
Viewpoint Planning Framework for Single Guard
Robot in Indoor Environment

(屋屋屋内内内環環環境境境にににおおおけけけるるる見見見守守守りりりロロロボボボッッットトトののの
視視視点点点プププラララニニニンンングググににに関関関すすするるる研研研究究究)

July, 2015

Doctor of Engineering

Igi Ardiyanto

イイイギギギ　　　アアアルルルヂヂヂｲｲｲヤヤヤンンントトト

Toyohashi University of Technology

DATE : 2015/07/15

Dept. of Computer Science and Engineering ID D105319
Supervisor Prof. JUN MIURA

Name IGI ARDIYANTO

Abstract

Title Viewpoint Planning Framework for Single Guard Robot in Indoor Environment

For supporting human life, a robot needs to be close and interacts with human. Generally,
those closeness and interactions enforce the robot to have abilities for recognizing human and
having the space awareness. For a specific need, the robot also has to be equipped with a specific
ability, too. This ability is often imitated from the human behavior when one faces the same
task or situation.

The goal of this thesis is to make a guard robot which imitates the job of the guardians. The
robot is given a task to keep an eye on a person inside an indoor environment like the museum,
gallery, or exhibition room. Besides the main task of the robot which is to watch the person, the
robot also should be aware of the space in the environment in order to take its advantages. For
example, the robot can increase the efficiency of the batteries by stopping at the point which has
a large coverage. Another benefit is that the stopping robot can reduce noises and blurs in the
image frames due to the robot’s instability when the robot moves.

To accomplish the above problem, this thesis describes a global planning algorithm for
a single guard robot in an indoor environment. The planner is used for the guard robot to
continuously and effectively watch a certain object such as a person. Our proposed planner
exploits the topological features of the environment, by extracting a set of viewpoints using a
generalized coverage solver. We subsequently search for escaping gaps from which the target
may go out of the robot’s sight. We then plan the action for the robot based on a geodesic motion
model and escaping gaps. A stochastic approach and a greedy method are presented to choose an
optimal action. Particularly, a particle-based approach combined with a chance constraint bound
is utilized for ensuring that the target person is always under the robot visibility. Experimental
results using a 3D simulator and the real robot are provided to show the effectiveness and
feasibility of our algorithm.

i

Contents

Abstract i

Contents iii

List of Figures ix

List of Tables xiii

List of Theorems xv

1 Introduction 1

1.1 Research Backgrounds . 1

1.2 Related Work . 3

1.2.1 Art Gallery Problem . 3

1.2.2 Pursuit-evasion . 3

1.2.3 Watchman Route Problem . 3

1.2.4 Person Following Robot . 4

1.3 Contributions . 4

1.4 Thesis Organization . 5

2 Defining Guard Robot Problem 7

2.1 Problem Definition . 7

2.2 Simplifying The Guard Robot Problem . 8

2.2.1 Polygonal representation of the environment 8

2.2.2 Visibility polygon . 9

2.2.3 Concept of viewpoints for reducing the robot goal space 10

iii

2.2.4 Concept of escaping gaps . 11

2.2.5 Proposed framework for the guard robot 13

2.3 Proposed System Architecture . 13

3 Viewpoint Extraction via Generalized Coverage Solver 15

3.1 Introduction . 15

3.1.1 Related work . 16

3.1.2 Our contributions . 17

3.2 Generalized Coverage Problem . 18

3.2.1 Algorithm overview . 18

3.2.2 Planar polygon extraction from the environment map 19

3.2.3 Guard candidates from the ensemble features 19

3.2.3.1 Vertex guards . 20

3.2.3.2 Skeleton vertices as the interior guards 20

3.2.3.3 Coverage guarantee . 21

3.3 Hybrid optimization for coverage problem . 22

3.3.1 Arrangement of the guard’s visibility 22

3.3.2 The Art Gallery Problem as the Set Covering Problem 23

3.3.3 Non-unicost Set Covering Problem . 24

3.3.4 Hybrid probabilistic guard optimization 25

3.3.4.1 Initial optimization . 26

3.3.4.2 Iterative optimization . 26

3.3.5 Remarks . 31

3.4 Experiments and results . 31

3.4.1 Experimental settings . 31

iv

3.4.2 Art Gallery Problem . 33

3.4.3 Coverage problem with guard preferences 36

3.4.4 Coverage problem with arbitrary cost function 37

3.4.5 Computation time . 38

4 Viewpoint Planning Algorithm 41

4.1 Geodesic Motion Model for The Robot and The Target Person Movement 41

4.2 Viewpoint Planning using Deterministic/Greedy Approach 43

4.2.1 Planning using Cost Minimization . 44

4.3 Viewpoint Planning using Stochastic Optimization 46

4.3.1 Representing future states as particles . 47

4.3.2 The action plan based on chance constraint bound 48

4.3.3 Further consideration for the chosen action 51

5 Supporting Building Blocks: Path Planning Algorithm 53

5.1 Introduction . 53

5.1.1 Related Work . 54

5.1.2 Our Approach . 54

5.2 Arrival Time Field . 55

5.2.1 Definition . 55

5.2.2 Solving Eikonal Equation . 56

5.3 Heuristic Arrival Time Field-biased (HeAT) Random Tree 59

5.3.1 Definition . 59

5.3.2 Short-time Dynamic Obstacle Motion Model 60

5.3.3 Random Tree Algorithm . 60

5.3.4 Restarting Tree Algorithm . 65

v

5.3.5 Directing Initial Robot Heading . 65

5.3.6 Path Extraction . 66

5.3.7 Reusability of Path . 67

5.4 Experiment Results . 67

5.4.1 Simulation: Local Planner . 67

5.4.2 Simulation: Global Planner . 71

5.4.3 Comparison with Other Algorithms by Simulation 72

5.4.4 Experiment on Real Robots . 76

6 Supporting Building Blocks: Person Detection and Tracking 79

6.1 Introduction . 79

6.2 Model-based human upper body orientation estimation 80

6.2.1 Hierarchical system . 80

6.2.2 Human upper body detection . 81

6.2.3 Extracting features for human upper body orientation estimation 82

6.2.3.1 Shape cue . 82

6.2.3.2 Texture cue . 82

6.2.4 Partial Least Squares for modeling features 83

6.2.4.1 Partial Least Squares . 83

6.2.4.2 Block Importance Feature Model 84

6.2.5 Random Forest . 87

6.3 Integration of orientation estimation and tracking 88

6.3.1 Estimating human movement through its position in the real world 89

6.3.2 Tracking strategies . 90

6.3.2.1 State and observation models 90

vi

6.3.2.2 Unscented Kalman Filter tracker 91

6.3.2.3 Association . 93

6.3.2.4 ROI-based tracking . 94

6.4 Experiments . 94

6.4.1 Dataset . 95

6.4.2 Human upper body detection performance 96

6.4.3 Evaluation of the orientation estimation using various features and classifiers 97

6.4.4 Analysis of the PLS models . 99

6.4.5 Evaluation on integrated orientation estimation and tracking performances . 101

6.4.6 Comparison with the state-of-the-art . 102

6.4.7 Orientation estimation on moving camera 104

7 Implementation of Viewpoint Algorithm for The Guard Robot 105

7.1 Simulations using a realistic 3D simulator . 105

7.2 Comparison with the person following algorithm 111

7.3 Experiments on a real environment . 113

7.4 Experiments with Partial Occlusion . 113

8 Conclusions and Future Work 119

8.1 Conclusions . 119

8.2 Future Work . 120

Bibliography 123

Acknowledgments 131

List of Publications 133

vii

List of Figures

2.1 Simplifying environment map . 9

2.2 Illustration of camera switching to keep the target under visibility 10

2.3 Escaping gaps representation . 11

2.4 Block diagram of proposed viewpoint planning algorithm 14

2.5 Block diagram of proposed architecture for the guard robot 14

3.1 Block diagram of the proposed algorithm for the coverage problem 19

3.2 Skeleton guards extraction . 20

3.3 Arrangement of a set of guards . 23

3.4 Face cost map of the arrangement . 27

3.5 Environment map used for the coverage problem 32

3.6 Initial optimization result of the Art Gallery Problem 35

3.7 Evolution of the guards during the iterative optimization process for map A . . . 35

3.8 Optimal guards for the original Art Gallery Problem 35

3.9 Optimal guards for the vertex coverage problem 37

3.10 Optimal guards for the coverage problem using arbitrary cost map function . . . 39

4.1 The travel time map of the robot and the target 42

4.2 Particle illustration for the future states of the robot and the target person 48

4.3 A case when moving the robot may be better than idle 51

5.1 Flowchart of the path planning algorithm . 55

5.2 Advantages of using monotonic velocity function 58

5.3 Random tree algorithm . 61

5.4 Growing the threshold . 63

ix

5.5 Making a small frame of the arrival time field 66

5.6 Effect of directing the initial heading of the robot 66

5.7 RT-Component connection for the simulations 68

5.8 RT-Component connection for the experiments 68

5.9 Modeled environment for simulation . 69

5.10 Screenshot sequences of simulation using Environment Simulator 70

5.11 Simulation of HeAT Random Tree as global planner 71

5.12 Comparison of tree expansion on the dynamic environment 72

5.13 Comparison of RRT, hRRT, and HeAT-RT algorithms 72

5.14 Comparison of tree expansion on the environment with narrow passage 73

5.15 Comparison of tree expansion on the environment with multiple bug-traps 74

5.16 Comparison of three algorithms . 75

5.17 Experiment of people tracking in complex environment 76

5.18 In-room experiment of following waypoints . 77

6.1 Eight classes of the human upper body orientation 80

6.2 Diagram of the human upper body orientation estimation system 81

6.3 Extracting features using CFM-PLS . 84

6.4 Extracting features using BIFM-PLS . 85

6.5 Region of Interest (ROI) for tracking . 95

6.6 Performance of the human full body and upper body detection 97

6.7 Confusion matrix on TUD-Multiview dataset using BIFM-PLS and random forest 98

6.8 The block importance of each feature using the weight of the first projection vector 99

6.9 The effect of varying p1 and p2 value of the BIFM-PLS to the orientation estimation
results . 100

x

6.10 Human upper body orientation estimation results on TUD-Stadtmitte datasets using
our proposed framework . 101

6.11 Human upper body orientation estimation results in an indoor environment 102

6.12 The effect of varying ω value to the integration of orientation results 103

6.13 Human upper body orientation estimation results in the cafetaria with a moving
camera . 104

7.1 Environment used for simulations . 106

7.2 Viewpoints obtained by the viewpoint extractor 106

7.3 Executing viewpoint planner on environment A 108

7.4 Executing viewpoint planner on environment B 109

7.5 Executing viewpoint planner on Complex Map 110

7.6 Comparison of controls yielded by viewpoint planner and ordinary person tracking
algorithm . 112

7.7 Velocity profile of the real experiment . 112

7.8 Executing viewpoint planner on the real environment 114

7.9 Two-level laser range sensors for solving the occlusion problems 115

7.10 Executing viewpoint planner with partial occlusion 116

7.11 Comparison of viewpoints generated for driving map and viewing map 117

xi

List of Tables

3.1 Polygon complexity of the environment . 32

3.2 GC-Solver initialization for each environment 33

3.3 Number of optimal guards for the Art Gallery Problem and its computational time. 34

3.4 Optimal guards for the coverage problem with vertex only guards. 36

3.5 Optimal guards for the coverage problem with arbitrary cost function. 38

3.6 Calculation time of different SCP solver . 39

5.1 Statistic of Simulation Result . 69

5.2 Comparison of Three Algorithms using Environment Simulator 74

6.1 Evaluation of the orientation estimation using various features and classifiers . . 98

6.2 Performance of PLS and PCA for the orientation estimation 100

6.3 Comparison of the state-of-the-art algorithms 103

7.1 Parameter settings . 107

7.2 Comparison of energy used by the robot (lower is better) 111

7.3 Comparison of energy usage by the robot . 117

xiii

List of Theorems

1.1.1 Definition (Guard Robot) . 2

2.2.1 Definition (Visibility Polygon) . 9

2.2.2 Definition (Escaping Gaps) . 11

2.2.3 Definition (Worst-case Assumption) . 12

3.2.1 Proposition (Coverage Guarantee: Vertices) . 21

Proof (Coverage Guarantee: Vertices) . 21

3.2.2 Proposition (Coverage Guarantee: Vertices and Skeletons) 22

Proof (Coverage Guarantee: Vertices and Skeletons) 22

3.3.1 Definition (Polygonal Coverage) . 23

3.3.2 Definition (Faces Visibility) . 26

3.3.1 Proposition (Cardinality of Subsequent Optimal Guards) 28

Proof (Cardinality of Subsequent Optimal Guards) 28

3.3.2 Proposition (Convergence of Iterative Optimization) 29

Proof (Convergence of Iterative Optimization) 29

4.2.1 Definition (Condition of Losing Target) . 43

4.3.1 Theorem (Trajectory Visibility Guarantee) . 49

Proof (Trajectory Visibility Guarantee) . 49

4.3.2 Theorem (Chance Constraint Bound) . 49

Proof (Chance Constraint Bound) . 50

xv

Chapter 1

Introduction

1.1 Research Backgrounds

Recently, robotic technologies have been pushed forward and greatly demanded in many
applications. Its utilization is broad, ranged from home appliances to industrial sectors. There are
couples of rationale behind the exertion of the robots; to alleviate the human’s jobs, to substitute
the human on hazardous works, or to exploit its precision for some specific tasks. When a robot
is required to replace or to support the human in a certain task, it implies that the robot needs to
imitate, fully or partially, what the human workers do. This imitation can be in the form of actions,
procedures, or even the human thinking perspective to finish the job. With regards to such problem,
here we present one example of the task on which a robotic framework is expected to solve, as
described by the following problem setting.

Let us imagine an indoor environment such as museum, office, gallery, or exhibition room.
Suppose there is a Very Important Person (VIP, e.g. Minister, Chief, or Officer) visiting the museum
and needs to be guarded. Ordinarily, a group of guardians (or so-called “securities”) are assigned
to do the guarding job. The most important task of these guardians is to watch over the VIP for
the entire time, yet they should not disturb and restrict his/her mobility. Additional duties may be
added as well, such as documenting the overall activities of the VIP.

Now we aim to substitute the human guardians with the robotic platform. The task imitation
for the above case is straightforward, the robot should mimic the behavior of the human guardians.
Nevertheless, several considerations need to be contemplated:

1. The number of robots used for guarding the VIP eventually becomes one important factor, if
the cost is restricted.

2. The robot has limitation on the battery capacities, affecting its working time duration.

3. If documenting the activity of the VIP is included as the robot task, it is preferable to highly
reduce the robot’s instability (e.g. due to its excessive movement), to acquire a less-noise

1

CHAPTER 1. INTRODUCTION 1.1. RESEARCH BACKGROUNDS

video or image.

4. The robot should be non-intrusive, i.e. it must not disrupt and alter the current activity of the
VIP.

Considering the above restrictions, we propose a novel planning algorithm for a single guard
robot to imitate the job of the human guardians. Since the robot price tends to be very expensive,
here we emphasize the use of single robot for guarding purpose as indicated by point (1) in the
above consideration. The robot task is then minimally rephrased as follows:

Definition 1.1.1 (Guard Robot). The guard robot should maintain the visibility towards the target

person, while minimizing its movement.

The term “minimizing its movement” is raised, basically for tackling the problems specified
by point (2) and (3). By minimizing the robot movement, we expect to reduce the energy which
may lead to a longer duration of the robot working time. It also means the robot tends to be in
an idle condition. As the result, a less-noise video of the target person (when we decide to take a
documentation) can be obtained due to the stability improvement.

Based on the above expectations, our main idea is to make the robot moves only when it is
needed, i.e. whenever the target is predicted to leave the robot’s field-of-view, and mostly stays at a
certain location which holds a wide view. We then introduce viewpoint terminology in our proposed
guard robot planner. The viewpoint is described as a point from which the idle robot can safely and
steadily watch over the target person for a long time.

The viewpoints are utilized to assist the action planning processes. Our strategy is to move
the robot from one viewpoint to another. By exploiting the viewpoints, we expect to reduce the
search spaces of the robot. We also introduce a concept of escaping gaps to lessen the target
person prediction space, which makes the guard robot problem become more tractable. Using this
approach, the robot will not disturb the target person since it attempts to “see from a distance”,
granting the consideration pointed by point (4) above.

2

CHAPTER 1. INTRODUCTION 1.2. RELATED WORK

1.2 Related Work

1.2.1 Art Gallery Problem

In the matter of guarding an indoor environment, the Art Gallery Problem (AGP) is related to
our proposed guard robot. The AGP is defined as a problem of discovering a minimum number of
guards, typically in the form of sensors or cameras, such that it covers all interiors of the environment.
The AGP has been widely studied, especially by computational geometry communities (e.g., [1],
[2], [3], and [4]).

The use of viewpoints in our proposed approach can be perceived as another form of the AGP.
In conjunction with the planner, our proposed algorithm creates a dynamic version of the AGP, with
a single robot be in charge of guarding the entire environment by visiting the viewpoints as needed.
Contrarily, the original AGP statically puts a set of guards for the same purposes.

1.2.2 Pursuit-evasion

The classical pursuit-evasion problem aims to make the pursuer(s) capture the escaping
evader(s). This problem is also highly addressed by a vast number of researches, e.g., [5], [6],
[7], [8], and [9]. By the nature, one may guess that our guard robot is a variant of pursuit-
evasion problem where the evader (target person) does not try to escape. One notable thing is
that in our guard robot problem, the game does not necessarily end when the target is already
“captured”. Instead, the robot will continuously and optimally act to cover the target until it leaves
the environment.

1.2.3 Watchman Route Problem

This problem aims to plan the shortest route on which a robot or watchman can inspect every
point inside a polygon. The watchman route problem (WRP) is also popular among the robotic and
computational geometry researchers, e.g., [10], [11], and [12]. At a glance, our proposed problem
resembles the classical WRP, except the guard robot has a target to be “followed" and its additional
objective is to minimize the movement.

3

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTIONS

1.2.4 Person Following Robot

The most closely related works to our guard robot problem is the person following robot, which
has a long time history in the robotic researches (e.g., [13], [14], [15], and [16]). This algorithm is
also suitable for solving the proposed problem. The main difference is that the person following
algorithm continuously makes the robot move and attempts to be within a certain distance towards
the target. As the opposite, our approach versatilely tries to understand the environmental topology
and only moves when it is necessary to keep the target person under its vicinity. By this strategy, it
is expected to reduce the energy used by the robot.

1.3 Contributions

Our contributions mainly lay on the introduction of a novel framework and the cooperation
between the topological viewpoints and an on-line planning strategy for solving the guard robot
problem. It is also worth to note that we are raising a distinctively new variant of robotic problem,
compared with the previously mentioned related works. This new task includes the problem of
keeping a target under the robot visibility while reducing its movement.

Besides the contributions related to the viewpoint planning above, we also devote several
novelties on its building blocks, as follows:

1. In coverage problem, we introduce a generalized algorithm for solving the coverage area
under arbitrary cost function, which leads to the unified solver for coping with several famous
problems (e.g. Art Gallery Problem, Sensor Coverage, and Robot Coverage).

2. In motion planning problem, we propose a potential based randomized tree algorithm for
optimizing the robot movement.

3. In person tracking problem, an incremental improvement is introduced by applying an
upper body-based detection and tracking for ensuring the robustness of person tracking
algorithm.

Each contribution will be explained further on the following chapters related to each problem.

4

CHAPTER 1. INTRODUCTION 1.4. THESIS ORGANIZATION

1.4 Thesis Organization

This thesis is organized as follows. We first describe a mathematical definition of our guard
robot, concept of viewpoints and escaping gaps utilized in our approach, as well as the strategy for
simplifying the guard robot problem and its proposed building blocks in chapter 2. The next chapter
explains the extraction of viewpoints by utilizing the topological features and a heuristic linear
programming method. Chapter 4 describes the viewpoint planning algorithm, which elaborates
both deterministic and probabilistic approaches, and utilizes a geodesic motion model for exhibiting
both the robot and the target person movements. Chapter 5 and 6 respectively elucidate supporting
algorithms for completing implementation of the viewpoint planning algorithm, that is the path
planning for the mobile robot and the person tracking algorithm. The proposed viewpoint planning
approach is then verified on various experiments in chapter 7. In the end, the conclusion and future
directions of our research are provided.

5

Chapter 2

Defining Guard Robot Problem

2.1 Problem Definition

Consider a typical indoor workspace Q= {Q f ,Qn} ⊆ Rm, m≥ 2, constrained by walls and
possibly obstacles. Q f and Qn are respectively perceived as “passable” and “non-passable” regions
for the robot. Let {qr

t ,q
h
t } ∈ Q denote the robot and the target person state at a certain time t. The

robot is equipped with sensors to sweep the free space, creating a continuous boundary which
depicts the “visible" area for the robot, denoted by

∮
B(qr

t). The guard robot problem is subsequently
described by following mathematical expression

Minimize
∫

∞

0

∣∣∣∣∂ (qr
t)

∂ t

∣∣∣∣dt (2.1)

s.t.
∮

B(qr
t)
⋂

qh
t qr

t = /0 (2.2)

{qr
t ,q

h
t } ∈ Q f , (2.3)

where qh
t qr

t denotes a straight line connecting qh
t and qr

t .

The above expression implies we attempt to reduce the total movement of the robot, indicated
by summation of the first order derivative of the robot state over the time in eq. (2.1), while the main
constraint is to keep the target qh

t within the visibility boundary of the robot (eq. (2.2)). Obviously,
the robot state’s derivative can be approximated by discrete-time dynamic model

∂ (qr
t)

∂ t
≈ f (ut ,εt) : qr

t 7→ qr
t+1, t ∈ [0,∞], (2.4)

where ut ∈U is the control input and εt denotes the uncertainty. Hence, eq. (2.1) gives an implication
that we are minimizing controls applied to the robot.

Solving the above optimization problem analytically is challenging, due to following reasons:

1. The future information of the target state qh
t is not available at t > 0, assuming t = 0 is the

7

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.2. SIMPLIFYING THE GUARD ROBOT . . .

current state, unless it is carefully modeled according to the environment (still, the uncertainty
will be large).

2. The robot states, dynamics, and sensors may enclose the uncertainty too.

3. Since the visibility boundary of the robot is unique for each state qr
t , it means the optimization

should examine the constraint over a huge space of all probable future states of both the robot
and the target person.

4. The robot goal space is very large too, whereas the entire workspace could become a
destination for the robot to move, as long as it satisfies the visibility constraint.

2.2 Simplifying The Guard Robot Problem

As mentioned above, the guard robot problem encounters some challenges. In a nutshell, those
problems are a very large robot goal space and the future information uncertainty of the robot and
the target person. Here we contemplate to ease those challenges using the following approaches.

2.2.1 Polygonal representation of the environment

We aim to relax the workspaceQ= {Q f ,Qn} into a simpler 2D planar polygonal form, as the
environment map tends to have a complex shape. A set of procedures for simplifying Q is then
implemented (similar steps can be found in [17]), as follows:

1. Binarization. A binary map I(q) is obtained by mapping each state q ∈Q, as follows

I(q) =

1 for ∀q ∈Q f

0 otherwise.
(2.5)

2. Smoothing. For reducing noises in the map, morphological operations are performed, using
opening and closing operators.

3. Contour extraction. An algorithm introduced by Suzuki, et al. [18] is subsequently engaged
to extract the contour from the binary map I(q), yielding an outer contour

∮
Bouter and

(possibly) k-inner contours
∮

Bhole
k . Both are a set of closed segment chains.

8

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.2. SIMPLIFYING THE GUARD ROBOT . . .

(a) (b)

(c) (d)

Figure 2.1: Simplifying environment map: (a) original environment, (b) map from SLAM algorithm, (c) binarized
map, (d) extracted polygon.

4. Line segments simplification. Finally, Douglas-Pecker algorithm [19] is used for simplify-
ing the contours

∮
Bouter and

∮
Bhole

k . It produces a closed, connected polygon P with the
outer boundary δP and k-inner boundaries δHk where k denotes the number of holes1 inside
P . A point p satisfying

{p ∈ {P ∩¬(
k⋃
Hk)}}, (2.6)

is called the interior point of P . From now eq. 2.6 is written by p ∈ P to describe the interior
point p, for the sake of simplicity. The state q ∈Q is also interchangeable with p such that
q ∈ P has the same meaning with p ∈ P .

Figure 2.1 shows the instance of simplified map created from the original environment. The
white area in Fig. 2.1c represents the free space for the robot and target person to move.

2.2.2 Visibility polygon

Visibility polygon becomes one of fundamental problems in our guard robot, since we deal
with the visibility constraint of the target person towards the robot. The visibility polygon of a point
is given by following definition

Definition 2.2.1 (Visibility Polygon). Let q be a point inside P , another point s∈P is considered

visible from q if qs⊂P , where qs is a line segment.

1A geometrical term to define a closed polygon which is not connected to the exterior boundary.

9

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.2. SIMPLIFYING THE GUARD ROBOT . . .

Figure 2.2: Illustration of camera switching to keep the target under visibility. When the person moves from A until
the blue line (camera 1 visibility), camera 1 does the “watching" task over the person. The “watching" task is then
taken over by camera 2 from the blue line until the person reaches B.

The visibility polygon V(q) is then defined as

V(q) = {∀s ∈ P | qs⊂P}. (2.7)

2.2.3 Concept of viewpoints for reducing the robot goal space

Let us take a look on Fig. 2.2. When static guards are used (e.g. cameras), the art gallery
problem (AGP) can be adopted for solving the target person visibility problem. By a finite number
of cameras, the AGP holds a guarantee to cover the entire building. Thereafter, to watch over a
person inside it, one can easily switch his attention to the camera on which the person is visible.
Figure 2.2 portrays the camera switching process when a person moves from A to B. This also
applies to all other cameras.

By substituting each camera with a virtual point, let us imagine a robot is used to “see" the same
person. The camera switching process now becomes the robot movement from the virtual point 1 to
2, to hold the same visibility towards the person. These virtual points are named viewpoints. The
guard robot problem subsequently becomes the problem of determining the feasible viewpoint for
the robot to watch over the target person.

The main point of the above illustration is, we basically expect to reduce the large goal space
of the guard robot into a small set of viewpoints V = {v1,v2, . . . ,vn}, which hold the same visibility
guarantee towards the target person. This property becomes the basis of our proposed approach for
the guard robot problem.

10

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.2. SIMPLIFYING THE GUARD ROBOT . . .

Figure 2.3: Escaping gaps representation, denoted by blue lines. Together with the red lines, it forms the visibility
polygon of the robot (marked by the red cross).

2.2.4 Concept of escaping gaps

As we restrict our problem to an indoor environment, we can exploit the fact that the person
movement should not violate the environment restrictions, e.g. walls. Accordingly, the possible
scenarios for the robot to lose its visibility towards the target are when the target passes escaping

gaps.

Escaping gaps are described as a set of locations at which the target may vanish from the
robot’s view. It has a similar idea with the popular term frontiers for exploration of an unknown
space (e.g. [5]).

Definition 2.2.2 (Escaping Gaps). Recall δP as boundary of the workspace polygon P and q is

a point inside P . Let δV(qr
t) denotes boundary of the visibility polygon of the robot at current

time. The escaping gaps G is then defined as

G = {∀q|q ∈ (δV(qr
t)
⋂
¬δP)}. (2.8)

Figure 2.3 visually describes eq. (2.8). The blue line in Fig. 2.3 represents escaping gaps which
lie on the visibility polygon but do not lie on the workspace boundary. Typically, the escaping gaps
G are in the form of a set of lines, as shown in Fig. 2.3. These lines are subsequently discretized
into a set of points, such that every point in G is separated by a minimum distance dg (currently,
dg = 0.25 meters).

While the viewpoints are important for simplifying the goal space for the robot, the escaping
gaps are indispensable for relaxing the visibility constraint and the prediction space of the target
person. Let ∀ψ ∈Ψ be all possible future paths which can be taken by the target person bounded
by δP . The path space is possibly infinite unless it is well modeled, denoted by Ψmodel ⊂Ψ. Let
Ψg ⊂Ψ,∀g ∈ G be the target person paths towards escaping gaps. Since Ψ is bounded, the only

11

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.2. SIMPLIFYING THE GUARD ROBOT . . .

possible paths breaking the visibility constraint are Ψg, or, Ψg∩Ψmodel when the model is used.

There are two possible outcomes when the model is used:

• (Ψg∩Ψmodel)⊆Ψg, which is basically the path inside the model leading to escaping gaps;

• (Ψg∩Ψmodel) = /0, which means the target person path never leaves V(qr
0).

Subsequently, it is enough to generalize Ψg as the possible paths breaking the visibility constraint.
We are then able to raise the following definition.

Definition 2.2.3 (Worst-case Assumption). Under the assumption that the target person qh
t cannot

pass through δP and it is initially inside the robot visibility (qh
0 ∈ V(qr

0)), any future action taken

by the target person is guaranteed under visibility of the stationary guard robot V(qr
0), except for

the worst-case scenarios, i.e. it is leaving through escaping gaps G.

Definition 2.2.3 gives the following consequences:

1. It implies we can set our focus only on predicting the worst-case scenarios instead of making
a very accurate model for the target movement, to keep the target under visibility of the robot.
Hence, we only need to have a reliable prediction of those worst-case conditions.

2. The robot does not need to take any action unless the target is predicted to leave the visibility
scope via escaping gaps. This behavior directly fulfills our purpose, i.e. to reduce the robot
movement.

Now, we have already reduced the prediction space of the target person, and the rest is to
predict its movement towards escaping gaps. However, carrying out a long prediction of the human
future movement is error-prone. Moreover, there is no guarantee that the target person always has
an intention to go through escaping gaps. Hence, we updates the target movement in an iterative
fashion to obtain a reliable prediction.

The action of the robot accordingly can be made based on the above prediction of the worst-
case conditions. In connection with the concept of viewpoints, the robot actions are either to go to a
viewpoint which covers the possible escaping gap efficiently, or, to stay in the current robot states
(e.g. by making ut = 0, which is preferable) if the target is predicted will never pass through the
escaping gaps.

12

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.3. PROPOSED SYSTEM ARCHITECTURE

2.2.5 Proposed framework for the guard robot

Using the above concepts, we re-establish the guard robot problem as follows

min ∑ut , t ∈ [0,∞] (2.9)

s.t. {qh
t ∈ ψg} ∈ V(qr

t ∈ ψr), (2.10)

ψr ' f (u,ε) : [qr
0,v] 7→ Rm, (2.11)

∀ψg ∈Ψg, (2.12)

∀v ∈ {qr
0,V}, (2.13)

{qr
t ,q

h
t } ∈ P. (2.14)

The above formulation principally tells the robot to choose the viewpoint destination which mini-
mizes the future control ut (eq. (2.9)) and always holds the target visibility towards the robot (eq.
(2.10)). The constraint in eq. (2.10) indicates each state of the person staying on its path towards
the escaping gap ψg (see eq. (2.12)) must be visible from the robot at anytime t. Function f (·)
in eq. (2.11) represents the robot kinematic model for moving to viewpoint v, parameterizing the
robot path ψr, in order to keep track and encounter the targeted person as suggested by eq. (2.10).
Equation (2.13) gives the robot a choice to stay at the current state qr

0 (i.e, ut = 0) when it is deemed
the target will never leave the robot visibility (e.g. the environment is completely convex or the
target does not move at all).

We then propose a framework for solving the guard robot problem by dividing it into two
stages: off-line and on-line stages. In the off-line stage, we examine the environment to get
viewpoints. We then use those viewpoints to make action plans for the robot real-time, according to
the current prediction of the robot and the target states. Figure 2.4 shows our proposed framework.
The forthcoming sections will describe the detail of viewpoint extraction and how the action plans
are executed in response to the predicted target movement.

2.3 Proposed System Architecture

Running solely the viewpoint planning algorithm will bring the robot to nowhere, since it only
provides “plan” for the robot. It needs other building blocks for performing a complete mission
in a robotic framework. We list two important supporting blocks, namely the path planning and
the person tracking algorithms. The path planning algorithm is responsible to translate the plan

13

CHAPTER 2. DEFINING GUARD ROBOT . . . 2.3. PROPOSED SYSTEM ARCHITECTURE

Figure 2.4: Block diagram of proposed viewpoint planning algorithm.

Figure 2.5: Block diagram of proposed architecture for the guard robot.

from the viewpoint planning into a sequence of robot motions, while the person tracking algorithm
provides information of the target person states. Figure 2.5 shows our proposed architecture for
performing a complete mission of the guard robot problem.

14

Chapter 3

Viewpoint Extraction via Generalized Cov-
erage Solver

In this chapter, we describe a method for retrieving the viewpoints needed by the guard robot
problem. As explained beforehand, the concept of viewpoints is a variant of the broader problem
class, called coverage problem. Instead of exploiting a specialized algorithm to be used only by
our guard robot, here we propose a broader algorithm, namely “Generalized Coverage Solver”,
which can cover a huge class of the coverage problems, such as the Art Gallery Problem, Sensor

Placement Problem, and Robot Coverage Problem. To conform with such wide problem class and
to avoid any confusion, in this chapter we interchange the term “viewpoint” and “guard”.

3.1 Introduction

Suppose we want to put several surveillance cameras to see the entire building. Due to the
budget limitation, we also want to reduce the number of camera as minimum as possible. The
problem now becomes how many cameras should be used and where it should be placed. This
question is basically the essence of the Art Gallery Problem.

The Art Gallery Problem, as appeared in several textbooks (e.g. [1], [20], and [21]), is a
classical problem which inquiries the minimum number of guards which should be placed in a
polygon ensuring the full coverage of the entire polygon. It is closely related to the sensor coverage
and sensor placement problem, so we are not surprised for finding several works which blend both
problems into one topic, such as [22], [23], and [24].

There are a lot of practical cases in the real world which rely on the Art Gallery or sensor
coverage problem and its variants. The surveillance camera placement above is one example. The
other related cases are how to determine the efficient sensor placement and coverage problem
in a sensor network (e.g. [23] and [24]) and multi agent deployment for the building inspection
[25]. The robots are also used, instead of the cameras or sensors, for the area coverage [26] and

15

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.1. INTRODUCTION

distinguishing landmarks [3]. There also exist a work using a mobile robot for doing a 3D mapping
and scan matching based on the Art Gallery Problem ([27] and [28]). Therefore, several works
consider the terrain of the polygon or environment to do the guarding tasks (e.g. [29], [30], and
[31]).

Each problem above has a unique characteristic. For instance, the cameras can be located at
any place of the building, even on the edge of the walls or the corners, depend on the camera model.
Yet, there are some occasions that we prefer to put the camera, such as the omnidirectional camera,
on the middle of the room’s ceiling. Subsequently, the guard robot cannot be placed at the edge of
the walls, instead, it should work and move inside or in the interior of the room. This placement
preference is also applicable for the 3D mapping and the terrain guards, where some locations will
be more important and interesting to see or to guard than the others. While those problems are
usually solved for each cases (such as vertex guards [32], edge guards, and interior guards [4]), here
we aim to establish a generalized framework which can be applied for every cases which includes
the placement preferences.

3.1.1 Related work

The early result of the Art Gallery Problem was published by Chvatal [33] in which it is
proclaimed that (n

3) guards are adequate for covering any polygon with n vertices, which later was
proved by Fisk [34]. Using Fisk’s proof, Avis and Toussaint [35] then developed an O(nlog n)

algorithm for assigning the guard positions. These classical works assume a simple polygon without
holes.

Recently, a vast effort has been promoted to deal with the Art Gallery Problem and coverage
problem variants. Pinciu [2] proposed a coloring algorithm to find the connected guards in an art
gallery. Gonzales-Banos et al. [22] presented an algorithm for a restricted version of the sensor
placement problem (with a connection to the Art Gallery Problem) using a randomized approach,
by applying a large set of guards and optimizing them using hitting set approach.

Since the optimal guarding problem is NP-Hard [36], some approximation algorithms then
appeared, such as [37] and [38]. Gosh [37] provided a logarithmic approximation ratios for
calculating a minimum number of vertex guards for a polygon. Then, Desphande et al. [38]
proposed an O(log n)-approximation for point-guard problem.

Later, heuristic-based approaches were then introduced. The authors in [39] adopted a greedy

16

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.1. INTRODUCTION

strategy to form a set of heuristic-based algorithm with the polygon partition methods. Bottino et al.

[4] then created a new heuristic for the Art Gallery Problem, however the algorithm was restricted
to cover only the edges of a polygon.

The most recent works made attempts for seeking an exact solution of the Art Gallery Problem
via Integer Linear Programming (ILP) approach. Couto et al. [32] introduced an exact algorithm
for the problem limited to the vertex guards. In [40], the authors utilized a finite set of so-called

witnesses and guard candidates, and employed a linear relaxation of the primal-dual formulations
iteratively to find the integer solution of the Art Gallery Problem. It was then improved in [41]
by introducing the combination of Linear Programming (LP) and Difference of Convex (DC)
programming. While both approaches performed good results in several instances, they failed to
converge to the integer solutions in many other samples. Moreover, their approaches were basically
restricted to the original issue of the Art Gallery Problem which did not take into account the guard
positions.

In short, the existing algorithms for solving the Art Gallery Problem and sensor coverage
above suffered from the following drawbacks:

a) They are applied to a simple or certain class of polygon;

b) They are only applicable for limited problems;

c) Lack of real applications on the real environment conditions.

3.1.2 Our contributions

Our objective is to develop a unified framework for solving the coverage problem in different
kind of settings and applications as mentioned in the beginning of this chapter, by generalizing the
original Art Gallery Problem. At the same time, we want to overcome the drawback of the existing
methods. Here we propose Generalized Coverage Solver (GC-Solver) to achieve those purposes.

The GC-Solver simplifies the environment map into a polygon (it may contain holes) and
exploits the topological features of the map to extract a set of guard candidates which guarantee the
full coverage of the environment. Here the boundaries and the skeleton of the map are used as the
topological features. Subsequently, the GC-Solver builds the visibility area of each candidate and
composes them into an arrangement.

17

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.2. GENERALIZED COVERAGE PROBLEM

A non-unicost Set Covering Problem (SCP)-based algorithm is then adopted to obtain a set of
suboptimal guard candidates based on the arrangement. The usage of the non-unicost SCP allows
us to attach the weight function to each guard candidate, so that the guard choices can be adjusted
to the problem preferences (i.e. vertex guards, interior guards, cost function-based guards, etc.).

The GC-Solver then continues to optimize the guard candidates using a hybrid probabilistic-
based algorithm. By alternating the non-unicost SCP and the probabilistic optimization, the
GC-Solver thus tries to acquire the optimal guards.

Main contributions of this work are three-fold. First, our approach serves a generalized and
comprehensive framework for the Art Gallery Problem which binds a broad range of coverage
applications. Second, we introduce the utilization of the topological features to fetch the potential
guard candidates. Lastly, we also initiate combination of the non-unicost SCP and the probabilistic

optimization for obtaining the optimal set of guards. To the best of our knowledge, it is the first
method pursuing such unified coverage problem.

3.2 Generalized Coverage Problem

This section describes the framework of our approach for solving the coverage problem. The
term “generalized” here is used for emphasizing our intention to develop a coverage algorithm
which binds a diverse applications, in contrast to the original Art Gallery Problem.

3.2.1 Algorithm overview

Our proposed method consists of two large portions: extracting the location of the guard
candidates, and optimizing them to obtain the optimal position of the guards. The first part involves
the process of simplifying the given environment or map, from which we draws up a set of guard
candidates. The topological features is then employed to guarantee the full coverage of the entire
environment, by using the concept of visibility polygon.

The second part incorporates the optimization procedures of the obtained guard candidates.
Here we propose the usage of a non-unicost Set Cover Problem alternated by a probabilistic
optimization technique, to ensure the optimality of the guards in accordance with the various
problem settings (i.e. different applications of the coverage problem). Figure 3.1 shows the pipeline

18

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.2. GENERALIZED COVERAGE PROBLEM

Figure 3.1: Block diagram of the proposed algorithm for the coverage problem.

of our proposed algorithm.

3.2.2 Planar polygon extraction from the environment map

We follow the procedure explained in section 2.2.1 for extracting a planar polygon represen-
tation from the environment map. Let us recall the notation P as the polygon, with δP and δH
representing its outer and inner boundaries, and V(p) as the visibility polygon of a point p ∈ P .

3.2.3 Guard candidates from the ensemble features

The term “guard” is defined as a location on which we set an entity for “seeing” or covering
the area in the environment (in this case, the polygon). The physical form of the entity can be a
sensor, camera, base station, or even a robot. Intuitively, a person will put the guard at the position
which has a wide view, or at the location which is difficult to see. For instance, a security camera is
usually placed on the top corner of a room, or, if we have an omnidirectional camera, we will placed
it on the middle of ceiling which has maximum field-of-view (e.g. at the intersection of corridors).

For solving the coverage problem, we first extract the possible location of the guards using the
human intuition as mentioned above. Here the topological features of the environment are adopted
and selected as the candidates, as follows:

19

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.2. GENERALIZED COVERAGE PROBLEM

(a) (b)

Figure 3.2: Skeleton guards extraction: (a) distance transform of the map, (b) obtaining skeleton vertices. The circles
denote the skeleton guards.

3.2.3.1 Vertex guards

The polygon vertices are among the important features in a polygon. Several previous re-
searches on the Art Gallery Problem also employed these features, such as [2], [37], and [4]. In
reality, a vertex of a polygon represents a corner of a room on which the sensor or camera is placed.
To obtain the vertex guards, we simply take out all vertices of the polygon’s boundary, including its
holes (if any).

3.2.3.2 Skeleton vertices as the interior guards

In the real problem setting such as a building, we can naturally determine the place in which
we will get a wider view. Intuitively, a person will say that an intersection of corridors in a building
grants wider view, compared with the wall or the corner of the room. Based on this reason, we deem
it is necessary for us to take account the topological shape of the environment for the coverage
problem. Thus, we use skeletonization technique for capturing topology of the polygon.

For obtaining the skeleton vertices, we first build a skeleton map using laplacian of distance
transform technique [17] (in contrast to the straight skeleton in [42]). We construct a distance
transform map D (Fig. 3.2a) given by

D(p) =

‖p− p′‖ for p ∈ P, p′ ∈ {δP,δH}

0 otherwise
(3.1)

where p′ is the nearest non-passable point to p.

We then apply a laplacian filter to D, to get the skeleton map K, denoted by

K(p) =
∂ 2D
∂ p2

x
+

∂ 2D
∂ p2

y
, (3.2)

20

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.2. GENERALIZED COVERAGE PROBLEM

where px and py respectively denote the x-axis and y-axis of the point p. K is then binarized by a
threshold. The skeleton guards are then acquired by taking out all junctions and endpoints of the
skeleton (Fig. 3.2b). Both types of guards (vertices and skeleton) are then coalesced, producing a
set of guard candidates V .

3.2.3.3 Coverage guarantee

Before an optimization process is carried out for the set of guard candidates above, we want
to show that the mixture of the guard candidates itself have already been able to cover the entire
polygon, even it is not the optimal one. In other words, this property is giving a clue to the
optimization part that it should always return a solution (i.e. full coverage of the polygon). The
following proposition is used for exhibiting the coverage guarantee of the guard candidates.

Proposition 3.2.1 (Coverage Guarantee: Vertices). All vertices (including the holes, if any) of a

planar polygon are always adequate for covering the entire polygon.

Proof (Coverage Guarantee: Vertices). One of possible ways to prove this proposition is by using

the set theory over the established theorems. For the polygon with holes, O’Rourke [1] stated
n+2h

3 vertex guards are sufficient for covering a polygon with n vertices and h holes (see theorem

5.1 of [1]). Let Gvt be a set of all vertices (including the holes) of a polygon with cardinality n,

and Vrk be the set of covering vertices in O’Rourke theorem with cardinality n+2h
3 . We begin with

proving the set cardinality, n+2h
3 ≤ n. The problem can be written as

n+2h
3
≤ n⇐⇒ 2h

3
≤ 2n

3
,

⇐⇒ h≤ n.
(3.3)

• If h = 0, since n≥ 3 (a polygon is composed by at least three vertices), then h≤ n is held.

• If h > 0, since n > 3h > h (a hole has at least three vertices), then eq. (3.3) is held.

Thus the inequality holds for any number of holes. Here we have proved that the statement
n+2h

3 ≤ n is true. As the consequence, Vrk ⊂ Vvt . It suggests there exists a set of element in Vvt

which cover the entire polygon. Notice that for h = 0, the problem becomes the Chvatal theorem

[33].

21

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

Consequently, the guard candidates V which is a combination of the vertices and skeleton
guards, retains the same coverage guarantee.

Proposition 3.2.2 (Coverage Guarantee: Vertices and Skeletons). The coverage of the combina-

tion of guard candidates V over the polygon P is always guaranteed.

Proof (Coverage Guarantee: Vertices and Skeletons). Let Vvt and Vsk respectively be the vertex

and skeleton guards. Subsequently, the guard combination V can be denoted as V = Vvt
⋃
Vsk.

From proposition 3.2.1, we know that ∀vvt ∈ Vvt holds the coverage guarantee. Using the set

theory, since Vvt ⊂ V , it implies ∀vvt ∈ V . Thus, V retains the same coverage guarantee as Vvt .

3.3 Hybrid optimization for coverage problem

After the guard candidates are determined, the next step is to optimize the number of guards
for covering the entire area of P . Even for the original issue of the Art Gallery Problem which does
not consider the placement of the guards; it is already an NP-Hard problem [36]. Here we try to
evade the problem by applying a hybrid optimization approach. First, we transform the coverage
problem into a Set Covering Problem, a family of Integer Linear Programming. A heuristically
probabilistic optimization is then administered to obtain the optimal guard positions.

3.3.1 Arrangement of the guard’s visibility

Before we bring the coverage problem into a Set Covering Problem, we need to understand its
prerequisite of the transformation, that is the polygon arrangement. We borrow the definition of
the arrangement from [43]. Given a finite set of guard candidates V , from which we acquire a set
of visibility polygon V(V), the arrangement A(V) is then defined as the subdivision of the plane
created by the intersection of all vertices of V(V), such that A(V) : V(V) 7→ Fc. Each subdivision
area ofA(V) is called a face, denoted by fc ∈Fc. Figure 3.3 shows the definition of the arrangement
and face.

Reciprocally, we can construct the visibility polygon of a guard V(v1) as a set of faces fc

22

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

Figure 3.3: Arrangement of a set of guards. The red crosses represent the guards. All edges are the result of combining
the visibility polygon of all guards. The gray area is one of the faces created by the arrangement.

“seen” by the guard v1 ∈ V , such that

V(v1)≈ {
⋃

∀ fc∈Fc1

fc|Fc1 ⊂Fc}, (3.4)

where
Fc1 = {∀ fc ∈ V(v1)}. (3.5)

It then raises a definition of the polygonal coverage, as follows

Definition 3.3.1 (Polygonal Coverage). The coverage of a polygon P by a finite set of guards G
is guaranteed under circumstances

P =
⋃
∀ fc∈Fc

fc, (3.6)

where Fc are composed by the arrangement of V(V).

In other words, all faces will always cover the polygon as long as its composing set of guard V
also has a full coverage. Now we aim for the optimal number of V which satisfies definition (3.3.1).

3.3.2 The Art Gallery Problem as the Set Covering Problem

Equation (3.4) and (3.6) give two consequences:

a) There may exist a face “seen” by more than one guard, or geometrically

V(v1)
⋂

V(v2)≈Fc1
⋂
Fc2 6= /0, {v1,v2} ∈ V. (3.7)

It simply means some guards may cover the same area.

23

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

b) Summation of all faces in Fc should cover the entire polygon P , in order to comply with
definition (3.3.1).

These consequences lead to the problem of assigning the smallest set of guards V such that
its summation of faces in the A(V) satisfies equation (3.6). Accordingly, we are able to bring the
coverage problem into an Integer Linear Programming formulation, more precisely, a Set Covering

Problem.

Given an M×N matrix A, the Set Covering Problem (SCP) is defined as a problem of
discovering a subset of the columns of A which covers all rows at a minimum cost [44]. Using the
SCP formulation, the original Art Gallery Problem can be defined as follows

Minimize
N

∑
n=1

vn, for vn ∈ V (3.8)

s.t.
N

∑
n=1

amnvn ≥ 1, {m = 1, . . . ,M} (3.9)

vn ∈ {0,1}, {n = 1, . . . ,N} (3.10)

amn ∈ {0,1}, amn ∈ A. (3.11)

Here, M and N respectively denote the number of faces of the arrangement and that of the guard
candidates.

From the above minimization, the SCP formulation for the Art Gallery Problem is obtained by
making the guards to be the sets used for covering and imposing the faces of the arrangement as the
elements to be covered. The guard placement inside the polygon is modeled by testing it using a
binary condition (vn = 1 if the guard is included into the set). Henceforth, a face row(amn) is set to
1 if it is seen by the guard vn (see eq. (3.11)). Inequality of eq. (3.9) assures that a certain row must
be covered by at least one column, or in other words, a face should be covered by at least one guard.
It will guarantee that the entire polygon P is fully covered.

3.3.3 Non-unicost Set Covering Problem

According to eq. (3.8), each guard candidate is treated the same, i.e. it does not matter where
the selected guards are chosen from, whether it lies at the interior or the vertices of the polygon, as
long as it can cover the entire at the most minimum number. This is exactly what the original Art
Gallery Problem aims for.

24

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

Such formulation of eq. (3.8) is often called unicost Set Covering Problem, indicating each
guard is eligible to be chosen with the same cost. Nevertheless, in many cases of the coverage
problem, some guards may become more alluring than the others. An interesting instance will be a
network provider should calculate the different land cost for placing each Base Tranceiver Station
(BTS), while still covers the whole area.

In order to achieve a broad range of the coverage application, here we propose the usage of
non-unicost Set Covering Problem. It allows us to assign different cost for each guard. Subsequently,
we modify eq. (3.8) as follows

Minimize
N

∑c(v)v, for v ∈ V. (3.12)

Equation (3.12) introduces a cost function c(v), from which we can manage how important a guard
will be. The formulation in eq. (3.8) becomes the special case of eq. (3.12) where all costs are
equal. We will describe the cost function c(v) further in the experimental section along with the
examples, including how it will affect and alter the coverage problem.

3.3.4 Hybrid probabilistic guard optimization

The output of the non-unicost SCP is self-explanatory, i.e. it attains the optimal combination
among the input set V . However, it does not imply that the result is also the optimal one for the
coverage of a polygon. This matter arises since there is no guarantee whether the optimal guards
are already in the input set V or not; we only ensure the coverage as suggested by proposition 3.2.2.

We then come up with a strategy to cope with it. Essentially, we break down the optimization
process into two parts: initial and iterative optimization. In the initial optimization, we reduce the
guard candidates composed in 3.2.3 using the steps mentioned in section 3.3.1 to 3.3.3, yielding
an initial upper bound of the guards. Afterward, we make attempt to reduce the guards further by
using an iterative optimization. Here we examine the area which has mutual guards coverage using
a probabilistic randomized search, alternated by the non-unicost SCP. This technique is expected to
cut down the mutual guards coverage by an alternative point guard.

25

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

3.3.4.1 Initial optimization

Let V0 be the initial set of guard candidates obtained in section 3.2.3. We first optimize the
guard candidates by

a) Constructing the arrangement A(V0);

b) Building the cost function of the guards c(V0);

c) Solving the non-unicost SCP to get a set of pre-optimized guards Vopt . The cardinality of Vopt

is then called initial upper bound1.

The initial upper bound |Vopt | of the possible optimal guards from the set is acquired using
the above steps. To make it compact, the initial upper bound |Vopt | is now denoted by U . Since
the algorithm is continued by an iterative optimization, the notation Vopt will be constantly used to
show the set of the optimal guards found so far.

3.3.4.2 Iterative optimization

Our basic idea is to examine each optimized guard for further possible reduction, by analyzing
the faces of its arrangement. Given a face fc ⊂A(Vopt) “seen” by a set of guards Vpar ⊂ Vopt , the
following definition is then applicable.

Definition 3.3.2 (Faces Visibility). For a face fc seen by all v ∈ Vpar, it implies that all point

guard v ∈ Vpar are inside the visibility polygon of any point p ∈ fc ,

{
∀v ∈ Vpar| fc ⊂ V(v)

}
=⇒

{
∀p ∈ fc|(∀v ∈ Vpar) ∈ V(p)

}
. (3.13)

The above definition is an extension of definition (2.2.1), from which we want to show the
possibility of “seeing” a set of guards by a point inside a face. It does not necessarily imply that
all area of V(Vpar) will be covered by a point p ∈ fc, yet it exhibits the likelihood of “replacing”
several guards to one point. Hence, definition (3.3.2) becomes the stepping stone for our proposed
approach for finding the optimal guards.

1This naming convention suggests an attempt to decrease the cardinality, lower than this upper bound

26

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

Figure 3.4: Face cost map of the arrangement in Fig. 3.3. Brighter face means it is seen by more guards.

By making use of the definition above, here we build a face cost map which shows how the
faces are parameterized by the guards, i.e. a face will have a higher value when it is covered by
more number of guards. Let h(fc) be the face cost map function defined by

h(fc) = |Vpar|, ∀ fc ∈ Fc. (3.14)

Subsequently, we use h(fc) as a distribution function for sampling a set of auxiliary guard candi-

dates. We currently sample the auxiliary guard candidates Vsampling from Fc using h(fc), as much
as two times of |Vopt |. It is expected that we will obtain more samples on the face covered by more
guards. Figure 3.4 shows the definition of the face cost map.

Both Vopt and Vsampling are concatenated forming a combined set of guards, from which the
non-unicost SCP is then solved using the same steps as the one in the initial optimization, yielding
a new set of optimized guards Vr. The above processes of constructing the face cost map, sampling
the auxiliary guard candidates, and solving the non-unicost SCP are accordingly alternated for the
iterative optimization procedures.

A heuristic approach is then exerted for examining the optimality of the guards produced under
current iteration. In principal, we wish the reduction of the cardinality (guard number), or a better
aggregated guard cost c(vn) as demanded by eq. (3.12). We commence from the non-unicost SCP
results (i.e. Vr). There are three possible outputs which corresponds to the cardinality of optimized
guards Vr and its leverage to the next iteration :

a) |Vr|<U . This is what we expect for, subsequently the next iteration will start using this new
guard set Vr and the upper bound U is lowered to |Vr|.

b) |Vr| >U . It means the minimization in eq. (3.12) generates a set of guards which has lower
aggregated cost, despite of having a higher cardinality. Please note that this type of output
unlikely happens when the uniform cost function is used (e.g. the original AGP), considering
proposition (3.3.1) which will be presented later.

c) |Vr|=U . It means Vr has a better aggregated cost with the same cardinality. We will particularly

27

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

discuss this type of output later.

We empirically found that after several iterations, the last type of the output of the non-unicost

SCP above appears in most of the cases. It suggests the cardinality of the guards for the coverage
problem is gradually converged. Thus, a Hausdorff metric is adopted to ascertain the stopping
condition of the iterative optimization process, defined as

Dhd(Vr,Vopt) = max
{

d(Vr,Vopt),d(Vopt ,Vr)
}
,

where

d(Vr,Vopt) = max
vr∈Vr

min
vopt∈Vopt

‖vr− vopt‖.
(3.15)

Here, equation (3.15) has a physical meaning that is when the algorithm converges, there should
not be much change on the position of the optimized guards iteration-by-iteration.

For the last two types of the output of the non-unicost SCP above, we merge the Vopt and Vr

to be used in the next iteration. By this strategy, we basically feed the SCP solver all viable set of
candidates found so far (i.e. has the same cardinality or cost) and let it discovers the best one as
the solution. It is expected to avoid the alternating result of the optimal guards2 and speed up the
optimization process.

Using this merging technique, we evoke the following proposition, to prove our statement in
the second type of the output above.

Proposition 3.3.1 (Cardinality of Subsequent Optimal Guards). For uniform cost function, the

cardinality of subsequent optimal guards |Vr| in the iterative optimization should not exceed the

initial upper bound U.

Proof (Cardinality of Subsequent Optimal Guards). (Proof by Contradiction) Assume |Vr|>U

is true. For the iteration i = 0 (initial optimization), Vr is basically equal to Vopt , so that |Vr|
is equal to U. In the next optimization process, yielded Vr will be merged with Vopt and the

algorithm uses Vopt
⋃
Vsampling as the guard candidates V , which is then utilized for solving the

SCP (eq. (3.12)). It means Vr ⊂ V . Since eq. (3.12) is a minimization problem with uniform c(v)

and the previous Vr is in the set V , the possible maximum cardinality must be U, by means of the

Set Cover Problem. However, it contradicts the initial assumption. Therefore we have to conclude

that |Vr| ≤U for the subsequent iteration.

2A condition where two sets of the optimal result show up alternately, which may create an infinite loop.

28

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

Someone may wonder that the metric in eq. (3.15) only considers the norm between two sets,
regardless of the cost function c(g). This matter is clarified by following proposition

Proposition 3.3.2 (Convergence of Iterative Optimization). Under all conditions, the iterative

optimization in the probabilistic search always produces

∑
vr∈Vr

c(vr)≤ ∑
v−r ∈V−r

c(v−r), (3.16)

where V−r is the optimal solution in the previous iteration.

Proof (Convergence of Iterative Optimization). (Proof by Contradiction) The proof construction

is basically the same with proposition 3.3.1. Assume ∑vr∈Vr c(vr) > ∑v−r ∈V−r c(v−r) is true. In

the iterative optimization, V−r is in the set of V used for minimization in eq. (3.12), since V−r is

merged with Vopt and V = Vopt
⋃
Vsampling. Again, it suggests the minimization result has the total

objective value which is equal to at most ∑v−r ∈V−r c(v−r). Yet, it contradicts the initial assumption.

Hence we draw a conclusion that the proposition is true.

The above proposition ensures that our proposed hybrid probabilistic guard optimization is
probabilistically converged towards the optimal solution. We then call off the iterative process when
Dhd(Vr,Vopt) is below a threshold.

The iterative optimization is summarized as follows

a) Initialize the cardinality of the given guard candidates;

b) Establish the face cost map;

c) Sample a set of auxiliary guard candidates using the face cost map;

d) Solve the non-unicost SCP;

e) Check the convergence using the Hausdorff metric, and repeat.

The complete process of our proposed optimization is shown by Algorithm (1).

29

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.3. HYBRID OPTIMIZATION FOR . . .

Algorithm 1 Iterative Guard Optimization
Require:

1: V0: initial set of guard candidates
2: |V0|: cardinality of V0
3:

Ensure:
4: Vopt : optimized guards
5:
6: procedure ITERGUARDOPT(V0)
7: // Initial optimization
8: Vopt ← Init(V0)
9: U ← |Vopt | . initial upper bound

10: // The real loop starts here
11: faceCostMap(Vopt) . eq. (3.14)
12: Vsampling← sample(Vopt ,2|Vopt |)
13: Vr← solveSCP(Vopt

⋃
Vsampling) . eq. (3.12)

14: if |Vr|>U then . proposition (3.3.1)
15: Vopt = Vopt

⋃
Vr

16: go to 12
17: else if |Vr|<U then
18: Vopt = Vr
19: U ← |Vopt |
20: go to 11
21: else
22: if Dhd(Vr,Vopt)> threshold then . Hausdorff
23: Vopt = Vopt

⋃
Vr

24: go to 11
25: else
26: Vopt = Vr
27: break
28: end if
29: end if
30: return Vopt
31: end procedure

30

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

3.3.5 Remarks

The reader may notice that the result of the non-unicost SCP in each iteration is examined by
its cardinality. It then raises a question, there exists possibilities to have the Vr which has more
guards than previous Vopt , but with a smaller cost. In the real cases, the cost of a guard is often not
so cheap (e.g. sophisticated camera, robot, etc.). Therefore, we consider minimizing the number of
guards as our priority.

Another notable thing is the size of Vopt will grow due to the merging technique Vopt
⋃
Vr.

Still, we have never empirically underwent any “bloated number of guard" problem, since the
optimization process is done on a bounded area (polygon interior) with the Hausdorff metric. We
can expect the distance between the optimal set on the current iteration and Vopt will gradually
decrease.

3.4 Experiments and results

The implementation of the GC-Solver is done on a Windows PC (i7 2.4 GHz, 16 GB RAM)
using C++ programming language. We extensively utilize the Computational Geometry Algorithms
Library (CGAL) [45] for performing the visibility calculation, the arrangement building, and some
other geometric computations. To solve the non-unicost Set Covering Problem, we use both open
source (GLPK [46] and SCIP [47]) and commercial3 (CPLEX [48] and Gurobi [49]) solvers.

3.4.1 Experimental settings

We want to evaluate the effectiveness and generality of our proposed algorithm. For ac-
complishing that goal, we prepare six different environments as shown by Fig. 3.5, grouped
into:

a) Artificial 2D/3D maps without and with holes (Fig. 3.5a, 3.5b, 3.5d, and 3.5e);

b) A star-shaped synthetic polygon (Fig. 3.5c, which is also used in [22]);

c) A complex real building at our university (Fig. 3.5f).

3We use the academic version of CPLEX and Gurobi.

31

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.5: Environment map used for the coverage problem: (top sequences) the real environment map used as input,
(bottom sequences) the simplified polygon of its respective map. The map-polygon pairs are a-g, b-h, c-i, d-j, e-k, and
f-l.

The environments represent distinct types of the coverage problem. The environment in Fig.
3.5a, 3.5b, 3.5d, and 3.5e elucidate the ability of the proposed method to handle the coverage of
various classes of polygon, as well as how to transform the environment itself into a polygon. To be
more specific, Fig. 3.5a and 3.5b exemplify the coverage problem in the environment without holes,
while Fig. 3.5d and 3.5e show the opposite one.

The star-shaped polygon (Fig. 3.5c) is the special case of the coverage, from which we want
to exhibit how far the guard optimization can be carried out by our algorithm. Intuitively, a guard
located exactly in the middle of the polygon should cover the entire environment.

Lastly, an attempt to solve the coverage of a real and complex building is demonstrated,
showing the feasibility of our algorithm to be directly adopted in the real environment. Here we use
a hall room inside our university (see Fig. 3.5f).

Table 3.1: Polygon complexity of the environment

Environment Map Name # vertices # holes

Fig. 3.5a A 32 0

Fig. 3.5b B 26 0

Fig. 3.5c C 24 0

Fig. 3.5d D 51 2

Fig. 3.5e E 38 1

Fig. 3.5f F 102 11

32

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

Except for the star-shaped synthetic polygon, all environments are processed through the map
simplification, explained in section 2.2.1, yielding the simplified polygon shown in the bottom part
of Fig. 3.5. Table 3.1 shows the polygon complexity of each environment, where it varies from 24
to 102 vertices.

We first check out the initialization process of the GC-Solver. This stage is same for all
classes/implementations of the coverage problem, before entering the iterative optimization. It
consists of the map simplification process, determining the guard candidates, calculating the
visibility polygon, and building the arrangement and faces. Table 3.2 indicates the numerical value
of the initialization process of the GC-Solver for each environment.

Table 3.2: GC-Solver initialization for each environment

Map # Guard # Arrangement # Faces Calcuation
Name Candidates Vertices Time (seconds)

A 62 1802 1773 1.383

B 50 972 947 0.762

C 46 992 969 0.843

D 104 5959 5906 3.058

E 76 913 876 1.133

F 224 63200 63093 29.760

Generality of the proposed algorithm is then confirmed by experiments in the following
sections, which represent different kind of the coverage problems. We want to show that it can be
achieved by simply changing the cost function c(v).

3.4.2 Art Gallery Problem

In this experiment, we evaluate the capability of our proposed algorithm to solve the original
issue of the Art Gallery Problem. The goal is obviously to minimize the number of guards without
bothered by any guard preference and placement. It can be realized by making the cost function
c(v) in eq. (3.12) to be uniform.

Here we analyze the result of our approach applied into all environments mentioned in section
3.4.1. First, we examine the guards quality generated by our algorithm. Table 3.3 represents the
optimal guards produced by the initial and iterative optimization (as have been explained in section

33

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

3.3.4.1 and 3.3.4.2), and its computational time respectively. The computational time shown in the
table refers to the method using SCIP [47] as the non-unicost SCP solver, which performs the best
among all solvers. Further analysis about the SCP solvers will be clarified later. Thus, the optimal
guard positions can be qualitatively perceived in Fig. 3.6 and 3.8.

Table 3.3: Number of optimal guards for the Art Gallery Problem and its computational time.

Map # Guard # Optimal Guards

Name Candidates Initial
Time (s)

Iterative
Time (s)

Optim. Optim.

A 62 5 1.442 4 15.166

B 50 4 0.792 3 6.451

C 46 1 0.883 1 0.883

D 104 8 3.290 8 18.308

E 76 7 1.163 7 10.213

F 224 11 40.102 11 206.182

From table 3.3, we observe that the initial optimization reduces the number of guards signifi-
cantly with a fast computational time. It can even be remarked as “near optimal” compared with
the final results. It clarifies the merit of the guard candidate features which assists the GC-Solver to
converge quickly.

The iterative optimization also plays a good role. In map A and B, the guards are further
optimized to obtain the optimal solution. Figure 3.6a vs 3.8a and 3.6b vs 3.8b show the head-to-head

comparison of the initial and iterative optimization. The other maps yields the same cardinality
even after go through the iterative optimization process. An example of the evolution of the guard
positions during this iterative optimization is shown by Fig. 3.7. Here we can make a suggestion
to the user which concerns with the computational speed and willing to get considerably “good"
cardinality, employing the result from the initial optimization of the GC-Solver has already served
the purpose.

Another interesting result is the optimal guard of the star-shaped polygon (map C, Fig. 3.8c).
This optimal solution is located at one of the skeleton vertices of the polygon. Even a slight deviation
from this optimal position will not cover the entire polygon. Once again, it shows the benefit of
using the skeleton guard candidates in our algorithm. Of course, here the iterative optimization is
not needed since it is impossible to further improve the optimal solution (cardinality = 1).

34

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

(a) (b)

Figure 3.6: Initial optimization result of the Art Gallery Problem. The guard positions are marked by the red crosses.

(a) (b)

(c) (d)

Figure 3.7: Evolution of the guards during the iterative optimization process for map A (From left to right).

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Optimal guards for the original Art Gallery Problem. The guard positions are marked by the red crosses.

35

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

3.4.3 Coverage problem with guard preferences

In this section, we investigate the performance of our algorithm when the guards are restricted
based on the user preferences, for instance, it can only be placed at the vertices. It realizes the
problem mentioned in the following example.

Example – Vertex only guards : This type of problem resembles most of the existing Art Gallery
Problem, such as [33], [35], and [37]. Here we need to put the guard exactly on the vertex of a
polygon. Following cost function is then used.

c(v) =

1, for v ∈ vertices,

∞, otherwise.
(3.17)

Actually, this problem can be simply achieved by removing all guard candidates which are not
located at the vertices of the polygon. In our case however, we want to exhibit how this problem can
be solved by simply modifying the cost function, from which shows the generality of the GC-Solver.
Figure 3.9 and table 3.4 demonstrate its optimization results.

Table 3.4: Optimal guards for the coverage problem with vertex only guards.

Map # optimal guards

Name Initial
Time (s)

Iterative
Time (s)

Optimization Optimization

A 5 1.520 5 11.600

B 4 0.703 4 5.139

C 3 0.770 3 6.770

D 8 3.590 8 11.891

E 7 1.025 7 7.780

F 13 35.400 13 100.632

Unlike the previous problem, according to table 3.4 there is no further optimization on the
guard cardinality between the initial and iterative process. The reason is the infinity cost for the
non-vertex guards gives the same effect as removing them from the candidacy. It causes the guard
candidate choices become limited to a set of vertices, so that the iterative optimization cannot make

36

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Optimal guards for the vertex coverage problem. The guard positions are marked by the red crosses.

any improvement.

We also notice that the guard cardinality is higher than the one in the Art Gallery Problem.
It is because we lost some information from the non-vertex guards which is restricted by the cost
function. It also signifies how the topological features play a great role to render an optimal solution
for the coverage problem. An obvious example is the result of map C (Fig. 3.9c) where now it
needs three vertex guards to cover the entire polygon, compared with one guard in the previous
problem.

3.4.4 Coverage problem with arbitrary cost function

As the continuation of the above section, we now present the realization of the coverage
problem with the arbitrary cost function, which becomes the main concern of the GC-Solver. We
set up a case using a set of mobile robot formations to cover the environment, as follows.

Example – Robot guards : Here we need to consider the physical limitation of the mobile robot
to do the coverage tasks. One example of this limitation is that the robot is supposed to be located
not too close with the walls, to avoid a collision. We then accommodate this problem using a
distance function as follows

c(v) = e−‖v−δP‖, (3.18)

where δP represents the boundary of the polygon (in this case, the walls). Equation (3.18) tells us

37

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

that we prefer to locate the robot far from the walls.

Table 3.5 and Fig. 3.10 show the optimization results of the coverage problem using the cost
function in eq. (3.18). We can observe that there is no guard which lies at the vertices nor the
boundary of the polygon, as suggested by the usage of the distance function. Most of the guards are
located at the skeleton or the middle area of the polygon. Physically, it means the guard robots take
place in the middle of room or the intersection of corridors, which is favorable according to the
collision properties mentioned in above example.

One alluring result is that this coverage problem produces relatively higher cardinality of the
optimal guards than the one in the Art Gallery Problem. This matter is plausible since the cost
function in eq. (3.18) leads to a lower total cost as pointed by eq. (3.12), even though it has more
number of guards.

Table 3.5: Optimal guards for the coverage problem with arbitrary cost function.

Map # optimal guards

Name Initial
Time (s)

Iterative
Time (s)

Optimization Optimization

A 7 2.881 6 21.859

B 6 1.471 5 10.747

C 1 1.024 1 12.488

D 10 10.849 9 29.538

E 7 1.820 7 13.417

F 14 73.668 13 212.976

3.4.5 Computation time

Now we evaluate the computation time needed for each section of the proposed algorithm,
as well as the influence of using different solver for the non-unicost SCP. Most of the time are
allocated for establishing the arrangement and face, including the visibility polygon calculation. In
average, it takes around 74.25 % of the total time using the best performing SCP solver. The map
simplification and generating the guard candidates spend around 17.45 %, while the non-unicost
SCP only takes 8.3 % of the total time.

38

CHAPTER 3. VIEWPOINT EXTRACTION . . . 3.4. EXPERIMENTS AND RESULTS

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Optimal guards for the coverage problem using arbitrary cost map function. The guard positions are
marked by the red crosses.

As a side result, we also report the effect of using different SCP solvers. Table 3.6 shows
the calculation time needed for each SCP solver in the initial optimization stage. We select the
initial optimization for comparing the performance of each solver because the huge number of
guard candidates to be optimized are lied on it. As implied by table 3.6, the commercial solvers
like CPLEX [48] and GUROBI [49] are superior to the open source solver such as GLPK [46]. For
the map F, GPLK fails to retrieve the optimal solution. Surprisingly, SCIP [47] which is an open
source solver has a comparable, or even better speed than the commercial one. Due to this reason,
all results of the coverage problem mentioned in the previous section are accomplished using the
SCIP.

Table 3.6: Calculation time of different SCP solver

Map Solving time (seconds)

Name GLPK SCIP GUROBI CPLEX

A 0.35 0.059 0.059 0.09

B 0.12 0.03 0.03 0.059

C 0.04 0.04 0.02 0.052

D 4.099 0.232 0.32 0.708

E 0.089 0.03 0.03 0.11

F N/A 10.342 13.667 19.417

39

Chapter 4

Viewpoint Planning Algorithm

Now, we commence to the core of this thesis, i.e. the viewpoint planning algorithm for
the guard robot. We initially introduce a variant of movement model called geodesic motion

model which parameterizes the possible movement of both the person and the robot considering
the environmental shape. We then provide two different approaches for the viewpoint planning
algorithm, a greedy-based method and a stochastic optimization-based approach.

4.1 Geodesic Motion Model for The Robot and The Target Per-
son Movement

Since an indoor environment is used, a simple linear motion model is not a favorable option.
Under a long prediction time, the linear model most likely violates the obstacle constraints in a
closed workspace. A natural way to predict the movement on an indoor setting is to follow the shape
of the environment. Here we propose a geodesic motion model for achieving such requirement.

Consider a monotonic wavefront Φ(q) commenced from a source point q0 moves across the
configuration, the travel time T of the wavefront in every point q ∈ P can be calculated by

Φ(q)' |∇T (q)|= 1
ζ (q)

,

Φ(q0) = 0,
(4.1)

where ζ (q) denotes a velocity function for specifying the speed of the wavefront. This problem is
widely known as Eikonal equation problem. According to [50], eq. (4.1) can be approximated by
the first order finite difference scheme(

T (q)−T1

∆x

)2

+

(
T (q)−T2

∆y

)2

=
1

ζ (q)2 (4.2)

41

CHAPTER 4. VIEWPOINT PLANNING . . . 4.1. GEODESIC MOTION MODEL FOR THE . . .

(a) (b)

Figure 4.1: The travel time map of the robot (a) and the target (b). The black circle represents the robot’s current
position. The blue circle with line denotes the target position and its predicted movement.

where

T1 = min
(
T (qx+1,y),T (qx−1,y)

)
,

T2 = min
(
T (qx,y+1),T (qx,y−1)

)
,

(4.3)

∆x and ∆y respectively represent the difference of q along x-axis and y-axis, while qx+1,y is the right
side neighbor of q along x-axis in a cartesian coordinate.

Numerical solution of eq. (4.2) is given by

Φ(q)' T (q) =


T1 +

1
ζ (q) for T2 ≥ T ≥ T1,

T2 +
1

ζ (q) for T1 ≥ T ≥ T2,

Ω(T1,T2,ζ (q)) for T ≥max(T1,T2) ,

(4.4)

where Ω(T1,T2,ζ (q)) denotes a quadratic solution1 of (4.2).

We define the velocity model for both the robot and the target person, as follows:

1. The robot is expected to safely move within the environment. To achieve it, the distance map
D in eq. (3.1) is utilized as the velocity function and normalized to the maximum speed of
the robot ϕr,

ζr(q) = ϕr
D(q)
‖D(q)‖

. (4.5)

It implies the robot is given a higher velocity at the location farther from obstacles (see Fig.
4.1a).

2. For the target, the current target velocity ϕh is taken into account by using velocity cone

model combined with the distance map D. Let C be the cone area which consists of all point

1The quadratic solution in this equation means a quadratic equation ax2 +bx+ c = 0 has the solution −b±
√

b2−4ac
2a .

42

CHAPTER 4. VIEWPOINT PLANNING . . . 4.2. VIEWPOINT PLANNING USING . . .

q ∈ P satisfying
C =

{
∀q|q ∈ P ∧

(
∠q≤ ∠~ϕh±

π

3

)}
, (4.6)

where ∠~ϕh denotes the orientation of ϕh. Subsequently, the velocity function of the cone area
ζC is given by

ζC(q) =


ϕh for q ∈ C

ε for q /∈ C ∧q ∈ P

0 otherwise,

(4.7)

where ε is a small constant. ζC and D are then merged using Hadamard product to obtain the
velocity model for the target person

ζh(q) = ζC(q)◦
(
D(q)
‖D(q)‖

)
. (4.8)

Figure 4.1b shows that the travel time of the target person follows the shape of the environ-
ment.

By substituting eq. (4.5) and (4.8) into ζ (q) in eq. (4.2), the geodesic model of the travel time
for the robot Φr(q) and the target person Φh(q) are then acquired.

4.2 Viewpoint Planning using Deterministic/Greedy Approach

This section is not intended to directly solve the guard robot problem mentioned in eq. (2.9)–
(2.14). Instead, we establish a greedy method for solving the viewpoint planning problem, as a
comparison. Back to the worst-case assumption, we try to find the most critical escaping gap
gcritical ∈ G (i.e. the fastest one which can be reached by the target) by examining

gcritical = argmin
i

Ttarget(gi) (4.9)

for i = (1,2 . . . ,n), n is the number of escaping gaps, and gi ∈ G.

Basically, (4.9) also tells us that if the robot just stops at its position, it will lose the target at
the predicted time Ttarget(gcritical). It gives us an important definition,

Definition 4.2.1 (Condition of Losing Target). 1: The stopping robot will lose the target at

Ttarget(gcritical), except at a condition Ttarget(gcritical)→ ∞.

43

CHAPTER 4. VIEWPOINT PLANNING . . . 4.2. VIEWPOINT PLANNING USING . . .

It is imaginable that if the target moves away from all of escaping gaps (i.e. the target is always in
the robot FOV), then based on the velocity model of the target, escaping gaps will have very small
velocity which leads to a very large Ttarget (see eq. (4.2) and (4.7)).

4.2.1 Planning using Cost Minimization

To get a minimum amount of the robot’s movement while keeping the target inside the robot’s
FOV, we use cost minimization for the planning. We define several properties for the planning
algorithm:

• V as set of viewpoints,

• Q as set of states,

• A as set of actions,

• R(Q,A) as applied rules based on Q and A,

• β (Q,A,R) as the cost caused by action A, current state Q, and rulesR.

We use two states, Q= {q0,q1}, where q1 is the state where the current position of the robot
is at the one of possible viewpoints V and q0 is the state where the robot is not at the viewpoint (i.e.,
the robot is moving from one viewpoint to another). We also define possible actions for the robot
as A= {a0,av1, . . . ,avk}, where k is number of viewpoints, a0 represents “do nothing" action for
the robot2 (i.e. the robot just stops at the current position), and {av1, . . . ,avk} are the action for the
robot to go to one of viewpoint vi ∈ V .

We introduce the following rules forR(Q,A):

• Rule 1. The action a0 is only applicable to the state q1. This rule arises due to the definition
of the viewpoint planning itself, where we want the robot to make a transition between
viewpoints (i.e. the robot should not stop at non-viewpoint). It will cause a penalty cr1, given
by

cr1(q,a) =

∞ for q = q0∧a = a0

0 otherwise.
(4.10)

2The stopping action only describes that the robot stays at the same position, but actually the robot can make rotation
or controlling the pan-tilt-zoom system to adjust its view toward the target, and it is also applicable for other actions.

44

CHAPTER 4. VIEWPOINT PLANNING . . . 4.2. VIEWPOINT PLANNING USING . . .

• Rule 2. An action which leads to the viewpoint where the robot cannot see the critical
escaping gaps is not applicable. It is understandable that such viewpoints will make our robot
lose the target. This rule causes a penalty cr2, given by

cr2(a) =


0 for a ∈

{ai|λcritical ∈ interior(V(vi))}

∞ otherwise.

(4.11)

• Rule 3. This rule is a consequence of “Definition 1”. Let vcritical be a viewpoint inside the
visibility polygon of the robot V(qr) which is the nearest to the critical escaping gap. The
rule is based on a simple intuition that if the time for the robot to reach the viewpoint vcritical

is longer than the time for the target to reach the critical escaping gap gcritical , then the robot
will lose the target, or we can write it as

Trobot(vcritical)≤ Ttarget(gcritical) (4.12)

Equation (4.12) happens on the stopping action, but it is also applicable for other actions.
This rule causes a penalty cr3, given by

cr3(a) =



0 for all a when

Trobot(vcritical)≤ 0.8T

0 for a = avcritical when

0.8T≤ Trobot(vcritical)≤ T

∞ otherwise,

(4.13)

where T = Ttarget(gcritical). Basically, eq. (4.13) elaborates eq. (4.12) to see if the robot is
at the critical time for losing the target. Before this critical time condition is violated, the
robot can choose any action including the stopping action. When the critical time for losing
the target is near, the robot has to do an action for preventing it (i.e., the robot should go to
Pcritical), because if the robot does not do anything then the condition will be violated, and
any action cannot help the robot from losing the target (see the third row of eq. (4.13)). A
constant 0.8 (experimentally obtained) is given to make sure the robot does not violate the
critical time (i.e. ensuring the robot to move before violating the critical time).

45

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

Putting them together, we define the sum of the penalties caused by the rules as

R(q,a) = cr1(q,a)+ cr2(a)+ cr3(a), for a ∈ A,q ∈Q (4.14)

We then exclude all actions which giveR(q,a) 6= 0 from A.

Finally, we select the action based on the minimization problem of the cost β (Q,A,R), given
by

argmin
a

β (q,a,R), for a ∈ A,q ∈Q (4.15)

where
β (q,a,R) = Trobot(vi), (4.16)

vi is the viewpoint selected by action avi . To summarize, the behavior of the guard robot will be as
follows:

• When the robot is at a viewpoint, it will stay there within the viewpoint until the condition in
rule 3 is violated.

• When the robot is not at a viewpoint (i.e. the robot is moving from one viewpoint to another),
the robot will not stop until it reaches one viewpoint.

After an action was selected, the path which leads to the goal of the action is extracted as the
planning result. The path is calculated by backtracking the geodesic motion model of the travel
time for the robot Trobot(qr) from the goal (chosen viewpoint vi) to the robot position qr. We then
send the planning result as a set of waypoints to a local path planner to be executed. We use path
planner algorithm in [15] as the local path planner.

4.3 Viewpoint Planning using Stochastic Optimization

In this section, we present the planning method for solving the minimization problem in eq.
(2.9)–(2.14). By definition 2.2.3, the planning action can also be interpreted as the problem of
finding the optimal time and location for the robot to move, while intercepting the possibility of
losing the target visibility. Either way, the robot is preferred to be idle.

One may wonder whether using the travel time fields Φr(q) and Φh(q) is sufficient to directly
discover the solution of the above optimal time problem, as has been done by the above greedy

46

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

approach. Let τh
i be the estimated time for the target person to reach the escaping gap gi ∈ G, and

τr
j be the time for the robot to reach a viewpoint v j ∈ V (precisely, Vopt) covering gi. As long as

τh
i > τr

j , the target person does not seem to leave the robot visibility while the robot stays idle. Yet,
the time values offered by Φ(q) are deterministic and does not consider the uncertainty of both the
robot and the target person future states. Here a particle-based motion model over the travel time
field Φ(q) is proposed to solve the problem.

4.3.1 Representing future states as particles

As previously described, instead of using a linear motion model for predicting the future states,
we employ a geodesic motion model which is more representative for an indoor problem setting.
Let ψh

i : [qh
0,gi] 7→ Rm be a continuous curve describing the path of the target person towards each

escaping gap gi ∈ G. These paths are obtained by performing gradient descent search over Φh(q).
The same definition is applied to ψr

j : [qr
0,v j] 7→ Rm, which represents the path of the robot towards

each viewpoint v j ∈ V , using Φr(q).

Distribution of the future state trajectories of both the robot and the target person is then
approximated using particles, respectively correspond to each path ψh

i and ψr
j . Consider qh,1:N

t =

{qh,1
t ,qh,2

t , . . . ,qh,N
t } or simply written as qh

t as particles, probabilistically describe the target person
state at time t, where N is the number of particles. In addition, let qr

t be the particles of the
robot. The path ψh

i is subsequently parameterized by a set of particles {qh
k ,q

h
k+1, . . .}, where

k ∈ {0,∆t,2∆t, . . . ,τh
i } and ∆t is time step. Accordingly, the path for the robot ψr

j is described by
{qr

k,q
r
k+1, . . .} with k ∈ {0,∆t, . . . ,τr

j}.

For each path, we then propagate the particles as follows

qh
k+1 = qh

k +diag((q̂h
t −qh

k)I)+wh,

qr
k+1 = qr

k +diag((q̂r
t −qr

k)I)+wr,

q̂h
t ∼ qh

(k+1)∆t ∈ ψ
h
i ,

q̂r
t ∼ qr

(k+1)∆t ∈ ψ
r
j ,

(4.17)

where qh
k represents the mean of each particle qh

k , q̂h
t represents the point in the path ψh

i which
has ∆t difference with the qh

k , wh describes the uncertainty, function diag(·) returns a vector of
matrix’s diagonal, and I is an identity matrix. Therefore, {qr

k, q̂
r
t ,wr} notations follow the similar

descriptions, except it is now for the robot.

47

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

Figure 4.2: Particle illustration for the future states of the robot (blue) and the target person (red). Te yellow lines is
the robot visibility polygon. The red ellipse denotes the predicted states of the target which violates the robot visibility.

The physical meaning of eq. (4.17) is that the particles for the target person try to follow the
shape of the environment as pointed out by eq. (4.8). While for the robot, the particle sequences
mean the robot is controlled towards the viewpoint using the speed suggested by the velocity
function in eq. (4.5). It is basically the approximation of the robot control u described in eq. (2.4).
Figure 4.2 shows the particle representations of the future states.

4.3.2 The action plan based on chance constraint bound

In a greedy fashion, estimating the optimal time for the robot to start moving can be done by
evaluating all possible combinations of the target and robot particles, the escaping gaps, and the
viewpoints over the time. It should be done while ensuring the visibility towards the target person
during the movement for each state of the robot and target person.

Let λ be time delay for the robot to start moving from the current state. We expect to maximize
λ for reducing the robot movement,

max λ , λ = {0, . . . ,τh
i − τ

r
j} (4.18)

s.t. qh
k ∈ V(qr

k) (4.19)

∀qh
k+λ
∈ ψ

h
i , ∀qr

k ∈ ψ
r
j (4.20)

ψ
h
i : [qh

0,gi] 7→ Rm, ψ
r
j : [qr

0,v j] 7→ Rm, (4.21)

∀gi ∈ G, ∀v j ∈ V. (4.22)

Equation (4.20) means the robot movement is delayed until time k+λ (i.e. the target person has
already moved for λ unit time while the robot just starts to move, k = 0) for all possible λ . The

48

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

maximum value of λ is τh
i − τr

j since for τh
i < τr

j the target person will obviously leave the robot
visibility. Calculating the visibility of the target person for each possible robot state in eq. (4.19) is
costly and becomes the burden for running the optimization in real-time.

Instead of relying on the above greedy search to determine the optimal time to move, here we
propose a technique to reduce the computational efforts, based on the following theorem,

Theorem 4.3.1 (Trajectory Visibility Guarantee). The visibility of all states of the target person

in a trajectory qh
1:τ is guaranteed, as long as qh

τ ∈ V(qr
0).

Proof (Trajectory Visibility Guarantee). The proof is straightforward. By definition 2.2.3, qh
1:τ is

bounded by P . Since the trajectory is monotonically increasing by means of the geodesic model,

visibility of the last state qh
τ also implies the visibility of the rest states.

By the fact that our proposed algorithm runs iteratively, instead of finding the optimal time for
the robot to move in the future, we are more interested in examining whether it grants the visibility
guarantee by stopping at the current state. By the above theorem, such guarantee can be acquired
by evaluating the visibility of qh

τi, j (the target person state when the robot reaches the viewpoint v j,
while the target is predicted to go to gi). It implies the target should be still visible by the time the
robot arrives at the viewpoint.

To correspond with the nature of the particle usage (i.e. uncertainty), we accordingly propose
utilization of chance constraint, which is widely used in optimal control and obstacle collision
assessment (e.g. [51] and [52]), for verifying bound of the visibility.

Theorem 4.3.2 (Chance Constraint Bound). Probability of keeping the visibility of the target

person is designated by chance constraint bound

Pr(qh
τi, j
6∈ V(qr

0))≤ γ, (4.23)

and it can be approximated using particles,(
1
N

N

∑
n=1

qh,n
τi, j 6∈ V(qr

0)

)
≤ γ, (4.24)

49

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

Proof (Chance Constraint Bound). We can write the expectation of event h(qh
τi, j

,qr
0) =(

qh
τi, j
6∈ V(qr

0)
)

as

E[h(qh
τi, j

,qr
0)] =

∫∫
h(qh

τi, j
,qr

0) f (qh
τi, j

) f (qr
0)dqh

τi, j
dqr

0,

where f (qh
τi, j

) and f (qr
0) respectively represent the probability density function of qh

τi, j
and qr

0.

Since this integral is difficult to be evaluated in a closed form, it is approximated as

E[h(qh
τi, j

,qr
0)]≈

1
N2

N

∑
n=1

N

∑
n=1

h(qh,n
τi, j ,q

r,n
0).

By assuming a small uncertainty for the current robot state qr
0, we can approximate its mean,

qr
0 ≈ qr

0 =
1
N

N

∑
n=1

qr,n
0 .

Hence, the event h(qh
τi, j

,qr
0)≈ h(qh

τi, j
,qr

0). Subsequently, the left-hand side of eq. (4.24) is proved.

Equation (4.23) means the target person state at time τi, j is permissible to be outside the robot
visibility with probability at most γ , to be called “visible target". Using theorem 4.3.2, the optimal
action u∗t for the robot is then selected as follows

u∗t =

0 for χ = 1,

arg min
u

φ(u,v,g) otherwise,
(4.25)

where
χ =

∧
∀gi∈G,∀v j∈V

Pr(qh
τi, j
6∈ V(qr

0))≤ γ, (4.26)

and

φ(u,v,g)' f (u,ε) : [qr
0,v] 7→ Rm,

{∀v ∈ V|g ∈ V(v)},

{∀g ∈ G|Pr(qh
τi, j
6∈ V(qr

0))> γ}.

(4.27)

Equation (4.26) means the robot is “safe” to stop at the current position when all visibility
bounds towards the escaping gaps are not violated by the predicted movement of the target person.

50

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

Figure 4.3: A case when moving the robot may be better than idle.

Either way, the robot should move to the viewpoint which covers the violated escaping gap. In case
the robot faces several violated escaping gaps, the argument minimum over eq. (4.27) suggests the
robot to choose the viewpoint which covers the most critical escaping gap and gives the minimum
effort f (u,ε) to execute the trajectory towards it.

4.3.3 Further consideration for the chosen action

Up to now, we have determined the bound for the robot to safely keep the target person
visibility by staying at the current state. Let us consider another case, illustrated by Fig. 4.3.
Figure 4.3 depicts that according to the current calculation (remember that our algorithm was done
iteratively), the robot is suggested “safe" to stay at the current position. However, moving to the
viewpoint may have a benefit to make the robot holds the visibility in a longer time, since the future
escaping gap will disappear (or, shifted to a farther place). Here, an additional rule is incorporated
into the optimization to let the robot executes the optimal action.

The rule basically examines distance of the nearest escaping gaps ‖g f tr‖ created by the future
states of the robot qr

τr
j

(when the robot reach the viewpoint v j) towards the predicted target state at

the same time step (i.e. qh
τr

j
). Equation (4.25) is then slightly modified, as follows

u∗t =


0 for χ = 1 && ‖g f tr‖−‖gnow‖ ≤ η ,

f (u,ε) : [qr
0,v
∗] 7→ Rm for χ = 1 && ‖g f tr‖−‖gnow‖> η ,

arg min
u

φ(u,v,g) otherwise,

(4.28)

where ‖gnow‖ denotes the distance between the target person and the nearest escaping gap for the
current time, v∗ represents the viewpoint leading to the condition described in Fig. 4.3, and η is a
distance threshold.

51

CHAPTER 4. VIEWPOINT PLANNING . . . 4.3. VIEWPOINT PLANNING USING . . .

The selected action drawn from eq. (4.28) is deemed as the planning result. It is then sent as a
set of waypoints to a local motion planner [15] to be executed.

52

Chapter 5

Supporting Building Blocks: Path Planning
Algorithm

In chapter 4, the viewpoint planning algorithm produces a set of waypoints for the robot. Using
solely these waypoints will not make the robot moves as expected. Here, we suggest the use of path
planning algorithm for executing a sequence of controls for the robot based on the given waypoints.

5.1 Introduction

In many robot applications, a path planner plays an important role for making the robot fulfill
the given tasks, such as approaching a destination and avoiding collision with obstacles. The usual
sequence of path planning algorithm is as follows; get the environment data using sensors, generate
the path, and control the robot according to the generated path. There are several things which have
to be considered to develop a path planning algorithm for real implementation of the robot: path
optimality, path safety, and applicability to the real robot and environments.

Several parameters can be used to measure the path optimality, e.g. distance metrics, time
cost, and other cost functions. For example, if we use a distance metrics as the measurement, it
means that the path which gives the shortest distance toward a destination will be considered as
the optimal path. The path safety means the algorithm must ensure that the robot has a “good"
interaction with its surrounding environment, such as not colliding the other objects. The safety of
the path also means that the generated path does not harm the robot itself, e.g. the algorithm does
not generate a path with a very drastic change of velocity, which may harm the motor of the robot.

In the real application, the robot has kinematic and dynamic restrictions, such as speed,
acceleration, and possible motion of the robot. These problems are often addressed as kinodynamic
constraints of motion planning. Calculation time is also very critical for a real implementation of
path planning algorithms.

53

CHAPTER 5. SUPPORTING BUILDING . . . 5.1. INTRODUCTION

5.1.1 Related Work

There are a lot of works which have been presented and discussed to address the problem
of path planning. Randomized technique is one among many approaches which is used by many
researchers ([53], [54]). A randomized path planner such as RRT (Rapidly-exploring Random Tree)
[55] is widely accepted because of its ability to explore the tree in the vast area. A problem in
RRT is that it produces path with many branches over the space due to its natural behavior of using
randomized technique. Some studies have been conducted to overcome this problem. Urmson and
Simmons [56] proposed a heuristic technique based on a probabilistic cost function to optimize
generated trajectories. Another approach is presented by Bruce and Veloso [57] by introducing
additional waypoint caches to improve the performance of the random tree algorithm.

Rodriguez et al. [54] presented a variant of RRT algorithm which can explore narrow passages.
Vonasek et al. [58] propose an iterative scaling approach for RRT search, based on an iterative
refinement of the guiding path using a scaled model of the robot. There are also researches on RRT
using kinodynamic constraints by La Valle et al. [59] and Plaku et al. [60].

Several researchers ([53], [61], and [62]) also worked on sampling-based path planners.
Karaman and Frazzoli [61] designed an incremental sampling-based path planner and proved
its optimality on a static environment. Jaillet et al. [53] proposed a sampling-based method on
configuration-space cost map. Zucker et al. [62] introduced a workspace-biased sampling to be
applied on a bidirectional RRT.

Another work proposed by Hassouna et al. [63] does not use randomized technique, but
instead uses a potential function generated by the Level Set Method over the free space. The path is
extracted using sequences of the best value of the field between the initial position of the robot and
the goal.

5.1.2 Our Approach

Most algorithms are either only consider static environment (e.g. [53], [54], [55], [56], [59],
[61], [62], and [63]) or need a long calculation time thereby making it hard to be applied to the real
robot (e.g. [60]). Some other algorithms do not consider kinodynamic restrictions of the robot in
their simulations (e.g. [61] and [63]). That means it will need much efforts and modification to
apply those algorithms to the real robot.

54

CHAPTER 5. SUPPORTING BUILDING . . . 5.2. ARRIVAL TIME FIELD

Figure 5.1: Flowchart of the path planning algorithm.

We introduce a new path planning algorithm using the arrival time field and randomized
tree approaches. Basically, it is a real-time path planning algorithm that takes advantage on the
high-exploration ability of randomized tree combined with an arrival time field and heuristics to
achieve the path optimality, safety, and applicability to the real robot. We use the arrival time field
to give a bias and guide the randomized tree expansion in a favorable way. Together with heuristics,
the arrival time field effectively ensures the robot to choose the path in the tree expansion with a
considerable clearance with any obstacle (safety) and has an optimum cost to reach the destination.
These costs include the length, the time to go, and the smoothness of the path. Figure 5.1 shows the
flowchart of our path planning algorithm.

5.2 Arrival Time Field

5.2.1 Definition

We first describe the basic idea of the arrival time field. Let us consider the environment C as
a two dimensional space that holds information as follows:

• Non-passable area, which holds information about walls and static obstacles, denoted by O
⊆ C;

• Free space area, which defines observed areas where the robot will not collide with walls as
well as static obstacles, denoted by F ⊆ C;

55

CHAPTER 5. SUPPORTING BUILDING . . . 5.2. ARRIVAL TIME FIELD

• Unknown area, which defines areas that have never been observed by the robot, e.g. area
behind obstacle which cannot be observed by any sensor, denoted by U ⊆ C.

We define the arrival time field as a space containing the information about the time needed
by each point in the space for approaching a determined goal point. Let us first consider a basic
kinematic equation in one dimensional case which correlates speed V , position x, and time T as

∆x =V ∆T, (5.1)

or we can rewrite it as
∆T
∆x

=
1
V
. (5.2)

In higher dimension, (5.2) can be expressed as

|∇T |= 1
V
. (5.3)

5.2.2 Solving Eikonal Equation

Let a monotonic wave front originated from a determined source point moves across a space,
then the arrival time of wave front in every point can be calculated using (5.3). The arrival time of a
point depends on the distance from the source point and the speed used for traveling the wave front
toward that point. This problem is known as Eikonal equation problem which can be solved by
Godunov approximation [50]. In 2D space, for example, the equation is given by√

max
(

D−x
i, j T,−D+x

i, j T,0
)2

+max
(

D−y
i, j T,−D+y

i, j T,0
)2

=
1

Vi, j
;(i, j) ∈ F (5.4)

where

D+x
i, j = Ti+1, j−Ti, j,

D−x
i, j = Ti, j−Ti−1, j,

D+y
i, j = Ti, j+1−Ti, j,and

D−y
i, j = Ti, j−Ti, j−1.

(5.5)

Ti, j is the arrival time value of cell (i,j), and Vi, j denotes speed function of cell (i,j). Solution of
(5.4) can be retrieved using a solver such as Fast Marching Method ([50], [63]), Fast Sweeping
Method [64], or Fast Iterative Method [65].

56

CHAPTER 5. SUPPORTING BUILDING . . . 5.2. ARRIVAL TIME FIELD

We use Fast Marching Method (FMM) to solve (5.4). According to [63], (5.4) can be approxi-
mated by first order finite difference scheme

max
(

Ti, j−T1

∆x
,0
)2

+max
(

Ti, j−T2

∆y
,0
)2

=
1

V 2
i, j

(5.6)

where

T1 = min
(
Ti+1, j,Ti−1, j

)
T2 = min

(
Ti, j+1,Ti, j−1

) (5.7)

The solution1 of (5.6) is given by

Ti, j =


T1 +

1
Vi, j

for T2 ≥ T ≥ T1

T2 +
1

Vi, j
for T1 ≥ T ≥ T2

quadratic solution of (5.6) for T ≥max(T1,T2)

(5.8)

Equation (5.4) indicates that the arrival time of each point depends on its speed function Vi, j.
That means we can set the influence of walls and static obstacles by adjusting the speed function,
so that areas near obstacles have larger arrival time. For that purpose, we implement a monotonic
function denoted by

Vi1, j1 =

n‖xi1, j1−xi2, j2‖ for xi1, j1 ∈ F,xi2, j2 ∈ O

1 otherwise
(5.9)

where Vi1, j1 is the speed on the point xi1, j1 , xi2, j2 is the nearest point of obstacle to xi1, j1 , and n is a
constant for adjusting the monotonic function’s value, to give more differences on each cell. We use
the monotonic function’s result for the speed function for calculating the arrival time field, which
will make the speed near obstacle become smaller. These definitions make the robot keep some
distances from walls and obstacles.

The emphasis point of the arrival time field is that it provides the minimum predicted arrival
time for each point rather than the shortest distance to the goal. This predicted arrival time depends
on its speed function. We can exploit the speed function by inserting information about several

1The quadratic solution in this equation means a quadratic equation ax2 +bx+ c = 0 has the solution −b±
√

b2−4ac
2a .

57

CHAPTER 5. SUPPORTING BUILDING . . . 5.2. ARRIVAL TIME FIELD

(a) (b)

(c) (d)

Figure 5.2: Advantages of using monotonic velocity function: (a) An environment with two possible paths toward the
goal. (b) Monotonic velocity field of (a). (c) Arrival time field with uniform velocity function. (d) Arrival time field
with monotonic velocity function. Darker color means longer arrival time. By occupying monotonic velocity function,
taking path B is better according to (d)

possibilities that the robot may face in the environment. For example on a plain environment with
obstacle, we can determine that the robot is better to move slower at a narrow space, a corridor, or
an area next to the obstacles. We set a smaller speed on the area near the obstacle, then a shorter
travel time will be through an area far from the obstacle (see Fig. 5.2). This example shows that the
safety factor is also taken into account in the arrival time field calculation.

An arrival time field is used to provide a bias to drive expansion of the tree in a favorable
direction toward the destination. We want the tree expands through a safe place within the fastest
time. To fulfill such requirements, we apply the distance transform over free space F to give more
weights on the cells near static obstacles and walls. We then perform calculation of the arrival time
field originated from a goal point to give less weight on the closer position towards the goal.

The result of the arrival time field calculation is normalized and inverted so that the goal point
has the highest weight. We then use that result as a bias for guiding the tree expansion.

58

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

5.3 Heuristic Arrival Time Field-biased (HeAT) Random Tree

It is easy to extract an optimal path for a point robot, i.e. the robot can freely move to all
directions, using the result of arrival time field by backtracking the path along the fastest field
from the start to the goal [63]. In the case of considering kinematics and dynamics of robot as
constraints, as well as dynamic environments, it is very difficult to apply such approaches. We
therefore propose a randomized kinodynamic path planner algorithm utilizing the arrival time
field bias as its guidance and heuristic search to optimize the path, called Heuristic Arrival Time

Field-biased (HeAT) Random Tree.

5.3.1 Definition

Our randomized tree is constructed by collections of reachable states S called node. Every
node is defined by the tuple S = {x,y,θ ,v,w, t} ∈ S, representing robot position in xy-axis and its
heading θ , current translational velocity (v) and rotational velocity (w) of the robot in that node,
and time t for reaching that node from the current state.

We give a predefined set of possible motions to the path planner. Each motion in the set consists
of a translational and a rotational velocity as robot control denoted by ui = {vi,wi} ,(i = 1,2, . . . ,K),
where K is the total number of the motions, which satisfies kinematic constraints of the robot. Based
on experiments, we currently use K = a set of 85 motions which combine translational velocity (in
mm/s) v ∈ {−100,−50,0, . . . ,600} and rotational velocity (rad/s) w ∈ {−π

2 , . . . ,
π

2}.

Let St be the current state and St+1 be the next state reached from St using a chosen motion
u = {v,w}. We define this action of extending state St as a function

St+1← g(St ,u), (5.10)

and according to [66], the new robot pose of St+1 can be obtained by the following equation:xt+1

yt+1

θt+1

=

xt

yt

θt

+
v1

w1

−sinθt + sin(θt +w1∆t)

cosθt− cos(θt +w1∆t)

0

+

 0
0

w1∆t

, (5.11)

where ∆t is the time difference between St and St+1.

59

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

5.3.2 Short-time Dynamic Obstacle Motion Model

In a dynamic environment, we consider a state as collision-free state if the state does not hit
any static and dynamic obstacles. We need to perform a collision checking of every new state.
Collision with static obstacles is checked using the information of non-passable area O. For dynamic
obstacles, we make a short-time dynamic obstacle motion model using constant speed for motion
prediction of dynamic objects. Let D

′
x (t) and D

′
y (t) be the predicted position of an obstacle at time

t in x and y coordinate. We predict the position of each dynamic obstacle by

D
′
x(t) = Dx(0)+ vDxt (5.12)

D
′
y(t) = Dy(0)+ vDyt (5.13)

where Dx(0) and Dy(0) are the current position of the obstacle, and vDx and vDy are the speed of the
obstacle on the respective x and y coordinate.

We assume that motion prediction of moving obstacle is effective for a short range of time, due
to its uncertain behavior. We currently use fixed 10 time slices with cycle time of 500 milliseconds,
started from the time of the current state of the robot. For each time slice, we predict both the
position of each moving obstacle and that of the robot in order to see whether the robot and dynamic
obstacles will cause a collision in that time slice.

5.3.3 Random Tree Algorithm

We expand the tree from the current position of the robot, using a similar approach to basic
RRT [55] to take the advantages of its random exploration ability. Unlike the basic RRT algorithm
which chooses a random point from the entire space, however we select a random point using the
bias from the arrival time field so that the tree grows in a favorable direction toward the goal. We
iteratively choose a random point Ptarget which has higher value of arrival time field than a threshold
value (please note that we invert the result of the arrival time field calculation, so that the goal point
has the highest value). The threshold T h is determined by

T h = bias(Sinit)+Kth(bias(S f ar)−bias(Sinit)) (5.14)

where bias(Sinit) is the arrival time value at the current robot position, bias(S f ar) is the arrival time
value at the node which has the highest value of the arrival time in the current iteration, and Kth is a

60

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Random tree algorithm: (a) Initial condition before extending the tree. (b) Determine the threshold. (c)
Pick a random point (Ptarget). (d) Choose the nearest node (Snear). (e) Evaluate all of possible motions. (f) Extend the
tree (Snew).

constant between 0 and 1. The threshold value is started from the value of the arrival time field
of the initial state (current robot position), and will grow when a new created node has a higher
bias value than all of the current existing nodes. We then choose the nearest node Snear to the Ptarget

among all of nodes in the tree.

Every time Snear is chosen and eligible to be expanded, we will calculate a new state Snew of
that node (Snear) by evaluating all of possible motion controls

Sui ← g(Snear,ui), for i ∈ {1,2,3, . . . ,K} (5.15)

where Sui is the extension of Snear using motion control ui, and K is the total number of the motion
set, which satisfies kinematic constraints of the robot, and free from any collision. Let {vi,wi} ∈ ui

be {v2,w2} and {v,w} ∈ Snear be {v1,w1}, then possible motion controls which meet kinematic

61

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

constraints can be chosen if the motion satisfies

v2 ≤ vmax,

w2 ≤ wmax,

(v2− v1)

∆t
≤ amax,

(w2−w1)

∆t
≤ αmax,

(5.16)

where vmax, wmax, amax, and αmax respectively denote maximum allowable translational velocity,
angular velocity, translational acceleration, and angular acceleration, and ∆t is cycle time of
calculation, currently 500 milliseconds.

We then pick the best motion control

ubest = argmin
i

cost(Sui), (5.17)

which gives the best cost function, to get the new node

Snew = Subest ← g(Snear,ubest), (5.18)

cost(S) is a cost function for evaluating a motion, defined by which is evaluated by

αM1 +βM2 +δM3, (5.19)

M1 = bias(S), (5.20)

M2 = dist(Ptarget−S), (5.21)

M3 = |θS−θSnear , | (5.22)

where bias(S) is the arrival time value at predicted point(xS,yS), dist((xPtarget ,yPtarget)− (xS,yS)) is
the distance between destination point (xPtarget ,yPtarget) and the predicted point (xS,yS). |θS−θSnear |
is the heading difference of the robot between the current state and the predicted state, and α , β ,
and δ are constants.

The algorithm above is summarized as follows (see also Fig. 5.3 and algorithm 2):

1. Determine the threshold of region for picking a random point by (5.14);

62

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

(a) (b) (c)

Figure 5.4: Growing the threshold from (a) to (c). The white area is the region for choosing a random point.

2. Pick a random point Ptarget which has a better bias value than the threshold (see algorithm 3);

3. Choose the nearest node Snear to the random point Ptarget ;

4. Evaluate all of possible motions using (5.15); and

5. Extend the tree (Snew) by choosing the best motion (see algorithm 4).

Algorithm 2 HeAT Random Tree Planner
1: Require :
2: S= collection of nodes
3: u = motion control
4: bias(S) = arrival time value of node S
5: threshold = bound the area for choosing random point
6:
7: procedure HEAT_RANDOM_TREE_PLANNER()
8: S⇐ Sinit
9: threshold⇐ bias(Sinit)

10: while time_is_available do
11: Snear⇐ CHOOSE_STATE(Ptarget ,S)
12: S⇐ S ∪ EXTEND_TREE(Snear,u)
13: Update(threshold) . eq. (5.14)
14: end while
15: end procedure

The constant Kth in (5.14) gives us the control how fast the tree will grow and how disperse
the tree will be. High value of Kth means the threshold will increase rapidly, then make the tree
grows fast and focus toward the goal. Low value of Kth means the threshold will increase slowly,

63

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

Algorithm 3 Choose State
1: Require :
2: S= collection of nodes
3:
4: procedure CHOOSE_STATE(Ptarget ,S)
5: while time_is_available do
6: Ptarget = random point from F
7: if bias(Ptarget)≥ threshold then
8: return nearest_node(Ptarget ,S) . the nearest node in S to Ptarget .
9: end if

10: end while
11: end procedure

Algorithm 4 Extending Tree
1: Require :
2: u = set of motion controls
3: temp_cost = temporary variable for storing cost value
4: S′ = temporary variable for storing the information of a node
5:
6: procedure EXTEND_TREE(Snear,u)
7: for all u do
8: S′⇐ (Snear,u)
9: if cost(S′) ≤ temp_cost then . cost value is calculated according to (5.19).

10: Snew⇐ S′

11: temp_cost = cost(S′)
12: end if
13: end for
14: return Snew
15: end procedure

64

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

then we will get a more disperse tree. In the current implementation, we use Kth = 0.25. Fig. 5.4
shows the growth of the threshold.

The basic randomized planner always tends to make a disperse path due to its natural behavior.
We need to determine a proper criterion for extending every node chosen by the randomized planner
to reduce inefficient and disperse motions. In this case, we want to reduce unstable movements that
are often found in the path created by randomized planner. We use the previous heading criterion as
defined in (5.22) to ensure that we will not choose a very large difference of heading on each pair
node causing unstable movements.

5.3.4 Restarting Tree Algorithm

We can expect that growing the tree from the initial point to the goal using the arrival time
field bias takes a small amount of time. We will take the advantage of this fact to construct more
possible paths. Once a node in the tree reach the goal area, the threshold for choosing random point
is set back to the value of arrival time field of the robot’s current state, and we repeat the process of
expanding the tree. We call this processes as "restarting tree algorithm". We run the tree expansion
algorithm for a fix amount of time, currently 200 ms. These restrictions are implemented in order
to keep the computation time as fast as possible to be recognized as a real-time path planner.

5.3.5 Directing Initial Robot Heading

The utilization of kinodynamic constraints to the robot, i.e. the robot cannot freely move to all
directions, may lead the randomized planner to make a large curve of path when the target position
is in the opposite direction of the robot. In this case, it is better to direct the robot in a certain
heading; pointing the robot directly to the goal position is not best choice, because in appearance
of obstacles, it may lead the robot to wrong trajectories. We overcome this problem by adding a
heuristic that is to direct the initial robot heading to the most promising area using a small frame of
arrival time field.

A small frame of the arrival time field, centered on the robot initial position, is divided into
four regions (Fig. 5.5). We calculate the total weight of each region and choose the region which
has the largest weight. When the region behind the initial position of the robot has a larger weight,
we will rotate the robot to that region and make that rotation as the initial expansion of the tree. We
can see a comparison of the algorithms with and without this initial heading in Fig. 5.6.

65

CHAPTER 5. SUPPORTING BUILDING . . . 5.3. HEURISTIC ARRIVAL TIME FIELD- . . .

Figure 5.5: Making a small frame of the arrival time field: (a) the arrival time field, (b) a part of (a) centered at the
robot position, divided into four region

(a) (b)

Figure 5.6: Effect of directing the initial heading of the robot: (a) without and (b) with the initial heading. The goal is
at the lower left corner.

Fig. 5.6a shows a long arch of path when the robot does not use the initial heading. Contrary,
we can reduce the cost of the path on the robot when we apply the initial heading at the beginning
of the tree, as shown in Fig. 5.6b.

5.3.6 Path Extraction

HeAT Random Tree will provide several feasible paths of the robot from the initial state
to the goal due to our restarting tree algorithm, satisfying the kinodynamic constraints and is
free of collision with any static and dynamic obstacles. We examine all of the feasible paths by
backtracking from the nodes which reach the goal area to the root of the tree and select the path
which is the fastest one and has the most Minimum Work (MW) cost (see eq. (5.23)). The term
fastest here means the path which has minimum time to reach the goal, and there are possibilities
that several paths will have the same minimum time because of the restarting tree algorithm.

66

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

MW cost is computed by

MW =
goal

∑
t=start

|w(t +1)−w(t)| (5.23)

where w(t) is angular velocity/steering radius (in radian/s) on the node St . The path, steering radius
of which often change, i.e. non-smooth path, will have higher value of MW.

MW cost ensures that the chosen path is the smoothest one among all of the fastest paths. The
first motion of the path is sent to the robot controller.

5.3.7 Reusability of Path

We use a pretty fast time cycle (currently, 500 milliseconds per cycle) for calculating the entire
algorithm i.e., updating map information, static and dynamic obstacles, and performing calculation
of HeAT Random Tree. We assume that the environment is not so much changed during that cycle.
The path generated by the previous calculation is still expected to be feasible for the current cycle.
The previous path is examined from the root to the longest collision-free state of the path and used
it as initial tree for the current calculation.

5.4 Experiment Results

We test HeAT Random Tree path planner both in simulation and experiment with the real robot.
All of implementations were done using a laptop PC (Core2Duo, 2.1 GHz, 2GB memory, Windows
XP). We implement our path planner algorithm as an RT-component (see Figs. 5.7 and 5.8) which
is a software module running on RT-middleware2 environment [67] for reusability (cooperates with
other modules in the real implementation, e.g. sensor modules, mapping modules, etc.).

5.4.1 Simulation: Local Planner

We use an Environment Simulator [68] to perform simulation of our path planner as a local
planner. The simulator generates a 200x200 cells of map consisting of free space and static obstacles

2RT-middleware is a specification on a component model and infrastructure services applicable to the domain of
robotics software development, authorized by OMG (Object Management Group).

67

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

Figure 5.7: RT-Component connection for the simulations

Figure 5.8: RT-Component connection for the experiments

as the local map for the robot, mimicking the canteen of our university. This simulator also provides
people movement information to the path planner. Flow of the simulated people behavior is as
follows: people enter the canteen, queue the ticket at ticket machine, take the meals using a tray, go
to a free seat, stay on the seat for eating, bring the tray to the washing place, and go to the exit (see
Fig. 5.9).

We apply HeAT Random Tree path planner to people tracking and waypoint following prob-
lems. Figure 5.10 shows simulation result on both problems, where the blue area denotes free
space, the green line is wall and static obstacles, the orange circle denotes robot position, the red
circle is the goal, the triangles represent people movement, and the black area is extending space
for obstacles. Here, we want to show that our path planner is fast enough to run as a local planner,
and can deal with both static and dynamic obstacles. Especially for people tracking problem, we
want to show that our path planner can deal with a dynamic goal.

In the people tracking simulation, the robot has to follow one of people while avoiding static
obstacles, walls, and other people. We will say that the robot has succeeded in solving people
tracking problem when the robot can follow the tracked person from the entrance until that people
stay at the table for eating (see Fig. 5.10a and 5.10c).

In the waypoint following simulation, the robot is given sequence of waypoints to follow

68

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

Figure 5.9: Modeled environment for simulation

Table 5.1: Statistic of Simulation Result

Statistic People Tracking Waypoint Following
Arrival Time Field calculation (max) 40 ms 40 ms
Random Tree calculation (max) 250 ms 250 ms
Number of nodes (avg) 1500 nodes 3000 nodes
Maximum speed 500 mm/second 600 mm/second
Number of simulation 10 times 10 times
Successful runs 100% 100%

where the goal lies on the very last waypoint of the sequence. The simulator gives several condition
of environment like corridors, intersections, and open space with wandering dynamic obstacles.
The task of waypoint following problem will be judged as succeed if the robot can arrive at the goal
safely (see Fig. 5.10b and 5.10d).

Table 5.1 shows the robustness of HeAT Random Tree algorithm. Each problem is done by
10 times simulations and has been done successfully. Overall calculations need less than 500
milliseconds. The path planner produces less node in the people tracking problem because the
robot keeps close to the goal (i.e. followed person), so that the area for expanding the tree becomes
narrower than the one on the waypoint following problem.

69

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

(a)

(b)

(c) (d)

Figure 5.10: Screenshot sequences of simulation using Environment Simulator: (a) people tracking problem, (b)
waypoint following problem, (c) global map view of (a), (d) global map view of (b). People is the goal in (a). The blue
area denotes free space, the green line is wall and static obstacles, the orange circle denotes robot position, the red
circle is the goal, the triangles represent people movement, and the black area is extending space for obstacles. Grey
circles in (c) and (d) is global position of the robot respecting to local position in (a) and (b).

70

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Simulation of HeAT Random Tree as global planner using various maps, its arrival time field (left), and
respecting tree expansions (right). The blue lines denote trees, the red line is robot path, the orange circle denotes robot
position, the red circle is the goal, the white and black area are respectively free spaces and obstacles.

5.4.2 Simulation: Global Planner

We then use our algorithm as a global planner (see Fig. 5.11). Fig. 5.11a and 5.11b show
the benefit of the arrival time field with safety profile as we had explained in section 5.2, where
the safest path will be chosen if applicable for the robot. Fig. 5.11d and 5.11f show how our path
planner will act in the environment with several possible paths. By using arrival time field, our
algorithm will try to find the fastest and smoothest path for the robot while maintains the safety.
For example in Fig. 5.11f, there are many possible paths and the arrival time field nicely guides the
tree expansion.

71

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

(a) (b) (c)

Figure 5.12: Comparison of tree expansion on the dynamic environment: (a) Original RRT, (b) hRRT, and (c) HeAT
Random Tree

(a) (b)

Figure 5.13: Comparison of RRT, hRRT, and HeAT-RT algorithms: (a) Successful rate of finding the path, (b) Number
of nodes.

5.4.3 Comparison with Other Algorithms by Simulation

We provide a brief comparison between HeAT Random Tree algorithm and other existing RRT-
based path planning algorithms. We use the original RRT algorithm by [55] and hRRT algorithm
by [56] for comparison. Original RRT algorithm chooses a random point uniformly from the entire
space, then extends the tree from the nearest node to that random point. hRRT algorithm uses a
heuristic method based on a probabilistic cost function. This algorithm selects a random point for
extending the tree using a distance cost function to reduce the dispersion of the tree produced by
original RRT algorithm.

For fairness of comparison, we use the same environment. We also apply the same kinodynamic
constraints to all of algorithms, even if each original algorithm did not concern about it. We set
the maximum time to 300 milliseconds for performing the calculation of each algorithm, to be
considered as real-time algorithm.

Fig. 5.12 can give us a good illustration about how the tree will expand in each algorithm on
a dynamic environment. Original RRT algorithm expands the tree in a disperse way (Fig. 5.12a).
hRRT gives a better result than Original RRT by occupying heuristic method of cost function, but

72

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

(a) (b) (c) (d)

Figure 5.14: Comparison of tree expansion on the environment with narrow passage: (a) Original RRT, (b) hRRT, (c)
Arrival Time Field, and (d) HeAT Random Tree

this heuristic method based on distance cost only considers the free spaces and the static obstacles,
therefore it cannot handle dynamic environment and difficult to get out of obstacles in front of the
robot as shown in Fig. 5.12b. On the contrary, HeAT Random Tree algorithm is nicely guided by
the arrival time field and heuristics, and expands in a favorable way as shown in Fig. 5.12c.

Fig. 5.13 shows the effectiveness of HeAT Random Tree against original RRT and hRRT to
find the path, based on the experiment on the Fig. 5.12. HeAT Random Tree can rapidly find and
generate the path, even though RRT and hRRT can produce more nodes at the same time. High-rate
of successful path generation is needed to ensure the robustness of the algorithm. HeAT Random
Tree is expected to have longer time of calculation because of arrival time field generation, but
surprisingly it is just a slight difference of node numbers among the three algorithms. This slight
difference happens because original RRT and hRRT face many collision states that will slow down
the computation time due to kinodynamic constraints, whereas HeAT Random Tree is well-guided
by the arrival time field so that the tree will be expanded to the safe area.

Fig. 5.14 and 5.15 show comparison of each algorithm on the environment with narrow
passages and bug-traps. Our algorithm effectively expands the tree, produces a nice path, and
maintains the safety, while RRT and hRRT fail to find the path. Both figures show the benefit of the

arrival time field with safety profile which guide the tree expansion in favorable way. Please notice
in Fig. 5.14d, the path lies on the middle of narrow passage, which means our path planner can still
maintain the safety of the path even in a difficult environment.

We then compare our HeAT Random Tree algorithm with RRT and hRRT algorithms using
Environment Simulator for solving waypoint following problem. The robot is given the same initial
position and goal to reach using each algorithm. Along the way in the simulator, the robot runs
through several situations like narrow corridors, intersections, and open spaces with several moving
obstacles surrounding the robot (see Fig. 5.16). We aim to test each algorithm using different kinds
of environments and situations, to get better illustrations of performance of each algorithm. We run

73

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

(a) (b) (c) (d)

Figure 5.15: Comparison of tree expansion on the environment with multiple bug-traps: (a) Original RRT, (b) hRRT,
(c) Arrival Time Field, and (d) HeAT Random Tree

Table 5.2: Comparison of Three Algorithms using Environment Simulator

RRT hRRT HeAT RT
Time to goal (avg) 157 sec. 113 sec. 58 sec.
Number of collision (avg) 10 9 2
MW-cost (avg) 0.57 0.33 0.15
Successful runs 50% 70% 100%

the simulation 10 times for each algorithm. Figure 5.16 visually shows that our algorithm can keep
the path as smooth as possible on the narrow corridor and intersection and effectively grows the
tree toward the goal on all of situations, comparing to other algorithms.

Table 5.2 shows the simulation results of each algorithm for waypoint following problem.
The results are taken and averaged from successful run (i.e. the robot reaches the goal). Most of
collisions occur because of moving obstacles. Averaged MW-cost results show the smoothness of
the path generated by HeAT Random Tree, computed by

AveragedMW =

goal

∑
step=start

|w(step+1)−w(step)|

∑step
(5.24)

where w(step) is angular velocity/steering radius control (in radian/s) on each step, and ∑step is the
total number of steps from the start to the goal, and collision states are not included in computation.
Lower value of Averaged MW means more rare the robot changes the direction. Overall, this results
show the superiority of our algorithm.

74

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

(a)

(b)

(c)

Figure 5.16: Comparison of three algorithms at (a) narrow corridor, (b) intersection, (c) open space with several
moving obstacles.

75

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

Figure 5.17: Experiment of people tracking in complex environment (canteen of our university): (from left to right)
sequences of the real world (top) and local map scene (bottom). The robot has to follow the person in the red circle.

5.4.4 Experiment on Real Robots

We use a Patrafour robot by Kanto Auto Works Ltd. and ENON by Fujitsu Ltd. for experiments,
equipped with a stereo camera (Bumblebee2 by Point Grey), a laser range finder (UTM-30LX by
Hokuyo), and laptop PC. We test HeAT Random Tree path planner using two problems: people
tracking and waypoint following problems.

The path planner utilizes a 200x200 grid of probabilistic local map with actual size of 10x10
meter. In the people tracking problem, the robot has to follow a person using a people tracking
algorithm [69] while examining its environment. We use the canteen of our university representing
a more complex environment (see Fig. 5.17). The robot follows one person while avoiding any
collision with surrounding people.

In the waypoint following problem, we determine several waypoints which have to be reached
by the robot on the real world. We use in-room environment for doing waypoint following
experiment. The robot has to reach the goal which is located in front of the door while avoiding any
collision with obstacles and wandering peoples (see Fig. 5.18).

Both following waypoints and people tracking tasks are successfully done within 500 mil-
liseconds of computation time per cycle and using maximum speed of 500 millimeters per second.
Those experiments show the ability of HeAT algorithm to be directly implemented on the real robot
using a real environment.

76

CHAPTER 5. SUPPORTING BUILDING . . . 5.4. EXPERIMENT RESULTS

Figure 5.18: In-room experiment of following waypoints: (from left to right) sequences of the real world (top) and
local map scene (bottom). Circles in the top images represent detected person.

77

Chapter 6

Supporting Building Blocks: Person Detec-
tion and Tracking

By mean of the guard robot problem and the viewpoint planning, it suggests the need of
“watching” action continuously to the target person. Here we propose a framework for doing such
task, by employing a camera-based person detection and tracking algorithm. In addition, we also
consider supplemental information of the person state, i.e. the person orientation. For the viewpoint
planning purpose, we mainly utilize the positional information of the person, yet the orientation
information serves a possibility of vast applications.

6.1 Introduction

Human body detection is one of challenging yet useful tasks for the mobile robot and surveil-
lance applications. The human body detection with an additional orientation information can tell us
how people interact with each other in the surveillance scenes. For example, we may predict that a
group of persons facing each other for a long time are having conversation, or other social semantic
predictions such as waiting for the bus together.

From the mobile robots point of view, the human body detection with an orientation estimation
can assist the robot to get a better prediction for avoiding a person when doing navigation tasks.
It also helps the robot to make a social interaction with the human in outdoor navigation, such as
approaching a person and asking the way. Here the robot certainly needs the estimation of human
orientation for facing the person.

Several works try to accomplish the human body detection and orientation estimation problem.
Andriluka, et al. [70] uses banks of viewpoint specific part based detectors and linear Support
Vector Machine (SVM) for estimating the whole body orientation. Another recent work is done by
Weinrich, et al. [71] which performs the human upper body orientation estimation using Histogram
of Oriented Gradients (HOG) features and SVM Tree. A work by Baltieri, et al. [72] employs

79

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

Figure 6.1: Eight classes of the human upper body orientation, representing (from left to right) front, front-left, left,
back-left, back, back-right, right, and front-right directions.

a Mixture of Approximated Wrapped Gaussian (MoAWG) weighted by the detector outputs for
increasing the correct estimation rates. The above researchers do not consider how the person
movements will affect the overall estimation results.

One notable work by Chen, et al. [73] uses multi-level HOG features and sparse representation
for classifying the human pose. They also employ a soft-coupling technique between the whole
body orientation and its velocity using the particle filter framework.

To solve the problems we have mentioned above, here we propose a system for detecting and
estimating the human upper body orientation, as well as its motion. We prefer to use the upper body
part rather than the whole body for gaining the robustness under occlusion; the full body is often
partially occluded by small objects such as chair, table, bicycle, and so on.

Our main contribution resides in the use of the Partial Least Squares (PLS)-based model of
gradient and texture features for estimating the human upper body orientation. Here, our PLS model
is a modification of the one used in [74] which has been successfully applied for human detection.
We also provide an Unscented Kalman Filter (UKF) framework integrating the human movement
prediction and the orientation estimation for improving the estimation results.

6.2 Model-based human upper body orientation estimation

6.2.1 Hierarchical system

Our system is built in a hierarchical manner. First we detect and create bounding boxes around
the human upper body using a fast detector. These detection results are then fed to the orientation
estimator part. We divide the orientation into eight quantization (see Fig. 6.1). Results from the
detector and the orientation estimator are used as the observation inputs for the tracker. Figure 6.2
explains our framework on the human upper body orientation estimation as described above.

80

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

Figure 6.2: Diagram of the human upper body orientation estimation system.

Our system is composed of the image-based orientation estimation and the tracking system
(see Fig. 6.2). The influence between the systems is one-directional. That is, the orientation
estimation system runs independently, and its results are used by the tracking system for increasing
the robustness of its pose and motion estimation. This also implies the orientation estimation system
can be applied to still images.

6.2.2 Human upper body detection

Histogram of Oriented Gradients (HOG) [75] is one of state-of-the-art descriptor for the whole
body person detection. However, the original HOG algorithm is slow and unsuitable for the real
time applications. Here we exploit the extended work of HOG by [76], which employs Adaboost

for selecting features and cascade rejection for speeding up the detection time. Instead of using
the whole human body, we prefer to exploit the upper body part for gaining the robustness under
occlusion, as we will show in subsection 6.4.2. The detection results (bounding boxes of the human
upper body) are then used as the input for the orientation estimator part.

81

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

6.2.3 Extracting features for human upper body orientation estimation

The other works (e.g. [71] and [73]) solely depend on the gradient features, which capture
the body shape. For the human upper body orientation case, we make an assumption that using
only the body shape is not enough, for example, there is no big difference between the shape of
the body facing front and back. Therefore, we propose a combination of the gradient-based and
texture-based features which grab the shape and the texture cues. Here we expect the textured part
of the body such as the face will be captured. We then apply the modified Partial Least Squares
(PLS) models for enhancing the important cues of the human orientation.

6.2.3.1 Shape cue

For capturing the human upper body shape, we use a multi-level HOG descriptor [75]. The
gradient magnitude for each upper body image sample is first computed using 1-D mask [−1 0 1]
on each x and y direction. Every sample is divided into 3×4, 6×8, and 12×16 blocks, where
each block consists of four cells. The gradient orientation is then quantized into nine bins. Overall
we have 252 blocks and 9,072 dimensional feature vectors of HOG descriptor.

6.2.3.2 Texture cue

We use Local Binary Pattern (LBP), adopting the work of [77], to make a texture descriptor.
We calculate image textures using LBP8,1 operator for each pixel

ILBPc =
7

∑
p=0

2p
ς(Ip− Ic), ς(a) =

1 for a≥ 0

0 otherwise,
(6.1)

where Ic is the center pixel from which we calculate the LBP value ILBPc and p is eight-surrounding
pixels of Ic. We then divide the LBP images into multiple blocks similar to the HOG features
above. For each block, we make a histogram containing 59 labels based on uniform patterns1. This
procedure gives us 14,868 dimensional feature vectors in total.

1According to the original paper [77], the uniform patterns contain at most two bit transitions from 0 to 1 and vice
versa. For a 8-bit data, there are 58 uniform patterns, and the other patterns which have more than two bit transitions
are grouped into one label, so we have the total 59 labels.

82

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

6.2.4 Partial Least Squares for modeling features

6.2.4.1 Partial Least Squares

Partial Least Squares (PLS) is a statistical method used for obtaining relations between sets
of observed variables through the estimation of a low dimensional latent space which maximizes
the separation between samples with different characteristics ([78], [74]). The PLS builds new
predictor variables called latent variables, as combinations of a matrix X of the descriptor variables
(features) and a vector y of the response variables (class labels).

Let us consider a problem with γ samples, X ⊂ Rδ be an δ -dimensional space representing
the feature vectors and y ⊂ R denote a 1-dimensional space of the class labels. The PLS then
decomposes the (γ×δ) matrix of zero mean variables X and the vector of zero mean variables y
into

X = TPT +E,

y = UqT + r,
(6.2)

where T and U represent (γ× s) matrices of s extracted latent vectors, the (δ × s) matrix P and the
(1× s) vector q are the loadings, and the (γ×δ) matrix E and the (γ×1) vector r are the residuals.

Algorithm 5 PLS/NIPALS Algorithm
1: procedure PLS()
2: Init X0,y0
3: for i = 1→ s do
4: wi+1← XT

i yi
5: wi+1← wi+1

‖wi+1‖
6: ti+1← Xiwi+1

7: Pi+1← XT
i ti+1

tTi+1ti+1

8: qi+1←
yT

i ti+1
tTi+1ti+1

9: Xi+1← Xi− ti+1PT
i+1

10: yi+1← yi− ti+1qi+1
11: end for
12: end procedure

Here we implement the nonlinear iterative partial least squares (NIPALS) algorithm [79] to

83

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

Figure 6.3: Extracting features using CFM-PLS

find a set of projection vectors (weight vectors) W = {w1,w2, . . . ,ws} such that

[cov(ti,ui)]
2 = max

|wi|=1
[cov(Xwi,y)]2, (6.3)

where ti is the i-th column of matrix T , ui is the i-th column of matrix U, and cov(ti,ui) is the
sample covariance between latent vectors ti and ui. The process of constructing projection vectors
W is shown in Algorithm 5.

6.2.4.2 Block Importance Feature Model

Here we introduce our PLS-based feature models, Block Importance Feature Model of PLS
(BIFM-PLS). We also provide another simple PLS model called Combined Feature Model of PLS
(CFM-PLS) for comparison purpose.

The Combined Feature Model of PLS (CFM-PLS) is created by concatenating all of HOG-
LBP features into one vector, and simply run the PLS algorithm on it with specified number of the
latent vectors. As the result, the CFM-PLS produces a reduced set of features by projecting the
feature vectors f ⊂ X onto the weight vectors,

x̆ = Wf . (6.4)

This result is then used as the input for the classifier. Figure 6.3 explains the procedure of building
CFM-PLS.

The CFM-PLS method, which resembles an ordinary PLS technique, is only used for compari-
son purposes, and from now we focus on the BIFM-PLS method.

The Block Importance Feature Model of PLS (BIFM-PLS) is built by an idea that not all
of blocks or features have a high contribution to the classification. Here we want to examine the

84

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

Figure 6.4: Extracting features using BIFM-PLS

contribution of each block and discard the one which has low importance. Unlike the CFM-PLS
which highly reduce the feature space, the BIFM-PLS is intended to retain some details about the
features to be fed up to the classifier.

We adopt and extend the method of [74] for picking out the representative blocks. For creating
BIFM-PLS, we employ the feature selection called Variable Importance on Projection (VIP) (see
[74] and [80]). The VIP gives a score for each feature representing its predictive power in the PLS
model. The VIP of the i-th feature f is given by

V IPi(f) =

√√√√√√√√
κ

p
∑
j−1

b2
jw

2
i j

p
∑
j=1

b2
j

, (6.5)

where κ is the number of features, wi j denotes the i-th element of vector w j, and b j represents the
regression weight for the j-th latent variable, b j = uT

j t j.

We then extend the definition of VIP by introducing block importance score (BIS). The BIS

85

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

ranks the predictive power of each block in the PLS model. The BIS on a multi-level blocks exhibits
a “hierarchical" modeling, which first tries to find the important blocks from the multi-level/multi-
size blocks and retrieve more detail information from the blocks which have better importance
score. Algorithm 6 and Fig. 6.4 show the procedure of creating the BIFM-PLS model.

Algorithm 6 BIFM-PLS Algorithm
Require:

1: n: number of blocks
2: p1: number of latent vectors at stage 1
3: p2: number of latent vectors at stage 2
4:

Ensure:
5: f BIFM: the reduced set of features vectors
6: —————————————–
7: procedure CREATEBIFM()
8: BIFM_First(p1)
9: f BIFM← BIFM_Reproject(p2)

10: end procedure
11: —————————————–
12: procedure BIFM_FIRST(p1)
13: for i = 1→ n do
14: f f irst

i ← PLS(f i, p1)
15: end for
16: end procedure
17: —————————————–
18: function BIFM_REPROJECT(p2)
19: for i = 1→ n do
20: if BIS(f f irst

i)< threshold then
21: f BIFM←

⋃
PLS(f i, p2)

22: end if
23: end for
24: return f BIFM
25: end function

The BIFM-PLS algorithm consists of two important stages: building the block importance and
projecting the features on the important block. Let n be the number of blocks for each HOG and
LBP features, m be the total number of concatenated HOG-LBP features in one block, f i denotes the
feature sets at the i-th block, and f i, j represents the j-th feature at the i-th block with i = {1, . . . ,n}
and j = {1, . . . ,m}.

In the first stage, we extract a PLS model, take first p1 latent variables for each block, and

86

CHAPTER 6. SUPPORTING BUILDING . . . 6.2. MODEL-BASED HUMAN UPPER BODY . . .

concatenate them to build a model f f irst , as follows

f f irst
i = PLS(f i, p1), (6.6)

where PLS(f i, p1) is a function for extracting p1 elements from f i. Here f f irst
i has element f f irst

i, j1
where j1 = {1, . . . , p1}.

We assume that a small number of p1 is enough to see the contribution of each block to the
orientation estimation, since the PLS considers the response variables (i.e. class labels). To see the
importance of each block, we compute the VIP scores using eq. 6.5 and get the block importance
score (BIS) as

BISi =
1
p1

p1

∑
j1=1

V IP(f f irst
i, j1), i = 1, . . . ,n. (6.7)

The top part of Fig. 6.4 shows the processes explained by eq. 6.6 and 6.7 above.

In the second stage, we build the BIFM feature vectors by calculating and concatenating the
first p2 latent variables on the important blocks, similar to eq. 6.6

f second
i = PLS(f i, p2),

f BIFM =
⋃

i

f second
i , {∀i|BISi > ð}.

(6.8)

The blocks which have BIS under the threshold ð, which mean less important blocks, are then
discarded. These procedures are illustrated by the bottom part of Fig. 6.4.

Here we use p2 > p1, to get more detail information on each important block. We will examine
the proper value of p1 and p2 in the experimental section (subsection 6.4.4).

6.2.5 Random Forest

One of the notable classifier which works well on the multi-class data is Random Forest,
introduced by Breiman [81]. It is an ensemble learning method which combines the prediction
of many decision trees using a majority vote mechanism. The Random Forest is devoted for its
accuracy on the large dataset and multi-class learning. These advantages make us choose the
Random Forest for training our eight-orientation classification problem with a large set of features.

87

CHAPTER 6. SUPPORTING BUILDING . . . 6.3. INTEGRATION OF ORIENTATION . . .

Our Random Forest is constructed by multiple trees T = {T1,T2, . . . ,TN}, where N is number
of trees. Let {di ∈ D}i=1...K denote K training sets and {ci ∈ C}i=1...K be its corresponding labels
or classes (in our case, we have eight classes, C = {C1,C2, . . . ,C8}), where D ⊂ RM is the feature
space. In the training phase, the Random Forest learns the classification function T :D→C. Details
of the Random Forest algorithm can be discovered at the original paper [81].

We use a linear split function [82]

Φ(f) = qT f + z, (6.9)

where q is a vector which has the same dimensions as the feature vector f and z is a random number.
The recursive training is run until the stopping criteria is reached, i.e. the maximum depth is met or
no further information gain can be drawn.

In the testing phase, for a test case d, the Random Forest provides the posterior probability of
each class as

p(c|d) = 1
N

N

∑
i=1

pi(c|d), (6.10)

where
pi(c|d) =

Λi,c
c8
∑

j=c1

Λi, j

, (6.11)

pi(c|d) is the probability estimation of class c ∈ C given by the ith tree, and Λi,c is the number of
leaves in the ith tree which votes for class c. The overall multi-class decision function of the forest
is then defined as

C(d) = argmax
c∈C

p(c|d). (6.12)

6.3 Integration of orientation estimation and tracking

In the normal situation, the possibility that the person body orientation will be the same with
its movements increases along with its speed. Based on this observation, our orientation estimation
system is built using an assumption that the human body orientation is aligned with the direction
of the human movements. In this case, we utilize both the result of the orientation detections and
that of human movements estimation. On the opposite, we only rely on the orientation information
from detections when the human movements are slow or even in a static condition.

88

CHAPTER 6. SUPPORTING BUILDING . . . 6.3. INTEGRATION OF ORIENTATION . . .

To handle those matters, we predict the movement of persons in the world coordinate. We then
use the UKF framework to combine the orientation estimation from the detection results and the
movement predictions. The idea of coupling the detection result and the person movement is also
used by [73], but at least three (3) things distinct our works from the [73]; the baseline (upper body
vs whole body), features (HOG-LBP-PLS vs Sparse-HOG), and the framework (UKF vs particle
filter).

6.3.1 Estimating human movement through its position in the real world

We derive movement of the persons from the change of their positions. We follow the work of
[83] and [84] for projecting the position of each detected person from the 2D image coordinate to
the 3D world coordinate. Let us consider a pinhole camera model, with the following parameters:
focal length fc, camera height yc, horizontal center point µc, and horizon position ν0. According to
[84], the projection to the world coordinate is given by

Wd =


yc(µd−µc)

νd−ν0
fcyc

νd−ν0
hdyc

νd−ν0

 , (6.13)

where (µd,νd) is the bottom center point of the extended bounding box2, and hd is the height of
each detected person d in the 2D image. Vector Wd = [xworld

d ,yworld
d ,hworld

d]
T denotes the position

(xworld
d ,yworld

d) in the real world relative to the camera position and the height hworld
d of the detected

person d in the image.

The horizon position v0 is obtained by collecting line segments in the image using hough line
detector and running RANSAC to evaluate all segments and get the intersection. This horizon
estimation is done off-line3 and we use it as a pre-calibrated value for the on-line tracking. For each
frame, we send the position (xworld

d ,yworld
d) to the tracker for getting the movement estimation in

the real world.
2The extended bounding box is calculated by scaling the height of the bounding box to that of the human body, so

that the bottom center is on the ground plane.
3To keep the speed of algorithm, we compute and use the horizon estimate as a constant. We assume the camera tilt

is small (or in other words, the ground plane where the robot runs is flat).

89

CHAPTER 6. SUPPORTING BUILDING . . . 6.3. INTEGRATION OF ORIENTATION . . .

6.3.2 Tracking strategies

6.3.2.1 State and observation models

Our state model is decomposed from the person position (xk,yk), its derivative (ẋk, ẏk), and the
orientation components (ϕM

k ,ϕD
k ,θk) where ϕM

k and ϕD
k respectively denote the person orientation

due to the movement and the detection estimation and θk denotes the final orientation of the
person after considering the movement and the detection result, as stated by following tuple,
F(X) = {xk,yk, ẋk, ẏk,ϕ

M
k ,ϕD

k ,θk}. A constant velocity model is used for representing the person
position and its derivative, as follows

xk = xk−1 + ẋk−1δ t + εx,

yk = yk−1 + ẏk−1δ t + εy,

ẋk = ẋk−1 + εẋ,

ẏk = ẏk−1 + εẏ,

(6.14)

where {εx,εy,εẋ,εẏ} are the gaussian noises for each component, and δt is the time sampling.

The orientation components of F(X) are then described as
ϕM

k = arctan(ẏk−1
ẋk−1

)+ εϕM(υk−1),

ϕD
k = ϕD

k−1 + εϕD,

θk = ϕD
k−1 +

ω(1−e−υk−1)

1+e−υk−1 (ϕM
k−1−ϕD

k−1)+ εθ ,

(6.15)

where {εϕD,εθ} are the gaussian noises and ω is a constant.

The noise function εϕM(υk−1) in the first line of eq. 6.15 is defined as

εϕM(υk−1) =N (0,g(υk−1)),

g(υk−1) = συ exp−υk−1,

υk−1 =
√

ẋ2
k−1 + ẏ2

k−1,

(6.16)

where υk−1 is the magnitude of the person movement, and συ is a constant. Using eq. 6.16, the
noise function εϕM(υk−1) can be read as a zero-mean gaussian of which the variance varies w.r.t the
person movement υ .

Equation 6.15 suggests the influence of the person movement to the orientation estimation.

90

CHAPTER 6. SUPPORTING BUILDING . . . 6.3. INTEGRATION OF ORIENTATION . . .

This equation, together with eq. 6.16, tells us that when the velocity of a person is small enough
(υk−1 ≈ 0), the uncertainty of the movement orientation becomes large (see εϕM(υk−1)), and the
orientation estimation will mainly depend on ϕD

k (which is updated using the orientation detection
result in the observation model (see eq. 6.17)). On the contrary, when the velocity is large then
the movement orientation becomes more reliable and the orientation estimation depends on both
detection and the person movement.

Here the constant ω has a duty for controlling the influence of the detection and the person
movement to the overall orientation. The value of ω is later investigated in the experimental section
(subsection 6.4.5).

We then use the observation model for the person position in the world coordinate (derived
from eq. 6.13) and for the person orientation from the result of the section 6.2, as follows

H(X) =



µk =
xk(

fcyc
yk

)

yc
+µc + εµ

νk = fcyc
yk

+ν0 + εν

hk =
fcyc
yk

hd

yc
+ εh

Ck = f (C(d),ϕD
k)+ εc

(6.17)

where (xk,yk) denote the person position, (fc,yc,µc,ν0) are the camera parameters (focal length
fc, camera height yc, horizontal center point µc, and horizon position ν0), and {εµ ,εν ,εh,εc} are
the gaussian noises for each observation component. µk,νk, and hk have the same definition with
µd,νd, and hd in the subsection 6.3.1. The function f (C(d),ϕD

k) maps the result of the multi-class
decision function C(d) (eq. 6.12) into their equivalent angle of the orientation ϕD

k .

6.3.2.2 Unscented Kalman Filter tracker

For choosing the tracker, we consider our hardware limitation and the system nonlinearities.
Several well-known filters can be adopted for handling the nonlinearities, such as Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and particle filter. Here we choose UKF because we
want to avoid the resource costs of the particle filter (used by [73]) and the calculus of the Jacobian
matrices used in the EKF.

The UKF [85] employs the unscented transform, a deterministic sampling technique, to take a
minimal set of sample points called sigma points around the mean. Consider the current state with

91

CHAPTER 6. SUPPORTING BUILDING . . . 6.3. INTEGRATION OF ORIENTATION . . .

the mean x̂ and its covariance Px. We build a set of 2L+1 sigma points matrix X , as follows

X0 = x̂

Xi,k−1 = x̂+(
√

(L+λ)Px)i, i = {1, . . . ,L}

Xi,k−1 = x̂− (
√
(L+λ)Px)i−L, i = {L+1, . . . ,2L}

λ = α
2(L+κ)−L,

(6.18)

where L is the dimension of the augmented state, α and κ are constants for controlling the spread
of the sigma points.

We then define W(m) and W(c) as the weight for the mean and covariance respectively, given
by

W(m)
0 =

λ

(L+λ)

W(c)
0 =

λ

(L+λ)
+(1−α

2 +β)

W(m)
i = W(c)

i =
1

2(L+λ)
, i = {1, . . . ,2L}

(6.19)

where β integrates prior knowledge of the distribution of x̂. We use the default value, α = 10−3,β =

2, and κ = 0.

We compute mean and covariance of the prior estimation (Xk|k−1 and P−k) using the state
model F(X) in eq. 6.14 and 6.15, and the sigma points above as follows

Xi,k|k−1 = F(Xi,k−1), i = {1, . . . ,2L}

x̂−k =
2L

∑
i=0

W(m)
i Xi,k|k−1

P−k =
2L

∑
i=0

W(c)
i [Xi,k|k−1− x̂−k][Xi,k|k−1− x̂−k]

T +Q

(6.20)

where Q is the covariance of the process noises.

In the measurement update phase, we project the sigma points through the observation function

92

CHAPTER 6. SUPPORTING BUILDING . . . 6.3. INTEGRATION OF ORIENTATION . . .

H(X)

Zi,k|k−1 =H(Xi,k|k−1), i = {1, . . . ,2L}

ẑ−k =
2L

∑
i=0

W(m)
i Zi,k|k−1,

Pzkzk =
2L

∑
i=0

W(c)
i [Zi,k|k−1− ẑ−k][Zi,k|k−1− ẑ−k]

T +R,

(6.21)

where ẑ−k denotes the predicted measurement, Pzkzk is its covariance, and R is the covariance of
the observation noises. The state measurement cross-covariance Pxkzk and the kalman gain K are
computed as

Pxkzk =
2L

∑
i=0

W(c)
i [Xi,k|k−1− x̂−k][Zi,k|k−1− ẑ−k]

T ,

K = PxkzkP−1
zkzk

.

(6.22)

The mean and covariance of the posterior estimation are then calculated as

x̂k = x̂−k +K(zk− ẑ−k),

Pk = P−k −KPzkzkKT .
(6.23)

We also give to the tracker, the color histogram information Htr retrieved from the lower third
of the bounding box, from which we expect to get clothing features4. In the implementation using a
moving robot (see subsection 6.4.7), the camera movement is currently compensated by using the
odometry of the robot. The use of Kanade-Lucas-Tomasi (KLT) features tracker [84] or the visual

odometry [86] for compensating the camera movement are further investigated in the future.

6.3.2.3 Association

We treat each detection of the human upper body as an observation, to be associated with the
trackers. For every observation, we use the position and histogram information for calculating the

4In the upper body bounding box, the lower third part usually contains the human shoulder and body. We can expect
the cloth color can be retrieved from this region and does not change much during the tracking process.

93

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

relative distance to each tracker ∆ob,tr, given by

∆
P
ob,tr =

e−
1
2 (µ̄ob−µ̄tr)

T (∑ob+∑tr)
−1(µ̄ob−µ̄tr)√

2φ |(∑ob+∑tr)|
(6.24)

∆
H
ob,tr =

∑I(Hob(I)− H̄ob)(Htr(I)− H̄tr)√
∑I (Hob(I)− H̄ob)

2
∑I (Htr(I)− H̄tr)

2
(6.25)

∆ob,tr = η∆
P
ob,tr + ς∆

H
ob,tr (6.26)

where ∆P
ob,tr is the gaussian correlation between mean and covariance of the observed position

(µ̄ob,∑ob) and the tracker position (µ̄tr,∑tr). ∆H
ob,tr is color histogram correlation distance of the

observation Hob and the tracker Htr, and η and ς are constants.

Under the nearest neighbor assumption, each observation is assigned to the tracker when the
distance ∆ob,tr is below the threshold. A new tracker is born from the observation which has no
association, and any track which is not associated with any observation and has a large uncertainty
is then deleted.

6.3.2.4 ROI-based tracking

For reducing the calculation time, we do a hierarchical Region of Interest (ROI)-based tracking
(including the orientation estimation) along the frame sequences. First, we search the whole space
of the image to obtain initial observations and trackers. The next sequences utilize the position
information from the trackers as the ROI. We do the detection around the ROI and in the area where
persons may come up to the scene (see Fig. 6.5). This technique5 considerably reduces the time for
detection. Lastly, every 15 frames, we do the whole space search to anticipate the missing detection.

6.4 Experiments

Size of all images and camera sequences used in our experiments is 640× 480. All of
experiments were done using C++ implementation on a laptop PC (Core2Duo 2.1 GHz, 2GB
memory, and Windows 7 OS).

5Basically, this heuristic method is enough for our cases. For more general scenarios, we open this problem to the
interested reader.

94

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.5: Region of Interest (ROI) for tracking. The red transparent shadows are places which has a high probability
that person may appear to the scene from the side. The green transparent shadow is the ROI of the tracker. The blue
cylinder denotes the current tracker bounding box.

The evaluation of our method starts from explaining the dataset used by our system. We
then build an analysis to support the advantages of using our method for the human orientation
estimation, by comparing it with several methods. We also evaluate performance of the orientation
estimation and tracking integration. Lastly, we implement our system to the real environment using
a camera attached on a mobile robot.

6.4.1 Dataset

First, we create our upper body dataset by cropping the INRIA [75] and Fudan-Penn [87] data
into 48×64 pixel images containing the upper-half body of persons. We also add the CALVIN
upper body dataset [88] into our dataset, so that we have 4250 positive samples of the human upper
body. Around 3000 positive samples are used for training the upper body detector, and the rest is for
testing purpose. 2500 negative samples are created from images which do not contain the human
upper body, including the bottom part of the human body. From now, we refer it as dataset A6.

To do a comprehensive test of the human upper body orientation estimation, we use several
datasets for both static and dynamic scenes. For the static scenes, we use TUD-Multiview dataset
[70] which is also used by the other state-of-the-art papers ([73], [72]). This dataset consists of 1486
images for training, 248 images for validation, and 248 images for testing. The TUD-Multiview
dataset is annotated with bounding boxes of full body and eight orientation classes. For our purpose,
we change the bounding boxes into the half upper part of the body.

We also use the dataset created for upper body training (dataset A), for the orientation clas-

6This generic naming is for simplicity only, not intended to give a new name to the existing databases.

95

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

sification purpose. We then separate the training samples of the above dataset into eight classes
representing the eight orientation of the human body (see Fig. 6.1). The testing samples are treated
in the same manner with the training samples. This dataset is then called as dataset B.

For the dynamic scenes, we use TUD-Stadmitte dataset [70] which contains 200 frames of the
street scenes with several pedestrians crossing the street with a complex environment and many
occlusions, and the camera calibration data7. Here we use the raw video for the TUD-Stadmitte
dataset without annotations.

We then take an indoor video of our laboratory (from here, it is referred as InLab dataset).
This video contains 487 frames with the number of persons varies from zero to three persons on
each frame, and also the camera calibration data.

We summarize the usage of each dataset, as follows:

• Dataset A is used for training and testing the human upper body detection;

• Dataset B is used for evaluating the orientation estimation under various features and classi-
fiers (see subsection 6.4.3 and 6.4.4);

• TUD-Multiview dataset is used for comparison with the state-of-the-arts (see subsection
6.4.6);

• Combination of subset B and TUD-Multiview datasets are then used for training the orienta-
tion model to be used in the dynamic scenes, i.e. TUD-Stadmitte and InLab datasets (see
subsection 6.4.5), and the real world application (see subsection 6.4.7).

6.4.2 Human upper body detection performance

At the beginning, we want to show the reason for choosing the human upper body over the full
body detection in our system. We build the human full body dataset from a subset of the INRIA
dataset [75], and for the upper body dataset, we use the dataset A mentioned in subsection 6.4.1.
We then create two testing samples; the first samples contain a subset of testing samples of the
INRIA which do not contain occluded person, and in the second ones we add several images with
persons occluded by the chairs, tables, and furnitures in additional to the testing samples of the

7Camera calibration data of the TUD-Stadtmitte dataset is provided at http://www.gris.informatik.tu-
darmstadt.de/∼aandriye/data.html

96

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.6: Performance of the human full body and upper body detection. The left graph shows the result on the
dataset with no occlusion. the right graph shows the result on the occluded dataset.

INRIA. The training of both cases is then performed using Boost-Cascade method, as mentioned in
the subsection 6.2.2. The ROC of both occluded and non-occluded cases are shown in Fig. 6.6.

The results show that the human upper body detector works better on the occluded dataset.
This result suggests the use of the human upper body detection on the real cases such as an indoor
environment with many tables, chairs, and furnitures, rather than using the full body model.

6.4.3 Evaluation of the orientation estimation using various features and
classifiers

First, we conduct experiments to see the influence of the features, the models, and the classifiers
to the orientation estimation results by using the dataset B. Following parameters are used for the
experiments; we use the multi-level HOG and LBP features explained in the beginning of this
chapter; for the multi-class SVM classifier [89], we use a standard RBF kernel with gamma set to
4e-4 , and regularization parameter is set to 1.0; for the MultiBoost [90], we use “FilterBoost" for
the strong learner and “SingleStump" for the base learner; for the Random Forest, the number of
trees is set to 100 and the maximum depth of trees is set to 25; the latent vector for CFM-PLS is set
to 15, and for the BIFM-PLS, we set p1 to 3 and p2 to 15 (we will discuss these values of the PLS
models in the next subsection).

Table 6.1 shows the experimental result using the combination of features and classifiers.
Based on this table, the combination of multi-level HOG-LBP features, BIFM-PLS model, and
Random Forest classifier, is superior against the others. In general, combination of HOG and LBP

97

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Table 6.1: Evaluation of the orientation estimation using various features and classifiers

Feature Classifier
Accuracy

TUD-Multiview Dataset B

HOG MultiSVM 0.35 0.34

HOG MultiBoost 0.37 0.38

HOG Random Forest 0.44 0.46

HOG+LBP MultiSVM 0.45 0.43

HOG+LBP MultiBoost 0.48 0.45

HOG+LBP Random Forest 0.53 0.52

HOG+LBP+CFM-PLS MultiSVM 0.45 0.42

HOG+LBP+CFM-PLS MultiBoost 0.50 0.47

HOG+LBP+CFM-PLS Random Forest 0.54 0.54

HOG+LBP+BIFM-PLS MultiSVM 0.60 0.57

HOG+LBP+BIFM-PLS MultiBoost 0.60 0.58

HOG+LBP+BIFM-PLS Random Forest 0.64 0.60

Figure 6.7: Confusion matrix on TUD-Multiview dataset using BIFM-PLS and random forest.

98

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.8: The block importance of each feature using the weight of the first projection vector. The left figure show
the importance of one level block due to the HOG features. The right figure show the importance of one level block due
to the LBP features. Red color represents the high importance.

features is better than using only HOG features. The RF classifier also gives better impact than
using MultiSVM and MultiBoost. The interesting part is that the usage of PLS models yields better
result of the orientation estimation than the concatenated features. We will discuss these matters in
the next subsection.

Figure 6.7 shows the distribution of the orientation estimation. From this figure, we can
conclude that estimating an oblique direction is more difficult than detecting the perpendicular one.

6.4.4 Analysis of the PLS models

We now discuss about how our PLS models (BIFM-PLS) give a significant contribution to the
orientation estimation. We extract the block importance score (BIS) of each LBP and HOG features
using the BIFM-PLS algorithm, and draw the weight of the first projection vector.

Figure 6.8 shows the contribution of each features to the orientation estimation. The left figure,
which utilize the HOG features, shows that the areas around the edges of the body have a high
importance, and the background tends to have a low importance. It means the HOG extracts the
shape of the body for the orientation estimation. In the right figure, we can see the high importance
area is around the head area and the body, but not for the background and the clothing. Here we
can understand that the LBP captures the head features for the orientation estimation, while the
clothing and background which are varies from one sample to the others are discarded.

Based on the Fig. 6.8, and supported by the results in the table 6.1, we show the effect of the
BIFM-PLS model to the classification. Even the classifier such as the Random Forest is noted to be
able to extract the importance of the features (for example, in [91] and [92]), here the BIFM-PLS
removes the “noisy" areas (such as the various background and clothing) as shown in the Fig. 6.8,

99

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Table 6.2: Performance of PLS and PCA for the orientation estimation

Method
Accuracy

TUD Multiview Dataset B

HOG+LBP+CFM-PLS+RF 0.54 0.54

HOG+LBP+BIFM-PLS+RF 0.64 0.60

HOG+LBP+PCA+RF 0.52 0.51

Figure 6.9: The effect of varying p1 and p2 value of the BIFM-PLS to the orientation estimation results.

and helps the classifier focus to do the classification on the high importance features.

We can also see the advantages of the PLS models as a dimensional reduction algorithm. We
use another popular dimensional reduction algorithm, Principal Component Analysis (PCA), as the
baseline. Table 6.2 shows the superiority of the PLS models against the PCA. It is understandable
because unlike the PCA, the PLS also considers the class labels besides the variance of the samples.

We then discuss about the effect of the constants p1 and p2 used in the BIFM-PLS algorithm,
shown by Fig. 6.9. p1 represents how well a block contributes to the orientation estimation, and p2

examines the contribution of a feature inside a block. By examining the Fig. 6.9, we choose the
optimal value for both constants, p1 = 3 and p2 = 15. Over that values, we can consider it as the
data overfit.

100

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.10: Human upper body orientation estimation results on TUD-Stadtmitte datasets using our proposed
framework. Top sequence shows the detection (bounding boxes) and orientation estimation (arrows) results. Bottom
sequence shows the estimated position of each detected person (circles) in the 3D world coordinate, with respect to the
person position in the top images. Two orange line segments in the bottom sequences denote the camera FOV.

6.4.5 Evaluation on integrated orientation estimation and tracking perfor-
mances

The next experiments are intended for evaluating the performance of the integrated orientation
estimation and tracking. Here we use the TUD-Stadmitte and InLab datasets for the evaluations. We
also investigate the influence of choosing various values of ω as mentioned in eq. 6.15. The higher
value of ω means the object movement will give a higher influence to the orientation estimation
result.

Figure 6.10 shows the performance of our proposed system using the TUD-Stadtmitte dataset.
The top sequence shows the orientation detections and tracking results. The bottom sequence shows
the person locations and movement predictions in the 3D world coordinate, relative to the position
and FOV of the camera.

We then test our framework on InLab dataset, as shown in Fig. 6.11 (please refer to Fig. 6.10
for the figure properties explanation). Figure 6.11 exhibits the robustness of the multi target tracking
and orientation estimation under many occlusions.

Figure 6.12 shows the effect of changing ω value to the overall orientation estimation results.
We change the value of ω from 0, which means the orientation estimation depends only on the
detection, to ω = 1 which represents a heavy dependency to the object movements.

In the TUD-Stadmitte dataset, the orientation estimation based on the object movements
(ω = 1) is relatively high compared to the one based on the detection (ω = 0), due to the consistent

101

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.11: Human upper body orientation estimation results in an indoor environment. Top sequence shows the
detection (bounding boxes) and orientation estimation (arrows) results. Bottom sequence shows the position of
estimated each detected person (circles) and the ground truth (rectangles) in the 3D world coordinate, with respect to
the person position in the top images. Two orange line segments in the bottom sequences denote the camera FOV.

movement of each person inside the video sequences, which gives a high confidence to the
movement estimation. Contrary, the orientation estimation based on the object movement in the
InLab dataset is lower because the persons frequently change their direction. Overall, combining
both detection and movement estimation tends to make a higher orientation estimation results rather
than solely depends on the detection or the movement estimation, and in our cases we choose
ω = 0.5.

6.4.6 Comparison with the state-of-the-art

We compare our algorithm to the state-of-the-art papers such as [70], [73], and [72] using
the TUD-Multiview dataset. Since the state-of-the-art papers use the whole body information for
estimating the orientation, we can not directly use the result of their papers as the comparison.
Instead, we need to test their methods using the upper body information. Unfortunately, the author
of those papers do not provide any implementation code.

To overcome the problem above, we re-implement their algorithms based on our understanding
to their papers. We then evaluate it using the full body information. We expect the result will be
similar with the one mentioned in their respective paper. The first and second columns of table 6.3
show the comparison of the original and the re-implemented version of the state-of-the-art papers.
We can see that our re-implementation gives a close result to the one mentioned in each paper. Until
this stage, our algorithm beats all of Andriluka’s and Chen’s works and comparable to Baltieri’s
work, even though they use the full body information. Now we can assume our re-implementation
of the state-of-the-art can be used for further comparison.

102

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.12: The effect of varying ω value to the integration of orientation results.

Table 6.3: Comparison of the state-of-the-art algorithms

Method
Accuracy Full Body Accuracy

Paper Our Implementation Upper Body

Andriluka [70] - Max 0.31 0.29 0.20

Andriluka [70] - SVM 0.42 0.39 0.35

Andriluka [70] - SVM_adj 0.35 0.33 0.27

Chen [73] - Sparse 0.55 0.52 0.40

Baltieri [72] - AWG 0.65 0.59 0.51

Ours N/A N/A 0.64

We then use the re-implementation of the state-of-the-art for making a fair comparison with
our algorithm, i.e. by applying the same upper body dataset which contains less information.
Each algorithm is then trained and tested using the upper body version of the TUD-Multiview
dataset. The last column of table 6.3 shows the result of each algorithm using only the upper
body information. The result of each state-of-the-art degrades significantly, as less information is
available for obtaining the body orientation. It also shows the importance of using various cues.
Other works use only the shape features which decrease the performance when the information
becomes less. On the other hand, our algorithm uses the shape and texture features simultaneously to
overcome those problems and gains the best performance on the upper body orientation estimation.

103

CHAPTER 6. SUPPORTING BUILDING . . . 6.4. EXPERIMENTS

Figure 6.13: Human upper body orientation estimation results in the cafetaria with a moving camera.

6.4.7 Orientation estimation on moving camera

In this experiment, we attach a monocular camera on the mobile robot base. The robot is then
controlled to move while performing the human upper body orientation estimation and tracking in
real-time. The experiment was performed at the university cafeteria, with the total of 190 frames.
Figure 6.13 shows the experimental results using the camera with a moving base. We can achieve
the accuracy rate of 0.70 and the frame rate of 5-12 Hz, fast enough to be used for an on-line
purpose. Once again, it shows the consistency and robustness of our orientation estimation and
tracking system.

104

Chapter 7

Implementation of Viewpoint Algorithm for
The Guard Robot

The implementation of our viewpoint planning algorithm for the guard robot is done on a
Windows PC (Core i7 2.4 GHz, 16 GB RAM) using C++ programming language. The viewpoint
planner as well as the supporting algorithms (e.g. robot controller, localization, local planner, etc.)
are implemented in a distributed manner as RT-Components, which are software modules running
on RT-Middleware [67] environment. MRPT library [93] is also used mainly for visualization
purposes. The proposed algorithm’s feasibility is then evaluated by both simulations and the real
experiments. We also provide a comparison with the person following algorithm to clearly certify
the benefit of our viewpoint planner.

For both simulations and the real experiments, our viewpoint planner runs in two stages:
off-line and on-line stages. In the off-line stage, the map data is acquired from a SLAM algorithm
[66]. We then retrieve viewpoints from the map using the algorithm mentioned in chapter 3. These
viewpoints are subsequently utilized to make a global plan for the robot in the on-line stage. The
action yielded by the global plan are accordingly executed by a local motion planner [15].

7.1 Simulations using a realistic 3D simulator

A Linux PC (Core i5, 2.1 GHz) is utilized for running the 3D simulator [94] and interconnected
to the viewpoint planner through a socket communication [95]. All sensor data such as laser range
measurement and the robot odometry are simulated and taken from the simulator, resembling the
real condition. For the target person, we simulate and administer a predefined path for a human
object, such that it will move continuously and independently around the simulated environment.

We arrange three different environments for conducting simulations. The first map imitates
the real first floor of ICT building at our university (see Fig. 7.1a) with a slight modification. The
second map represents a more challenging environment where it has several rooms and holes (see

105

CHAPTER 7. IMPLEMENTATION OF . . . 7.1. SIMULATIONS USING A REALISTIC 3D . . .

(a) (b)

(c)

Figure 7.1: Environment used for simulations: (a) the 1st floor of ICT building (environment A), (b) generic complex
map (environment B), (c) the A building at our university (Complex Map).

Fig. 7.1b). The third map is a 3D elevated map taken from the SLAM (Simultaneous Localization
and Mapping) data of the A building at our university, which is the most challenging among all
maps (see Fig. 7.1c). Table 7.1 displays parameter settings used in the simulations.

Figure 7.2 shows the viewpoints obtained by our viewpoint extractor. The viewpoints mainly
reside at the middle of a room, or at the intersections connecting several corridors. It justifies our
assumptions in chapter 3, declaring such places are suitable for the robot to have a wide visibility in
a longer time.

(a) (b) (c)

Figure 7.2: Viewpoints obtained by the viewpoint extractor, shown by cyan cones.

106

CHAPTER 7. IMPLEMENTATION OF . . . 7.1. SIMULATIONS USING A REALISTIC 3D . . .

Table 7.1: Parameter settings

Parameters Value

Person velocity 0.8 m/s

Robot max velocity 0.7 m/s

Simulation length
Env A 1504 steps
Env B 473 steps

Complex Map 848 steps

Time step 0.25 s

N (number of particles) 50

γ 0.05

η 5.0

The simulation results are then exhibited by Fig. 7.3, 7.4, and 7.5, respectively for the
environment A and B, and the Complex Map. For each figure, the top row represents the viewpoint
planning results and the bottom row shows its associated states in the 3D simulator. When the
target person is predicted to go through the escaping gaps (e.g. Fig. 7.3a, 7.3c, 7.4a–7.4c, 7.5a, and
7.5c), our algorithm makes a plan for the robot to move towards the viewpoint which covers those
escaping gaps. On Fig. 7.3b, 7.3d, 7.4d, 7.5b, and 7.5d when the target person enters a “dead end"
area, instead of following closely behind the target person, the robot is staying near the viewpoint to
observe it. It implies our viewpoint planner is able to predict the situation that the target person will
unlikely escape from the robot visibility. It also clearly distinguishes our method from the ordinary
person tracking algorithm.

One may wonder that the robot is not staying at the viewpoint when it is in an idle condition
(see Fig. 7.3b, 7.3d, 7.4d, 7.5b, and 7.5d). It actually justifies the main purpose of our viewpoint
planner, i.e. to reduce the movement. The robot does not have to exactly “reach" the designated
viewpoint as long as it is safe enough to keep the target person under its visibility. Thanks to the
iterative visibility bound checking given in eq. (4.25) and (4.28), our proposed method can evaluate
and predict the target person states and the eligibility of the robot to move or to be idle time-by-time,
ensuring the optimality of the planner.

107

CHAPTER 7. IMPLEMENTATION OF . . . 7.1. SIMULATIONS USING A REALISTIC 3D . . .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.3: Executing viewpoint planner on environment A. Top row shows the viewpoint planning results. Bottom row
shows its corresponding states on the 3D simulator. For the top row figures, the green cylinder with arrow represents
the target person and its moving direction. The jetmap (colored cost map) represents the predicted future movement of
the person. Cyan cones denote the viewpoints. The black object with a sequence of blue particles represents the robot
and its movement controls. Yellow lines show the visibility polygon of the robot.

108

CHAPTER 7. IMPLEMENTATION OF . . . 7.1. SIMULATIONS USING A REALISTIC 3D . . .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.4: Executing viewpoint planner on environment B. Here, the same figure information on Fig. 7.3 is applied
too.

109

CHAPTER 7. IMPLEMENTATION OF . . . 7.1. SIMULATIONS USING A REALISTIC 3D . . .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.5: Executing viewpoint planner on Complex Map. Here, the same figure information on Fig. 7.3 is applied
too.

110

CHAPTER 7. IMPLEMENTATION OF . . . 7.2. COMPARISON WITH THE PERSON . . .

7.2 Comparison with the person following algorithm

To get a picture about the effectiveness of the robot movement, we compare performance of our
viewpoint planner with the ordinary person tracking algorithm as described in [15], under condition
that the exactly same path and behavior of the target person are used. Figure 7.6 exhibits the
recorded velocity profiles of the robot during the runtime for both algorithms. It can be noted that
our viewpoint planner produces longer idle condition compared with the person tracking algorithm,
indicated by longer zero velocity. It means the robot has an effective movement for observing the
target person, without always closely follows him. In the environment B and Complex Map, the
idle condition is not as much as the one in the environment A, since the target person mainly moves
along corridors rather than any dead end or rooms.

We then quantitatively compare the used energy for both viewpoint planning and the ordinary
person tracking algorithms, as well as our previous method [17], using following metric,

Energy =
T

∑
t=0

(ut)
2, (7.1)

where ut denotes the control applied to the robot, and T is total time for one simulation.

From the above metric, we expect to capture the total movement of the robot. Table 7.2
displays the average energy for each algorithm after five simulations. It clearly shows the benefit of
our proposed algorithm which is able to reduce the movement and leads to the energy saving. Our
proposed algorithm also has a slightly better performance compared with our previous approach.

Table 7.2: Comparison of energy used by the robot (lower is better)

Proposed Person Tracking Previous
Viewpoint Planner Algorithm Approach [17]

Env A 205.53 592.91 220.73

Env B 130.06 166.96 135.15

Complex Map 268.86 356.23 278.41

111

CHAPTER 7. IMPLEMENTATION OF . . . 7.2. COMPARISON WITH THE PERSON . . .

(a) (b)

(c)

Figure 7.6: Comparison of controls yielded by viewpoint planner and ordinary person tracking algorithm for : (a)
environment A, (b) environment B, (c) Complex Map.

Figure 7.7: Velocity profile of the real experiment.

112

CHAPTER 7. IMPLEMENTATION OF . . . 7.3. EXPERIMENTS ON A REAL . . .

7.3 Experiments on a real environment

Finally, we evaluate performance of the proposed guard robot algorithm using the real robot on
a real environment. A Pioneer 3DX robot equipped with laser range sensors, a camera, and a laptop
PC is used. The laptop PC is basically utilized for acquiring the sensor data, sending commands to
the robot, and distributing the workload. It is then connected to the main PC running the viewpoint
planning algorithm through the same communication manner as the one in simulations. The
parameter setting is also the same as the simulation, except for the person velocity which depends
on the tracker. For obtaining the target person data, an image-based [96] and laser-based person
tracker were used.

We carry out the experiment at the ICT building of our university. Figure 7.8a exhibits the
obtained map of the building. As shown in Fig. 7.8d, the robot only needs to “stay” while observing
the target person, since it is predicted not to leave the robot visibility. This behavior of the robot is
also confirmed by the velocity profile given in Fig. 7.7, where the robot does not always move to
closely follow the target. The ability to keep the view towards the target person is then proved by
the bottom row of Fig. 7.8. This experiment result also demonstrates the feasibility of our algorithm
to be used in real-time.

7.4 Experiments with Partial Occlusion

Up to now, we always assume a homogeneous visibility, i.e. every detected obstacle is treated
as a “wall" regardless of its types and characteristics. It happens since we use a laser-based SLAM
for building the map. As the consequence, the robot cannot distinguish the type of obstacles,
especially its height, encountered on the generated map.

In a realistic setting, the robot may deal with the following circumstances; Tables or other low
objects block the robot’s path. In this case, the target person may be actually visible from the robot,
but the generated map assumes that it is occluded. If this happens, the robot which actually can
stay to see the target person is then forced to move due to the occlusion’s misinterpretation by the
viewpoint planner. We then offer a solution to deal with such problem.

We take advantage the fact that we use the geodesic motion model on the on-line stage of the
viewpoint planning framework, which does not affect the viewpoint extraction on the off-line stage.
It means if a non-obscuring obstacle appears, it will not give any effect to the viewpoint extraction

113

CHAPTER 7. IMPLEMENTATION OF . . . 7.4. EXPERIMENTS WITH PARTIAL . . .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.8: Executing viewpoint planner on the real environment. Top row shows the planning results on the map.
Bottom row shows the target person view from the robot, associated with the plan on the top row.

114

CHAPTER 7. IMPLEMENTATION OF . . . 7.4. EXPERIMENTS WITH PARTIAL . . .

(a) (b)

Figure 7.9: Two-level laser range sensors for solving the occlusion problems: (a) Orthographic view of the laser
placement, (b) Bird-view of the two-level laser system, where the bold magenta area is the visibility of the bottom laser
and the mild magenta is the visibility of the top laser.

results and the visibility constraints (viewing task). Rather, it will only change the predicted time of
losing the target on the on-line stage, as well as the path for the robot to move (navigation task).
It suggests both viewing and navigation tasks can be separated. Under such characteristics, our
idea is to adopt two separated maps, “viewing" and “driving" maps, respectively parameterize what
the robot sees (i.e. the visibility map from which we extract the viewpoints and watch the target)
and what the robot actually faces (i.e. the navigational map containing non-obscuring obstacles on
which we calculate the predicted time of losing the target).

We first build separated “driving" and “viewing" maps, by putting two-level laser range sensors
onto the robot. The driving map is made by employing the bottom laser sensor, while the viewing
map is created using the top laser sensor placed in parallel with the camera. Figure 7.9 shows the
placement of both lasers.

We then conduct a simulation using a complex map which is modified from Fig. 7.1c, by
replacing some obstacles in the middle of the map with tables and chairs (see Fig. 7.10). The robot
uses the laser configurations as explained above, and creates both driving and viewing maps as
shown in Fig. 7.11. To make sure that the viewpoints extracted from the viewing map do not lie
inside the obstacles on the driving map, we set the cost function in eq. 3.12 such that the obstacles
on the driving map will gives a high cost.

Figure 7.11 clearly shows the advantage of separating the viewing map from the driving
map, where the first creates more compact viewpoints than the later. The smaller number of
viewpoints and the low obstacles negligence on the viewing map give the robot a wider visibility. It
subsequently allows the robot to move efficiently over the smaller set of points and stay watching
the target in a longer time, as shown in Fig. 7.10a – 7.10d. Table 7.3 justifies the efficiency of using

115

CHAPTER 7. IMPLEMENTATION OF . . . 7.4. EXPERIMENTS WITH PARTIAL . . .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.10: Executing viewpoint planner with partial occlusion. Here, the same figure information on Fig. 7.3 is
applied too.

116

CHAPTER 7. IMPLEMENTATION OF . . . 7.4. EXPERIMENTS WITH PARTIAL . . .

(a) (b)

Figure 7.11: Comparison of viewpoints generated for: (a) Driving map (using bottom laser), (b) Viewing map (using
top laser). Notice that tables and chairs are detected on the driving map, but not on the viewing map.

separated maps in the terms of the energy usage by the robot. As an additional credit point, we even
do not need to change the viewpoint planning framework to cope with the partial occlusions, except
for employing a new configuration of the laser range sensors and maps.

Table 7.3: Comparison of energy usage by the robot

Energy Cost (according to eq. (7.1))

Separated Maps 294.65

Non-separated Map 310.78

117

Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have described a novel viewpoint planning algorithm for the guard robot problem. We
utilize the topology of the environment to make an effective movement of the robot, by extracting
a set of topology-based viewpoints from the environment. A geodesic motion model is also used
for predicting both the robot and the target person movement. Two approaches of the viewpoint
planning, a greedy and stochastic methods, are then exhibited. The greedy approach employs
a deterministic planning using cost minimization, while the stochastic method utilizes a chance
constraint-based bound for verifying the optimal planning and its safety to keep the target person
under surveillance. Supported by the motion planning and person tracking algorithms, simulation
and experiment results show that the proposed algorithm can reduce the movement of the robot,
thereby saving the energy used by the robot.

As a supporting block in the viewpoint planning framework, we have presented a novel path
planning algorithm which uses the arrival time field as a bias for a randomized tree search. Heuristic
approaches of our algorithm are proved to be effective for handling a dynamic environment and
kinematic constraints of the robot. We have shown that our algorithm is superior to other existing
path planner algorithms. Simulation and experimental results also show that our algorithm is
applicable to the real robot, and can be used in real-time.

We have also described an orientation estimation and tracking method to be used as another
supporting block in the framework. Our human upper body orientation classification system,
utilizing a partial least squares model-based shape-texture features combined with the random
forest, is proved to work better than any existing methods. Its integration with the tracking system
boosts up the performance of the orientation estimation even further. Another notable result is that
our system works real-time, giving a possibility to be used in the real robot application such as the
person tracking.

To summarize, we contribute several novelties related to each portion of the viewpoint planning

119

CHAPTER 8. CONCLUSIONS AND FUTURE . . . 8.2. FUTURE WORK

framework. We are raising a distinctively new variant of robotic problem, which includes the
problem of keeping a target under the robot visibility while reducing its movement. We then
successfully establish a generalized algorithm for solving the coverage area under arbitrary cost
function, which raises a unified solver for tackling several applications (e.g. Art Gallery Problem,
Sensor Placement, and Robot Coverage). We also introduce a potential based randomized tree
algorithm for robotic motion planning, which combines a high-exploration ability of the randomized
tree and an arrival time field and heuristics to achieve the path optimality, safety, and applicability
to the real robot. Lastly, we make an incremental improvement to the person tracking algorithm by
applying an upper body-based detection and tracking for ensuring its robustness.

8.2 Future Work

Since our guard robot problem is theoretically new, there are still many rooms for the research
improvement in the future. First, there is a possibility to use the viewpoint planner implementation
for building a map on an unknown environment (map exploration) effectively. By updating the
viewpoints over the growing map, it is expected to guide the robot to visit unexplored area efficiently,
which also considers the energy usage.

The second possibility is to properly model the person motion, considering the context of the
environment. By learning how usually the person moves in a certain place, we can capture the
human intention and its motion tendency on each environment structure. It may help to improve the
motion prediction quality of the viewpoint planner.

The current implementation of our viewpoint planner strictly considers only one person.
Dealing with multiple persons and their interaction may become an attractive case for the future
direction of the guard robot framework. For example, knowing the interaction between the target
person and other persons in a building can help the viewpoint planner to determine a proper action
for the robot, such as changing the viewpoint angle toward the target person so that we can record
his interaction with the others.

Other possible interesting future researches will be the implementation for outdoor problem
cases. Since our proposed method considers the environmental topology, it is possible to do the
same approach by carefully drawing out the information of an outdoor scene, such as road structures,
park shapes, etc, and subsequently extracting its interesting viewpoints. The proposed viewpoint
planning algorithm can be then applied in the same manner.

120

The use of Unmanned Aerial Vehicle (UAV) which has more degree of freedom to freely
observe the target person is also a plausible direction of this research. By utilization of an UAV, it
may break any constraint posed by the mobile robot, such as movement restriction, uneven ground
plane, or the scattered small objects.

From the coverage problem perspective, there are some open problems which can direct the
future of the research. One of them is to include the field-of-view (FOV) limitation of the guards
into the system. This constraint is very interesting since it will broaden the type of guards which
can be used in the framework, e.g. we can use any sensor or camera widely sold in the market for
setting up the surveillance system. Another possible direction is to find an exact formulation and
solution for the Generalized Coverage Problem.

For the person tracking problem, the possible future research is to combine it with other sensors
such as laser range finders. By adopting multi-sensory fusion, we expect to build a more robust
system for person localization. There are also possibilities for choosing and adding better heuristics
in the integration of the orientation estimation and tracking, such as a better way for selecting the
region-of-interest, so that the system will be applicable for more general scenarios.

121

Bibliography

[1] J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

[2] V. Pinciu, “A coloring algorithm for finding connected guards in art galleries,” in Discrete

Mathematics and Theoretical Computer Science, vol. 2731 of Lecture Notes in Computer

Science, pp. 257–264, Springer Berlin Heidelberg, 2003.

[3] L. Erickson and S. LaValle, “An art gallery approach to ensuring that landmarks are distin-
guishable,” in Proc. of Robotics: Science and Systems (RSS), (Los Angeles, USA), 2011.

[4] A. Bottino and A. Laurentini, “A nearly optimal algorithm for covering the interior of an art
gallery,” Pattern Recognition, vol. 44, no. 5, pp. 1048–1056, 2011.

[5] J. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion with limited-visibility
sensors via frontier-based exploration,” in Proc. of IEEE Int. Conf. on Robotics and Automation

(ICRA), pp. 3562–3568, 2010.

[6] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a polygonal environment,”
IEEE Trans. on Robotics, vol. 21, no. 5, pp. 875–884, 2005.

[7] K. Klein and S. Suri, “Capture bounds for visibility-based pursuit evasion,” Computational

Geometry, vol. 48, no. 3, pp. 205–220, 2015.

[8] L. Guilamo, B. Tovar, and S. LaValle, “Pursuit-evasion in an unknown environment using
gap navigation trees,” in Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (IROS),
pp. 3456–3462, 2004.

[9] B. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion with limited field of
view,” International Journal of Robotic Research, vol. 25, no. 4, pp. 299–315, 2006.

[10] S. Carlsson, H. Jonsson, and B. J. Nilsson, “Finding the shortest watchman route in a simple
polygon,” in Algorithms and Computation, vol. 762 of Lecture Notes in Computer Science,
pp. 58–67, Springer Berlin Heidelberg, 1993.

[11] S. Ntafos, “Watchman routes under limited visibility,” Computational Geometry, vol. 1, no. 3,
pp. 149–170, 1992.

[12] X. Tan, “Approximation algorithms for the watchman route and zookeeper’s problems,”
Discrete Applied Mathematics, vol. 136, no. 2–3, pp. 363–376, 2004.

123

[13] N. Bellotto and H. Hu, “People tracking with a mobile robot: a comparison of kalman and
particle filters,” in Proc. of the 13th IASTED Int. Conf. on Robotics and Applications, 2007.

[14] D. Schulz, W. Burgard, D. Fox, and A. Cremers, “People tracking with mobile robots using
sample-based joint probabilistic data association filters,” Int. Journal of Robotic Research,
vol. 22, no. 2, pp. 99–116, 2003.

[15] I. Ardiyanto and J. Miura, “Real-time navigation using randomized kinodynamic planning
with arrival time field,” Robotics and Autonomous Systems, vol. 60, no. 12, pp. 1579–1591,
2012.

[16] R. Liu, G. Huskic, and A. Zell, “Dynamic objects tracking with a mobile robot using passive
uhf rfid tags,” in Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4247–
4252, 2014.

[17] I. Ardiyanto and J. Miura, “Visibility-based viewpoint planning for guard robot using skele-
tonization and geodesic motion model,” in Proc. of IEEE Int. Conf. on Robotics and Automa-

tion (ICRA), (Karlsruhe, Germany), pp. 652–658, 2013.

[18] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by border
following,” Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32–46,
1985.

[19] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature,” Cartographica: The International

Journal for Geographic Information and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[20] S. L. Devadoss and J. O’Rourke, Discrete and Computational Geometry. Princeton University
Press, 2011.

[21] J. Urrutia, “Art gallery and illumination problems,” in Handbook of Computational Geometry

(J. Sack and J. Urrutia, eds.), pp. 973–1027, Elsevier, 2000.

[22] H. González-Banos and J. C. Latombe, “A randomized art-gallery algorithm for sensor
placement,” in Proc. of the 17th Annual Symposium on Computational Geometry, pp. 232–
240, 2001.

[23] P. K. Agarwal, E. Ezra, and S. K. Ganjugunte, “Efficient sensor placement for surveillance
problems,” in Proc. of the 5th IEEE Int. Conf. on Distributed Computing in Sensor Systems,
pp. 301–314, 2009.

124

[24] B. Wang, “Coverage problems in sensor networks: A survey,” ACM Comput. Surv., vol. 43,
no. 4, pp. 32:1–32:53, 2011.

[25] K. J. Obermeyer, A. Ganguli, and F. Bullo, “Multi-agent deployment for visibility coverage in
polygonal environments with holes,” International Journal on Robust and Nonlinear Control,
vol. 21, no. 12, pp. 1467–1492, 2011.

[26] J. Leitner, “Robot formations for area coverage,” in Intelligent Robotics and Applications,
vol. 5928 of Lecture Notes in Computer Science, pp. 100–111, Springer Berlin Heidelberg,
2009.

[27] D. Borrmann, P. J. de Rezende, C. C. de Souza, S. P. Fekete, S. Friedrichs, A. Kröller,
A. Nüchter, C. Schmidt, and D. C. Tozoni, “Point guards and point clouds: Solving general
art gallery problems,” in Proc. of The 29th Annual Symposium on Computational Geometry,
pp. 347–348, 2013.

[28] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg, “Globally consistent
3d mapping with scan matching,” Robotics and Autonomous Systems, vol. 56, no. 2, pp. 130 –
142, 2008.

[29] A. Efrat and S. Har-Peled, “Guarding galleries and terrains,” Information Processing Letters,
vol. 100, no. 6, pp. 238 – 245, 2006.

[30] S. Eidenbenz, C. Stamm, and P. Widmayer, “Inapproximability results for guarding polygons
and terrains,” Algorithmica, vol. 31, no. 1, pp. 79–113, 2001.

[31] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell, “A constant-factor approximation algorithm
for optimal terrain guarding,” in Proc. of The 16th Annual Symposium on Discrete Algorithms,
pp. 515–524, 2005.

[32] M. C. Couto, P. J. de Rezende, and C. C. de Souza, “An exact algorithm for minimizing vertex
guards on art galleries,” International Transactions in Operational Research, vol. 18, no. 4,
pp. 425–448, 2011.

[33] V. Chvátal, “A combinatorial theorem in plane geometry,” Journal of Combinatorial Theory,

Series B, vol. 18, no. 1, pp. 39 – 41, 1975.

[34] S. Fisk, “A short proof of chvátal’s watchman theorem,” Journal of Combinatorial Theory,

Series B, vol. 24, no. 3, pp. 374 – 375, 1978.

125

[35] D. Avis and G. Toussaint, “An efficient algorithm for decomposing a polygon into star-shaped
polygons,” Pattern Recognition, vol. 13, no. 6, pp. 395 – 398, 1981.

[36] D. Lee and A. Lin, “Computational complexity of art gallery problems,” IEEE Transactions

on Information Theory, vol. 32, no. 2, pp. 276–282, 1986.

[37] S. K. Ghosh, “Approximation algorithms for art gallery problems in polygons,” Discrete

Applied Mathematics, vol. 158, no. 6, pp. 718 – 722, 2010.

[38] A. Deshpande, T. Kim, E. Demaine, and S. Sarma, “A pseudopolynomial time o(logn)-
approximation algorithm for art gallery problems,” in Algorithms and Data Structures,
vol. 4619 of Lecture Notes in Computer Science, pp. 163–174, Springer Berlin Heidelberg,
2007.

[39] Y. Amit, J. S. B. Mitchell, and E. Packer, “Locating guards for visibility coverage of polygons,”
in Proc. of The 9th Workshop on Algorithm Engineering and Experiments, pp. 120–134, 2007.

[40] A. Kröller, T. Baumgartner, S. P. Fekete, and C. Schmidt, “Exact solutions and bounds for
general art gallery problems,” J. Exp. Algorithmics, vol. 17, pp. 2.3:2.1–2.3:2.23, 2012.

[41] A. Kröller, M. Moeini, and C. Schmidt, “A novel efficient approach for solving the art gallery
problem,” in WALCOM: Algorithms and Computation, vol. 7748 of Lecture Notes in Computer

Science, pp. 5–16, Springer Berlin Heidelberg, 2013.

[42] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner, “A novel type of skeleton for
polygons,” The Journal of Universal Computer Science, vol. 1, no. 12, pp. 752–761, 1995.

[43] E. Fogel, D. Halperin, and R. Wein, CGAL Arrangements and Their Applications - A Step-by-

Step Guide, vol. 7 of Geometry and Computing. Springer, 2012.

[44] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms. New York:
Cambridge University Press, 2011.

[45] CGAL, Computational Geometry Algorithms Library, version 4.3. http://www.cgal.org.

[46] GLPK, GNU Linear Programming Kit (GLPK), version 4.34. http://www.gnu.org/

software/glpk/glpk.html.

[47] T. Achterberg, “Scip: solving constraint integer programs,” Mathematical Programming

Computation, vol. 1, no. 1, pp. 1–41, 2009.

126

[48] CPLEX, CPLEX Optimizer, version 12.6. http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/index.html.

[49] GUROBI, GUROBI Optimizer, version 5.6.2. http://www.gurobi.com/.

[50] J. Sethian, “A fast marching level set method for monotonically advancing fronts,” Natl.

Academy of Sciences, vol. 93, pp. 1591–1595, 1996.

[51] L. Blackmore, M. Ono, and B. Williams, “Chance-constrained optimal path planning with
obstacles,” IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1080–1094, 2011.

[52] J.-P. Calliess, D. Lyons, and U. D. Hanebeck, “Lazy auctions for multi-robot collision
avoidance and motion control under uncertainty,” in Advanced Agent Technology, vol. 7068 of
Lecture Notes in Computer Science, pp. 295–312, Springer Berlin Heidelberg, 2012.

[53] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-space
costmaps.,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 635–646, 2010.

[54] S. Rodriguez, X. Tang, J.-M. Lien, and N. Amato, “An obstacle-based rapidly-exploring
random tree,” in Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 895–900,
2006.

[55] S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random trees: Progress and prospects,” in
Algorithmic and Computational Robotics: New Directions, pp. 293–308, 2000.

[56] C. Urmson and R. Simmons, “Approaches for heuristically biasing rrt growth,” in Proc. of

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 2, pp. 1178–1183, 2003.

[57] J. Bruce and M. Veloso, “Real-time randomized path planning for robot navigation,” in Proc.

of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 3, pp. 2383–2388, 2002.

[58] V. Vonasek, J. Faigl, T. Krajnik, and L. Preucil, “A sampling scheme for rapidly exploring
random trees using a guiding path,” in Proc. of The 5th European Conf. on Mobile Robots,
p. 201–206, 2011.

[59] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic planning,” in Proc. of IEEE Int.

Conf. on Robotics and Automation (ICRA), vol. 1, pp. 473–479, 1999.

[60] E. Plaku, L. Kavraki, and M. Vardi, “A motion planner for a hybrid robotic system with
kinodynamic constraints,” in Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 692–697, 2007.

127

[61] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal motion
planning,” in Robotics: Science and Systems (RSS), June 2010.

[62] M. Zucker, J. Kuffner, and J. Bagnell, “Adaptive workspace biasing for sampling-based
planners,” in Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3757–3762,
2008.

[63] M. Hassouna, A. Abdel-Hakim, and A. Farag, “Pde-based robust robotic navigation,” Image

and Vision Computing, vol. 27, no. 1-2, pp. 10–18, 2009.

[64] H. Zhao, “A fast sweeping method for eikonal equations.,” Math. Comput., vol. 74, no. 250,
pp. 603–627, 2005.

[65] W.-K. Jeong and R. T. Whitaker, “A fast iterative method for eikonal equations,” SIAM J. Sci.

Comput., vol. 30, no. 5, pp. 2512–2534, 2008.

[66] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Au-

tonomous Agents). The MIT Press, 2005.

[67] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-middleware: distributed
component middleware for rt (robot technology),” in Proc. of IEEE/RSJ Int. Conf. on Intelli-

gent Robots and Systems (IROS), pp. 3933–3938, 2005.

[68] A. Shigemura, Y. Ishikawa, J. Miura, and J. Satake, “An rt component for simulating people
movement in public space and its application to robot motion planner development,” Journal

of Robotics and Mechatronics, vol. 24, no. 1, pp. 165–173, 2012.

[69] J. Satake and J. Miura, “Robust stereo-based person detection and tracking for a person
following robot,” in Proc. of ICRA Workshop on Person Detection and Tracking, 2009.

[70] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d pose estimation and tracking by
detection,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 623–630, 2010.

[71] C. Weinrich, C. Vollmer, and H.-M. Gross, “Estimation of human upper body orientation for
mobile robotics using an svm decision tree on monocular images,” in Proc. of IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), pp. 2147–2152, 2012.

[72] D. Baltieri, R. Vezzani, and R. Cucchiara, “People orientation recognition by mixtures
of wrapped distributions on random trees,” in ECCV 2012, vol. 7576 of Lecture Notes in

Computer Science, pp. 270–283, Springer Berlin Heidelberg, 2012.

128

[73] C. Chen, A. Heili, and J. Odobez, “Combined estimation of location and body pose in
surveillance video,” in Proc. of The 8th IEEE Int. Conf. on Advanced Video and Signal-Based

Surveillance (AVSS), pp. 5–10, 2011.

[74] W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis, “Human detection using partial least
squares analysis,” in Proc. of IEEE 12th Int. Conf. on Computer Vision, pp. 24–31, 2009.

[75] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. of

Int. Conf. on Computer Vision & Pattern Recognition, vol. 2, pp. 886–893, 2005.

[76] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection using a cascade of
histograms of oriented gradients,” in Proc. of IEEE Conf. on Computer Vision and Pattern

Recognition, vol. 2, pp. 1491–1498, 2006.

[77] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns.,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 7, pp. 971–987, 2002.

[78] R. Rosipal and N. Krämer, “Overview and recent advances in partial least squares,” in
Subspace, Latent Structure and Feature Selection, vol. 3940 of Lecture Notes in Computer

Science, pp. 34–51, Springer Berlin Heidelberg, 2006.

[79] H. Wold, “Soft modeling by latent variables; the nonlinear iterative partial least squares
approach,” Perspectives in Probability and Statistics, pp. 520–540, 1975.

[80] S. Wold, W. Johansson, and M. Cocchi, “Pls-partial least squares projections to latent struc-
tures,” in 3D QSAR in Drug Design, vol. 1, pp. 523–550, Springer Science & Business Media,
1993.

[81] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[82] A. Bosch, A. Zisserman, and X. Muoz, “Image classification using random forests and ferns,”
in Proc. of IEEE 11th Int. Conf. on Computer Vision, pp. 1–8, 2007.

[83] D. Hoiem, A. Efros, and M. Hebert, “Putting objects in perspective,” in Proc. of IEEE Conf.

on Computer Vision and Pattern Recognition, vol. 2, pp. 2137–2144, 2006.

[84] W. Choi and S. Savarese, “Multiple target tracking in world coordinate with single, minimally
calibrated camera,” in ECCV 2010, vol. 6314 of Lecture Notes in Computer Science, pp. 553–
567, Springer Berlin Heidelberg, 2010.

129

[85] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the

IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[86] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “Robust multiperson tracking from a mobile
platform,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 10,
pp. 1831–1846, 2009.

[87] L. Wang, J. Shi, G. Song, and I.-f. Shen, “Object detection combining recognition and
segmentation,” in ACCV 2007, vol. 4843 of Lecture Notes in Computer Science, pp. 189–199,
Springer Berlin Heidelberg, 2007.

[88] V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Progressive search space reduction for
human pose estimation,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 1–8, 2008.

[89] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass kernel-based
vector machines,” The Journal of Machine Learning Research, vol. 2, pp. 265–292, 2002.

[90] D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl, “Multiboost: A
multi-purpose boosting package,” Journal of Machine Learning Research, vol. 13, pp. 549–
553, 2012.

[91] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random forests,”
Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–2236, 2010.

[92] K. J. Archer and R. V. Kimes, “Empirical characterization of random forest variable importance
measures,” Computational Statistics & Data Analysis, vol. 52, no. 4, pp. 2249–2260, 2008.

[93] J. L. B. Claraco, “Development of scientific applications with the mobile robot programming
toolkit,” The MRPT reference book. Machine Perception and Intelligent Robotics Laboratory,

University of Málaga, Málaga, Spain, 2008.

[94] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular open robots simulation
engine: Morse,” in Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 46–51,
2011.

[95] I. Ardiyanto and J. Miura, “Rt components for using morse realistic simulator for robotics,” in
Proc. of The 13th SICE System Integration Division Annual Conference, pp. 535–538, 2012.

[96] I. Ardiyanto and J. Miura, “Partial least squares-based human upper body orientation estima-
tion with combined detection and tracking,” Image and Vision Computing, vol. 32, no. 11,
pp. 904–915, 2014.

130

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Jun Miura, whose expertise,
understanding, and patience, gives a great influence to my research experience. I appreciate his vast
knowledge and skill in the robotic and vision areas, and his assistance in writing papers, reports, and
thesis, also for giving me chances to attend many prestigious conferences. I gain a lot of knowledge
during my study here.

I also want to express my gratitude to Prof. Kuriyama, Prof. Terashima, and Prof. Tsubouchi
as the examiner members who kindly read my thesis and gave many useful suggestions.

I am deeply grateful to the former Assistant Professor Dr. Junji Satake for supporting my
research, especially in the people tracking part. Special thanks given to Assistant Professor Dr.
Shuji Oishi for the stimulating discussions. My sincere thank also goes to Ms. Mikiko Kobayashi,
who has helped me in many ways, like preparing a lot of documents for conferences and Research
Assistant.

I thank my lab-mates at Advance Intelligent System Lab: D3 Mr. Bima Sena, D1 Kenji
Koide, M2 Yohei Inoue, Masanobu Shimizu, Tomoyoshi Hara, Kenta Yamada, Yuta Takaba, Albadr
Lutan Nasution, and Yuki Namihira, M1 Taku Kudou, Takahiro Sakai, Kaichiro Nishi, and Wataru
Miyazaki, B4 Yoshiki Kohari, Seiichiro Une, Genki Nagai, Mitsuhiro Demura, and Yuutaro Chikada,
for all the fun we have had in the lab. Also I thank my former senior Junichi Sugiyama, who always
helps me when I had troubles during experiments. Special thanks to Koide-kun and Shimizu-kun as
the close partners for doing researches.

At the last, I want to express my gratitude to JICA which has supported my study through
AUN SEED-Net Scholarship.

131

List of Publications

Journals

[1] I. Ardiyanto and J. Miura, “Partial Least Squares-based Human Upper Body Orientation
Estimation with Combined Detection and Tracking,” Image and Vision Computing, vol.
32(11), pp. 904-915, 2014. (Chapter 6)

[2] I. Ardiyanto and J. Miura, “Real-time Navigation using Randomized Kinodynamic
Planning with Arrival Time Field,” Robotics and Autonomous Systems, vol. 60(12), pp.
1579-1591, 2012. (Chapter 5)

Conferences

[1] I. Ardiyanto and J. Miura, “Human Motion Prediction Considering Environmental
Context,” The 14th IAPR Conference on Machine Vision and Application (MVA), pp.
390-393, May 18-22, 2015, Tokyo, Japan. (Chapter 4)

[2] I. Ardiyanto and J. Miura, “Cameraman Robot: Dynamic Trajectory Tracking with
Final Time Constraint using State-time Space Stochastic Approach,” 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 3108-3115,
September 14-18, 2014, Chicago, USA. (Chapter 5)

[3] I. Ardiyanto and J. Miura. “Visibility-based Viewpoint Planning for Guard Robot using
Skeletonization and Geodesic Motion Model,” 2013 IEEE International Conference on

Robotics and Automation (ICRA), pp. 652-658, May 6-10, 2013, Karlsruhe, Germany.
(Chapter 2, 3, and 4)

[4] I. Ardiyanto and J. Miura, “3D Time-space Path Planning Algorithm in Dynamic Envi-
ronment Utilizing Arrival Time Field and Heuristically Randomized Tree,” 2012 IEEE

International Conference on Robotics and Automation (ICRA), pp. 187-192, May 14-18,
2012, St. Paul, Minneapolis, USA. (Chapter 5)

[5] I. Ardiyanto and J. Miura, “Heuristically Arrival Time Field-Biased (HeAT) Random
Tree: An Online Path Planning Algorithm for Mobile Robot Considering Kinodynamic
Constraints,” 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO),
pp. 360-365, December 7-11, 2011, Phuket, Thailand. (Chapter 5)

133

