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Abstract

A modern speech synthesis (Text-to-Speech or TTS) system usually generates output

speech through phonological information (or phonetic transcription) rather than direct

representation of textual information. As a result, the quality of the precise conversion

of arbitrary text into its corresponding phoneme string has a strong impact on the per-

formance of the whole system. In general, the phonemic transcription of a written word

could be possibly generated by consulting a pronunciation dictionary available inside the

system for the in-vocabulary words or predicted through a data-driven Grapheme-to-

Phoneme (G2P) conversion for the unknown or out-of-vocabulary (OOV) words. Besides

the TTS system, the G2P conversion has also been widely adopted for other systems

such as computer-assisted language learning, automatic speech recognition, spoken term

detection, spoken document retrieval and speech-to-speech machine translation systems.

Due to the variability in the pronunciation rules, there is no strict correspondence

between graphemes and phonemes, especially in American English language. Thus,

many G2P approaches using a many-to-many mapping technique between graphemes

and phonemes has been proposed. In order to improve the prediction performance of the

G2P conversion model, in this thesis, we propose several approaches based on a two-stage

architecture. This architecture allows to treat the problems occurred in the conversion

using two different steps: graphemes-to-phonemes and phonemes-to-phonemes.

Our first approach is called “a two-stage neural network-based G2P conversion” which is

designed for dealing with the problem of conflicting phonemes, where an input grapheme

could, in the same context, produce many possible output phonemes at the same time.

For example, if a neural network model takes a sequence of seven graphemes as input,

the grapheme ‘A’ on sequence “HEMATIC” can produce the phoneme /AE/ when

it belongs to the word “SCHEMATIC”, and also /AH/ when it is within another

“MATHEMATICIAN”. Thus, it is difficult to identify the correct phoneme correspond-

ing to ‘A’ since there is more than one choice. To solve such a problem, our proposed

model first converts the input text/word into multiple phoneme substrings and then uses

a combination of the obtained phoneme substrings as a new input pattern to predict the

output phoneme corresponding to each input grapheme in a given word.

Since the performance of the neural network-based model for G2P conversion is limited,

we use an existing weighted finite-state transducer (WFST)-based method implemented

in the Phonetisaurus toolkit to implement our second proposed model. Except the

acronyms and words with special pronunciations, we have figured out that most of the

error words in G2P conversion are caused by the wrong prediction of their own vowel

graphemes. Therefore, we design several grapheme generation rules, which enable extra



details (or sensitive information) for the vowel and consonant graphemes appearing

within a word. These rules are applied to the input text/words at the first-stage of

our proposed model. The evaluation results have shown that a G2P model using dif-

ferent rules can produce different output results that allow each rule to tackle different

problems which may occur in different contexts during a conversion. This shows that a

single approach does not suffice when addressing all the problems encountered by G2P

conversion. Considering this fact, a combination of various approaches using different

techniques is a reasonable strategy for treating the problems in a flexible manner.

Combining various techniques can both lend flexibility to the conversion and improve its

predictive performance. Therefore, in this thesis, we present a phoneme transition net-

work (PTN)-based architecture for G2P conversion. First, it converts a target word into

multiple phoneme strings using different existing data-driven methods. Then, it aligns

the obtained results–the phoneme-sequence hypotheses–using dynamic programming al-

gorithm, combines them into a confusion network (or PTN), and determines the final

output phoneme sequence by selecting the best phonemes from all the PTN bins–blocks

of phonemes/transitions between two nodes in the PTN. Moreover, in order to extend

the feasibility and improve the performance of the proposed PTN-based model to an-

other higher level, we introduce a novel use of right-to-left (reversed) grapheme-phoneme

sequences along with grapheme generation rules. Both techniques are helpful not only

for minimizing the number of required methods or source models in the proposed ar-

chitecture but also for increasing the number of phoneme-sequence hypotheses as well

as new phoneme candidates, without increasing the number of methods. Therefore, the

techniques serve to minimize the risk from combining accurate and inaccurate methods

that can readily decrease the performance of phoneme prediction.

Various model combinations have been conducted and tested. Evaluation results using

various word-based pronunciation dictionaries or datasets (such as NETtalk, Brulex,

CMUDict and CMUDict noisy) and K-fold cross-validation techniques show that our

proposed PTN-based model, when trained using the reversed grapheme-phoneme se-

quences, often outperforms conventional left-to-right grapheme-phoneme sequences. In

addition, the evaluation also demonstrates that the PTN-based method for G2P conver-

sion is more accurate than all the baseline approaches that are tested in terms of both

phoneme and word accuracy.

In the future, we plan to create new and effective grapheme generation rules to further

improve our proposed approach, enabling a trained model to generate more accurately

output phoneme-sequence hypotheses, such that only two models (using conventional

and reversed grapheme-phoneme sequences) will be sufficient for our PTN-based G2P

conversion. Moreover, the hamming-distance, calculated from the articulatory features

of phonemes, shall be used for the dynamic programing algorithm in the PTN generating

process. A PTN sequence shall be used instead of a single phoneme sequence to represent

an OOV keyword in the spoken term detection as well as other systems.
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Chapter 1

Introduction

Contents

1.1 Languages, texts, phonetics, prosody and speech . . . . . . 2

1.2 Objectives of the research . . . . . . . . . . . . . . . . . . . . 9

1.3 Advantages of G2P conversion . . . . . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 14

Human communication is a fundamentally cooperative enterprise, operating most nat-

urally and smoothly within the context of (1) mutually assumed common conceptual

ground, and (2) mutually assumed cooperative communicative motives [1]. A hypoth-

esis is that the first uniquely human forms of communication were pointing and pan-

tomiming. The social-cognitive and social-motivational infrastructure that enabled new

forms of communication then acted as a kind of psychological platform on which the

various systems of conventional linguistic communication could be built. According to

the Wikipedia page (https://en.wikipedia.org/wiki/History_of_communication),

human communication was revolutionized with speech approximately 500,000 years ago;

symbols were developed about 30,000 years ago [2], and writing about 5,000 years ago.

During the old era and before the birth of computer, human had to read the written

text to be understood or to transfer its meaning to another people through speech. The

revolution of computers, electronics, media and technologies has completely changed the

human life, especially the way of human thinking and communicating. Many impossible

things and creatures have been found, analyzed, realized, invented and then innovated by

1

https://en.wikipedia.org/wiki/History_of_communication
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human. For many years, scientists have dreamed of building machines able to converse

with their creators, by endowing them with a measure of “intelligence” or “understand-

ing” together with speech recognition and synthesis capabilities [3]. Even if building

a machine that would have human-like intellectual ability in both understanding and

talking is impossible, applications generating artificial speech (i.e., speech synthesis) or

understanding human speech (i.e., speech recognition) are highly demanded on the mar-

ket, especially now when the quality of both the synthesized speech and the recognized

information is much better than a decade ago. This is because speech technologies have

as their principle objective to facilitate the interaction between humans and computers.

In order to make the speech technologies possible, the knowledge of language reading

and understanding is definitely required. Learning new languages is difficult and very

time-consumming. For example, it is required a lot of time and efforts to be capable

to read a text written in a specific language; moreover, the reading and speaking ex-

periences are definitely unavoidable to understand how to pronounce the text or word

correctly. For a human being, the reading performance is acceptable as long as it can be

understood by other people and especially by the native speakers. Unlikely, this is not

enough for the computer applications including the automatic speech recognition and

comuputer-assisted language learning softwares, where a perfect quality of text reading

is theoretically and highly demanded. Therefore, when the quality of pronuciation is

concerned, the phonological knowledge in reading must be taken into account too.

The remainder of this chapter is organized as follows. It first overviews a world of

languages and then describes what the texts, phonetics, prosody and speech in Text-to-

Speech system in Section 1.1. Next, it presents the objectives of our research in Section

1.2. The advantages of grapheme-to-phoneme conversion and its applications are briefly

explained in Section 1.3. Then, it presents our proposed approaches for grapheme-to-

phoneme conversion as our contributions in Section 1.4. An organization of the thesis

is lastly written in Section 1.5.

1.1 Languages, texts, phonetics, prosody and speech

Now, there are 7.2 billion people on earth. According to the infographic of a world of

langauges depicted in Fig.1.1, a survey of 6.3 billion people shows that there are at least

7,102 known languages alive in the world today. Twenty-three of these languages are a

mother tongue for more than 50 million people and make up the native tongue of 4.1

billion people around the world. These languages includes: Chinese, Spanish, English,
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Figure 1.1: Infographic: a world of languages, created by the fine linguists
at the South China Morning Post (http://www.scmp.com/infographics/article/

1810040/infographic-world-languages?comment-sort=recommended)

http://www.scmp.com/infographics/article/1810040/infographic-world-languages?comment-sort=recommended
http://www.scmp.com/infographics/article/1810040/infographic-world-languages?comment-sort=recommended
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Figure 1.2: Infographic: Number of countries in which each language is spoken

Figure 1.3: Infographic: Most popular languages being learned around the world

Figure 1.4: The most common foreign language influences in English
https://en.wikipedia.org/wiki/Foreign_language_influences_in_English

https://en.wikipedia.org/wiki/Foreign_language_influences_in_English
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Hindi, Arabic, Portuguese, Bengali, Russian, Japanese, Lahnda, Javanese, German, Ko-

rean, French, Telegu, Marathi, Turkish, Tamil, Vietnamese, Urdu, Italian, Malay/Ba-

hasa and Persian. In Fig.1.1, each language is represented within black borders, and the

number of native speakers (in millions) by country is also provided; the colour of these

countries shows how languages have taken root in many different regions. The bottom

part of Fig.1.1 demonstrates that English is the most popular language being learned

and spoken by many countries around the world, even though Chinese has the largest

number of native speakers.

Regarding the fact that each language has been used by many people living in different

countries for such a long time, the pronunciation rules in some languages have been

regularly increased and become unstable day-by-day due to the social impacts. For

example, according to Fig.1.4, the pronunciation rules in the modern English language

have been gradually changed and become the most complicated among other languages

in the world because it has been influenced by many foreign languages, such as, French,

Latin, Greek, Germanic, etc.

In general, the orthographic text or word in any language could be perfectly pronounced

only by the linguistic experts who have a deep phonological knowledge in that language;

the complexity of pronunciation rules is highly language-dependent. To do this, the

experts have to learn and memorize all the possible pronunciation rules as well as its

using contexts (e.g., the context of speaking). It is natural for human beings that they

have a special ability to memorize those rules and then use them to speak the words out

through the human speech production and control mechanisms which are very complex

to be understood, but it might sound like a joke to make a blind machine have such

ability. However, for over the years, the scientists have turned that joke into reality. They

created the first computer-based speech synthesis system in the late 1950s, and the first

sophisticated Text-To-Speech (TTS) system in 1968 [4]. Since then, the TTS system

has attracted many research interests and been chosen as one of the most interesting

topics in the fields of speech processing.

A TTS system is a computer-based speech system that is capable of transforming the

input textual information into intelligible speech signal (for example, the artificial hu-

man spoken voice). As depicted in Fig.1.5, it consists of two fundamental components.

The first component (or front-end) is reponsible for three main tasks: text normaliza-

tion, phonetic transcription and prosody generation, which converts texts to linguistic
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Figure 1.5: Architecture of a TTS system. In this figure, the phoneme symbols are
based on the CMU phone sets.

specification–a sequence of phonemes1 annotated with contextual information. The sec-

ond component (or back-end) is known as a waveform generator or speech synthesizer

that uses the obtained linguistic specification to generate a speech waveform as output.

Text normalization system is mainly implemented to convert the raw input text into an

appropriate orthographic form that will be used in the phonetic transcription process. It

consists of sentence segmentation, tokenizing and normalization of non-standard words

[5]. The main problem in the sentence segmentation is the ambiguity of the period and

the ambiguity of marking sentence boundaries or abbreviations. Many approaches have

been proposed for the period disambiguation, such as the rule-based systems for heuris-

tic period disambiguation operated on local grammars containing abstract contexts for

within-sentence periods and sentence boundaries [6], the Mikheev’s rule-based segmen-

tation [7], the decision tree classifier in Riley that use context features (including word

lengths, capitalization, and word occurrence probabilities on both sides of the period in

question)[8], etc. The tokenizing task is simply responsible for spliting the text at white

spaces and at punctuation marks that do not belong to abbreviations identified in the

preceding process. The normalization of non-standard words is usually a very complex

task not only in the TTS system but also other systems, and it also includes several

language-dependent problems [9]. This subtask includes number conversion (e.g., sort-

ing number, ranking number, counting number, phone number, ID, etc.), homograph

1A phoneme is the smallest unit of sound in speech. Phonemes are used in the spoken language
while letters are used in the written language. For example, the word “cat” consists of three phonemes
making the sounds /k/ (as in “can”), /a/ (as in “pad”), and /t/ (as in “tusk”). The number of phoneme
symbols is language-dependent and differently represented from one standard to another. According to
[3], there are only 26 letters in the English alphabet, but around 40 phonemes when using the phone
set of the CMU pronunciation dictionary. That’s because some letters and letter groups can be read
in multiple ways (‘a’, for example, can be read differently, as in “pad” or “paid”), so instead of one
phoneme per letter, there are phonemes for all the different letter sounds. Some languages need more
or fewer phonemes than others (typically 20-60).
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Figure 1.6: Different types of relations between letters and phonemes in the English
CMU pronouncing dictionary.

disambiguation, appropriate treatment of acronyms (because some have to be spelled,

others not), and expansion of abbreviations, emails, URL addresses, dates in different

formats, special symbols desinating monetary units, and etc.

According to Fig.1.5, an automatic text-to-phonetic transciption or text-to-phoneme

conversion system is responsible for converting the token words of a normalized text–a

text under an appropriate orthographic form mentioned in the previous paragraph–

into their correponding phonetic or phoneme forms. For example, based on an English

word-based pronunciation dicitionary (known as CMUDict), the word “SCHEMATIC” is

converted into its correponding phoneme sequence /S K AH M AE T IH K/. This system

is very time-consuming to be implemented and also highly language-dependent. For a

language with stable pronunciation rules like Spanish, this system is simply implemented

using a traditional rules-based approach, such as the context-dependent rewriting rules

[10, 11], for example. The problem concerning the automatic pronunciation generation

from text has been fairly studied in [9, 12]. However, it is insufficient to use such

traditonal approach to deal with a language with deep orthography–in other words,

with no obvious letter-to-phoneme correspondence [13, 14]–like English. For instance,

Fig.1.6 shows that there has no standand correpondence between the number of letters

and phonemes in English.

Since the desired speech output is usually synthesized through phonemic information

rather than the direct representation of textual information, the quality of the generated

phonemic information has a strong impact on the performance of the whole TTS system,

in terms of the degree of understanding and naturalness [15]. Therefore, as shown in

Fig.1.5, the phonemic transcription of a written word could possibly be generated by

consulting a pronuciation dictionary available inside the system for the in-vocabulary

(IV) words or predicted through a data-driven Grapheme-to-Phoneme2 (G2P) conversion

for the unknown or out-of-vocabulary (OOV) words–the words that do not exist in

2A grapheme is a single letter or multiple connecting letters that represent the sounds in our speech.
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the dictionary. As a result, many data-driven approaches for G2P conversion, such as

hidden Markov models (HMMs) [16, 17], support vector machines (SVMs) [18], artificial

neural network (ANNs) [15, 19, 20], joint-sequences [21, 22, 23, 24, 25], a weighted

finite-state transducer (WFST) [26, 27], conditional random fields (CRF) [28, 29, 30],

hidden conditional random fields (HCRF)[31, 32], an adaptive regularization of weight

vectors (AROW) [33], a narrow adaptive regularization of weight vectors (NAROW)

[34], and structured soft-margin confidence weighted learning (SSMCW) [35], etc., have

been proposed. Likewise, the main interest of our research and thesis also focus on the

problems concerning G2P conversion.

After the token words have been converted to phonemes, the prosody3 generation module

is used to assign the correct picth accent, lexical stress, rhythm, intonation, duration

and other related attributes to the phoneme form obtained from the text-to-phoneme

(or G2P) conversion module. Long time ago, when the prosody generation for speech

synthesis was concerned, the traditional hand-crafted rules was usually used [36]. The

poor prosody is a significant factor in limiting speech quality [37], so the researchers

have proposed various data-driven based approaches [38, 39, 40, 41] for improving the

performance of the automatic prosodic labeling system over the last decade. Recently,

the HMM-based approaches for prosody generation have become the most successful

technique in the fields of speech synthesis [42, 43].

Finally, the speech synthesis system produces the waveform signal as the final output

of the TTS system. It consists of two primary technologies generating synthetic speech

waveforms includes: concatenative synthesis and formant synthesis. Each technology

has strengths and weaknesses, and the intended uses of a synthesis system will typically

determine which approach is used. The scientists have proved that the formant synthe-

sis is better than the concatenative synthesis because it aims to provide good speech

quality and intelligibility while reducing storage requirements [3]. For over the years,

linear prediction coding (LPC) has been the most popular technique [44, 45, 46]. More

recently, because the pitch synchronous overlap-add (PSOLA) synthsis [47, 48] uses

pitch (fundamental frequency or F0) that can be easily modified during synthesis, it has

become more popular as a way of generating speech output. PSOLA is independent of

any particular coding strategy and gives best output when no data reduction is used

at all. After Machhi et. al. [49] have studied the effect of different coding methods on

the intelligibility of the speech output, they found that residual-excited linear prediction

3According to https://en.wikipedia.org/wiki/Prosody_(linguistics), in liguistic, prosody is
concerned with those elements of speech that are not individual vowels and consonants but are properties
of syllables and larger units of speech. These contribute to such linguistic functions as intonation, tone,
stress, and rhythm. Prosody may reflect various features of the speaker or the utterance: the emotional
state of the speaker; the form of the utterance (statement, question, or command); the presence of irony
or sarcasm; emphasis, contrast, and focus; or other elements of language that may not be encoded by
grammar or by choice of vocabulary.

https://en.wikipedia.org/wiki/Prosody_(linguistics)
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(RELP) provided higher intelligibility than PSOLA for voiced consonants, which were

assumed to be more sensitive to coding methods and pitch changes than vowels. This

is somewhat against the usual claim that PSOLA gives higher quality than LPC.

1.2 Objectives of the research

A speech synthesis system usually creates output speech using the phonological infor-

mation rather than textual information. Thus, the quality of the precise conversion of

arbitrary text into its corresponding phoneme string has a strong impact on the perfor-

mance of generated speech output. According to Fig.1.5, the modern TTS systems use

the dictionary look-up as the primary method to derive the phoneme transcription of the

words. This method does not have any knowledge or ability to derive the pronunciation

of any unknown or OOV words. Due to the influence of foreign words and other social

impacts, such systems have to deal with new words that have been gradually invented by

people from different countries around the world, so the secondary method is needed for

a backup strategy. Since the automatic data acquisition methods are the most economic

ones in terms of time and effort, the application of machine learning methods to the

G2P conversion is the most appropriate choice.

Therefore, the main objectives of our research in this thesis are (1) to analyze the

problems occurred in G2P conversion, (2) to understand and compare the state-of-the-

art methods to the G2P conversion, and then (3) to find an efficient way to improve the

pronunciation of OOV words, in other words, to propose new methods that can improve

the performance of phoneme prediction of the G2P conversion model.

In our scope of research, there are some limitation as follows. Only the problems in G2P

conversion are counted, the others, including the problems concerning the text normal-

ization, prosody generation, and speech synthesis systems, are not included. Problems

concerning the liaison words are not included in this study because the evaluation data

or corpus is purely word-based pronunciation dictionary.

1.3 Advantages of G2P conversion

Besides the TTS system, the automatic transcription of unseen words into their corre-

sponding phoneme strings (also called a data-driven G2P conversion) has been widely

adopted for other speech systems, as illustrated in Fig. 1.7 and 1.8, which includes auto-

matic speech recognition, computer-assisted language learning, spoken term detection,

spoken document retrieval, speech-to-speech translation, etc.



Chapter 1 10

In an automatic speech recognition (ASR) system, both acoustic and language models

are two principle components needed to be trained before the decoding process. The

acoustic model is trained using a database of recoded speech signals together with their

transcript files, while the language model is trained using a word-based pronunciation

dictionary (or word lexicon) and the transcript files of the training speech data. The

transcription of each speech signal consists of a sequence of words and phonemes, fol-

lowed by a tag which can be used to associate this word/phoneme sequence with the

corresponding speech signal. In order to create an accurate ASR system, a large speech

training database that contains many sequences of words spoken by different people and

a rich word-based pronunciation dictionary in a specific language are needed. For a sys-

tem in which a large-vocabulary continuous speech recognition (LVCSR) is concerned,

a word lexicon must be reconstructed regularly to accommodate unseen words by using

a data-driven approach. A method for dealing with this problem is G2P conversion of

such unseen words, which can be used for an expanded lexicon [50]. In addition, the G2P

conversion system is also sometimes used to derive the pronunciation of word sequence

belonged to some transcript files in which the phonemic information is not available.

Computer-assisted language learning (CALL) is succinctly defined in a seminal work by

Levy [51] as “the search for and study of applications of the computer in language teach-

ing and learning”. According to the webpage https://www.llas.ac.uk/resources/

gpg/61, CALL system is often perceived, somewhat narrowly, as an approach to lan-

guage teaching and learning in which the computer is used as an aid to the presentation,

reinforcement and assessment of material to be learned, usually including a substantial

interactive element. The simple use of G2P conversion in such system is just for deriving

the phonetic transcription of OOV words if needed.

Furthermore, spoken term detection (STD) is the problem of determining whether and

where a target word or multi-word phrase has been uttered in a speech recording [52].

Many STD systems are based on large-vocabulary ASR systems, trained on very large

amounts of data [53]. In such systems, the STD task becomes the problem of searching

a speech recording that has already been recognized and indexed using a large ASR

system. Since a word-based searching method is limited to the improvements of search

results, a phoneme-based searching method has been practically implemented, in STD

system. In this case, the phoneme sequence or pronunciation of keywords corresponding

to a search query is used as search input. The pronunciaiton of a keyword can be

extracted directly from the word lexicon if found; otherwise, a trained G2P conversion

model is usually used to estimate the pronunciations of the remaining OOV keywords

[54]. Moreover, the effect of pronunciations on OOV search queries in such system have

also been studied in [55, 56, 57].

https://www.llas.ac.uk/resources/gpg/61
https://www.llas.ac.uk/resources/gpg/61
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Figure 1.7: Various applications using G2P conversion and theirs examples

Figure 1.8: Architecture of a S2ST system in which a G2P conversion is adopted.
http://www.ustar-consortium.com/standardization.html

http://www.ustar-consortium.com/standardization.html
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On the other hand, modern future speech-to-speech translation (S2ST) technology is

an effective mean to break through language barriers between people who do not speak

the same language [4]. The goal of this system is to enable real-time, interpersonal

communication via natural spoken language for people who do not share a common

language; in other words, it aims at translating a speech signal in a source language into

another speech signal in a target language. Basically, a S2ST system is composed of

three modules: speech recognition from the source language, machine translation (MT)

from the source text into the target text, and speech synthesis to the target language.

Therefore, G2P conversion plays a quite important role in such a giant system because

it will be implemented within all the three modules for dealing with the unknown speech

or vocabularies. According to Fig.1.8, in order to establish S2ST systems, the ASR, MT,

and TTS systems for both source and target languages must be built by collecting speech

and language data such as: audio data, speech transcriptions, pronunciation lexica for

each and every word, parallel corpora for translation, and so on. In order to connect

these modules for different languages and functions reliably, it is necessary to standardize

the communication protocols and data formats between modules, as illustrated in the

figure. For instance, the Universal Speech Translation Advanced Research (U-STAR)

Consortium was established as an international research collaboration entity to develop

a universal network-based speech-to-speech translation system.

1.4 Contributions

In this thesis, our research only focuses on G2P conversion and its improvements. We

propose three different approaches based on machine learning techniques for tackling

different problems occurred in G2P conversion. These approaches are illustrated in

Fig.1.9 and implemented as two-stage architecture-based models in which the input

graphemic information is first converted to its preliminary phonemic information, and

then all the preliminary information are used as input hypothesis to determine the best

final output phonemic information (i.e., Graphemes ⇒ Phonemes ⇒ Phonemes).

We first propose a two-stage neural network-based approach [19, 58] to improve the

performance of state-of-the-art single-stage neural network-based approach [15, 59] for

G2P conversion. This approach, as depicted in Fig.1.9(a), aims to deal with the problem

of conflicting phonemes, where an input grapheme can, in the same context, produce

many possible output phonemes at the same time. The two-stage neural network-based

G2P conversion model is fundamentally built by putting two different multi-layer neural

networks in sequence; based on the context-dependent technique, the first neural net-

work is implemented as a many-to-many conversion model to automatically transform
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(a) Two-stage neural network-based approach

(b) Two-stage model using grapheme generation rules (c) Phoneme transition network-based approach

Figure 1.9: Three proposed two-stage-based architectures for G2P conversion.

each grapheme sequence extracted from a given word into the corresponding phoneme

sequence; and the second one then uses each combination of the obtained phoneme

sequences as an input pattern to enable prediction of the final output phoneme corre-

sponding to each input grapheme in the given word.

Later, because of the limitation of neural network in the improvement of G2P conversion

model, we propose another two-stage architecture-based approach [60] using an existing

WFST-based G2P conversion framework implemented in the Phonetisaurus toolkit4.

The differences between this and our firstly proposed approach includes: (1) the use

of our newly proposed grapheme generation rules that enables extra details for the

vowel and consonant graphemes appearing within a given word, (2) the replacement of

neural networks by WFST-based methods, and (3) a new strategy that combines both

graphemic and its preliminary phonemic information to be used as hypothesis of the

second-stage model. The schema of this approach is illustrated in Fig.1.9(b).

Lastly, we figure out that each existing approach has been designed using specific tech-

niques that address particular challenges faced by G2P conversion. Hence, any single

approach will not suffice when addressing all of the problems encountered by G2P con-

version. Due to this fact, we propose a phoneme transition network (PTN)-based archi-

tecture shown in Fig.1.9(c) in which various approaches/methods are combined to meet

the challenges of G2P conversion. Combining various methods can both lend flexibility

to the conversion and improve its predictive performance. The proposed method first

builds a confusion network using multiple phoneme-sequence hypotheses generated from

several G2P source methods, and then determines the best final-output phoneme from

4https://code.google.com/p/phonetisaurus/

https://code.google.com/p/phonetisaurus/
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each block of phonemes in the generated network. Moreover, in order to extend the fea-

sibility and improve the performance of the proposed PTN-based model, we introduce a

novel use of right-to-left (reversed) grapheme-phoneme sequences along with grapheme-

generation rules. Both techniques are helpful not only for minimizing the number of

required methods or source models in the proposed architecture, but also for increas-

ing the number of phoneme-sequence hypotheses as well as new phoneme candidates,

without increasing the number of source methods. Therefore, the techniques serve to

minimize the risk from combining accurate and inaccurate methods that can readily

decrease the performance of phoneme prediction.

1.5 Organization of the thesis

The remainder of this thesis is organized as follows.

First, in Chapter 2, we describe the previous work related to G2P conversion, including

G2P alignment methods, traditional solution to G2P conversion, and data-driven solu-

tions to G2P conversion. Moreover, the results of some previous G2P methods evaluated

using different corpora are also summarized at the end of this chapter.

In Chapter 3, we explain the lack of ability in phoneme prediction of the state-of-the-

art single-stage neural network-based G2P conversion, and then introduce our firstly

proposed approach “a two-stage neural network-based G2P conversion” to solve the

problem of conflicting phonemes mentioned in the previous section (Section 1.4). The

data preparation, evaluation results, and discussions, of this approach are also included.

Then, in Chapter 4, we present the novel two-stage architecture-based approach using

WFST-based G2P conversion framework available in the Phonetisaurus toolkit instead

of neural networks. In addition, we also introduce a number of grapheme generation

rules that enable extra sensitive information for the vowel and consonant graphemes

appearing in a given word.

Last but not least, in Chapter 5, we explain the reasons of using multiple-approaches

combination to deal with the problems encountered by G2P conversion in a flexible

manner. Next, we introduce our accurate PTN-based G2P conversion and our novel use

of reversed grapheme-phoneme sequences along with grapheme-generation rules. The

evaluation results of both baseline and proposed approaches are nicely written in this

chapter, followed by such a good discussion.

Finally, we conclude our thesis in Chapter 6 and also suggest some ideas for the further

improvements of G2P conversion and its applications.
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A quality of the precise conversion of arbitrary text into its corresponding phoneme string

has a strong impact on the performance of the whole TTS system. Theoretically, the

phonemic transcription of each input word is usually assigned by looking-up the built-in

pronunciation dictionaries of the system. However, the dictionaries cannot cover the

continuously expanding language, especially the language with deep orthography like

English, for example. Therefore, an alternative G2P system is necessary to predict the

phoneme string corresponding to the unknown or OOV words.

This chapter provides an overview of the state-of-the-art approaches for G2P conversion.

We first describe the traditional solutions to automatic phonemization in Section 2.1.

Then, the G2P alignments and data-driven machine learning-based solutions for G2P

conversion are briefly reviewed in Section 2.2.
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2.1 Traditional solutions

In a traditional solution, the challenge of automatic phonemization of words is usually

approached by rewrite rules. These rules-based approaches are often used in TTS system

as an alternative for dictionary look-up, since they were extensively studied long before

computers had gain a center place in the development of the mankind [61]. According to

the work of Chomsky and Halle in 1968 [10], the rules are context-dependent and care-

fully designed by expert linguists, which are very expensive in terms of time-consuming

and complexity. These rules are usually represented in the following form:

A [B] C → D (2.1)

where B represents the target letter substring to be converted, D is the phoneme sub-

string corresponding to B. A and C are the surrounding left- and right-context respec-

tively of B. The B substring is variable in length, which can be appeared as a single

letter, one or more graphemes (each corresponding to a single phoneme substring D), a

completed word, etc. Furthermore, rules may involve different linguistic characteristics

such as: syllable boundaries, part-of-speech tags, stress patterns or etymological origin

of a word. For example, inspired by the work of Chomsky and Halle, the automatic

rules-based system of Elovitz et. al. [62] created in 1976 contains 329 phonological

rules; other typical rule sets are also described in [63, 64].

In order to derive the pronunciation for the input word, the rules designed by experts

are applied in the order that they appear in the rule list–usually from the most specific

rule to the least specific one. Whenever several rules exist for the same target letter in

different contexts, the rule that appears at the top of the list is applied in the first place

because of having higher priority than the rule that appears at the bottom or lower

part of the list. Theoretically, the words are usually scanned form left to right direction

and the rule triggers are linearly searched. Every time a rule match is found, an output

phoneme is assigned and then the search window is shifted to the right N characters; in

this context, N is the number of characters that were necessary to trigger the rule. If

no match is found, the size of the sliding windows is then decremented and the rules are

scanned again until a match triggers the rule. The default rules with lowest priority are

based on single characters, therefore a match is always found in any case. The larger

character clusters are given priority when scanning, therefore, every time the window

is shifted after having emitted a phoneme, its size is reset to the maximum value. In a

language with deep orthography like English, consonant clusters are usually converted

first, as for vowels, the letter-to-phoneme correspondences are rather ambiguous and
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Figure 2.1: Example of the PAcc and WAcc calculations.

they account for the main part of the errors. Previously converted consonants can be

then used as a part of the contextual information for converting vowels.

In general, the performance of G2P systems are reported in phoneme and word accu-

racy. The phoneme accuracy (written as PAcc) is calculated using either the Hamming

distance or Levenshtein distance between gold-standard outputs–the reference phoneme-

sequences–and the predicted sequences to find the number of correct phonemes. The

word accuracy (written as WAcc) is calculated by counting the number of fully cor-

rect phoneme sequences given testing words. Mathematically, both phoneme and word

accuracies can be calculated as follows:

PAcc = 1− PER = 1− Sp −Dp − Ip
Np

(2.2)

WAcc = 1−WER = 1− Sw
Nw

(2.3)

where PER and WER are known as phoneme error rate and word error rate, respectively;

Sp, Dp, Ip andNp are the number of phoneme substitutions, phoneme deletions, phoneme

insertions, and total phonemes in the reference, respectively. Since only isolated words

are usually used in the experiments, the value of WER was exactly equal to the number

of word substitution (Sw) divided by the total number of words in reference (Nw).

For instance, after deriving the phoneme sequences corresponding to five input words

(e.g., “ABRA”, “ABREGO”, “ABRON”, “ABSORBERS” and “ACCEL”), five different

phoneme sequences (e.g., /AA B AH/, /AE B R AH G OW/, /AH B R AA AE N/,

/EH B Z AO B ER Z/ and /AH K S EH L/) are respectively generated. Here, the
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phoneme symbols are based on the CMU phoneme-set. The evaluation results in Fig.2.1

shows that the values of PAcc and WAcc are equal to 78.57% and 20%, respectively. In

G2P conversion, the value of WAcc is more important than PAcc.

According to Damper et al. in 1998 [65], they evaluated the rules proposed by Elovitz

et al. in 1976 [62] on a Teacher’s Word Book (TWB) dictionary of 16,280 words [66].

As a result, the word accuracy as low as only 25.7% was achieved. This result is very

different from the 80-90% word accuracy reported by Elovitz et al. [62], which can be

explained by the fact that Damper et al. used a stricter evaluating technique that did

not classify pronunciations not containing any severe errors as “good” pronunciations.

Also, this later evaluation was performed on TWB dictionary that uses a phone-set of 52

phonemes, while the rewrite rules include only 41 phoneme symbols. Such a discrepancy

in phoneme inventories may be one of the main causes of errors [4].

Rule-based systems require hiring an expert linguist and therefore have a high production

and maintenance cost, they clearly lack in flexibility and are highly language-dependent.

Moreover, they do not take into consideration any kind of statistical measures such

as rule probability, frequency counts, etc., that could be helpful in order to improve

robustness [3]. In the last two decades data-driven approaches have been widely used to

solve the problem of automatic phonemization. They are flexible and mostly language-

independent, which makes them a perfect alternative to rule-based approaches.

2.2 Data-driven solutions

Over the years, data-driven based machine learning solutions for G2P conversion have

been widely developed to challenge the phonemization of the OOV words, and widely

adopted in many modern speech systems as explained in Section 1.3.

Inspired by Chomsky and Halle [10], the context-dependent based technique still plays an

important role in both the classification-based approaches [67, 68, 69] and the generative

models [22, 70, 71, 72] for G2P conversion. There are two components in both classifi-

cation and generative systems that allow training from pairs of word-phonemes sample.

The first component is to discover hidden relations between graphemes and phonemes,

called “alignments”, which allows the G2P system to learn what phoneme to generate for

each input grapheme and its context. The second component is a learning mechanism to

train a model to generate output phonemes given words. There are two paradigms for

training the aligned grapheme-phoneme data. G2P conversion can be viewed either as

a multi-class classification problem, where each sub-phoneme output is drown directly
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from the focused grapheme and its context (surrounding graphemes) without consid-

ering the phoneme sequence output, or as a sequence prediction problem, which takes

into account the grapheme sequence input and phoneme sequence output [73]. In the

classification-based approaches, each phoneme is predicted independently using a clas-

sifier such as a neural network [69], instance-based learning [67], and decision tree [68].

On the other hand, the sequence-based approaches are different from the classification-

based approaches because they take previous phoneme decisions into consideration for

the current phoneme decision. These approaches includes HMMs [16, 70], joint N-grams

models [21, 22, 71], pronuciation by analogy (PbA) [72, 74], constraint satisfaction inf-

ference (CSInf) [75], WFST [26, 27], and so on. In addition, the G2P learning is also

closely related to structured learning techniques including HMMs [76], averaged percep-

tion algorithm [77], SVMs for structured outputs [78], CRFs [29, 31, 79] HCRFs[32],

and a family of adaptive regularization of weight vectors (AROW) [33, 34, 35, 80].

The remainders of this section are organized as follows. In Section 2.2.1, a brief overview

of G2P alignments is described. From Section 2.2.2 until the end of the main Section 2.2

is focused on the data-driven approaches for G2P conversion. In addition, the summary

of the G2P results for various datasets found in the literature are listed in Tables 2.4

and 2.5 at the end of this chapter.

2.2.1 Alignments in G2P conversion

In G2P conversion, the training data are generally available in the form of word-phoneme

pairs without any explicit information indicating individual grapheme-to-phoneme rela-

tionships (as seen in Table 2.1). To simplify the conversion task, almost all automatic

G2P methods require the training data to be aligned in advance because it allows to dis-

cover the hidden relationships between grapheme(s) in the input word and phoneme(s)

in the output phoneme-sequence. In this context, it is possible to say that the alignment

is the correspondence between the orthographic and the phonetic forms of the word.

According to the earlier studies such as those described in [69, 81], the grapheme-to-

phoneme alignments were manually done, however manual elaboration of alignments

is very costly and language-dependent. Then, the use of automatic alignments has

become the most preferable because it is the best solution in terms of time and cost.

For languages with deep orthography such as English, automatic alignment is a difficult

problem mainly due to the influence of many foreign words (or loan words) and the lack

of transparency in the writing system of this languages. According to P. Taylor in 2005

[70], the lack of clarity in the English orthography adds complexity to the alignment

task since any phoneme can potentially align to a maximum of four letters (e.g., the
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Table 2.1: Unaligned training data extracted from the CMUdict corpus

Word Phoneme sequence

ABRA AA B R AH
ABREGO AA B R EH G OW
ABRON AH B R AA N
ABSCESS AE B S EH S
ABSHIRE AE B SH AY R
ABSORBERS AH B Z AO R B ER Z
ABSTINENT AE B S T AH N AH N T
ABUTS AH B AH T S
ACACIA AH K EY SH AH
ACADIA AH K EY D IY AH
ACCEL AH K S EH L
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
Wordn Pronunciationn

Table 2.2: Possible alignment cadidates in one-to-one alignment.

Word (Graphemes) : P R O N O U N C I N G
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Alignment 1: P R AH N AW N S IH NG
Alignment 2: P R AH N AW N S IH NG
Alignment 3: P R AH N AW N S IH NG

word “PLOUGH” → /P L AW/). The cases of four-to-one correspondences are not

so common but two-to-one are numerous, for example, “ENOUGH” → /IH N AH F/.

The cases where one letter aligns to more than one phoneme are less frequent but also

deserve special attention. An example is the word “SIX” → /S IH K S/.

2.2.1.1 One-to-one alignment

In general, automatic epsilon-scattering method proposed by Black et al. in 1998 can

be used to produce one-to-one alignment between letters and phonemes in the training

data for G2P conversion [68]. In this case, each letter in the input word can be aligned

to only one phoneme in the output phoneme sequence. For the cases where the number

of letters–the word’s length–is greater than that of phonemes, a null phoneme symbol

representing a silent sound (noted as / / in Table 2.2) is introduced into phonetic

representations to match the length of grapheme and phoneme strings.
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The alignment process starts with the initial probability of mapping a grapheme g to a

phoneme φ (annotated as Prob(g, φ)) which is calculated based on the mapping counts.

The initial probability table first adds the necessary null phoneme symbols into all

possible positions in phonemic representations. This process is repeated for every word

in the training lexicon. For instance, an example of three of the possible alignment

candidates for the word “PRONOUNCING” is given in Table 2.2.

Such probabilistic initialization allows obtaining all possible imperfect alignment candi-

dates (e.g., the third alignment in Table 2.2). The goal of epsilon-scattering algorithm is

to maximize the probability that letter g matches phoneme φ and, therefore, to choose

the best alignment from possible candidates. It is done by applying the Expectation-

Maximization (EM), according to Dempster et al. [82]. The EM is associated with joint

grapheme-phoneme probabilities. Under certain circumstances, the EM guarantees an

increase of the likelihood function at each iteration until convergence to a local maxi-

mum. The obtained alignments are not always logical, e.g., the word “THROUGH” in

the CMUdict corpus may be in some cases aligned to /TH R UW/. This align-

ment imposes the correspondence between grapheme ‘H’ and phoneme /UW/, which

introduces additional ambiguity to the training data. One way to overcome this obsta-

cle is to build a list of allowables as in Black et al. [68]. It is just a simple table, that

does not require any expert knowledge of the language. The allowables table defines for

each grapheme a set of phonemes to which they can be aligned. All other alignments are

prohibited. Some words with very opaque relationship between letters and phonemes

would require adjustments made in the allowables table in order to produce alignments.

Another modern way to find a relationship between letter and phonemes is to use dy-

namic programming (DP) algorithm. DP based alignment uses a letter-phoneme asso-

ciation matrix A, of the dimension L× P , where L is the size of the letter set and P is

the size of the phone set. At the first step, the matrix A is initialized in a naive way

with the elements a0l,p which are incremented each time the letter l and the phoneme p

are found in the same word. At the next iteration a1l,p are incremented if the letter l and

the phoneme p are found in the same alignment position.

At this first iteration the nulls are introduced into the dictionary as a consequence of the

DP matching where both phonemes and graphemes can be associated with nulls. At the

EM step, the matrix A is updated in a way that the word alignment score is maximized.

Nulls are not entered as a part of the updated matrix A in order to avoid the tendency

to generate unnatural alignments. The role of nulls is restricted to the DP matching

phase which can be considered a path-finding problem. DP is not only more efficient

than epsilon-scattering method but also allows nulls in both letter and phoneme strings.
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Table 2.3: An example of an alignment based on graphones

Word (Graphemes): S P EA K ING
↓ ↓ ↓ ↓ ↓

Phonemes: S P IY K IH+NG

The alignment ‘X’ to /K S/ is done automatically while the epsilon scattering method

requires an a priori introduction of double phonemes /K/ /S/ to /KS/ or /K + S/.

2.2.1.2 Many-to-many alignment

Theoretically, finite state transducers and multi-gram models can use many-to-many

alignments. In some previous works [22, 71, 83], the authors used G2P alignment as the

first step to infer the pronunciations of unknown words. Bisani and Ney [71] baptized

the alignment element as “graphone”, or a grapheme-phoneme joint multi-gram, which

is a pair q = (g, φ) ∈ Q ⊆ (G∗ × Φ∗). Letter sequence and phoneme sequences can be

of different length (G and Φ are the grapheme and phoneme sets respectively). An

example in Table 2.3 shows that a word of eight graphemes (i.e., G = { ‘S’, ‘P’, ‘E’,

‘A’, ‘K’, ‘I’, ‘N’, ‘G’ }) are mapped to a sequence of six phonemes (i.e., Φ = { /S/,

/P/, /IY/, /K/, /IH/, /NG/ }). As a result, five pairs/graphones are obtained after

the alignment. This means that Q = {(‘S’, /S/), (‘P’, /P/), (“EA”, /IY/), (“K”, /K/),

(“ING”, /IH+NG/)}.

Those graphones that map one phoneme to one letter are called singular graphones (e.g.,

the pairs (‘S’, /S/), (‘P’, /P/) and (‘K’, /K/)). Graphone alignments can be inferred

by using hand-crafted rules, DP search with predefined alignment constraints or costs,

or by an iterative estimation of alignment probabilities.

The best sequence of graphones is induced from the dictionary data by searching for

the most probable sequence of graphones, first assigning uniform distributions to all

possible graphones (within the manually set length constraints) and then applying the

EM algorithm. After graphones are aligned joint multi-gram sequence model is applied

to automatically derive pronunciations [21, 22].

On the other hand, some of the automatic phonemization methods do not require align-

ments since the letter-phoneme correspondences are calculated during the training, e.g.,

Hidden Markov Models (HMM) use Baum-Welsh training algorithm.
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Figure 2.2: Architecture of the NETtalk system.

2.2.2 Artificial neural networks (ANNs)

There have been many data-driven based machine learning solutions for solving the

problem of mapping arbitrary texts into phoneme strings. One of the first and best-

known approaches to automated G2P conversion is the NETtalk system developed by

Sejnowski and Rosenberg in 1987 [69]. The G2P problem was considered as a multi-class

classification problem. The authors were pioneers in applying artificial neural networks

using the back-propagation algorithm to a learning problem.

Fundamentally, NETtalk system was designed as a feed-forward multi-layered perceptron

with three layers of units and two layers of weighted connections. It architecturally

consisted of an input layer of letter units, a hidden layer, and an output layer of phoneme

units. As depicted in Fig.2.2, the input layer received a 7 letter window, where the central

letter represented the target/focusing grapheme to be converted, and the other 3 letters

to its left and right sides represented the left- and right-contexts, respectively. To train

such a system, each letter was encoded using a vector of 29 bits, 1 bit for each of the

26 letters of the English alphabet and 3 additional bits for the punctuation marks and

word boundaries. Therefore, the total perceptron units at the input layer was equal to

7× 29 = 203 units. Likewise, each of 54 output phonemes was encoded using a vector of

26 bits, 21 bits for 21 different articulatory features (such as voiced, unvoiced, points of

articulation, plosive, nuclei, etc.), and 5 additional bits for representing the stress level

and syllable boundaries. According to [84], the 54 phoneme symbols using in NETtalk

system includes /a/, /b/, /c/, /d/, /e/, /f/, /g/, /h/, /i/, /k/, /l/, /m/, /n/, /o/, /p/,

/r/, /s/, /t/, /u/, /v/, /w/, /x/, /y/, /z/, /A/, /C/, /D/, /E/, /G/, /I/, /J/, /K/,

/L/, /M/, /N/, /O/, /Q/, /R/, /S/, /T/, /U/, /W/, /X/, /Y/, /Z/, /@/, /!/, /#/,

/*/, / ˆ /, /+/, /-/, / / and / . /.
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As a pre-processing task, NETtalk required the data to be aligned in a one-to-one man-

ner. Sejnowski and Rosenberg [85] manually aligned a 20,012 English word-based corpus

created from MerriamWebsters Pocket Dictionary–called NETtalk corpus5. As explained

in Section 2.2.1.1, when the number of letters exceeded the number of phonemes in a

word, the so-called silent phonemes / / were inserted. In the opposite case, new dou-

ble phonemes were invented for adjusting the length of phoneme sequence to the word’s

length; for example, the phonemes /k/ and /s/ in the word “axes” were joined in one

/æ k s/. Based on various experimental results, the authors reported that a network

with 80 hidden units were found to be a good match point between good performance

and rather low computational complexity. However, the best results were obtained using

120 hidden units.

The continuous speech and isolated words from the dictionary were used to train and

test the system. The continuous speech corpus of 1,024 words featured alternative pro-

nunciations for the same words. In terms of phoneme accuracy, the best results achieved

when tested on the continuation of the corpus (439 words) were 78% best guesses and

35% perfect matches. In addition, the system was also trained on a 1,000 word subset

from a 20k corpus of most common English words. The number of hidden units varied

across the experiments, and the best results on the training corpus were obtained using

120 hidden units. The same number of units was used to test the network on randomized

version of 20,012 word-based dictionary. As a result, the best performance was 77% best

guesses and 28% perfect matches.

The implemented method was language independent. The system had strong similarities

to human learning and memorizing processes, however, it did not come close to modeling

human reading acquisition skills yet. Regarding to the different evaluations conducted

by Damper et al. [3], a problem concerning the generalization ability of the system

had became the biggest issue since that system was never tested on unseen words.

Furthermore, the phoneme error rate was not a good enough measure to compare the

methods since the quality of synthesized speech could decrease quite quickly even if

there was only one erroneous phoneme per word (as explained in Chapter 1). For these

reasons, the system performance should be evaluated in terms of word error rate or word

accuracy on a set of unseen words.

After then, McCulloch et al. presented an extension of NETtalk system in 1987 [81].

NETSpeak had a few changes in comparison with NETtalk. First of all, the authors

claimed that a more concise representation of the input data would help achieving better

performance. The number of input units was reduced to 11. The letters were grouped

5NETtalk dataset: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/nettalk.

data.gz

ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/nettalk.data.gz
ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/nettalk.data.gz
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into 5 different mixed phonological sets according to the proximity of their manner of

articulation with the exception of vowels which were all placed in one set. The remaining

6 bits were to indicate the position of the letter in the group. The output coding uses

less phonological and more stress and punctuation features. The number of hidden units

throughout all experiments was equal to 77. Another distinctive feature of this approach

is that it was tested on a completely unseen set of words, however the authors used a

different lexicon which makes the results difficult to compare. The results obtained on

1,200 unseen words by a network trained on 15,080 words from “Teachers Word Book”

were equal to 86% of best guesses. The impact of word frequencies on the results was

also studied. The words from the dictionary were replicated in appropriate proportions

to make a distinction between common and uncommon words. The authors’ hypothesis

that the system would perform worse on common words due to their rather irregular

G2P correspondences was not proved. A hybrid network that combined two separate

networks trained on common an uncommon words was also trained and tested [81].

Besides, over the years many different neural networks-based methods for G2P conver-

sion have been proposed for improving the predictive quality of the system when dealing

with the unseen words [15, 20, 86].

2.2.3 Hidden Markov Models (HMMs)

Many data-driven techniques that are quite similar to the hand-written context sensitive

rules, e.g., neural networks [3, 9, 10, 65], decision tree [8, 67, 68], pronunciation by anal-

ogy (PbA) [74, 87, 88], had been proposed to tackle the problem of G2P conversion. To

overcome the difficult problem of phoneme prediction, another statistical-based solution

using hidden Markov models (HMMs) was differently proposed in the late 20th century

[76, 89, 90, 91]. Then, the approach proposed by P. Taylor in 2005 [70] was the one very

attractive HMMs-based method for G2P conversion in the early 21st century.

In the HMM, the graphemes are seen as being generated by the phonemes via a noisy

process, such that given the grapheme sequence, it is generally non-trivial to determine

the phoneme sequence. In this method, the alignment between graphemes and phonemes

were not required before the training because it was generated during the model training

stage by Baum-Welch training [92] in which the HHMs used the probabilities of the

G2P correspondences found in the previous step of the algorithm. Each phoneme is

represented by one HMM while letters are the emitted observations. The probability of

transitions between models is equal to the probability of the phoneme given the history

(previous phoneme). The objective of this method is to find the most probable sequence

of hidden models (phonemes) given the observations (letters), using the probability
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distributions found during the model training. The standard formulation of HMMs can

be written as follows:

ϕ̂ = argmaxy{p(ϕ|g)} = argmaxy{p(g|ϕ)p(ϕ)} (2.4)

where p(ϕ) is the prior probability of a sequence of phonemes occurring, and p(g|ϕ) is

the grapheme-phoneme joint sequence probability. One model trained for each phoneme;

the maximum number of letters that a phoneme is able to generate is set to 4, since it

is uncommon that more than four letters represent a single sound, at least in English.

No looping states are allowed unlike in the general model configuration that serves for

speech recognition. In the phoneme domain, certain constraints and patterns determin-

ing the sequences of possible phonemes were imposed. This is similar to phonotactic

grammar. Phonotactically illegal sequences could cause a severe problem for TTS be-

cause the synthesis system will not be able to generate a corresponding waveform. The

automatic speech recognition toolkit can be used to train the HMM models and to de-

code graphemes into phonemes. However, to achieve better results, some pre-processing

was needed. Some letters were swapped and words rewritten. This measure was nec-

essary because HMMs cannot model dependencies between observations. However, one

of the advantages of the HMM is that they allow to model context-sensitivity in the

phoneme domain. This was achieved by cloning the context independent models and

applying further runs of Baum-Welch for those tokens of the training data that appeared

more than 20 times. The experiments were carried out on Unisyn dictionary of approx-

imately 110K words, most of which are regular English words. There are 42 phonemes

in the Unisyn lexicon. The results obtained for a 4-gram model without preprocessing

were 39.13% words and 85.12% phonemes correct, preprocessing allowed raising the bar

to 49.64% and 87.02% words and phonemes correct correspondingly. Context-sensitive

modeling brought the results up to 57.31% words and 90.98% phonemes correct. Stress

prediction was included in the experiments. The large portion of errors consisted in

schwa-full vowel confusions and stress misplacement.

As an extended work of HMMs-based method, Ogbureke et. al. proposed HMMs with

context sensitive for G2P conversion in 2010 [16]. Previously, only phoneme context,

which for first-order HMMs includes only the preceding phoneme, was used. In this work,

both grapheme and phoneme contexts were modeled. In order to include grapheme con-

text, each observation sequence was transformed increasing at the same time the number

of possible observation symbols. No rewrites were necessary. Stress prediction was not

considered. The approach combining context-sensitive grapheme, context-dependent

phonemes and a 4-grams language model allowed obtaining 57.85% words correct for

CMUdict and 79.19% for Unisyn lexicon for British English which is significantly better



Chapter 2 27

in comparison to the results obtained in [70]. This shows that Increasing the number of

observations allows obtaining higher accuracy.

In previous studies, only phoneme context and relationship between phonemes and

letters were used to independently predict the phoneme corresponding to each input

grapheme. According to our firstly proposed approach “Two-stage neural network-

based G2P conversion” [19, 58] that will be described in Chapter 3, the benefit from

involving both grapheme and phoneme contexts to the phoneme generation model could

improve the predictive performance of G2P conversion system to another higher level.

Inspired by our proposed two-stage architecture for automatic G2P conversion, coupled

hidden Markov models (CHMM)-based method was then proposed by Che et al. in

2012 [17]. In this work, CHMM consists of two HMMs. The first HMM was designed

to predict the best graphemic substring segmentation, in which the phoneme was con-

sidered as the states and the graphemeic substring represented the observations. On

the other hand, another HMM was used to generate the best phonemic string; here,

the phoneme represented the observations and the graphemic substring represented the

states. All the reasonable graphemic substring segmentations were given before gen-

erating phonemes, and then the best combination of phonemic string and graphemic

substring segmentation was given by maximizing the joint likelihood of two HMMs. As

a result, the authors reported the word accuracy of 74.6% and 94.2% for CMUdict and

OALD corpus, respectively.

2.2.4 Joint multigram models

In the alphabetic written system defined by a language, the orthographic form is a con-

ventional representation of a word’s pronunciation. A word can be viewed as a stream of

graphemes (alphabets or letters), hence the word pronouncing system is highly depen-

dent to the word’s length and the internally hidden interactions among the alphabets.

In order to model these kinds of dependencies, a joint multigram model, which is a

statistical model that allows to learn variable length grapheme and phoneme from the

training corpus and later to decode a string of orthographic symbols into a phonetic

sequence, has been proposed.

In 1995, Deligne et al. proposed the very first time many-to-many alignments for G2P

conversion [83]. Joint sequences of graphemes and phonemes of variable-length were

extracted from the training lexicon using the maximum likelihood criterion. The max-

imum sizes of corresponding sequences were defined before the training. In this study,

the algorithm was initialized by computing the relative sequences of all possible many-

to-many alignments available from the training lexicon. Then, the authors trained two
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different models using EM and Viterbi training algorithms. For the decoding process, it

was carried out sequence-by-sequence and not grapheme-by-grapheme as in the major-

ity of G2P classifiers. Different sequence sizes and thresholds (setting a minimum the

number of times a consequence had to appear in the training corpus in order not to be

discarded) were tested. As a result, the evaluation on a French lexicon BDLEX [93] con-

taining 23,000 words and compounds showed that the best model achieved 64.52% and

95.0% as word and phoneme accuracy, respectively. In addition, thresholding was found

very effective in order to improve the performance of the model on unknown words.

Likewise, Bisani and Ney applied a similar joint-multigram approach to align joint se-

quences of graphemes and phonemes in 2002 [71]. They introduced the term “graphones”

(as seen in Table 2.3) to refer to the corresponding graphemic and phonemic chunks of

variable length. The pronunciation of the unknown words was also inferred using the

standard maximum likelihood training (EM algorithm) as well as Viterbi training. The

minimum length of graphones was set to 1 and the maximum to 6 for both graphemic

and phonemic domains. However, the best results for Celex lexicon (CELEX) contain-

ing 66,278 words were obtained using a 3-gram model. Longer graphones were more

difficult to estimate, however the alignments restricted to one-to-one graphones seemed

to perform worse than when longer chunks were involved. Thresholding and marginal

trimming were used to enhance the models. As a result, The best model achieved 95.02%

as phonemes correct rate.

In 2001, Galescu and Allen built a similar 4-gram model although they used a different

alignment procedure [94]. Each letter-to-phoneme correspondence was restricted to hav-

ing at least one grapheme and one phoneme, these correspondences were inferred using

the EM algorithm. The performance was evaluated on two English lexica: NETtalk

and CMU pronuncing dictionaries. The experiments included stress prediction, how-

ever only for latter lexicon. A back-off n-gram model with Witten-Bell discounting

was used to train the model. One-to-one manually proofed alignment available for the

NETtalk data was also evaluated in the experiments, showing that chunk-based align-

ments perform slightly better. The results obtained on NETtalk data were 63.93% words

and 91.74% phonemes correct. For CMU including the stress markers 62.6% word and

91.0% phoneme accuracies were obtained. When phonemes were predicted disregarding

the stress, the corresponding accuracies were 71.5% words and 93.6% phonemes correct.

Furthermore, the authors also carried out the reverse task of predicting letters from

phonemes using the same models.

On the other hand, in 2003, Chen aligned letters and phonemes using a conditional

Maximum Entropy (ME) model with Gaussian priors [22]. Nulls symbols were allowed

both in grapheme and phoneme strings, and the letters and phonemes were continuously
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realigned during training unlike other previously fixed chunk models [71, 94]. To train

a joint maximum entropy, 8-gram both conventional and Viterbi versions of the EM

algorithm were used. The results were evaluated on Pronlex lexicon containing 91,216

English words in which the stress markers were not included. Syllable boundaries used

as an attempt to enhance the model by preventing the syllable splitting, were found

rather ineffective. The results were obtained for three datasets: regular words, proper

names and foreign words. For regular words, the accuracies obtained were 72.7% for

words and 92.85% for phonemes.

After then, in 2008, Bisani and Ney [21] used a similar model as in their previous

work [71] and tested the performance of their system over a variety of English datasets

in order to make their results comparable to those reported in literature. Moreover,

they studied different model initialization and training schemes, the influence of the

held-out set and the effect of different smoothing techniques and the size of graphones

on the overall results. The evaluation results showed that the joint multigram models

proposed performed better or as good as best performing G2P methods. The results

obtained for OALD lexicon were 82.51% words and 96.46% phonemes correct. For

NETtalk dictionary (size variable form 15K to 19K) the results ranged between 66.33%

to 69.00% for word accuracies and from 91.74% to 92.34% for phoneme accuracy. For

CMU dictionary the 75.47% words and 94.22% phonemes correct were obtained. For

Pronlex the corresponding accuracies were 72.67% and 93.22% words and phonemes

correct. For BEEP dataset6, 79.92% words correct and 96.46% phonemes were obtained.

Since then, joint models have been believed to be beneficial because they can handle the

alignment problem intrinsically.

Soon after, in 2009, Jiampojamarn et al. represented the joint n-grams model for G2P

conversion as an online discriminative sequence-prediction model [23, 95]. This model

used a many-to-many alignment between grapheme and phoneme sequences and a fea-

ture vector consisting of n-gram context features, HMM-like transition features, and

linear-chain features. For each training iteration, the feature weight vector was updated

using the margin infused relaxed algorithm (MIRA) proposed by Crammer and Singer

[96]. MIRA modified the current weight vector by finding the smallest changes such that

the new weight vector separates the correct and incorrect outputs by a margin of at least

the loss for a wrong prediction. This system is known as DirecTL [23]. They conducted

experiments on several English and French corpora, including CELEX, Beep, OALD,

CMUdict, NETtalk and Brulex, used in [21]. Moreover, the homographs, one-letter

words, punctuation, phrase and abbreviations were excluded from the datasets due to

the conventions described in [21]. In terms of word accuracy, this system outperforms

the previous joint-sequence model [21] on four out of six datasets. The authors reported

6Beep corpus: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep-1.0.tar.gz

ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep-1.0.tar.gz
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that the word accuracies of CELEX, Beep, OALD, Brulex, CMUdict and NETtalk

datasets were 91%, 81,.6%, 89.6%, 94.6%, 72.5% and 68.1% achieved by their systems,

while 88.6%, 79.9%, 82.5%, 93.8%, 75.5% and 69.0% achieved by the joint-sequence

models, respectively. It seemed their systems achieved slightly lower results than the

joint-sequence models on the CMUdict and NETtalk datasets. However, their winning

results proved that the MIRA update algorithm in this method was very effective in up-

dating feature weights for distinguishing between correct and incorrect output results.

Last but not least, the updated version of DirecTL was implemented in 2010 and known

as DirecTL+ toolkit7 [24, 25]. In this system, the joint n-gram features were additionally

integrated, which allowed the discriminative model to train on information that was

present in generative joint n-gram models, and additionally trained on rich source-side

context, transition, and linear-chain features. In the experiments, size of the joint n-gram

features was set to 6. In terms of word accuracy, the authors reported that the DirecTL+

obtained 89.23%, 76.41%, 85.54%, 73.52% and 95.21% for CELEX, CMUdict, OALD,

NETtalk and Brulex datasets, respectively; otherwise, the DirecTL system obtained

only 88.54%, 75.41%, 82.43%, 70.18% and 95.03% for the same datasets, respectively.

This showed that the additional joint n-gram features was very effective in improving

the transliteration performance of the previous discriminative approaches as DirecTL

system.

2.2.5 Weighted finite-state transducers (WFST) and others

In 2002, Caseiro et al. built a data-driven-based G2P conversion for European Por-

tuguese by using weighted finite-state transducer (WFST) framework [97]. First, each

grapheme sequence and its corresponding phoneme sequence in the training data were

aligned using edit distance algorithm. In most case, one-to-one grapheme-phoneme

correspondences (singular graphone) were used. However, two-to-one, one-to-two, one-

to-three and one-to-four grapheme-phoneme alignments were also used for allowing the

direct matching of some special sequences. Then, the n-gram language model was com-

puted based on the aligned training data–joint sequences. Next, the authors imple-

mented G2P conversion model by transforming the n-gram language model into a finite

state transducer, and each pair of grapheme-phoneme symbols into a pair of input/out-

put symbols. In decoding phase, a best-path search was needed to be computed through

the WFST model in order to find the most likely phoneme string corresponding to an

input grapheme sequence. Due to the fact that WFST is flexible in integrating multiple

sources of information and other interesting properties, the WFST framework has been

utilized throughout, following the approach outlined in [98, 99].

7https://code.google.com/p/directl-p/
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Over the recent years, another WFST-based method for G2P conversion proposed in

2012 by Novak et al. [26] has been implemented to develop a rapid and high-quality

joint-sequence model-based G2P conversion. First, the training words and their phoneme

sequences were provided, and these were aligned using an expectation-maximization

training procedure based on the many-to-many (m-to-m) aligning technique [21]. In

this work, the maximum letter-phoneme correspondence m was set to 2, and both the

null grapheme and phoneme symbols were allowed in both sides during the alignments.

The obtained joint-sequence corpus was given as an input for n-gram counting (in which

the order or length of the n-grams to count was provided), and then a standard joint

n-gram model was trained using the MITLM tookit8 or the OpenGrm NGram library,9

and smoothed by Kneser-Ney discounting with interpolation. Then, the trained n-gram

model was converted to a WFST-based model, which predicted the phoneme sequences

of unknown words using the following decoding function:

Phseqbest = shortestPath(Projecto(W o M)) (2.5)

where “Phseqbest” refers to the most likely phoneme sequence given the input word “W”

under the FSA representation and the n-gram model “M” encoded as FST, “o” refers to

the weighted composition, “Projecto(.)” is a projection onto the output symbols, and

“shortestPath(.)” indicates the shortest-path algorithm. This work also investigated

N-best re-scoring with a recurrent neural network language model (RNNLM)[100]. In

order to train each RNNLM, the aligned corpus of joint grapheme-phoneme sequences

was utilized as inputs. The evaluation results showed that the proposed system using

RNNLM re-scoring technique could achieve small but consistent improvement over pre-

vious approaches, joint-sequence models in Sequitur [21] and DirecTL+ [25] toolkits) by

providing 71.14%, 83.52% and 75.56% as word accuracy for NETtalk-19k, OALD and

CMUdict, respectively. The extended work of this approaches proposed by the same

group of authors in 2013 did not really show any better performance compared to the

old one [27].

Besides the approaches mentioned above, the joint sequence models have been differ-

ently and successfully used to implement the structured online discriminative learning

methods, such as structured AROW [33] and NAROW [34]. Recently, an SSMCW-based

method [35] has been proposed for extending multi-class confidence-weighted learning

to structured learning, which softens the marginal errors for hypothesis and update

parameters using the N-best hypotheses simultaneously and interdependently for ro-

bustness against over-fitting. These learning methods are available in Slearp toolkit

[33, 34, 35, 80].

8https://code.google.com/p/mitlm/
9http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary
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Table 2.4: Summary of results of previous G2P methods for different corpora. Al-
though the methods in this table used the same corpus, they might differently subdivide
the training, development and testing datasets; they also might use different K-folds
cross-validation. Due to these facts, the results reported here are somehow incompara-

ble.

Dataset Author G2P method Toolkit
PAcc
(%)

WAcc
(%)

NETtalk

Sejnowski and Rosenberg (1987) ANNs - 78.00 35.00
Torkkola (1993) DT - 90.80 -

Andersen et al. (1996) DT - 89.90 53.00
Bakiri and Dietterich (1997) DT - - 64.80

Jiang et al. (1997) DT - 91.90 65.80
Yvon (1996a) PbA - - 65.96

Damper and Eastmond (1997) PbA - 91.20 60.70
Marchand and Damper (2000) PbA - 92.40 65.50

Galescu and Allen (2001) Joint N-gram - 91.74 63.93
Bisani and Ney (2008) Joint N-gram Sequitur - 69.00

Jiampojamarn et al. (2009) MIRA DirecTL - 70.18
Jiampojamarn et al. (2010) MIRA DirecTL+ 93.30 71.82

Kubo et al. (2013) SAROW Slearp 93.25 71.44
Kubo et al. (2014) NAROW Slearp 93.47 72.03
Kubo et al. (2014) SSMCW Slearp 93.63 72.66

NETtalk 15k

Bisani and Ney (2008) Joint N-gram Sequitur 91.74 66.36
Lehnen et al. (2011) CRF - 90.50 60.20
Novak et al. (2012) WFST Phonetisaurus - 67.77
Novak et al. (2013) WFST Phonetisaurus 91.76 66.41

NETtalk 18k Bisani and Ney (2008) Joint N-gram Sequitur 92.17 68.21

NETtalk 19k
Bisani and Ney (2008) Joint N-gram Sequitur 92.34 69.00

Novak et al. (2012) WFST Phonetisaurus - 71.14

Noisy NETtalk
Bisani and Ney (2008) Joint N-gram Sequitur 90.22 65.99

Jiampojamarn et al. (2010) MIRA DirecTL+ 89.67 66.48
Kubo et al. (2013) SAROW Slearp 90.21 66.98

CMUdict

Andersen et al. (1996) DT - 91.10 57.90
Jiang et al. (1997) DT - 91.80 73.10

Black et al. (1998b) DT - 91.95 57.80
Pagel et al. (1998) DT - 87.84 62.79

Ogbureke et al. (2010) HMM - - 57.85
Che et al.(2012) HMM - - 74.60

Galescu and Allen (2001) Joint N-gram - 93.62 71.50
Bisani and Ney (2008) Joint N-gram Sequitur 94.22 75.47

Jiampojamarn et al. (2009) MIRA DirecTL - 75.41
Jiampojamarn et al. (2010) MIRA DirecTL+ - 76.41

Novak et al. (2012) WFST Phonetisaurus - 75.56
Novak et al. (2013) WFST Phonetisaurus 94.15 75.58
Kubo et al. (2013) SAROW Slearp 93.85 73.52
Kubo et al. (2014) NAROW Slearp 93.89 73.54
Kubo et al. (2014) SSMCW Slearp 93.91 73.72

Celex

Bisani and Ney (2008) Joint N-gram Sequitur 97.50 88.58
Jiampojamarn et al. (2009) MIRA DirecTL - 88.54
Jiampojamarn et al. (2010) MIRA DirecTL+ - 89.23

Lehnen et al. (2011) CRF - 97.00 85.60
Lehnen et al. (2013) HCRF - 97.50 88.30

Kubo et al. (2013) SAROW Slearp 97.49 88.19
Kubo et al. (2014) NAROW Slearp 97.70 88.83
Kubo et al. (2014) SSMCW Slearp 97.76 89.29

BEEP
Bisani and Ney (2008) Joint N-gram Sequitur 96.46 79.92

Kubo et al. (2013) SAROW Slearp 97.81 88.27
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Table 2.5: Table 2.4 (Continued)

Dataset Author G2P method Toolkit
PAcc
(%)

WAcc
(%)

Brulex

Bisani and Ney (2008) Joint N-gram - - 93.75
Jiampojamarn et al. (2009) MIRA DirecTL - 95.03
Jiampojamarn et al. (2010) MIRA DirecTL+ - 95.21

Kubo et al. (2013) SAROW Slearp 98.92 94.41
Kubo et al. (2014) NAROW Slearp 99.01 94.86
Kubo et al. (2014) SSMCW Slearp 99.01 94.89

OALD

Black et al. (1998b) DT - 95.80 74.56
Pagel et al. (1998) DT - 93.60 76.66

Bisani and Ney (2008) Joint N-gram Sequitur 96.46 82.51
Jiampojamarn et al. (2009) MIRA DirecTL - 82.43
Jiampojamarn et al. (2010) MIRA DirecTL+ - 85.54

Che et al.(2012) HMM - - 94.20
Novak et al. (2012) WFST Phonetisaurus - 83.52

Teachers word
book (TWB)

McCulloch et al. (1987) ANNs - 86.00 -
Damper et al. (1998) Elovitz rules - - 25.70

Unisyn
Taylor (2005) HMM - 90.98 57.31

Ogbureke et al. (2010) HMM - - 79.19

Pronlex
Chen (2003) Joint N-gram - 92.85 72.70

Bisani and Ney (2008) Joint N-gram Sequitur 93.22 72.67

Wiktionary Kubo et al. (2013) SAROW Slearp 78.77 39.81



Chapter 3

Two-Stage Neural Network-based

G2P Conversion

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 New grapheme generation rule (GGR) . . . . . . . . . . . . 58

4.3 Two-stage model for G2P conversion . . . . . . . . . . . . . 61

4.3.1 Prediction using combined grapheme-phoneme (G-P) information 61

4.3.2 Architecture of the proposed model . . . . . . . . . . . . . . . . 62

4.3.3 First-stage model . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.4 Second-stage model . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Proposed test sets . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

34



Chapter 3 35

3.1 Introduction

Fundamentally, some previous approaches [3, 70, 88] integrated many-to-one mapping

techniques between letters and phonemes, in which a phoneme is determined by using

a sequence of letters. These approaches proved unsatisfactory because there is no strict

correspondence between letters and phonemes [11], especially in the case of a less regu-

lar spelling language like English. Various many-to-many mapping techniques between

letters and phonemes for taking the G2P conversion to the next level have subsequently

been proposed. For example, Rama et al. treat the letter-to-phoneme conversion prob-

lem as a phrase-based statistical machine translation problem [101]. They removed the

one-to-one alignments from one of the most complex American English words-based

dictionary (known as the auto-aligned CMUdict corpus10) and induced again many-to-

many alignments between letters and phonemes using GIZA++ toolkit. Consequently,

they reported 91.4% and 63.81% for the average phoneme accuracy and word accuracy,

respectively. Based on the same corpus, the letter-to-phoneme conversion by inference

of the rewriting rules provided a 74.40% word accuracy measured in terms of word pre-

cision averaged on the full dataset (including the training and testing datasets) [102].

The HMM-based approach with context-sensitive observations for G2P conversion [16],

proposed in 2010 by Ogbureke et al., showed a strong interest in the use of context

information at both graphemic and phonemic levels. Ogbureke et al. also stated that

different corpora always provided different performances because they obtained as much

as 79.79% word accuracy on the Unilex corpora containing the UK English words, but

only a maximum of 57.85% for the above mentioned CMUdict corpus owing to a large

number of loan words and some remarkable errors. Conversely, the joint sequence model,

proposed in 2008 by Bisani and Ney [21], is one of the most popular approaches in G2P

conversion. Recently, the Weighted Finite-State Transducer (WFST)-based G2P con-

version [26] achieved a good word accuracy result (∼75.5%) on the CMUdict dataset

by utilizing a standard joint N-gram model and investigating N-best rescoring with a

Recurrent Neural Network Language Model (RNNLM).

However, it appears that the above-mentioned approaches –regarded as single-stage

model-based approaches– are not really applicable to the problem of conflicting phonemes

at the output level of G2P conversion, where an input grapheme11 could, in the same

context, produce many possible corresponding output phonemes at the same time. For

instance, if the model takes a sequence of seven graphemes as input, the grapheme “A”

on sequence “HEMATIC” can produce the phoneme /AE/ when it belongs to the word

“SCHEMATIC”, and also /AH/ when it is within another word “MATHEMATICIAN”.

10CMUdict corpus is available in the Pascal Letter-to-Phoneme Conversion Challenge website
(http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets)

11In this chapter, a grapheme is strictly equal to a single letter, rather than a spelling unit.
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Thus, it is difficult to identify the correct phoneme corresponding to “A” since there is

more than one choice. This kind of problem may negatively impact the performance of

the G2P conversion model. Consequently, this chapter aims to take it into account in

order to help to improve the phoneme predicting quality in G2P conversion.

Over the years, several different neural network-based approaches for G2P conversion

have been developed; however, recently they have not been very competitive [86]. Most

of these approaches were constructed as one-stage models [3, 20], so they were not inte-

grated with the many-to-many mapping technique between graphemes and phonemes.

Considering these facts, in this chapter, a two-stage neural network-based approach for

G2P conversion is reasonably proposed, which enables the use of grapheme and phoneme

contexts in a way that is different from that of previous approaches for dealing with the

problems outlined above. The first-stage neural network is implemented as a many-to-

many mapping model between graphemes and phonemes for the automatic conversion of

word to phoneme sequences. Next, the second stage uses a combination of the phoneme

sequences obtained as an input pattern to predict the output phoneme corresponding

to each input grapheme in a given word. At this stage, it is particularly capable of

generating different phonemic patterns from the same input grapheme sequence that

appears in different words.

The remainder of this chapter is organized as follows: In Section 3.2, we discuss the

ability currently lacking in single-stage neural network-based G2P conversion. We then

describe the two-stage neural network-based approach in Section 3.3, and present its

experimental results in Section 3.4. We discuss the experimental results by investigating

the error analysis in Section 3.5 and then conclude this chapter in Section 3.6.

3.2 Single-stage neural network-based G2P conversion

The G2P conversion model was established for use in predicting the phonemes corre-

sponding to the input text12, especially the OOV words. It is usually trained using

the graphemes-phonemes pairs (g-p pairs) extracted from a pronunciation dictionary, a

text file containing a large number of words together with their phonetic transcriptions.

In this case, each word and its pronunciation in the dictionary must be aligned before

being used. Therefore, for each occurrence (i.e., word→ phonemes) of the auto-aligned

CMUdict corpus, both grapheme and phoneme sequences have the same length owing

to the use of empty grapheme “ ” and empty phoneme / / notations. For example, the

phoneme sequence of the word “CAPAB LE” is represented by /K EY P AH B AH L /.

12Here, the input text is just a single word because the pronunciation dictionary being used contains
isolated words only.
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3.2.1 Mapping technique between graphemes and phonemes

The context-dependent grapheme model considers the association between graphemes

and phonemes as many-to-one [3]. Thus, the extracted g-p pairs are obtained by passing

two different slicing windows [103] through each occurrence of the dictionary; a window

is passed through the word grapheme-by-grapheme, while another window, one phoneme

in size, is passed through its corresponding phoneme string phoneme-by-phoneme [20].

In this context, several graphemes as input and a single phoneme as output are re-

quired. For example, if the word G = g1g2...gn corresponds to the phoneme sequence

P = p1p2...pn, then the extracted pair between the focal grapheme gi at position i (where

i = 1...n) and its corresponding phoneme pi is represented as below:

gi−x + ...+ gi−1 + gi + gi+1 + ...+ gi+x︸ ︷︷ ︸ → pi

⇔ seq(gi, x) → pi

Where g ∈ {‘A’, ‘B’, ..., ‘Z’ , empty grapheme ‘ ’}

p ∈ {/AA/, /AE/, ..., empty phoneme / /}

(3.1)

Here, the sign + denotes sequence concatenation. The segments (gi−x + ...+ gi−1) and

(gi+1 + ...+ gi+x) represent left and right contexts of the focal grapheme gi, respectively,

while x indicates the size of each context side. In this equation, an input sequence

seq(gi, x) is constructed by concatenating the focal grapheme gi with its left and right

context information, so the length of this sequence is equal to (2x+ 1).

On the other hand, considering the correspondence between graphemes and phonemes

as many-to-many has also been stated as a beneficial technique in many recent studies

because it can cover all possible mappings between graphemes and phonemes (e.g.,

one-to-one, many-to-one, one-to-many, and many-to-many) [16, 23, 31, 101]. These

techniques inspired us to incorporate the context-dependent phoneme model into neural

network-based G2P conversion. This results in phoneme pi in Eq.(3.1) being definitely

replaced by the phoneme sequence seq(pi, y), where y indicates the size of each context

side of pi. Inversely, Eq.(3.2) becomes Eq.(3.1) once the parameter y is set to zero.

gi−x + ...+ gi + ...+ gi+x︸ ︷︷ ︸ → pi−y + ...+ pi + ...+ pi+y︸ ︷︷ ︸
⇔ seq(gi, x) → seq(pi, y)

(3.2)

3.2.2 Lack of ability in phoneme prediction

When the G2P conversion is treated as a single-stage model, the output phoneme is

always predicted directly through the input graphemic information [3], [20]. Table 3.1
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Table 3.1: List of the g − p pairs extracted from two given words (“SCHEMATIC”
and “MATHEMATICIAN”) by using a slicing window of seven graphemes (x = 3) as

input and another window of one (y = 0) or five phonemes (y = 2) as output.

g-p
pair

Input
+grapheme context

(7 graphemes)

Output
no context
(1 ph.)

Output
+phoneme context

(5 phonemes)
seq(gi, 3) seq(pi, 0) seq(pi, 2)

P1 S C H E S S K
P2 S C H E M K S K AH
P3 S C H E M A S K AH M
P4 S C H E M A T AH K AH M AE
P5 C H E M A T I M AH M AE T
P6 H E M A T I C AE AH M AE T IH
P7 E M A T I C T M AE T IH K
P8 M A T I C IH AE T IH K
P9 A T I C K T IH K

P10 M A T H M IH K M AE TH
P11 M A T H E AE K M AE TH
P12 M A T H E M TH M AE TH AH
P13 M A T H E M A AE TH AH M
P14 A T H E M A T AH TH AH M AH
P15 T H E M A T I M AH M AH T
P16 H E M A T I C AH AH M AH T IH
P17 E M A T I C I T M AH T IH SH
P18 M A T I C I A IH AH T IH SH
P19 A T I C I A N SH T IH SH AH
P20 T I C I A N IH SH AH N
P21 I C I A N AH SH AH N
P22 C I A N N AH N

clearly shows that in this case the model lacks the ability to solve the phoneme conflicts

at the output level of G2P conversion. For example, it is impossible to distinguish

between the conflicted pairs P6 and P16 because they have the same input sequence

(e.g., “HEMATIC”) but different outputs (e.g., /AE/ and /AH/ ). Even when the

phoneme context gets involved (y> 0) in the model or not (y = 0), the problem always

remains because only one phoneme is obviously produced at the output layer of the

model.

In addition, it appears that the grapheme side does not carry enough information or

knowledge relating to the phonological interaction [104]. Therefore, the grapheme-based

phoneme prediction method implemented in single-stage model-based approaches does

not appear to be very effective for improving the G2P conversion performance as long

as the conflict at the phonemic level remains unsolved.
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3.3 Two-Stage Neural Network-based G2P Conversion

In order to deal with the problem discussed in the previous section without affecting the

previous many-to-many mapping technique, we employed a two-stage neural network-

based approach for G2P conversion.

In this section, we first propose a new phoneme-based method for predicting the output

phonemes corresponding to the given words. We then describe the architecture of the

proposed approach.

3.3.1 Prediction using phonemic information

Even though multiple output phonemes can be mapped to the same input grapheme

sequence, phoneme prediction in G2P conversion should be done at the phonemic level

itself rather than the graphemic level because the grapheme side does not contain enough

information relating to the phoneme interactions. From this point of view, we propose a

new phoneme prediction method in which the phonemic information is used as input to

select the best final output phoneme. Because the G2P conversion model theoretically

uses text as input, our proposed method has to be divided into two consecutive steps:

Grapheme sequence ⇒ Phoneme sequence ⇒ Phoneme

The proposed method first converts the graphemic information into phonemic infor-

mation without worrying about any conflict at the phonemic level. In this step, each

grapheme sequence can produce only one output phoneme sequence at a time. Next,

all the related output phoneme sequences are combined and used at the second step of

execution to predict the exact output phoneme of the G2P conversion model.

3.3.2 Architecture of the G2P conversion model

On the basis of the new phoneme prediction method presented above, the proposed

G2P conversion model is fundamentally built by putting two different multi-layer neural

networks in sequence as depicted in Fig.3.1. The first neural network is implemented as

a many-to-many conversion model to automatically transform each grapheme sequence

extracted from a given word into the corresponding phoneme sequence. This facilitates

coverage of all possible graphemes-phonemes associations. The second neural network

then uses each combination of the obtained phoneme sequences as an input pattern to

enable prediction of the final output phoneme corresponding to each input grapheme
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in the given word. This stage is specially established to take action on the problem of

conflicting phonemes, which is impossible to solve in the first stage model.

3.3.2.1 First-stage neural network

As depicted in Fig.3.1, the first-stage neural network is constructed based on the same

technique described in Section 3.2, which was implemented to automatically convert a se-

quence of graphemes (i.e., seq(gi, x)) into another sequence of phonemes (i.e., seq(p′i, y))

that is necessary for helping the second-stage neural network to generate different phone-

mic patterns out of the same input grapheme sequence appearing in two or more different

words.

This model is trained with the g-p pairs extracted with respect to Eq.(3.2) from all

the occurrences of the pronunciation dictionary. For example, according to Table 3.1,

if x = 3 and y = 2 are set, then 22 extracted pairs are obtained from two given words

“SCHEMATIC” and “MATHEMATICIAN”. After the training process terminates, ac-

cording to the left part of Fig.3.2, some output information (e.g., the phoneme /AH/ or

the phoneme sequence /AH M AH T IH/) is lost because of the phoneme conflicts, so

the same output phoneme sequence /AH M AE T IH/ is generated from the input of

both pairs P6 and P16.

3.3.2.2 Second-stage neural network

According to Fig.3.1, for an input word G = g1g2...gn containing n graphemes, a set of n

phoneme sequences (e.g., seq(p′1, y), seq(p′2, y),..., seq(p′n, y)) are produced after termi-

nating the process at the first-stage neural network. Thus, the desired output phoneme

pi corresponding to the focal grapheme gi on sequence seq(gi, x) can be predicted by

investigating the information related to pi (i.e., this refers to p′i) that can be found at

different locations within some of the obtained phoneme sequences; in the case where

the current input grapheme sequence seq(gi, x) outputs the phoneme sequence seq(p′i, y)

at the first-stage neural network, the information concerning p′i can be found as follows:

� At the central position of the current phoneme sequence seq(p′i, y).

� Within the right context side of the phoneme sequences preceding seq(p′i, y). As

seen in Fig.3.1, those preceding phoneme sequences include seq(p′i−1, y), seq(p′i−2, y),

..., seq(p′i−z+1, y) and seq(p′i−z, y).
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� Within the left context side of the phoneme sequences succeeding seq(p′i, y). As

can be seen in Fig.3.1, those succeeding phoneme sequences include seq(p′i+1, y),

seq(p′i+2, y), ..., seq(p′i+z−1, y) and seq(p′i+z, y).

Here, parameter z indicates the number of preceding or succeeding phoneme sequences.

In this chapter, the phoneme sequences preceding and succeeding seq(p′i, y) are called

the neighborhood phoneme sequences of seq(p′i, y).

Consequent on these facts, we propose the phoneme context extending technique in

which all the related phoneme sequences (i.e., the sequences containing information

about p′i, which include the current phoneme sequence and its neighborhood sequences)

are concatenated. This can generate a phonemic pattern with larger context including a

strong knowledge related to the phonological interaction between the output phoneme pi

and other phonemes in the conversing word. Since the neural network-based approach

is used at the first-stage, it is then used at the second stage because of the coding

time reduction and its simple implementation. Therefore, the second-stage neural net-

work determines the final output phoneme via the generated pattern using the following

equation:

preceding sequences succeeding sequences︷ ︸︸ ︷
seq(p′i−z, y) + ...+seq(p′i, y) +

︷ ︸︸ ︷
...+ seq(p′i+z, y)︸ ︷︷ ︸ → pi

⇔ Pattern(p′i, y, z) → pi

(3.3)

Owing to the problem presented in Table 3.1, it is difficult to distinguish the output be-

tween the g-p pair P6 and P16 because they have the same input grapheme sequence (e.g.,

“HEMATIC”). However, the example in Fig.3.2 demonstrates that our two-stage neural

network-based approach for G2P conversion can provide a good solution to the problem

by adding the second-stage neural network model. This facilitates the creation of two

different phonemic patterns representing the grapheme ‘A’ in sequence “HEMATIC”,

which belongs to two different words (e.g., “SCHEMATIC” and “MATHEMATICIAN”).

Furthermore, the phonemes along the diagonal positions and those at the top-left, as

well as the bottom-right of each pattern, are very important for distinguishing between

the output phonemes in cases where they have the same input grapheme sequences.

In practice, some unpredicted errors occurred after the first-stage neural network because

it virtually impossible to obtain a perfectly trained neural network to represent a complex

system like G2P conversion. Fortunately, as can be seen in Fig.3.2, these errors could

help to produce some extra patterns for the second-stage sometimes.
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3.4 Evaluation

In this section, we first describe the data preparation process. We then briefly explain

the experimental setup, after which we report on the experimental results obtained from

various proposed test sets.

3.4.1 Data preparation

3.4.1.1 Auto-aligned CMUdict corpus

We chose the American English words-based pronunciation dictionary (known as the

auto-aligned CMUdict corpus) to evaluate the performance of our proposed approach

against two baseline approaches. This corpus, which contains many acronyms and loan

words from different languages such as Japanese, French, and German, has been widely

used by researchers [16, 101, 102]. It was originally created using 34 graphemic symbols

(e.g.,‘A’...‘Z’, ‘2’...‘7’, ‘9’ and empty grapheme ‘ ’) and 40 phonemic symbols (e.g., /AA/,

/AE/, /SH/, empty phoneme / /, etc.).

It comprise a total of 112,102 isolated words, including 838,996 graphemes and phonemes,

owing to the aligned corpus. Further, it was originally subdivided into 10 folds (e.g.,

part0, part1, ..., part9) each of which contains almost the same number of words,

graphemes as well as phonemes [58].

3.4.1.2 Newly aligned CMUdict corpus

Various researchers have stated that the auto-aligned CMUdict corpus has a lower con-

sistency than other corpora and also has errors [16, 23], while others have emphasized

that the quality of the pronunciation dictionary could negatively affect the G2P con-

version performance [105]. As a result, we reconstructed a version of the auto-aligned

CMUdict corpus with higher consistency (i.e., a newly aligned CMUdict corpus) us-

ing the GIZA++ toolkit and then used it in our experiments. Because the number of

numeric graphemes was too low, all of the words containing numeric graphemes were

removed. As a result, it remained only 27 graphemic symbols remained in the new

corpus.

The resulting corpus proved more reliable and consistent than the original. Fig.3.3 shows

that the word located in the third column is always shorter and well-aligned than the

one located in the second column. In addition, by counting the phonemes that could

possibly be mapped from each grapheme, Fig.3.4 demonstrates that the grapheme in
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Figure 3.3: Comparison of the alignment between graphemes and phonemes in the
auto-aligned CMUdict (column 2) and the newly aligned CMUdict (column 3).

Figure 3.4: Consistency measurement based on the number of corresponding
phonemes that could be mapped by each grapheme inside the original and new datasets.
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the newly aligned CMUdict corresponds to fewer numbers of phonemes than the one

inside the auto-aligned CMUdict. For example, the number of phonemes that could be

mapped by the grapheme ‘E’ is reduced from 20 to only 12.

3.4.2 Experimental setup

3.4.2.1 Training and testing datasets

We conducted experiments on the newly aligned CMUdict corpus. Nine out of ten folds

(e.g., part0, ..., part8) were combined and then used as a training dataset, while the

remainder fold (e.g., part9) was used as a testing dataset. Thus, the training dataset

contained a total of 100,713 words or 750,198 graphemes/phonemes, while the testing

dataset contained 11,188 OOV words or 83,267 graphemes/phonemes.

To achieve accurate phoneme prediction, we used the Orthogonal Binary Codes (OBC)

[15] to encode each symbol, where the length of a vector corresponding to a single symbol

was exactly equal to the total number of symbols in the group the symbol belongs to,

and therefore each grapheme and phoneme was represented using a vector of 27 elements

(or 27 neurons) and 40 elements (or 40 neurons), respectively. According to Tables 3.2

and 3.3, for each vector, only one element at a specific index was active or set to one,

while the others were set to zero.

3.4.2.2 Four different test sets

In this research, we proposed and separately utilized four different test sets. First, we

created a simple baseline approach (Baseline1 ) and implemented it using only a one-

stage neural network. In accordance with Fig.3.3, this baseline was built using Eq.(3.1)

or Eq.(3.2) with y = 0.

Next, we proposed an extended interesting baseline approach (Baseline2 ) to help prove

that the performance of the G2P conversion model can possibly be improved by just

adding the second-stage model. As depicted in Fig.3.5, this baseline was designed with

respect to the architecture of our two-stage model-based approach, with the exception

that the first-stage neural network was replaced by the first baseline approach. This

means that once the phoneme context is not involved in the model (when y = 0), each

output phoneme sequence at the first-stage neural network contained only one phoneme

per sequence (i.e., seq(p′i, 0) = p′i).
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Grapheme
symbol

Encoded value
(27 neurons)

‘A’ 100000000000000000000000000
‘B’ 010000000000000000000000000
‘C’ 001000000000000000000000000
‘D’ 000100000000000000000000000
‘E’ 000010000000000000000000000
‘F’ 000001000000000000000000000
‘G’ 000000100000000000000000000
‘H’ 000000010000000000000000000
‘I’ 000000001000000000000000000
‘J’ 000000000100000000000000000
‘K’ 000000000010000000000000000
‘L’ 000000000001000000000000000
‘M’ 000000000000100000000000000
‘N’ 000000000000010000000000000
‘O’ 000000000000001000000000000
‘P’ 000000000000000100000000000
‘Q’ 000000000000000010000000000
‘R’ 000000000000000001000000000
‘S’ 000000000000000000100000000
‘T’ 000000000000000000010000000
‘U’ 000000000000000000001000000
‘V’ 000000000000000000000100000
‘W’ 000000000000000000000010000
‘X’ 000000000000000000000001000
‘Y’ 000000000000000000000000100
‘Z’ 000000000000000000000000010
‘ ’ 000000000000000000000000000

Table 3.2: List of grapheme
symbols and its encoding.

Phoneme
symbol

Encoded value
(40 neurons)

/AA/ 1000000000000000000000000000000000000000
/AE/ 0100000000000000000000000000000000000000
/AH/ 0010000000000000000000000000000000000000
/AO/ 0001000000000000000000000000000000000000
/AW/ 0000100000000000000000000000000000000000
/AY/ 0000010000000000000000000000000000000000
/B/ 0000001000000000000000000000000000000000

/CH/ 0000000100000000000000000000000000000000
/D/ 0000000010000000000000000000000000000000

/DH/ 0000000001000000000000000000000000000000
/EH/ 0000000000100000000000000000000000000000
/ER/ 0000000000010000000000000000000000000000
/EY/ 0000000000001000000000000000000000000000
/F/ 0000000000000100000000000000000000000000
/G/ 0000000000000010000000000000000000000000

/HH/ 0000000000000001000000000000000000000000
/IH/ 0000000000000000100000000000000000000000
/IY/ 0000000000000000010000000000000000000000
/JH/ 0000000000000000001000000000000000000000
/K/ 0000000000000000000100000000000000000000
/L/ 0000000000000000000010000000000000000000
/M/ 0000000000000000000001000000000000000000
/N/ 0000000000000000000000100000000000000000

/NG/ 0000000000000000000000010000000000000000
/OW/ 0000000000000000000000001000000000000000
/OY/ 0000000000000000000000000100000000000000
/P/ 0000000000000000000000000010000000000000
/R/ 0000000000000000000000000001000000000000
/S/ 0000000000000000000000000000100000000000

/SH/ 0000000000000000000000000000010000000000
/T/ 0000000000000000000000000000001000000000

/TH/ 0000000000000000000000000000000100000000
/UH/ 0000000000000000000000000000000010000000
/UW/ 0000000000000000000000000000000001000000
/V/ 0000000000000000000000000000000000100000
/W/ 0000000000000000000000000000000000010000
/Y/ 0000000000000000000000000000000000001000
/Z/ 0000000000000000000000000000000000000100

/ZH/ 0000000000000000000000000000000000000010
/ / 0000000000000000000000000000000000000000

Table 3.3: List of phoneme symbols and
its encoding.

We also utilized two other test sets using the same two-stage neural network-based ap-

proach (written as TSNN in this section to reduce word repetition), but different config-

urations. For the first configuration (TSNN 3ph), we used a sequence of three phonemes

(i.e., y2 = 1) as the output of the first-stage neural network, and also three phoneme se-

quences (i.e., z2 = 1) as the input of the second-stage neural network. We then enlarged

the size of the phoneme sequence from three to five phonemes (i.e., y1 = 2) and also the

number of sequences from three to five sequences (i.e., z1 = 2) for another configuration

(TSNN 5ph).
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Table 3.4: Configuration of the four proposed test sets

First-stage
seq(gi, x)→ seq(p′i, y)

Second-stage
Pattern(p′i, y, z)→ pi

x (# gr.) y (# ph.) y (# ph.) z (# seq.)

Baseline 1 x3: 5→9 y3: 0

Baseline 2 x3: 5→9 y3: 0 y3: 0 z3: 4

Two-stage neural
network using 3ph. x2: 4→8 y2: 1 y2: 1 z2: 1

Two-stage neural
network using 5ph. x1: 3→7 y1: 2 y1: 2 z1: 2

As can be seen in Fig.3.1, TSNN 5ph uses a pattern of five joint phoneme sequences

obtained from the first-stage neural network to predict the final output phoneme at

the second-stage neural network. This means that five input grapheme sequences are

involved in the generation of each pattern. This may appear unfair if we compare

the performance of TSNN 5ph with that of Baseline1 and Baseline2 using the same

input grapheme sequence size. Therefore, the size of the grapheme sequence being used

in both baseline approaches must be longer than that being used in TSNN 5ph and

depend on the value of z; according to the observation of the five grapheme sequences

involved, the bottom part of Fig.3.5 shows that each input grapheme sequence used in

both baseline approaches must contain four graphemes more than used in TSNN 5ph

(i.e., according to Table 3.4, x3 = x1 + z1 = x1 + 2) and two graphemes more than used

in TSNN 3ph (i.e., x3 = x2 + z2 = x2 + 1). Likewise, at the second-stage of TSNN 5ph,

only nine exact phonemes are found within each generated pattern of five joint phoneme

sequences. Thus, the number of input phonemes at the second-stage of Baseline2 should

be equal to nine phonemes (i.e., according to Table 3.4, z3 = z1 + y1 = 4).

According to Eq.(3.1), for each test set in Table 3.4, the size of the input grapheme

window must be an odd number depending on its context size (e.g., x1 = 3→ 7,

x2 = x1 + 1 = 4→ 8 and x3 = x1 + 2 = 5→ 9).

3.4.2.3 Configuration of FANN parameters

We implemented each neural network stage of our proposed model using the functions

provided by the FANN (Fast Artificial Neural Network13) library. We obtained the best

results when each stage was set up as follows:

13FANN Library: http://leenissen.dk/fann/wp/

http://leenissen.dk/fann/wp/
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� Standard neural network with three layers

� Incremental backpropagation algorithm

� Learning rate = 0.8; Momentums = 0.1

� Symmetrical sigmoid activation function14, where the steepness is equal to 0.01

� Number of neurons at the first stage:

– Input layer = (2x+ 1) ∗ 27

– Hidden layer = (2x+ 1) ∗ 27 ∗ 2

– Output layer = (2y + 1) ∗ 40

� Number of neurons at the second stage:

– Input layer = ((2z + 1) ∗ (2y + 1)) ∗ 40

– Hidden layer = ((2z + 1) ∗ (2y + 1)) ∗ 40/2

– Output layer = 40

� (2x+1), (2y+1) and ((2z+1) ∗ (2y+1)) are the sizes of seq(gi, x), seq(pi, y) and

Pattern(p′i, y, z), respectively.

3.4.2.4 Accuracy measurements

To compare with other approaches introduced at the beginning of this chapter, we

evaluated the performance of the model in terms of phoneme accuracy (PAcc) and

word accuracy (WAcc) using the NIST sclite scoring toolkit15. Because the goal of

this chapter is improvement of the performance of G2P conversion measured on the

OOV words, we only report results related to this objective. Both PAcc and WAcc are

calculated using Eq.(2.2) and Eq.(2.3) written in Section 2.1 on page 17, respectively.

3.4.3 Experimental results

Each proposed test set used the newly aligned CMUdict corpus to evaluate the model

performance. Based on Fig.3.6, by investigating various input grapheme sequence sizes

(e.g., when x1 = 3→ 7, x2 = 4→ 8 and x3 = 5→ 9), our proposed two-stage neural

network-based approach usually provided higher PAcc and WAcc than both baseline

approaches.

14FANN Datatypes: http://leenissen.dk/fann/html/files/fann_data-h.html#fann_

activationfunc_enum
15NIST sclite scoring toolkit: http://www.nist.gov/speech/tools/

http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum
http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum
http://www.nist.gov/speech/tools/
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(a) Phoneme Accuracy (PAcc)

(b) Word Accuracy (WAcc)

Figure 3.6: PAcc and WAcc measured on the OOV words
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Table 3.5: Word Error Rate (WER) of the four proposed test sets, which were evalu-
ated on the OOV words and grouped by the number of erroneous phonemes per word.

These reported results were obtained with x1 = 7, x2 = 8 and x3 = 9.

Nb. of errorenous
phonemes
per word

WER
Baseline1
(x3 = 9)

WER
Baseline2
(x3 = 9)

WER
TSNN 3ph

(x2 = 8)

WER
TSNN 5ph

(x1 = 7)

1 21.92% 21.30% 20.25% 19.89%
2 7.55% 7.52% 7.04% 6.99%
3 2.37% 2.33% 1.99% 2.03%
4 0.48% 0.44% 0.40% 0.46%
5 0.10% 0.08% 0.08% 0.11%
6 0.02% 0.04% 0.01% 0.01%

Further, it was also proved that the performance of the G2P conversion given by each

test set increased relative to the size of the input grapheme sequence; a nice improve-

ment in WAcc occurred once the number of graphemes started increasing from seven

to eleven graphemes (i.e., x1, x2, x3 = 3→ 5). However, for our proposed approach

TSNN 5ph, the best result (PAcc=94.31% and WAcc=70.52%) was reported when

the input sequence consisted of 15 graphemes (i.e., x1 = 7). In addition, TSNN 5ph

usually outperformed TSNN 3ph when x1 was greater than four.

In terms of the WER of the OOV words, Table 3.5 shows that TSNN usually produces

less erroneous words than both baseline approaches. Further, the values obtained for

PAcc are always higher than 90%, so a small difference in PAcc has a strong impact on

the result of WAcc because we had surmised that most of the erroneous words (more

than 19%) contains just one erroneous phoneme.

The training time of each stage model is also reported in Table 3.6. Because neural

networks were used in the experiments, the training time must be calculated and sepa-

rated epoch-by-epoch (1 epoch = 1 training iteration). From one to another epoch, we

observed that the training time usually increases incrementally, so we decided to report

two different values of time; specifically, the minimum and maximum training times.

The minimum training time is measured around the first epoch, while the maximum

training time is measured around the best epoch. In this work, the best epoch refers to

a selected epoch where the trained model has the set of weights that will provide the

best generalization performance, which is usually found at any epoch that will provide

the smallest value of Mean Squared Error (MSE) evaluated on the testing data.

Theoretically, the training time of each test set depends exactly on the size of each staged

neural network. For example, except for the case of x1 = 7 and x3 = 8, when the value of

x is increased, Table 3.6 shows that the training time per epoch at the first-stage neural
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Table 3.6: Training time of the four proposed test sets. Both the minimum and
maximum durations of each epoch during the training of each neural network stage are

described here.

First-stage Second-stage

Context
Best

epoch

Time/epoch

(minutes)

[min, max]
Best

epoch

Time/epoch

(minutes)

[min, max]

Baseline1 x3=5 49 [15, 16] 10 [13, 14]
(1st-stage only) x3=6 41 [20, 22] 13 [13, 14]

& x3=7 46 [26, 27] 10 [13, 14]
Baseline2 x3=8 51 [21, 22] 16 [13, 14]

(both stages) x3=9 48 [38, 42] 8 [13, 14]

x2=4 137 [15, 20] 35 [8, 9]
x2=5 81 [20, 27] 27 [8, 9]

TSNN 3ph x2=6 56 [22, 39] 24 [8, 9]
x2=7 56 [27, 34] 46 [9, 10]
x2=8 57 [45, 60] 24 [9, 10]

x1=3 94 [10, 16] 54 [61, 69]
x1=4 183 [15, 24] 16 [64, 66]

TSNN 5ph x1=5 111 [17, 25] 13 [53, 54]
x1=6 81 [23, 33] 10 [52, 53]
x1=7 76 [19, 40] 10 [52, 54]

network also increased. Otherwise, it does not affect the second-stage at all because it

is independent of the value of x. Based on the architecture of the second-stage neural

network, both TSNN 3ph and Baseline2 use the same number of neurons and model

configurations, but they provide different training times. Hence, we can assume that

the training time also depends on the PC performance. Since we trained the model on

a shared server (Windows 7 professional 64 bits, Core i7-3930K 3.20 GHz, 32.0 GB)

in our laboratory, the training process was sometimes slow or fast depending on the

number of user connections and the number of simultaneous training processes launched

from the same client PC. Furthermore, the training time per epoch of the second-stage

of TSNN 5ph appears too long compared to others because we could not load all the

training data at once caused by the memory limitations, so the training dataset had

to be decomposed into two or three parts at this stage. For each epoch, those parts

were randomly selected one-by-one to be loaded, shuffled, trained, evaluated, and then

deleted. As a result, the training time increased proportionately.
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Table 3.7: Example of the words selected consisting of two phoneme conflicts
(‘R’→ {/ER/, /R/} and ‘A’→ {/EY/, /AH/}), while x = 3 and y = 2.

Word Corresponding phonemes

seq(gi, 3) seq(pi, 2)

COLL ABORATE D K AH L AE B ER EY T
EL ABORATE S AH L AE B ER EY T S
EL ABORATE AH L AE B R AH T
EL ABORATE LY AH L AE B R AH T L IY

Table 3.8: Accuracy given by TSNN and WFST based on two different datasets.

TSNN 5ph
(x1 = 7)

WFST

Newly aligned CMUdict.
PAcc 94.31% 93.46%
WAcc 70.52% 73.45%

Words produce the phoneme conflicts
PAcc 93.60% 91.99%
WAcc 57.50% 57.05%

3.4.4 Comparing with a previous approach

In addition to the evaluation results in the previous section, we also compared our pro-

posed approach to one of the most popular approaches in G2P conversion –the Weighted

Finite-Stage Transducer (WFST)-based approach [26] available in the Phonetisaurus

G2P toolkit16.

We compared TSNN and WFST using two different datasets: a general dataset (i.e., the

newly aligned CMUdict corpus) and a special dataset (i.e., a small subset of the newly

aligned CMUdict corpus) in which only the words consisting of more than one phoneme

conflicts, as seen in Table 3.7, are selected. For the first dataset, the training and testing

data were the same as in our previous experiments, which have already been described

in Section 3.4.2.1. For the second dataset, we randomly selected 80% and 20% of the

total 7,123 extracted words for the training and testing datasets, respectively.

The results in Table 3.8 show that TSNN 5ph always provides higher phoneme accuracy

than WFST, but, unfortunately, lower word accuracy for the first dataset.

16Phonetisaurus toolkit: http://code.google.com/p/phonetisaurus/



Chapter 3 55

3.5 Discussion

The experimental results depicted in Fig.3.6 and Table 3.5 clearly show that the proposed

two-stage neural network-based approach for G2P conversion usually provides the best

accuracy on OOV words compared to both baseline approaches, even when it uses a

smaller grapheme sequence size than others (i.e., x1 < x3).

As explained in Section 3.4.2.2, at the input layer of the first-stage of the G2P conver-

sion model, the exact number of graphemes and phonemes getting involved in Baseline2

and TSNN 5ph were quite similar to each other, but both approaches provided differ-

ent results; Fig.3.6 and Table 3.5 indicate that TSNN 5ph usually provided a higher

performance than Baseline2.

Even when we decreased the value of y from two down to only one (i.e., reduced the

size of phoneme sequence from five down to only three phonemes per sequence) in order

to have the same size phonemic pattern (e.g., a pattern of nine phonemes) at the input

layer of the second-stage of both approaches mentioned, our proposed approach (i.e.,

TSNN 3ph) still outperformed Baseline2. Therefore, it does not matter if the same

numbers of phonemes are used or not, the two-stage neural network-based approach for

G2P conversion always outperformed both baseline approaches. This can result in the

assumption that the grapheme and phoneme contexts are not really effective to fix the

problem of conflicting phonemes at the output layer of the G2P conversion model, unless

the pattern of joint phoneme sequences is incorporated at the second-stage.

The comparison between the results given by Baseline1 and Baseline2 also demonstrates

that the second-stage neural network is very helpful in boosting the accuracy of the G2P

conversion model to the next level. Even if the phoneme context information is absent

in Baseline2, it is still possible to go beyond the performance attainable by Baseline1,

by assigning the value of z to a positive number (e.g., z = 4) at the second-stage neural

network. Perhaps this technique may also help to improve the performance of existing

approaches, such as the joint-sequence model, by creating a hybrid model that integrates

the approach into our two-stage model-based G2P conversion.

Further, following the error analysis of the erroneous words, some invisible information

was discovered. For example, some extracted graphemes-phonemes pairs in the testing

dataset (i.e., OOV words) were never seen during the training process, so the wrong

output phonemes were given during the evaluation. In addition, most of the erroneous

words containing more than one erroneous phonemes per word were from foreign words

such as “SENZAKI” and “AICHI” from Japanese, “BOGDANOWICZ” from Polish,

“XIAOGANG” from Chinese, etc.
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Conversely, the evaluation results of comparison with another existing approach, the

WFST-based approach, in Table 3.8 demonstrate that our approach provides higher

phoneme accuracy but lower word accuracy on the first dataset. However, when the

training data contain only words with some phoneme conflicts, our approach yields a

better performance than WFST. This shows that the two-stage neural network-based

approach is good at identifying the single phoneme in a word by using the grapheme

and phoneme contexts differently from previous approaches, especially when a phoneme

conflict has occurred. Otherwise, since it does not use any language model-based tech-

nique, it lacks knowledge for detecting the whole word compared to the WFST-based

approach. Therefore, for the next step of improvement, we have to focus on how to

reduce the erroneous words containing only one erroneous phoneme in order to increase

the word accuracy.

3.6 Summary

This chapter has shown that using only one neural network is not enough for solving some

complicated problems in G2P conversion. As a result, the two-stage neural network is

considered a powerful approach for improving the accuracy of the G2P conversion model.

To output the phonemes of the input text, prediction must be based on phonemic rather

than graphemic information. Because two different neural networks and OBC encoding

algorithm are used, this approach is also counted as an expensive and time-consuming

approach, but it can also provide good results while performing on a large and complex

corpus such as the auto-aligned CMUdict. In terms of phoneme and word accuracy, the

evaluation results show that our proposed approach usually outperforms the baselines

and it also can be regarded as an improved version of the single-stage neural network-

based approach for G2P conversion.
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4.1 Introduction

The two-stage architecture for G2P conversion described in the previous chapter showed

the advantage of using phonemic rather than graphemic information to predict the best

final output phoneme sequence corresponding to the input word. It also demonstrated

that this two-stage model using neural networks is good at identifying single phonemes

in a word, but lacks the knowledge for detecting the whole word.

Therefore, in this chapter, we utilize the existing WFST-based approach to implement

a novel two-stage architecture-based G2P conversion. This work investigates a new

strategy in which we combine both graphemic and phonemic information as the input

sequence for the G2P conversion. Moreover, several new grapheme generation rules for

transforming each input word into different representations of grapheme sequences are

also introduced in this chapter, which enable the addition of extra detail to the vowel

and consonant graphemes appearing in a word. In this study, a grapheme could be

a single letter or a combination of letters. Most of these rules focusing on the vowel

graphemes can achieve a small but consistent improvement on previous approaches.

The remainder of this chapter is organized as follows: in Section 4.2, we introduce several

newly invented grapheme generation rules. Then, we describe the novel two-stage model

for G2P conversion in Section 4.3 and provide the evaluation results in Section 4.4. The

discussion and conclusion are in Section 4.5 and 4.6, respectively.

4.2 New grapheme generation rule (GGR)

The G2P conversion model is usually built as a one-stage architecture for use in predict-

ing phonemes corresponding to input text, especially with OOV words. To improve the

model’s performance, this research integrated various newly invented grapheme genera-

tion rules into the model.

The grapheme side does not carry sufficient information or knowledge relating to the

phonological interaction [104]. In order to make the graphemic information more sensi-

tive in the G2P conversion, this work designed new rules with respect to the concept of

context-dependent models, particularly for generating different grapheme sequences out

of the same input word. Theoretically, for each grapheme of a given word, we concate-

nate it with the graphemes on its left and right contexts. However, in this study, only

the right context information is involved in the rule-making process because we prefer a

compact representation for the new grapheme symbols, each of which consists of one or

two alphabetical letters (e.g., “A” or “AU”).
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Table 4.1: List of the selected grapheme generation rules.

Rule

(GGRr)
Description

( Word
W = g1g2...gm−1gm

⇒
⇒

Grapheme sequence )

Ĝr = ḡ1 ḡ2 ... ḡm−1 ḡm

GGR1

gi ⇒ gi (like unigram = default)
Ex: “OKEECHOBEE” ⇒ O K E E C H O B E E

GGR2

gi ⇒ gigi+1 (like bigram)
Ex: “OKEECHOBEE” ⇒ OK KE EE EC CH HO OB BE EE E

R
u

le
s

fo
cu

si
n

g
on

vo
w

el
gr

ap
h

em
es GGR3

v1...vn ⇒ v1v2 v2v3 ... vn−1vn vn
Ex: “OKEECHOBEE” ⇒ O K EE E C H O B EE E

GGR4

If (n > 1):
v1...vncn+1 ⇒ v1v2 v2v3 ... vn−1vn vncn+1 cn+1

v1...vn ←↩ ⇒ v1v2 v2v3 ... vn−1vn vn
If (n = 1): gi ⇒ gi

Ex: “OKEECHOBEE” ⇒ O K EE EC C H O B EE E

GGR5

If (n > 1):
v1...vncn+1 ⇒ v1v2 v2v3 ... vn−1vn vncn+1 cn+1

v1...vn ←↩ ⇒ v1v2 v2v3 ... vn−1vn vn
If (n = 1): gi ⇒ gi

Ex: “OKEECHOBEE” ⇒ O K EE EC C H O B EE E

GGR6

If (n > 1):
[c0]v1...vncn+1 ⇒ [c0v1] v1v2 v2v3 ... vn−1vn vncn+1 cn+1

[c0]v1...vn ←↩ ⇒ [c0v1] v1v2 v2v3 ... vn−1vn vn
If (n = 1): gi ⇒ gi

Ex: “OKEECHOBEE” ⇒ O KE EE EC C H O BE EE E

R
u

le
s

fo
cu

si
n

g
o
n

co
n

so
n

an
t

gr
ap

h
em

es GGR7

c1...cn ⇒ c1c2 c2c3 ... cn−1cn cn
Ex: “APPLICATION” ⇒ A PP PL L I C A T I O N

GGR8

If (n > 1):
c1...cnvn+1 ⇒ c1c2 c2c3 ... cn−1cn cnvn+1 vn+1

c1...cn ←↩ ⇒ c1c2 c2c3 ... cn−1cn cn
If (n = 1): gi ⇒ gi

Ex: “APPLICATION” ⇒ A PP PL LI I C A T I O N

GGR9

If (n > 1):
c1...cnvn+1 ⇒ c1c2 c2c3 ... cn−1cn cnvn+1 vn+1

c1...cn ←↩ ⇒ c1c2 c2c3 ... cn−1cn cn
If (n = 1): gi ⇒ gi

Ex: “APPLICATIONS” ⇒ A PP PL LI I C A T I O NS S

GGR10

If (n > 1):
[v0]c1...cnvn+1 ⇒ [v0c1] c1c2 c2c3 ... cn−1cn cnvn+1 vn+1

[v0]c1...cn ←↩ ⇒ [v0c1] c1c2 c2c3 ... cn−1cn cn
If (n = 1): gi ⇒ gi

Ex: “APPLICATIONS” ⇒ AP PP PL LI I C A T I ON NS S

GGR11

GGR3 +GGR7

Ex: “APPLICATION” ⇒ A PP PL L I C A T IO O N

Here, gi = {ci, vi} : grapheme/character at index i;
ci , vi : consonant and vowel graphemes at index i;

‘←↩’ : end of the word (counted as ci);
‘ ’ : empty consonant grapheme;

n : number of connecting vowels in a given word;
m : length of the given word.
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Because the interaction between vowels in a word has a strong impact on the spelling

process, most of the rules written in this chapter were carefully designed to add extra

sensitive information to each vowel grapheme appearing in a word. For a few connect-

ing graphemes many rules are possible, but only the rules more related to the vowel

graphemes (as listed in Table 4.1) are taken into account. However, in order to compare

the impacts of the vowel and the consonant grapheme in the automatic conversion of

a word into its phonetic transcription, we also proposed some other rules that mainly

focus on the consonant graphemes. As a result, Table 4.1 shows that most of the newly

generated grapheme sequences can make the G2P conversion system easily identify not

only the pattern of each vowel but also that of each consonant in a given word. In this

table, the parameter gi refers to the grapheme in index i, while ci and vi represent the

consonant and vowel graphemes in index i, respectively. Moreover, the parameter n

represents the number of vowels.

Suppose that an input word W = g1g2...gm consisting of m characters/graphemes is

provided as an input. The new grapheme sequence Ĝr = ḡ1 ḡ2 ... ḡm, in which an

empty space is used as a separator, can be generated with respect to a rule GGRr,

formulated as follows:

Ĝr = GGRr(g) (4.1)

The first rule (GGR1) represents a unigram model used by most researchers [10, 15,

16, 17, 19, 26, 59, 69, 70, 72, 88, 101, 102], but it appears not to provide sufficient

information concerning each vowel or consonant grapheme. The second rule (GGR2)

represents a bigram model, which seems to add too much information to each grapheme

because it always combines the consonant grapheme with the vowel grapheme. The other

four rules (GGR3, GGR4, GGR5 and GGR6) are designed specifically for adding the

information missing in the first rule. For example, the third rule (GGR3) can distinguish

the separated vowel–the vowel v that appears in the cvc pattern– from the vowels at the

front part of the connecting vowels, i.e., the vowels v1, v2, ..., vn−1 of the v1...vn pattern.

In addition to GGR3, the other three remaining rules ( GGR4, GGR5 and GGR6) are

capable of distinguishing between the front vowels v1, v2, ..., vn−1 and the last vowel Vn

of the v1...vncn+1 pattern. The use of the empty grapheme “ ” in GGR5 and GGR6

permits the recognition of the difference between the last vowel vn of the c0v1...vncn+1

pattern and that located at the end of word–the vowel vn of the c0v1...vn pattern.

Moreover, GGR6 adds more information to the consonant next to the connected vowels

(e.g., the graphemes “KE” and “BE”). In addition, the rules GGR7, GGR8, GGR9 and

GGR10 are proposed for adding extra detail to the consonant graphemes appearing in

the given word, which are designed with respect to GGR3, GGR4, GGR5 and GGR6,

respectively. Furthermore, another rule GGR11 that combines GGR3 with GGR7 was
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created to enable the addition of extra detail for both vowel and consonant graphemes

appearing within a word.

4.3 Two-stage model for G2P conversion

The architecture of the two-stage model-based approach was first proposed in 2011 to

address the problem of phoneme conflicts in G2P conversion [58]. This architecture

was basically implemented by connecting two different multilayer neural networks in

sequence, which improves the accuracy of the ordinary one-stage neural network-based

G2P conversion [15, 59]. However, the evaluation results in the previous chapter (Chap-

ter 3) demonstrated that the two-stage model using the Fast Artificial Neural Network

(FANN) Library17 lacks some knowledge for detecting the whole word, so it provided

lower word accuracy but higher phoneme accuracy than the WFST-based G2P conver-

sion availabel in the Phonetisaurus toolkit. Therefore, we used the existing WFST-based

approach for G2P conversion [26] to employ a novel two-stage model-based approach.

4.3.1 Prediction using combined grapheme-phoneme (G-P) informa-

tion

The phoneme prediction method, in which only the phonemic information is used as

input to select the best final output phoneme, was first presented in our previous chapter.

Its paradigm (Graphemes ⇒ Phonemes ⇒ Phonemes) shows that this method first

converts the input word into phonemic information; then, all the related phonemic

information is combined and used to predict the exact output phonemes of the G2P

conversion model.

Because only the phonemic information is used in our previous method, we recognized

that all of the words producing the same phoneme sequence (or pronunciation) during

training in the first-stage are merged together before the second stage. For instance, the

words “KOLL,” “KOLLE,” “CAUL,” and “KAHLE” all generated the same phoneme

sequence /K AA L/ at the first-stage, so only one sample /K AA L/ → /K AA L/

was used at the second stage. Furthermore, some wrong phoneme sequences may be

obtained by accident because it is virtually impossible to obtain a perfectly trained

first-stage model. Therefore, some training data could be incorrectly merged or ignored

by the second-stage model. For example, the word “COALE” wrongly generates /K

AA L/ as its output, while its correct phoneme sequence is /K OW L/. Therefore, it

17FANN Library: http://leenissen.dk/fann/wp/

http://leenissen.dk/fann/wp/
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is ignored by the second-stage model. Such a problem reduces the number of training

data at the second-stage and negatively affects the performance of the model.

In order to address this problem, we propose a new phoneme prediction method in which

the input graphemes and output phonemes obtained from the first stage are combined

and used as the new input sequence to determine the best final output phoneme sequence

corresponding to the input word. Therefore, our newly proposed method also consists

of two steps as follows:

� First step : Graphemes → Phonemes

� Second step : Combined G-P pairs → Phonemes

4.3.2 Architecture of the proposed model

On the basis of the new phoneme prediction method presented in the previous section,

the novel two-stage G2P conversion architecture is built using two main modules (i.e.,

first-stage and second-stage models) in sequence.

4.3.3 First-stage model

The first-stage model, implemented based on the original WFST-based G2P conversion

presented in [26] and availabel in the Phonetisaurus toolkit18, is used for the automatic

conversion of a word to its corresponding phoneme sequence. As can be seen in Fig.4.1,

this model is trained with pairs of words and their phoneme sequences and each input

word must first be generated into a grapheme sequence by using any grapheme generation

rule from Table 4.1. In this context, each grapheme is represented by a single letter (e.g.

“A”) or a combination of letters (e.g. “OA”), depending on the rule selected, and they

are separated from one another by an empty space. Because it is virtually impossible

to acquire a perfectly trained model, some unexpected errors will be produced at this

stage.

For example, after training three words with almost the same pronunciation (e.g.,

“KOLL” → /K AA L/, “KOLLE” → /K AA L/, and “COALE” → /K OW L/),

Fig.4.1 demonstrates that the word “COALE” generates “C OA A L E” as its grapheme

sequence and then produces /K AA L/ as its output phoneme sequence with one er-

ror phoneme /AA/. Supposing that the other two words produce correct phoneme

sequences, these three words all output the same phoneme sequence, /K AA L/.

18Phonetisaurus toolkit: https://code.google.com/p/phonetisaurus/

https://code.google.com/p/phonetisaurus/
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Figure 4.1: Architecture of the novel two-stage model-based G2P conversion using
grapheme generation rule. In this example, the rule GGR4 is used for generating the

grapheme sequence of the input word “COALE”.

4.3.4 Second-stage model

The second-stage model is built similarly to the first-stage model, with the exception that

it combines both the input grapheme and the output phoneme sequences obtained from

the first stage and utilizes that combined sequence as a new input to determine the best

final output phoneme sequence corresponding to the original input word. In this chapter,

that new input sequence is called “a sequence of combined G-P pairs” hereafter. As both

the graphemic information and the preliminary phonemic information have already been

obtained before the final phoneme prediction, some errors occurring at the output level

of the first-stage model can be fixed at the second stage. Therefore, our novel two-stage

model for G2P conversion seems to provide a better performance.

According to Fig.4.1, this conversion requires two additional sub-modules for utilizing
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the grapheme and phoneme sequences of the first-stage model as input for the second-

stage model. The first sub-module is created using the m2m-aligner software19 for

aligning the grapheme and phoneme sequences. The second sub-module automatically

transforms the aligned data into a new sequence of combined G-P pairs to be used as

input for the second stage; we also implemented a default option to ignore all the G-P

pairs in which the grapheme is mapped to an empty phoneme (i.e., / /).

For the previous example, three aligned sequences such as “|K|O|L|L| → |K|AA|L| |,”
“|K|O|L|L|E| → |K|AA|L| | |,” and “|C|OA|A|L|E| → |K|AA|L| | |” are generated af-

ter the alignment process. After passing all of them through the second sub-module,

three sequences of combined G-P pairs are made, which include two unique sequences

“K.K O.AA L.L” and another sequence “C.K OA.AA L.L”. Hence, only two new train-

ing data (e.g., “K.K O.AA L.L”→ /K AA L/ and “C.K OA.AA L.L” → /K OW L/)

are created. Finally, the error phoneme /AA/ can be fixed at the second-stage.

4.4 Evaluation

In this section, we first describe the data preparation. Then, we present different pro-

posed test sets including two baseline approaches and sixteen other approaches. The

performance metrics are explained after that, which is followed by the experimental

results of all the proposed test sets.

4.4.1 Data preparation

The performance of our proposed approach was evaluated against two baseline ap-

proaches. We conducted experiments on the American English words-based pronun-

ciation dictionary (CMUdict corpus) used in our previous paper [19], except that each

word and its phoneme sequence used in this study were unaligned (i.e. absence of the

empty grapheme ‘ ’ and empty phoneme / /). Thus, the training dataset contained a

total of 100,713 IV words, while the testing dataset contained 11,188 OOV words. Al-

though we used the same CMUdict corpus as [21, 26], the selected words in our datasets

were different from those used in [21, 26]. The dataset preparation is fully described in

our previous papers [19, 58].

After the data analysis, the grapheme “X” is sometimes mapped to three phonemes

/EH K S/ (e.g., “VISX” → /V IH S EH K S/). To this end, we replaced the connected

phonemes /K S/ and /K SH/ with two other phonemes /X/ and /XH/, respectively, for

words where “X” produces /K S/ and /K SH/.

19m2m-aligner: https://code.google.com/p/m2m-aligner/

https://code.google.com/p/m2m-aligner/
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Table 4.2: Configurations of the eighteen proposed test sets.

Proposed test set Configuration

G-P mapping

/K S/ →/X/

/K SH/→/XH/
Grapheme Generation Rule

(GGRr)

Baseline 1 2-2 No GGR1

Baseline 1-0 1-2 No GGR1

Approach 1 2-2 Yes GGR1

Approach 1-0 1-2 Yes GGR1

Approach 2 1-2 No GGR2

Approach 3 1-2 No GGR3

Approach 4 1-2 No GGR5

Approach 4-1 1-2 No GGR4

Approach 5 1-2 Yes GGR5

Approach 5-1 1-2 Yes GGR4

Approach 6 1-2 No GGR6

Approach 7 1-2 No GGR7

Approach 8 1-2 No GGR9

Approach 8-1 1-2 No GGR8

Approach 9 1-2 Yes GGR9

Approach 9-1 1-2 Yes GGR8

Approach 10 1-2 No GGR10

Approach 11 1-2 No GGR11

4.4.2 Proposed test sets

In this research, we designed and separately utilized eighteen different test sets, as listed

in Table 4.2. According to [72], the WFST-based approach proved to outperform other

well-established approaches such as Sequitur [21], direcTL+ [25], therefore we chose

only the WFST-based approach to represent our baseline approach. As a result, we first

propose two baseline approaches (i.e. Baseline1 and Baseline1-0) using GRR1, which

refers to the original WFST-based approach [26].

Next, two similar approaches (Approach1 and Approach1-0) were designed with respect

to both baseline approaches, with the exception that they were evaluated using the

datasets where the connecting phonemes /K S/ and /K SH/ were manually replaced by

/X/ and /XH/, respectively.

In order to show the effect of our proposed grapheme generation rules on the performance

of the G2P conversion, especially on the word accuracy of the OOV dataset, we designed

the remaining approaches (as listed in Table 4.2) by assigning each of them different rules

and configurations.

In the Phonetisaurus toolkit, the relationship between graphemes and phonemes can

be many-to-many, but the best results were obtained when it was set to (1-2) or (2-2).
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Otherwise, whenever new grapheme generation rules (except for GRR1) were applied,

our results showed that the relationship (1-2) provided the best results. Therefore, in

Table 4.2, we show only the approaches where the relationship (1-2) was used.

4.4.3 Experimental results

The approaches listed in Table 4.2 used the CMUdict corpus to evaluate the model’s

performance. Since the selected words in both training and testing datasets were dif-

ferent from those used in [21, 26], the accuracy of the baseline approaches presented in

this chapter was lower than that shown in both previously mentioned papers. In terms

of word accuracy (WAcc) of the OOV dataset, Fig.4.2 and Fig.4.3 indicate that most of

the approaches using rules related to the vowel graphemes (i.e. Approach3, Approach4,

Approach4-1, Approach5 and Approach5-1) provided better performance than those us-

ing rules related to the consonant graphemes (i.e. Approach2, Approach6, Approach7,

Approach8, Approach8-1, Approach9, Approach9-1, Approach10 and Approach11); they

also provided a slightly higher word accuracy than both baseline approaches at the first

stage; however, there was no improvement between the one-stage and two-stage archi-

tecture. Conversely, in terms of the WAcc of the IV dataset, all approaches provided

almost the same results (98.19% ∼ 98.39%) when built as a one-stage model, but they

improved when implemented as a two-stage model.

Among the proposed approaches that use rules related to the vowel graphemes, Ap-

proach2, Approach6 and Approach11 provided lower word accuracy than the others,

even including both baselines, so we excluded both of them from the next analysis pro-

cess. Appraoch3 was also eliminated, because its word accuracy was lower than that

of the other approaches, especially Approach4; moreover, GGR3 appeared less effective

than the rule used in Approach4. The other approaches, such as Approach7, Approach8,

Approach8-1, Approach9, Approach9-1, and Approach10, which use rules focusing on

the consonant graphemes rather than the vowel graphemes, were also eliminated because

they provided much poorer accuracy compared to the other approaches.

Problems in spelling English words mostly occur when a word has many vowels. There-

fore, in order to thoroughly analyze the experimental results, the words in both the

training and the testing dataset were classified into six different groups (v1, v2, v3, v4, v5,

and v6) depending on the total number of vowels found in each word. The group of

words without vowels (v0) was merged with group v1, while group v6 included all the

remaining groups (v7, v8, etc.). The IV and OOV data at the bottom part of Fig.4.4

show that v2 was the largest group, while v6 was the smallest.
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Figure 4.2: WAcc of different proposed test sets measured based on OOV words.

Figure 4.3: WAcc of different proposed test sets measured based on IV words.
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Figure 4.4: Results of the WAcc obtained from the two-stage model-based G2P con-
version and separately measured based on different groups of OOV datasets.
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To understand the effects of a different number of vowels in a word and the effects

of using different sizes of datasets in the training process, we conducted two different

evaluations. First, we trained and evaluated each group of datasets (vi = v1, v2, ..., v6)

separately. Second, we used the pre-trained model in Table 4.2 (vall = v1 + ...+ v6) to

evaluate each group of datasets (vi) one by one. The evaluation results given by the

different approaches are depicted in Fig.4.4. It shows that the highest values of WAcc

for groups v1 and v2 (i.e., 87.01% and 76.73%) were obtained using the vi trained model,

while those for the remaining groups were obtained using the Vall trained model. This

demonstrates that the pronunciation rules in words with zero, one and two vowels are

more consistent than those in words with more vowels. In addition, in the largest group

v2, only 10% of the words consisted of vvc syllabels. Based on these facts, we conducted

another experiment, where we trained the model using a combined v1v2 training dataset

(i.e., v1+v2) and then evaluated each group v1 and v2 separately. As a result, the WAcc

of v2 increased from 76.73% to 77.15%.

We also conducted some experiments in which we kept the G-P pairs with the grapheme

mapped to the empty phoneme (e.g., “A. ” or “E. ” as shown in Fig.4.1), however we did

not report those results in this chapter because there was not much difference between

the absence and presence of the empty phoneme in the G-P combining method.

4.5 Discussion

The experimental results in Fig.4.2, Fig.4.3 and Fig.4.4 clearly show that our newly

proposed rules (GGR3, GGR4, and GGR5) were more effective than the rules represent-

ing unigram and bigram models (GGR1 and GGR2) since they could help improve the

model’s performance. However, the results given by Approach6 allow us to assume

that the strongest rule, such as in this case GGR6, does not always lead to the highest

performance because it increases the complexity of the training datasets. In addition,

the rules that are designed to enable extra detail for the consonant graphemes (i.e.,

GGR7, ..., GGR11) were not helpful in tackling the problem concerning G2P conversion

at all and also degraded the model’s performance.

In the one-stage model-based G2P conversion, even though the most effective rules were

applied, the WAcc of the IV datasets was very difficult to improve, since it was already

very high (for Baseline1, WAcc= 98.39%). However, it could still be improved by adding

the second stage. As a result, the two-stage model-based G2P conversion appears to keep

almost the same WAcc for the OOV datasets and boosts the WAcc of the IV dataset (i.e.,

+0.2% ∼ +0.3% in WAcc which is equal to 200∼300 words difference). Therefore, we

believe that our proposed approach also can improve the WAcc of the OOV dataset if we
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select the OOV words carefully, as other researchers have done [30, 31, 106]. According

to an extra experiment, the newly prepared training and testing datasets (which consist

of 100,564 and 11,125 words, respectively) selected only words with grapheme-phoneme

pairs appearing at least four times in both datasets. The newly obtained results based on

the one-stage architecture prove that our proposed approach using GGR5 (Approach4)

outperformed the baseline approach (Baseline 1-0) (p < 0.05), while obtaining 73.89%

and 73.54% as WAcc of the OOV dataset using Approach4 and Baseline 1-0, respectively.

Fig.4.4 shows that the highest accuracy for each group of OOV datasets (v1...v6) was

obtained using different approaches, which means that it appears to be very difficult to

use only one approach to solve all the problems associated with G2P conversion. There-

fore, this experiment demonstrates that at least five different approaches are required to

reach the maximum value of WAcc related to the OOV datasets. After selecting only the

trained models providing a maximum value of WAcc for each group of OOV datasets,

we obtained 74.39% and 99.02% as the WAcc of the OOV and IV datasets, respectively.

These results show that, if we are able to correctly pick the best output phonemes from

several results given by different models, then this combined technique could outperform

the baseline approaches (i.e., 0.94% = 108 words difference for the OOV dataset and

0.63% = 634 words difference for the IV datasets).

4.6 Summary

It has been shown in this chapter that using new grapheme generation rules that are

designed to enable extra detail for vowel graphemes can improve the performance of G2P

conversion. The new phoneme prediction method allows the second-stage model to learn

the pronunciation rules more easily than the first-stage model because both the grapheme

sequences and the preliminary phoneme sequences have already been identified at the

input level. Moreover, we have shown that using a single-stage approach is not sufficient

to deal with all the problems associated with G2P conversion, because each approach

is designed using different technique to address different challenges and therefore, using

various approaches proves very helpful in solving different specific problems.
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5.1 Introduction

Often, there is no strict correspondence between letters and phonemes in spoken words,

and this is especially true for an orthographically irregular language like English [11].

Thus, researchers have proposed various data-driven methods using many-to-many map-

ping techniques between graphemes and phonemes. Methods have been proposed based

on hidden Markov models (HMMs) [16, 17], support vector machines (SVMs) [18], artifi-

cial neural network (ANNs) [19], joint-sequences [21], margin-infused relaxed algorithms

(MIRAs) [23, 24, 25], a weighted finite-state transducer (WFST) [27], conditional ran-

dom fields (CRF) [28, 29, 30], hidden conditional random fields (HCRF) [31, 32], an

adaptive regularization of weight vectors (AROW) [33], a narrow adaptive regulariza-

tion of weight vectors (NAROW) [34], and structured soft-margin confidence weighted

learning (SSMCW) [35]. Most of these methods, and especially SSMCW-based G2P con-

version, are implemented in the Slearp toolkit 20 and have demonstrated significantly

accurate results. However, each of these methods has been designed using specific tech-

niques that address particular challenges faced by G2P conversion. Therefore, any single

approach will not suffice when addressing all of the problems encountered by G2P conver-

sion [60]. Considering this, a combination of various approaches using different methods

is a reasonable strategy for treating these problems in a flexible manner. For exam-

ple, word or phoneme transition network-based methods have been successfully used

in various research domains such as automatic speech recognition [107], speech search

[57, 108, 109, 110], speech translation [111], and speech summarization [112].

Combining various methods can both lend flexibility to the conversion and improve

its predictive performance. Thus, in this chapter we present a Phoneme Transition

Network (PTN)-based architecture for G2P conversion. Basically, our proposed PTN-

based method first converts a target word into multiple phoneme strings using sev-

eral data-driven methods. Then, it aligns the obtained results—the phoneme-sequence

hypotheses—using a dynamic-programming (DP) algorithm, combining them into a con-

fusion network (hereafter referred to as the “PTN”), and determining the best phoneme

from each PTN bin—a block of phonemes/transitions between two nodes in the PTN—

to represent the final output. The best phoneme selection in this study is based on a

voting strategy according to the frequency and maximum confidence score of the occur-

rences implemented in the Recognizer Output Voting Error Reduction (ROVER) system

[113].

Selecting the set of methods used by the proposed architecture is a crucial task. If accu-

rate methods are combined with inaccurate methods, this can considerably degrade the

20Slearp: http://osdn.jp/projects/slearp/
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performance of the entire PTN-based G2P conversion model. For example, Schlippe et

al. merged five phoneme-sequence hypotheses generated from five different methods to

enhance the generation of pronunciation in low-resource scenarios [114]. However, they

could not demonstrate any significant improvement using this combined approach with-

out the addition of web-derived pronunciation dictionaries. Even so, this improvement

deteriorated as the size of the training data increased, especially for a difficult language

like English. On the other hand, according to our previous research [115], when the

number of phoneme-sequence hypotheses generated from inaccurate models was more

than the number of those generated from accurate models, it was difficult to maintain

and improve the performance of the PTN-based model.

In order to mitigate this risk, we selected a minimum number of methods.21 We also

present a novel use for right-to-left (reversed) grapheme-phoneme (g-p) sequences and

grapheme generation rules (GGRs) [60]. In this study, both techniques are especially

helpful for extending the feasibility and improving the performance of PTN-based G2P

conversion, because they increase the number of phoneme-sequence hypotheses without

increasing the number of methods used. By reversing the conventional (left-to-right

reading direction) g-p sequence, we can provide context information that differs from

conventional sequences during the alignment. This allows each single method to train

an additional model, thus producing an additional phoneme-sequence hypothesis. In

addition, applying various GGRs22 to the words (that satisfy the rules) in the source

corpus will also generate additional grapheme-sequences and more training samples.

This increases the size of training data, enabling a single trained model to produce more

than one phoneme-sequence hypothesis. Therefore, this chapter proposes two different

versions of the PTN-based architecture for G2P conversion. As a result of the reversed

g-p sequences, the first architecture uses only three different methods, based on MIRA

[25], WFST [27], and SSMCW [35], to train six separated source models in order to

generate six phoneme-sequence hypotheses. To reduce the number of methods as well as

the number of trained models, we use only a single GGR rule for the second architecture.

Consequently, this architecture requires only four models based only on a single method

(viz., an SSMCW-based method) to generate the same number of hypotheses.

We evaluated our proposed models against the three baseline methods mentioned in the

previous paragraph using multiple datasets and the K-fold cross-validation technique.

The results indicate an improvement in both phoneme and word accuracy with respect

to OOV words.

21In previous research, a method/approach has been used to train a single model only, so the terms
“method/approach” and “model” might have a similar meaning. Otherwise, here, we differentiate be-
tween them because a single selected method in this chapter can be used to train more than one model.

22In English, the interaction between vowels in a word strongly affects its spelling. Thus, GGRs were
originally proposed to add extra-sensitive information to each vowel-grapheme appearing in a word.
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The remainder of this chapter is organized as follows. In Section 5.2, we describe the

three data-driven methods for G2P conversion selected for this study. We then present

the PTN-based G2P conversion and its compact version in Sections 5.3 and 5.4, re-

spectively. The evaluation results and discussion are presented in Sections 5.5 and 5.6,

respectively. The conclusion is given in Section 5.7.

5.2 Different data-driven methods for G2P conversion

Many data-driven approaches to G2P conversion have been proposed, but the popular

joint-sequence or n-gram model-based methods for G2P conversion have been proven to

be the most powerful techniques for dealing with OOV words. Because our proposed

approach requires the combination of at least three methods, we selected the three most

powerful statistical-based methods that differently encode the n-gram model.

5.2.1 MIRA-based method for G2P conversion (DIRECTL+)

The best-known joint n-gram model-based method for G2P conversion was first proposed

in 2008 by Bisani and Ney [21], and it was implemented as a generative system available

in the Sequitur toolkit.23 In this system, the model is trained using the expectation-

maximization algorithm, and the phoneme sequence corresponding to a given word ϕ(g)

is predicted through a Bayes’ decision rule as follows:

ϕ(g) = argmaxϕ′P (g, ϕ
′
) (5.1)

Here, g represents a given grapheme sequence, where ϕ
′

is the most likely pronunciation

of the grapheme sequence g.

Soon after, Jiampojamarn et al. represented the joint n-grams model for G2P conver-

sion as an online discriminative sequence-prediction model, which used a many-to-many

alignment between grapheme and phoneme sequences and a feature vector consisting of

n-grams context features, HMM-like transition features, and linear-chain features [23].

For each training iteration, the feature weight vector was updated using the MIRA al-

gorithm; this system is called DirecTL. The updated version of DirecTL is called the

DIRECTL+ toolkit,24 implemented in 2010, in which the joint n-gram features were

integrated [24].

23http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
24https://code.google.com/p/directl-p/



Chapter 5 75

5.2.2 Rapid WFST-based G2P conversion (Phonetisaurus)

A WFST-based method for G2P conversion proposed by Novak et al. [27] has been

implemented to develop a rapid and high-quality joint-sequence model-based G2P con-

version. First, the training words and their phoneme sequences are provided, and these

are aligned using an expectation-maximization training procedure based on the many-to-

many aligning technique [21]. The joint-sequence corpus is given as an input for n-gram

counting (in which the order or length of the n-grams to count is provided), and then

a standard joint n-gram model is trained using the MITLM tookit25 or the OpenGrm

NGram library,26 and smoothed by Kneser-Ney discounting with interpolation. Then,

the trained n-gram model is converted to a WFST-based model, which predicts the

phoneme sequences of unknown words using the following decoding function:

Phseqbest = shortestPath(Projecto(W o M)) (5.2)

where “Phseqbest” refers to the most likely phoneme sequence given the input word “W”

under the FSA representation and the n-gram model “M” encoded as FST, “o” refers to

the weighted composition, “Projecto(.)” is a projection onto the output symbols, and

“shortestPath(.)” indicates the shortest-path algorithm.

5.2.3 SSMCW-based G2P conversion (Slearp)

Structured online discriminative learning methods, such as structured AROW [33] and

NAROW [34], have been successful at improving performance in G2P conversion. Re-

cently, an SSMCW-based method [35] has been proposed for extending multi-class

confidence-weighted learning to structured learning, which softens the marginal errors

for hypothesis and update parameters using the N-best hypotheses simultaneously and

interdependently for robustness against over-fitting.

The general formulation of a G2P conversion model using a structured learning method

is as follows:

ŷ = argmaxyω
TΦ(x, y) (5.3)

where the parameters x and y represent a given grapheme sequence and its corresponding

phoneme sequence, respectively, ω indicates the weight vector for the classifier, and

Φ(x, y) is a feature vector that consists of the frequencies of joint n-gram features on x

and y. The predicted phoneme sequence ŷ is obtained using a dynamic-programming

25https://code.google.com/p/mitlm/
26http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary
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algorithm. For a detailed discussion of how the parameters in Eq.(5.3) are determined,

please refer to [35].

5.3 PTN-based architecture for G2P conversion

In this section, we first introduce a novel use of reversed g-p sequences and explain how

PTN sequences are generated from multiple phoneme sequences. Then, we describe how

to determine the best output phoneme sequence from the PTN sequence using voting

techniques.

5.3.1 Reversed g-p sequences

To predict a phoneme sequence corresponding to an input grapheme sequence, most

existing approaches use an n-gram model to calculate the likelihood probability that

a phoneme (sequence) accurately corresponds to a particular grapheme (sequence) [16,

21, 24, 27, 33, 34, 35]. This means that only the context from left to right is seen by

the model. Thus, the trained model can only learn or cover the relationship between

graphemes and phonemes in a single direction.

According to [116], Sutskever et al. reversed the order of input words in all source

sentences, but not in the target sentences, and this was done in order to train a machine-

translation model using a multi-layered Long Short-Term Memory Recurrent Neural

Network (LSTM-RNN). This cross-mapping technique is possible owing to Connectionist

Temporal Classification (CTC) [117], which allows the RNNs to be trained without

requiring any prior alignment between the source and target sequences. Sutskever et al.

demonstrated that this reversed-word model (slightly) outperformed models based on

conventional word sequences.

However, this cross-mapping technique is inadequate for statistical-based methods where

a prior alignment between input and output sequences is required [16, 21, 24, 27, 33,

35].27 Therefore, in this chapter we introduce a new way to use the reversing technique

for G2P conversion, such that it avoids alignment problems. Rather than reversing

only the input grapheme sequence, we reverse both the input grapheme and the output

phoneme sequences, as demonstrated in the following example:

� Conventional g-p sequences: “LURIE”→/L UH R IY/

� Reversed g-p sequences: “EIRUL”→/IY R UH L/

27We also conducted tests for G2P conversion, but the results were completely unsuitable, because
the grapheme in a left-to-right direction must be aligned to the phoneme in the reversed direction.
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5.3.2 PTN generation using multiple phoneme sequences

Over the last few years, it has proven considerably difficult to improve the performance of

a G2P conversion model for OOV words, because each method or approach is uniquely

designed using different techniques to address particular challenges. It is seemingly

impossible to utilize any single method to deal comprehensively with the host of problems

encountered by G2P conversion [60]. Therefore, we designed a PTN-based architecture

for G2P conversion that allows many different methods to be applied together, in order

to deal broadly with the various problems.

The number of methods used by the PTN-based G2P conversion model, as well as the

methods themselves, must be carefully selected, owing to the risk of combining accurate

methods with inaccurate ones such that the performance of the entire model is degraded.

In order to minimize this risk, only a few accurate methods should be used. By contrast,

combining only a minimum number of phoneme-sequence hypotheses will not improve

the PTN-based G2P conversion [115].

Therefore, in this study, we propose a novel PTN-based architecture using the three

most accurate methods for G2P conversion: the SSMCW-based method (available in

the Slearp toolkit), the WFST-based method (available in the Phonetisaurus toolkit),

and the MIRA-based method (available in the DIRECTL+ toolkit). As depicted in

Fig.5.1, by using the conventional g-p sequences as training data, we can generate three

phoneme-sequence hypotheses from three source models: Slearp, Phonetisaurus (Phon.),

and DIRECTL+. Furthermore, the reversed g-p sequences allow these three methods to

produce three additional models: Slearp.reverse, Phonetisaurus.reverse (Phon.reverse),

and DIRECTL+.reverse. In total, six phoneme-sequence hypotheses are generated from

six models implemented using only three methods.

The ROVER system [113] allows us to align these phoneme sequences using a DP algo-

rithm, and to merge them together in a single confusion network (or PTN), as shown in

Fig.5.1. In this context, given the presence of insertion or deletion problems during the

alignment, a null phoneme /@/ is used by the PTN to represent a null transition.

5.3.3 Determining the best output phoneme

Theoretically, many phoneme sequences can be generated from a PTN, but only a single

sequence is needed to represent the best output of the model. In order to determine

the best output sequence, we adopted a voting strategy, according to the frequency and

maximum confidence score of the occurrences. This voting scheme is provided in the

ROVER system [113]. The phoneme-selection function for each PTN bin is based on
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Figure 5.1: Architecture for the first proposed PTN-based G2P conversion using
six models based on three different methods. (LR→LR) and (RL→RL) represent the

models trained using the conventional and reversed g-p sequences, respectively.
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Table 5.1: Examples of GGRr rules.

GGR0
gi ⇒ gi (like unigram = default)

Ex: “OKEECHOBEE” ⇒ O K E E C H O B E E

GGR1
gi ⇒ gigi+1 (like bigram)

Ex: “OKEECHOBEE” ⇒ OK KE EE EC CH HO OB BE EE E

GGR2
If (n > 1) v1...vncn+1 ⇒ v1v2 v2v3 ... vn−1vn vn cn+1

If (n = 1) gi ⇒ gi
Ex: “OKEECHOBEE” ⇒ O K EE E C H O B EE E

Here, gi = {ci, vi} : grapheme at index i;
ci , vi : consonant and vowel graphemes at index i;
n : number of connecting vowels in a given word.

the following scoring formula:

score(ph) = α(N(ph, i)/n) + (1− α)C(ph, i) (5.4)

C(ph, i) = MAX(conf1(ph, i), conf2(ph, i), ..., confn(ph, i)) (5.5)

where N(ph, i) is the number of occurrences of the phoneme ph in the ith PTN bin, and n

denotes the number of phoneme-sequence hypotheses. Furthermore, C(ph, i) represents

the confidence score for the phoneme ph in the ith PTN bin, where conf1(ph, i), ..., confn(ph, i)

is the set of confidence scores for ph in the ith PTN bin that correspond to the vari-

ous sequence hypotheses. The real value α = [0...1] represents a trade-off between the

phoneme frequency and the confidence score in Eq.(5.5).

5.4 Reducing the number of required source models

Even if the reversed g-p sequences can make a complementary model that can gener-

ate an additional phoneme-sequence hypothesis for each source method, the risk from

combining different methods nevertheless remains. Hence, we introduce a novel use of

grapheme generation rules (GGRs) [60] to minimize this risk. This allows us to use only

a single method for implementing a PTN-based G2P conversion model.

5.4.1 Grapheme generation rules (GGRs)

Textual information does not supply a sufficient amount of information relating to the

phonological interaction [104]. In orthographically complex languages such as English,

the interaction between vowels in a word significantly affects the spelling. Hence, a

technique for generating new grapheme sequences from the same input text (known as
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Figure 5.2: Architecture for the second proposed PTN-based G2P conversion using
four models based on only a single method from the Slearp toolkit.

GGRs) has been proposed for adding extra-sensitive information to each vowel-grapheme

appearing in a word [60]. Suppose that a grapheme sequence g = g1g2...gn is provided

as an input. The new grapheme sequence ĝr = ḡ1tḡ2t...tḡn, in which an empty space

is used as a separator, can be generated with respect to a rule GGRr, formulated as

follows:

ĝr = GGRr(g) (5.6)

A list of few rules, which is selected from [60] and designed to tackle the connecting vowels

in the English language, is provided in Table 5.1. In this study, we selected only the rules

GGR0 and GGR2 for our first-time experiments because we wanted to investigate the

difference between the baseline rule GGR0 and the best rule GGR2 from [60] when used

within the PTN-based G2P conversion. The rule GGR0 is equivalent to the conventional

grapheme sequence (where the space is ignored), butGGR2 can distinguish the separated

vowel v in the cvc pattern from the connecting vowels v1, v2, ..., vn−1 in the v1v2...vn

pattern.

5.4.2 PTN-based G2P conversion using only one method

According to Fig.5.1, after using the reversed g-p sequences, only three different meth-

ods are required for generating six phoneme-sequence hypotheses used in the PTN-

based G2P conversion. However, the source/trained models remain the same six models.

Hence, the integration of GGRs into the source models is especially helpful.

Rather than using only the original word-pronunciation pairs from the source corpus,

we applied several GGRs to all the words, in order to generate additional g-p se-

quences. These were then added to the dataset; the redundant g-p sequences were

omitted. According to the example in Table 5.2, we suppose that a source dataset
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Table 5.2: Example of a newly generated dataset when various GGRr rules are
applied. Here, the g-p sequences in the source dataset are selected from the CMU-

Dict noisy corpus.

Grapheme sequence → Phoneme sequence GGRr
S

ou
rc

e

(S
) NEWLY → N UW L IY

CREATIVE → K R IY EY T IH V
IDEA → AY D IY AH

G
G

R
0
(S

)

(Ŝ
0
)

N E W L Y → N UW L IY GGR0

C R E A T I V E → K R IY EY T IH V GGR0

I D E A → AY D IY AH GGR0

G
G

R
2
(S

)

(Ŝ
2
)

N E W L Y → N UW L IY GGR2

C R EA A T I V E → K R IY EY T IH V GGR2

I D EA A → AY D IY AH GGR2

Ŝ
0
∪
Ŝ
2

(Ŝ
)

N E W L Y → N UW L IY GGR0 or GGR2

C R E A T I V E → K R IY EY T IH V GGR0

C R EA A T I V E → K R IY EY T IH V GGR2 (+)
I D E A → AY D IY AH GGR0

I D EA A → AY D IY AH GGR2 (+)

(i.e., S = {(g, p)1, (g, p)2, ..., (g, p)N} =
⋃N

k=1(g, p)k) consists of N pairs of g-p sequences.

Then, a set of R rules is applied, and the newly generated dataset Ŝ is formulated as

follows:

Ŝ =
R⋃

r=1

Ŝr =
R⋃

r=1

GGRr(S) =
R⋃

r=1

N⋃
k=1

(GGRr(g), p)k =
R⋃

r=1

N⋃
k=1

(ĝr, p)k (5.7)

As a result, for each input word (refers to the conventional grapheme sequence g), Fig.5.2

shows that it is possible to generate more than one phoneme sequence from a trained

model in which the newly generated dataset Ŝ is used (e.g., Slearp.GGR0+2), given

the different representations of its grapheme sequence (e.g., the generated grapheme

sequences ĝ0 = GGR0(g) and ĝ2 = GGR2(g) seen in Table 5.2). By using both reversed

g-p sequences and various GGRs, the number of generated hypotheses Nbhyps can be

calculated using the following formula:

Nbhyps =

{
2 ∗NbGGRs, if the reversed g-p sequences are used

NbGGRs, otherwise
(5.8)

where NbGGRs indicates the number of applied rules.

The novel use of GGRs in G2P conversion allows us to use only one method to train one

or several models combined at the PTN level. In this study, we compared the perfor-

mance among the models using GGRs with those using conventional and reversed g-p
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Table 5.3: Datasets or corpora used in the experiments.

Dataset Vocabulary size (words)
Train Dev. Test K-fold

NETalk (English) 17,508 1,000 1,500 10
Brulex (French) 23,955 1,000 2,500 10

CMUdict (English) 95,286 6,000 11,000 8
CMUdict noisy (English) 107,438 5,939 11,998 1

CMUdict noisy GGR0+2 (Ŝ) 130,533 7,787 15,372 1

sequences. Therefore, as seen in Fig.5.2, the second proposed PTN-based architecture

for G2P conversion combines six hypotheses generated from four models implemented

using only a single method (i.e., the most accurate SSMCW-based method for G2P

conversion available in the Slearp toolkit). The Slearp and Slearp.reverse models are

trained using the original dataset S, and thus producing only two phoneme-sequence

hypotheses. The Slearp.GGR0+2 and Slearp.GGR0+2.reverse models are trained using

the newly generated dataset Ŝ, and thus possibly generating four phoneme-sequence hy-

potheses. Although the input grapheme sequences g and ĝ0 are equivalent, two different

phoneme-sequence hypotheses might be produced owing to the different source models.

5.5 Evaluation

In this section, we describe the data-preparation process and the experimental setup.

Subsequently, we report the experimental results.

5.5.1 Data preparation

The performance of our two proposed approaches was evaluated relative the baseline

models discussed in Section 5.2. We conducted experiments using four different pro-

nunciation dictionaries (three in English and one in French), as listed in Table 5.3.

The NETtalk, Brulex and CMUdict datasets were obtained from the Pascal Letter-to-

Phoneme Conversion Challenge website9. A noisy CMUdict dataset (CMUdict noisy)

containing words with multiple pronunciations (i.e., heteronyms) is available in the

Phonetisaurus package. In this study, we used the NETtalk corpus to tune the pa-

rameters for each method and the ROVER system.

We subdivided each corpus into training, development, and testing datasets. The

NETtalk, Brulex, and CMUdict datasets each originally consisted of ten separated folds.

9http://pascallin.ecs.soton.ac.uk /Challenges/PRONALSYL/Datasets
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Thus, for each trial of cross-validation, one fold was used as the testing data, some data

in another fold was randomly selected for the development data, and the eight remaining

folds, along with the leftover data from the fold used for the development data, were

extracted and combined for use as training data. By contrast, the source of the CMU-

dict noisy dataset originally consisted of only two parts (training and testing datasets).

Thus, development data was randomly extracted from the training dataset. In order to

conduct a fair evaluation, when the same word appeared multiple times with different

phoneme sequences in the development or testing dataset, we retained only a single pair.

Owing to the fact that the GGRs in this paper were designed exclusively for English

words and the CMUdict noisy corpus were used in many previous studies [21, 24, 27],

we used only this corpus to evaluate our second PTN-based G2P conversion (see Section

5.4). Eq.(5.7) was applied to increase the size of the training, development, and testing

datasets, after GGR0 and GGR2 were applied, the details for which are provided in

Tables 5.2 and 5.3. Here, GGR0 was used to convert the format of the original grapheme

sequence by adding a space between two connected graphemes.

5.5.2 Experimental setup

5.5.2.1 Proposed test sets

In our experiments, we employed the three original models using the conventional g-p se-

quences as baseline models—viz., Slearp (1 Slearp in Tables 5.4 and 5.5), Phonetisaurus

(2 Phon.), and DIRECTL+ (3 DIRECTL+), presented in Section 5.2.

To see the advantages from using the reversed g-p sequences for G2P conversion, we pro-

posed three additional models (4 Slearp.reverse, 5 Phon.reverse and 6 DIRECTL+.reverse)

in which the reversed g-p sequences were used in place of the conventional sequences.

As listed in Tables 5.4 and 5.5, in order to compare the performance between G2P

conversion based on a single model with G2P conversion based on multiple models,

we proposed three PTN-based G2P conversion models. In this case, all six separated

models mentioned in the previous paragraph (labeled 1, 2, 3, 4, 5 and 6 in the PTN

notation) were considered baseline models. For three-model combinations, we proposed

PTN(1+2+3) and PTN(4+5+6) for comparing the performance between the PTN-based

model with only the conventional g-p sequences and the one with only reversed g-p

sequences. PTN(1+...+6) was proposed both to evaluate the performance of the PTN-

based model with all six baseline models and also to observe the effect and risk from

combining accurate and inaccurate source models.
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On the other hand, in the evaluation of our second PTN-based architecture (see Section

5.4), we implemented four baseline models (viz., 1 Slearp, 2 Slearp.GGR0+2, 3 Slearp.reverse,

and 4 Slearp.GGR0+2.reverse), as seen in Fig.5.2 and Table 5.6. The first and third mod-

els were trained using the training and development datasets from the original corpus,

CMUdict noisy, whereas the second and fourth models were trained using datasets from

the newly generated corpus CMUdict noisy GGR0+2. For each input word, two different

representations of a grapheme sequence can be encoded using GGR0 and GGR2. Thus,

two phoneme-sequence hypotheses must be generated from each of the models using

GGRs (i.e., 2 Slearp.GGR0+2 or 4 Slearp.GGR0+2.reverse). In our evaluation, we con-

sidered these hypotheses as belonging to two separated models. The evaluation results

from all the baseline models (A, B, C, D, E and F) in Table 5.6 were obtained using the

same test data—i.e., the same input words—but with different graphemic representa-

tions. In order to compare the performance between G2P conversion based on a single

model with G2P conversed based on a compact PTN, we proposed the same three PTN

models with respect to the evaluation of our first architecture.

5.5.2.2 Experiment configurations

According to the results of the preliminary experiments using the NETtalk corpus, the

necessary parameters for the three selected methods for G2P conversion were tuned as

follows:

� In the DIRECTL+ toolkit, the size of the n-gram context features and joint n-

gram features was set to 7 and 3, respectively. Data alignment was based on the

mpaligner software [118], and the association between graphemes and phonemes

was set to 2-3.

� In the Phonetisaurus toolkit, the number of discounting (bins) and the maximum

length of n-grams to count (order) were set to 3 and 8, respectively.

� In the Slearp toolkit, the size of the n-gram context and chain features was set to

5, while the joint n-gram feature size was set to 7. Pre-alignment was also based

on the mpaligner software with m-m association.

� For both Slearp and DIRECTL+, the minimum number of iterations before ending

the training process and the maximum number of iterations after a degradation in

the performance of the development data were both set to 10. The best iteration

was selected based on both phoneme and word accuracy, and this was measured

with the development dataset.
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Table 5.4: Phoneme (PAcc) and word accuracy (WAcc) for all baseline and PTN-
based G2P conversion models, using NETtalk corpus. The italicized text indicates the
highest accuracy among the baseline models. The text is bold where a PTN provided a
better result than all the baselines, and the background is gray when the PTN(1+...+6)

outperformed both PTN(1+2+3) and PTN(4+5+6).

NETtalk

PAcc WAcc

1 Slearp 93.66% 70.99%
2 Phon. 92.89% 68.56%
3 DirecTL+ 93.75% 71.31%

4 Slearp.reverse 93.79% 71.93%
5 Phon.reverse 93.07% 69.15%
6 DirecTL+.reverse 93.65% 70.89%

PTN(1+2+3) 94.10% 72.73%
PTN(4+5+6) 94.16% 73.14%

PTN(1+2+3+4+5+6) 94.23% 73.45%

Table 5.5: Phoneme (PAcc) and word accuracy (WAcc) for all baseline and PTN-
based G2P conversion models, using other remaining corpora.

Brulex CMUdict CMUdict noisy

PAcc WAcc PAcc WAcc PAcc WAcc

1 Slearp 99.15% 95.65% 93.60% 73.12% 93.83% 73.55%
2 Phon. 98.95% 94.52% 93.25% 72.39% 93.48% 72.71%
3 DirecTL+ 98.20% 92.54% 92.61% 70.91% 92.37% 70.11%

4 Slearp.reverse 99.14% 95.55% 93.74% 73.91% 93.84% 73.96%
5 Phon.reverse 98.93% 94.43% 93.30% 72.53% 93.54% 73.10%
6 DirecTL+.reverse 98.20% 92.55% 92.19% 69.88% 91.91% 68.92%

PTN(1+2+3) 99.20% 95.89% 93.11% 73.87% 94.28% 75.20%
PTN(4+5+6) 99.20% 95.82% 94.06% 74.96% 94.23% 75.25%

PTN(1+2+3+4+5+6) 99.22% 95.98% 94.13% 75.17% 94.28% 75.30%

Table 5.6: Performance of the compact PTN-based G2P conversion using only the
Slearp toolkit, GGRs, and reversed g-p sequences. The bold text and gray background

in this table are used in the same manner as Tables 5.4 and 5.5.

Phoneme-sequence hyp. CMUdict Noisy

Trained model Model name for evaluation PAcc WAcc

1 Slearp A-Slearp 93.83% 73.55%

2 Slearp.GGR0+2
B-Slearp.GGR0 93.93% 74.16%
C-Slearp.GGR2 93.96% 74.21%

3 Slearp.reverse D-Slearp.reverse 93.84% 73.96%

4 Slearp.GGR0+2.
reverse

E-Slearp.GGR0.reverse 94.08% 74.99%
F-Slearp.GGR2.reverse 94.08% 75.08%

compactPTN(A+B+C) 93.97% 74.28%
compactPTN(D+E+F) 94.11% 75.09%

compactPTN(A+B+C+D+E+F) 94.29% 75.56%
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In order to improve the performance of the most accurate source models for PTN-based

G2P conversion, a set of confidence scores in Eq.(5.5) should be assigned according to

the ranking of the models in terms of their accuracy. If {a, b, c, d, e, f} is a set of scores

for our six baseline models, sorted according to accuracy, then each phoneme of the

sequence hypothesis generated from the model with the highest accuracy was assigned

the highest score, a, and each one from the model with the lowest accuracy was as-

signed the lowest score, f . Based on our experiments, for both PTN(1+...+6) and com-

pactPTN(A+...+F), the best results were obtained when the values of a, b, c, d, e and f

were assigned to 1.0, 0.7, 0.6, 0.5, 0.4 and 0.2, respectively; for the ROVER system,

the value of α and the confidence score of NULL phoneme /@/ (noted as Nconf)

in Eq.(5.4) and Eq.(5.5) should be equal to 0.7 and 0.8, respectively. On the other

hand, we used only a set of three scores {a, b, c} for PTN(1+2+3), PTN(4+5+6), com-

pactPTN(A+B+C) and compactPTN(D+E+F); in this case, the best results were ob-

tained when the values of a, b and c were assigned to 1.0, 0.7, and 0.6, respectively.

To conduct our experiments, we simultaneously executed multiple programs on a shared

server (CentOS 6.6, Intel(R) 12-Core(TM) i7-4930K CPU 3.40 GHz, RAM 64 GB, HDD

630 GB) in our laboratory.

5.5.2.3 Performance metrics

We evaluated the models’ performance in terms of phoneme accuracy (PAcc) and word

accuracy (WAcc), using the NIST SCLITE scoring toolkit.10 In this chapter, we report

only the results concerning the OOV words in the testing dataset. We also measured

the statistical significance (i.e., p-values) using McNemar’s test.

5.5.3 Experimental results

All of the evaluation results for the baseline models and the G2P conversion models

based on our first (Fig.5.1) and second (Fig.5.2) PTN-based architectures are described

hereafter.

According to Tables 5.4 and 5.5, and with the exception of the NETtalk corpus, Slearp

generally performed best among the three baselines (i.e., 1 Slearp, 2 Phon. and 3 DIRECTL+)

in which the conventional g-p sequences were used. For instance, in terms of the

WAcc, Slearp achieved 95.65%, 73.12%, and 73.55% for the Brulex, CMUdict and CMU-

dict noisy corpora, respectively.

10http://www.itl.nist.gov/iad/mig/tools/
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Table 5.7: Percentage of input words where one model (ModelA) provides the correct
phoneme-sequence hypotheses while another model (ModelB) provides an incorrect-
sequence hypotheses. The results in this table are based on Fig.5.1 and Tables 5.4
and 5.5. When comparing the result of two models trained using the same method,
the result in bold font indicates the model with higher percentage of correct phoneme-
sequence hypotheses. For example, in the result for the NETtalk corpus, one cell
[ModelA(Slearp.reverse), ModelB(Slearp)] has a higher percentage than its comparative

cell [ModelA(Slearp), ModelB(Slearp.reverse)].

ModelA = correct
and

ModelB = incorrect

ModelB

1 Slearp 2 Phon. 3 DirecTL+
4 Slearp
.reverse

5 Phon
.reverse

6 DirecTL+
.reverse

M
od
el

A

1 Slearp 0 9.03% 6.75% 4.25% 8.66% 6.99%

N
E

T
ta

lk

2 Phon. 6.55% 0 7.75% 6.37% 2.69% 8.00%
3 DirecTL+ 7.05% 10.52% 0 6.65% 10.11% 3.02%
4 Slearp.reverse 5.20% 9.79% 7.31% 0 9.46% 7.62%
5 Phon.reverse 6.70% 3.21% 7.85% 6.55% 0 8.03%
6 DirecTL+.reverse 6.88% 10.37% 2.62% 6.57% 9.89% 0

M
od
el

A

1 Slearp 0 2.68% 4.35% 0.73% 2.67% 4.41%

B
ru

le
x

2 Phon. 1.52% 0 4.53% 1.52% 0.84% 14.54%
3 DirecTL+ 1.33% 2.68% 0 1.42% 2.71% 0.56%
4 Slearp.reverse 0.66% 2.61% 4.36% 0 2.61% 4.42%
5 Phon.reverse 1.45% 0.78% 4.50% 1.46% 0 4.53%
6 DirecTL+.reverse 1.35% 2.64% 0.51% 1.43% 2.69% 0

M
od
el

A

1 Slearp 0 6.74% 8.84% 4.35% 6.60% 8.91% C
M

U
d

ic
t

2 Phon. 6.00% 0 9.23% 5.57% 2.09% 9.30%
3 DirecTL+ 5.64% 6.77% 0 5.03% 6.64% 2.38%
4 Slearp.reverse 5.14% 7.10% 9.03% 0 6.95% 9.12%
5 Phon.reverse 6.01% 2.23% 9.24% 5.56% 0 9.31%
6 DirecTL+.reverse 5.66% 6.79% 2.33% 5.09% 6.66% 0

M
od
el

A

1 Slearp 0 6.83% 9.89% 4.32% 6.54% 10.07% C
M

U
d
ic
t
n
o
isy

2 Phon. 5.99% 0 10.57% 5.67% 2.53% 10.54%
3 DirecTL+ 5.38% 6.88% 0 5.23% 6.76% 2.26%
4 Slearp.reverse 4.73% 6.92% 10.17% 0 6.86% 10.34%
5 Phon.reverse 6.10% 2.93% 10.84% 6.00% 0 10.84%
6 DirecTL+.reverse 5.44% 6.75% 2.15% 5.29% 6.66% 0

Surprisingly, when using reversed g-p sequences rather than conventional sequences,

there was a slight improvement (0.4 ∼ 1% for 4 Slearp.reverse and 0.2 ∼ 0.5% for 5 Phon.reverse),

with the exception of the DIRECTL+ models (i.e., 6 DIRECTL+.reverse) and the Brulex

corpus.

When the three models based on the selected methods (viz., SSMCW-, WFST- and

MIRA-based methods) were combined, the evaluation results in Tables 5.4 and 5.5 fur-

ther reveal that our first proposed PTN-based architecture can improve the performance

of G2P conversion. PTN(4+5+6), the model with reversed g-p sequences, typically out-

performed PTN(1+2+3), the same model but with conventional g-p sequences. Owing

to the fact that reversed g-p sequences allow each single model to train an additional and

superior model, the number of models and phoneme-sequence hypotheses for PTN-based

G2P conversion doubles. Thus, the entire model performance improves. For example,
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Table 5.8: Percentage of words measured from the OOV dataset for different corpora.
This measurement is needed to analyze the correctness and incorrectness between the
input sequence hypotheses and the output sequence of the PTN. Here, the results belong
to PTN(1+...+6) and compactPTN(A+...+F). The second-row results in bold font are
misjudged words. “Could be correct” refers to the result obtained on condition that the
voting method could perfectly select the best phoneme-sequence from the generated PTN.

A set of conditions
Percentage of words

measured from the OOV dataset (%)

Phoneme-sequence
hypotheses

(1, 2,..., 6) or (A, B, ..., F)
as inputs

Output
sequence

of the PTN

PTN
(1+...+6)

compactPTN
(A+...+F)

Status No. of
sequences

Status NETtalk Brulex CMUdict CMUdict
noisy

CMUdict
noisy

(In)Correct Some Correct 19.15% 7.84% 17.83% 18.85% 9.70%
(In)Correct Some Incorrect 10.76% 1.99% 8.94% 9.42% 6.44%

Correct All Correct 53.01% 87.33% 57.32% 56.43% 65.86%
Correct All Incorrect 0% 0% 0% 0% 0%

Incorrect All Correct 0.01% 0% 0.03% 0.06% 0%
Incorrect All Incorrect 17.08% 2.84% 15.88% 15.25% 18.01%

(In)Correct Some Could be correct 29.91% 9.83% 26.77% 28.27% 16.14%
Incorrect All Could be correct 1.14% 0.08% 1.23% 1.00% 0.88%

PTN(1+...+6) improved the WAcc of the best baseline models for NETtalk, Brulex,

CMUdict, and CMUdict noisy from 71.93% to 73.45%, 95.65% to 95.98%, 73.91% to

75.17% and 73.96% to 75.30%, respectively.

As explained in Section 5.4, the compact PTN-based architecture for G2P conversion

has been proposed in order to minimize the risk from combining inaccurate and accu-

rate methods. Because the size of the training data increases after using GGRs, and

despite using the same representation of the grapheme sequence, the results from both

(B-Slearp.GGR0 versus A-Slearp) and (E-Slearp.GGR0.reverse versus D-Slearp.reverse)

in Table 5.6 demonstrate another method for increasing the performance of the baseline

models other than the use of the reversed g-p sequence. By applying both techniques—

GGRs and reversed g-p sequences—it is sufficient to use only the most accurate method

(e.g., the SSMCW-based method in the Slearp toolkit) when implementing as many

models as needed. After merging the hypotheses generated from all of those mod-

els with respect to the second proposed architecture (in Fig.5.2), the results from the

compactPTN(A+...+F), evaluated using the CMUdict noisy corpus, show even more

improvement in terms of the PAcc and WAcc.

5.6 Discussion

The results in Tables 5.4 and 5.5 demonstrate that there are two ways to improve the

performance of each separated model, namely GGRs and reversed g-p sequences.
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The previous evaluation results in Tables 5.4 and 5.5 show that models using reversed

g-p sequences generally outperformed those using conventional g-p sequences. After

analyzing the data, we believe that some conventional sequences and their corresponding

reversed g-p sequences were aligned differently owing to differing representations. Hence,

we can assume that using the reversed g-p sequences provides better-aligned data for

G2P conversion.

In order to appreciate the quality and helpfulness of the phoneme-sequence hypotheses

involved in generating the PTN, we conducted an analysis of the sequences, inspired

by McNemar’s test theory. By calculating the percentage of words for which their

corresponding phoneme sequences could be correctly established by one model (noted

as ModelA) but not another (noted as ModelB), we can observe that the comparing

results between any two different models in Table 5.7 are bigger than zero percentage

for all the corpora. This means that when one model generates an incorrect phoneme

sequence, other models can generate the correct sequence. In addition, by comparing

two models, especially models using the same method but with a different representation

of the grapheme sequence (i.e., the conventional and reversed g-p sequences), we can

assume that one model (or an accurate model) will not provide all of the correct results

that were provided by another model (or an inaccurate model). This is because it is

still likely that one model will generate the correct phoneme-sequence hypothesis, even

when another cannot. For instance, a comparison between the Slearp.reverse and Slearp

models using the NETtalk dataset shows that 5.20% of the words correctly phoneticized

with the Slearp.reverse model were incorrectly phoneticized by Slearp, but only 4.25%

the other way around (i.e., correctly phoneticized by Slearp, but not by Slearp.reverse).

This evidence strongly reinforce the point that combining multiple models for G2P

conversion is more effective than using any single model.

On the other hand, we used the eight conditions in Table 5.8 to analyze the relations

in terms of correctness and incorrectness between the phoneme-sequence hypotheses

generated from various source models and the output of the PTN-based model. These

eight conditions are as follows:

� Some hypotheses are correct → Output sequence of PTN is correct

� Some hypotheses are correct → Output sequence of PTN is incorrect

� All hypotheses are correct → Output sequence of PTN is correct

� All hypotheses are correct → Output sequence of PTN is incorrect

� All hypotheses are incorrect→ Output sequence of PTN is correct

� All hypotheses are incorrect→ Output sequence of PTN is incorrect

� Some hypotheses are correct → Output of PTN is “Could be correct”

� All hypotheses are incorrect→ Output of PTN is “Could be correct”
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Results based on the second condition (i.e. the second row in Table 5.8) indicate that

10.76%, 1.99%, 8.94%, and 9.42% of the OOV words in NETtalk, Brulex, CMUdict,

and CMUdict noisy, respectively, were misjudged when using the first proposed PTN-

based architecture. Moreover, the misjudged results from CMUdict noisy were reduced

to 6.44% when using the second proposed architecture. This shows that the proposed

architectures can nevertheless improve the model performance when selecting a better

technique for determining the best phoneme sequence from the PTN sequence.

Even when all of the phoneme sequence hypotheses are incorrect, the PTN-based G2P

conversion is still able to select the best phoneme candidate from each sequence (e.g.,

0.01% for NETtalk, 0.03% for CMUdict, and 0.06% for CMUdict noisy). The example

in Table 5.9 demonstrates that the PTN-based model can produce a correct output

phoneme sequence for the word “BERENDS” even when all of the generated sequence

hypotheses are incorrect.

By supposing that the voting method could perfectly select the best output phoneme se-

quence from the generated PTN, the last row of Table 5.8 shows that the previous results

could be improved to 1.14%, 0.08%, 1.23%, and 1.00% for NETtalk, Brulex, CMUdict

CMUdict noisy, respectively; in addition, if we also counted the cases that at least one

correct phoneme-sequence hypothesis is used in the PTN generation, then both Tables

5.4, 5.5 and 5.8 show that the performance of the PTN-based G2P conversion would

be highly improved from 73.45% to 84.06% (1.14% + 29.91% + 53.01%) for NETtalk,

from 95.98% to 97.24% (0.08% + 9.83% + 87.33%) for Brulex, from 75.17% to 85.32%

(1.23% + 26.77% + 57.32%) for CMUdict, and from 75.30% to 85.70% (1% + 28.27% + 56.43%)

for CMUdict noisy. These large improvements give us hope for the future challenge,

which means that the voting method in our proposed PTN-based architectures for G2P

conversion need to be improved.

The evaluation results for the compact version of the proposed PTN-based G2P conver-

sion in Table 5.6 demonstrate that the novel use of reversed g-p sequences and GGRs

improves PTN-based G2P conversions, even when only a single method is used. By com-

paring the evaluation results provided by the PTN-based architecture and its compact

version, the results using the CMUdict noisy corpus in Table 5.8 show that 18.85% of the

correct words while using the first architecture, but only 9.70% of correct words while

using the second architecture, has to take risk in the voting process. Thus, our compact

PTN-based G2P conversion effectively minimizes risk in the voting process from com-

bining inaccurate models with accurate ones. Furthermore, many different PTN-based

architectures will be proposed to address challenges to G2P conversion in the future.
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Table 5.9: Example showing how a PTN-based G2P conversion can establish a correct
output phoneme sequence even when all of the sequence hypotheses are incorrect.

Reference:
”BERENDS”

→ /B EH R EH N D Z/

1 Slearp: B EH R AH N D Z

A
lig

n
ed

seq
u

en
ce

h
y
p

o
th

eses

2 Phon.: B EH R EH N Z
3 DirecTL+: B ER EH N D Z

4 Slearp.reverse: B EH R AH N D Z
5 Phon.reverse: B EH R EH N Z

6 DirecTL+.reverse: B EH R EH N Z

PTN sequence: B

{
EH
@

}{
R
ER

}{
EH
AH

}
N

{
D
@

}
Z

↓ ↓ ↓ ↓ ↓ ↓ ↓
Voting(Output): B EH R EH N D Z

5.7 Summary

In this chapter, we showed that the proposed PTN-based G2P conversion is a novel

and effective method for improving the quality of phoneme prediction for OOV words.

The proposal combines different approaches to phoneme prediction in order to address

the various problems encountered by G2P conversion. It also provides significant and

consistently improved results compared to models based on a single approach. The

novel use of reversed g-p sequences and GGRs in this chapter can make complementary

models that allow to generate new hypotheses so that ensemble of them has considerable

gain for the PTN-based G2P conversion model, and it also minimizes the risk associated

with combining accurate and inaccurate models. Moreover, we demonstrated that the

representation of both graphemic and phonemic information plays an important role in

improving model performance.
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Conclusions

This thesis is dedicated to exploring way of improving the predictive quality of G2P

conversion model which is widely adopted in various systems related to speech tech-

nologies. In order to improve its performance in terms of correctness and reliability,

we have proposed three different approaches each of which is implemented with respect

to the paradigm (Graphemes ⇒ Phonemes ⇒ Phonemes) in our proposed two-stage

architecture-based approach for G2P conversion.

In Chapter 3 of the thesis, it provided a study on our firstly proposed application of

G2P conversion. The analysis on the start-of-the-art single-stage neural network-based

approach has shown that using only one neural network is not enough for solving some

complicated problems encountered by G2P conversion. As a result, our first approach

based on multi-layered neural networks has been proposed and called as “A two-stage

neural network-based approach focusing on both grapheme and phoneme contexts”. In

this chapter, our research aimed to improve the conversion performance by dealing with

two specific issues includes: (1) a many-to-many relation between letters and phonemes

in the conversion and (2) a problem of conflicting phonemes at the output level. To

predict the final output phonemes corresponding to the input text, this approach fo-

cused on the phoneme rather than grapheme patterns. Because two different neural

networks and OBC encoding algorithm are used, this approach is also counted as an

expensive and time-consuming approach, but it can also provide good results while per-

forming on a large and complex corpus such as the auto-aligned CMUdict. In terms of

phoneme and word accuracy, the evaluation results showed that our proposed approach

usually outperforms the baselines and it also can be regarded as an improved version of

the single-stage neural network-based approach for G2P conversion. For its further im-

provements, an integration of a pseudo-phoneme- [87] and graphones-based techniques

[21] into our approach seems to reduce the conflicting problems between phonemes at the
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first-stage neural network. Instead of using OBC encoding algorithm to represent the

input and output information of the G2P conversion model, another encoding algorithm

should be token into consideration for reducing the number of neurons as well as size

of the neural network model. A syllable-based approach may also help to improve the

model performance as well [106], [18]. Moreover, instead of using the FANN library, we

should consider to implement each stage model using other machine learning libraries

or toolkits such as the RNNLM toolkit28, OpenANN29, or RNNLib30 toolkits.

In Chapter 4, we utilized the exiting WFST-based method available in the Phonetisaurus

toolkit in place of multi-layered neural network to implement our secondly proposed

two-stage architecture-based G2P conversion. It has been shown in this chapter that

using new grapheme generation rules that were designed to enable extra detail for vowel

graphemes could improve the performance of G2P conversion in terms of phoneme and

word accuracy. The new phoneme-prediction method allowed the second-stage model

to learn the pronunciation rules more easily than the first-stage model because both the

grapheme sequences and the preliminary phoneme-sequences had already been identified

at the input level. The evaluation results measured on the CMUDict corpus at the end

of this chapter also demonstrated that a multiple-models combination could become a

very helpful and flexible strategy to design a highly accurate architecture for tackling

simultaneously different problems encountered by G2P conversion. For the further chal-

lenge, more effective rules to reduce the complexity of pronunciation in both training

and testing datasets should be designed because they can potentially boost the word

accuracy of our proposed approach to a higher level.

The global vocabulary is in continuous expansion like the universe itself, so we need

approaches capable to embrace these changes. And last, but definitely not the least is

the multilingual aspect of the rapidly developing global village. A non-stop development

of speech technologies created a need for a highly intelligible, adaptable and multilin-

gual G2P conversion system that can deal accurately with the OOV words. Therefore,

in Chapter 5, we showed that our thirdly proposed PTN-based G2P conversion is a

novel and effective method for improving both the quality and the flexibility of phoneme

prediction for OOV words. The proposal combines different approaches to phoneme

prediction, in order to address the various problems encountered by G2P conversion. It

also provides significant and consistently improved results compared to models based on

a single approach, based on the evaluation results using various pronunciation dictionar-

ies such as CMUdict, CMUdict noisy, NETtalk and Brulex. Especially, the novel use of

reversed g-p sequences and GGRs in this chapter not only reduces the number of models

28RNNLM http://www.fit.vutbr.cz/${\sim}$imikolov/rnnlm/
29OpenANN: http://openann.github.io/OpenANN-apidoc/
30RNNLib: http://sourceforge.net/p/rnnl/wiki/Home/

http://www.fit.vutbr.cz/${\sim }$imikolov/rnnlm/
http://openann.github.io/OpenANN-apidoc/
http://sourceforge.net/p/rnnl/wiki/Home/
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and training time for the PTN-based G2P conversion model, it also minimizes the risk

associated with combining accurate and inaccurate models. Furthermore, the evalua-

tion results of the PTN-based G2P conversion using GGRs also demonstrated that the

representation of both graphemic and phonemic information plays an important role in

improving the conversion performance.

In future work, we plan to create new and effective GGRs to further improve our pro-

posed approach, enabling a trained model to generate more accurately output phoneme-

sequence hypotheses, such that only two models (using conventional and reversed g-p

sequences) will be sufficient for our PTN-based G2P conversion. Moreover, the hamming

distance, calculated from the articulatory features of phonemes [119], shall be used for

the DP alignment process in the ROVER system. Inspired by the LSTM-RNNs-based

method for G2P conversion [120], we shall attempt to challenge our approach at the vot-

ing level with the use of a finite state transducer and a joint n-gram model, rather than

relying on the simplistic voting method available in the ROVER system. We also think

that the suffix information (as seen in Table C.1 in Appendix C) will be also useful for

the improvements in the future On the other hand, we also expect that the PTN-based

sequence of the input text will be very useful for dealing with the OOV search keywords

in the spoken term detection system and other systems as well.
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