which the system is completely

insensitive to parametric uncertainty and external disturbances [58], with a relatively simple

design. Design of SMC involves two important steps: (1) the design of a stable sliding surface
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by considering the desired closed-loop performance and (2) the design of an appropriate control

law to provide the robustness.

The design of a sliding surface can determine the performance of the overall closed-loop dy-

namics of the control system. The basic sliding surface design is based on a linear differential

function with a proportional gain [59, 60]. To improve the tracking performance, an integra-

tor is added in [61, 62]. Gain parameters of the sliding surface govern the performance of the

controller. A larger gain makes the response of controller fast; however, the system may be

unstable and contrarily, whereas a smaller gain makes the response of controller slow; however,

the system is more stable [63]. To improve the performance of a SMC strategy, a time-varying

sliding surface was proposed in [60, 63–77]. Promkajin and Parnichkun designed an adaptive

sliding surface for the attitude and altitude control of a quadcopter [60]. A fuzzy system strategy

was utilized to update the sliding surface parameter in [63–66]. Salamci and Tombul designed

a time-varying sliding surface based on a frozen-time approach for a nonlinear system, which

behaves as a linear time-invariant system [67]. A sliding surface based on a nonlinear function

was proposed in [68–77].

Although SMC provides robustness to the disturbance, in an implementation, it suffers from

the chattering phenomenon caused by high-frequency bang-bang or switching control. In an

ideal SMC, the controller is assumed to switch with an infinite frequency. However, in a real

implementation, because of the actuator properties and finite sampling time of digital compo-

nents, the switching occurs at high frequencies, which is known as chattering. The chattering

at high frequencies may harm the actuator and increase the energy consumed by the system.

Therefore, it is necessary to reduce the chatter in an SMC design. However, the switching-type

controller, which is the source of chatter, provides the invariant property and robustness in the

sliding mode condition. Substituting the switching controller with a continuous-type control

in a small neighborhood or boundary layer around the sliding surface is effective in reducing

the chatter [59]. Unfortunately, the invariant property, which is source of robustness, vanishes

inside the boundary layer. The second-order SMC offers a promising solution for reducing the

chattering phenomenon because it guarantees the existence of the invariant property [78]. Using

this SMC method, the switching controller occurs in the second time-derivative of the sliding

variable, whereas in the standard SMC, it occurs in the first time-derivative. The second-order

SMC increases the control accuracy because it involves an integral part to obtain the control

input. The super-twisting algorithm (STA) SMC becomes an interesting choice among the other

second-order SMC methods because it only needs the sliding variable information, whereas the

others require information of the first time-derivative of the sliding variable, which was applied

to a quadcopter in [4, 6, 10, 52–54]. However, STA-SMC only provides strong behavior when

the system states are close to the sliding mode condition because it only involves a nonlinear

square-root part in the control law. To provide strong behavior from any initial condition, a

generalized-STA (GSTA) was proposed by including a linear part in the control law [79, 80].
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1.2 Motivation and Research Objectives

In its applications, the flight duration of a quadcopter is limited by the power source, which

is generally from a battery. Research on the energy savings of a quadcopter mostly considers

only the design of mechanical parts. However, if we are able to reduce energy consumption by

changing only the control software, it is applicable to hardware currently in use. Therefore, the

software approach is cost-effective and highly efficient.

To date, many control strategies have been proposed and applied the the quadcopter. These are

from the linear-based controller approach to the robust control strategies. Mostly, the controller

designs only consider the performance and robustness of stabilization and tracking and do not

consider energy efficiency. In addition, for simplifying the controller design of a quadcopter,

which is categorized as an underactuated system, a simple and general control structure is re-

quired. A cascade structure provides a simple control structure, but an overdetermined problem

occurs in calculating the control input for translational motion.

Therefore, this thesis proposes a simple and general control structure for the quadcopter by

considering all motion for calculating the control inputs. A robust and energy-efficient control

strategy based on SMC is developed through chatter reduction and designing a nonlinear sliding

surface.

1.3 Thesis Contributions

The main contributions of this thesis are as follows:

1. Design of a simple and general control structure utilizing a least-squares algorithm to

solve the overdetermined problem in the translational dynamics of a quadcopter.

2. Design of a nonlinear sliding surface to change the time-constant of the control system

during the sliding mode condition as a function of the tracking error.

3. Design of a robust and energy-efficient SMC strategy for a quadcopter based on GSTA-

SMC with a nonlinear sliding surface.

1.4 Thesis Organization

This thesis is divided into seven chapters. A brief description of contents of each chapter is

presented as follows:
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• Chapter 2: In this chapter, we describe the dynamics model of the quadcopter. The experi-

mental system of a quadcopter, which is used to demonstrate the proposed control design,

is described as well as the parameters of the experimental system.

• Chapter 3: In this chapter, the control structure of the quadcopter is presented. A cas-

cade control structure is designed by introducing a least-squares algorithm to solve the

overdetermined problem in the translational motion dynamics. A reduced order observer

is described and utilized for estimating the velocities of the quadcopter testbed from the

measured position states. The effectiveness of the control structure and reduced-observer

design are experimentally evaluated by applying a simple PID controller.

• Chapter 4: In this chapter, the SMC strategy is applied for a robust quadcopter controller.

Energy saving is addressed through the controller design by chatter reduction using a

boundary layer method. An integral sliding surface is utilized to improve tracking per-

formance. The reaching rate is increased by using a constant plus proportional reaching

law. The effectiveness of this approach in terms of robustness and energy consumption

is evaluated by performing trajectory tracking control experiments under significant wind

gusts.

• Chapter 5: In this chapter, two nonlinear sliding surfaces for SMC are presented with

an opposite characteristic as a function of error. These nonlinear sliding surfaces are

designed to change the time-constant within the sliding mode condition. The first nonlin-

ear sliding surface reduces the time-constant if error increases, and if error convergences

to zero, the time-constant increases to a constant number. The second nonlinear sliding

surface has an opposite characteristic. The large error increases the time-constant to a

maximum value, and by decreasing the error, the time-constant is reduced and converges

to a minimum value. Therefore, by varying the time-constant, the tracking performance

is improved. These nonlinear sliding surfaces also change the closed-loop properties of

the system. In addition, these nonlinear sliding surfaces reduce energy consumption dur-

ing the control operation. The effectiveness of these strategies in terms of robustness and

energy efficiency are experimentally evaluated using an experimental quadcopter testbed.

• Chapter 6: In this chapter, the second-order SMC based on the generalized-STA is pre-

sented for the robust tracking control of a quadcopter. The new nonlinear sliding surface

equation as a function of tracking error is introduced to reduce the energy consumption

through designing a time varying properties of the closed-loop dynamics (damping ratio

and natural frequency). The Lyapunov stability theory is utilized to prove the stability of

the proposed method within and out of the sliding mode. The effectiveness and reliability

of the proposed method are evaluated using the experimental quadcopter testbed.

• Chapter 7: In this chapter, the summary of the thesis is presented. Future works to extend

this thesis are also described.



Chapter 2

Modeling of Quadcopter and
Experimental Setup

In this chapter, the dynamics model of a quadcopter is described. The model is derived by utiliz-

ing the Newton-Euler formulation for a rigid-body in free motion. The experimental quadcopter

testbed used in this works is explained together with the sensors configuration. The quadcopter

testbed parameters are also described.

2.1 Modeling of Quadcopter

The motions of a quadcopter are achieved by using two pairs of contra-rotating rotors. One pair

of rotors rotates in the clockwise direction and the other in the counter-clockwise as shown in

Fig. 2.1. Forward motion is achieved by increasing the speed of rear rotors and simultaneously

decreasing the speed of front rotors. Backward, leftward, and rightward motions are obtained in

a similar manner. Yaw motion in one direction or another is performed by accelerating counter-

clockwise rotors and simultaneously decelerating the clockwise rotors, or vice versa. To derive

the model of a quadcopter, we describe its kinematics and dynamics aspects as follows.

2.1.1 Kinematics Modeling

A quadcopter is considered as a rigid body in free motion which has six degrees of freedom

(6-DOF). First, let us consider two coordinate frames: an earth fixed frame {E} and a body

frame {B} that fixed at the center of gravity of the quadcopter as shown in Fig. 2.1. Since the

frame {B} moves freely then the orientation of frame {B} relative to frame {E} is achieved by

7
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FIGURE 2.1: Coordinate system of a quadcopter.

a rotational matrix as follows:

R = Rz(ψ)Rx(φ)Ry(θ)

=


cψ −sψ 0

sψ cψ 0

0 0 1




1 0 0

0 cφ −sφ

0 sφ cφ




cθ 0 sθ

0 1 0

−sθ 0 cθ



=


−sφsθsψ + cθcψ −cφsψ sφcθsψ + sθcψ

sφsθcψ + cθsψ cφcψ −sφcθcψ + sθsψ

−cφsθ sφ cφcθ


(2.1)

where s and c denote sine and cosine, respectively. Let ξ = [XT ,ΘT ]T be the pose of quadcopter

in frame {E} where X = [x,y,z]T ∈ℜ3 and Θ = [φ ,θ ,ψ]T ∈ℜ3 represent a coordinate position

and attitude, respectively. The linear velocity of the quadcopter in frame {E}, Ẋ , is obtained

by differentiating the vector position X . Since it is measured in frame {B} then we have the

following relation

Ẋ = Rν (2.2)

where ν = [νx,νy,νz]
T is vector of linear velocity in frame {B}. Therefore, to obtain the linear

velocity Ẋ , we need information of Euler angles Θ. However, Θ is function of time where

Θ̇ = [φ̇ , θ̇ , ψ̇]T depends on the angular velocity of quadcopter’s body which is measured in

frame {B}.

The angular velocity is obtained from the property of rotational matrix R as an orthogonal ma-

trix, therefore
RRT = I

RT = R−1
(2.3)
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By taking the derivative of Eq. (2.3) we have

ṘRT +RṘT = 0 (2.4)

Taking the advantage of skew symmetric matrix S(·) ∈ SO(3) as follows [81]:

S(Ω)+S(Ω)T = 0 (2.5)

where Ω = [Ωx,Ωy,Ωz]
T is the angular velocity in frame {E}, and we have

S(Ω) = ṘRT (2.6)

Solving Eq. (2.6) by considering Eqs. (2.1) and (2.3), we have

S(Ω) =ṘzRz
T +RzṘxRx

T Rz
T +RzRxṘyRy

T Rx
T Rz

T
0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

=ψ̇


0 −1 0

1 0 0

0 0 0

+ φ̇


0 0 sψ

0 0 −cψ

−sψ cψ 0



+ θ̇


0 −sφ cφcψ

sφ 0 cφsψ

−cφcψ −cφsψ 0


(2.7)

By equating the left and right side of Eq. (2.7), we have

Ω =


cψ −cφsψ 0

sψ cφcψ 0

0 sφ 1




φ̇

θ̇

ψ̇

 (2.8)

However, the angular velocity of a quadcopter is measured in frame {B} by using a sensor

attached on its body. By utilizing rotational matrix R, we can obtain the angular velocity in

frame {B}, ω = [ωx,ωy,ωz]
T , as follows:

ω =RT
Ω =


cθ 0 −cφsθ

0 1 sφ

sθ 0 cφcθ




φ̇

θ̇

ψ̇


ω =T Θ̇

(2.9)
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2.1.2 Dynamics Modeling

The motions of a quadcopter in all 6-DOF are performed by controlling the inputs producing

from combination of its four rotors as shown in Fig. 2.1. The quadcopter has only four indepen-

dent inputs consist of u1 =
4

∑
i=1

fi is the total thrust produced by the four rotors, u2 = L( f4− f2)

is the torque difference between the right and left rotors, u3 = L( f1− f3) is the torque difference

between the rear and front rotors, and u4 = d( f4 + f2− f1− f3) is the torque difference between

clockwise rotors (M4 and M2) and counter-clockwise rotors (M1 and M3). L is the distance

of each rotor from the center of gravity, and d is a scaling coefficient from force to moment.

Since the quadcopter has only four independent inputs with 6-DOF, then it is categorized as an

underactuated system.

The dynamics of a quadcopter is derived by employing the Newton’s second law for translational

and rotational motions [13, 18, 22, 27, 42, 82]. Employing the Newton’s second law for a

translational motion of a rigid body in frame {E}, we have

Ẍ =
1
m ∑Fext

=R


0

0
u1

m

+


0

0

−g




ẍ

ÿ

z̈

=


(sφcθsψ + sθcψ)

u1

m
(−sφcθcψ + sθsψ)

u1

m
cφcθ

u1

m

+


0

0

−g


(2.10)

where Ẍ = [ẍ, ÿ, z̈]T is the translational acceleration vector in frame {E}, ∑Fext is the total force

applied on the body of quadcopter with respect to frame {E}, m is the total mass of quadcopter,

and g is the gravitational acceleration.

Furthermore, in a rotational motion, we have the inertia matrix as follows:

I =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 (2.11)

where Ixx, Iyy, and Izz are called moments of inertia with respect to x, y, and z axis, respectively.

Ixy, Ixz, Iyx, Iyz, Izx, and Izy, are called products of inertia, respectively. Assuming the quadcopter

is a rigid body with constant mass and its axis is aligned with principal axis of inertia, then

the product of inertia Ixy = Ixz = Iyx = Iyz = Izx = Izy = 0, and the inertia matrix in Eq. (2.11)
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becomes a diagonal matrix as follows:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.12)

Exploiting now the Newton’s second law on a rotational motion, we have the equation of mo-

ment for a quadcopter in body frame {B} as follows:

Iω̇ =−ω× Iω +∑Text (2.13)

where ω̇ = [ω̇x, ω̇y, ω̇z]
T is the rotational acceleration vector in frame {B} and ∑Text = [u2,u3,u4]

T

is the total torque acts on the body of quadcopter with respect to frame {B}. Substituting Eq.

(2.9) together with its time-derivative into Eq. (2.13), we have

I(Ṫ Θ̇+T Θ̈) =−T Θ̇× IT Θ̇+∑Text (2.14)

where Ṫ is the time-derivative of transformation matrix T in Eq. (2.9) and Θ̈ = [φ̈ , θ̈ , ψ̈]T is the

angular acceleration vector in frame {E}. Solving Eq. (2.14) we have
φ̈

θ̈

ψ̈

= J−1


K1(Θ,Θ̇)

K2(Θ,Θ̇)

K3(Θ,Θ̇)

+ J−1


u2

u3

u4

 (2.15)

where

J =


Ixxcθ 0 −Ixxcφsθ

0 Iyy Iyysφ

Izzsθ 0 Izzcφcθ

 ,
K1(Θ,Θ̇) = (Ixx + Iyy− Izz)φ̇ θ̇sθ +(−Ixx + Iyy− Izz)φ̇ ψ̇sφsθ

+(Ixx + Iyy− Izz)θ̇ ψ̇cφcθ +(Iyy− Izz)ψ̇
2sφcφcθ ,

K2(Θ,Θ̇) = (−Iyy +(Izz− Ixx)c(2θ))φ̇ ψ̇cφ

+(Izz− Ixx)(φ̇
2− ψ̇

2c2
φ)sθcθ ,

K3(Θ,Θ̇) = (−Izz + Ixx− Iyy)φ̇ θ̇cθ +(Izz + Ixx− Iyy)φ̇ ψ̇sφcθ

+(Izz− Ixx + Iyy)θ̇ ψ̇cφsθ − (Ixx− Iyy)ψ̇
2sφcφsθ .

Combining Eqs. (2.10) and (2.15), we have complete dynamics model of a quadcopter as fol-

lows:

ξ̈ = f1(Θ,Θ̇)+ f2(Θ,u) (2.16)



Chapter 2. Modeling of Quadcopter and Experimental Setup 12

where

ξ̈ = [ẍ, ÿ, z̈, φ̈ , θ̈ , ψ̈]T ,

f1(Θ,Θ̇) = J−1
m [0,0,−mg,K1(Θ,Θ̇),K2(Θ,Θ̇),K3(Θ,Θ̇)]T ,

f2(Θ,u) = J−1
m



(sφcθsψ + sθcψ)u1

(−sφcθcψ + sθsψ)u1

cφcθu1

u2

u3

u4


,

Jm =

[
mI3×3 03×3

03×3 J

]
,

I3×3 and 03×3 are a 3× 3 identity matrix and a 3× 3 null matrix, respectively. The dynamics

of quadcopter in Eq. (2.16) is obtained by neglecting the aerodynamics effects and gyroscopic

terms. These terms will be considered as disturbances in the controller design.

2.2 Experimental Setup

In this works, we design an experimental testbed of a quadcopter as shown in Fig. 2.2. In

this testbed, the quadcopter is attached to the rigid links for conducting the same experiments

multiple times to verify the effectiveness and repeatability of the control strategy. This rigid

links also function as safety link to prevent the quadcopter crashing caused by unstable flight.

The flight controller is developed in a personal computer (PC) and connected to the quadcopter

through analog to digital and digital to analog-converter (AD/DA). AD-converter is utilized

for capturing the states information from the sensors while DA-converter is for sending the

control signal generated in PC into the actuators. In oder to verify the robustness of the control

design, the disturbance generated by three different electric fan (power: 57 W, 49 W, and 37

W) is applied in distance about 0.5-1.5 m and located in different location from the quadcopter.

Magnitude of the disturbance is proportional to the distance between the quadcopter and the fan,

and can be chosen by turn on all fan or one of them.

In this experimental testbed, we only measure the position states by using potentiometers those

are attached on each link as shown Fig. 2.3. Because the quadcopter is a second-order system

as presented in Eq. (2.16), we need information of position (absolute position and attitude)

and velocity (linear and angular) states for the controller design. Furthermore, an observer is

developed to estimate the velocity states. In this chapter, we only discuss the derivation process
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to obtain position and attitude states of the quadcopter testbed from the sensors. The design of

observer to estimate the velocity is described in the next chapter.

FIGURE 2.2: Experimental quadcopter testbed

2.2.1 Sensor Configuration and Coordinate Frame

States variable for controller are measured by potentiometers (S1-S5) those are located on each

link as shown Fig. 2.3. These potentiometers are used to measure all positions of the rotational

motion on each link (θ1−θ5). A coordinate frame transformation is utilized to obtain position

of the quadcopter with respect to frame {E}. We assign a coordinate frame on each link as

shown in Fig. 2.4. Frame {B} is assigned as body frame, frames {0-5} are assigned on each

rotational link, frame{E} is an inertial frame, and the corresponding rotational angles are as

shown in Fig. 2.4. Motion of link L2 depends on link L1 and therefore rotational angle θ ′2 = θ2.

The transformation matrices for each frame are given as follows:
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E
0 T =


cθ1 −sθ1 0 0

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

 0
1T =


0 0 1 0

cθ2 −sθ2 0 0

sθ2 cθ2 0 0

0 0 0 1



1
2T =


−cθ ′2 sθ ′2 0 L1

sθ ′2 cθ ′2 0 0

0 0 −1 0

0 0 0 1

 2
3T =


−cθ3 sθ3 0 0

0 0 1 L2

sθ3 cθ3 0 0

0 0 0 1



3
4T =


sθ4 cθ4 0 0

0 0 1 0

cθ4 −sθ4 0 L3

0 0 0 1

 4
5T =


cθ5 −sθ5 0 L4

0 0 1 0

−sθ5 −cθ5 0 0

0 0 0 1



5
BT =


0 0 1 L5

1 0 0 0

0 1 0 0

0 0 0 1



(2.17)

The transformation matrix from body coordinate frame {B} into inertial frame {E} is obtained

as:

E
BT =E

0 T 0
1T 1

2T 2
3T 3

4T 4
5T 5

BT

=

[
E
BR E

BP

0 0 0 1

]

E
BR =


cθ5cθ1+3 + sθ4sθ5sθ1+3 −cθ4sθ1+3 sθ5cθ1+3− cθ5sθ4sθ1+3

cθ5sθ1+3− sθ4sθ5cθ1+3 cθ4cθ1+3 sθ5sθ1+3 + cθ5sθ4cθ1+3

−cθ4sθ5 −sθ4 cθ4cθ5


E
BP =


L5(sθ5cθ1+3− cθ5sθ4sθ1+3)−L1cθ2sθ1−L4sθ4sθ1+3

L5(sθ5sθ1+3 + cθ5sθ4cθ1+3)+L1cθ1cθ2 +L4sθ4cθ1+3

L2 +L3 +L1sθ2 +L4cθ4 +L5cθ4cθ5



(2.18)

where θ1+3 = θ1 +θ3.
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(a)

(b)

FIGURE 2.3: Sensors placement on the experimental quadcopter testbed: (a) actual configura-
tion, (b) schematic

From Eq. (2.18) and considering Eq. (2.1), position and attitude of the quadcopter with respect

to frame {E} are defined as follows:

X =[x,y,z]T =E
B P,

φ =−θ4,

θ =θ5,

ψ =θ1 +θ3.

(2.19)
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FIGURE 2.4: Frame transformation on the experimental quadcopter testbed

2.2.2 Actuator Dynamics

2.2.2.1 Thrust Force

The thrust force of the experimental quadcopter testbed is generated by four motors as actuators

with gears and blades. Since it is difficult to obtain an analytical model of the thrust force gen-

erator, we develop an empirical formula to describe a relationship between voltage and resulting

thrust for each actuator experimentally by applying different voltages and measuring the result-

ing thrust. The voltage versus thrust data follow a smooth curve as shown in Fig. 2.5, and the

thrust model is obtained by using the least-squares approximation of a second-order polynomial

function as follows:

f j = 0.0321V 2
j +0.0579Vj−0.0462 (2.20)

where Vj (volt) is the voltage applied to the j-th motor ( j = 1, . . . ,4). Assuming that all actuators

are identical, we apply Eq. (2.20) to estimate each thrust force f j (N).

2.2.2.2 Electric Power Consumption

It is essential to evaluate the power consumed by each actuator during the flight to know how

much energy is required to complete a mission. Each actuator of the experimental quadcopter

testbed which is utilized in this study is driven by a DC motor. If we regard the DC motor as a
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FIGURE 2.5: Applied voltages versus thrust force of a rotor.

resistance load, the power consumed by each DC motor can be evaluated by

Pj =
V 2

j

R j
(2.21)

where Pj and R j are the power and resistance of the j-th motor, respectively. By applying Vj and

the measurement of Pj to Eq. (2.21), the value of R j can be estimated. In this study, the value of

R j is estimated by conducting several experiments and measuring Pj for one motor. The average

resistance of the motor is obtained as R j = 2.975 ohm.
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FIGURE 2.6: Electric power of a motor during the hovering motion.

To validate the value of the estimated resistance R j, we perform an experiment on the quadcopter

testbed in hovering mode and measure the power consumed by the motor. A comparative result

with the estimation one using Eq. (2.21) is given in Fig. 2.6. It is seen that the measured power
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FIGURE 2.7: Total energy consumed by a motor during the hovering motion.

is similar to the estimated one and therefore the resistance R j above can be used to estimate the

power consumption for each motor of the quadcopter testbed. In addition, by integrating the

power consumption during the flight, we obtain the total energy consumed by the motor. By

conducting several experiments in hovering mode, the total energy consumed by the motor is

obtained as shown in Fig. 2.7. Since all motors are assumed to be identical, the same resistance

R j is employed to estimate the power and total energy consumption during the control of the

quadcopter.

2.2.3 Experimental Testbed Parameters

The experimental components of the quadcopter testbed which is utilized in this study are given

in Table 2.1. The parameters of the experimental quadcopter testbed and its value are shown in

Table 2.2.

TABLE 2.1: Components of experimental testbed.

Components Type Manufacturer
4 rotor helicopter DRAGANFLYER IV RCTOYS
AD converter board ADA16-8/2(CB)L Contec
DA converter board DAI16-4(USB) Contec
Potentiometer JC22E 1k Copal Electronics
DC motor RC-280SA-2485 Mabuchi Motor Co., Ltd.
Motor driver ADS 50-5 Maxon Motor
Power supply PUP5-2 Takasago
Power supply HWS100-12/A Densei-λ
PC(OS) Centrino Dual-Core

(Windows-7 32 bit)
Panasonic(Microsoft)
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TABLE 2.2: Parameters of quadcopter experimental testbed.

Symbol Parameters Value (unit)

m mass of quadcopter testbed 0.285 (kg)

L distance of rotor to the quadcopter center

of gravity

0.212 (m)

g gravitational acceleration 9.807 (m/s2)

d force to moment scaling factor 1 (m)

Ix moment of inertia about x axis in body

frame

5.136 × 10−3 (kg.m2)

Iy moment of inertia about y axis in body

frame

5.136 × 10−3 (kg.m2)

Iz moment of inertia about z axis in body

frame

1.016 × 10−2 (kg.m2)





Chapter 3

Closed-Loop Controller Configuration
and Velocity States Estimation

3.1 Introduction

The dynamics of quadcopter derived in the previous chapter shows that the quadcopter has four

independent inputs with 6-DOF. Therefore, a quadcopter is categorized as an underactuated

system, and it is relatively difficult to design the control strategy to control all motions inde-

pendently through its original inputs. For simplicity, we transform the original dynamics of

the quadcopter into a simple decoupled form by introducing the synthetic input. Furthermore,

a general closed-loop controller configuration is designed. Therefore, any control strategy can

be applied simply to the synthetic input. In order to calculate the original inputs, we employ a

method presented in [43, 83]. A least-squares algorithm is utilized to solve the overdetermined

problem of the quadcopter dynamics in the translational motion. In addition, the rotational

inputs are solved by a simple dynamics inversion.

The previous chapter describes that the experimental quadcopter testbed only provides absolute

position and attitude states of the quadcopter those are measured from the sensors. In this

chapter, the velocity states are estimated for the controller by applying a reduced-order observer

strategy presented in [84]. The effectiveness of this closed-loop configuration and reduced-

order observer design are experimentally evaluated by applying a simple PID controller for the

synthetic input.

21
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3.2 Dynamics Decoupling

In order to simplify the controller design of a quadcopter, which is categorized as an underactu-

ated system, we transform the original underactuated dynamics of the quadcopter described in

Eq. (2.16) into a decoupled form. Recalling the original dynamics of a quadcopter as follows:

ξ̈ = f1(Θ,Θ̇)+ f2(Θ,u) (3.1)

By considering the synthetic input v = f1(Θ,Θ̇)+ f2(Θ,u), the decoupled form of Eq. (3.1) is

written in a simple linear form as follows:

ξ̇1 = ξ2

ξ̇2 = v
(3.2)

where ξ1 = ξ = [x,y,z,φ ,θ ,ψ]T and ξ2 = ξ̇ . By considering v = [vx,vy,vz,vφ ,vθ ,vψ ]
T as a new

input vector in controller design then we have a such as fully-actuated system. Furthermore,

general controller strategy can be applied to design this new control input v, simply.

3.3 Closed-Loop Configuration

FIGURE 3.1: Closed-loop controller configuration for a quadcopter.

In order to make the quadcopter fly autonomously, we choose the desired output as the absolute

position Xd = [xd ,yd ,zd ]
T and yaw angle ψd of the quadcopter. In this work, we adopt the con-

trol structure presented in [18] by adding the least-squares method to solve the overdetermined

problem in translational motion of the quadcopter as shown in Fig. 3.1. In this configuration,

we divide the control structure into two parts mainly. The first one is a translational controller

with a desired attitude generator. The translational controller is for absolute position tracking

control. This part generates synthetic inputs vx, vy, and vz. By using the least-squares method
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in [43, 83], the original input u1 is calculated. The second part is a rotational controller that

handles the attitude tracking control. This part generates synthetic inputs vφ , vθ , and vψ , and

converts into original inputs u2, u3, and u4 by considering rotational dynamics of Eq. (2.16).

Derivation of these control inputs is given in Subsection 3.3.1.

In the desired attitude generator block, the desired attitude of the quadcopter, roll angle (φd) and

pitch angle (θd), are generated , while ψd is remained as assigned. (φd) and (θd) are calculated

from the translational motion dynamics of Eq. (2.16) by considering the synthetic inputs in Eq.

(3.2) as follows. Equating the synthetic inputs for the translational motion in Eq. (3.2) with

those in Eq. (2.16), we have
vx =(sθcψ + sφcθsψ)

u1

m

vy =(sθsψ− sφcθcψ)
u1

m

vz =cφcθ
u1

m
−g

(3.3)

Solving Eq. (3.3) with respect to the attitude variables and replacing them with the desired

attitude of the quadcopter, we have

φd =arctan
(

vx sinψd− vy cosψd

vz +g

)
θd =arctan

(
vx cosψd + vy sinψd√

(vx sinψd− vy cosψd)2 +(vz +g)2

) (3.4)

3.3.1 Control Input Calculation

3.3.1.1 Translational Motion

Rewriting the translational motion of the quadcopter in Eq. (3.3) in a matrix form, we have
(sφcθsψ + sθcψ)

(sθsψ− sφcθcψ)

cφcθ

u1 =


vx

vy

vz +g

m (3.5)

Equation (3.5) shows that we have an overdetermined problem because there are three equations

to solve one unknown variable, u1. To solve this problem, the least-squares algorithm is utilized.

We represent Eq. (3.5) in the following form:

ABu1 =C (3.6)

where A =


cψ sψ 0

sψ −cψ 0

0 0 1

 ; B =


sθ

sφcθ

cφcθ

 ; and C =


vx

vy

vz +g

m.
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Applying the least-squares algorithm, we have

Bu1 = ATC (3.7)

because of AT A = AAT = I3×3, where I3×3 is an 3×3 identity matrix. Squaring both side of Eq.

(3.7), we have

BT Bu2
1 = (ATC)T ATC (3.8)

From Eq. (3.8), because BT B = 1 then we have

u1 = m
√

v2
x + v2

y +(vz +g)2 (3.9)

3.3.1.2 Rotational Motion

Inputs for rotational motion, u2, u3, and u4, are straightforward generated by equating the rota-

tional dynamics in Eq. (2.15) and those in Eq. (3.1), and hence we have
u2

u3

u4

= J


vφ

vθ

vψ

−


K1(Θ,Θ̇)

K2(Θ,Θ̇)

K3(Θ,Θ̇)

 (3.10)

3.4 Design of Reduced-Order Observer

The quadcopter is a second-order system which has position and velocity states as in Eq. (3.1).

In this work, the quadcopter testbed only provides position states (absolute position and attitude)

at each sampling time those are measured from the sensors. The velocity states are estimated by

using the reduced-order observer in [84] (see Appendix). We utilize this method because this

observer estimates the velocity states from a continuous-time dynamics model by considering a

discrete-time control system. Therefore, it is practically applicable for our experimental testbed.

By considering Eqs. (3.1) and (A.1), we have f1(ξ1) = 0, g1(ξ1) = 1, f2(ξ1,ξ2,u) = f1(Θ,Θ̇)+

f2(Θ,u). Because the input vector u = [u1,u2,u3,u4]
T does not satisfy assumption A1, we

consider new inputs vx, vy, and vz, and the control input u = [vx,vy,vz,u2,u3,u4]
T . Applying

these new inputs to dynamics in Eq. (3.1), we meet all the assumptions in Appendix that are

required to design the observer. Hence, the reduced-order observer can be designed as follows:

ξ̂2(k) = (I−T H)ξ̂2(k−1)+T NT (3.11)
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where T is a sampling period, I is a 6×6 identity matrix, H is a 6×6 diagonal matrix which is

explained in Appendix, and

NT = HΨT + f2(y1(k−1),ΨT ,u(k−1)),

ΨT =
y1(k)− y1(k−1)

T
.

(3.12)

Furthermore, to apply this reduced-order observer to the quadcopter testbed, the closed-loop

controller configuration in Fig. 3.1 is modified into a new one given in Fig. 3.2.

FIGURE 3.2: Closed-loop controller configuration with observer for the experimental quad-
copter testbed.

3.5 Experiment

3.5.1 PID Controller Design

In order to check the effectiveness of the closed-loop controller configuration and the velocity

observer, we conduct the experiment by designing a simple proportional-integral-differential

(PID) controller for the synthetics input v.

Considering the dynamics of the quadcopter in Eq. (3.2) and the output captured from the sensor

as follows:

y1(k) = ξ1(k) (3.13)

We assume that the control input v in Eq. (3.2) is realized through a zero order-hold with

sampling time T = 5 ms, and only the position and attitude ξ1(k) at each sampling period
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(i.e., y1(k) = ξ1(kT )) is available for control. A PID controller strategy for tracking and stabi-

lizing the system in Eq. (3.2) is designed as follows:

v = ξ̇2d +Kpe+Kd ė+Ki

∫
edt (3.14)

where e = ξ1d − ξ1, ė = ξ2d − ξ̂2, and ξ̂2 is obtained from the reduced-order observer in Eq.

(3.11). ξ1d and ξ2d are desired trajectories for ξ1 and ξ2, respectively. In order to guarantee

the control system stability based on the Routh-Hurwitz criterion, we choose Kp, Kd , and Ki as

positive constant and KpKd > Ki [85]. The original input u1, u2, u3, and u4 are calculated from

the synthetic input vector v using Eqs. (3.9) and (3.10).

The effectiveness of the reduced-order observer in Eq. (3.11) to estimate the velocity states is

verified by comparing those with the backward-difference method. For calculating the veloc-

ity based on the backward-difference method, a second-order low-pass filter with 15 Hz cut-off

frequency is applied to reduce the high frequency noise. These estimated velocity states are em-

ployed in a PID controller in Eq. (3.14). The control parameters for both methods were tuned

to achieve the best experimental results and were obtained as follows (units are omitted):

PID control with a reduced-order observer:

Kp = diag(30,30,50,130,100,400),

Ki = diag(2,2,30,30,10,160),

Kd = diag(20,20,20,40,30,90),

H = diag(100,100,100,50,60,50).

PID control with a backward-difference method:

Kp = diag(12,14,50,80,60,200),

Ki = diag(4,4,30,15,10,20),

Kd = diag(10,10,20,20,15,30).

Because the noise increases in the backward-difference method, controller gains are set smaller

than those for the reduced-order observer.

3.5.2 Experimental Results

In this experiment, we design a desired trajectory to be tracked in the experiment consisting of

four different motions within 60 s as follows: A: take-off motion (0-10 s), B: maneuver in the
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x− y plane at the same height (10-15 s), C: hovering by performing yaw motion (15-45 s), and

D: landing motion (45-60 s) as shown in Fig. 3.3.

Figure 3.4 shows the effectiveness of the reduced-order observer to estimate the velocity states

of a quadcopter for all motions from its corresponding position states. It is seen that the reduced-

order observer reduces the high frequency signals effectively than the backward-difference with

a low-pass filter. This observer estimates the velocity states within 25 ms from its initial value,

and reduces the variance of the velocity signal from the backward-difference method about

81.08% on average. Since this observer can estimate the states in relatively fast time, it is useful

from a real-time application point of view.
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FIGURE 3.3: 3-dimensional desired trajectory.
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ẋ
(m

/s
)

0 20 40 60
−2

0

2

4

6

8

φ̇
(r
ad

/s
)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

ẏ
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FIGURE 3.4: Velocity profiles obtained from a reduced-order observer and a backward-
difference method.

In addition, the reduced-order observer allows us to choose PID controller gains relatively higher

compared to those in the backward-difference method. Therefore, we can improve the tracking

performance of the closed-loop control system as shown in Figs. 3.5 and 3.6. The PID controller

utilizing the reduced-order observer produces smaller tracking error as shown in Fig. 3.7. To

evaluate the reliability of this method, we conduct the same experiments seven times and the

results are shown in Fig. 3.8. The averages of all trials are given in Table 3.1. The PID controller

with a reduced-order observer produces better performance by resulting in smaller root-mean

squared error (RMSE) and error variance in almost all trials. In z position, it is seen that the

reduced-order observer does not improve the performance, because we set the PID gain same

as the backward-difference method. The reduced-order observer reduces the RMSE by about

35.15% on average.
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FIGURE 3.5: Tracking control results by PID control with a reduced-order observer.
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FIGURE 3.6: Tracking control results by PID control with a backward-difference method.
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FIGURE 3.7: Tracking error with a reduced-order observer and a backward-difference method.
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TABLE 3.1: Average of RSME and error variance (Var) for all trials in Fig. 3.8.

Backward-diff. Reduced-order
Ratio A-B

A (%)
Average of

RMSE (A)

Average of

Var

Average of

RMSE (B)

Average of

Var

x (mm) 33.57 0.534 16.299 0.145 51.45

y (mm) 11.325 0.074 6.865 0.048 39.38

z (mm) 4.076 0.032 4.761 0.039 -16.81

φ (deg) 2.638 4.609 1.435 4.111 45.59

θ (deg) 2.438 6.252 1.313 2.69 46.12

ψ (deg) 4.872 22.318 2.672 17.54 45.16

3.6 Conclusion

In this chapter, the overdetermined problem in the translational motion dynamics of the quad-

copter is solved by applying the least-squares method to determine the input in this motion.

The original dynamics of the quadcopter which is categorized as an underactuated system is

transformed into a simple decoupled linear form by introducing the synthetic input for simpli-

fying the controller design. Furthermore, a general closed-loop controller configuration for a

quadcopter is presented. Therefore, any control strategy can be applied for the quadcopter.

A velocity state estimator for the experimental quadcopter testbed based on the sampled-data of

position measurements is presented. The effectiveness of this estimator based on the reduced-

order observer is confirmed experimentally. A PID tracking controller is designed for stabilizing

and tracking a desired trajectory. We have also shown comparison results with a backward-

difference method combined with a low-pass filter. In experiments, the reduced-order observer

estimates the velocity states of a quadcopter from its initial value within 25 ms (after 5-th sam-

pling). Therefore, it is useful from a practical application point of view. The reduced-order

observer allows us to choose the gains of closed-loop controller relatively higher. Hence, the

tracking error can be largely reduced. This method reduces the RMSE of tracking error and

variance of velocity signal from the backward-difference method by 35.15% and 81.08% on

average, respectively. Reliability of the proposed method was also confirmed through multiple

times experiments.





Chapter 4

Chatter Reduction in Sliding Mode
Control for Energy Saving Controller
of a Quad-Rotor Helicopter

4.1 Introduction

A quadcopter has highly nonlinear and time-varying behavior because it is always influenced

by unpredictable disturbances, such as wind gusts. Therefore, an advanced control strategy

is required to achieve good performance during autonomous flight. SMC strategy is a well

known robust controller against disturbance, uncertainty, and unmodeled dynamics, because it

has invariant characteristics in the sliding mode condition, and has been applied to a quadcopter

[4, 7, 8, 14, 21, 24, 43, 44, 48–51, 53, 54, 60, 86]. The invariant characteristics of SMC strategy

is generated by the switching function in the controller design which produces chattering phe-

nomenon. Practically, this chatter should be avoided or at least reduced because it can harms the

actuator. In addition, this chatter leads the actuator consuming more energy in its application.

Designing a boundary layer near the sliding surface becomes a common method to reduce the

chattering phenomenon [46, 49, 58, 59, 62, 87, 88]. Inside this boundary layer, the discontinuous

function is replaced with a continuous one.

In this chapter, SMC strategy is applied for a robust controller of a quadcopter with the control

structure presented in the previous chapter. An energy saving through the controller design is

addressed by chatter reduction with the boundary layer method in [59]. An integral sliding

surface is utilized to improve the tracking performance. The reaching rate is increased by using

a constant plus proportional reaching law. To show the effectiveness of the proposed approach,

a trajectory tracking control experiment under a significant wind gust is performed. Energy

35
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consumption is evaluated to verify the effectiveness of the proposed approach. This chapter is

related to the works presented in [83].

4.2 Controller Design

In Chapter 2, the dynamics of a quadcopter is derived by neglecting aerodynamics and gyro-

scopic effects, and it is represented in a simple decoupled form in Chapter 3. Considering the

aerodynamics and gyroscopic effects together with the wind effect as disturbances, the decou-

pled dynamics of the quadcopter is rewritten as follows:

ξ̈ = v+ρd (4.1)

where ρd is the disturbance vector. A stabilizer and tracking controller based on SMC strategy

is designed for the dynamics given in Eq. (4.1). In SMC design, firstly, a stable sliding surface

is determined. Secondly, a robust control strategy is designed to force the system into the sliding

surface.

4.2.1 Design of Sliding Surface

Let us consider a vector of tracking error in the translational and rotational motions of the quad-

copter as follows:

ε = ξd−ξ (4.2)

where ξd = [xd ,yd ,zd ,φd ,θd ,ψd ]
T is a vector of desired position and attitude of the quadcopter

for ξ = [x,y,z,φ ,θ ,ψ]. Because the dynamics of quadcopter is a second-order system as shown

in Eq. (4.1), the sliding surface for each motion si can be designed as follows [59]:

si = ε̇i +λiεi; i = 1,2, . . . ,6. (4.3)

where εi is the element of ε , ε̇i is the first derivative of εi, λi is a positive gain, and si is a sliding

surface for each motion.

To improve the tracking performance, an integral part is added to Eq. (4.3), and we have the

sliding surface equation as follows [62]:

si = ε̇i +λiεi +αi

∫ t

0
εi(τ)dτ, (4.4)

where αi is a positive gain.
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4.2.2 Sliding Mode Control

The control objective is to force the system into the sliding mode, where

s = 0; s = [s1,s2, · · ·,s6]
T (4.5)

Once the system reach the sliding surface, the controller maintains this sliding mode condition

and the robustness is provided. Furthermore, the tracking error converges to zero exponentially.

Therefore it is important to force the system into the sliding mode condition immediately.

Considering the sliding surface in Eq. (4.3), the control system dynamics is written as

ṡ = ε̈ +λ ε̇ (4.6)

where λ = diag{λi}. Taking the second derivative of Eq. (4.2) and substituting it into Eq. (4.6)

along with the dynamics in Eq. (4.1), we have

ṡ = ξ̈d− v−ρd +λ ε̇ (4.7)

To achieve the condition in Eq. (4.5), we consider the synthetic control input v with a constant

plus proportional rate reaching law as follows:

v = û+ k s+qsign(s) (4.8)

where k = diag{ki} and q = diag{qi} with positive elements, and sign(.) is a signum function

defined as follows:

sign(s) =


1 if s> 0

0 if s = 0

−1 if s< 0

û is an equivalent control input for dynamics in Eq. (4.7) as follows:

û = ξ̈d +λ ε̇ (4.9)

If we consider the integral sliding surface equation in Eq. (4.4), then the equivalent control input

û is as follows:

û = ξ̈d +λ ε̇ +αε (4.10)

where α = diag{αi}. The sign(.) function in Eq. (4.8) causes discontinuity in the control signal

and produces chatter that should be avoided. This chattering phenomenon can be eliminated by
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smoothing the control discontinuity in a thin boundary layer, βi, neighboring the sliding surface

[58, 59]. The sign(.) function is replaced by a saturation function, sat(.), as follows:

sat(si) =

 sign(si) if|si|> βi
si

βi
if|si| ≤ βi

(4.11)

where βi > 0.

Substituting Eq. (4.8) into Eq. (4.1), we have the closed-loop dynamics for the sliding surface

in Eq. (4.3) as follows:

ε̈ +λ ε̇ + ks+q sign(s)+ρd = 0 (4.12)

and for the integral sliding surface in Eq. (4.4) is as follows:

ε̈ +λ ε̇ +αε + ks+q sign(s)+ρd = 0 (4.13)

By applying the sat(.) function in Eq. (4.11), the closed-loop dynamics inside the boundary layer

behaves as the PD-based control system in Eq. (4.12) in which ”kiλi +
qiλi
βi

” is a proportional

gain and ”ki +λi +
qi
βi

” is a differential gain, and the PID-based control system in Eq. (4.13) in

which ”kiλi+αi+
qiλi
βi

” is a proportional gain, ”kiαi+
qiαi
βi

” is an integral gain, and ”ki+λi+
qi
βi

”

is a differential gain. We later compare the performance of SMC strategy with these PD and PID

controllers experimentally to verify the net effectiveness of the sign(.) and sat(.) terms.

4.3 Stability Analysis

The control inputs designed in SMC strategy must guarantee the existence of the sliding mode

condition in Eq. (4.5). Once the sliding mode condition is achieved, the stability of the system

is guaranteed by the stability of the sliding surface.

4.3.1 Existence of Sliding Mode

The control input in Eq. (4.8) is designed independently for each DOF. To ensure the stability

of the control input in Eq. (4.8), let us consider the Lyapunov function candidate for each DOF

as follows:

Vi =
1
2

s2
i (4.14)

Taking the first derivative of Eq. (4.14) by considering Eqs. (4.7) and (4.8) in each DOF, we

have

V̇i = si(−kisi−qisign(si)−ρdi) (4.15)
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where ki, qi are component of diagonal matrices k and q respectively, and ρdi is component of

vector ρd . Suppose there exists a positive constant γi where

|ρdi|< γi (4.16)

we have

V̇i < si(−kisi−qisign(si)− γi) (4.17)

Choosing ki > 0 and qi > γi, V̇i is negative definite, and therefore the stability of the control input

in Eq. (4.8) for each DOF is guaranteed, and overall system is stable. Hence, the sliding mode

condition in Eq. (4.5) is achieved.

If the function in Eq. (4.15) is replaced by the sat(.) function in Eq. (4.11), then the stability

beyond the boundary layer is also guaranteed. Hence, once entering the boundary layer, the

control law in Eq. (4.8) ensures that the trajectory remains inside the boundary layer.

4.3.2 Stability of Sliding Surface

In this works, we utilize two types of sliding function as given in Eqs. (4.3) and (4.4) which are

named as PD-based sliding surface and PID-based sliding surface, respectively. In the sliding

mode condition, the stability of the system is guaranteed by the stability of the sliding function

as follows.

4.3.2.1 PD-based Sliding Surface

Considering the sliding surface in Eq. (4.3), the dynamics of the sliding mode condition in Eq.

(4.5) is as follows:

ε̇i =−λiεi (4.18)

To guarantee the stability of this dynamics, let us consider the Lyapunov function candidate as

follows:

Vi =
1
2

ε
2
i (4.19)

Taking the first derivative of Eq. (4.19) by considering Eq. (4.18), we have

V̇i =−λiε
2
i (4.20)

Because λi > 0 then V̇i is negative definite and therefore the sliding surface in Eq. (4.3) is stable.

Hence εi converges to zero exponentially.
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4.3.2.2 PID-based Sliding Surface

Considering PID-based sliding surface in Eq. (4.4), the dynamics in the sliding mode condition

is as follows:

ε̇i =−λiεi−αi

∫ t

0
εi(τ)dτ, (4.21)

The stability of the sliding mode dynamics in Eq. (4.21) is evaluated by using Routh-Hurwitz

criterion. By choosing λi > 0 and αi > 0 the dynamics in Eq. (4.21) has negative poles and

therefore its stability is guaranteed. Hence εi converges to zero exponentially.

4.4 Experiments

The effectiveness of the proposed methods are experimentally evaluated in terms of robustness

and energy efficiency using the experimental quadcopter testbed shown in Fig. 2.2.

4.4.1 Robustness Evaluation

This section shows experimental results of the proposed control strategies in hovering stabiliza-

tion and trajectory tracking using a quadcopter testbed. We evaluate the performance of SMC

strategy with sign(.) and sat(.) functions. The contribution of integral sliding surface to improve

tracking performance is also evaluated. In these experiments, the quadcopter performs six types

of motions during 60 seconds as follows: 1: take-off motion from A to B (0-10 s), 2: maneuver

in the x− y plane from B to C (10-15 s), 3: hovering by performing yaw motion at C (15-30 s),

4: maneuver from C to B (30-34 s), 5: hovering by performing yaw motion at B (35-50 s) and

6: landing motion from B to A (50-60 s). This desired trajectory is given in Fig. 4.1.

The control parameters are tuned to provide the best experimental results and are obtained as

follows (units are omitted):

k = diag{6.5,6,16,22,20,70},

λ = diag{3,4,9,8,7,40},

q = diag{0.6,0.6,1,0.8,0.8,1},

α = diag{0.5,0.5,0.6,0.4,0.2,0.6}.

For the sat(.) function, the boundary layer is designed with β = diag{0.2,0.2,0.2,0.38,0.3,0.2}.
The values of β = diag{βi} should be designed properly, because if we choose a relatively small

value, the chatter still occurs, while a relatively large β will reduce the robustness. By using the
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profile of sliding surface s for each motion as shown in Fig. 4.2, we can choose proper values of

β .
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FIGURE 4.1: Desired trajectory in x− y− z coordinate system.

In the experiments, we compared the following controllers:

• C1: Sliding mode control with sign(.) function by using sliding surface in Eq. (4.3),

• C2: Sliding mode control with sat(.) function by using sliding surface in Eq. (4.3),

• C3: PD-based controller,

• C4: Sliding mode control with sign(.) function by using integral sliding surface in Eq.

(4.4),

• C5: Sliding mode control with sat(.) function by using integral sliding surface in Eq.

(4.4), and

• C6: PID-based controller

in condition without and under wind disturbance. All controllers use the same gains value for

fair comparison. The wind disturbance applied in the experiment is produced by an electric fan

(power: 57 W).
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FIGURE 4.2: Profiles of sliding surface for each DOF.

Figures 4.3, 4.4, and 4.5 show the effectiveness of controller C2 to reduce the chattering phe-

nomenon. Controller C3 that uses the same gain with C2 provides smaller tracking error than

C2, although it still produces higher chatter than C2, as shown in Figs. 4.4 and 4.5. From the re-

sults of controllers C1, C2, and C3, which use the PD-based sliding surface function in Eq. (4.3),

relatively high tracking errors are obtained. In order to reduce the tracking error, we design an

PID-based sliding surface in Eq. (4.4) for both sign(.) and sat(.) functions, and thus the previous

PD controller C3 is changed into a PID controller (C6). The effectiveness of integral part in the

PID-based sliding surface design for improving tracking performance is shown in Figs. 4.6 and

4.7. It is seen that the sat(.) function reduces the chattering phenomenon effectively, especially

when the quadcopter performs hovering. This chatter reduction is also confirmed in the profiles

of control input in Figs. 4.8 and 4.9. The repeatability of this strategy is evaluated by conducting

several times experiments in the same condition, and the results are given in Figs. 4.10 and 4.11
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for PD-based sliding surface, Figs. 4.12 and 4.13 for PID-based sliding surface. It is seen that

on average, the sat(.) function provides relatively small mean and/or variance for both sliding

surface function and it is confirmed in Tables 4.1 and 4.2.

TABLE 4.1: Mean and variance of control input for experiment without disturbance.

Mean Variance (10−3)

Contr. u1 (N) u2 (Nm)

(10−3)

u3 (Nm)

(10−3)

u4 (Nm)

(10−3)

u1 (N) u2 (Nm) u3 (Nm) u4 (Nm)

C1 2.206 -45.11 24.009 -240.37 115.982 1.95 1.411 39.578

C2 2.183 -41.94 20.361 -311.9 85.586 1.435 0.811 61.259

C3 2.219 -44.15 21.428 -296.22 121.204 1.419 0.777 76.34

C4 2.222 -30.94 24.505 -240.14 134.679 2.399 2.261 42.378

C5 2.223 -27.81 26.031 -280.66 96.24 1.413 0.838 64.259

C6 2.256 -36.24 20.868 -236.58 130.022 1.414 0.665 68.683

TABLE 4.2: Mean and variance of control input for experiment under wind disturbance.

Mean Variance (10−3)

Contr. u1 (N) u2 (Nm)

(10−3)

u3 (Nm)

(10−3)

u4 (Nm)

(10−3)

u1 (N) u2 (Nm) u3 (Nm) u4 (Nm)

C1 2.219 -47.57 15.837 -245.71 107.979 2.788 1.479 54.871

C2 2.218 -53.19 12.766 -268.86 93.08 2.741 0.913 71.285

C3 2.25 -53.92 12.517 -262.05 122.483 2.972 1.007 80.859

C4 2.213 -27.53 11.54 -175.47 109.374 2.45 1.127 54.486

C5 2.197 -26.05 13.565 -188.6 88.04 2.508 1.156 61.697

C6 2.274 -36.89 10.009 -186.15 120.328 2.258 0.991 78.694

The application of chattering reduction on the sliding mode control by using sat(.) function has

negative effect. It reduces the robustness of the system, as confirmed in Figs. 4.14 and 4.15

for the experiments without disturbance, Figs. 4.16 and 4.17 for the experiments under wind

disturbance. On average, the sat(.) function provides larger root-squared mean error (RSME)

and/or error variance compared to the sign(.) function and PD/PID controller which is confirmed

in Tables 4.3 and 4.4. Tables 4.3 and 4.4 also confirm that the original SMC which uses sign(.)

function is more robust compared to the conventional controller PD/PID. Controller C1 provides

smaller RSME and error variance than controller C3, and controller C4 provides smaller RSME

and error variance than controller C6, especially in the experiments under wind disturbance.



Chapter 4. Chatter Reduction in Sliding Mode Control for Energy Saving Controller of a
Quad-Rotor Helicopter 44

TABLE 4.3: Root-squared of mean error (RSME) and error variance (Var) for experiment
without disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

Controller C1 11.698 0.265 2.861 5.301

Controller C2 21.048 0.529 2.841 6.056

Controller C3 16.11 0.334 2.838 5.517

Controller C4 1.096 0.208 1.014 6.062

Controller C5 2.885 0.375 1.052 5.903

Controller C6 1.823 0.264 0.968 5.354

TABLE 4.4: Root-squared of mean error (RSME) and error variance (Var) for experiment under
wind disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

Controller C1 23.946 0.598 2.681 8.206

Controller C2 33.345 0.962 3.018 11.304

Controller C3 27.535 0.686 2.879 10.016

Controller C4 1.777 0.38 0.616 7.367

Controller C5 3.785 0.481 0.648 7.473

Controller C6 2.729 0.406 0.745 7.714
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FIGURE 4.3: Trajectory tracking results in all motion for controllers C1, C2, and C3 without
disturbance.



Chapter 4. Chatter Reduction in Sliding Mode Control for Energy Saving Controller of a
Quad-Rotor Helicopter 46

0 20 40 60
−0.2

−0.1

0

0.1

0.2

 x
  
(m

)

0 20 40 60
−20

−10

0

10

20

 φ
  
(d

e
g

)

0 20 40 60
−0.15

−0.1

−0.05

0

0.05

 y
  
(m

)

 

 

sign
PD
sat

0 20 40 60
−20

−10

0

10

20
 θ

  
(d

e
g

)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

 z
  
(m

)

time (s)
0 20 40 60

−10

−5

0

5

10

 ψ
  
(d

e
g

)

time (s)

FIGURE 4.4: Tracking error for controllers C1, C2, and C3 without wind disturbance.
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FIGURE 4.5: Tracking error for controllers C1, C2, and C3 under wind disturbance.
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FIGURE 4.6: Tracking error for controllers C4, C5, and C6 without disturbance.
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FIGURE 4.7: Tracking error for controllers C4, C5, and C6 under wind disturbance.
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FIGURE 4.8: Profiles of control input for controllers C1, C2, and C3 (a) without disturbance,
(b) under wind disturbance.
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FIGURE 4.9: Profiles of control input for controllers C4, C5, and C6 (a) without disturbance,
(b) under wind disturbance.
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FIGURE 4.10: Mean and variance of control input for multiple times experiments for con-
trollers C1, C2, and C3 without disturbance.
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FIGURE 4.11: Mean and variance of control input for multiple times experiments for con-
trollers C1, C2, and C3 under wind disturbance.
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trollers C4, C5, and C6 under wind disturbance.



Chapter 4. Chatter Reduction in Sliding Mode Control for Energy Saving Controller of a
Quad-Rotor Helicopter 56

0 2 4 6 8
0.01

0.02

0.03

0.04

 x
  
(m

)
mean

0 2 4 6 8
0

0.5

1

1.5
x 10

−3

 x
  
(m

)

variance

0 2 4 6 8
0.005

0.01

0.015

0.02

 y
  
(m

)

0 2 4 6 8
2

4

6

8
x 10

−4

 y
  
(m

)

 

 

sign
sat
PD

0 2 4 6 8
0.01

0.015

0.02

 z
  
(m

)

0 2 4 6 8
5

6

7

8
x 10

−5

 z
  
(m

)

0 2 4 6 8
3.5

4

4.5

5

 φ
  
(d

e
g

)

0 2 4 6 8
8

10

12

14

 φ
  
(d

e
g

)

0 2 4 6 8
2

2.5

3

 θ
  
(d

e
g

)

0 2 4 6 8
3

4

5

 θ
  
(d

e
g

)

0 2 4 6 8
1

1.5

2

2.5

number of trial

 ψ
  
(d

e
g

)

0 2 4 6 8
1

2

3

number of trial

 ψ
  
(d

e
g

)

FIGURE 4.14: RSME and error variance for multiple times experiments for controllers C1, C2,
and C3 without disturbance.
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FIGURE 4.15: RSME and error variance for multiple times experiments for controllers C1, C2,
and C3 under wind disturbance.
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FIGURE 4.16: RSME and error variance for multiple times experiments for controllers C4, C5,
and C6 without disturbance.
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FIGURE 4.17: RSME and error variance for multiple times experiments for controllers C4, C5,
and C6 under wind disturbance.

4.4.2 Power and Energy Evaluation

The electric DC motors utilized in the quadcopter experimental testbed are assumed to be iden-

tical resistance loads, therefore the power consumption of each motor during flight can be esti-

mated by applying Eq. (2.21). The power consumption profiles for each motor during trajectory

tracking are shown in Figs. 4.18 and 4.19. Power of each motor is calculated from control in-

puts u1, u2, u3, and u4 which are obtained in the experiments, together with their description in

Chapter 2, and apply to Eqs. (2.20) and (2.21).
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The chatter of control input causes corresponding chatter in the profiles of the power consumed

by the motors as shown in Figs. 4.18 and 4.19. The sat(.) function reduces the chattering

effect for both sliding surface functions in the conditions without/under wind disturbance. The

total energy consumed in each motor is calculated by integrating the power during the flight.

By conducting several times experiments, the chattering effect on the energy consumption is

evaluated, and the results are given in Fig. 4.20. It is apparent that the sat(.) function contributes

to reduce the energy consumption during the flight. In the experiments for the PD-based sliding

surface function in Eq. (4.3) without wind disturbance, the controller C2 consumes less energy

compared to the controllers C1 and C3, as shown in Fig. 4.20 (a). On average, controller

C2 consumes energy approximately 2.25% less than C1 and 1.97% less than C3. While in

condition under wind disturbance in Fig. 4.20 (b), on average, controller C2 consumes energy

approximately 1.61% less than C1 and 1.75% less than C3. If we apply the PID-based sliding

surface in Eq. (4.4), the sat(.) function is also effective to reduce the energy consumption, as

shown in Fig. 4.20 (c) and (d). In condition without wind disturbance, on average, controller C5

consumes energy approximately 1.48% less than C4 and 1.59% less than C6. while in condition

under wind disturbance, on average, controller C5 consumes energy approximately 2.18% less

than C4 and 3.82% less than C6.
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FIGURE 4.18: Profiles of power on each motor for controllers C1, C2, and C3 (a) without
disturbance, (b) under wind disturbance.
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FIGURE 4.19: Profiles of power on each motor for controllers C4, C5, and C6 (a) without
disturbance, (b) under wind disturbance.
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FIGURE 4.20: Total energy consumption of the motors; (a) controllers C1, C2, and C3 without
disturbance; (b) controllers C1, C2, and C3 under wind disturbance; (c) controllers C4, C5, and

C6 without disturbance; (d) controllers C4, C5, and C6 under wind disturbance.

4.5 Conclusion

In this chapter, SMC strategy that utilizes a PD-based sliding surface and a PID-based sliding

surface are presented for stabilizing and tracking controller of a quadcopter. An energy reduc-

tion on SMC design is performed by reducing the chattering phenomenon. A boundary layer

method is applied in reducing the chattering phenomenon and is effective to reduce the energy

consumption of a quadcopter which is confirmed experimentally using a quadcopter testbed.
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However, the boundary layer method that replaces the discontinuous control input in SMC strat-

egy with a continuous control input reduces the robustness of the controller. Therefore, it is

important to design other controller that provides both robustness and energy efficient.



Chapter 5

Robust Tracking Control of a
Quad-Rotor Helicopter Utilizing
Sliding Mode Control with a Nonlinear
Sliding Surface

5.1 Introduction

In SMC strategy, behavior of the system in the sliding mode condition and overall closed-loop

dynamics depend on the design of the sliding surface function. In this chapter, the sliding surface

is proposed with the nonlinear function. We design two nonlinear functions with different char-

acteristics. The first nonlinear sliding surface (NSS-1) is designed to improve the time-constant

within the sliding mode condition as a function of error [86]. If error increases, the time-constant

is reduced and if error decreases convergence to zero, the time-constant increases convergence

to a constant number. The second nonlinear sliding surface (NSS-2) is designed in contrarily

characteristic with NSS-1 [55]. The large error increases the time-constant convergence to a

maximum value and by decreasing of error, the time-constant is reduced and converges to a

minimum value. Therefore, with a minimum time-constant in the smallest error, the system

responds quickly from the first time error occurs. By varying the time-constant, the tracking

performance is improved. In addition, the energy consumption during the control operation is

also reduced. The Lyapunov stability theory is utilized to prove the stability of these proposed

strategies. The effectiveness of these strategies are experimentally evaluated using a quadcopter

testbed in terms of robustness and energy efficiency by comparing with SMC strategy utilizing

the linear sliding surface. This chapter is related to the works presented in [86].

65
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5.2 Control System Design

Recalling the dynamics of the quadcopter given in Eq. (3.2) by considering the disturbance term

as follows:
ξ̇1 = ξ2

ξ̇2 = v+ρd

(5.1)

where ξ1 = [x,y,z,φ ,θ ,ψ]T is the position, ξ2 = [ẋ, ẏ, ż, φ̇ , θ̇ , ψ̇]T is the velocity, v= [vx,vy,vz,vφ ,vθ ,vψ ]
T

is the synthetic input, and ρd is the disturbance vector. An SMC strategy with a nonlinear sliding

surface is designed for the synthetic input v.

5.2.1 Nonlinear Sliding Surface Design

In order to improve the performance of the system during the sliding mode condition, we design

a nonlinear sliding surface (NSS) as follows:

s = [F−Ψ I][e1 e2]
T (5.2)

where s is the sliding surface vector, F = diag{Fi} ∈ ℜ6×6 is a positive diagonal matrix, I is a

6×6 identity matrix, e1 and e2 are tracking error vectors of ξ1 and ξ2 to the desired trajectories

ξ1d = [xd ,yd ,zd ,φd ,θd ,ψd ]
T and ξ2d = [ẋd , ẏd , żd , φ̇d , θ̇d , ψ̇d ]

T , respectively. Ψ = diag{Ψi}, i =

1,2, . . . ,6, consists of two different nonlinear function for NSS-1 and NSS-2. The NSS-1 is

designed with the following nonlinear function:

Ψi =−βi
exp(c|εi|)−1

exp(|εi|)
, εi ∈ e1, (5.3)

and NSS-2 is designed with the following nonlinear function:

Ψi =−βi

(
1− exp(−1)

exp(ε2
i )− exp(−1)

)
, εi ∈ e1, (5.4)

where βi > 0 and c> 1. The nonlinear function in Eq. (5.3) increases ”−Ψi” if error is increased,

and therefore the time-constant of sliding function in Eq. (5.2) is decreased. If error decreases

convergence to zero then ”−Ψi” is decreased convergence to zero. Hence, the time-constant of

sliding function in Eq. (5.2) increases convergence to a constant value, F−1
i .

Conversely, the NSS-2 provides a contrarily characteristic on the sliding surface function. If

εi→ ∞, Ψi→ 0 therefore the time-constant of sliding function in Eq. (5.2) converges to F−1
i ,

which is the maximum value. If εi → 0, Ψi → −βi, and hence the time-constant of sliding

function in Eq. (5.2) goes to the minimum value, (Fi +βi)
−1. Characteristic of these nonlinear

sliding surface functions and the linear sliding surface function (LSS) are illustrated in Fig. 5.1.
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FIGURE 5.1: Characteristic of LSS, NSS-1, and NSS-2.

These two nonlinear functions also provide different profiles of the sliding surface as function

of tracking error as shown in Fig. 5.2. It is seen that the NSS-1 and NSS-2 provide a nonlinear

behaviour while the LSS provides a linear one.

FIGURE 5.2: Profiles of sliding surface functions for LSS, NSS-1, and NSS-2.

These two nonlinear functions provide Ψi ≤ 0 therefore the sliding surface function in Eq. (5.2)

is a stable function. Stability of this sliding surface function is described as follows.

The sliding mode condition is achieved when s = 0, and therefore we have the following dy-

namics:

e2 =−(F−Ψ)e1 (5.5)
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where e2 = ė1. Let us consider candidate of the Lyapunov function for dynamics in Eq. (5.5) as

follows:

V =
1
2

eT
1 e1 (5.6)

Taking the first derivative of Lyapunov function in Eq. (5.6) by considering Eq. (5.5), we have

V̇ =−eT
1 (F−Ψ)e1 (5.7)

Because (F −Ψ) > 0 then V̇ is negative definite and hence the sliding surface in Eq. (5.2) is

stable.

5.2.2 Controller Design Via Lyapunov Stability Analysis

The sliding mode condition is achieved by designing a control law for the dynamics in Eq. (5.1).

Let us consider a candidate of the Lyapunov function for the system in Eq. (5.1) as follows:

V =
1
2

sT s (5.8)

Differentiating Eq. (5.8), we have

V̇ = sT ṡ (5.9)

Considering the differentiation of Eq. (5.2) and substituting it into Eq. (5.9), we have

V̇ = sT (ė2 +(F−Ψ)ė1− Ψ̇e1) (5.10)

Ψ̇ = diag{Ψ̇i} is the time derivative of Ψ which consists of

Ψ̇i =−ε̇isign(εi)

(
βic

exp(c|εi|)
exp(|εi|)

+Ψi

)
, ε̇i ∈ e2 (5.11)

for NSS-1, and for NSS-2 is as follows:

Ψ̇i =Ψ
′
iε̇i, ε̇i ∈ e2

Ψ
′
i =−2Ψi

εiexp(ε2
i )

exp(ε2
i )− exp(−1)

(5.12)

The tracking errors of the system in Eq. (5.1) to the desired trajectories ξ1d and ξ2d are defined

as follows:
e1 =ξ1−ξ1d

e2 =ξ2−ξ2d

(5.13)
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Differentiating Eq. (5.13) and substituting it into Eq. (5.10) together with the dynamics in Eq.

(5.1), the time derivative of the Lyapunov function candidate can be written as

V̇ = sT ((F−Ψ)ė1− Ψ̇e1 + v+ρd− ξ̇2d) (5.14)

We consider the control input v as follows:

v =−(F−Ψ)ė1 + Ψ̇e1−Ks−Q sign(s)+ ξ̇2d) (5.15)

where K = diag{Ki} ∈ ℜ6×6 and Q = diag{Qi} ∈ ℜ6×6 are positive definite matrices. Substi-

tuting Eq. (5.15) into Eq. (5.14), we obtain

V̇ = sT (−Ks−Q sign(s)+ρd) (5.16)

If Qi > |ρdi|, ρdi ∈ ρd , then V̇ is negative definite, and hence the system in Eq. (5.1) is stabilized

by the control input in Eq. (5.15). If |ρdi| is known, the control designers can assign the value

of Qi in advance in controller design. If knowing |ρdi| is difficult, the control designers have to

assign the value of Qi conservatively.

Considering the control input v in Eq. (5.15) with the sliding surface in Eq. (5.2), and substi-

tuting to the dynamics in Eq. (5.1), we have the closed loop dynamic of the control system as

follows:

ë1 +(K +F−Ψ)ė1 +(K(F−Ψ)− Ψ̇)e1 +Q sign(s)−ρd = 0 (5.17)

Considering the linear terms of Eq. (5.17), the varying of Ψ and Ψ̇ cause the closed loop

properties of the system, damping ratio and natural frequency, to be varying depend on the

tracking error. Profile of damping ratio and natural frequency for the NSS-1 and NSS-2 together

compared with the linear sliding surface (LSS) are illustrated in Fig. 5.3. It is seen that the NSS-

1 and NSS-2 have varying damping ratio (ζr) and natural frequency (ωn) while LSS provides

fix value, and hence converging characteristic of errors position and velocity are different. The

system with high ωn or low ζr provides faster response but consume more energy than the system

with low ωn or high ζr. Therefore by varying the ωn and ζr, the advantages of having low and

high ωn and ζr can be obtained.
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FIGURE 5.3: Profiles of damping ratio and natural frequency for SMC with NSS-1, NSS-2,
and LSS.

5.3 Experimental Results

In order to evaluate the effectiveness of the proposed control strategies, we perform experiments

using the experimental quadcopter testbed shown in Fig. 2.2. The desired trajectory is designed

similar to the trajectory given in the previous chapter in Fig. 4.1. The gain parameters of control

input in Eq. (5.15) are tuned to achieve the best experimental results, and are obtained as follows

(unit are omitted):

• For NSS-1:
c =2

K =diag{3,3,12,12,12,80}

Q =diag{0.1,0.1,0.3,0.2,0.3,0.5}

F =diag{8,9,9,13,14,90}

β =[14,13,30,20,20,200]T
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• For NSS-2:
K =diag{3,3,8,10,9,80}

Q =diag{0.1,0.1,0.3,0.2,0.3,0.5}

F =diag{3,3,8,9,10,50}

β =[5,6,10,12,12,60]T

where β = [β1, . . . ,β6]
T . For the comparison purpose, we utilize the linear sliding surface (LSS)

equation given in Eq. (4.3) together with the control input in Eq. (4.8). To provide fair compari-

son, we chose q = Q and tune the other parameters to achieve the best experimental results, and

are given as follows:
k =diag{4.5,4,12,18,20,100}

q =diag{0.1,0.1,0.3,0.2,0.3,0.5}

λ =diag{6,7,10,10,10,70}

Trough the experiments, we evaluate the effectiveness of the proposed strategies in terms of

robustness and energy saving.

5.3.1 Robustness Evaluation

By applying the gain parameters given in the previous subsection to track the desired trajectory

in Fig. 4.1 in condition without disturbance, we obtain a tracking trajectory results for both

sliding mode controllers with nonlinear sliding surface (NSS-1 and NSS-2) and LSS as shown

in Fig. 5.4. The tracking error in Fig. 5.5 shows that the SMC strategy with NSS provides better

performance compared to that with LSS, especially in maneuver motion, while in stabilization

(constant position) both control strategies provide similar error tracking. Furthermore, in ma-

neuver motion, the sliding mode control with NSS-1 provides better performance compared to

those with NSS-2 and LSS. It can also be confirmed by performing several times experiments

as shown in Fig. 5.8 that on average the NSS-1 produces relatively smaller variance of error.

Robustness of the proposed strategies is evaluated by applying a wind disturbance, and the re-

sults are shown in Figs. 5.6 and 5.7. It is seen that the SMC strategy with NSS provides more

robustness by producing smaller chatter in the tracking error as shown in Fig. 5.7. The NSS-1

performs better in maneuver motion compared to those with NSS-2 and LSS as shown in Fig.

5.7. However, on average the NSS-2 provides better performance in condition under disturbance

by producing relatively smaller root-squared mean error (RSME) and/or error variance as shown

in Fig. 5.9. Results of these multiple times experiments are summarized in Tables 5.1 and 5.2
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TABLE 5.1: Average of root-squared of mean error (RSME) and error variance (Var) for ex-
periments without disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

SMC with LSS 10.191 1.232 0.281 2.546

SMC with NSS-1 11.249 1.395 0.241 2.341

SMC with NSS-2 11.211 1.167 0.282 3.142

TABLE 5.2: Average of root-squared of mean error (RSME) and error variance (Var) for ex-
periments under wind disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

SMC with LSS 17.853 1.436 0.509 5.859

SMC with NSS-1 15.247 1.380 0.347 4.691

SMC with NSS-2 14.877 1.071 0.444 3.893

Profiles of the control inputs in both experiment’s conditions without and under wind distur-

bance are shown in Figs. 5.10 and 5.11. It is seen that the SMC strategy with LSS produces

higher oscillation especially for inputs u2 and u3 in the experiment under wind disturbance for

maneuver motion as shown in Fig. 5.11.
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FIGURE 5.4: Trajectory tracking without disturbance



Chapter 5. Robust Tracking Control of a Quad-Rotor Helicopter Utilizing Sliding Mode
Control with a Nonlinear Sliding Surface 74

0 10 20 30 40 50 60
−0.1

0

0.1

 x
  (

m
)

−0.1 0 0.1
0

10

20

di
st

r.e
rr

. x

0 10 20 30 40 50 60
−0.1

0

0.1

 y
  (

m
)

 

 

LSS
NSS−1
NSS−2

−0.1 0 0.1
0

20

40

di
st

r.e
rr

. y

0 10 20 30 40 50 60
−0.1

0

0.1

 z
  (

m
)

−0.1 0 0.1
0

50

di
st

r.e
rr

. z
(m)

0 10 20 30 40 50 60
−20

0

20

 φ
  (

de
g)

−20 0 20
0

0.2

0.4
di

st
r.e

rr
. φ

0 10 20 30 40 50 60
−20

0

20

 θ
  (

de
g)

−20 0 20
0

0.2

0.4

di
st

r.e
rr

. θ

0 10 20 30 40 50 60
−5

0

5

 ψ
  (

de
g)

time (s)
−5 0 5
0

0.5

1

di
st

r.e
rr

. ψ

FIGURE 5.5: Tracking error without disturbance
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FIGURE 5.6: Trajectory tracking under wind disturbance
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FIGURE 5.7: Tracking error under wind disturbance



Chapter 5. Robust Tracking Control of a Quad-Rotor Helicopter Utilizing Sliding Mode
Control with a Nonlinear Sliding Surface 77

0 2 4 6 8
0.005

0.01

0.015
 x

  (
m

)
mean

0 2 4 6 8
0

0.5

1
x 10

−3

 x
  (

m
)

variance

0 2 4 6 8
0

0.005

0.01

 y
  (

m
)

0 2 4 6 8
0

2

4
x 10

−4

 y
  (

m
)

 

 

LSS
NSS−1
NSS 2

0 2 4 6 8
0.01

0.015

0.02

 z
  (

m
)

0 2 4 6 8
6

8

10

12
x 10

−5

 z
  (

m
)

0 2 4 6 8
0

1

2

 φ
  (

de
g)

0 2 4 6 8
3

4

5

6

 φ
  (

de
g)

0 2 4 6 8
1.5

2

2.5

3

 θ
  (

de
g)

0 2 4 6 8
0

2

4

6

 θ
  (

de
g)

0 2 4 6 8
0.8

1

1.2

number of trial

 ψ
  (

de
g)

0 2 4 6 8

0.5

1

number of trial

 ψ
  (

de
g)

FIGURE 5.8: RSME and error variance in several times experiments without disturbance



Chapter 5. Robust Tracking Control of a Quad-Rotor Helicopter Utilizing Sliding Mode
Control with a Nonlinear Sliding Surface 78

0 2 4 6 8
0.02

0.03

0.04

 x
  (

m
)

mean

0 2 4 6 8
0.5

1

1.5
x 10

−3

 x
  (

m
)

variance

0 2 4 6 8
0

5

x 10
−3

 y
  (

m
)

0 2 4 6 8
2

4

6
x 10

−4

 y
  (

m
)

 

 

LSS
NSS−1
NSS−2

0 2 4 6 8
0.01

0.02

 z
  (

m
)

0 2 4 6 8
4

6

8
x 10

−5

 z
  (

m
)

0 2 4 6 8
0

1

2

 φ
  (

de
g)

0 2 4 6 8
0

5

10

15

 φ
  (

de
g)

0 2 4 6 8
0

1

2

3

 θ
  (

de
g)

0 2 4 6 8
2

4

6

8

 θ
  (

de
g)

0 2 4 6 8
0.5

1

1.5

number of trial

 ψ
  (

de
g)

0 2 4 6 8
0.5

1

1.5

2

number of trial

 ψ
  (

de
g)

FIGURE 5.9: RSME and error variance in several times experiments under wind disturbance
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FIGURE 5.10: Profiles of control inputs in the experiment without disturbance
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FIGURE 5.11: Profiles of control inputs in the experiment under wind disturbance
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5.3.2 Power and Energy Evaluation

The electric power consumed on each actuator in the experiments without and under wind dis-

turbance are shown in Figs. 5.12 and 5.13. The total energy consumed on each actuator is

calculated by integrating the power during the control operation. Total energy consumed by all

actuators for several times experiments in the conditions without and under wind disturbance

are shown in Fig. 5.14. It is seen that the SMC strategy with NSS consumes less energy in

condition under disturbance while that with LSS is efficient in condition without disturbance.

In experiments without disturbance, the average energy consumption for the SMC strategy with

LSS is about 274.78 mWh, NSS-1 is bout 278.455 mWh, and NSS-2 is about 277.261 mWh.

While in experiments under wind disturbance, on average, the energy consumption for LSS is

about 285.57 mWh, NSS-1 is about 280.071 mWh, and NSS-2 is about 278.718 mWh.
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FIGURE 5.12: Profiles of power on each motor in the experiment without disturbance
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FIGURE 5.13: Profile of power on each motor in the experiment under wind disturbance
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FIGURE 5.14: Total energy consumed by the actuators in several times experiments: (a) with-
out disturbance; (b) under wind disturbance.

5.4 Conclusion

In this chapter, we design two nonlinear sliding surfaces to make a varying time-constant in

sliding mode condition for an SMC strategy of a quadcopter. These nonlinear sliding functions

have different characteristics and both are designed as a function of tracking error. The first

sliding function (NSS-1) reduces the time-constant if error increases, and therefore the system

responds faster to reduce the error. If error is reduced going to zero then the time-constant

is increased goes to a constant value. The second sliding function (NSS-2) is designed in a
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contrarily characteristic with NSS-1. The NSS-2 increases the time-constant goes to a maximum

value if error is increased goes to infinity. If error is reduced convergence to zero, the time-

constant reduces convergence to a minimum value. Therefore, the NSS-2 responds faster in a

small tracking error. The stability of these strategies are guaranteed in the sense of Lyapunov

stability theory. Effectiveness of the proposed strategies are experimentally evaluated using an

experimental quadcopter testbed. From the characteristic of the two sliding functions, the SMC

strategy with NSS-1 is effective for a maneuver motion and that with NSS-2 is effective in

stabilization. This is also confirmed by experimental results. The nonlinear sliding surface is

also effective to reduce the energy consumption especially in the experiments condition under

wind disturbance. Therefore, it is appropriate for an outdoor application where the quadcopter

is influenced by unknown disturbance.



Chapter 6

A Nonlinear Sliding Surface for the
Second-Order Sliding Mode Control

6.1 Introduction

In some applications of a quadcopter, robust tracking performance is needed against dynamics

uncertainty and unpredictable disturbance such as wind gust. SMC strategy is a well known

robust controller which has invariant characteristics in the sliding mode condition, and has been

applied in the quadcopter [4, 7, 8, 14, 21, 24, 43, 44, 48–51, 53, 54, 60, 86]. The invariant

characteristics of SMC strategy is generated by the switching function in the control design

which produces chattering phenomenon.

Practically, this chatter should be avoided or at least reduced because it can harms the actuator.

In Chapter 4, the chatter reduction is addressed by designing a boundary layer near the sliding

surface. Unfortunately, this method does not guarantee the invariant property. The second-order

sliding mode control becomes a good alternative solution to reduce the chatter because it ensures

the invariant property of the SMC strategy [78, 89, 90]. This method shifts the switching func-

tion which is the source of chatter into the second-order time-derivative of the sliding surface

while in the standard SMC the switching function is in the first-order. Among the designs of the

second-order SMC, the super-twisting algorithm (STA) is a reasonable choice because it needs

only the information of sliding surface [78], and has been applied in a quadcopter [10, 53, 54].

In practical, it is arduous to choose appropriate control parameters of STA to obtain a good per-

formance because the classical STA has a strong behavior only against the disturbance around

the origin (zero state) but it is weak at states far from the origin [80]. Moreno and Osorio pro-

posed a generalized-STA (GSTA) to improve this weakness [79]. The GSTA includes a linear

stabilizing term which has a strong behavior when the state is far from the origin, and provides

robustness in both conditions, far and around the origin.

83
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In the SMC strategy, the closed-loop dynamics depends on the design of the sliding surface. In

order to improve the performance of the SMC, a time-varying sliding surface is considered pre-

viously in Chapter 5. Two nonlinear sliding surfaces, NSS-1 and NSS-2, those provide different

characteristics in the sliding mode condition are presented. On average, in condition under dis-

turbance, the NSS-2 provides better performance then NSS-1 by resulting smaller root-squared

mean error and consuming less energy. In this chapter, the time-varying sliding surface with

NSS-2 is applied for the second-order SMC [55, 91]. The GSTA-SMC is utilized for the robust

tracking control of a quadcopter. The new nonlinear sliding surface equation as a function of

tracking error is introduced to reduced the energy consumption through designing a time varying

properties of the closed-loop dynamics (damping ratio and natural frequency). The GSTA-SMC

method is utilized to provide a robustness before and during the sliding mode. Stability of the

proposed method in and out of sliding mode is proved by the Lyapunov stability theory. The

effectiveness and reliability of the proposed method are evaluated in several times experiments

with a quadcopter experimental testbed. This chapter is related to the works presented in [91]

6.2 Development of Control System

Recalling the dynamics of a quadcopter in Eq. (3.2) by including a disturbance vector γd , and

rewrite in a simple form as follows:
η̇1 = η2

η̇2 = v+ γd

(6.1)

where η1 = ξ = [x,y,z,φ ,θ ,ψ]T and η2 = ξ̇ . v = [vx,vy,vz,vφ ,vθ ,vψ ]
T is the synthetic input

which is designed by using the second-order sliding mode control strategy. In the second-order

SMC strategy, the sliding mode condition is characterized as follows in [92]

s = ṡ = 0 (6.2)

where s and ṡ are the sliding surface and its first derivative, respectively. Furthermore, the

robustness which is provided by invariant characteristic occurs in this condition. The switching

function as the source of invariance appears in the second derivative of s. A nonlinear sliding

surface is utilized to improve the performance of the closed-loop control system.

6.2.1 Sliding Surface Equation

By letting e = η1−η1d be the tracking error, where η1d is the desired trajectory for ξ , in the

standard SMC, the sliding surface of a second-order system in Eq. (6.1) is designed as a linear
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differential equation as follows [59]:

s = diag
{(

d
dt

+λ1

)
, . . . ,

(
d
dt

+λ6

)}
e (6.3)

where s is a vector of sliding surface in all DOF, and λi (i = 1, . . . ,6) is a positive constant to

guarantee the stability in the sliding mode. By denoting λ = diag{λ1, . . . ,λ6}, Eq. (6.3) can be

rewritten as

s = λe+ ė (6.4)

In this work, we change the positive constant matrix λ into a positive nonlinear function matrix

such that the closed-loop properties of the system are changed from its original value as the

output approaches the desired trajectory, named as a nonlinear sliding surface (NSS). The NSS

for dynamics in Eq. (6.1) is designed as follows:

s = (F +Ψ)e+ ė (6.5)

where F = diag(F1, . . . ,F6) ∈ ℜ6×6 is a positive definite diagonal matrix and the matrix Ψ =

diag(Ψ1, . . . ,Ψ6) ∈ℜ6×6 consists of the following nonlinear functions:

Ψi = βi

(
1− exp(−1)

exp(ε2
i )− exp(−1)

)
, εi ∈ e (6.6)

We choose βi > 0 to guarantee Ψi > 0. Designing βi is discussed later in the next section.

6.2.2 Stability of Sliding Surface

The switching function, which contributes to the invariant property, is shifted into the second-

order. ṡ is obtained by taking the first derivative of s in Eq. (6.5) as follows:

ṡ = (F +Ψ)ė+ Ψ̇e+ ë, (6.7)

where ë = η̇2− η̇2d , η̇2d is the desired acceleration vector, and Ψ̇ is a 6× 6 diagonal matrix

whose elements consist of the first derivative of Eq. (6.5) as follows:

Ψ̇i =Ψ
′
iε̇i, ε̇i ∈ ė

Ψ
′
i =−2Ψi

εiexp(ε2
i )

exp(ε2
i )− exp(−1)

, εi ∈ e
(6.8)
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Considering the sliding mode condition in Eq. (6.2) and applying to Eqs. (6.5) and (6.7), we

have the following equations
ė =−(F +Ψ)e

ë =−Ψ̇e− (F +Ψ)ė
(6.9)

Since F , Ψ, and Ψ̇ are diagonal matrices, the stability of dynamics in Eq. (6.9) can be confirmed

in each DOF independently. The Lyapunov function candidate in each DOF is given as follows:

V =
1
2

ε
2
i +

1
2

ε̇
2
i (6.10)

Taking the first derivative of Eq. (6.10) by considering Eqs. (6.8) and (6.9), we have

V̇ =−
{

1+(Fi +Ψi)
2− 2Ψi(Fi +Ψi)ε

2
i exp(ε2

i )

exp(ε2
i )− exp(−1)

}
(Fi +Ψi)ε

2
i (6.11)

Because Fi > 0 and Ψi > 0, by choosing proper Fi and βi we have V̇ ≤ 0. Therefore the stability

in the sliding mode condition in Eq. (6.9) is guaranteed, and good tracking performance can be

achieved.

6.2.3 Controller Design

The invariant property that provides robustness in the sliding mode control strategy occurs in

the sliding mode condition. Before reaching the sliding mode condition, namely in the reaching

phase, the system is susceptible to the disturbance. Therefore it is important to design a control

law that forces the system starting from the reaching phase into the sliding surface.

By considering dynamics in Eq. (6.1), the dynamics of sliding surface in Eq. (6.7) is rewritten

as follows:

ṡ = (F +Ψ)ė+ Ψ̇e+ v+ γd− η̇2d (6.12)

In order to design the control law with strong behavior starting from any initial states, the syn-

thetic input v is designed as follows:

v =veq−Ca

(
|s|

1
2 sign(s)+Gs

)
−

t∫
0

Cb

(
1
2

sign(s)+
3G
2
|s|

1
2 sign(s)+G2s

)
dt, (6.13a)

veq =− (F +Ψ)ė− Ψ̇e+ η̇2d , (6.13b)

where G= diag{G1, . . . ,G6}∈ℜ6×6, Ca = diag{Ca1, . . . ,Ca6}∈ℜ6×6, and Cb = diag{Cb1, . . . ,Cb6}∈
ℜ6×6 are all positive definite diagonal matrices. This control law forces the system in Eq. (6.1)

from any initial states towards the sliding mode condition in Eq. (6.2) against the disturbance.
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From the synthetic control input v = [vx,vy,vz,vφ ,vθ ,vψ ]
T in Eq. (6.13), we define the original

inputs u1, u2, u3, and u4 by using the method presented in [43, 83], and are obtained as follows:

u1 = m
√

v2
x + v2

y +(vz +g)2 (6.14)

[u2,u3,u4]
T = J[vφ ,vθ ,vψ ]

T − [K1(Θ,Θ̇),K2(Θ,Θ̇),K3(Θ,Θ̇)]T (6.15)

6.2.4 Existence of Sliding Mode

By considering control law in Eq. (6.13) and dynamics in Eqs. (6.1) and (6.7), the dynamics in

Eq. (6.12) can be rewritten in each DOF as follows:

ṡi =−CaiΦ1i +ρi + γdi (6.16a)

ρ̇i =−CbiΦ2i (6.16b)

where

Φ1i =|si|
1
2 sign(si)+Gisi (6.17a)

Φ2i =
1
2

sign(si)+
3Gi

2
|si|

1
2 sign(si)+G2

i si (6.17b)

The dynamics in Eq. (6.16) has the same form with the system presented in [80].

In order to guarantee the convergence of si and ṡi to zero in which the sliding mode exists,

first we prove the convergence of Φ1i and ρi, and therefore from Eqs. (6.16a) and (6.17a) the

convergence of si and ṡi are confirmed.

Firstly, let us assume that there exists a positive constant d1i such that

2|γdi| ≤ d1i|Φ1i|, (6.18)

To prove the convergence of Φ1i and ρi, let us consider the Lyapunov function candidate for the

system in Eq. (6.16) as follows:

V = ς
T Pς (6.19)

where P = PT is a symmetric positive definite matrix and ςT = [Φ1i ρi]. Taking the first deriva-

tive of Eq. (6.19), we have

V̇ = ς̇
T Pς + ς

T Pς̇ (6.20)
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where ς̇ is obtained by considering Eq. (6.16b) and the first derivative of Eq. (6.16a), and we

have
ς̇ =Φ

′
1iAς +Φ

′
1iD

Φ
′
1i =Gi +

1

2|si|
1
2
, A =

[
−Cai 1

−Cbi 0

]
, D =

[
γdi

0

]
.

(6.21)

Hence, the first derivative of Lyapunov function candidate in Eq. (6.20) is rewritten as follows:

V̇ = Φ
′
1iς

T [AT P+PA]ς +2Φ
′
1iD

T Pς (6.22)

By considering disturbance bound in Eq. (6.18) and AT P+PA=−Q where Q=QT is a positive

definite matrix, we have
V̇ ≤−Φ

′
1iς

T [Q−∆P]ς

∆ =

[
d1i 0

0 0

]
(6.23)

For a specific positive definite matrix P=PT , Gi > 0, Cai > 0, and Cbi > 0, we have [Q−∆P]> 0,

and therefore V̇ can be negative definite. Thus, dynamics in Eq. (6.16) can be a stable system,

and si and ṡi converge to zero. The stability of the dynamics in Eq. (6.16) was also proven in

[80].

6.2.5 Closed Loop Configuration

The overall closed-loop dynamics of the control system is obtained by substituting the synthetic

input in Eq. (6.13) into the dynamics in Eq. (6.1), and considering the sliding surface in Eq.

(6.5). We have the closed-loop dynamics of the quadcopter control system as follows:

ë+(CaG+F +Ψ)ė+
(
CaG(F +Ψ)+ Ψ̇+CbG2)e+

t∫
0

CbG2 ((F +Ψ)e)dt

+Ca|s|
1
2 sign(s)+

t∫
0

Cb

(
1
2

sign(s)+
3G
2
|s|

1
2 sign(s)

)
dt− γd = 0

(6.24)

Considering only linear differential equation terms in Eq. (6.24), it is seen that the properties

of closed-loop dynamics varies according to the nonlinear function Ψ and its derivative. For

the comparison purpose, we utilize the linear sliding surface (LSS) in Eq. (6.4) to obtain the

dynamics in Eq. (6.16), and then the control input veq in Eq. (6.13b) is designed as follows:

veq =−λ ė+ η̇2d , (6.25)
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The closed-loop dynamics with this control input is obtained as follows:

ë+(CaG+λ )ė+(CaGλ +CbG2)e+
t∫

0

CbG2(λe)dt

+Ca|s|
1
2 sign(s)+

t∫
0

Cb

(
1
2

sign(s)+
3G
2
|s|

1
2 sign(s)

)
dt− γd = 0

(6.26)

The properties of closed-loop dynamics in Eq. (6.26) is unchanged in real time because Ca, Cb, G,

and λ are constant. In addition, the dynamics in Eq. (6.24) has the same closed-loop properties

with (6.26) when the tracking error is zero.

6.3 Experimental Results

In this section, we evaluate the effectiveness of the proposed controller design in both robustness

and energy reduction aspects. A comparative result to the second-order SMC with LSS is also

presented. We conduct experiments with an experimental quadcopter testbed shown in Fig. 2.2.

The desired trajectory is designed similar to the trajectory given in the previous chapter in Fig.

4.1.

6.3.1 Robustness Evaluation

In order to evaluate the effectiveness of the proposed control strategy, first we perform experi-

ments by using the second-order SMC with LSS. The control input parameters in Eqs. (6.13a)

and (6.25) are tuned to achieve the best experimental results and are obtained as follows:

Ca =diag{0.2,0.13,0.5,0.35,0.3,1.3},

Cb =diag{0.01,0.01,0.01,0.01,0.01,0.01},

G =diag{6,6,12,15,15,17}, and

λ =diag{26,14,17,29,25,320}.

The difference from our proposed control strategy is the sliding surface equation. In order to

have a fair comparison, we use the above control parameters and decompose λ into F and β ,

where λ = F +β = (F +Ψ)max, β = diag{β1, . . . ,β6}, and are obtained as follows:

F =diag{7,4,7,8,8,90}, and

β =diag{19,10,10,21,17,230}.
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Profiles of both sliding surface equation (LSS and NSS) in experiment without and under dis-

turbance are shown in Figs. 6.1 and 6.2. It is seen that NSS provides relatively smoother surface

compared to LSS especially in rotational motions.
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FIGURE 6.1: Profiles of sliding surface without disturbance
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FIGURE 6.2: Profiles of sliding surface under wind disturbance

Tracking trajectory and error resulting from both control strategies in the experiments without

disturbance and under wind disturbance (power: 57 W) are given in Figs. 6.3–6.6. It is seen that

both control strategies provide robustness in experiments without and under wind disturbance.

Robustness of these control strategies is also evaluated by applying relatively high disturbance

produced by three electric fan (power: 57 W, 49 W, and 37 W), and the tracking error perfor-

mances are shown in Fig. 6.7. Reliability of these methods is also evaluated by performing

seven times experiments and the results are illustrated in Figs. 6.8–6.10. On average, the perfor-

mances of both control strategies are relatively similar. Small differences are obtained in which

the second-order SMC with NSS provides relatively smaller squared-root mean error and/or er-

ror variance, which is also confirmed in Tables 6.1–6.3 as summary of Figs. 6.8–6.10. This

difference is caused by the nonlinear function Ψ and its derivative, Ψ̇. Profile of Ψ and Ψ̇ in

conditions without disturbance and under wind disturbance are given in Figs. 6.11 and 6.12. It
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is seen that Ψ and Ψ̇ have contribution when the trajectory changes or if tracking error exists.

The variation of Ψ and Ψ̇ contribute to change the closed-loop properties of system: natural

frequency (ω) and damping ratio (ζ ). Considering only the dominant poles of the linear differ-

ential equation part of Eqs. 6.24 and 6.26, and all tuned control parameters above, profiles of

the closed-loop properties of GSTA with LSS and NSS are given in Figs. 6.13–6.15. It is seen

that the LSS provides constant closed-loop properties while NSS has varying properties.

TABLE 6.1: Average of root-squared mean error (RSME) and error variance (Var) for experi-
ments without disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

GSTA with LSS 1.066 0.404 0.156 4.995

GSTA with NSS 0.825 0.378 0.242 4.658

TABLE 6.2: Average of root-squared mean error (RSME) and error variance (Var) for experi-
ments under low wind disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

GSTA with LSS 2.077 0.336 0.173 6.746

GSTA with NSS 1.614 0.434 0.189 6.563

TABLE 6.3: Average of root-squared mean error (RSME) and error variance (Var) for experi-
ments under high wind disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

GSTA with LSS 3.474 2.069 0.242 11.764

GSTA with NSS 2.388 0.967 0.125 7.979
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FIGURE 6.3: Trajectory tracking without disturbance
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FIGURE 6.4: Trajectory tracking under wind disturbance
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FIGURE 6.9: RSME and error variance for experiments under low wind disturbance
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FIGURE 6.10: RSME and error variance for experiments under high wind disturbance
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FIGURE 6.11: Profiles of Ψ and Ψ̇ in experiment without disturbance



Chapter 6. A Nonlinear Sliding Surface for the Second-Order Sliding Mode Control 102

0 20 40 60

18.6

18.8

19

Ψ
x

0 20 40 60
−2

0

2

Ψ̇
x

0 20 40 60
9.5

10

Ψ
y

0 20 40 60
−1

0

1

Ψ̇
y

0 20 40 60
9.9

9.95

10

Ψ
z

0 20 40 60
−1

0

1

Ψ̇
z

0 20 40 60
15

20

25

Ψ
φ

0 20 40 60
−5

0

5

Ψ̇
φ

0 20 40 60
14

16

18

Ψ
θ

0 20 40 60
−5

0

5

Ψ̇
θ

0 20 40 60

226

228

230

time (s)

Ψ
ψ

0 20 40 60
−100

0

100

time (s)

Ψ̇
ψ

FIGURE 6.12: Profiles of Ψ and Ψ̇ in experiment under low wind disturbance
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FIGURE 6.13: Profiles of closed-loop properties in experiment without wind disturbance
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FIGURE 6.14: Profiles of closed-loop properties in experiment under low wind disturbance
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FIGURE 6.15: Profiles of closed-loop properties in experiment under high wind disturbance

6.3.2 Energy Evaluation

The variance of Ψ, Ψ̇ and closed-loop properties as shown in Figs. 6.11– 6.15 contribute to the

profiles of control inputs as shown in Figs. 6.16 and 6.17, and power applied on each actuator as

shown in Figs. 6.18 and 6.19. From profiles of power on each actuator, it is seen that the SMC

with LSS provides higher power than that with NSS, especially on motor M3 for experiment

without disturbance, and motor M2 and motor M3 for experiment under wind disturbance. By
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integrating the power applied on each actuator during the flight control, total energy consumed

on each actuator can be obtained. By summing the energy consumption on all four actuators,

total electric energy consumed by all actuators is calculated and shown in Fig. 6.20. It is seen

that our proposed method effective to reduce energy consumption during completion a mission

in conditions without and under wind disturbance. On average, the second-order SMC with NSS

reduces total energy consumed by all four actuators from the second-order SMC with LSS by

about 4.8% when the disturbance does not exist, and by about 5.4% when a low disturbance

exists. By applying a high wind disturbance, the NSS can reduces the energy by about 2.9%.
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FIGURE 6.17: Profiles of control inputs in experiment under low wind disturbance
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FIGURE 6.20: Profiles of energy; (a) without disturbance; (b) under low wind disturbance; (c)
under high wind disturbance.

6.4 Conclusion

In this study, a nonlinear sliding surface for the second-order SMC is proposed for a robust

and energy-efficient controller design of a quadcopter. Stability of the proposed control system

is proved by the Lyapunov stability theory both in the sliding mode condition and beyond the

sliding mode condition. Effectiveness and reliability of the proposed method are evaluated by

performing several times experiments with an experimental quadcopter testbed. The proposed

method reduces the energy consumption from the second-order SMC with LSS in the experi-

ments without and under disturbance and improves the robustness performance by producing

relatively smaller RSME and/or error variance.





Chapter 7

Summary and Future Works

7.1 Summary

This thesis proposes a robust and energy-efficient controller for a quadcopter. First, a simple

and general control structure for the quadcopter is designed using a cascade structure. This

structure is divided into two loops: an outer loop and an inner loop. The outer loop handles

the translational motion, and the inner loop handles the rotational motion. The control law is

applied through synthetic input, which is designed in each motion. To cope with the under-

actuated problem of the quadcopter, the desired outputs are chosen as a translational position

(xd ,yd ,zd) and heading or yaw angle (ψd). The outer loop derives the original control input for

the translational motion by utilizing a least-squares algorithm to take into account all dynamics

in the translational motion. The outer loop also provides the desired role angle (φd) and pitch

angle (θd) using an algebraic calculation based on the translational motion dynamics. The orig-

inal inputs for the rotational motion are solved simply by applying the synthetic inputs obtained

from the control design in the inner loop to the rotational dynamics of the quadcopter. Using

this control structure, any general control algorithm can be applied easily for controlling the

quadcopter.

In this study, the robust control strategy is designed based on the SMC algorithm. The controller

is designed by considering the energy reduction in its operation. We initially reduced the en-

ergy consumption from the SMC design by reducing the chattering phenomenon. The chatter

reduction is attempted by designing a thin boundary layer around the sliding surface. From the

experiments, it is seen that the chatter reduction is effective in reducing the energy consumption.

Unfortunately, using the boundary layer method, which changes the discontinuous control input

to a continuous one within this layer, the robustness of the control system is reduced.

The behavior of closed-loop dynamics for the SMC strategy can be determined from the design

of the sliding surface, which is originally designed with a linear differential equation; therefore,
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the system has constant closed-loop properties. In this study, two nonlinear sliding surfaces

are proposed as a function of error to vary the time-constant within the sliding mode condition.

These nonlinear sliding surfaces have different characteristics in varying the time-constant as

changing of error. The first nonlinear sliding surface (NSS-1) reduces the time-constant if the

error increases; therefore, the control system responds faster to reduce the error. By reducing the

error, which converges to zero, the time-constant increases and converges to a constant value.

The second nonlinear sliding surface (NSS-2) is designed with an opposite characteristic from

NSS-1. NSS-2 increases the time-constant if error increases, and the time-constant decreases

to a constant value when the error converges to zero. In a zero or small error state, the con-

trol system response is faster; therefore, the controller reacts more strongly to the change in

this condition. These nonlinear sliding surfaces also provide a variation in the properties of

the overall closed-loop dynamics (damping ratio and natural frequency). The stability of these

proposed methods is evaluated by employing the Lyapunov stability theory. Furthermore, the

effectiveness of these two nonlinear sliding surfaces is evaluated using the experimental quad-

copter testbed. The experimental results show that both nonlinear sliding surfaces are effective

in improving the robustness of the control system in a wind disturbance condition from the SMC

strategy with a linear sliding surface, resulting in smaller root-squared mean error and error vari-

ance. These nonlinear sliding surfaces are also effective in reducing the energy consumption in

the wind disturbance condition. With both nonlinear sliding surfaces, NSS-2 is seen as more

effective than NSS-1, as shown in the experimental results.

Robustness and energy saving are important factors in designing the control system. With the

SMC strategy, the discontinuous control input provides robustness in the sliding mode condi-

tion. Therefore, it is important to keep this control input property, although it is also useful to

reduce the chatter for reducing the energy consumption. The second-order SMC strategy offers

a good solution for reducing the chattering phenomenon by keeping the discontinuous control

part. With this control strategy, the discontinuous control input is shifted into the second-order

time-derivative of the sliding surface function while in the standard SMC strategy, the discontin-

uous control input occurs in the first-order time-derivative of the sliding surface function. This

control strategy is also effective in improving the tracking performance because it includes an

integral part in the control input calculation. Among the designs for the second-order SMC,

STA becomes a reasonable choice because it needs only the sliding surface information. How-

ever, the original STA only provides strong behavior around the origin of the sliding surface.

To also provide strong behavior when the states are far from the origin of the sliding surface, a

linear stabilizing term is included, which is known as generalized-STA (GSTA). Furthermore,

to reduce energy consumption during the control operation, NSS-2 is utilized. The stability of

this proposed control strategy is guaranteed in the sense of the Lyapunov stability theory. The

effectiveness of the proposed method is evaluated by performing several repetitions of an experi-

ment using the experimental quadcopter testbed. The experimental results show that GSTA with
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a nonlinear sliding surface improves the robustness in comparison with GSTA using a linear

sliding surface by providing a relatively smaller root-squared mean error (RSME) and/or error

variance. In addition, GSTA with a nonlinear sliding surface consumes lesser energy than that

with a linear sliding surface.

To evaluate the performance of the control strategies discussed in this thesis in terms of robust-

ness and energy efficiency, the experimental results are summarized in the following tables:

TABLE 7.1: Root-squared mean error (RSME) and error variance (Var) for experiment without
disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

PD controller 16.11 0.334 2.838 5.517

PID controller 1.823 0.264 0.968 5.354

SMC with sign (PD LSS) 11.698 0.265 2.861 5.301

SMC with sat (PD LSS) 21.048 0.529 2.841 6.056

SMC with sign (PID LSS) 1.101 0.208 1.014 6.062

SMC with sat (PID LSS) 2.885 0.375 1.052 5.903

SMC with NSS-1 11.249 0.241 1.395 2.341

SMC with NSS-2 11.211 0.282 1.167 3.142

GSTA with LSS 1.067 0.404 0.156 4.995

GSTA with NSS 0.825 0.378 0.242 4.658

TABLE 7.2: Root-squared mean error (RSME) and error variance (Var) for experiment under
wind disturbance.

Translational motion Rotational motion

RSME (mm) Var (mm) RSME (deg) Var (deg)

PD controller 27.54 0.69 2.979 10.016

PID controller 2.729 0.406 0.745 7.714

SMC with sign (PD LSS) 23.946 0.598 2.681 8.206

SMC with sat (PD LSS) 33.345 0.962 3.018 11.304

SMC with sign (PID LSS) 1.777 0.380 0.616 7.367

SMC with sat (PID LSS) 3.785 0.481 0.648 7.473

SMC with NSS-1 15.247 0.347 1.380 4.690

SMC with NSS-2 14.877 0.444 1.071 3.893

GSTA with LSS 2.078 0.337 0.173 6.756

GSTA with NSS 1.615 0.434 0.189 6.563
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TABLE 7.3: Total energy consumption during the control operation.

without disturbance under disturbance

(mWh) (mWh)

PD controller 283.189 287.527

PID controller 288.165 298.036

SMC with sign (PD LSS) 281.383 283.216

SMC with sat (PD LSS) 278.095 282.902

SMC with sign (PID LSS) 283.568 282.152

SMC with sat (PID LSS) 283.592 279.872

SMC with NSS-1 278.455 280.071

SMC with NSS-2 277.261 278.718

GSTA with LSS 294.132 296.446

GSTA with NSS 280.171 280.446

Tables 7.1 and 7.2 show that GSTA with a nonlinear sliding surface (NSS) is superior in com-

parison with the other approaches by providing relatively small RSME for both translational

and rotational motion in conditions with and without wind disturbance. GSTA with NSS also

provides uniform performance in condition with and without wind disturbance by consuming

energy in a small difference amount, as shown in Table 7.3.

7.2 Future Works

• In this thesis, two nonlinear sliding surfaces (NSS-1 and NSS-2) are designed with dif-

ferent characteristics in the sliding mode condition. NSS-1 has stronger behavior if the

error is relatively large, and the NSS-2 has stronger behavior if the error is relatively small

or close to zero. However, the nonlinear sliding surface is not a unique function. There-

fore, it will be useful if the sliding surface function is designed with strong behavior in all

conditions.

• In this thesis, the magnitude of disturbances included in the quadcopter dynamics is un-

known and assumed to be bounded. However, if the magnitude of disturbances can be

estimated, it will be useful for improving control performance. In future works, this thesis

will be extended by applying a robust disturbance observer.

• Performance of the control strategies proposed in this thesis depends on the control pa-

rameter values. However, it is difficult to obtain appropriate values. In future works, it

will be useful if an adaptive algorithm can be designed to estimate the control parameters

so that optimum performance can be obtained.
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• The effectiveness and performance of all controller strategies discussed in this thesis are

evaluated using an experimental quadcopter testbed. In the future, this work will be ex-

tended by applying the proposed control strategies in a real autonomous quadcopter.





Appendix A

Overview of reduced-order observer

In the work of Katayama and Aoki [84], they considered a nonlinear sampled-data strict-feedback

system as follows:
ζ̇1 = f1(ζ1)+g1(ζ1)ζ2

ζ̇2 = f2(ζ1,ζ2,u)

y1(k) = ζ1(kT )

(A.1)

where ζ1 ∈ ℜn1 and ζ2 ∈ ℜn2 are continuous time states, u ∈ ℜm is the control input realized

through a zero-order hold, and y1 ∈ ℜn1 is a sampled-output from the sensor, and T > 0 is a

sampling period. The system in Eq. (A.1) naturally appears in the digital control of mechanical

systems where ζ1 and ζ2 express the position and velocity, respectively, and y1(k) = ζ1(kT )

means that only the position measurement at each sampling time is available for control. It is

also assumed that

A1: The mappings f1, f2, and g1 are smooth over the compact domain of interest, f1(0) = 0,

and f2(0,0,0) = 0.

A2: The m×m matrix Φ(·) = g1(·)T g1(·) is nonsingular and its inverse is bounded over the

compact domain of interest.

Let u(t) = u(kT ) =: u(k) for any t ∈ [kT,(k+1)T ). Then the difference equations corresponding

to the exact model and the Euler approximate model of the system in Eq. (A.1) are given by

η1(k+1) = η1(k)+
∫ (k+1)T

kT
[ f1(η1(s))+g1(η1(s))η2(s)]ds

η2(k+1) = η2(k)+
∫ (k+1)T

kT
[ f2(η1(s),η2(s),u(k))]ds

y1(k) = η1(k)

(A.2)
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and
η1(k+1) = η1(k)+T [ f1(η1(k))+g1(η1(k))η2(k)]

η2(k+1) = η2(k)+T [ f2(η1(k),η2(k),u(k))]

y1(k) = η1(k),

(A.3)

respectively. Note that (ζ1,ζ2)(kT ) = (η1,η2)(k) for the exact model. The exact model cannot

be generally computable, and hence the Euler approximate model is used for design purpose.

Then the following equation

η̂2(k+1) = (I−T H)η̂2(k)+T NT (y1(k),ρy1(k),u(k)) (A.4)

can be a reduced-order observer of the Euler model in Eq. (A.3), where H=diag{h1, . . . ,hn2},
|1−T hi|< 1, i = 1, . . . ,n2, ρ denotes the shift operator, i.e., (ρy1)(k) = y1(k+1),
NT (y1,ρy1,u) = HΨT (y1,ρy1)+ f2(y1,ΨT (y1,ρy1),u),

ΨT (y1,ρy1) = Φ(y1)
−1g1(y1)

T
{

ρy1− y1
T − f1(y1)

}
.

This observer is semiglobal and practical in T for the exact model in Eq. (A.2), i.e., there exist

β ∈ KL such that for any D > d > 0 and the compact sets Ω1 ∈ ℜn1 , Ω2 ∈ ℜn2 , U ∈ ℜm we

can find T ∗ > 0 with the property that ||η2(0)− η̂2(0)|| ≤ D and η1(k) ∈ Ω1, η2(k) ∈ Ω2, and

u(k)∈U for any k≥ 0 imply ||η2(k)− η̂2(k)|| ≤ β (||η2(0)− η̂2(0)||,kT )+d for all T ∈ (0,T ∗)
[84], where β ∈ KL means that for any fixed t ≥ 0, a function β (·, t) is continuous, zero at zero,

strictly increasing, and for each fixed s ≥ 0, β (s, ·) is decreasing to zero as its argument tends

to infinity [93]. The robustness of the observer in Eq. (A.4) against sampled observation noise

was also discussed in [94].
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