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Abstract 

We synthesized Li2x-ySr1-xTayZr1-yO3 (LSTZ, x = 0.75y) with various Ta contents y 

= 0.60, 0.70, 0.75, 0.77 and 0.8 via a conventional solid state reaction method and 

investigated their crystal phase, microstructure and lithium-ion conductivity. Almost 

single phase perovskite-type structured LSTZ was obtained at y = 0.60−0.75 and their 

lattice sizes were increased with increasing y, indicating that Sr2+ and Zr4+ are successfully 

substituted by Li+ and Ta5+ with smaller ionic radii in these three samples. On the other 

hand, LSTZ with higher Ta contents y = 0.77 and 0.8 included some impurity phases such 

as LiTaO3, SrTa2O6 and Sr2Ta2O7. A solid solution range for Ta into Zr site for LSTZ is 

expected to be y ≤ 0.75. Both the bulk and total (bulk + grain-boundary) ionic 

conductivity of LSTZ monotonically increased with y from 0.60 to 0.75. Maximum bulk 

and total (bulk + grain-boundary) conductivities of 2.8 × 10-4 Scm-1 and 2.0 × 10-4 Scm-1 

at 27°C were obtained in LSTZ with y = 0.75. 

 

Keywords: perovskite; oxide; solid electrolyte; lithium ion conductivity; rechargeable 

battery 
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1. Introduction 

All-solid-state lithium-ion batteries (LiBs) are expected to be one of the next 

generation of energy storage devices because of their high energy density, high safety and 

excellent cycle stability [1−3]. The development of solid inorganic lithium-ion 

conducting materials for use as a solid electrolyte is the most important issue in order to 

realize solid-state batteries. The materials used for solid electrolyte must have not only 

high lithium-ion conductivity σ > 10-3 Scm-1 at room temperature but also chemical 

stability against metallic lithium or lithiated negative electrode, air and moisture. 

Although oxide based solid electrolyte materials have rather lower σ than sulfide based 

ones, they have other advantages such as their chemical stability and ease of handling. 

Among the oxide-based lithium-ion conducting solid electrolyte materials, perovskite-

type Li0.35La0.55TiO3 (LLT) exhibits very high bulk ionic conductivity above 10-3 Scm-1 

at room temperature [4–10]. However, its grain-boundary conductivity around room 

temperature is limited only in the order of 10-5−10-4 Scm-1 [4–8], which leads to much 

lower total (bulk + grain-boundary) conductivity than for a bulk one. Furthermore, its 

electronic conductivity can be increased substantially because the Ti4+ included in LLT is 

easily reduced to Ti3+ when LLT is in contact with metallic lithium or lithiated graphite 

inside a battery. It has been reported that the reduction from Ti4+ to Ti3+ in LLT is caused 

at the potential of 1.6−1.8 V vs. Li/Li+ [9, 10]. Such electrochemical instability creates 

significant difficulty to use this material for the production of solid-state batteries. 

Several papers for other perovskite-type lithium-ion conducting oxides with higher 

stability than LLT have been reported [11–15]. Thangadurai et al. studied lithium-ion 

conductors LiSr1.65B1.3B’1.7O9 (B = Ti, Zr; B’= Nb, Ta) [11]. Although the Ti-contained 

materials have a similar stability problem as seen in LLT, they concluded that 
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LiSr1.65Zr1.3Ta1.7O9 is a lithium-conductor with much higher electrochemical stability 

than LLT. Although they did not show bulk and grain-boundary conductivity 

quantitatively, the total (bulk + grain-boundary) conductivity of LiSr1.65Zr1.3Ta1.7O9 was 

limited to 1.6 × 10-5 Scm-1 at 30°C. Watanabe et al. reported the properties of Ta 

containing Li2xSr1-2xM0.5-xTa0.5+xO3 (M = Cr, Fe, Co, Al, Ga, In and Y) [12]. The bulk 

conductivity attained to 1 × 10-4 Scm-1 at 25°C when M = Fe and x = 0.25, but total 

conductivity is two orders lower than the bulk one due to poor sinterability. 

Phraewphiphat et al. recently reported a systematical study for crystal structure and 

conductivity for LixSr1-xM(1-x)/2Ta(1+x)/2O3 (M = Al, Ga) [13]. They concluded that higher 

conductivity was observed in Ga substituted compounds and optimized composition to 

obtain the highest conductivity is Li0.25Sr0.625Ga0.25Ta0.75O3, but total conductivity around 

room temperature was limited at around 10-5 Scm-1.  

Chen et al. investigated the crystal phase and ionic conductivity in Li2x-ySr1-xTayZr1-

yO3 (LSTZ, x = 0.75y) with four different Ta contents y = 0.25, 0.5, 0.75 and 1 [14]. They 

reported that the perovskite structure can be obtained at Ta contents y = 0.25, 0.5 and 0.75, 

and the highest bulk and total conductivity of 2.0 × 10-4 Scm-1 and 0.8 × 10-4 Scm-1 at 

30°C is achieved in LSTZ with y = 0.75. Although this total conductivity is lower than 

densified LLT as reported in [8], LSTZ is found to be stable, at least above 1 V vs Li/Li+ 

and has a wider electrochemical potential window than LLT [14], so that several negative 

electrode materials operating at high potential for lithium-ion storage such as Li4Ti5O12, 

TiO2 and Nb2O5 can be potentially used for constituting solid-state batteries with a LSTZ 

solid electrolyte.  

It should be noted that Chen et al. have not shown the properties for LSTZ with Ta 

content y near 0.75 in detail [14], so that it has not yet been clarified that a further increase 
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of y is possible to obtain a pure perovskite-type structure and LSTZ with y = 0.75 

(Li3/8Sr7/16Ta3/4Zr1/4O3) and if this is an optimized composition to achieve the highest 

conductivity or not. In this paper, we synthesized LSTZ with different Ta contents y = 

0.60, 0.70, 0.75, 0.77 and 0.8 via conventional solid state reaction method and 

investigated their crystal phase, microstructure and lithium-ion conducting property 

systematically. Based on experimental results, the optimized composition of LSTZ for 

high ionic conductivity is discussed. 

 

2.  Experimental 

LSTZ with different Ta contents y = 0.6, 0.7, 0.75, 0.77 and 0.8 was synthesized via 

a conventional solid state reaction method. The detailed nominal composition of five 

LSTZ samples are summarized in Table 1. LSTZ includes some amounts of vacancy in 

A-site for perovskite structure depending on y. The contents of Li (2x−y) and vacancy � 

(y−x) are increased while those of Sr (1−x) and Zr (1−y) are decreased with increasing y. 

Stoichiometric amounts of Li2CO3 (Kojundo Chemical Laboratory Co., Ltd., 99.99%), 

SrCO3 (Kojundo Chemical Laboratory Co., Ltd., 99.9%), ZrO2 (Kojundo Chemical 

Laboratory Co., Ltd., 98%) and Ta2O5 (Kojundo Chemical Laboratory Co., Ltd., 99.9%) 

were ground and mixed with ethanol for 5 h by planetary ball-milling (Nagao System, 

Planet M2-3F) with zirconia balls, and then calcined at 1100°C for 12 h in air using an 

alumina crucible. The calcined powders were ground again, and then pressed into pellets 

at a pressure of 300 MPa by cold isostatic pressing (CIP). Finally, the LSTZ pellets were 

sintered at 1300°C for 15 h in air using an alumina crucible. 

The identification of the crystal phase of LSTZ samples with different compositions 

was evaluated by X-ray diffraction (XRD, Rigaku Multiflex, RIGAKU) using CuKα 
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radiation (λ = 0.15418 nm), with a measurement angle range of 2θ = 5−90° and a step 

interval of 0.01°. Using the X-ray diffraction (XRD) data for LSTZ samples, lattice 

parameters were calculated by Rigaku PDXL XRD analysis software. A scanning electron 

microscope (SEM, VE-8800, KEYENCE) was used to observe the surface microstructure 

of each sintered LSTZ. Energy dispersive X-ray (EDX) analysis was performed using a 

field-emission scanning electron microscope (FE-SEM, SU8000 Type II, Hitachi) to 

investigate the distribution of Sr, Ta, Zr and Al (contaminated from the crucible during 

high temperature sintering) elements in sintered LSTZ. The elementary composition in 

each sample was measured by inductively coupled plasma optical emission spectroscopy 

(ICP-OES). Ionic conductivity was evaluated at a temperature range from 27 to 150°C by 

an AC impedance measurement with a frequency from 5 Hz to 5 MHz with an applied 

voltage amplitude of 0.1 V, using both Hioki Chemical Impedance Meter 3532-80 (for 

the measurement up to 1 MHz) and Hioki LCR Hightester 3532-50 (for the measurement 

from 1 MHz to 5 MHz). Before the conductivity measurements, both parallel surfaces of 

the sintered LSTZ pellet were sputtered with lithium-ion blocking Au electrodes. 

 

3.  Results and discussion 

    The color of all sintered LSTZ samples with different Ta contents y were white and 

the diameter and thickness were 10 mm and 2 mm, respectively. XRD patterns of LSTZ 

samples with different compositions are shown in Fig. 1. The main diffraction peaks for 

LSTZ-1 with y = 0.60, LSTZ-2 with y = 0.70 and LSTZ-3 with y = 0.75 belong to the 

cubic perovskite structure with a space group Pm-3m. On the other hand, LSTZ-4 with y 

= 0.77 and LSTZ with y = 0.8 include impurity phases such as LiTaO3, SrTa2O6 and 

Sr2Ta2O7 together with the peaks from the cubic perovskite phase, indicating that these 
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compositions are difficult to obtain single phase perovskite-type composites without 

forming any impurity phases. The peak intensity from impurity phases for LSTZ-5 with 

y = 0.80 is larger than that for LSTZ with y = 0.77. It is noted that we applied an additional 

heat treatment at 1300°C for 15 h to LSTZ-4 and LSTZ-5, but no notable change was 

confirmed in the XRD data and the impurity phases as mentioned above could not be 

avoided. 

Enlarged diffraction peaks for (110) plane for all LSTZ samples are shown in Fig. 2. 

As can be seen, the diffraction peaks shifted toward a higher angle with increasing Ta 

contents y from 0.6 to 0.75. It should be noted that such peak shifts depending on y are 

confirmed in other diffraction peaks, indicating that the lattice sizes of LSTZ decreases 

with increasing y. The ionic radii of Sr2+ (132 pm) and Zr4+ (72 pm) are larger than the 

substitution elements Li+ (90 pm) and Ta5+ (64 pm), so that it is expected that Sr2+ and 

Zr4+ are successfully substituted by Li+ and Ta5+ with smaller ionic radii in these three 

LSTZ samples. From the XRD data, the lattice parameters a of these three LSTZ samples 

with pure cubic perovskite structure are estimated to be 4.012 Å for LSTZ-1 with y = 

0.60, 3.998 Å for LSTZ-2 with y = 0.7 and 3.992 Å for LSTZ-3 with y = 0.75. On the 

other hand, the peaks for LSTZ-4 and LSTZ-5 with y = 0.77 and 0.80 are shifted slightly 

toward a lower angle compared with LSTZ with y = 0.75. Although the compositions of 

perovskite phase included in LSTZ-4 and LSTZ-5 samples are slightly different with 

LSTZ-3, a solid solution range for Ta into Zr site for LSTZ is expected to be y ≤ 0.75. 

    Fig. 3 shows the microstructure of the surface for all LSTZ samples observed by 

SEM. As can be seen, LSTZ-1, LSTZ-2 and LSTZ-3 without including any impurity 

phases, have a well densified structure with LSTZ grains with the size of 5−10 µm and 

pores are not observed. As shown in Fig. 1(b) and (d), both LSTZ-4 and LSTZ-5 include 



 8 

LiTaO3, SrTa2O6 and Sr2Ta2O7 as impurity phases, but the grain sizes of LSTZ-5 are much 

smaller than those of LSTZ-4 and some pores are clearly confirmed. This is consistent 

with the data for measured densities in Table 2. Compared with LSTZ-4, LSTZ-5 includes 

a larger quantity of impurity phases, which inhibits the sintering process and grain growth 

of LSTZ. The SEM image and corresponding elementary mapping of Sr, Ta and Zr of 

LSTZ-3 are also shown in Fig. 4(a-d). It can be seen that the distributions of Sr, Ta and 

Zr are nearly identical. In EDX spectrum shown in Fig. 4(e), the EDX spectrum from Al 

cannot be confirmed clearly, suggesting that Al contamination from the alumina crucible 

during high temperature sintering are negligible. 

The elementary compositions evaluated by an ICP-OES analysis for LSTZ-1, LSTZ-

2 and LSTZ-3 are summarized in Table 2, together with the densities of all samples. The 

compositions of LSTZ-4 and LSTZ-5 are not evaluated because they include many 

impurity phases (see Fig. 1). The density of each sintered LSTZ was determined from the 

weight and physical dimensions. As can be seen, the densities of LSTZ tend to be 

increased with Ta contents y from 0.6 to 0.75, due to both the increase of the level for 

heavier Ta substitution and the reduced lattice sizes with y as mentioned above. It is worth 

noting that our LSTZ-3 with y = 0.75 has higher density of 6.23 gcm-3 than a sample with 

the same composition (= 5.95 gcm-3) reported in the literature [14]. Previously reported 

LSTZ with y = 0.75 also includes small amount of LiTaO3 as impurity phases. On the 

other hand, LSTZ-4 and LSTZ-5 with a larger y = 0.77 and 0.80 and impurity phases have 

lower densities than LSTZ-3. The obtained molar ratios of Sr, Ta and Zr in LSTZ-1, 

LSTZ-2 and LSTZ-3 are nearly corresponding to nominal compositions, but small 

amount of Li deficiency was observed in these three samples. Li loss of LSTZ could be 

caused during the high temperature sintering process and leads to form impurity phases 
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such as SrTa2O6 and Sr2Ta2O7 [14], but these impurity phases are difficult to detect in 

XRD measurements for LSTZ-1, LSTZ-2 and LSTZ-3 (see Fig. 1). 

The conductivity of LSTZ-1, LSTZ-2 and LSTZ-3 without impurity phases was 

examined by AC impedance spectroscopy using Au electrodes. Fig. 5 shows typical 

impedance plots measured at 27°C. Since the geometrical parameters of all LSTZ samples 

are identical, both the real and the imaginary parts of impedance Z and Z” can be 

compared directly. For all LSTZ samples, semicircle(s) and linear portion data were 

obtained in high and low frequency regions, indicating that the conducting nature is 

primarily ionic. The intercept point of the linear tail in the low frequency range with a 

real axis nearly corresponds to total (bulk + grain-boundary) resistance Rtotal. As can be 

seen, these plots can be resolved into bulk Rb and grain-boundary resistances Rgb. The 

ratios of Rb to Rtotal for these three LSTZ samples are ranged from 0.64 to 0.77 and the 

contribution of Rgb in Rtotal is not so large, which is quite different from perovskite-type 

LLT [4–10]. LSTZ-3 with y = 0.75 has the lowest Rb and Rtotal, indicating that this sample 

has the best ionic conducting properties. 

Bulk, grain-boundary and total conductivities σb, σgb and σtotal for each LSTZ sample 

can be calculated by L(RbA)-1, L(RgbA)-1 and L(RtotalA)-1, respectively. Here, L and A are 

the thickness and surface area of the pellet sample. The values of σb, σgb and σtotal at 27°C 

for all LSTZ samples calculated from the data in Fig. 5 are summarized in Table 3 and 

Fig. 6. It is evident that σb, σgb and σtotal are monotonically increased with increasing the 

Ta contents y from 0.60 to 0.75. Moreover, σgb is significantly higher than σb so that σtotal 

is close to σb for all LSTZ samples. As mentioned above, the lattice parameters of LSTZ 

are decreased with increasing y and the Li concentration. The decrease of lattice size 

generally result into the reduction of bottle-neck size for Li+ migration in LSTZ. 



 10 

Therefore, is we believe that σb of LSTZ is optimized by tuning Li−Li site distance 

depending on the Li concentration. Maximum σb = 2.8 × 10-4 Scm-1 and σtotal = 2.0 × 10-

4 Scm-1 at 27°C are obtained in LSTZ-3 with y = 0.75. These properties are much superior 

to LSTZ with the same compositions reported in the literature [14]. Particularly, σtotal of 

our LSTZ-3 is approximately 2.5 times higher than the reported one (= 0.8 × 10-4 Scm-1 

at 30°C). This is mainly attributed to both the avoidance of the impurity phases and a 

larger density in our sample (= 6.23 gcm-3) than previously reported one (= 5.95 gcm-3). 

σtotal in LSTZ-3 is comparable with garnet-type Li7La3Zr2O12 (LLZ) sintered with mother 

powder [15−20], but in this work, we did not use mother powder for sintering LSTZ. 

Moreover, it should be noted that LSTZ-1 and LSTZ-2 with y = 0.6 and 0.7 have higher 

σb than LSTZ with y = 0.5 (σb = 3.34 × 10-7 Scm-1 at 30°C) reported in [14], suggesting 

that higher lithium-ion concentrations in perovskite-type LSTZ are effective to achieve 

high conductivity. 

The temperature dependence of total conductivity σtotal for LSTZ-1, LSTZ-2 and 

LSTZ-3 was also measured in the temperature range from 27 to 150°C. Fig. 7 shows the 

Arrhenius plots for three LSTZ samples as a function of inverse of temperature T-1. The 

temperature dependence of σtotal for each LSTZ sample is well expressed by the Arrhenius 

equation ( )( )1
0total exp −−= TkET Baσσ , where σ0 is constant, Ea is the activation energy of 

conductivity and kB is the Boltzmann constant (= 1.381 × 10-23 J/K). Ea for σtotal of each 

sample can be estimated from the slope of σtotalT data plotted in Fig. 7. Estimated Ea for 

each LSTZ sample are listed in Table 3 together with σbulk and σtotal at 27°C. As can be 

seen, Ea of LSTZ samples are decreased monotonically with increasing y from 0.60 to 

0.75. LSTZ-3 with both the highest σbulk and σtotal shows the lowest Ea = 0.37 eV among 
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the samples. Temperature dependence of σtotal for LSTZ-3 is also shown in Fig. 8, together 

with AC impedance plots at different temperatures as an inset. It is confirmed that the 

σtotal of LSTZ-3 enhances above 10-3 S cm-1 at temperature above 70°C and attains to 1.2 

× 10-2 S cm-1 at 150°C. 

 

4.  Conclusion 

Perovskite-type Li2x-ySr1-xTayZr1-yO3 (LSTZ, x = 0.75y) solid electrolytes with 

different Ta contents y = 0.6−0.8 were prepared via a conventional solid state reaction 

method and their crystal phases, microstructures and lithium-ion conducting properties 

were investigated. A single phase perovskite-type structure was obtained in LSTZ sample 

with y = 0.6−0.75 and the lattice sizes of LSTZ were increased with y. However, the LSTZ 

samples with y above 0.77 contained impurity phases such as LiTaO3, SrTa2O6 and 

Sr2Ta2O7, indicating that a solid solution range for Ta into Zr site for perovskite-type 

LSTZ is expected to be y ≤ 0.75. Both bulk and total (bulk + grain-boundary) ionic 

conductivity of LSTZ monotonically increased with y from 0.6 to 0.75. Maximum bulk 

and total conductivities of 2.8 × 10-4 Scm-1 and 2.0 × 10-4 Scm-1 at 27°C was obtained in 

LSTZ with y = 0.75. This conductivity is attractive for the application to oxide-based all-

solid-state lithium-ion batteries. 
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Table 1. Nominal composition of Li2x-ySr1-xTayZr1-yO3 (LSTZ, x = 0.75y) prepared in this 

study. Symbol � represents the expected content of A-site vacancy. 

Sample name Li Sr � Ta Zr 

LSTZ-1 0.30 0.55 0.15 0.60 0.40 

LSTZ-2 0.35 0.475 0.175 0.70 0.30 

LSTZ-3 0.375 0.4375 0.1875 0.75 0.25 

LSTZ-4 0.385 0.4225 0.1925 0.77 0.23 

LSTZ-5 0.40 0.40 0.20 0.80 0.20 
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Table 2. Measured densities and elementary compositions of sintered LSTZ samples 

estimated from ICP-OES analysis. The compositions of LSTZ-4 and LSTZ-5 are not 

evaluated because they include impurity phases (see Fig. 1). Note that Ta contents for 

each LSTZ is fixed for the nominal composition (listed in Table 1) to calculate the 

contents for Li, Sr and Zr.  

Sample name Density / g cm-3 Li Sr Ta Zr 

LSTZ-1 6.02 0.225 0.510 0.60 0.371 

LSTZ-2 6.20 0.308 0.441 0.70 0.280 

LSTZ-3 6.23 0.362 0.412 0.75 0.232 

LSTZ-4 6.12 − − − − 

LSTZ-5 6.08 − − − − 
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Table 3. Summary of bulk conductivity σb, grain-boundary conductivity σgb, total 

conductivity σtotal, Rgb / Rtotal at 27°C and activation energy Ea for σtotal for LSTZ-1 (y = 

0.60), LSTZ-2 (y = 0.70) and LSTZ-3 (y = 0.75). 

Sample 
name 

σb / S cm-1  

at 27°C 

σgb / S cm-1  

at 27°C 

σtotal / S cm-1  

at 27°C 

Rb / Rtotal  

at 27°C 
Ea / eV 

LSTZ-1 0.77 × 10-5 2.7 × 10-5 0.60 × 10-5 0.77 0.46 

LSTZ-2 1.2 × 10-4 1.9 × 10-4 7.3 × 10-5 0.64 0.39 

LSTZ-3 2.8 × 10-4 7.0 × 10-4 2.0 × 10-4 0.69 0.37 
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Figure captions 

 

Fig. 1. X-ray diffraction patterns of LSTZ samples with different Ta contents y as shown 

in Table 1: (a) LSTZ-1 (y = 0.60), (b) LSTZ-2 (y = 0.70), (c) LSTZ-3 (y = 0.75), (d) 

LSTZ-4 (y = 0.77) and (e) LSTZ-5 (y = 0.80).  

 

Fig. 2. Enlarged (110) diffraction peaks for LSTZ samples with different Ta contents y: 

(a) LSTZ-1 (y = 0.60), (b) LSTZ-2 (y = 0.70), (c) LSTZ-3 (y = 0.75), (d) LSTZ-4 (y = 

0.77) and (e) LSTZ-5 (y = 0.80).  

 

Fig. 3. SEM images for sintered LSTZ samples with different Ta contents y: (a) LSTZ-1 

(y = 0.60), (b) LSTZ-2 (y = 0.70), (c) LSTZ-3 (y = 0.75), (d) LSTZ-4 (y = 0.77) and (e) 

LSTZ-5 (y = 0.80). 

 

Fig. 4. (a) SEM image for the surface of LSTZ-3 (y = 0.75) and corresponding elementary 

mapping of (b) Sr, (c) Ta and (d) Zr obtained from EDX analysis. The EDX spectrum is 

also shown in (e). 

 

Fig. 5. AC impedance plot obtained at 27°C for sintered LSTZ samples with Ta contents: 

(a) LSTZ-1 (y = 0.60), (b) LSTZ-2 (y = 0.70) and (c) LSTZ-3 (y = 0.75). 

 

Fig. 6. Bulk conductivity σb, grain-boundary conductivity σgb and total conductivity σtotal 

for sintered LSTZ samples plotted against Ta contents y. 
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Fig. 7. Arrhenius plots for total conductivity σtotal of LSTZ-1 (y = 0.60), LSTZ-2 (y = 

0.70) and LSTZ-3 (y = 0.75). 

 

Fig. 8. Total conductivity σtotal for LSTZ-3 (y = 0.75) plotted against the inverse of 

measurement temperature T. Inset is the AC impedance plots of this sample measured at 

27−150°C. 
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Fig. 3 
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Fig. 4 
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Fig. 5(a) 
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Fig. 5(b) 
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Fig. 5(c) 
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