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Abstract

A modern speech synthesis (Text-to-Speech or TTS) system usually generates output
speech through phonological information (or phonetic transcription) rather than direct
representation of textual information. As a result, the quality of the precise conversion
of arbitrary text into its corresponding phoneme string has a strong impact on the per-
formance of the whole system. In general, the phonemic transcription of a written word
could be possibly generated by consulting a pronunciation dictionary available inside the
system for the in-vocabulary words or predicted through a data-driven Grapheme-to-
Phoneme (G2P) conversion for the unknown or out-of-vocabulary (OOV) words. Besides
the TTS system, the G2P conversion has also been widely adopted for other systems
such as computer-assisted language learning, automatic speech recognition, spoken term

detection, spoken document retrieval and speech-to-speech machine translation systems.

Due to the variability in the pronunciation rules, there is no strict correspondence
between graphemes and phonemes, especially in American English language. Thus,
many G2P approaches using a many-to-many mapping technique between graphemes
and phonemes has been proposed. In order to improve the prediction performance of the
G2P conversion model, in this thesis, we propose several approaches based on a two-stage
architecture. This architecture allows to treat the problems occurred in the conversion

using two different steps: graphemes-to-phonemes and phonemes-to-phonemes.

Our first approach is called “a two-stage neural network-based G2P conversion” which is
designed for dealing with the problem of conflicting phonemes, where an input grapheme
could, in the same context, produce many possible output phonemes at the same time.
For example, if a neural network model takes a sequence of seven graphemes as input,
the grapheme ‘A’ on sequence “HEMATIC” can produce the phoneme /AE/ when
it belongs to the word “SCHEMATIC”, and also /AH/ when it is within another
“MATHEMATICIAN”. Thus, it is difficult to identify the correct phoneme correspond-
ing to ‘A’ since there is more than one choice. To solve such a problem, our proposed
model first converts the input text/word into multiple phoneme substrings and then uses
a combination of the obtained phoneme substrings as a new input pattern to predict the

output phoneme corresponding to each input grapheme in a given word.

Since the performance of the neural network-based model for G2P conversion is limited,
we use an existing weighted finite-state transducer (WFST)-based method implemented
in the Phonetisaurus toolkit to implement our second proposed model. Except the
acronyms and words with special pronunciations, we have figured out that most of the
error words in G2P conversion are caused by the wrong prediction of their own vowel

graphemes. Therefore, we design several grapheme generation rules, which enable extra



details (or sensitive information) for the vowel and consonant graphemes appearing
within a word. These rules are applied to the input text/words at the first-stage of
our proposed model. The evaluation results have shown that a G2P model using dif-
ferent rules can produce different output results that allow each rule to tackle different
problems which may occur in different contexts during a conversion. This shows that a
single approach does not suffice when addressing all the problems encountered by G2P
conversion. Considering this fact, a combination of various approaches using different

techniques is a reasonable strategy for treating the problems in a flexible manner.

Combining various techniques can both lend flexibility to the conversion and improve its
predictive performance. Therefore, in this thesis, we present a phoneme transition net-
work (PTN)-based architecture for G2P conversion. First, it converts a target word into
multiple phoneme strings using different existing data-driven methods. Then, it aligns
the obtained results—the phoneme-sequence hypotheses—using dynamic programming al-
gorithm, combines them into a confusion network (or PTN), and determines the final
output phoneme sequence by selecting the best phonemes from all the PTN bins—blocks
of phonemes/transitions between two nodes in the PTN. Moreover, in order to extend
the feasibility and improve the performance of the proposed PTN-based model to an-
other higher level, we introduce a novel use of right-to-left (reversed) grapheme-phoneme
sequences along with grapheme generation rules. Both techniques are helpful not only
for minimizing the number of required methods or source models in the proposed ar-
chitecture but also for increasing the number of phoneme-sequence hypotheses as well
as new phoneme candidates, without increasing the number of methods. Therefore, the
techniques serve to minimize the risk from combining accurate and inaccurate methods

that can readily decrease the performance of phoneme prediction.

Various model combinations have been conducted and tested. Evaluation results using
various word-based pronunciation dictionaries or datasets (such as NETtalk, Brulex,
CMUDict and CMUDict_noisy) and K-fold cross-validation techniques show that our
proposed PTN-based model, when trained using the reversed grapheme-phoneme se-
quences, often outperforms conventional left-to-right grapheme-phoneme sequences. In
addition, the evaluation also demonstrates that the PTN-based method for G2P conver-
sion is more accurate than all the baseline approaches that are tested in terms of both

phoneme and word accuracy.

In the future, we plan to create new and effective grapheme generation rules to further
improve our proposed approach, enabling a trained model to generate more accurately
output phoneme-sequence hypotheses, such that only two models (using conventional
and reversed grapheme-phoneme sequences) will be sufficient for our PTN-based G2P
conversion. Moreover, the hamming-distance, calculated from the articulatory features
of phonemes, shall be used for the dynamic programing algorithm in the PTN generating
process. A PTN sequence shall be used instead of a single phoneme sequence to represent

an OOV keyword in the spoken term detection as well as other systems.
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Introduction

Contents
1.1 Languages, texts, phonetics, prosody and speech . ... .. 2
1.2 Objectives of theresearch . ... ... ... .......... 9
1.3 Advantages of G2P conversion . . ... ... ... ...... 9
1.4 Contributions . . . . ... ... .. 0 0 oo oL, 12
1.5 Organization of thethesis . ... ... ............. 14

Human communication is a fundamentally cooperative enterprise, operating most nat-
urally and smoothly within the context of (1) mutually assumed common conceptual
ground, and (2) mutually assumed cooperative communicative motives [1]. A hypoth-
esis is that the first uniquely human forms of communication were pointing and pan-
tomiming. The social-cognitive and social-motivational infrastructure that enabled new
forms of communication then acted as a kind of psychological platform on which the
various systems of conventional linguistic communication could be built. According to
the Wikipedia page (https://en.wikipedia.org/wiki/History_of_communication),
human communication was revolutionized with speech approximately 500,000 years ago;

symbols were developed about 30,000 years ago [2], and writing about 5,000 years ago.

During the old era and before the birth of computer, human had to read the written
text to be understood or to transfer its meaning to another people through speech. The
revolution of computers, electronics, media and technologies has completely changed the
human life, especially the way of human thinking and communicating. Many impossible

things and creatures have been found, analyzed, realized, invented and then innovated by
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human. For many years, scientists have dreamed of building machines able to converse
with their creators, by endowing them with a measure of “intelligence” or “understand-
ing” together with speech recognition and synthesis capabilities [3]. Even if building
a machine that would have human-like intellectual ability in both understanding and
talking is impossible, applications generating artificial speech (i.e., speech synthesis) or
understanding human speech (i.e., speech recognition) are highly demanded on the mar-
ket, especially now when the quality of both the synthesized speech and the recognized
information is much better than a decade ago. This is because speech technologies have

as their principle objective to facilitate the interaction between humans and computers.

In order to make the speech technologies possible, the knowledge of language reading
and understanding is definitely required. Learning new languages is difficult and very
time-consumming. For example, it is required a lot of time and efforts to be capable
to read a text written in a specific language; moreover, the reading and speaking ex-
periences are definitely unavoidable to understand how to pronounce the text or word
correctly. For a human being, the reading performance is acceptable as long as it can be
understood by other people and especially by the native speakers. Unlikely, this is not
enough for the computer applications including the automatic speech recognition and
comuputer-assisted language learning softwares, where a perfect quality of text reading
is theoretically and highly demanded. Therefore, when the quality of pronuciation is

concerned, the phonological knowledge in reading must be taken into account too.

The remainder of this chapter is organized as follows. It first overviews a world of
languages and then describes what the texts, phonetics, prosody and speech in Text-to-
Speech system in Section 1.1. Next, it presents the objectives of our research in Section
1.2. The advantages of grapheme-to-phoneme conversion and its applications are briefly
explained in Section 1.3. Then, it presents our proposed approaches for grapheme-to-
phoneme conversion as our contributions in Section 1.4. An organization of the thesis

is lastly written in Section 1.5.

1.1 Languages, texts, phonetics, prosody and speech

Now, there are 7.2 billion people on earth. According to the infographic of a world of
langauges depicted in Fig.1.1, a survey of 6.3 billion people shows that there are at least
7,102 known languages alive in the world today. T'wenty-three of these languages are a
mother tongue for more than 50 million people and make up the native tongue of 4.1

billion people around the world. These languages includes: Chinese, Spanish, English,
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Hindi, Arabic, Portuguese, Bengali, Russian, Japanese, Lahnda, Javanese, German, Ko-
rean, French, Telegu, Marathi, Turkish, Tamil, Vietnamese, Urdu, Italian, Malay /Ba-
hasa and Persian. In Fig.1.1, each language is represented within black borders, and the
number of native speakers (in millions) by country is also provided; the colour of these
countries shows how languages have taken root in many different regions. The bottom
part of Fig.1.1 demonstrates that English is the most popular language being learned
and spoken by many countries around the world, even though Chinese has the largest

number of native speakers.

Regarding the fact that each language has been used by many people living in different
countries for such a long time, the pronunciation rules in some languages have been
regularly increased and become unstable day-by-day due to the social impacts. For
example, according to Fig.1.4, the pronunciation rules in the modern English language
have been gradually changed and become the most complicated among other languages
in the world because it has been influenced by many foreign languages, such as, French,

Latin, Greek, Germanic, etc.

In general, the orthographic text or word in any language could be perfectly pronounced
only by the linguistic experts who have a deep phonological knowledge in that language;
the complexity of pronunciation rules is highly language-dependent. To do this, the
experts have to learn and memorize all the possible pronunciation rules as well as its
using contexts (e.g., the context of speaking). It is natural for human beings that they
have a special ability to memorize those rules and then use them to speak the words out
through the human speech production and control mechanisms which are very complex
to be understood, but it might sound like a joke to make a blind machine have such
ability. However, for over the years, the scientists have turned that joke into reality. They
created the first computer-based speech synthesis system in the late 1950s, and the first
sophisticated Text-To-Speech (TTS) system in 1968 [4]. Since then, the TTS system
has attracted many research interests and been chosen as one of the most interesting

topics in the fields of speech processing.

A TTS system is a computer-based speech system that is capable of transforming the
input textual information into intelligible speech signal (for example, the artificial hu-
man spoken voice). As depicted in Fig.1.5, it consists of two fundamental components.
The first component (or front-end) is reponsible for three main tasks: text normaliza-

tion, phonetic transcription and prosody generation, which converts texts to linguistic
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Text-to-Speech System

—~— =
W Front-end Back-end

SCHEMATIC | G2P Conversion | /SKAHMAETIHK/

Text : grapheme sequence Transcription: phoneme sequence

F1cURE 1.5: Architecture of a TTS system. In this figure, the phoneme symbols are
based on the CMU phone sets.

L annotated with contextual information. The sec-

specification—a sequence of phonemes
ond component (or back-end) is known as a waveform generator or speech synthesizer

that uses the obtained linguistic specification to generate a speech waveform as output.

Text normalization system is mainly implemented to convert the raw input text into an
appropriate orthographic form that will be used in the phonetic transcription process. It
consists of sentence segmentation, tokenizing and normalization of non-standard words
[5]. The main problem in the sentence segmentation is the ambiguity of the period and
the ambiguity of marking sentence boundaries or abbreviations. Many approaches have
been proposed for the period disambiguation, such as the rule-based systems for heuris-
tic period disambiguation operated on local grammars containing abstract contexts for
within-sentence periods and sentence boundaries [6], the Mikheev’s rule-based segmen-
tation [7], the decision tree classifier in Riley that use context features (including word
lengths, capitalization, and word occurrence probabilities on both sides of the period in
question)[8], etc. The tokenizing task is simply responsible for spliting the text at white
spaces and at punctuation marks that do not belong to abbreviations identified in the
preceding process. The normalization of non-standard words is usually a very complex
task not only in the TTS system but also other systems, and it also includes several
language-dependent problems [9]. This subtask includes number conversion (e.g., sort-

ing number, ranking number, counting number, phone number, ID, etc.), homograph

1A phoneme is the smallest unit of sound in speech. Phonemes are used in the spoken language
while letters are used in the written language. For example, the word “cat” consists of three phonemes
making the sounds /k/ (as in “can”), /a/ (as in “pad”), and /t/ (as in “tusk”). The number of phoneme
symbols is language-dependent and differently represented from one standard to another. According to
[3], there are only 26 letters in the English alphabet, but around 40 phonemes when using the phone
set of the CMU pronunciation dictionary. That’s because some letters and letter groups can be read
in multiple ways (‘a’, for example, can be read differently, as in “pad” or “paid”), so instead of one
phoneme per letter, there are phonemes for all the different letter sounds. Some languages need more
or fewer phonemes than others (typically 20-60).
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Case of conversion “ough” “ph” “ph”, “0e”, ‘x’
Text
(English word) e n ough | th ought | plough | phase uph ill phoe n i x

WETTIWTI I LT TS

Phoneme string /THN AHF/ | /TH AOT/ | /PL AW/ | /FEYZ/ | /AHPHHIH L/ | /F IYNIHK S/
(Based on CMUDict.)

Relation between many many many many one many-to-one
letters and -to- -to- -to- -to- -to- &
phonemes many one one one one one-to-many

FIiGURE 1.6: Different types of relations between letters and phonemes in the English
CMU pronouncing dictionary.

disambiguation, appropriate treatment of acronyms (because some have to be spelled,
others not), and expansion of abbreviations, emails, URL addresses, dates in different

formats, special symbols desinating monetary units, and etc.

According to Fig.1.5, an automatic text-to-phonetic transciption or text-to-phoneme
conversion system is responsible for converting the token words of a normalized text—a
text under an appropriate orthographic form mentioned in the previous paragraph—
into their correponding phonetic or phoneme forms. For example, based on an English
word-based pronunciation dicitionary (known as CMUDict), the word “SCHEMATIC” is
converted into its correponding phoneme sequence /S K AH M AE T IH K/. This system
is very time-consuming to be implemented and also highly language-dependent. For a
language with stable pronunciation rules like Spanish, this system is simply implemented
using a traditional rules-based approach, such as the context-dependent rewriting rules
[10, 11], for example. The problem concerning the automatic pronunciation generation
from text has been fairly studied in [9, 12]. However, it is insufficient to use such
traditonal approach to deal with a language with deep orthography—in other words,
with no obvious letter-to-phoneme correspondence [13, 14]-like English. For instance,
Fig.1.6 shows that there has no standand correpondence between the number of letters

and phonemes in English.

Since the desired speech output is usually synthesized through phonemic information
rather than the direct representation of textual information, the quality of the generated
phonemic information has a strong impact on the performance of the whole T'TS system,
in terms of the degree of understanding and naturalness [15]. Therefore, as shown in
Fig.1.5, the phonemic transcription of a written word could possibly be generated by
consulting a pronuciation dictionary available inside the system for the in-vocabulary
(IV) words or predicted through a data-driven Grapheme-to-Phoneme? (G2P) conversion

for the unknown or out-of-vocabulary (OOV) words—the words that do not exist in

2A grapheme is a single letter or multiple connecting letters that represent the sounds in our speech.
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the dictionary. As a result, many data-driven approaches for G2P conversion, such as
hidden Markov models (HMMs) [16, 17], support vector machines (SVMs) [18], artificial
neural network (ANNs) [15, 19, 20], joint-sequences [21, 22, 23, 24, 25|, a weighted
finite-state transducer (WFST) [26, 27|, conditional random fields (CRF) [28, 29, 30],
hidden conditional random fields (HCRF)[31, 32], an adaptive regularization of weight
vectors (AROW) [33], a narrow adaptive regularization of weight vectors (NAROW)
[34], and structured soft-margin confidence weighted learning (SSMCW) [35], etc., have
been proposed. Likewise, the main interest of our research and thesis also focus on the

problems concerning G2P conversion.

After the token words have been converted to phonemes, the prosody?® generation module
is used to assign the correct picth accent, lexical stress, rhythm, intonation, duration
and other related attributes to the phoneme form obtained from the text-to-phoneme
(or G2P) conversion module. Long time ago, when the prosody generation for speech
synthesis was concerned, the traditional hand-crafted rules was usually used [36]. The
poor prosody is a significant factor in limiting speech quality [37], so the researchers
have proposed various data-driven based approaches [38, 39, 40, 41| for improving the
performance of the automatic prosodic labeling system over the last decade. Recently,
the HMM-based approaches for prosody generation have become the most successful

technique in the fields of speech synthesis [42, 43].

Finally, the speech synthesis system produces the waveform signal as the final output
of the TTS system. It consists of two primary technologies generating synthetic speech
waveforms includes: concatenative synthesis and formant synthesis. Each technology
has strengths and weaknesses, and the intended uses of a synthesis system will typically
determine which approach is used. The scientists have proved that the formant synthe-
sis is better than the concatenative synthesis because it aims to provide good speech
quality and intelligibility while reducing storage requirements [3]. For over the years,
linear prediction coding (LPC) has been the most popular technique [44, 45, 46]. More
recently, because the pitch synchronous overlap-add (PSOLA) synthsis [47, 48] uses
pitch (fundamental frequency or F0) that can be easily modified during synthesis, it has
become more popular as a way of generating speech output. PSOLA is independent of
any particular coding strategy and gives best output when no data reduction is used
at all. After Machhi et. al. [49] have studied the effect of different coding methods on
the intelligibility of the speech output, they found that residual-excited linear prediction

3According to https://en.wikipedia.org/wiki/Prosody_(linguistics), in liguistic, prosody is
concerned with those elements of speech that are not individual vowels and consonants but are properties
of syllables and larger units of speech. These contribute to such linguistic functions as intonation, tone,
stress, and rhythm. Prosody may reflect various features of the speaker or the utterance: the emotional
state of the speaker; the form of the utterance (statement, question, or command); the presence of irony
or sarcasm; emphasis, contrast, and focus; or other elements of language that may not be encoded by
grammar or by choice of vocabulary.


https://en.wikipedia.org/wiki/Prosody_(linguistics)

Chapter 1 9

(RELP) provided higher intelligibility than PSOLA for voiced consonants, which were
assumed to be more sensitive to coding methods and pitch changes than vowels. This

is somewhat against the usual claim that PSOLA gives higher quality than LPC.

1.2 Objectives of the research

A speech synthesis system usually creates output speech using the phonological infor-
mation rather than textual information. Thus, the quality of the precise conversion of
arbitrary text into its corresponding phoneme string has a strong impact on the perfor-
mance of generated speech output. According to Fig.1.5, the modern TTS systems use
the dictionary look-up as the primary method to derive the phoneme transcription of the
words. This method does not have any knowledge or ability to derive the pronunciation
of any unknown or OOV words. Due to the influence of foreign words and other social
impacts, such systems have to deal with new words that have been gradually invented by
people from different countries around the world, so the secondary method is needed for
a backup strategy. Since the automatic data acquisition methods are the most economic
ones in terms of time and effort, the application of machine learning methods to the

G2P conversion is the most appropriate choice.

Therefore, the main objectives of our research in this thesis are (1) to analyze the
problems occurred in G2P conversion, (2) to understand and compare the state-of-the-
art methods to the G2P conversion, and then (3) to find an efficient way to improve the
pronunciation of OOV words, in other words, to propose new methods that can improve

the performance of phoneme prediction of the G2P conversion model.

In our scope of research, there are some limitation as follows. Only the problems in G2P
conversion are counted, the others, including the problems concerning the text normal-
ization, prosody generation, and speech synthesis systems, are not included. Problems
concerning the liaison words are not included in this study because the evaluation data

or corpus is purely word-based pronunciation dictionary.

1.3 Advantages of G2P conversion

Besides the TTS system, the automatic transcription of unseen words into their corre-
sponding phoneme strings (also called a data-driven G2P conversion) has been widely
adopted for other speech systems, as illustrated in Fig. 1.7 and 1.8, which includes auto-
matic speech recognition, computer-assisted language learning, spoken term detection,

spoken document retrieval, speech-to-speech translation, etc.
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In an automatic speech recognition (ASR) system, both acoustic and language models
are two principle components needed to be trained before the decoding process. The
acoustic model is trained using a database of recoded speech signals together with their
transcript files, while the language model is trained using a word-based pronunciation
dictionary (or word lexicon) and the transcript files of the training speech data. The
transcription of each speech signal consists of a sequence of words and phonemes, fol-
lowed by a tag which can be used to associate this word/phoneme sequence with the
corresponding speech signal. In order to create an accurate ASR system, a large speech
training database that contains many sequences of words spoken by different people and
a rich word-based pronunciation dictionary in a specific language are needed. For a sys-
tem in which a large-vocabulary continuous speech recognition (LVCSR) is concerned,
a word lexicon must be reconstructed regularly to accommodate unseen words by using
a data-driven approach. A method for dealing with this problem is G2P conversion of
such unseen words, which can be used for an expanded lexicon [50]. In addition, the G2P
conversion system is also sometimes used to derive the pronunciation of word sequence

belonged to some transcript files in which the phonemic information is not available.

Computer-assisted language learning (CALL) is succinctly defined in a seminal work by
Levy [51] as “the search for and study of applications of the computer in language teach-
ing and learning”. According to the webpage https://www.llas.ac.uk/resources/
gpg/61, CALL system is often perceived, somewhat narrowly, as an approach to lan-
guage teaching and learning in which the computer is used as an aid to the presentation,
reinforcement and assessment of material to be learned, usually including a substantial
interactive element. The simple use of G2P conversion in such system is just for deriving

the phonetic transcription of OOV words if needed.

Furthermore, spoken term detection (STD) is the problem of determining whether and
where a target word or multi-word phrase has been uttered in a speech recording [52].
Many STD systems are based on large-vocabulary ASR systems, trained on very large
amounts of data [53]. In such systems, the STD task becomes the problem of searching
a speech recording that has already been recognized and indexed using a large ASR
system. Since a word-based searching method is limited to the improvements of search
results, a phoneme-based searching method has been practically implemented, in STD
system. In this case, the phoneme sequence or pronunciation of keywords corresponding
to a search query is used as search input. The pronunciaiton of a keyword can be
extracted directly from the word lexicon if found; otherwise, a trained G2P conversion
model is usually used to estimate the pronunciations of the remaining OOV keywords
[54]. Moreover, the effect of pronunciations on OOV search queries in such system have
also been studied in [55, 56, 57].
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On the other hand, modern future speech-to-speech translation (S2ST) technology is
an effective mean to break through language barriers between people who do not speak
the same language [4]. The goal of this system is to enable real-time, interpersonal
communication via natural spoken language for people who do not share a common
language; in other words, it aims at translating a speech signal in a source language into
another speech signal in a target language. Basically, a S2ST system is composed of
three modules: speech recognition from the source language, machine translation (MT)
from the source text into the target text, and speech synthesis to the target language.
Therefore, G2P conversion plays a quite important role in such a giant system because
it will be implemented within all the three modules for dealing with the unknown speech
or vocabularies. According to Fig.1.8, in order to establish S2ST systems, the ASR, MT,
and T'TS systems for both source and target languages must be built by collecting speech
and language data such as: audio data, speech transcriptions, pronunciation lexica for
each and every word, parallel corpora for translation, and so on. In order to connect
these modules for different languages and functions reliably, it is necessary to standardize
the communication protocols and data formats between modules, as illustrated in the
figure. For instance, the Universal Speech Translation Advanced Research (U-STAR)
Consortium was established as an international research collaboration entity to develop

a universal network-based speech-to-speech translation system.

1.4 Contributions

In this thesis, our research only focuses on G2P conversion and its improvements. We
propose three different approaches based on machine learning techniques for tackling
different problems occurred in G2P conversion. These approaches are illustrated in
Fig.1.9 and implemented as two-stage architecture-based models in which the input
graphemic information is first converted to its preliminary phonemic information, and
then all the preliminary information are used as input hypothesis to determine the best

final output phonemic information (i.e., Graphemes = Phonemes = Phonemes).

We first propose a two-stage neural network-based approach [19, 58] to improve the
performance of state-of-the-art single-stage neural network-based approach [15, 59] for
G2P conversion. This approach, as depicted in Fig.1.9(a), aims to deal with the problem
of conflicting phonemes, where an input grapheme can, in the same context, produce
many possible output phonemes at the same time. The two-stage neural network-based
G2P conversion model is fundamentally built by putting two different multi-layer neural
networks in sequence; based on the context-dependent technique, the first neural net-

work is implemented as a many-to-many conversion model to automatically transform
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(b) Two-stage model using grapheme generation rules (c) Phoneme transition network-based approach

FIGURE 1.9: Three proposed two-stage-based architectures for G2P conversion.

each grapheme sequence extracted from a given word into the corresponding phoneme
sequence; and the second one then uses each combination of the obtained phoneme
sequences as an input pattern to enable prediction of the final output phoneme corre-

sponding to each input grapheme in the given word.

Later, because of the limitation of neural network in the improvement of G2P conversion
model, we propose another two-stage architecture-based approach [60] using an existing
WFST-based G2P conversion framework implemented in the Phonetisaurus toolkit?.
The differences between this and our firstly proposed approach includes: (1) the use
of our newly proposed grapheme generation rules that enables extra details for the
vowel and consonant graphemes appearing within a given word, (2) the replacement of
neural networks by WFST-based methods, and (3) a new strategy that combines both
graphemic and its preliminary phonemic information to be used as hypothesis of the

second-stage model. The schema of this approach is illustrated in Fig.1.9(b).

Lastly, we figure out that each existing approach has been designed using specific tech-
niques that address particular challenges faced by G2P conversion. Hence, any single
approach will not suffice when addressing all of the problems encountered by G2P con-
version. Due to this fact, we propose a phoneme transition network (PTN)-based archi-
tecture shown in Fig.1.9(c) in which various approaches/methods are combined to meet
the challenges of G2P conversion. Combining various methods can both lend flexibility
to the conversion and improve its predictive performance. The proposed method first
builds a confusion network using multiple phoneme-sequence hypotheses generated from

several G2P source methods, and then determines the best final-output phoneme from

‘https://code.google.com/p/phonetisaurus/
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each block of phonemes in the generated network. Moreover, in order to extend the fea-
sibility and improve the performance of the proposed PTN-based model, we introduce a
novel use of right-to-left (reversed) grapheme-phoneme sequences along with grapheme-
generation rules. Both techniques are helpful not only for minimizing the number of
required methods or source models in the proposed architecture, but also for increas-
ing the number of phoneme-sequence hypotheses as well as new phoneme candidates,
without increasing the number of source methods. Therefore, the techniques serve to
minimize the risk from combining accurate and inaccurate methods that can readily

decrease the performance of phoneme prediction.

1.5 Organization of the thesis

The remainder of this thesis is organized as follows.

First, in Chapter 2, we describe the previous work related to G2P conversion, including
G2P alignment methods, traditional solution to G2P conversion, and data-driven solu-
tions to G2P conversion. Moreover, the results of some previous G2P methods evaluated

using different corpora are also summarized at the end of this chapter.

In Chapter 3, we explain the lack of ability in phoneme prediction of the state-of-the-
art single-stage neural network-based G2P conversion, and then introduce our firstly
proposed approach “a two-stage neural network-based G2P conversion” to solve the
problem of conflicting phonemes mentioned in the previous section (Section 1.4). The

data preparation, evaluation results, and discussions, of this approach are also included.

Then, in Chapter 4, we present the novel two-stage architecture-based approach using
WEFST-based G2P conversion framework available in the Phonetisaurus toolkit instead
of neural networks. In addition, we also introduce a number of grapheme generation
rules that enable extra sensitive information for the vowel and consonant graphemes

appearing in a given word.

Last but not least, in Chapter 5, we explain the reasons of using multiple-approaches
combination to deal with the problems encountered by G2P conversion in a flexible
manner. Next, we introduce our accurate PTN-based G2P conversion and our novel use
of reversed grapheme-phoneme sequences along with grapheme-generation rules. The
evaluation results of both baseline and proposed approaches are nicely written in this

chapter, followed by such a good discussion.

Finally, we conclude our thesis in Chapter 6 and also suggest some ideas for the further

improvements of G2P conversion and its applications.
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A quality of the precise conversion of arbitrary text into its corresponding phoneme string
has a strong impact on the performance of the whole TTS system. Theoretically, the
phonemic transcription of each input word is usually assigned by looking-up the built-in
pronunciation dictionaries of the system. However, the dictionaries cannot cover the
continuously expanding language, especially the language with deep orthography like

English, for example. Therefore, an alternative G2P system is necessary to predict the

phoneme string corresponding to the unknown or OOV words.

This chapter provides an overview of the state-of-the-art approaches for G2P conversion.
We first describe the traditional solutions to automatic phonemization in Section 2.1.

Then, the G2P alignments and data-driven machine learning-based solutions for G2P

conversion are briefly reviewed in Section 2.2.

15
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2.1 Traditional solutions

In a traditional solution, the challenge of automatic phonemization of words is usually
approached by rewrite rules. These rules-based approaches are often used in TTS system
as an alternative for dictionary look-up, since they were extensively studied long before
computers had gain a center place in the development of the mankind [61]. According to
the work of Chomsky and Halle in 1968 [10], the rules are context-dependent and care-
fully designed by expert linguists, which are very expensive in terms of time-consuming

and complexity. These rules are usually represented in the following form:
A[B|C—D (2.1)

where B represents the target letter substring to be converted, D is the phoneme sub-
string corresponding to B. A and C are the surrounding left- and right-context respec-
tively of B. The B substring is variable in length, which can be appeared as a single
letter, one or more graphemes (each corresponding to a single phoneme substring D), a
completed word, etc. Furthermore, rules may involve different linguistic characteristics
such as: syllable boundaries, part-of-speech tags, stress patterns or etymological origin
of a word. For example, inspired by the work of Chomsky and Halle, the automatic
rules-based system of Elovitz et. al. [62] created in 1976 contains 329 phonological

rules; other typical rule sets are also described in [63, 64].

In order to derive the pronunciation for the input word, the rules designed by experts
are applied in the order that they appear in the rule list—usually from the most specific
rule to the least specific one. Whenever several rules exist for the same target letter in
different contexts, the rule that appears at the top of the list is applied in the first place
because of having higher priority than the rule that appears at the bottom or lower
part of the list. Theoretically, the words are usually scanned form left to right direction
and the rule triggers are linearly searched. Every time a rule match is found, an output
phoneme is assigned and then the search window is shifted to the right N characters; in
this context, N is the number of characters that were necessary to trigger the rule. If
no match is found, the size of the sliding windows is then decremented and the rules are
scanned again until a match triggers the rule. The default rules with lowest priority are
based on single characters, therefore a match is always found in any case. The larger
character clusters are given priority when scanning, therefore, every time the window
is shifted after having emitted a phoneme, its size is reset to the maximum value. In a
language with deep orthography like English, consonant clusters are usually converted

first, as for vowels, the letter-to-phoneme correspondences are rather ambiguous and
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ABRA AA BRAH (Reference)
AR ] AH E; DZ',‘*“‘;’;’ Total phonemes = 28
redicte
Total words =5
ABREGO AABREHGOW (Reference) D+S+/
| | (2 Substitutions) _ 2+3+1
AEBR AH G OW PAcc=1-—r{
PAcc = 78.57%
ABRON AHBRAA * N (Reference)
| (1 Insertion) 4
AHBRAAAEN WAcc=1—-
5
ABSORBERS AHBZAORBERZ (Reference) WACcc = 20%
| | (1 Sub + 1 Del)
EHBZAO *BERZ
ACCEL AHKSEHL (Reference)
AHKSEHL

F1GURE 2.1: Example of the PAcc and WAcc calculations.

they account for the main part of the errors. Previously converted consonants can be

then used as a part of the contextual information for converting vowels.

In general, the performance of G2P systems are reported in phoneme and word accu-
racy. The phoneme accuracy (written as PAcc) is calculated using either the Hamming
distance or Levenshtein distance between gold-standard outputs—the reference phoneme-
sequences—and the predicted sequences to find the number of correct phonemes. The
word accuracy (written as WAcc) is calculated by counting the number of fully cor-
rect phoneme sequences given testing words. Mathematically, both phoneme and word

accuracies can be calculated as follows:

Sp — p IP

D, —
PAcc=1—-PER=1-— (2.2)
Np

Sw
WAcc=1-WER=1—- — (2.3)
N

where PER and WER are known as phoneme error rate and word error rate, respectively;
Sp, Dy, I,, and N, are the number of phoneme substitutions, phoneme deletions, phoneme
insertions, and total phonemes in the reference, respectively. Since only isolated words
are usually used in the experiments, the value of WER was exactly equal to the number
of word substitution (S,,) divided by the total number of words in reference (Ny).
For instance, after deriving the phoneme sequences corresponding to five input words
(e.g., “ABRA”, “ABREGO”, “ABRON”, “ABSORBERS” and “ACCEL”), five different
phoneme sequences (e.g., /AA B AH/, /AE BR AH G OW/, /AH B R AA AE N/,
JEH B Z AO B ER Z/ and /AH K S EH L/) are respectively generated. Here, the



Chapter 2 18

phoneme symbols are based on the CMU phoneme-set. The evaluation results in Fig.2.1
shows that the values of PAcc and WAcc are equal to 78.57% and 20%, respectively. In

G2P conversion, the value of WAcc is more important than PAcc.

According to Damper et al. in 1998 [65], they evaluated the rules proposed by Elovitz
et al. in 1976 [62] on a Teacher’s Word Book (TWB) dictionary of 16,280 words [66].
As a result, the word accuracy as low as only 25.7% was achieved. This result is very
different from the 80-90% word accuracy reported by Elovitz et al. [62], which can be
explained by the fact that Damper et al. used a stricter evaluating technique that did
not classify pronunciations not containing any severe errors as “good” pronunciations.
Also, this later evaluation was performed on TWB dictionary that uses a phone-set of 52
phonemes, while the rewrite rules include only 41 phoneme symbols. Such a discrepancy

in phoneme inventories may be one of the main causes of errors [4].

Rule-based systems require hiring an expert linguist and therefore have a high production
and maintenance cost, they clearly lack in flexibility and are highly language-dependent.
Moreover, they do not take into consideration any kind of statistical measures such
as rule probability, frequency counts, etc., that could be helpful in order to improve
robustness [3]. In the last two decades data-driven approaches have been widely used to
solve the problem of automatic phonemization. They are flexible and mostly language-

independent, which makes them a perfect alternative to rule-based approaches.

2.2 Data-driven solutions

Over the years, data-driven based machine learning solutions for G2P conversion have
been widely developed to challenge the phonemization of the OOV words, and widely

adopted in many modern speech systems as explained in Section 1.3.

Inspired by Chomsky and Halle [10], the context-dependent based technique still plays an
important role in both the classification-based approaches [67, 68, 69] and the generative
models [22, 70, 71, 72] for G2P conversion. There are two components in both classifi-
cation and generative systems that allow training from pairs of word-phonemes sample.
The first component is to discover hidden relations between graphemes and phonemes,
called “alignments”, which allows the G2P system to learn what phoneme to generate for
each input grapheme and its context. The second component is a learning mechanism to
train a model to generate output phonemes given words. There are two paradigms for
training the aligned grapheme-phoneme data. G2P conversion can be viewed either as

a multi-class classification problem, where each sub-phoneme output is drown directly
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from the focused grapheme and its context (surrounding graphemes) without consid-
ering the phoneme sequence output, or as a sequence prediction problem, which takes
into account the grapheme sequence input and phoneme sequence output [73]. In the
classification-based approaches, each phoneme is predicted independently using a clas-
sifier such as a neural network [69], instance-based learning [67], and decision tree [68].
On the other hand, the sequence-based approaches are different from the classification-
based approaches because they take previous phoneme decisions into consideration for
the current phoneme decision. These approaches includes HMMs [16, 70], joint N-grams
models [21, 22, 71], pronuciation by analogy (PbA) [72, 74], constraint satisfaction inf-
ference (CSInf) [75], WFST [26, 27], and so on. In addition, the G2P learning is also
closely related to structured learning techniques including HMMs [76], averaged percep-
tion algorithm [77], SVMs for structured outputs [78], CRFs [29, 31, 79] HCRFs[32],
and a family of adaptive regularization of weight vectors (AROW) [33, 34, 35, 80].

The remainders of this section are organized as follows. In Section 2.2.1, a brief overview
of G2P alignments is described. From Section 2.2.2 until the end of the main Section 2.2
is focused on the data-driven approaches for G2P conversion. In addition, the summary
of the G2P results for various datasets found in the literature are listed in Tables 2.4

and 2.5 at the end of this chapter.

2.2.1 Alignments in G2P conversion

In G2P conversion, the training data are generally available in the form of word-phoneme
pairs without any explicit information indicating individual grapheme-to-phoneme rela-
tionships (as seen in Table 2.1). To simplify the conversion task, almost all automatic
G2P methods require the training data to be aligned in advance because it allows to dis-
cover the hidden relationships between grapheme(s) in the input word and phoneme(s)
in the output phoneme-sequence. In this context, it is possible to say that the alignment

is the correspondence between the orthographic and the phonetic forms of the word.

According to the earlier studies such as those described in [69, 81], the grapheme-to-
phoneme alignments were manually done, however manual elaboration of alignments
is very costly and language-dependent. Then, the use of automatic alignments has
become the most preferable because it is the best solution in terms of time and cost.
For languages with deep orthography such as English, automatic alignment is a difficult
problem mainly due to the influence of many foreign words (or loan words) and the lack
of transparency in the writing system of this languages. According to P. Taylor in 2005
[70], the lack of clarity in the English orthography adds complexity to the alignment

task since any phoneme can potentially align to a maximum of four letters (e.g., the
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TABLE 2.1: Unaligned training data extracted from the CMUdict corpus

Word Phoneme sequence
ABRA AABRAH
ABREGO AA BR EH G OW
ABRON AHBR AAN

ABSCESS AEBSEHS

ABSHIRE AE B SH AY R
ABSORBERS AHBZ AORBERZ
ABSTINENT AEBSTAHNAHNT

ABUTS AHBAHTS
ACACIA AH K EY SH AH
ACADIA AHK EY DIY AH
ACCEL AHKSEHL
Word,, Pronunciation,,

TABLE 2.2: Possible alignment cadidates in one-to-one alignment.

Word (Graphemes): P R O N 0] U N C I N G
R I A A

Alignment 1: P R AH N AW _ N S IH NG _
Alignment 22 P R AH N _ AW N S IH - NG
Alignment 3:  _  _ P R AH N AW N S [IH NG

word “PLOUGH” — /P L AW/). The cases of four-to-one correspondences are not
so common but two-to-one are numerous, for example, “ENOUGH” — /IH N AH F/.
The cases where one letter aligns to more than one phoneme are less frequent but also

deserve special attention. An example is the word “SIX” — /STH K S/.

2.2.1.1 One-to-one alignment

In general, automatic epsilon-scattering method proposed by Black et al. in 1998 can
be used to produce one-to-one alignment between letters and phonemes in the training
data for G2P conversion [68]. In this case, each letter in the input word can be aligned
to only one phoneme in the output phoneme sequence. For the cases where the number
of letters—the word’s length—is greater than that of phonemes, a null phoneme symbol
representing a silent sound (noted as /_ / in Table 2.2) is introduced into phonetic

representations to match the length of grapheme and phoneme strings.
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The alignment process starts with the initial probability of mapping a grapheme g to a
phoneme ¢ (annotated as Prob(g, ¢)) which is calculated based on the mapping counts.
The initial probability table first adds the necessary null phoneme symbols into all
possible positions in phonemic representations. This process is repeated for every word
in the training lexicon. For instance, an example of three of the possible alignment
candidates for the word “PRONOUNCING” is given in Table 2.2.

Such probabilistic initialization allows obtaining all possible imperfect alignment candi-
dates (e.g., the third alignment in Table 2.2). The goal of epsilon-scattering algorithm is
to maximize the probability that letter g matches phoneme ¢ and, therefore, to choose
the best alignment from possible candidates. It is done by applying the Expectation-
Maximization (EM), according to Dempster et al. [82]. The EM is associated with joint
grapheme-phoneme probabilities. Under certain circumstances, the EM guarantees an
increase of the likelihood function at each iteration until convergence to a local maxi-
mum. The obtained alignments are not always logical, e.g., the word “THROUGH” in
the CMUdict corpus may be in some cases aligned to /TH - R ___UW/. This align-
ment imposes the correspondence between grapheme ‘H’ and phoneme /UW/, which
introduces additional ambiguity to the training data. One way to overcome this obsta-
cle is to build a list of allowables as in Black et al. [68]. It is just a simple table, that
does not require any expert knowledge of the language. The allowables table defines for
each grapheme a set of phonemes to which they can be aligned. All other alignments are
prohibited. Some words with very opaque relationship between letters and phonemes

would require adjustments made in the allowables table in order to produce alignments.

Another modern way to find a relationship between letter and phonemes is to use dy-
namic programming (DP) algorithm. DP based alignment uses a letter-phoneme asso-
ciation matrix A, of the dimension L x P, where L is the size of the letter set and P is
the size of the phone set. At the first step, the matrix A is initialized in a naive way

with the elements agp which are incremented each time the letter [ and the phoneme p

1
l,p

the phoneme p are found in the same alignment position.

are found in the same word. At the next iteration a; are incremented if the letter [ and

At this first iteration the nulls are introduced into the dictionary as a consequence of the
DP matching where both phonemes and graphemes can be associated with nulls. At the
EM step, the matrix A is updated in a way that the word alignment score is maximized.
Nulls are not entered as a part of the updated matrix A in order to avoid the tendency
to generate unnatural alignments. The role of nulls is restricted to the DP matching
phase which can be considered a path-finding problem. DP is not only more efficient

than epsilon-scattering method but also allows nulls in both letter and phoneme strings.
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TABLE 2.3: An example of an alignment based on graphones

Word (Graphemes): S P EA K ING
A |
Phonemes: S P IY K IH+NG

The alignment ‘X’ to /K S/ is done automatically while the epsilon scattering method
requires an a priori introduction of double phonemes /K/ /S/ to /KS/ or /K +5/.

2.2.1.2 Many-to-many alignment

Theoretically, finite state transducers and multi-gram models can use many-to-many
alignments. In some previous works [22, 71, 83], the authors used G2P alignment as the
first step to infer the pronunciations of unknown words. Bisani and Ney [71] baptized
the alignment element as “graphone”, or a grapheme-phoneme joint multi-gram, which
is a pair ¢ = (g,¢) € Q C (G* x ®*). Letter sequence and phoneme sequences can be
of different length (G and ® are the grapheme and phoneme sets respectively). An
example in Table 2.3 shows that a word of eight graphemes (i.e., G = { ‘S’, ‘P’, ‘E’,
‘A’ K, T, N, ‘G’ }) are mapped to a sequence of six phonemes (i.e., & = { /S/,
/P/, /IY/, /K/, /TH/, /NG/ }). As a result, five pairs/graphones are obtained after
the alignment. This means that Q = {(‘S’, /S/), (‘P’, /P/), (“EA”, /IY/), (“K”, /K/),
(“ING”, /TH+NG/)}.

Those graphones that map one phoneme to one letter are called singular graphones (e.g.,
the pairs (‘S’, /S/), (‘P’, /P/) and (‘K’, /K/)). Graphone alignments can be inferred
by using hand-crafted rules, DP search with predefined alignment constraints or costs,

or by an iterative estimation of alignment probabilities.

The best sequence of graphones is induced from the dictionary data by searching for
the most probable sequence of graphones, first assigning uniform distributions to all
possible graphones (within the manually set length constraints) and then applying the
EM algorithm. After graphones are aligned joint multi-gram sequence model is applied

to automatically derive pronunciations [21, 22].

On the other hand, some of the automatic phonemization methods do not require align-
ments since the letter-phoneme correspondences are calculated during the training, e.g.,
Hidden Markov Models (HMM) use Baum-Welsh training algorithm.
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IN/
26 output NEUrONS @ ceccccccccccccscccccsces PY
80 hidden NeUroNs @ @ @ cccccccccccscccssscscssssssssssssssssss Ty
29 neurons
. e >
203 input neurons  @sesses @ @ccoece @ @cccece @ Qccccec® @occcce® @cccooce @ @ceccce ®
IPI IRI lol INI lol lul lcl

7 letters * 29 input neurons per letter = 203 input neurons

FIGURE 2.2: Architecture of the NETtalk system.
2.2.2 Artificial neural networks (ANNSs)

There have been many data-driven based machine learning solutions for solving the
problem of mapping arbitrary texts into phoneme strings. One of the first and best-
known approaches to automated G2P conversion is the NETtalk system developed by
Sejnowski and Rosenberg in 1987 [69]. The G2P problem was considered as a multi-class
classification problem. The authors were pioneers in applying artificial neural networks

using the back-propagation algorithm to a learning problem.

Fundamentally, NETtalk system was designed as a feed-forward multi-layered perceptron
with three layers of units and two layers of weighted connections. It architecturally
consisted of an input layer of letter units, a hidden layer, and an output layer of phoneme
units. As depicted in Fig.2.2, the input layer received a 7 letter window, where the central
letter represented the target/focusing grapheme to be converted, and the other 3 letters
to its left and right sides represented the left- and right-contexts, respectively. To train
such a system, each letter was encoded using a vector of 29 bits, 1 bit for each of the
26 letters of the English alphabet and 3 additional bits for the punctuation marks and
word boundaries. Therefore, the total perceptron units at the input layer was equal to
7 x 29 = 203 units. Likewise, each of 54 output phonemes was encoded using a vector of
26 bits, 21 bits for 21 different articulatory features (such as voiced, unvoiced, points of
articulation, plosive, nuclei, etc.), and 5 additional bits for representing the stress level

and syllable boundaries. According to [84], the 54 phoneme symbols using in NETtalk

system includes /a/, /b/, [c/, /d/, [e/, [T/, [g/, /n/, [if, [&/, /{/, /m/, /o], [of, [/,
v/ [s)s el vl ) x) Iyl f2) JA JCL DY JEL (G Y K,
JL/s M/ INT O /Q) IR [S) T UL IW X Y 2 1@ Y [
[ A and
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As a pre-processing task, NETtalk required the data to be aligned in a one-to-one man-
ner. Sejnowski and Rosenberg [85] manually aligned a 20,012 English word-based corpus
created from MerriamWebsters Pocket Dictionary—called NETtalk corpus®. As explained
in Section 2.2.1.1, when the number of letters exceeded the number of phonemes in a
word, the so-called silent phonemes / _ / were inserted. In the opposite case, new dou-
ble phonemes were invented for adjusting the length of phoneme sequence to the word’s
length; for example, the phonemes /k/ and /s/ in the word “axes” were joined in one
Jee k _s/. Based on various experimental results, the authors reported that a network
with 80 hidden units were found to be a good match point between good performance
and rather low computational complexity. However, the best results were obtained using
120 hidden units.

The continuous speech and isolated words from the dictionary were used to train and
test the system. The continuous speech corpus of 1,024 words featured alternative pro-
nunciations for the same words. In terms of phoneme accuracy, the best results achieved
when tested on the continuation of the corpus (439 words) were 78% best guesses and
35% perfect matches. In addition, the system was also trained on a 1,000 word subset
from a 20k corpus of most common English words. The number of hidden units varied
across the experiments, and the best results on the training corpus were obtained using
120 hidden units. The same number of units was used to test the network on randomized
version of 20,012 word-based dictionary. As a result, the best performance was 77% best

guesses and 28% perfect matches.

The implemented method was language independent. The system had strong similarities
to human learning and memorizing processes, however, it did not come close to modeling
human reading acquisition skills yet. Regarding to the different evaluations conducted
by Damper et al. [3], a problem concerning the generalization ability of the system
had became the biggest issue since that system was never tested on unseen words.
Furthermore, the phoneme error rate was not a good enough measure to compare the
methods since the quality of synthesized speech could decrease quite quickly even if
there was only one erroneous phoneme per word (as explained in Chapter 1). For these
reasons, the system performance should be evaluated in terms of word error rate or word

accuracy on a set of unseen words.

After then, McCulloch et al. presented an extension of NETtalk system in 1987 [81].
NETSpeak had a few changes in comparison with NETtalk. First of all, the authors
claimed that a more concise representation of the input data would help achieving better

performance. The number of input units was reduced to 11. The letters were grouped

SNETtalk dataset: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/nettalk.
data.gz


ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/nettalk.data.gz
ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/nettalk.data.gz
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into 5 different mixed phonological sets according to the proximity of their manner of
articulation with the exception of vowels which were all placed in one set. The remaining
6 bits were to indicate the position of the letter in the group. The output coding uses
less phonological and more stress and punctuation features. The number of hidden units
throughout all experiments was equal to 77. Another distinctive feature of this approach
is that it was tested on a completely unseen set of words, however the authors used a
different lexicon which makes the results difficult to compare. The results obtained on
1,200 unseen words by a network trained on 15,080 words from “Teachers Word Book”
were equal to 86% of best guesses. The impact of word frequencies on the results was
also studied. The words from the dictionary were replicated in appropriate proportions
to make a distinction between common and uncommon words. The authors’ hypothesis
that the system would perform worse on common words due to their rather irregular
G2P correspondences was not proved. A hybrid network that combined two separate

networks trained on common an uncommon words was also trained and tested [81].

Besides, over the years many different neural networks-based methods for G2P conver-
sion have been proposed for improving the predictive quality of the system when dealing
with the unseen words [15, 20, 86].

2.2.3 Hidden Markov Models (HMMs)

Many data-driven techniques that are quite similar to the hand-written context sensitive
rules, e.g., neural networks [3, 9, 10, 65|, decision tree [8, 67, 68|, pronunciation by anal-
ogy (PbA) [74, 87, 88], had been proposed to tackle the problem of G2P conversion. To
overcome the difficult problem of phoneme prediction, another statistical-based solution
using hidden Markov models (HMMs) was differently proposed in the late 20" century
[76, 89, 90, 91]. Then, the approach proposed by P. Taylor in 2005 [70] was the one very
attractive HMMs-based method for G2P conversion in the early 215! century.

In the HMM, the graphemes are seen as being generated by the phonemes via a noisy
process, such that given the grapheme sequence, it is generally non-trivial to determine
the phoneme sequence. In this method, the alignment between graphemes and phonemes
were not required before the training because it was generated during the model training
stage by Baum-Welch training [92] in which the HHMs used the probabilities of the
G2P correspondences found in the previous step of the algorithm. Each phoneme is
represented by one HMM while letters are the emitted observations. The probability of
transitions between models is equal to the probability of the phoneme given the history
(previous phoneme). The objective of this method is to find the most probable sequence

of hidden models (phonemes) given the observations (letters), using the probability
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distributions found during the model training. The standard formulation of HMMs can

be written as follows:

¢ = argmazy{p(plg)} = argmaz,{p(gle)p(v)} (2.4)

where p(p) is the prior probability of a sequence of phonemes occurring, and p(g|p) is
the grapheme-phoneme joint sequence probability. One model trained for each phoneme;
the maximum number of letters that a phoneme is able to generate is set to 4, since it
is uncommon that more than four letters represent a single sound, at least in English.
No looping states are allowed unlike in the general model configuration that serves for
speech recognition. In the phoneme domain, certain constraints and patterns determin-
ing the sequences of possible phonemes were imposed. This is similar to phonotactic
grammar. Phonotactically illegal sequences could cause a severe problem for TTS be-
cause the synthesis system will not be able to generate a corresponding waveform. The
automatic speech recognition toolkit can be used to train the HMM models and to de-
code graphemes into phonemes. However, to achieve better results, some pre-processing
was needed. Some letters were swapped and words rewritten. This measure was nec-
essary because HMMs cannot model dependencies between observations. However, one
of the advantages of the HMM is that they allow to model context-sensitivity in the
phoneme domain. This was achieved by cloning the context independent models and
applying further runs of Baum-Welch for those tokens of the training data that appeared
more than 20 times. The experiments were carried out on Unisyn dictionary of approx-
imately 110K words, most of which are regular English words. There are 42 phonemes
in the Unisyn lexicon. The results obtained for a 4-gram model without preprocessing
were 39.13% words and 85.12% phonemes correct, preprocessing allowed raising the bar
to 49.64% and 87.02% words and phonemes correct correspondingly. Context-sensitive
modeling brought the results up to 57.31% words and 90.98% phonemes correct. Stress
prediction was included in the experiments. The large portion of errors consisted in

schwa-full vowel confusions and stress misplacement.

As an extended work of HMMs-based method, Ogbureke et. al. proposed HMMs with
context sensitive for G2P conversion in 2010 [16]. Previously, only phoneme context,
which for first-order HMMs includes only the preceding phoneme, was used. In this work,
both grapheme and phoneme contexts were modeled. In order to include grapheme con-
text, each observation sequence was transformed increasing at the same time the number
of possible observation symbols. No rewrites were necessary. Stress prediction was not
considered. The approach combining context-sensitive grapheme, context-dependent
phonemes and a 4-grams language model allowed obtaining 57.85% words correct for

CMUdict and 79.19% for Unisyn lexicon for British English which is significantly better
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in comparison to the results obtained in [70]. This shows that Increasing the number of

observations allows obtaining higher accuracy.

In previous studies, only phoneme context and relationship between phonemes and
letters were used to independently predict the phoneme corresponding to each input
grapheme. According to our firstly proposed approach “Two-stage neural network-
based G2P conversion” [19, 58] that will be described in Chapter 3, the benefit from
involving both grapheme and phoneme contexts to the phoneme generation model could
improve the predictive performance of G2P conversion system to another higher level.
Inspired by our proposed two-stage architecture for automatic G2P conversion, coupled
hidden Markov models (CHMM)-based method was then proposed by Che et al. in
2012 [17]. In this work, CHMM consists of two HMMs. The first HMM was designed
to predict the best graphemic substring segmentation, in which the phoneme was con-
sidered as the states and the graphemeic substring represented the observations. On
the other hand, another HMM was used to generate the best phonemic string; here,
the phoneme represented the observations and the graphemic substring represented the
states. All the reasonable graphemic substring segmentations were given before gen-
erating phonemes, and then the best combination of phonemic string and graphemic
substring segmentation was given by maximizing the joint likelihood of two HMMs. As
a result, the authors reported the word accuracy of 74.6% and 94.2% for CMUdict and
OALD corpus, respectively.

2.2.4 Joint multigram models

In the alphabetic written system defined by a language, the orthographic form is a con-
ventional representation of a word’s pronunciation. A word can be viewed as a stream of
graphemes (alphabets or letters), hence the word pronouncing system is highly depen-
dent to the word’s length and the internally hidden interactions among the alphabets.
In order to model these kinds of dependencies, a joint multigram model, which is a
statistical model that allows to learn variable length grapheme and phoneme from the
training corpus and later to decode a string of orthographic symbols into a phonetic

sequence, has been proposed.

In 1995, Deligne et al. proposed the very first time many-to-many alignments for G2P
conversion [83]. Joint sequences of graphemes and phonemes of variable-length were
extracted from the training lexicon using the maximum likelihood criterion. The max-
imum sizes of corresponding sequences were defined before the training. In this study,
the algorithm was initialized by computing the relative sequences of all possible many-

to-many alignments available from the training lexicon. Then, the authors trained two
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different models using EM and Viterbi training algorithms. For the decoding process, it
was carried out sequence-by-sequence and not grapheme-by-grapheme as in the major-
ity of G2P classifiers. Different sequence sizes and thresholds (setting a minimum the
number of times a consequence had to appear in the training corpus in order not to be
discarded) were tested. As a result, the evaluation on a French lexicon BDLEX [93] con-
taining 23,000 words and compounds showed that the best model achieved 64.52% and
95.0% as word and phoneme accuracy, respectively. In addition, thresholding was found

very effective in order to improve the performance of the model on unknown words.

Likewise, Bisani and Ney applied a similar joint-multigram approach to align joint se-
quences of graphemes and phonemes in 2002 [71]. They introduced the term “graphones”
(as seen in Table 2.3) to refer to the corresponding graphemic and phonemic chunks of
variable length. The pronunciation of the unknown words was also inferred using the
standard maximum likelihood training (EM algorithm) as well as Viterbi training. The
minimum length of graphones was set to 1 and the maximum to 6 for both graphemic
and phonemic domains. However, the best results for Celex lexicon (CELEX) contain-
ing 66,278 words were obtained using a 3-gram model. Longer graphones were more
difficult to estimate, however the alignments restricted to one-to-one graphones seemed
to perform worse than when longer chunks were involved. Thresholding and marginal
trimming were used to enhance the models. As a result, The best model achieved 95.02%

as phonemes correct rate.

In 2001, Galescu and Allen built a similar 4-gram model although they used a different
alignment procedure [94]. Each letter-to-phoneme correspondence was restricted to hav-
ing at least one grapheme and one phoneme, these correspondences were inferred using
the EM algorithm. The performance was evaluated on two English lexica: NETtalk
and CMU pronuncing dictionaries. The experiments included stress prediction, how-
ever only for latter lexicon. A back-off n-gram model with Witten-Bell discounting
was used to train the model. One-to-one manually proofed alignment available for the
NETtalk data was also evaluated in the experiments, showing that chunk-based align-
ments perform slightly better. The results obtained on NETtalk data were 63.93% words
and 91.74% phonemes correct. For CMU including the stress markers 62.6% word and
91.0% phoneme accuracies were obtained. When phonemes were predicted disregarding
the stress, the corresponding accuracies were 71.5% words and 93.6% phonemes correct.
Furthermore, the authors also carried out the reverse task of predicting letters from

phonemes using the same models.

On the other hand, in 2003, Chen aligned letters and phonemes using a conditional
Maximum Entropy (ME) model with Gaussian priors [22]. Nulls symbols were allowed

both in grapheme and phoneme strings, and the letters and phonemes were continuously
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realigned during training unlike other previously fixed chunk models [71, 94]. To train
a joint maximum entropy, 8-gram both conventional and Viterbi versions of the EM
algorithm were used. The results were evaluated on Pronlex lexicon containing 91,216
English words in which the stress markers were not included. Syllable boundaries used
as an attempt to enhance the model by preventing the syllable splitting, were found
rather ineffective. The results were obtained for three datasets: regular words, proper
names and foreign words. For regular words, the accuracies obtained were 72.7% for

words and 92.85% for phonemes.

After then, in 2008, Bisani and Ney [21] used a similar model as in their previous
work [71] and tested the performance of their system over a variety of English datasets
in order to make their results comparable to those reported in literature. Moreover,
they studied different model initialization and training schemes, the influence of the
held-out set and the effect of different smoothing techniques and the size of graphones
on the overall results. The evaluation results showed that the joint multigram models
proposed performed better or as good as best performing G2P methods. The results
obtained for OALD lexicon were 82.51% words and 96.46% phonemes correct. For
NETtalk dictionary (size variable form 15K to 19K) the results ranged between 66.33%
to 69.00% for word accuracies and from 91.74% to 92.34% for phoneme accuracy. For
CMU dictionary the 75.47% words and 94.22% phonemes correct were obtained. For
Pronlex the corresponding accuracies were 72.67% and 93.22% words and phonemes
correct. For BEEP dataset®, 79.92% words correct and 96.46% phonemes were obtained.
Since then, joint models have been believed to be beneficial because they can handle the

alignment problem intrinsically.

Soon after, in 2009, Jiampojamarn et al. represented the joint n-grams model for G2P
conversion as an online discriminative sequence-prediction model [23, 95]. This model
used a many-to-many alignment between grapheme and phoneme sequences and a fea-
ture vector consisting of n-gram context features, HMM-like transition features, and
linear-chain features. For each training iteration, the feature weight vector was updated
using the margin infused relaxed algorithm (MIRA) proposed by Crammer and Singer
[96]. MIRA modified the current weight vector by finding the smallest changes such that
the new weight vector separates the correct and incorrect outputs by a margin of at least
the loss for a wrong prediction. This system is known as DirecTL [23]. They conducted
experiments on several English and French corpora, including CELEX, Beep, OALD,
CMUdict, NETtalk and Brulex, used in [21]. Moreover, the homographs, one-letter
words, punctuation, phrase and abbreviations were excluded from the datasets due to
the conventions described in [21]. In terms of word accuracy, this system outperforms

the previous joint-sequence model [21] on four out of six datasets. The authors reported

5Beep corpus: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep-1.0.tar.gz
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that the word accuracies of CELEX, Beep, OALD, Brulex, CMUdict and NETtalk
datasets were 91%, 81,.6%, 89.6%, 94.6%, 72.5% and 68.1% achieved by their systems,
while 88.6%, 79.9%, 82.5%, 93.8%, 75.5% and 69.0% achieved by the joint-sequence
models, respectively. It seemed their systems achieved slightly lower results than the
joint-sequence models on the CMUdict and NETtalk datasets. However, their winning
results proved that the MIRA update algorithm in this method was very effective in up-

dating feature weights for distinguishing between correct and incorrect output results.

Last but not least, the updated version of DirecTL was implemented in 2010 and known
as DirecTL+ toolkit” [24, 25]. In this system, the joint n-gram features were additionally
integrated, which allowed the discriminative model to train on information that was
present in generative joint n-gram models, and additionally trained on rich source-side
context, transition, and linear-chain features. In the experiments, size of the joint n-gram
features was set to 6. In terms of word accuracy, the authors reported that the DirecTL+
obtained 89.23%, 76.41%, 85.54%, 73.52% and 95.21% for CELEX, CMUdict, OALD,
NETtalk and Brulex datasets, respectively; otherwise, the DirecTL system obtained
only 88.54%, 75.41%, 82.43%, 70.18% and 95.03% for the same datasets, respectively.
This showed that the additional joint n-gram features was very effective in improving
the transliteration performance of the previous discriminative approaches as DirecTL

system.

2.2.5 Weighted finite-state transducers (WFST) and others

In 2002, Caseiro et al. built a data-driven-based G2P conversion for European Por-
tuguese by using weighted finite-state transducer (WFST) framework [97]. First, each
grapheme sequence and its corresponding phoneme sequence in the training data were
aligned using edit distance algorithm. In most case, one-to-one grapheme-phoneme
correspondences (singular graphone) were used. However, two-to-one, one-to-two, one-
to-three and one-to-four grapheme-phoneme alignments were also used for allowing the
direct matching of some special sequences. Then, the n-gram language model was com-
puted based on the aligned training data—joint sequences. Next, the authors imple-
mented G2P conversion model by transforming the n-gram language model into a finite
state transducer, and each pair of grapheme-phoneme symbols into a pair of input/out-
put symbols. In decoding phase, a best-path search was needed to be computed through
the WFST model in order to find the most likely phoneme string corresponding to an
input grapheme sequence. Due to the fact that WFST is flexible in integrating multiple
sources of information and other interesting properties, the WFST framework has been

utilized throughout, following the approach outlined in [98, 99].

"https://code.google.com/p/directl-p/
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Over the recent years, another WFST-based method for G2P conversion proposed in
2012 by Novak et al. [26] has been implemented to develop a rapid and high-quality
joint-sequence model-based G2P conversion. First, the training words and their phoneme
sequences were provided, and these were aligned using an expectation-maximization
training procedure based on the many-to-many (m-to-m) aligning technique [21]. In
this work, the maximum letter-phoneme correspondence m was set to 2, and both the
null grapheme and phoneme symbols were allowed in both sides during the alignments.
The obtained joint-sequence corpus was given as an input for n-gram counting (in which
the order or length of the n-grams to count was provided), and then a standard joint
n-gram model was trained using the MITLM tookit® or the OpenGrm NGram library,”
and smoothed by Kneser-Ney discounting with interpolation. Then, the trained n-gram
model was converted to a WFST-based model, which predicted the phoneme sequences

of unknown words using the following decoding function:
Phseqpest = shortestPath(Project,(W o, M)) (2.5)

where “Phseqpest” refers to the most likely phoneme sequence given the input word “W?”
under the FSA representation and the n-gram model “M” encoded as FST, “,” refers to
the weighted composition, “Project,(.)” is a projection onto the output symbols, and
“shortestPath(.)” indicates the shortest-path algorithm. This work also investigated
N-best re-scoring with a recurrent neural network language model (RNNLM)[100]. In
order to train each RNNLM, the aligned corpus of joint grapheme-phoneme sequences
was utilized as inputs. The evaluation results showed that the proposed system using
RNNLM re-scoring technique could achieve small but consistent improvement over pre-
vious approaches, joint-sequence models in Sequitur [21] and DirecTL+ [25] toolkits) by
providing 71.14%, 83.52% and 75.56% as word accuracy for NETtalk-19k, OALD and
CMUdict, respectively. The extended work of this approaches proposed by the same
group of authors in 2013 did not really show any better performance compared to the
old one [27].

Besides the approaches mentioned above, the joint sequence models have been differ-
ently and successfully used to implement the structured online discriminative learning
methods, such as structured AROW [33] and NAROW [34]. Recently, an SSMCW-based
method [35] has been proposed for extending multi-class confidence-weighted learning
to structured learning, which softens the marginal errors for hypothesis and update
parameters using the N-best hypotheses simultaneously and interdependently for ro-
bustness against over-fitting. These learning methods are available in Slearp toolkit
(33, 34, 35, 80].

8https://code.google.com/p/mitlm/
“http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary
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TABLE 2.4: Summary of results of previous G2P methods for different corpora. Al-
though the methods in this table used the same corpus, they might differently subdivide
the training, development and testing datasets; they also might use different K-folds
cross-validation. Due to these facts, the results reported here are somehow incompara-

ble.
PAcc WAcc
Dataset Author G2P method Toolkit (%) (%)
Sejnowski and Rosenberg (1987) ANNs - 78.00  35.00
Torkkola (1993) DT - 90.80 -
Andersen et al. (1996) DT - 89.90  53.00
Bakiri and Dietterich (1997) DT - - 64.80
Jiang et al. (1997) DT - 91.90  65.80
Yvon (1996a) PbA - - 65.96
Damper and Eastmond (1997) PbA - 91.20  60.70
NETtalk Marchand and Damper (2000) PbA - 92.40  65.50
Galescu and Allen (2001)  Joint N-gram - 91.74  63.93
Bisani and Ney (2008)  Joint N-gram Sequitur - 69.00
Jiampojamarn et al. (2009) MIRA DirecTL - 70.18
Jiampojamarn et al. (2010) MIRA DirecTL+ 93.30 71.82
Kubo et al. (2013) SAROW Slearp 93.25  71.44
Kubo et al. (2014) NAROW Slearp 93.47  72.03
Kubo et al. (2014) SSMCW Slearp 93.63  72.66
"""""""""""" Bisani and Ney (2008)  Joint N-gram  Sequitur ~ 91.74  66.36
Lehnen et al. (2011 CRF - 90.50 60.20
NETtalk 15k Novak et al. EQOlQ; WEFST Phonetisaurus - 67.77
Novak et al. (2013) WEFST Phonetisaurus ~ 91.76 66.41
- NETtalk 18k | | Bisani and Ney (2008)  Joint N-gram  Sequitur 92.17  68.21
Bisani and Ney (2008 Joint N-gram Sequitur 92.34 69.00
NETtalk 19k Novak et al. 52012; WEFST Phonetisaurus - 71.14
| Bisaniand Ney (2008) Joint N-gram  Sequitur 90.22  65.99
Noisy NETtalk Jiampojamarn et al. (2010) MIRA DirecTL+ 89.67 66.48
Kubo et al. (2013) SAROW Slearp 90.21 66.98
| Andersen et al. (1996) pr - 91.10  57.90
Jiang et al. (1997) DT - 91.80  73.10
Black et al. (1998b) DT - 91.95 57.80
Pagel et al. (1998) DT - 87.84  62.79
Ogbureke et al. (2010) HMM - - 57.85
Che et al.(2012) HMM - - 74.60
Galescu and Allen (2001)  Joint N-gram - 93.62 71.50
CMUdict Bisani and Ney (2008)  Joint N-gram Sequitur 94.22 75.47
Jiampojamarn et al. (2009) MIRA DirecTL - 75.41
Jiampojamarn et al. (2010) MIRA DirecTL+ - 76.41
Novak et al. (2012) WEFST Phonetisaurus - 75.56
Novak et al. (2013) WEFST Phonetisaurus ~ 94.15  75.58
Kubo et al. (2013) SAROW Slearp 93.85  73.52
Kubo et al. (2014) NAROW Slearp 93.89 73.54
Kubo et al. (2014) SSMCW Slearp 93.91  73.72
"""""""""""" Bisani and Ney (2008)  Joint N-gram  Sequitur ~ 97.50  88.58
Jiampojamarn et al. (2009) MIRA DirecTL - 88.54
Jiampojamarn et al. (2010) MIRA DirecTL+ - 89.23
Celex Lehnen et al. (2011) CRF - 97.00 85.60
Lehnen et al. (2013) HCRF - 97.50  88.30
Kubo et al. (2013) SAROW Slearp 97.49  88.19
Kubo et al. (2014) NAROW Slearp 97.70  88.83
Kubo et al. (2014) SSMCW Slearp 97.76  89.29
""" BEEP | Bisani and Ney (2008)  Joint N-gram  Sequitur ~ 96.46  79.92
Kubo et al. (2013) SAROW Slearp 97.81 88.27
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TABLE 2.5: Table 2.4 (Continued)

PAcc WAcc
Dataset Author G2P method Toolkit (%) (%)
Bisani and Ney (2008)  Joint N-gram - - 93.75
Jiampojamarn et al. (2009) MIRA DirecTL - 95.03
Brulex Jiampojamarn et al. (2010) MIRA DirecTL+ - 95.21
Kubo et al. (2013) SAROW Slearp 98.92 94.41
Kubo et al. (2014) NAROW Slearp 99.01 94.86
Kubo et al. (2014) SSMCW Slearp 99.01 94.89

"""""""""" Black et al. (1998b) DT - 9580  74.56
Pagel et al. (1998) DT - 93.60 76.66
Bisani and Ney (2008)  Joint N-gram Sequitur 96.46 82.51
OALD Jiampojamarn et al. (2009) MIRA DirecTL - 82.43
Jiampojamarn et al. (2010) MIRA DirecTL+ - 85.54
Che et al.(2012) HMM - - 94.20
Novak et al. (2012) WFST Phonetisaurus - 83.52

Teachers word | McCulloch et al. (1987) ANNs - 86.00 -
book (TWB) Damper et al. (1998)  Elovitz rules - - 25.70

""" .| Taylor (2005)  HMM - 9098 57.31

Unisyn

Ogbureke et al. (2010) HMM - - 79.19

. Pronlex """"""""" Chen (2003)  Joint N-gram - 92.85  72.70
Bisani and Ney (2008)  Joint N-gram Sequitur 93.22 72.67

~ Wiktionary] Kubo et al. (2013) ~ SAROW  Slearp 7877 39.81
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3.1 Introduction

Fundamentally, some previous approaches [3, 70, 88] integrated many-to-one mapping
techniques between letters and phonemes, in which a phoneme is determined by using
a sequence of letters. These approaches proved unsatisfactory because there is no strict
correspondence between letters and phonemes [11], especially in the case of a less regu-
lar spelling language like English. Various many-to-many mapping techniques between
letters and phonemes for taking the G2P conversion to the next level have subsequently
been proposed. For example, Rama et al. treat the letter-to-phoneme conversion prob-
lem as a phrase-based statistical machine translation problem [101]. They removed the
one-to-one alignments from one of the most complex American English words-based
dictionary (known as the auto-aligned CMUdict corpus'®) and induced again many-to-
many alignments between letters and phonemes using GIZA++ toolkit. Consequently,
they reported 91.4% and 63.81% for the average phoneme accuracy and word accuracy,
respectively. Based on the same corpus, the letter-to-phoneme conversion by inference
of the rewriting rules provided a 74.40% word accuracy measured in terms of word pre-
cision averaged on the full dataset (including the training and testing datasets) [102].
The HMM-based approach with context-sensitive observations for G2P conversion [16],
proposed in 2010 by Ogbureke et al., showed a strong interest in the use of context
information at both graphemic and phonemic levels. Ogbureke et al. also stated that
different corpora always provided different performances because they obtained as much
as 79.79% word accuracy on the Unilex corpora containing the UK English words, but
only a maximum of 57.85% for the above mentioned CMUdict corpus owing to a large
number of loan words and some remarkable errors. Conversely, the joint sequence model,
proposed in 2008 by Bisani and Ney [21], is one of the most popular approaches in G2P
conversion. Recently, the Weighted Finite-State Transducer (WFST)-based G2P con-
version [26] achieved a good word accuracy result (~75.5%) on the CMUdict dataset
by utilizing a standard joint N-gram model and investigating N-best rescoring with a
Recurrent Neural Network Language Model (RNNLM).

However, it appears that the above-mentioned approaches —regarded as single-stage
model-based approaches— are not really applicable to the problem of conflicting phonemes
at the output level of G2P conversion, where an input grapheme'! could, in the same
context, produce many possible corresponding output phonemes at the same time. For
instance, if the model takes a sequence of seven graphemes as input, the grapheme “A”
on sequence “HEMATIC” can produce the phoneme /AE/ when it belongs to the word
“SCHEMATIC”, and also /AH/ when it is within another word “MATHEMATICIAN”.

10CMUdict corpus is available in the Pascal Letter-to-Phoneme Conversion Challenge website
(http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets)
1111 this chapter, a grapheme is strictly equal to a single letter, rather than a spelling unit.
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Thus, it is difficult to identify the correct phoneme corresponding to “A” since there is
more than one choice. This kind of problem may negatively impact the performance of
the G2P conversion model. Consequently, this chapter aims to take it into account in

order to help to improve the phoneme predicting quality in G2P conversion.

Over the years, several different neural network-based approaches for G2P conversion
have been developed; however, recently they have not been very competitive [86]. Most
of these approaches were constructed as one-stage models [3, 20], so they were not inte-
grated with the many-to-many mapping technique between graphemes and phonemes.
Considering these facts, in this chapter, a two-stage neural network-based approach for
G2P conversion is reasonably proposed, which enables the use of grapheme and phoneme
contexts in a way that is different from that of previous approaches for dealing with the
problems outlined above. The first-stage neural network is implemented as a many-to-
many mapping model between graphemes and phonemes for the automatic conversion of
word to phoneme sequences. Next, the second stage uses a combination of the phoneme
sequences obtained as an input pattern to predict the output phoneme corresponding
to each input grapheme in a given word. At this stage, it is particularly capable of
generating different phonemic patterns from the same input grapheme sequence that

appears in different words.

The remainder of this chapter is organized as follows: In Section 3.2, we discuss the
ability currently lacking in single-stage neural network-based G2P conversion. We then
describe the two-stage neural network-based approach in Section 3.3, and present its
experimental results in Section 3.4. We discuss the experimental results by investigating

the error analysis in Section 3.5 and then conclude this chapter in Section 3.6.

3.2 Single-stage neural network-based G2P conversion

The G2P conversion model was established for use in predicting the phonemes corre-
sponding to the input text'?, especially the OOV words. It is usually trained using
the graphemes-phonemes pairs (g-p pairs) extracted from a pronunciation dictionary, a
text file containing a large number of words together with their phonetic transcriptions.
In this case, each word and its pronunciation in the dictionary must be aligned before
being used. Therefore, for each occurrence (i.e., word — phonemes) of the auto-aligned
CMUdict corpus, both grapheme and phoneme sequences have the same length owing
w»

to the use of empty grapheme “.” and empty phoneme /_ / notations. For example, the

phoneme sequence of the word “CAPAB_ LE” is represented by /K EY PAHB AHL _/.

12Here, the input text is just a single word because the pronunciation dictionary being used contains
isolated words only.
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3.2.1 Mapping technique between graphemes and phonemes

The context-dependent grapheme model considers the association between graphemes
and phonemes as many-to-one [3]. Thus, the extracted g-p pairs are obtained by passing
two different slicing windows [103] through each occurrence of the dictionary; a window
is passed through the word grapheme-by-grapheme, while another window, one phoneme
in size, is passed through its corresponding phoneme string phoneme-by-phoneme [20].
In this context, several graphemes as input and a single phoneme as output are re-
quired. For example, if the word G = g1¢3...g,, corresponds to the phoneme sequence
P = p1pa...pn, then the extracted pair between the focal grapheme g; at position ¢ (where

i = 1...n) and its corresponding phoneme p; is represented as below:

Gi—zt+ .t g1+ G +Giv1+ ...+ Givtae — Di

& seq(gi,x) — pi
Where g € {*A’,‘B’,...,'Z’ ,empty grapheme ‘_’}
p € {/AA/,JAE/, ...,empty phoneme /_/}

Here, the sign + denotes sequence concatenation. The segments (g;—, + ... + g;—1) and
(git1 + ... + gita) represent left and right contexts of the focal grapheme g;, respectively,
while z indicates the size of each context side. In this equation, an input sequence
seq(gi, x) is constructed by concatenating the focal grapheme g; with its left and right

context information, so the length of this sequence is equal to (2z + 1).

On the other hand, considering the correspondence between graphemes and phonemes
as many-to-many has also been stated as a beneficial technique in many recent studies
because it can cover all possible mappings between graphemes and phonemes (e.g.,
one-to-one, many-to-one, one-to-many, and many-to-many) [16, 23, 31, 101]. These
techniques inspired us to incorporate the context-dependent phoneme model into neural
network-based G2P conversion. This results in phoneme p; in Eq.(3.1) being definitely
replaced by the phoneme sequence seq(p;, y), where y indicates the size of each context

side of p;. Inversely, Eq.(3.2) becomes Eq.(3.1) once the parameter y is set to zero.

Ji—az+ ...+ G+ ...+ Gita = Pi—y + ... +Di+ ... +Dity

(3.2)
& seq(gi,x) — seq(pi,y)

3.2.2 Lack of ability in phoneme prediction

When the G2P conversion is treated as a single-stage model, the output phoneme is

always predicted directly through the input graphemic information [3], [20]. Table 3.1
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TABLE 3.1: List of the g — p pairs extracted from two given words (“SCHEMATIC”
and “MATHEMATICIAN”) by using a slicing window of seven graphemes (z = 3) as
input and another window of one (y = 0) or five phonemes (y = 2) as output.

Input Output Output
g-p | -+grapheme context no context +phoneme context
pair (7 graphemes) (1 ph.) (5 phonemes)
seq(gi, 3) seq(pi, 0) seq(pi, 2)

P11y ___ S CHE S - S K _
P2| __S C HEM K _ S K _ AH
P3| _SC H EMA - S K _ AHM
P4| SCH E MAT AH K _ AH M AE
P5| CHE M AT I M _AH M AET
P6 |l HEM A TTIC AFE AHM AE T IH
PTIEMA T IC._ T MAE T 1IHK
PESIMAT I C __ IH AET IH K _
PO|AT T C _ _ _ K TIH K _ _
PO|_.__ M ATH M IH K M AETH
Pl1|. _M A THE AFE K M AF TH _
P12 _MA T HEM TH MAE TH _ AH
P3| MAT H EMA _ AETH _ AH M
Pl4| ATH E MAT AH TH . AH M AH
PI5| THE M AT I M _AH M AH T
Pl6  HEM A TTIC AH AHM AH T IH
PIT|IEMA T 1CI T MAH T IHSH
PIS8 I MAT I CTA IH AH T IH SH _
PIO|ATI C TIAN SH T IH SH _ AH
P20 TTIC I AN _ _ IHSH _ AH N
P21 T CI A N __ AH SH - AH N _
P2 CTA N _ _ _ N _AH N _ _

clearly shows that in this case the model lacks the ability to solve the phoneme conflicts
at the output level of G2P conversion. For example, it is impossible to distinguish
between the conflicted pairs P6 and P16 because they have the same input sequence
(e.g., “HEMATIC”) but different outputs (e.g., /AE/ and /AH/). Even when the
phoneme context gets involved (y> 0) in the model or not (y = 0), the problem always
remains because only one phoneme is obviously produced at the output layer of the

model.

In addition, it appears that the grapheme side does not carry enough information or
knowledge relating to the phonological interaction [104]. Therefore, the grapheme-based
phoneme prediction method implemented in single-stage model-based approaches does
not appear to be very effective for improving the G2P conversion performance as long

as the conflict at the phonemic level remains unsolved.
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3.3 Two-Stage Neural Network-based G2P Conversion

In order to deal with the problem discussed in the previous section without affecting the
previous many-to-many mapping technique, we employed a two-stage neural network-

based approach for G2P conversion.

In this section, we first propose a new phoneme-based method for predicting the output
phonemes corresponding to the given words. We then describe the architecture of the

proposed approach.

3.3.1 Prediction using phonemic information

Even though multiple output phonemes can be mapped to the same input grapheme
sequence, phoneme prediction in G2P conversion should be done at the phonemic level
itself rather than the graphemic level because the grapheme side does not contain enough
information relating to the phoneme interactions. From this point of view, we propose a
new phoneme prediction method in which the phonemic information is used as input to
select the best final output phoneme. Because the G2P conversion model theoretically

uses text as input, our proposed method has to be divided into two consecutive steps:
Grapheme sequence = Phoneme sequence = Phoneme

The proposed method first converts the graphemic information into phonemic infor-
mation without worrying about any conflict at the phonemic level. In this step, each
grapheme sequence can produce only one output phoneme sequence at a time. Next,
all the related output phoneme sequences are combined and used at the second step of

execution to predict the exact output phoneme of the G2P conversion model.

3.3.2 Architecture of the G2P conversion model

On the basis of the new phoneme prediction method presented above, the proposed
G2P conversion model is fundamentally built by putting two different multi-layer neural
networks in sequence as depicted in Fig.3.1. The first neural network is implemented as
a many-to-many conversion model to automatically transform each grapheme sequence
extracted from a given word into the corresponding phoneme sequence. This facilitates
coverage of all possible graphemes-phonemes associations. The second neural network
then uses each combination of the obtained phoneme sequences as an input pattern to

enable prediction of the final output phoneme corresponding to each input grapheme
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in the given word. This stage is specially established to take action on the problem of

conflicting phonemes, which is impossible to solve in the first stage model.

3.3.2.1 First-stage neural network

As depicted in Fig.3.1, the first-stage neural network is constructed based on the same
technique described in Section 3.2, which was implemented to automatically convert a se-
quence of graphemes (i.e., seq(g;, z)) into another sequence of phonemes (i.e., seq(p},y))
that is necessary for helping the second-stage neural network to generate different phone-
mic patterns out of the same input grapheme sequence appearing in two or more different

words.

This model is trained with the g-p pairs extracted with respect to Eq.(3.2) from all
the occurrences of the pronunciation dictionary. For example, according to Table 3.1,
if x =3 and y = 2 are set, then 22 extracted pairs are obtained from two given words
“SCHEMATIC” and “MATHEMATICIAN”. After the training process terminates, ac-
cording to the left part of Fig.3.2, some output information (e.g., the phoneme /AH/ or
the phoneme sequence /AH M AH T IH/) is lost because of the phoneme conflicts, so
the same output phoneme sequence /AH M AE T IH/ is generated from the input of
both pairs P6 and P16.

3.3.2.2 Second-stage neural network

According to Fig.3.1, for an input word G = g1 ¢2...g, containing n graphemes, a set of n
phoneme sequences (e.g., seq(p},y), seq(ph,y),..., seq(pl,,y)) are produced after termi-
nating the process at the first-stage neural network. Thus, the desired output phoneme
p; corresponding to the focal grapheme g; on sequence seq(g;,z) can be predicted by
investigating the information related to p; (i.e., this refers to p}) that can be found at
different locations within some of the obtained phoneme sequences; in the case where
the current input grapheme sequence seq(g;, ) outputs the phoneme sequence seq(p;, y)

at the first-stage neural network, the information concerning p) can be found as follows:

e At the central position of the current phoneme sequence seq(p;, y).

e Within the right context side of the phoneme sequences preceding seq(p},y). As

seen in Fig.3.1, those preceding phoneme sequences include seq(p}_y,y), seq(p;_s,y),

ooy s€q(Di_, 1, y) and seq(p;_,,y).
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e Within the left context side of the phoneme sequences succeeding seq(p},y). As

can be seen in Fig.3.1, those succeeding phoneme sequences include seq(p)} 1Y)

seq(Diro: ), - 5€q(Diy,_1,y) and seq(p} ., y).

Here, parameter z indicates the number of preceding or succeeding phoneme sequences.
In this chapter, the phoneme sequences preceding and succeeding seq(p},y) are called

the neighborhood phoneme sequences of seq(pl,y).

Consequent on these facts, we propose the phoneme context extending technique in
which all the related phoneme sequences (i.e., the sequences containing information
about p}, which include the current phoneme sequence and its neighborhood sequences)
are concatenated. This can generate a phonemic pattern with larger context including a
strong knowledge related to the phonological interaction between the output phoneme p;
and other phonemes in the conversing word. Since the neural network-based approach
is used at the first-stage, it is then used at the second stage because of the coding
time reduction and its simple implementation. Therefore, the second-stage neural net-
work determines the final output phoneme via the generated pattern using the following

equation:

preceding sequences succeeding sequences

A

seq(pi_..y) + ... +seq(p;,y) + ... + seq(piy .. y) — pi (3.3)

& Pattern(pl,y,z) — pi

Owing to the problem presented in Table 3.1, it is difficult to distinguish the output be-
tween the g-p pair P6 and P16 because they have the same input grapheme sequence (e.g.,
“HEMATIC”). However, the example in Fig.3.2 demonstrates that our two-stage neural
network-based approach for G2P conversion can provide a good solution to the problem
by adding the second-stage neural network model. This facilitates the creation of two
different phonemic patterns representing the grapheme ‘A’ in sequence “HEMATIC”,
which belongs to two different words (e.g., “SCHEMATIC” and “MATHEMATICIAN”).
Furthermore, the phonemes along the diagonal positions and those at the top-left, as
well as the bottom-right of each pattern, are very important for distinguishing between

the output phonemes in cases where they have the same input grapheme sequences.

In practice, some unpredicted errors occurred after the first-stage neural network because
it virtually impossible to obtain a perfectly trained neural network to represent a complex
system like G2P conversion. Fortunately, as can be seen in Fig.3.2, these errors could

help to produce some extra patterns for the second-stage sometimes.
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3.4 Evaluation

In this section, we first describe the data preparation process. We then briefly explain
the experimental setup, after which we report on the experimental results obtained from

various proposed test sets.

3.4.1 Data preparation

3.4.1.1 Auto-aligned CMUdict corpus

We chose the American English words-based pronunciation dictionary (known as the
auto-aligned CMUdict corpus) to evaluate the performance of our proposed approach
against two baseline approaches. This corpus, which contains many acronyms and loan
words from different languages such as Japanese, French, and German, has been widely
used by researchers [16, 101, 102]. It was originally created using 34 graphemic symbols
(e.g., A’ 27, ¢2’..'T", ‘9" and empty grapheme ‘_’) and 40 phonemic symbols (e.g., /AA/,
/AE/, /SH/, empty phoneme /_ /, etc.).

It comprise a total of 112,102 isolated words, including 838,996 graphemes and phonemes,
owing to the aligned corpus. Further, it was originally subdivided into 10 folds (e.g.,
part0, partl, ..., part9) each of which contains almost the same number of words,

graphemes as well as phonemes [58].

3.4.1.2 Newly aligned CMUdict corpus

Various researchers have stated that the auto-aligned CMUdict corpus has a lower con-
sistency than other corpora and also has errors [16, 23], while others have emphasized
that the quality of the pronunciation dictionary could negatively affect the G2P con-
version performance [105]. As a result, we reconstructed a version of the auto-aligned
CMUdict corpus with higher consistency (i.e., a newly aligned CMUdict corpus) us-
ing the GIZA++ toolkit and then used it in our experiments. Because the number of
numeric graphemes was too low, all of the words containing numeric graphemes were
removed. As a result, it remained only 27 graphemic symbols remained in the new

corpus.

The resulting corpus proved more reliable and consistent than the original. Fig.3.3 shows
that the word located in the third column is always shorter and well-aligned than the
one located in the second column. In addition, by counting the phonemes that could

possibly be mapped from each grapheme, Fig.3.4 demonstrates that the grapheme in
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Newly aligned CMUdict
Case of alignment Original CMUdict
e gin (After GIZA++ & Manual Check-up)
-LE C OP|[P LE COPP_ LE
{BLE, -TLE, -PLE, ...} |KAAPAHL _ KAAP|_AHL _
DECOMPO SI|T ION DECOMPOSIITION
DIYKAHMPOW ZIH|SH_AHN DIYKAHMPOW ZIH|SH_AHN
DE|ICISI _ ONMAKI NG |[DE|CI ST ONMAKI NG
DAH| _ SIHZHAHNMEYKIHNG _ |DAHSIHZH_AHNMEYKIHNG _
-ION
ACCLI|[M_ _ ATION A CCLIMA TION
AE_KLAH/MEYSHAH ___N AE K_LAH MEYSH_AHN
DEFAM_| _ATION DEFAMA|TION
DEHFAHMEY|SHAH_ _ _ N DEHFAHMEY|SH_AH N
ED CR A MPED BI AS|ED| [CRAMPED BI A S[ED
) KRAEMP[T _ BAYAHS|T _ KRAEMP_T BAYAHS|_T
_ _ AWFU[LN E SS AWFU|LN ESS
AOFAH _ _ _|[LNAH_S AO_FAH|LNAHS _
B_ _ICYC|LED BICY C_|LED
BAYSIHK_AH[L_D BAYSIHKAH L_D
Others
B OGA |__CK|I B OGA|_CK|I
BAHGAA|TSK _|[IY BAHGAA|TSK [IY
C A|__CIQUE C A[CI QUE
KAHSIYK _ _ _ _ KAHSIY K _ _

F1cURE 3.3: Comparison of the alignment between graphemes and phonemes in the

auto-aligned

CMUdict (column 2) and the newly aligned CMUdict (column 3).

40
35

M Original CMU Dictionary [1]
H Newly aligned CMU Dictionary

25

30 E={AA, AH, AO, AY, B, DH, EH, ER, EY, IH, IY, OW, OY, S, T, UW, W, Y, Z, _}

o)}
_

_E={AA, AH, AO, EH, ER, EY, IH, IY, OW, OV, Y, _}

Number of corresponding phonemes

A B CDETFGH 11 J K LMNOPOQRSTUVWIXY Z _
Grapheme (27 unitis)
FicURE 3.4: Consistency measurement based on the number of corresponding

phonemes that could be mapped by each grapheme inside the original and new datasets.
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the newly aligned CMUdict corresponds to fewer numbers of phonemes than the one
inside the auto-aligned CMUdict. For example, the number of phonemes that could be
mapped by the grapheme ‘E’ is reduced from 20 to only 12.

3.4.2 Experimental setup
3.4.2.1 Training and testing datasets

We conducted experiments on the newly aligned CMUdict corpus. Nine out of ten folds
(e.g., part0, ..., part8) were combined and then used as a training dataset, while the
remainder fold (e.g., part9) was used as a testing dataset. Thus, the training dataset
contained a total of 100,713 words or 750,198 graphemes/phonemes, while the testing
dataset contained 11,188 OOV words or 83,267 graphemes/phonemes.

To achieve accurate phoneme prediction, we used the Orthogonal Binary Codes (OBC)
[15] to encode each symbol, where the length of a vector corresponding to a single symbol
was exactly equal to the total number of symbols in the group the symbol belongs to,
and therefore each grapheme and phoneme was represented using a vector of 27 elements
(or 27 neurons) and 40 elements (or 40 neurons), respectively. According to Tables 3.2
and 3.3, for each vector, only one element at a specific index was active or set to one,

while the others were set to zero.

3.4.2.2 Four different test sets

In this research, we proposed and separately utilized four different test sets. First, we
created a simple baseline approach (Baselinel) and implemented it using only a one-
stage neural network. In accordance with Fig.3.3, this baseline was built using Eq.(3.1)
or Eq.(3.2) with y = 0.

Next, we proposed an extended interesting baseline approach (Baseline2) to help prove
that the performance of the G2P conversion model can possibly be improved by just
adding the second-stage model. As depicted in Fig.3.5, this baseline was designed with
respect to the architecture of our two-stage model-based approach, with the exception
that the first-stage neural network was replaced by the first baseline approach. This
means that once the phoneme context is not involved in the model (when y = 0), each
output phoneme sequence at the first-stage neural network contained only one phoneme

per sequence (i.e., seq(p;,0) = p}).
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Grapheme Encoded value Phoneme Encoded value
symbol (27 neurons) symbol (40 neurons)
‘A’ 100000000000000000000000000 JAA/ 1000000000000000000000000000000000000000
‘B’ 010000000000000000000000000 /AE/ 0100000000000000000000000000000000000000
‘o 001000000000000000000000000 JAH/ 0010000000000000000000000000000000000000
‘D’ 000100000000000000000000000 /AO/ 0001000000000000000000000000000000000000
‘B 000010000000000000000000000 JAW/ 0000100000000000000000000000000000000000
‘B 000001000000000000000000000 JAY/ 0000010000000000000000000000000000000000
e 000000100000000000000000000 /B/ 0000001000000000000000000000000000000000
‘H? 000000010000000000000000000 /CH/ 0000000100000000000000000000000000000000
T 000000001000000000000000000 /D/ 0000000010000000000000000000000000000000
Sk 000000000100000000000000000 /DH/ 0000000001000000000000000000000000000000
K 000000000010000000000000000 JEH/ 0000000000100000000000000000000000000000
€L 000000000001000000000000000 JER/  0000000000010000000000000000000000000000
A 000000000000100000000000000 JEY/  0000000000001000000000000000000000000000
NG 000000000000010000000000000 J/F/ 0000000000000100000000000000000000000000
‘0’ 000000000000001000000000000 /G/ 0000000000000010000000000000000000000000
P 000000000000000100000000000 JHH/ 0000000000000001000000000000000000000000
‘Q 000000000000000010000000000 JIH/ 0000000000000000100000000000000000000000
R 000000000000000001000000000 ;{I}}% 0000000000000000010000000000000000000000
can 0000000000000000001000000000000000000000
‘% 888888888888888888328888888 JK/ 0000000000000000000100000000000000000000
U 000000000000000000001000000 /L/ 0000000000000000000010000000000000000000
a 000000000000000000000100000 /M/ 0000000000000000000001000000000000000000
/N/ 0000000000000000000000100000000000000000
‘W2 000000000000000000000010000

X 000000000000000000000001000 /NG/ 0000000000000000000000010000000000000000
o /OW/ 0000000000000000000000001000000000000000
Y 000000000000000000000000100 JOY/  0000000000000000000000000100000000000000
Z 000000000000000000000000010 P/ 0000000000000000000000000010000000000000
- 000000000000000000000000000 /R/ 0000000000000000000000000001000000000000
/S/ 0000000000000000000000000000100000000000
/SH/ 0000000000000000000000000000010000000000
/T/ 0000000000000000000000000000001000000000
/TH/ 0000000000000000000000000000000100000000
JUH/ 0000000000000000000000000000000010000000
/UW/ 0000000000000000000000000000000001000000
/V/ 0000000000000000000000000000000000100000
JW/ 0000000000000000000000000000000000010000
/Y/ 0000000000000000000000000000000000001000
/Z/ 0000000000000000000000000000000000000100
/ZH/ 0000000000000000000000000000000000000010
/-/ 0000000000000000000000000000000000000000

TABLE 3.2: List of grapheme TABLE 3.3: List of phoneme symbols and

symbols and its encoding.

its encoding.

We also utilized two other test sets using the same two-stage neural network-based ap-

proach (written as TSNN in this section to reduce word repetition), but different config-

urations. For the first configuration (TSNN_3ph), we used a sequence of three phonemes

(i.e., y2 = 1) as the output of the first-stage neural network, and also three phoneme se-

quences (i.e., zo = 1) as the input of the second-stage neural network. We then enlarged

the size of the phoneme sequence from three to five phonemes (i.e., 1 = 2) and also the

number of sequences from three to five sequences (i.e., z; = 2) for another configuration
(TSNN_5ph).
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TABLE 3.4: Configuration of the four proposed test sets

First-stage Second-stage
seq(gi, x) — seq(pl,y) Pattern(pl,y, z) — p;

z (# gr-) y (# ph.) y (# ph.) =z (# seq.)

Baseline 1 z3: 5—9 ys: 0

Baseline 2 z3: 5—9 y3: 0 y3: 0 z3: 4

Two-stage neural

network using 3ph. %2 4—8 yor 1 ya: 1 zo: 1
Two-stage neural
network using 5ph.  71: 327 Y1t 2 Y1: 2 210 2

As can be seen in Fig.3.1, TSNN_5ph uses a pattern of five joint phoneme sequences
obtained from the first-stage neural network to predict the final output phoneme at
the second-stage neural network. This means that five input grapheme sequences are
involved in the generation of each pattern. This may appear unfair if we compare
the performance of TSNN_5ph with that of Baselinel and Baseline2 using the same
input grapheme sequence size. Therefore, the size of the grapheme sequence being used
in both baseline approaches must be longer than that being used in TSNN_5ph and
depend on the value of z; according to the observation of the five grapheme sequences
involved, the bottom part of Fig.3.5 shows that each input grapheme sequence used in
both baseline approaches must contain four graphemes more than used in TSNN_5ph
(i.e., according to Table 3.4, x3 = x1 + 21 = x1 + 2) and two graphemes more than used
in TSNN_3ph (i.e., x3 = x9 + 29 = x2 + 1). Likewise, at the second-stage of TSNN_5ph,
only nine exact phonemes are found within each generated pattern of five joint phoneme
sequences. Thus, the number of input phonemes at the second-stage of Baseline2 should

be equal to nine phonemes (i.e., according to Table 3.4, z3 = 21 + y1 = 4).

According to Eq.(3.1), for each test set in Table 3.4, the size of the input grapheme
window must be an odd number depending on its context size (e.g., r1 =3 — 7,

r9o=x1+1=4—-8andzg=x;+2=5—9).

3.4.2.3 Configuration of FANN parameters

We implemented each neural network stage of our proposed model using the functions
provided by the FANN (Fast Artificial Neural Network'?) library. We obtained the best

results when each stage was set up as follows:

I3FANN Library: http://leenissen.dk/fann/wp/


http://leenissen.dk/fann/wp/
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Standard neural network with three layers

Incremental backpropagation algorithm

Learning rate = 0.8; Momentums = 0.1

Symmetrical sigmoid activation function'*, where the steepness is equal to 0.01

Number of neurons at the first stage:

— Input layer = (2z+ 1) %27
— Hidden layer = (22 + 1) 27 % 2
— Output layer = (2y + 1) * 40

Number of neurons at the second stage:

— Input layer = ((22+1)*(2y+1)) =40
— Hidden layer = ((2z + 1) * (2y + 1)) *40/2
— Output layer = 40

(2z+1), (2y+1) and ((2z+1) % (2y+1)) are the sizes of seq(gi,x), seq(p;,y) and
Pattern(p,,y, z), respectively.

3.4.2.4 Accuracy measurements

To compare with other approaches introduced at the beginning of this chapter, we
evaluated the performance of the model in terms of phoneme accuracy (PAcc) and
word accuracy (WAcc) using the NIST sclite scoring toolkit!®. Because the goal of
this chapter is improvement of the performance of G2P conversion measured on the
OOV words, we only report results related to this objective. Both PAcc and WAcc are
calculated using Eq.(2.2) and Eq.(2.3) written in Section 2.1 on page 17, respectively.

3.4.3 Experimental results

Each proposed test set used the newly aligned CMUdict corpus to evaluate the model
performance. Based on Fig.3.6, by investigating various input grapheme sequence sizes
(e.g., when ;1 =3 -7, 9 =4 — 8 and 23 =5 — 9), our proposed two-stage neural
network-based approach usually provided higher PAcc and WAcc than both baseline

approaches.

MEFANN Datatypes: http://leenissen.dk/fann/html/files/fann_data-h.html#fann_
activationfunc_enum
ISNIST sclite scoring toolkit: http://www.nist.gov/speech/tools/


http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum
http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum
http://www.nist.gov/speech/tools/
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FIGURE 3.6: PAcc and WAcc measured on the OOV words
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TaBLE 3.5: Word Error Rate (WER) of the four proposed test sets, which were evalu-
ated on the OOV words and grouped by the number of erroneous phonemes per word.
These reported results were obtained with 1 =7, x2 =8 and 3 = 9.

Nb. of errorenous WER WER WER WER
phonemes Baselinel Baseline2 TSNN_3ph TSNN_5ph
per word (x3=19) (x3=19) (2 =38) (x1=T7)

1 21.92% 21.30% 20.25% 19.89%
2 7.55% 7.52% 7.04% 6.99%
3 2.37% 2.33% 1.99% 2.03%
4 0.48% 0.44% 0.40% 0.46%
5 0.10% 0.08% 0.08% 0.11%
6 0.02% 0.04% 0.01% 0.01%

Further, it was also proved that the performance of the G2P conversion given by each
test set increased relative to the size of the input grapheme sequence; a nice improve-
ment in WAcc occurred once the number of graphemes started increasing from seven
to eleven graphemes (i.e., x1,x2,23 =3 — 5). However, for our proposed approach
TSNN_5ph, the best result (PAcc=94.31% and W Acc="70.52%) was reported when
the input sequence consisted of 15 graphemes (i.e., 1 = 7). In addition, TSNN_5ph

usually outperformed TSNN_3ph when z; was greater than four.

In terms of the WER of the OOV words, Table 3.5 shows that TSNN usually produces
less erroneous words than both baseline approaches. Further, the values obtained for
PAcc are always higher than 90%, so a small difference in PAcc has a strong impact on
the result of WAcc because we had surmised that most of the erroneous words (more

than 19%) contains just one erroneous phoneme.

The training time of each stage model is also reported in Table 3.6. Because neural
networks were used in the experiments, the training time must be calculated and sepa-
rated epoch-by-epoch (1 epoch = 1 training iteration). From one to another epoch, we
observed that the training time usually increases incrementally, so we decided to report
two different values of time; specifically, the minimum and maximum training times.
The minimum training time is measured around the first epoch, while the maximum
training time is measured around the best epoch. In this work, the best epoch refers to
a selected epoch where the trained model has the set of weights that will provide the
best generalization performance, which is usually found at any epoch that will provide

the smallest value of Mean Squared Error (MSE) evaluated on the testing data.

Theoretically, the training time of each test set depends exactly on the size of each staged
neural network. For example, except for the case of x1 = 7 and 3 = 8, when the value of

x is increased, Table 3.6 shows that the training time per epoch at the first-stage neural
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TABLE 3.6: Training time of the four proposed test sets. Both the minimum and
maximum durations of each epoch during the training of each neural network stage are
described here.

First-stage Second-stage
Time/epoch Time/epoch
Best (minutes) Best (minutes)
Context | epoch | [min, max| | epoch | [min, max|
Baselinel x3=5 49 [15, 16] 10 [13, 14]
(1st-stage only) | x3=6 41 20, 22] 13 [13, 14]
& x3=7 46 26, 27] 10 13, 14]
Baseline2 x3=8 51 21, 22] 16 [13, 14]
(both stages) x3=9 48 (38, 42] 8 [13, 14]
x2=4 | 137 (15, 20] 35 8, 9]
x2=>5 81 20, 27] 27 8, 9]
TSNN_3ph x2=6 56 (22, 39] 24 8, 9]
x2=7 56 27, 34] 46 [9, 10]
x2=8 57 [45, 60] 24 [9, 10]
x1=3 04 (10, 16] 54 61, 69]
x1=4 183 (15, 24] 16 (64, 66]
TSNN_5ph x1=5 111 (17, 25] 13 [53, 54]
x1=6 81 23, 33] 10 52, 53]
x1=7 76 (19, 40] 10 52, 54]

network also increased. Otherwise, it does not affect the second-stage at all because it
is independent of the value of . Based on the architecture of the second-stage neural
network, both TSNN_3ph and Baseline2 use the same number of neurons and model
configurations, but they provide different training times. Hence, we can assume that
the training time also depends on the PC performance. Since we trained the model on
a shared server (Windows 7 professional 64 bits, Core i7-3930K 3.20 GHz, 32.0 GB)
in our laboratory, the training process was sometimes slow or fast depending on the
number of user connections and the number of simultaneous training processes launched
from the same client PC. Furthermore, the training time per epoch of the second-stage
of TSNN_5ph appears too long compared to others because we could not load all the
training data at once caused by the memory limitations, so the training dataset had
to be decomposed into two or three parts at this stage. For each epoch, those parts
were randomly selected one-by-one to be loaded, shuffled, trained, evaluated, and then

deleted. As a result, the training time increased proportionately.
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TABLE 3.7: Example of the words selected consisting of two phoneme conflicts
(‘R'— {/ER/, /R/} and ‘A’— {/EY/, /AH/}), while z = 3 and y = 2.

Word Corresponding phonemes
seq(gi,3) seq(pi, 2)
COLL | ABORATE |D KAH _L AE | B_ER EY T
EL | ABORATE | S AHLAE |B_EREYT |_S
EL | ABORATE AHLAE | B_.RAHT |_
EL | ABORATE |LY AHLAE | B_.RAHT |_LIY

TABLE 3.8: Accuracy given by TSNN and WFST based on two different datasets.

TSNN_5ph WFST
(z1=17)
‘ ‘ PAcc 94.31% 93.46%
Newly aligned CMUdict. WAcc 70.52% 73.45%
PAcc 93.60% 91.99%
Words produce the phoneme conflicts WA ce 57.50% 57.05%

3.4.4 Comparing with a previous approach

In addition to the evaluation results in the previous section, we also compared our pro-
posed approach to one of the most popular approaches in G2P conversion —the Weighted
Finite-Stage Transducer (WFST)-based approach [26] available in the Phonetisaurus
G2P toolkit!©.

We compared TSNN and WFST using two different datasets: a general dataset (i.e., the
newly aligned CMUdict corpus) and a special dataset (i.e., a small subset of the newly
aligned CMUdict corpus) in which only the words consisting of more than one phoneme
conflicts, as seen in Table 3.7, are selected. For the first dataset, the training and testing
data were the same as in our previous experiments, which have already been described
in Section 3.4.2.1. For the second dataset, we randomly selected 80% and 20% of the

total 7,123 extracted words for the training and testing datasets, respectively.

The results in Table 3.8 show that TSNN_5ph always provides higher phoneme accuracy
than WFST, but, unfortunately, lower word accuracy for the first dataset.

SPhonetisaurus toolkit: http://code.google.com/p/phonetisaurus/
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3.5 Discussion

The experimental results depicted in Fig.3.6 and Table 3.5 clearly show that the proposed
two-stage neural network-based approach for G2P conversion usually provides the best
accuracy on OOV words compared to both baseline approaches, even when it uses a

smaller grapheme sequence size than others (i.e., 1 < x3).

As explained in Section 3.4.2.2; at the input layer of the first-stage of the G2P conver-
sion model, the exact number of graphemes and phonemes getting involved in Baseline2
and TSNN_5ph were quite similar to each other, but both approaches provided differ-
ent results; Fig.3.6 and Table 3.5 indicate that TSNN_5ph usually provided a higher

performance than Baseline2.

Even when we decreased the value of y from two down to only one (i.e., reduced the
size of phoneme sequence from five down to only three phonemes per sequence) in order
to have the same size phonemic pattern (e.g., a pattern of nine phonemes) at the input
layer of the second-stage of both approaches mentioned, our proposed approach (i.e.,
TSNN_3ph) still outperformed Baseline2. Therefore, it does not matter if the same
numbers of phonemes are used or not, the two-stage neural network-based approach for
G2P conversion always outperformed both baseline approaches. This can result in the
assumption that the grapheme and phoneme contexts are not really effective to fix the
problem of conflicting phonemes at the output layer of the G2P conversion model, unless

the pattern of joint phoneme sequences is incorporated at the second-stage.

The comparison between the results given by Baselinel and Baseline2 also demonstrates
that the second-stage neural network is very helpful in boosting the accuracy of the G2P
conversion model to the next level. Even if the phoneme context information is absent
in Baseline2, it is still possible to go beyond the performance attainable by Baselinel,
by assigning the value of z to a positive number (e.g., z = 4) at the second-stage neural
network. Perhaps this technique may also help to improve the performance of existing
approaches, such as the joint-sequence model, by creating a hybrid model that integrates

the approach into our two-stage model-based G2P conversion.

Further, following the error analysis of the erroneous words, some invisible information
was discovered. For example, some extracted graphemes-phonemes pairs in the testing
dataset (i.e., OOV words) were never seen during the training process, so the wrong
output phonemes were given during the evaluation. In addition, most of the erroneous
words containing more than one erroneous phonemes per word were from foreign words
such as “SENZAKI” and “AICHI” from Japanese, “BOGDANOWICZ” from Polish,
“XIAOGANG” from Chinese, etc.
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Conversely, the evaluation results of comparison with another existing approach, the
WEFST-based approach, in Table 3.8 demonstrate that our approach provides higher
phoneme accuracy but lower word accuracy on the first dataset. However, when the
training data contain only words with some phoneme conflicts, our approach yields a
better performance than WFST. This shows that the two-stage neural network-based
approach is good at identifying the single phoneme in a word by using the grapheme
and phoneme contexts differently from previous approaches, especially when a phoneme
conflict has occurred. Otherwise, since it does not use any language model-based tech-
nique, it lacks knowledge for detecting the whole word compared to the WFST-based
approach. Therefore, for the next step of improvement, we have to focus on how to
reduce the erroneous words containing only one erroneous phoneme in order to increase

the word accuracy.

3.6 Summary

This chapter has shown that using only one neural network is not enough for solving some
complicated problems in G2P conversion. As a result, the two-stage neural network is
considered a powerful approach for improving the accuracy of the G2P conversion model.
To output the phonemes of the input text, prediction must be based on phonemic rather
than graphemic information. Because two different neural networks and OBC encoding
algorithm are used, this approach is also counted as an expensive and time-consuming
approach, but it can also provide good results while performing on a large and complex
corpus such as the auto-aligned CMUdict. In terms of phoneme and word accuracy, the
evaluation results show that our proposed approach usually outperforms the baselines
and it also can be regarded as an improved version of the single-stage neural network-

based approach for G2P conversion.
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4.1 Introduction

The two-stage architecture for G2P conversion described in the previous chapter showed
the advantage of using phonemic rather than graphemic information to predict the best
final output phoneme sequence corresponding to the input word. It also demonstrated
that this two-stage model using neural networks is good at identifying single phonemes

in a word, but lacks the knowledge for detecting the whole word.

Therefore, in this chapter, we utilize the existing WFST-based approach to implement
a novel two-stage architecture-based G2P conversion. This work investigates a new
strategy in which we combine both graphemic and phonemic information as the input
sequence for the G2P conversion. Moreover, several new grapheme generation rules for
transforming each input word into different representations of grapheme sequences are
also introduced in this chapter, which enable the addition of extra detail to the vowel
and consonant graphemes appearing in a word. In this study, a grapheme could be
a single letter or a combination of letters. Most of these rules focusing on the vowel

graphemes can achieve a small but consistent improvement on previous approaches.

The remainder of this chapter is organized as follows: in Section 4.2, we introduce several
newly invented grapheme generation rules. Then, we describe the novel two-stage model
for G2P conversion in Section 4.3 and provide the evaluation results in Section 4.4. The

discussion and conclusion are in Section 4.5 and 4.6, respectively.

4.2 New grapheme generation rule (GGR)

The G2P conversion model is usually built as a one-stage architecture for use in predict-
ing phonemes corresponding to input text, especially with OOV words. To improve the
model’s performance, this research integrated various newly invented grapheme genera-

tion rules into the model.

The grapheme side does not carry sufficient information or knowledge relating to the
phonological interaction [104]. In order to make the graphemic information more sensi-
tive in the G2P conversion, this work designed new rules with respect to the concept of
context-dependent models, particularly for generating different grapheme sequences out
of the same input word. Theoretically, for each grapheme of a given word, we concate-
nate it with the graphemes on its left and right contexts. However, in this study, only
the right context information is involved in the rule-making process because we prefer a
compact representation for the new grapheme symbols, each of which consists of one or

two alphabetical letters (e.g., “A” or “AU").
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TABLE 4.1: List of the selected grapheme generation rules.
Rule Description
(GGR,) ( Word N Grapheme sequence )
W = 9192---9m—19m = GT =01 92 - Gm—-1 Im
g = g (like unigram = default)
GGRy [ Ex “OKEECHOBEE® = OKEECHOBEE
gi = gigi+1_ (like bigram)
GGRy |7y “OKEECHOBEE® = OK KE EE EC CH HO OB BE EE E_
V1...Up, = V1V2 VU3 ... Upn—1VUp Up
g GGR3 |""Ex: “OKEECHOBEE® = OKEEECHOBEEE
E V1...UnCp+1 = V1VU2 VU3 ... Un—1Un UnCn+l Cp+1l
= If (n > 1): V1..0p <> =  U1U2 U2U3 ... Up—1Un Un
Eo GGR, | If(n=1): g9i = Gi
g Ex: “OKEECHOBEE” = OKEEECCHOBEEE
g V] UpCpil => U102 VU3 ... Up—1Up UnCnil Cnil
£ If (n > 1): V1..Up & =>  UIVU2 V2V3 ... Un—1Upn Up-
| GGR; | I (n=1): 9 = G
% Ex: “OKEECHOBEE” = OKEEECCHOBEEE._
g [co]v1...UnCry1 = [covi] vIV2 VU3 ... Up_1Un UnCptl Cntil
- If (n > 1): e
f 0|V1...Vp < = [Covl] V1V UV2V3 ... Up—1Un Up-
Z | GGRs | (n=1) gi = gi
Ex: “OKEECHOBEE” = OKE EE ECCHOBE EE E_
C1...C, = C1C2 C2C3 ... Cp—1Cp Cp
g GGR7 |"Ex: “APPLICATION” = APPPLLICATION
Q C1...CpUnp4+1 = C1C2 C2C3 ... Cp—1Cp CpUnit1 Upti
< .
% If (n > 1): Cl...Cp <> => C1C3 C2C3 ... Cp_1Cn Cn
| GGRg | M (m=1): gi = g
% Ex: “APPLICATION” = APPPLLIICATION
§ €1.--CnlUn+1 = C1C2 C2C3 ... Cp—1Cp CnUp+1 Uptil
5 If (n > 1): Cl...Cp <> => C1C3 C2C3 ... Cp_1Cp Cn-
S| GGRy |1f(n=1): g = g
bOD Ex: “APPLICATIONS” = APPPLLIICATIONSS_
% [vo]er...cnUny1 = [voci] cica cacs ... Cp—1Cn CrUnil Unil
= If (n > 1): [voler...cn <= = [voci] cica cacs ... Cp_1Ch Cne
€| GGRyp | If (n=1): g9i = gi
E Ex: “APPLICATIONS” = APPPPLLIICATION NS S_
k= GGRs + GGR;
GGRu [y “APPLICATION? APPPLLICATIOON

=

Here,

C; , U;
4

gi = {ci,v;i} : grapheme/character at index i;

consonant and vowel graphemes at index 4;

7

[

end of the word (counted as ¢;);
_’: empty consonant grapheme;

n : number of connecting vowels in a given word;
m : length of the given word.
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Because the interaction between vowels in a word has a strong impact on the spelling
process, most of the rules written in this chapter were carefully designed to add extra
sensitive information to each vowel grapheme appearing in a word. For a few connect-
ing graphemes many rules are possible, but only the rules more related to the vowel
graphemes (as listed in Table 4.1) are taken into account. However, in order to compare
the impacts of the vowel and the consonant grapheme in the automatic conversion of
a word into its phonetic transcription, we also proposed some other rules that mainly
focus on the consonant graphemes. As a result, Table 4.1 shows that most of the newly
generated grapheme sequences can make the G2P conversion system easily identify not
only the pattern of each vowel but also that of each consonant in a given word. In this
table, the parameter g; refers to the grapheme in index ¢, while ¢; and v; represent the
consonant and vowel graphemes in index i, respectively. Moreover, the parameter n

represents the number of vowels.

Suppose that an input word W = g1gs...g,, consisting of m characters/graphemes is
provided as an input. The new grapheme sequence G, = g1 G2 -.- Gm, in which an
empty space is used as a separator, can be generated with respect to a rule GGR,,

formulated as follows:

G, = GGR,(g) (4.1)

The first rule (GGR;) represents a unigram model used by most researchers [10, 15,
16, 17, 19, 26, 59, 69, 70, 72, 88, 101, 102], but it appears not to provide sufficient
information concerning each vowel or consonant grapheme. The second rule (GGR3)
represents a bigram model, which seems to add too much information to each grapheme
because it always combines the consonant grapheme with the vowel grapheme. The other
four rules (GGR3, GGRy, GGR5; and GGRg) are designed specifically for adding the
information missing in the first rule. For example, the third rule (GG R3) can distinguish
the separated vowel-the vowel v that appears in the cvc pattern— from the vowels at the
front part of the connecting vowels, i.e., the vowels vy, va, ..., v,—1 of the v;...v, pattern.
In addition to GG R3, the other three remaining rules ( GGR4, GGR5 and GGRg) are
capable of distinguishing between the front vowels v, v, ..., v,_1 and the last vowel Vn
of the v;...vpcn41 pattern. The use of the empty grapheme “” in GGR5; and GG Rg
permits the recognition of the difference between the last vowel v, of the couy...vpcn11
pattern and that located at the end of word-the vowel v, of the cyvi...v, pattern.
Moreover, GG Rg adds more information to the consonant next to the connected vowels
(e.g., the graphemes “KE” and “BE”). In addition, the rules GGR7, GGRg, GGRy and
GG Ry are proposed for adding extra detail to the consonant graphemes appearing in
the given word, which are designed with respect to GGR3, GGR4, GGRs and GG Rg,
respectively. Furthermore, another rule GGR1; that combines GGR3 with GGR; was
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created to enable the addition of extra detail for both vowel and consonant graphemes

appearing within a word.

4.3 Two-stage model for G2P conversion

The architecture of the two-stage model-based approach was first proposed in 2011 to
address the problem of phoneme conflicts in G2P conversion [58]. This architecture
was basically implemented by connecting two different multilayer neural networks in
sequence, which improves the accuracy of the ordinary one-stage neural network-based
G2P conversion [15, 59]. However, the evaluation results in the previous chapter (Chap-
ter 3) demonstrated that the two-stage model using the Fast Artificial Neural Network
(FANN) Library!” lacks some knowledge for detecting the whole word, so it provided
lower word accuracy but higher phoneme accuracy than the WFST-based G2P conver-
sion availabel in the Phonetisaurus toolkit. Therefore, we used the existing WFST-based

approach for G2P conversion [26] to employ a novel two-stage model-based approach.

4.3.1 Prediction using combined grapheme-phoneme (G-P) informa-

tion

The phoneme prediction method, in which only the phonemic information is used as
input to select the best final output phoneme, was first presented in our previous chapter.
Its paradigm (Graphemes = Phonemes = Phonemes) shows that this method first
converts the input word into phonemic information; then, all the related phonemic
information is combined and used to predict the exact output phonemes of the G2P

conversion model.

Because only the phonemic information is used in our previous method, we recognized
that all of the words producing the same phoneme sequence (or pronunciation) during
training in the first-stage are merged together before the second stage. For instance, the
words “KOLL,” “KOLLE,” “CAUL,” and “KAHLE” all generated the same phoneme
sequence /K AA L/ at the first-stage, so only one sample /K AA L/ — /K AA L/
was used at the second stage. Furthermore, some wrong phoneme sequences may be
obtained by accident because it is virtually impossible to obtain a perfectly trained
first-stage model. Therefore, some training data could be incorrectly merged or ignored
by the second-stage model. For example, the word “COALE” wrongly generates /K
AA L/ as its output, while its correct phoneme sequence is /K OW L/. Therefore, it

"FANN Library: http://leenissen.dk/fann/wp/
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is ignored by the second-stage model. Such a problem reduces the number of training

data at the second-stage and negatively affects the performance of the model.

In order to address this problem, we propose a new phoneme prediction method in which
the input graphemes and output phonemes obtained from the first stage are combined
and used as the new input sequence to determine the best final output phoneme sequence
corresponding to the input word. Therefore, our newly proposed method also consists

of two steps as follows:

e First step : Graphemes — Phonemes

e Second step : Combined G-P pairs — Phonemes

4.3.2 Architecture of the proposed model

On the basis of the new phoneme prediction method presented in the previous section,
the novel two-stage G2P conversion architecture is built using two main modules (i.e.,

first-stage and second-stage models) in sequence.

4.3.3 First-stage model

The first-stage model, implemented based on the original WFST-based G2P conversion
presented in [26] and availabel in the Phonetisaurus toolkit'®, is used for the automatic
conversion of a word to its corresponding phoneme sequence. As can be seen in Fig.4.1,
this model is trained with pairs of words and their phoneme sequences and each input
word must first be generated into a grapheme sequence by using any grapheme generation
rule from Table 4.1. In this context, each grapheme is represented by a single letter (e.g.
“A”) or a combination of letters (e.g. “OA”), depending on the rule selected, and they
are separated from one another by an empty space. Because it is virtually impossible
to acquire a perfectly trained model, some unexpected errors will be produced at this

stage.

For example, after training three words with almost the same pronunciation (e.g.,
“KOLL” — /K AA L/, “KOLLE” — /K AA L/, and “COALE” — /K OW L/),
Fig.4.1 demonstrates that the word “COALE” generates “C OA A L E” as its grapheme
sequence and then produces /K AA L/ as its output phoneme sequence with one er-
ror phoneme /AA/. Supposing that the other two words produce correct phoneme

sequences, these three words all output the same phoneme sequence, /K AA L/.

18Phonetisaurus toolkit: https://code.google.com/p/phonetisaurus/
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FIGURE 4.1: Architecture of the novel two-stage model-based G2P conversion using
grapheme generation rule. In this example, the rule GGRy is used for generating the
grapheme sequence of the input word “COALE”.

4.3.4 Second-stage model

The second-stage model is built similarly to the first-stage model, with the exception that
it combines both the input grapheme and the output phoneme sequences obtained from
the first stage and utilizes that combined sequence as a new input to determine the best
final output phoneme sequence corresponding to the original input word. In this chapter,
that new input sequence is called “a sequence of combined G-P pairs” hereafter. As both
the graphemic information and the preliminary phonemic information have already been
obtained before the final phoneme prediction, some errors occurring at the output level
of the first-stage model can be fixed at the second stage. Therefore, our novel two-stage

model for G2P conversion seems to provide a better performance.

According to Fig.4.1, this conversion requires two additional sub-modules for utilizing
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the grapheme and phoneme sequences of the first-stage model as input for the second-
stage model. The first sub-module is created using the m2m-aligner software!® for
aligning the grapheme and phoneme sequences. The second sub-module automatically
transforms the aligned data into a new sequence of combined G-P pairs to be used as
input for the second stage; we also implemented a default option to ignore all the G-P

pairs in which the grapheme is mapped to an empty phoneme (i.e., /- /).

For the previous example, three aligned sequences such as “|K|O|L|L| — |K|AA|L|-|,”
“|K|O|L|L|E| — |K|AA|L||-],” and “|C|OA|A|L|E| — |K|AA|L|-|-|” are generated af-
ter the alignment process. After passing all of them through the second sub-module,
three sequences of combined G-P pairs are made, which include two unique sequences
“K.K O.AA L.I” and another sequence “C.K OA.AA L.L.”. Hence, only two new train-
ing data (e.g., “K.K O.AA LL"— /K AA L/ and “C.K OA.AA L.L” —» /K OW L/)

are created. Finally, the error phoneme /AA/ can be fixed at the second-stage.

4.4 FEvaluation

In this section, we first describe the data preparation. Then, we present different pro-
posed test sets including two baseline approaches and sixteen other approaches. The
performance metrics are explained after that, which is followed by the experimental

results of all the proposed test sets.

4.4.1 Data preparation

The performance of our proposed approach was evaluated against two baseline ap-
proaches. We conducted experiments on the American English words-based pronun-
ciation dictionary (CMUdict corpus) used in our previous paper [19], except that each
word and its phoneme sequence used in this study were unaligned (i.e. absence of the
empty grapheme ‘.’ and empty phoneme /_ /). Thus, the training dataset contained a
total of 100,713 IV words, while the testing dataset contained 11,188 OOV words. Al-
though we used the same CMUdict corpus as [21, 26], the selected words in our datasets
were different from those used in [21, 26]. The dataset preparation is fully described in

our previous papers [19, 58].

After the data analysis, the grapheme “X” is sometimes mapped to three phonemes
JEHK S/ (e.g., “VISX” — /V IH S EH K S/). To this end, we replaced the connected
phonemes /K S/ and /K SH/ with two other phonemes /X/ and /XH/, respectively, for
words where “X” produces /K S/ and /K SH/.

9 m2m-aligner: https://code.google.com/p/m2m-aligner/
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TABLE 4.2: Configurations of the eighteen proposed test sets.

Proposed test set Configuration
JKS/ —/X/  Grapheme Generation Rule

G-P mapping /K SH/—/XH/ (GGR,)
Baseline 1 2-2 No GGRy
Baseline 1-0 1-2 No GGRy
Approach 1 2-2 Yes GGRy
Approach 1-0 1-2 Yes GGR,y
Approach 2 1-2 No GGRy
Approach 3 1-2 No GGR3
Approach 4 1-2 No GGRs
Approach 4-1 1-2 No GGRy
Approach 5 1-2 Yes GGRs
Approach 5-1 1-2 Yes GGRy
Approach 6 1-2 No GGRg
Approach 7 1-2 No GGRy
Approach 8 1-2 No GG Ry
Approach 8-1 1-2 No GGRg
Approach 9 1-2 Yes GG Ry
Approach 9-1 1-2 Yes GGRg
Approach 10 1-2 No GGRyg
Approach 11 1-2 No GGR1q

4.4.2 Proposed test sets

In this research, we designed and separately utilized eighteen different test sets, as listed
in Table 4.2. According to [72], the WFST-based approach proved to outperform other
well-established approaches such as Sequitur [21], direcTL+ [25], therefore we chose
only the WFST-based approach to represent our baseline approach. As a result, we first
propose two baseline approaches (i.e. Baselinel and Baselinel-0) using GRR;, which

refers to the original WFST-based approach [26].

Next, two similar approaches (Approachl and Approachl-0) were designed with respect
to both baseline approaches, with the exception that they were evaluated using the
datasets where the connecting phonemes /K S/ and /K SH/ were manually replaced by
/X/ and /XH/, respectively.

In order to show the effect of our proposed grapheme generation rules on the performance
of the G2P conversion, especially on the word accuracy of the OOV dataset, we designed
the remaining approaches (as listed in Table 4.2) by assigning each of them different rules

and configurations.

In the Phonetisaurus toolkit, the relationship between graphemes and phonemes can

be many-to-many, but the best results were obtained when it was set to (1-2) or (2-2).
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Otherwise, whenever new grapheme generation rules (except for GRR;) were applied,
our results showed that the relationship (1-2) provided the best results. Therefore, in
Table 4.2, we show only the approaches where the relationship (1-2) was used.

4.4.3 Experimental results

The approaches listed in Table 4.2 used the CMUdict corpus to evaluate the model’s
performance. Since the selected words in both training and testing datasets were dif-
ferent from those used in [21, 26], the accuracy of the baseline approaches presented in
this chapter was lower than that shown in both previously mentioned papers. In terms
of word accuracy (WAcc) of the OOV dataset, Fig.4.2 and Fig.4.3 indicate that most of
the approaches using rules related to the vowel graphemes (i.e. Approach3, Approach4,
Approach4-1, Approach5 and Approach5-1) provided better performance than those us-
ing rules related to the consonant graphemes (i.e. Approach2, Approach6, Approach?,
Approach8, Approach8-1, Approach9, Approach9-1, Approachl0 and Approachll); they
also provided a slightly higher word accuracy than both baseline approaches at the first
stage; however, there was no improvement between the one-stage and two-stage archi-
tecture. Conversely, in terms of the WAcc of the IV dataset, all approaches provided
almost the same results (98.19% ~ 98.39%) when built as a one-stage model, but they

improved when implemented as a two-stage model.

Among the proposed approaches that use rules related to the vowel graphemes, Ap-
proach2, Approach6 and Approachll provided lower word accuracy than the others,
even including both baselines, so we excluded both of them from the next analysis pro-
cess. Appraoch3 was also eliminated, because its word accuracy was lower than that
of the other approaches, especially Approach4; moreover, GG R3 appeared less effective
than the rule used in Approach4. The other approaches, such as Approach?7, Approachs,
Approach8-1, Approach9, Approach9-1, and ApproachlO, which use rules focusing on
the consonant graphemes rather than the vowel graphemes, were also eliminated because

they provided much poorer accuracy compared to the other approaches.

Problems in spelling English words mostly occur when a word has many vowels. There-
fore, in order to thoroughly analyze the experimental results, the words in both the
training and the testing dataset were classified into six different groups (v, va, v3, v4, Vs,
and vg) depending on the total number of vowels found in each word. The group of
words without vowels (vg) was merged with group vy, while group vg included all the
remaining groups (v7,vs, etc.). The IV and OOV data at the bottom part of Fig.4.4

show that vy was the largest group, while vg was the smallest.
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MAX (WAcc_IV)
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To understand the effects of a different number of vowels in a word and the effects
of using different sizes of datasets in the training process, we conducted two different
evaluations. First, we trained and evaluated each group of datasets (v; = vy, va, ..., Ug)
separately. Second, we used the pre-trained model in Table 4.2 (vyy = v1 + ... + vg) to
evaluate each group of datasets (v;) one by one. The evaluation results given by the
different approaches are depicted in Fig.4.4. It shows that the highest values of WAcc
for groups vy and ve (i.e., 87.01% and 76.73%) were obtained using the v; trained model,
while those for the remaining groups were obtained using the Vall trained model. This
demonstrates that the pronunciation rules in words with zero, one and two vowels are
more consistent than those in words with more vowels. In addition, in the largest group
vy, only 10% of the words consisted of vve syllabels. Based on these facts, we conducted
another experiment, where we trained the model using a combined vyv9 training dataset
(i.e., v1+vy) and then evaluated each group v; and vy separately. As a result, the WAcc
of vy increased from 76.73% to 77.15%.

We also conducted some experiments in which we kept the G-P pairs with the grapheme
mapped to the empty phoneme (e.g., “A._” or “E._” as shown in Fig.4.1), however we did
not report those results in this chapter because there was not much difference between

the absence and presence of the empty phoneme in the G-P combining method.

4.5 Discussion

The experimental results in Fig.4.2, Fig.4.3 and Fig.4.4 clearly show that our newly
proposed rules (GGR3, GGR4,and GG R5) were more effective than the rules represent-
ing unigram and bigram models (GGR; and GGR3) since they could help improve the
model’s performance. However, the results given by Approach6 allow us to assume
that the strongest rule, such as in this case GG Rg, does not always lead to the highest
performance because it increases the complexity of the training datasets. In addition,
the rules that are designed to enable extra detail for the consonant graphemes (i.e.,
GGRy,...,GGRy1) were not helpful in tackling the problem concerning G2P conversion

at all and also degraded the model’s performance.

In the one-stage model-based G2P conversion, even though the most effective rules were
applied, the WAcc of the IV datasets was very difficult to improve, since it was already
very high (for Baselinel, WAcc= 98.39%). However, it could still be improved by adding
the second stage. As a result, the two-stage model-based G2P conversion appears to keep
almost the same WAcc for the OOV datasets and boosts the WAcc of the IV dataset (i.e.,
+0.2% ~ 40.3% in WAcc which is equal to 200~300 words difference). Therefore, we
believe that our proposed approach also can improve the WAcc of the OOV dataset if we
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select the OOV words carefully, as other researchers have done [30, 31, 106]. According
to an extra experiment, the newly prepared training and testing datasets (which consist
of 100,564 and 11,125 words, respectively) selected only words with grapheme-phoneme
pairs appearing at least four times in both datasets. The newly obtained results based on
the one-stage architecture prove that our proposed approach using GGR5 (Approach4)
outperformed the baseline approach (Baseline 1-0) (p < 0.05), while obtaining 73.89%
and 73.54% as WAcc of the OOV dataset using Approach4 and Baseline 1-0, respectively.

Fig.4.4 shows that the highest accuracy for each group of OOV datasets (v;...vg) was
obtained using different approaches, which means that it appears to be very difficult to
use only one approach to solve all the problems associated with G2P conversion. There-
fore, this experiment demonstrates that at least five different approaches are required to
reach the maximum value of WAcc related to the OOV datasets. After selecting only the
trained models providing a maximum value of WAcc for each group of OOV datasets,
we obtained 74.39% and 99.02% as the WAcc of the OOV and IV datasets, respectively.
These results show that, if we are able to correctly pick the best output phonemes from
several results given by different models, then this combined technique could outperform
the baseline approaches (i.e., 0.94% = 108 words difference for the OOV dataset and
0.63% = 634 words difference for the IV datasets).

4.6 Summary

It has been shown in this chapter that using new grapheme generation rules that are
designed to enable extra detail for vowel graphemes can improve the performance of G2P
conversion. The new phoneme prediction method allows the second-stage model to learn
the pronunciation rules more easily than the first-stage model because both the grapheme
sequences and the preliminary phoneme sequences have already been identified at the
input level. Moreover, we have shown that using a single-stage approach is not sufficient
to deal with all the problems associated with G2P conversion, because each approach
is designed using different technique to address different challenges and therefore, using

various approaches proves very helpful in solving different specific problems.
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5.1 Introduction

Often, there is no strict correspondence between letters and phonemes in spoken words,
and this is especially true for an orthographically irregular language like English [11].
Thus, researchers have proposed various data-driven methods using many-to-many map-
ping techniques between graphemes and phonemes. Methods have been proposed based
on hidden Markov models (HMMs) [16, 17], support vector machines (SVMs) [18], artifi-
cial neural network (ANNs) [19], joint-sequences [21], margin-infused relaxed algorithms
(MIRASs) [23, 24, 25], a weighted finite-state transducer (WFST) [27], conditional ran-
dom fields (CRF) [28, 29, 30|, hidden conditional random fields (HCRF) [31, 32|, an
adaptive regularization of weight vectors (AROW) [33], a narrow adaptive regulariza-
tion of weight vectors (NAROW) [34], and structured soft-margin confidence weighted
learning (SSMCW) [35]. Most of these methods, and especially SSMCW-based G2P con-
version, are implemented in the Slearp toolkit ?° and have demonstrated significantly
accurate results. However, each of these methods has been designed using specific tech-
niques that address particular challenges faced by G2P conversion. Therefore, any single
approach will not suffice when addressing all of the problems encountered by G2P conver-
sion [60]. Considering this, a combination of various approaches using different methods
is a reasonable strategy for treating these problems in a flexible manner. For exam-
ple, word or phoneme transition network-based methods have been successfully used
in various research domains such as automatic speech recognition [107], speech search

[57, 108, 109, 110], speech translation [111], and speech summarization [112].

Combining various methods can both lend flexibility to the conversion and improve
its predictive performance. Thus, in this chapter we present a Phoneme Transition
Network (PTN)-based architecture for G2P conversion. Basically, our proposed PTN-
based method first converts a target word into multiple phoneme strings using sev-
eral data-driven methods. Then, it aligns the obtained results—the phoneme-sequence
hypotheses—using a dynamic-programming (DP) algorithm, combining them into a con-
fusion network (hereafter referred to as the “PTN”), and determining the best phoneme
from each PTN bin—a block of phonemes/transitions between two nodes in the PTN—
to represent the final output. The best phoneme selection in this study is based on a
voting strategy according to the frequency and maximum confidence score of the occur-
rences implemented in the Recognizer Output Voting Error Reduction (ROVER) system
[113].

Selecting the set of methods used by the proposed architecture is a crucial task. If accu-

rate methods are combined with inaccurate methods, this can considerably degrade the

20Glearp: http://osdn.jp/projects/slearp/
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performance of the entire PTN-based G2P conversion model. For example, Schlippe et
al. merged five phoneme-sequence hypotheses generated from five different methods to
enhance the generation of pronunciation in low-resource scenarios [114]. However, they
could not demonstrate any significant improvement using this combined approach with-
out the addition of web-derived pronunciation dictionaries. Even so, this improvement
deteriorated as the size of the training data increased, especially for a difficult language
like English. On the other hand, according to our previous research [115], when the
number of phoneme-sequence hypotheses generated from inaccurate models was more
than the number of those generated from accurate models, it was difficult to maintain

and improve the performance of the PTN-based model.

In order to mitigate this risk, we selected a minimum number of methods.?! We also
present a novel use for right-to-left (reversed) grapheme-phoneme (g-p) sequences and
grapheme generation rules (GGRs) [60]. In this study, both techniques are especially
helpful for extending the feasibility and improving the performance of PTN-based G2P
conversion, because they increase the number of phoneme-sequence hypotheses without
increasing the number of methods used. By reversing the conventional (left-to-right
reading direction) g-p sequence, we can provide context information that differs from
conventional sequences during the alignment. This allows each single method to train
an additional model, thus producing an additional phoneme-sequence hypothesis. In
addition, applying various GGRs?? to the words (that satisfy the rules) in the source
corpus will also generate additional grapheme-sequences and more training samples.
This increases the size of training data, enabling a single trained model to produce more
than one phoneme-sequence hypothesis. Therefore, this chapter proposes two different
versions of the PTN-based architecture for G2P conversion. As a result of the reversed
g-p sequences, the first architecture uses only three different methods, based on MIRA
[25], WFST [27], and SSMCW [35], to train six separated source models in order to
generate six phoneme-sequence hypotheses. To reduce the number of methods as well as
the number of trained models, we use only a single GGR rule for the second architecture.
Consequently, this architecture requires only four models based only on a single method

(viz., an SSMCW-based method) to generate the same number of hypotheses.

We evaluated our proposed models against the three baseline methods mentioned in the
previous paragraph using multiple datasets and the K-fold cross-validation technique.
The results indicate an improvement in both phoneme and word accuracy with respect

to OOV words.

2Tn previous research, a method/approach has been used to train a single model only, so the terms
“method/approach” and “model” might have a similar meaning. Otherwise, here, we differentiate be-
tween them because a single selected method in this chapter can be used to train more than one model.

22Tn English, the interaction between vowels in a word strongly affects its spelling. Thus, GGRs were
originally proposed to add extra-sensitive information to each vowel-grapheme appearing in a word.
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The remainder of this chapter is organized as follows. In Section 5.2, we describe the
three data-driven methods for G2P conversion selected for this study. We then present
the PTN-based G2P conversion and its compact version in Sections 5.3 and 5.4, re-
spectively. The evaluation results and discussion are presented in Sections 5.5 and 5.6,

respectively. The conclusion is given in Section 5.7.

5.2 Different data-driven methods for G2P conversion

Many data-driven approaches to G2P conversion have been proposed, but the popular
joint-sequence or n-gram model-based methods for G2P conversion have been proven to
be the most powerful techniques for dealing with OOV words. Because our proposed
approach requires the combination of at least three methods, we selected the three most

powerful statistical-based methods that differently encode the n-gram model.

5.2.1 MIRA-based method for G2P conversion (DIRECTL+)

The best-known joint n-gram model-based method for G2P conversion was first proposed
in 2008 by Bisani and Ney [21], and it was implemented as a generative system available
in the Sequitur toolkit.?> In this system, the model is trained using the expectation-
maximization algorithm, and the phoneme sequence corresponding to a given word ¢(g)

is predicted through a Bayes’ decision rule as follows:

/

©(g) = argmaz ; P(g,¢) (5.1)

Here, g represents a given grapheme sequence, where gol is the most likely pronunciation

of the grapheme sequence g.

Soon after, Jiampojamarn et al. represented the joint n-grams model for G2P conver-
sion as an online discriminative sequence-prediction model, which used a many-to-many
alignment between grapheme and phoneme sequences and a feature vector consisting of
n-grams context features, HMM-like transition features, and linear-chain features [23].
For each training iteration, the feature weight vector was updated using the MIRA al-
gorithm; this system is called DirecTL. The updated version of DirecTL is called the
DIRECTL+ toolkit,?* implemented in 2010, in which the joint n-gram features were
integrated [24].

Bhttp:/ /www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
2 https://code.google.com/p/directl-p/
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5.2.2 Rapid WFST-based G2P conversion (Phonetisaurus)

A WFST-based method for G2P conversion proposed by Novak et al. [27] has been
implemented to develop a rapid and high-quality joint-sequence model-based G2P con-
version. First, the training words and their phoneme sequences are provided, and these
are aligned using an expectation-maximization training procedure based on the many-to-
many aligning technique [21]. The joint-sequence corpus is given as an input for n-gram
counting (in which the order or length of the n-grams to count is provided), and then

t25 or the OpenGrm

a standard joint n-gram model is trained using the MITLM tooki
NGram library,?® and smoothed by Kneser-Ney discounting with interpolation. Then,
the trained n-gram model is converted to a WFST-based model, which predicts the

phoneme sequences of unknown words using the following decoding function:
Phseqpest = shortestPath(Projecto(W o, M)) (5.2)

where “Phseqpes:” refers to the most likely phoneme sequence given the input word “W”
under the FSA representation and the n-gram model “M” encoded as FST, “,” refers to
the weighted composition, “Project,(.)” is a projection onto the output symbols, and

“shortestPath(.)” indicates the shortest-path algorithm.

5.2.3 SSMCW-based G2P conversion (Slearp)

Structured online discriminative learning methods, such as structured AROW [33] and
NAROW [34], have been successful at improving performance in G2P conversion. Re-
cently, an SSMCW-based method [35] has been proposed for extending multi-class
confidence-weighted learning to structured learning, which softens the marginal errors
for hypothesis and update parameters using the N-best hypotheses simultaneously and

interdependently for robustness against over-fitting.

The general formulation of a G2P conversion model using a structured learning method
is as follows:

§ = argmazyw’ ®(z,y) (5.3)

where the parameters x and y represent a given grapheme sequence and its corresponding
phoneme sequence, respectively, w indicates the weight vector for the classifier, and
®(x,y) is a feature vector that consists of the frequencies of joint n-gram features on x

and y. The predicted phoneme sequence ¢ is obtained using a dynamic-programming

2 https://code.google.com/p/mitlm /
26http:/ /www.openfst.org/twiki/bin/view/GRM/NGramLibrary
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algorithm. For a detailed discussion of how the parameters in Eq.(5.3) are determined,

please refer to [35].

5.3 PTN-based architecture for G2P conversion

In this section, we first introduce a novel use of reversed g-p sequences and explain how
PTN sequences are generated from multiple phoneme sequences. Then, we describe how
to determine the best output phoneme sequence from the PTN sequence using voting

techniques.

5.3.1 Reversed g-p sequences

To predict a phoneme sequence corresponding to an input grapheme sequence, most
existing approaches use an n-gram model to calculate the likelihood probability that
a phoneme (sequence) accurately corresponds to a particular grapheme (sequence) [16,
21, 24, 27, 33, 34, 35]. This means that only the context from left to right is seen by
the model. Thus, the trained model can only learn or cover the relationship between

graphemes and phonemes in a single direction.

According to [116], Sutskever et al. reversed the order of input words in all source
sentences, but not in the target sentences, and this was done in order to train a machine-
translation model using a multi-layered Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN). This cross-mapping technique is possible owing to Connectionist
Temporal Classification (CTC) [117], which allows the RNNs to be trained without
requiring any prior alignment between the source and target sequences. Sutskever et al.
demonstrated that this reversed-word model (slightly) outperformed models based on

conventional word sequences.

However, this cross-mapping technique is inadequate for statistical-based methods where
a prior alignment between input and output sequences is required [16, 21, 24, 27, 33,
35].27 Therefore, in this chapter we introduce a new way to use the reversing technique
for G2P conversion, such that it avoids alignment problems. Rather than reversing
only the input grapheme sequence, we reverse both the input grapheme and the output

phoneme sequences, as demonstrated in the following example:

e Conventional g-p sequences: “LURIE”— /L UH R IY/
e Reversed g-p sequences: “EIRUL”—/IY R UH L/

2"We also conducted tests for G2P conversion, but the results were completely unsuitable, because
the grapheme in a left-to-right direction must be aligned to the phoneme in the reversed direction.
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5.3.2 PTN generation using multiple phoneme sequences

Over the last few years, it has proven considerably difficult to improve the performance of
a G2P conversion model for OOV words, because each method or approach is uniquely
designed using different techniques to address particular challenges. It is seemingly
impossible to utilize any single method to deal comprehensively with the host of problems
encountered by G2P conversion [60]. Therefore, we designed a PTN-based architecture
for G2P conversion that allows many different methods to be applied together, in order

to deal broadly with the various problems.

The number of methods used by the PTN-based G2P conversion model, as well as the
methods themselves, must be carefully selected, owing to the risk of combining accurate
methods with inaccurate ones such that the performance of the entire model is degraded.
In order to minimize this risk, only a few accurate methods should be used. By contrast,
combining only a minimum number of phoneme-sequence hypotheses will not improve

the PTN-based G2P conversion [115].

Therefore, in this study, we propose a novel PTN-based architecture using the three
most accurate methods for G2P conversion: the SSMCW-based method (available in
the Slearp toolkit), the WEFST-based method (available in the Phonetisaurus toolkit),
and the MIRA-based method (available in the DIRECTL+ toolkit). As depicted in
Fig.5.1, by using the conventional g-p sequences as training data, we can generate three
phoneme-sequence hypotheses from three source models: Slearp, Phonetisaurus (Phon.),
and DIRECTL+. Furthermore, the reversed g-p sequences allow these three methods to
produce three additional models: Slearp.reverse, Phonetisaurus.reverse (Phon.reverse),
and DIRECTL~+.reverse. In total, six phoneme-sequence hypotheses are generated from

six models implemented using only three methods.

The ROVER system [113] allows us to align these phoneme sequences using a DP algo-
rithm, and to merge them together in a single confusion network (or PTN), as shown in
Fig.5.1. In this context, given the presence of insertion or deletion problems during the

alignment, a null phoneme /@/ is used by the PTN to represent a null transition.

5.3.3 Determining the best output phoneme

Theoretically, many phoneme sequences can be generated from a PTN, but only a single
sequence is needed to represent the best output of the model. In order to determine
the best output sequence, we adopted a voting strategy, according to the frequency and
maximum confidence score of the occurrences. This voting scheme is provided in the
ROVER system [113]. The phoneme-selection function for each PTN bin is based on
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INPUT TEXT
“LURIE”

Reverse
REVERSED TEXT: @“EIRUL”

Phon. D|recTL+ Slearp.reverse Phon.reverse DirecTL+.reverse

Slearp H
(LR—'LR) (LR—'LR) (LR—LR) (RL-'RL) (RL—RL) (RL—RL)

/1Y R UH L/ /1Y Lm L/ /JEY Rﬁ L/
|
Reverse :]
¥

JLEHRIY/ /LAHIY/ /LUHREY/ /LUHRIY/ JLUH 1Y/ /LAH REY/

Slearp L EH R Y
_ Phon. L AH @ Y Aligned
DirecTL+ L UH R EY phoneme-sequence
Slearp.reverse L UH R 1Y hypotheses
Phon.reverse L UH @ Y
DirecTL+.reverse L AH R EY

' Phoneme Transition ?etwork (PTN) builder

PTN bin . NULL transition

Arc or Transition
Node

| Voting method N

JLUHRI1Y/
OUTPUT PHONEMES

F1GURE 5.1: Architecture for the first proposed PTN-based G2P conversion using
six models based on three different methods. (LR—LR) and (RL—RL) represent the
models trained using the conventional and reversed g-p sequences, respectively.
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TABLE 5.1: Examples of GGR,. rules.

GGR g = g (like unigram = default)
O "Ext “OKEECHOBEE" = OKEECHOBEE
GCR gi =  gigi+1 (like bigram)
L "Ex: “OKEECHOBEE” = OKKE EE EC CHHO OBBEEE E_
GGRy If(n>1) vi..OpCps1 = VIV2 VU3 ... Up_1Up Up Cnil
If (n=1) g9 = G
=

Ex: “OKEECHOBEE” OKEEECHOBEEE

Here, g¢; = {c;,v;} : grapheme at index i;
¢ , v; » consonant and vowel graphemes at index i;
n : number of connecting vowels in a given word.

the following scoring formula:
score(ph) = a(N(ph,i)/n) + (1 — a)C(ph, i) (5.4)

C(ph,i) = M AX (confi(ph,i),confa(ph,i),...,confn(ph,i)) (5.5)

where N (ph, i) is the number of occurrences of the phoneme ph in the i PTN bin, and n
denotes the number of phoneme-sequence hypotheses. Furthermore, C(ph, i) represents
the confidence score for the phoneme ph in the it PTN bin, where con fi (ph, i), ..., confn(ph, i)
is the set of confidence scores for ph in the i*» PTN bin that correspond to the vari-
ous sequence hypotheses. The real value o = [0...1] represents a trade-off between the

phoneme frequency and the confidence score in Eq.(5.5).

5.4 Reducing the number of required source models

Even if the reversed g-p sequences can make a complementary model that can gener-
ate an additional phoneme-sequence hypothesis for each source method, the risk from
combining different methods nevertheless remains. Hence, we introduce a novel use of
grapheme generation rules (GGRs) [60] to minimize this risk. This allows us to use only

a single method for implementing a PTN-based G2P conversion model.

5.4.1 Grapheme generation rules (GGRs)

Textual information does not supply a sufficient amount of information relating to the
phonological interaction [104]. In orthographically complex languages such as English,
the interaction between vowels in a word significantly affects the spelling. Hence, a

technique for generating new grapheme sequences from the same input text (known as
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" Slearp ]
(LR—LR) H

Slearp.GGRo+2

(LR — LR)

OUTPUT
PHONEMES

>

Slearp.reverse
(RL— RL)
" Slearp.GGRo:2.

reverse
(RL—RL)

 Voting |

PTN builder

F1GURE 5.2: Architecture for the second proposed PTN-based G2P conversion using
four models based on only a single method from the Slearp toolkit.

GGRs) has been proposed for adding extra-sensitive information to each vowel-grapheme
appearing in a word [60]. Suppose that a grapheme sequence g = g1g2...g, is provided
as an input. The new grapheme sequence g, = g1,9201-.-1Gn, in Which an empty space
is used as a separator, can be generated with respect to a rule GGR,, formulated as
follows:

gr = GGR,(g) (5.6)

A list of few rules, which is selected from [60] and designed to tackle the connecting vowels
in the English language, is provided in Table 5.1. In this study, we selected only the rules
GGRy and GG Ry for our first-time experiments because we wanted to investigate the
difference between the baseline rule GG Ry and the best rule GG Rz from [60] when used
within the PTN-based G2P conversion. The rule GG Ry is equivalent to the conventional
grapheme sequence (where the space is ignored), but GG Ry can distinguish the separated
vowel v in the cvc pattern from the connecting vowels vy, vo,...,vp_1 in the vivs...v,

pattern.

5.4.2 PTN-based G2P conversion using only one method

According to Fig.5.1, after using the reversed g-p sequences, only three different meth-
ods are required for generating six phoneme-sequence hypotheses used in the PTN-
based G2P conversion. However, the source/trained models remain the same six models.

Hence, the integration of GGRs into the source models is especially helpful.

Rather than using only the original word-pronunciation pairs from the source corpus,
we applied several GGRs to all the words, in order to generate additional g-p se-
quences. These were then added to the dataset; the redundant g-p sequences were

omitted. According to the example in Table 5.2, we suppose that a source dataset
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TABLE 5.2: Example of a newly generated dataset when various GGR, rules are
applied. Here, the g-p sequences in the source dataset are selected from the CMU-
Dict_noisy corpus.

Grapheme sequence _y Phoneme sequence | GGR,
8 | NEWLY — NUWLIY
= £ | CREATIVE —~ KRIYEYTIHV
o2 IDEA — AYDIY AH
D NEWLY — NUWLIY GGRy
@& |CREATIVE — KRIYEYTIHV | GGRo
8V IDEA — AY DIY AH GGRy
D NEWLY — NUWLIY GGR;
2@ |CREAATIVE — KRIYEYTIHV | GGR;
%v IDEAA — AYDIY AH GGRy
NEWLY —~ NUWLIY GGRy or GGR;
@ | CRE ATIVE — KRIYEYTIHV | GGRy
DR |CREAATIVE — KRIYEYTIHV | GGRy (4)
S IDE A — AYDIY AH GGRy
IDEA A — AYDIY AH GGRy (+)

(ie., S={(9,p)1,(9,0)2y -, (g, )N} = Uszl(g,p)k) consists of N pairs of g-p sequences.
Then, a set of R rules is applied, and the newly generated dataset S is formulated as

follows:

N N

R R R R
5= 8 =JGGR.(5) = | |J(GGR( = UG@mp (5.7)
r=1

r=1 r=1k=1 r=1k=1

As a result, for each input word (refers to the conventional grapheme sequence g), Fig.5.2
shows that it is possible to generate more than one phoneme sequence from a trained
model in which the newly generated dataset S is used (e.g., Slearp.GGRg42), given
the different representations of its grapheme sequence (e.g., the generated grapheme
sequences §o = GGRy(g) and go = GGRy(g) seen in Table 5.2). By using both reversed
g-p sequences and various GGRs, the number of generated hypotheses Nby,,s can be

calculated using the following formula:

2% Nb , if the reversed g-p sequences are used

NbgGgRs, otherwise
where Nbggrs indicates the number of applied rules.

The novel use of GGRs in G2P conversion allows us to use only one method to train one
or several models combined at the PTN level. In this study, we compared the perfor-

mance among the models using GGRs with those using conventional and reversed g-p
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TABLE 5.3: Datasets or corpora used in the experiments.

Vocabulary size (words)
Train  Dev. Test K-fold
NETalk (English) 17,508 1,000 1,500 10
Brulex (French) 23,955 1,000 2,500 10
CMUdict (English) 95,286 6,000 11,000 8
CMUdict_noisy (English) | 107,438 5,939 11,998 1
CMUdict-noisy GGRo.» (5) | 130,533 7,787 15,372

Dataset

sequences. Therefore, as seen in Fig.5.2, the second proposed PTN-based architecture
for G2P conversion combines six hypotheses generated from four models implemented
using only a single method (i.e., the most accurate SSMCW-based method for G2P
conversion available in the Slearp toolkit). The Slearp and Slearp.reverse models are
trained using the original dataset S, and thus producing only two phoneme-sequence
hypotheses. The Slearp.GGRgy2 and Slearp.GGRg42.reverse models are trained using
the newly generated dataset S, and thus possibly generating four phoneme-sequence hy-
potheses. Although the input grapheme sequences g and g are equivalent, two different

phoneme-sequence hypotheses might be produced owing to the different source models.

5.5 Evaluation

In this section, we describe the data-preparation process and the experimental setup.

Subsequently, we report the experimental results.

5.5.1 Data preparation

The performance of our two proposed approaches was evaluated relative the baseline
models discussed in Section 5.2. We conducted experiments using four different pro-
nunciation dictionaries (three in English and one in French), as listed in Table 5.3.
The NETtalk, Brulex and CMUdict datasets were obtained from the Pascal Letter-to-
Phoneme Conversion Challenge website?. A noisy CMUdict dataset (CMUdict noisy)
containing words with multiple pronunciations (i.e., heteronyms) is available in the
Phonetisaurus package. In this study, we used the NETtalk corpus to tune the pa-
rameters for each method and the ROVER system.

We subdivided each corpus into training, development, and testing datasets. The

NETtalk, Brulex, and CMUdict datasets each originally consisted of ten separated folds.

“http://pascallin.ecs.soton.ac.uk /Challenges/PRONALSYL/Datasets
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Thus, for each trial of cross-validation, one fold was used as the testing data, some data
in another fold was randomly selected for the development data, and the eight remaining
folds, along with the leftover data from the fold used for the development data, were
extracted and combined for use as training data. By contrast, the source of the CMU-
dict_noisy dataset originally consisted of only two parts (training and testing datasets).
Thus, development data was randomly extracted from the training dataset. In order to
conduct a fair evaluation, when the same word appeared multiple times with different

phoneme sequences in the development or testing dataset, we retained only a single pair.

Owing to the fact that the GGRs in this paper were designed exclusively for English
words and the CMUdict_noisy corpus were used in many previous studies [21, 24, 27],
we used only this corpus to evaluate our second PTN-based G2P conversion (see Section
5.4). Eq.(5.7) was applied to increase the size of the training, development, and testing
datasets, after GGRy and GGRsy were applied, the details for which are provided in
Tables 5.2 and 5.3. Here, GG Ry was used to convert the format of the original grapheme

sequence by adding a space between two connected graphemes.

5.5.2 Experimental setup

5.5.2.1 Proposed test sets

In our experiments, we employed the three original models using the conventional g-p se-
quences as baseline models—viz., Slearp (1_Slearp in Tables 5.4 and 5.5), Phonetisaurus

(2_Phon.), and DIRECTL+ (8_DIRECTL+), presented in Section 5.2.

To see the advantages from using the reversed g-p sequences for G2P conversion, we pro-
posed three additional models (4_Slearp.reverse, 5_Phon.reverse and 6_DIRECTL+.reverse)

in which the reversed g-p sequences were used in place of the conventional sequences.

As listed in Tables 5.4 and 5.5, in order to compare the performance between G2P
conversion based on a single model with G2P conversion based on multiple models,
we proposed three PTN-based G2P conversion models. In this case, all six separated
models mentioned in the previous paragraph (labeled 1, 2, 3, 4, 5 and 6 in the PTN
notation) were considered baseline models. For three-model combinations, we proposed
PTN(142+3) and PTN(4+4-5+6) for comparing the performance between the PTN-based
model with only the conventional g-p sequences and the one with only reversed g-p
sequences. PTN(14-...4+6) was proposed both to evaluate the performance of the PTN-
based model with all six baseline models and also to observe the effect and risk from

combining accurate and inaccurate source models.



Chapter 5 84

On the other hand, in the evaluation of our second PTN-based architecture (see Section
5.4), we implemented four baseline models (viz., 1_Slearp, 2_Slearp. GGRyt2, 3_Slearp.reverse,
and 4_Slearp. GGRy42.reverse), as seen in Fig.5.2 and Table 5.6. The first and third mod-
els were trained using the training and development datasets from the original corpus,
CMUdict_noisy, whereas the second and fourth models were trained using datasets from
the newly generated corpus CMUdict_noisy_GGRg2. For each input word, two different
representations of a grapheme sequence can be encoded using GGRy and GGRs. Thus,
two phoneme-sequence hypotheses must be generated from each of the models using
GGRs (i.e., 2_Slearp.GGRg+2 or 4_Slearp.GGRgg.reverse). In our evaluation, we con-
sidered these hypotheses as belonging to two separated models. The evaluation results
from all the baseline models (A, B, C, D, E and F) in Table 5.6 were obtained using the
same test data—i.e., the same input words—but with different graphemic representa-
tions. In order to compare the performance between G2P conversion based on a single
model with G2P conversed based on a compact PTN, we proposed the same three PTN

models with respect to the evaluation of our first architecture.

5.5.2.2 Experiment configurations

According to the results of the preliminary experiments using the NETtalk corpus, the
necessary parameters for the three selected methods for G2P conversion were tuned as

follows:

e In the DIRECTL+ toolkit, the size of the n-gram context features and joint n-
gram features was set to 7 and 3, respectively. Data alignment was based on the
mpaligner software [118], and the association between graphemes and phonemes

was set to 2-3.

e In the Phonetisaurus toolkit, the number of discounting (bins) and the maximum

length of n-grams to count (order) were set to 3 and 8, respectively.

e In the Slearp toolkit, the size of the n-gram context and chain features was set to
5, while the joint n-gram feature size was set to 7. Pre-alignment was also based

on the mpaligner software with m-m association.

e For both Slearp and DIRECTL+, the minimum number of iterations before ending
the training process and the maximum number of iterations after a degradation in
the performance of the development data were both set to 10. The best iteration
was selected based on both phoneme and word accuracy, and this was measured

with the development dataset.
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TABLE 5.4: Phoneme (PAcc) and word accuracy (WAcc) for all baseline and PTN-

based G2P conversion models, using NETtalk corpus. The italicized text indicates the

highest accuracy among the baseline models. The text is bold where a PTN provided a

better result than all the baselines, and the background is gray when the PTN(1+...4-6)
outperformed both PTN(1+2+3) and PTN(4+5+6).

NETtalk
PAcc | WAcc
1_Slearp 93.66%  70.99%
2_Phon. 92.89%  68.56%
3_DirecTL+ 93.75%  71.31%
4_Slearp.reverse 93.79%  71.93%
5_Phon.reverse 93.07%  69.15%
6_DirecTL+.reverse 93.65%  70.89%
PTN(1+253) 94.10% 72.73%
PTN(4+5+6) 94.16% 173.14%
PTN(1+2+3+4+5+6) || 94.23% 73.45%

TABLE 5.5: Phoneme (PAcc) and word accuracy (WAcc) for all baseline and PTN-
based G2P conversion models, using other remaining corpora.

Brulex CMUdict CMUdict_noisy

PAcc | WAcc PAcc | WAcc PAcc | WAcc
1_Slearp 99.15%  95.65% | 93.60% 73.12% | 93.83%  73.55%
2_Phon. 98.95%  94.52% | 93.25%  72.39% | 93.48%  72.711%
3_DirecTL+ 98.20%  92.54% | 92.61%  70.91% | 92.37%  70.11%
4 _Slearp.reverse 99.14%  95.55% | 93.74%  713.91% | 93.84%  73.96%
5_Phon.reverse 98.93%  94.43% | 93.30%  72.53% | 93.54%  73.10%
6_DirecTL+.reverse 98.20%  92.55% | 92.19%  69.88% | 91.91%  68.92%
PTN(142+43) 99.20% 95.89% | 93.11%  73.87% | 94.28% 75.20%
PTN(4+45+46) 99.20% 95.82% | 94.06% 74.96% | 94.23% 175.25%
PTN(1+2+3+4+5+6) | 99.22% 95.98% | 94.13% 75.17% | 94.28% 75.30%

TABLE 5.6: Performance of the compact PTN-based G2P conversion using only the
Slearp toolkit, GGRs, and reversed g-p sequences. The bold text and gray background

in this table are used in the same manner as Tables 5.4 and 5.5.

Phoneme-sequence hyp. CMUdict_Noisy

Trained model Model name for evaluation PAcc WAcc
1_Slearp A-Slearp 93.83%  73.55%
B-Slearp.GGRg 93.93%  74.16%

2-Slearp. GG Roy C-Slearg.GGRz 93.96%  74.21%
3_Slearp.reverse D-Slearp.reverse 93.84%  73.96%
4 Slearp.GGRy, 2. | E-Slearp.GGRg.reverse || 94.08%  74.99%
reverse F-Slearp.GGRy.reverse || 94.08%  75.08%
compactPTN(A+B+C) || 93.97%  74.28%
compactPTN(D+E+F) || 94.11% 75.09%
compactPTN(A+B+C+D+E+F) || 94.29% 75.56%
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In order to improve the performance of the most accurate source models for PTN-based
G2P conversion, a set of confidence scores in Eq.(5.5) should be assigned according to
the ranking of the models in terms of their accuracy. If {a,b,c,d, e, f} is a set of scores
for our six baseline models, sorted according to accuracy, then each phoneme of the
sequence hypothesis generated from the model with the highest accuracy was assigned
the highest score, a, and each one from the model with the lowest accuracy was as-
signed the lowest score, f. Based on our experiments, for both PTN(1+...4+6) and com-
pactPTN(A+...4+F), the best results were obtained when the values of a,b,¢,d, e and f
were assigned to 1.0, 0.7, 0.6, 0.5, 0.4 and 0.2, respectively; for the ROVER system,
the value of « and the confidence score of NULL phoneme /@/ (noted as Nconf)
in Eq.(5.4) and Eq.(5.5) should be equal to 0.7 and 0.8, respectively. On the other
hand, we used only a set of three scores {a,b,c} for PTN(14+2+3), PTN(445+6), com-
pactPTN(A+B+C) and compactPTN(D+E+F); in this case, the best results were ob-

tained when the values of a,b and ¢ were assigned to 1.0, 0.7, and 0.6, respectively.

To conduct our experiments, we simultaneously executed multiple programs on a shared
server (CentOS 6.6, Intel(R) 12-Core(TM) i7-4930K CPU 3.40 GHz, RAM 64 GB, HDD
630 GB) in our laboratory.

5.5.2.3 Performance metrics

We evaluated the models’ performance in terms of phoneme accuracy (PAcc) and word
accuracy (WAcc), using the NIST SCLITE scoring toolkit.' In this chapter, we report
only the results concerning the OOV words in the testing dataset. We also measured

the statistical significance (i.e., p-values) using McNemar’s test.

5.5.3 Experimental results

All of the evaluation results for the baseline models and the G2P conversion models
based on our first (Fig.5.1) and second (Fig.5.2) PTN-based architectures are described

hereafter.

According to Tables 5.4 and 5.5, and with the exception of the NETtalk corpus, Slearp
generally performed best among the three baselines (i.e., 1_Slearp, 2_.Phon. and 3_DIRECTL+)
in which the conventional g-p sequences were used. For instance, in terms of the
WAcc, Slearp achieved 95.65%, 73.12%, and 73.55% for the Brulex, CMUdict and CMU-

dict_noisy corpora, respectively.

Yhttp://www.itl.nist.gov/iad /mig/tools/
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TABLE 5.7: Percentage of input words where one model (Model 4) provides the correct
phoneme-sequence hypotheses while another model (Modelg) provides an incorrect-
sequence hypotheses. The results in this table are based on Fig.5.1 and Tables 5.4
and 5.5. When comparing the result of two models trained using the same method,
the result in bold font indicates the model with higher percentage of correct phoneme-
sequence hypotheses. For example, in the result for the NETtalk corpus, one cell
[Model 4 (Slearp.reverse), Model g(Slearp)] has a higher percentage than its comparative
cell [Model 4(Slearp), Modelg(Slearp.reverse)].

Model 4 = correct Modelp
and ; .
Modelp = incorrect 1.Slearp 2 Phon.  3-DirecTL+ iES\}S;greI) .?él\?e}}gg Gi?élz;aecrrgeL *
1_Slearp 0 9.03% 6.75% 4.25% 8.66% 6.99%
< | 2_Phon. 6.55% 0 7.75% 6.37% 2.69% 8.00% 2
T | 3DirecTL+ 7.05%  10.52% 0 6.65% 10.11%  3.02% |3
5 4_Slearp.reverse 5.20%  9.79% 7.31% 0 9.46% 7.62% 5
5_Phon.reverse 6.70% 3.21% 7.85% 6.55% 0 8.03% ~
6_DirecTL+.reverse 6.88%  10.37% 2.62% 6.57% 9.89% 0
1_Slearp 0 2.68% 4.35% 0.73% 2.67% 4.41%
< | 2_Phon. 1.52% 0 4.53% 1.52% 0.84% 14.54% o
< | 3DirecTL+ 1.33%  2.68% 0 1.42%  2.71% 0.56% | =
§ 4 _Slearp.reverse 0.66% 2.61% 4.36% 0 2.61% 4.42% gl'?
5_Phon.reverse 1.45% 0.78% 4.50% 1.46% 0 4.53%
6_DirecTL+.reverse 1.35% 2.64% 0.51% 1.43% 2.69% 0
1_Slearp 0 6.74% 8.84% 4.35% 6.60% 8.91%
~ | 2.Phon. 6.00% 0 9.23% 551%  2.09% 9.30% | Q
E 3_DirecTL+ 5.64% 6.77% 0 5.03% 6.64% 2.38% 5
S | 4.Slearp.reverse 5.14%  7.10% 9.03% 0 6.95% 9.12% | g
5_Phon.reverse 6.01%  2.23% 9.24% 5.56% 0 9.31% g
6_DirecTL+.reverse 5.66% 6.79% 2.33% 5.09% 6.66% 0
1_Slearp 0 6.83% 9.89% 4.32% 6.54% 10.07% a
< | 2_Phon. 5.99% 0 10.57% 5.67% 2.53% 10.54% 4
g 3_DirecTL+ 5.38% 6.88% 0 5.23% 6.76% 2.26% g
5 4 _Slearp.reverse 4.73% 6.92% 10.17% 0 6.86% 10.34% &
5_Phon.reverse 6.10%  2.93% 10.84% 6.00% 0 10.84% g
6_DirecTL+.reverse 5.44% 6.75% 2.15% 5.29% 6.66% 0 &

Surprisingly, when using reversed g-p sequences rather than conventional sequences,
there was a slight improvement (0.4 ~ 1% for 4_Slearp.reverse and 0.2 ~ 0.5% for 5_Phon.reverse),
with the exception of the DIRECTL+ models (i.e., 6_DIRECTL+.reverse) and the Brulex

corpus.

When the three models based on the selected methods (viz., SSMCW-, WFST- and
MIRA-based methods) were combined, the evaluation results in Tables 5.4 and 5.5 fur-
ther reveal that our first proposed PTN-based architecture can improve the performance
of G2P conversion. PTN(4+5+6), the model with reversed g-p sequences, typically out-
performed PTN(1+2+3), the same model but with conventional g-p sequences. Owing
to the fact that reversed g-p sequences allow each single model to train an additional and
superior model, the number of models and phoneme-sequence hypotheses for PTN-based

G2P conversion doubles. Thus, the entire model performance improves. For example,
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TABLE 5.8: Percentage of words measured from the OOV dataset for different corpora.
This measurement is needed to analyze the correctness and incorrectness between the
input sequence hypotheses and the output sequence of the PTN. Here, the results belong
to PTN(1+4...46) and compactPTN(A+...4+F). The second-row results in bold font are
misjudged words. “Could be correct” refers to the result obtained on condition that the
voting method could perfectly select the best phoneme-sequence from the generated PTN.

A set of conditions Percentage of words
* measured from the OOV dataset (%)
Phoneme-sequence
hypotheses s(e)(iltfgrlllcte PTN compactPTN
(1, 2,..., 6) or (A, B, ..., F) of the PTN (1+...46) (A+..4+F)
as inputs
Status No. of Status NETtalk Brulex CMUdict CMUdict | CMUdict
sequences _noisy _noisy
(In)Correct Some Correct 19.15% 7.84% 17.83% 18.85% 9.70%
(In)Correct Some Incorrect 10.76% 1.99%  8.94% 9.42% 6.44%
Correct All Correct 53.01% 87.33%  57.32% 56.43% 65.86%
Correct All Incorrect 0% 0% 0% 0% 0%
Incorrect All Correct 0.01% 0% 0.03% 0.06% 0%
Incorrect All Incorrect 17.08%  2.84% 15.88% 15.25% 18.01%
(In)Correct Some Could be correct | 29.91%  9.83%  26.77% 28.27% 16.14%
Incorrect All Could be correct 1.14% 0.08% 1.23% 1.00% 0.88%

PTN(1+...4+6) improved the WAcc of the best baseline models for NETtalk, Brulex,
CMUdict, and CMUdict_noisy from 71.93% to 73.45%, 95.65% to 95.98%, 73.91% to
75.17% and 73.96% to 75.30%, respectively.

As explained in Section 5.4, the compact PTN-based architecture for G2P conversion
has been proposed in order to minimize the risk from combining inaccurate and accu-
rate methods. Because the size of the training data increases after using GGRs, and
despite using the same representation of the grapheme sequence, the results from both
(B-Slearp.GGR versus A-Slearp) and (E-Slearp.GGRg.reverse versus D-Slearp.reverse)
in Table 5.6 demonstrate another method for increasing the performance of the baseline
models other than the use of the reversed g-p sequence. By applying both techniques—
GGRs and reversed g-p sequences—it is sufficient to use only the most accurate method
(e.g., the SSMCW-based method in the Slearp toolkit) when implementing as many
models as needed. After merging the hypotheses generated from all of those mod-
els with respect to the second proposed architecture (in Fig.5.2), the results from the
compactPTN(A+...4+F), evaluated using the CMUdict_noisy corpus, show even more

improvement in terms of the PAcc and WAcc.

5.6 Discussion

The results in Tables 5.4 and 5.5 demonstrate that there are two ways to improve the

performance of each separated model, namely GGRs and reversed g-p sequences.
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The previous evaluation results in Tables 5.4 and 5.5 show that models using reversed
g-p sequences generally outperformed those using conventional g-p sequences. After
analyzing the data, we believe that some conventional sequences and their corresponding
reversed g-p sequences were aligned differently owing to differing representations. Hence,
we can assume that using the reversed g-p sequences provides better-aligned data for

G2P conversion.

In order to appreciate the quality and helpfulness of the phoneme-sequence hypotheses
involved in generating the PTN, we conducted an analysis of the sequences, inspired
by McNemar’s test theory. By calculating the percentage of words for which their
corresponding phoneme sequences could be correctly established by one model (noted
as Modely) but not another (noted as Modelg), we can observe that the comparing
results between any two different models in Table 5.7 are bigger than zero percentage
for all the corpora. This means that when one model generates an incorrect phoneme
sequence, other models can generate the correct sequence. In addition, by comparing
two models, especially models using the same method but with a different representation
of the grapheme sequence (i.e., the conventional and reversed g-p sequences), we can
assume that one model (or an accurate model) will not provide all of the correct results
that were provided by another model (or an inaccurate model). This is because it is
still likely that one model will generate the correct phoneme-sequence hypothesis, even
when another cannot. For instance, a comparison between the Slearp.reverse and Slearp
models using the NETtalk dataset shows that 5.20% of the words correctly phoneticized
with the Slearp.reverse model were incorrectly phoneticized by Slearp, but only 4.25%
the other way around (i.e., correctly phoneticized by Slearp, but not by Slearp.reverse).
This evidence strongly reinforce the point that combining multiple models for G2P

conversion is more effective than using any single model.

On the other hand, we used the eight conditions in Table 5.8 to analyze the relations
in terms of correctness and incorrectness between the phoneme-sequence hypotheses
generated from various source models and the output of the PTN-based model. These

eight conditions are as follows:

e Some hypotheses are correct — Output sequence of PTN is correct
e Some hypotheses are correct — Output sequence of PTN is incorrect
e All  hypotheses are correct — Output sequence of PTN is correct
e All hypotheses are correct — Output sequence of PTN is incorrect
e All hypotheses are incorrect — Output sequence of PTN is correct
e All hypotheses are incorrect — Output sequence of PTN is incorrect
e Some hypotheses are correct — Output of PTN is “Could be correct”

e All hypotheses are incorrect — Output of PTN is “Could be correct”
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Results based on the second condition (i.e. the second row in Table 5.8) indicate that
10.76%, 1.99%, 8.94%, and 9.42% of the OOV words in NETtalk, Brulex, CMUdict,
and CMUdict_noisy, respectively, were misjudged when using the first proposed PTN-
based architecture. Moreover, the misjudged results from CMUdict_noisy were reduced
to 6.44% when using the second proposed architecture. This shows that the proposed
architectures can nevertheless improve the model performance when selecting a better

technique for determining the best phoneme sequence from the PTN sequence.

Even when all of the phoneme sequence hypotheses are incorrect, the PTN-based G2P
conversion is still able to select the best phoneme candidate from each sequence (e.g.,
0.01% for NETtalk, 0.03% for CMUdict, and 0.06% for CMUdict_noisy). The example
in Table 5.9 demonstrates that the PTN-based model can produce a correct output
phoneme sequence for the word “BERENDS” even when all of the generated sequence

hypotheses are incorrect.

By supposing that the voting method could perfectly select the best output phoneme se-
quence from the generated PTN, the last row of Table 5.8 shows that the previous results
could be improved to 1.14%, 0.08%, 1.23%, and 1.00% for NETtalk, Brulex, CMUdict
CMUdict_noisy, respectively; in addition, if we also counted the cases that at least one
correct phoneme-sequence hypothesis is used in the PTN generation, then both Tables
5.4, 5.5 and 5.8 show that the performance of the PTN-based G2P conversion would
be highly improved from 73.45% to 84.06% (1.14% + 29.91% + 53.01%) for NETtalk,
from 95.98% to 97.24% (0.08% + 9.83% + 87.33%) for Brulex, from 75.17% to 85.32%
(1.23% + 26.77% + 57.32%) for CMUdict, and from 75.30% to 85.70% (1% + 28.27% + 56.43%)
for CMUdict_noisy. These large improvements give us hope for the future challenge,
which means that the voting method in our proposed PTN-based architectures for G2P

conversion need to be improved.

The evaluation results for the compact version of the proposed PTN-based G2P conver-
sion in Table 5.6 demonstrate that the novel use of reversed g-p sequences and GGRs
improves PTN-based G2P conversions, even when only a single method is used. By com-
paring the evaluation results provided by the PTN-based architecture and its compact
version, the results using the CMUdict_noisy corpus in Table 5.8 show that 18.85% of the
correct words while using the first architecture, but only 9.70% of correct words while
using the second architecture, has to take risk in the voting process. Thus, our compact
PTN-based G2P conversion effectively minimizes risk in the voting process from com-
bining inaccurate models with accurate ones. Furthermore, many different PTN-based

architectures will be proposed to address challenges to G2P conversion in the future.
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TABLE 5.9: Example showing how a PTN-based G2P conversion can establish a correct
output phoneme sequence even when all of the sequence hypotheses are incorrect.

"BERENDS”
Reference: — /BEHREHND Z/
1_Slearp: EH R AH N D
2_Phon.: EH R EH
3_DirecTL+: ER EH

wllw,
N+ N iINNNNNN

4_Slearp.reverse:
5_Phon.reverse: EH R EH
6_DirecTL+.reverse: EH R EH

PTN sequence: B{Eg}{ERR}{ig}N{I@)}
4
D

Voting(Output): | B EH R EH N

ssllvsBlvsBiveMivsMlve!
sosojodAy
oouonbos
pousIy

N
N
EH R AH N
N
N

5.7 Summary

In this chapter, we showed that the proposed PTN-based G2P conversion is a novel
and effective method for improving the quality of phoneme prediction for OOV words.
The proposal combines different approaches to phoneme prediction in order to address
the various problems encountered by G2P conversion. It also provides significant and
consistently improved results compared to models based on a single approach. The
novel use of reversed g-p sequences and GGRs in this chapter can make complementary
models that allow to generate new hypotheses so that ensemble of them has considerable
gain for the PTN-based G2P conversion model, and it also minimizes the risk associated
with combining accurate and inaccurate models. Moreover, we demonstrated that the
representation of both graphemic and phonemic information plays an important role in

improving model performance.
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Conclusions

This thesis is dedicated to exploring way of improving the predictive quality of G2P
conversion model which is widely adopted in various systems related to speech tech-
nologies. In order to improve its performance in terms of correctness and reliability,
we have proposed three different approaches each of which is implemented with respect
to the paradigm (Graphemes = Phonemes = Phonemes) in our proposed two-stage

architecture-based approach for G2P conversion.

In Chapter 3 of the thesis, it provided a study on our firstly proposed application of
G2P conversion. The analysis on the start-of-the-art single-stage neural network-based
approach has shown that using only one neural network is not enough for solving some
complicated problems encountered by G2P conversion. As a result, our first approach
based on multi-layered neural networks has been proposed and called as “A two-stage
neural network-based approach focusing on both grapheme and phoneme contexts”. In
this chapter, our research aimed to improve the conversion performance by dealing with
two specific issues includes: (1) a many-to-many relation between letters and phonemes
in the conversion and (2) a problem of conflicting phonemes at the output level. To
predict the final output phonemes corresponding to the input text, this approach fo-
cused on the phoneme rather than grapheme patterns. Because two different neural
networks and OBC encoding algorithm are used, this approach is also counted as an
expensive and time-consuming approach, but it can also provide good results while per-
forming on a large and complex corpus such as the auto-aligned CMUdict. In terms of
phoneme and word accuracy, the evaluation results showed that our proposed approach
usually outperforms the baselines and it also can be regarded as an improved version of
the single-stage neural network-based approach for G2P conversion. For its further im-
provements, an integration of a pseudo-phoneme- [87] and graphones-based techniques

[21] into our approach seems to reduce the conflicting problems between phonemes at the
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first-stage neural network. Instead of using OBC encoding algorithm to represent the
input and output information of the G2P conversion model, another encoding algorithm
should be token into consideration for reducing the number of neurons as well as size
of the neural network model. A syllable-based approach may also help to improve the
model performance as well [106], [18]. Moreover, instead of using the FANN library, we
should consider to implement each stage model using other machine learning libraries
or toolkits such as the RNNLM toolkit?®, OpenANN??, or RNNLib?® toolkits.

In Chapter 4, we utilized the exiting WFST-based method available in the Phonetisaurus
toolkit in place of multi-layered neural network to implement our secondly proposed
two-stage architecture-based G2P conversion. It has been shown in this chapter that
using new grapheme generation rules that were designed to enable extra detail for vowel
graphemes could improve the performance of G2P conversion in terms of phoneme and
word accuracy. The new phoneme-prediction method allowed the second-stage model
to learn the pronunciation rules more easily than the first-stage model because both the
grapheme sequences and the preliminary phoneme-sequences had already been identified
at the input level. The evaluation results measured on the CMUDict corpus at the end
of this chapter also demonstrated that a multiple-models combination could become a
very helpful and flexible strategy to design a highly accurate architecture for tackling
simultaneously different problems encountered by G2P conversion. For the further chal-
lenge, more effective rules to reduce the complexity of pronunciation in both training
and testing datasets should be designed because they can potentially boost the word

accuracy of our proposed approach to a higher level.

The global vocabulary is in continuous expansion like the universe itself, so we need
approaches capable to embrace these changes. And last, but definitely not the least is
the multilingual aspect of the rapidly developing global village. A non-stop development
of speech technologies created a need for a highly intelligible, adaptable and multilin-
gual G2P conversion system that can deal accurately with the OOV words. Therefore,
in Chapter 5, we showed that our thirdly proposed PTN-based G2P conversion is a
novel and effective method for improving both the quality and the flexibility of phoneme
prediction for OOV words. The proposal combines different approaches to phoneme
prediction, in order to address the various problems encountered by G2P conversion. It
also provides significant and consistently improved results compared to models based on
a single approach, based on the evaluation results using various pronunciation dictionar-
ies such as CMUdict, CMUdict_noisy, NETtalk and Brulex. Especially, the novel use of

reversed g-p sequences and GGRs in this chapter not only reduces the number of models

2RNNLM http://www.fit.vutbr.cz/${\sim}$imikolov/rnnlm/
220OpenANN: http://openann.github.io/OpenANN-apidoc/
30RNNLib: http://sourceforge.net/p/rnnl/wiki/Home/


http://www.fit.vutbr.cz/${\sim }$imikolov/rnnlm/
http://openann.github.io/OpenANN-apidoc/
http://sourceforge.net/p/rnnl/wiki/Home/
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and training time for the PTN-based G2P conversion model, it also minimizes the risk
associated with combining accurate and inaccurate models. Furthermore, the evalua-
tion results of the PTN-based G2P conversion using GGRs also demonstrated that the
representation of both graphemic and phonemic information plays an important role in

improving the conversion performance.

In future work, we plan to create new and effective GGRs to further improve our pro-
posed approach, enabling a trained model to generate more accurately output phoneme-
sequence hypotheses, such that only two models (using conventional and reversed g-p
sequences) will be sufficient for our PTN-based G2P conversion. Moreover, the hamming
distance, calculated from the articulatory features of phonemes [119], shall be used for
the DP alignment process in the ROVER system. Inspired by the LSTM-RNNs-based
method for G2P conversion [120], we shall attempt to challenge our approach at the vot-
ing level with the use of a finite state transducer and a joint n-gram model, rather than
relying on the simplistic voting method available in the ROVER system. We also think
that the suffix information (as seen in Table C.1 in Appendix C) will be also useful for
the improvements in the future On the other hand, we also expect that the PTN-based
sequence of the input text will be very useful for dealing with the OOV search keywords

in the spoken term detection system and other systems as well.



Appendix A

List of Publications

A.1 List of Articles

e S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Using reversed sequences and grapheme
generation rules to extend the feasibility of a phoneme transition network-based grapheme-
to-phoneme conversion,” IEICE Transactions on Information and Systems, vol. E99-D,
no. 4, April 2016.

e S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Solving the phoneme conflict in
grapheme-to-phoneme conversion using a two-stage neural network-based approach,” IE-
ICE Transactions on Information and Systems, vol. E97-D, no. 4, pp. 901-910, April
2014.

e S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “New grapheme generation rules for
two-stage model-based grapheme-to-phoneme conversion,” Journal of ICT Research and
Applications, vol. 8, no. 2, pp. 157-174, 2014.

A.2 List of Conference Papers

e S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Model Prioritization Voting Schemes for
Phoneme Transition Network-based Grapheme-to-Phoneme Conversion,” in Proc. of the
International Conference on Computer and Information Science and Technology (CIST’15),
(Ottawa, Canada), May 2015.

e S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Novel Two-Stage Model for Grapheme-
to-Phoneme Conversion using New Grapheme Generation Rules,” in Proc. of ICAICTA,
(Bandung, Indonesia), pp. 110-115, August 2014.

e S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Improving the performance of letter-to-
phoneme conversion by using two-stage neural network,” in IPSJ SIG Technical Report,

Information Processing Society of Japan, (Tokyo, Japan), 2012.

95



Chapter A 96

S. Kheang, Y. Iribe, and T. Nitta, “Letter-to-phoneme conversion based on two-stage neu-
ral network focusing on letter and phoneme contexts,” in Proc. of Interspeech, (Florence,
Italy), 2011.

K. Katsurada, G. Ishihara, S. Kheang, Y. Iribe, and T. Nitta, “Utilizing Confusion Net-
work in the STD with Suffix Array and Its Evaluation on the NTCIR-11 SpokenQuery &
Doc SQ-STD Task,” in Proc. of the NTCIR-11 Workshop Meeting, (Tokyo, Japan), 2014.

K. Katsurada, S. Miura, S. Kheang, Y. Iribe, and T. Nitta, “Acceleration of spoken term
detection using a suffix array by assigning optimal threshold values to sub-keywords,” in
Proc. of Interspeech, (Lyon, France), pp. 11-14, 2013.

K. Katsurada, K. Katsuura, S. Kheang, Y. Iribe, and T. Nitta, “Using multiple speech
recognition results to enhance STD with suffix array on the NTCIR-10 SpokenDoc-2 task,”
in Proc. of the NTCIR-10 Workshop Meeting, (Japan), pp. 588-591, 2013.



Appendix B

Detailed Figures

97



98

Chapter B

ursn pajenyeas

0673521 20y 351209y |23 1IN Bu3 —e—
0771581 20y "3519A2Y 23 LIN Bu3 —e—
12358120y "3519A0Y 23 LIN BUT —e—
£271581 790V 351309y T [2) LINBUT —e—
£ 1521 20y "2519A9Y [2) LIN BuI —e—
SpTISBL OOV 251309y T [2d LIN Bu3 —e—
967158120y "3519A2Y T [2) LIN BuI —e—
971531 90Y/_Bs13A2Y i[e} 1IN Bul —e—
/71521 00y 251309y |23 1IN BU3 —e—

6871521 20y 2513A9Y [} 1IN BuI —e—

6TLTSTETTTOTLISTEITI 6 £ S € T 67/TSTECTL6TLISIEITI6 L § €

"Joserep YeXLAN

pue seouanbes d-8 posioadl pue [euorjuasuod Suisn sppow daes[g oY) JO UOT}RPI[A-SSOID SP[OJ-0T JO SHMNSAI oY, :T'g TUNODL]

0671581 720V d 35123y €} 1IN BUT —e—
0T 1521 20y 3512A9Y 4|23 1IN 3u3 —e—
121581790 d 35109y €3 1IN BUT —e—

£271581 720V d 3593y €3 1IN BUT —e—
E71521 20Yd 3519A9Y } e} 1IN BUI —e—
SpT1581 00V 35193y €} 1IN BU —e—
9671581 20V d 3523y €3 LIN BUT —e—
£971591790Yd_9s19A3Y (3 1IN Bu3 —e—
/71581 00Yd 35193y €} 1IN BUT —e—

6871521700V 35193y e 1IN BU3 —e—

(1»}]001 dueas Buisn) spjoj-0T sndiod ¥|e1LIN 4O (29d) Adeanddy swsuoyd

067120 2oY M as12A2Y |23 1IN U3 —e—
0T ASQ 29YM~2513AaY [e3 LIN U3 —e—
T ASQ 2oWM as13ASY i [e3 LIN BUT —e—
£27ASQ2OYM aS 18NSy T [e3 LINBUT —e—
€ A0 2OV aSI2ARY H[e) 1IN BUI —e—
G ASQ 2OV as 18NSy T [e3 LIN BT —e—
9GNS0 2IYM " aS12ARY [ed LIN BUT —e—
£97NaQ 29Y M as12ARY (23 LIN BUI —e—
§/7ASQ 2OV M "aS 18NSy T [e3 LINBUT —e—
687A2Q 2OY M "2SI2ARY [e3 LIN BUT —e—

06 A3Q oY 4 asIanaY

687A3Q oY ¢ BsIaNRY

[EYENETER
23 L3N Bu3 —e—
A[e3 1IN Bu —e—

e 1IN BuI —e—
yood3

iy u-mn

-

o

(33]001 dueas Buisn) spjoj-0T sndJ02 ¥|e3LIN 40 (9YM) AdeanddY paopn

0673531 29N H[€1LIN BUI - @+
0T 3531 99YM A[e1LIN Bu3 - @ -+
TZ 352107 /M AIBILIN BUT -
£273531 OOV [RILIN BUT e oo
€152, 20y AIBILIN BU - @+
Sy 3591 OV M [RILIN BUT e ee
9573531 9OYM A[EILIN BUI - @ -+
£973531 20V A[E}IN Bu3 - @
871531 9OYM A[€1LIN BUI - @+
6873591 oYM N[RILIN BUT - oo

063531 729Vd {[B3LIN BUT <c oo

0173531722y d j[e3 1IN Bu3 - &
T2 35217997 d e AN Bu - e
£273531 729V d i[RI LAN BuI - wr
€353 2oyd i[RI LIN Bu3 e e
Sy 3531 790yd H[E1LIN Bu3 e

953591 20Wd i[eILIN BuUT - we e

£973531799Vd {|BILAN BUI - weee

8£73531 729V d i[e3LIN Bu3 -+

687152 20y (eI LIN BUT e we e

Y€ ASQ 9OV M i[erLIN_ Bu

8L ASQT22Y M e1LIN Bu3

067/30 M AN BUI -+ @
017ASQ Y M IELIN Bu3 - @

T2 A0 2% M HIEILIN” U3
£27A20 oYM (1IN Bu3

SY_ASQ 22V M (eI 1IN Bu3

95ROV M A[EILIN BuT -

£97A3Q 9IYM jEILAN Bu3-- e

687A3Q 22V M (B3 1IN BuU3

06_A2Q 99Yd H[EILIN BUT ++ @ ee
017A2Q22vd i[e3 L3N Bu3
T2_A2Q_29vd iIE3LIN_Bu3
£27A3Q2ovd {[e L3N Bu3
7E_A2Q 2oV i[e L3N Bu3
Sp_A3Q2ovd i[eY L3N Bu3
95_A3Q 29Yd H[E3LIN BUT -+ #eee
£97A3Q 29Yd H[EILIN BuI --@ree
8/ A0 99Yd HEILIN BUT +c@eee
687420 29Yd H[BILIN Bu -+ weee

T 6TLTSTETTCOILISTEITI 6 £ § € T 62LZSTECTC6LLISTELTL 6 £ § € T 67/ZSTECTZ6TLISIEITL 6 £ § € T 62/ZSTECTZOT/ISTEITI 6 £ § € T 6C/TSTECTCOTLISTEITI 6 £ § € T 6Z/CSTECTCOULISTEITI 6 £ § € T 62/CSTELTCOLLISTEIIT 6 £ § € T 67/ZSTECTZ6TLISIEITI6 £ § € T

*

%00°8S

%0009

%0079

%0079

%0099

(%) Aoeanooy

%00'89

%00°0L

%00°CL

%00°vL

%0568

%0006

%05°06

%0016

%0516

%) Adeindoy

%0076

%05°C6

%00°€6

%05°€6

%0076



99

Chapter B

"jeseiep el LHN
Sursn pajenyeas pue seousnbes d-8 pasiodl pue [RUOIIUSATUO0D JUISN S[EPOW +TLOHAYI(] 91} JO UOIJePI[RA-SSOID SP[OJ-OT JO S$HNSoI oY, g g HUNDI]

01 353 29YM_25/9A3y f|e}|IN_Bu3—e— 0T 3521 90Vd_2sionay fIedlIN Bu3—e— 0T A0 DOV 3513A2y Y[EILIN Bul—e— 0T A0 DVd 2sianay f[edlIN_u3 —e— 0173531 29V .- 013531799V .- 0T A2@_29YM H[BILIN 3u3--w- 01_ASQ 22Vd iIeIIN BuI - eee
2715910y 2s1anay H[eIIN Bul —e—  TZ73S21790Vd asIandy el LIN BUI—e— 17 A2Q VM sIoA9y [e1LIN BuI—e— 17 A2Q729Vd 2s1anay elIN Bu—e— TZ 1521 T0YM . 1771531 7907d .- TZTASQTOYM Y[EIINBUI @ TZA20729Vd HEUIN BUd-r e
€719 DY 9SI9A3Y H[BILIN BUI—e— €T IS3L 00Vd 9SI9A3Y N[BILIN SuI—e—  E7 A0 OOVM 9SI9A3Y N|BILIN BUI—e— €7 ASQ DVd oSIan3y |eILIN SuI—e— €C7153L0YM RS €151 99Vd - €77 A0 DYM IEIIN BUI - w €2 N30 29Vd A[EILIN BuTr e
PE 353 9OYM 25I9A3Y f[elIIN BuI—e—  pE 3531 0Vd 2sionay IedlIN Bul—e—  pE N30 DOV 35I2A0Y NBILIN Bul—e— € A3Q V4 asianay i[edlIN U3 —e— PE 353U TIYM e € 353129V s Y€ A2Q 2OYM NEILIN BuI e YE ASQ 29V IIRIIN BuI e
SPTIS2LTIOYM ISIANIY [ILIN BUT —e—  Gp 352U TO0Vd 9SI9N3Y H[eILIN BUI—e— Gy ASQ OYM 9SIAY [BILIN BUI—e—  Sp A0 20V 9SI9A9Y (eI INTBUI —e— SPTI52L Y M e Sp15217907d R Sp A0 dYM [EILAN BuI e SbTASQ 29V d N[BILIN BUT e
9573531 DY 3SIAY {[E3IN BUI—e— 95 153170V 95I9A9Y j[EILIN BuI—e— 95 A0 DYM 9SI9A3Y M|eILIN BuI—e— 95 A3Q IDVd SIaA3Y f|EILIN BUI —e— 957353, 70YM e 9571591 790Vd e 95 A2Q 2YM HIEILIN BUI e 95 A3Q 29Vd f[EILIN BUT - w-
£97353 0y 951303y N[EIIN BuI—e— /91531 90Vd 2513A9y H[BILIN Bul—e— /9 ASQ DYM 2519A9Y i[e}LIN BuI—e— /9 A3Q 29Vd 35i3M2Y EIIN BuI—e— 197353190V . 1973531 7997d .- £97ASQ PYM HEILIN BU e £97ASQ 2IYd iIRIIN BUI e
8/7153 79OV _9sI2A3y f|ellIN Bu3—e— 8/ 3521 20Vd asianay |edlIN Bui—e— 8/ A3Q DOV 25IaA2y Y[BILIN Buj—e— 8/ A3Q 9V asi2nay i[edlIN U3 —e— 8L71531TOYM . 8/715317997d .- 8LTASQ VM Y[EILIN U - » 8L7A2025Vd HBIUIN BUI - @+
687152170V asIARY f|e1LINTBUI —e— 6871521700V asIanaYy Y[R LINTBUI —e—  687AIQ DOV 3SIanRy HEILIN BUI—e—  687A3Q 2dYd 2SIanaY f[eILINTBUI —e— 6871521 TOYM HIRILINBUT e 6871531 700Yd ™ .- 687A2QTOYM H[EIINTBUT - @+ 687A2072oVd HEUINTBUT e --
yood3
67LTSTELTZGTLISTEITI 6 L S € T 6TLZSTECTZ6TLISTETTI 6 £ § € T 6TLTSTETTZOTLISTEITI 6 £ § € T 6ZLTSTETTTOTLISTEITI 6 L S € T 6ZLCSTECTZ6TLISTETTI 6 £ S € T 6ZLISTECTLGTLISTEITI 6 £ § € T 6ZLTSTETTTGTLISTETTI 6 £ § € T 6ZLZSTECTZGILISIETTI 6 £ § € T 6ZLTSTECTZ6TLISTEITI 6 £ § € T GTLTSTELTLGTLISTETTI6 £ S € T
%0065
%0019
%00°€9
%00'59
%00°L9
%0069
woseg, ﬂii.b:’-.-
*easssegrg,, & .
M roes? re. 3 %00'TL
Sersngartraeter’ ¥ P
PRSI, S
prenees ¥ saanettera ot .
%00°€L
-,
RTC I N
%00°GL
(311001 |123.1Q Bulsn) sp|oj-0T sndJod (1L 3N Jo (99¥) Adeanddy piom
%0016
%0516
%006
%0576
%00°€6
f etessnangspnyset %05'€6
senattearty, ssv’susayged ”
e g
ervastes? et e s .
bay o0t %0076
'aod - s
# oo I..p.-o.-.v
%0576

(3131001 11932410 8uisn) sp|oj-0T SNdJ0d 3|31 IN 4O (99Vd) Adendoy swauoyd

(%) Aoeandoy

(%) Adeanooy



100

Chapter B

Suisn pejenyesd

06 3521 20y 3s10AY X3 |nig 1 —e—
0773531 20y "3510A3Y X3 |NIg 1 —em—
TZT159L 20y T9SIBASY X3 NIG 1] e
£27159 70y T9SIBASY X3 NIG 1] el
7€ TI531 IOV 2SI9AY XD |NIG IS
SPT1531 00y B5I9NSY X3|NIg Id —e—
9571531 700y 3519A3Y X3|NIg 1] —e—
£97153] 790/ ~3519A3Y X3 NIG 1] —e—
87159 70y T2SI8ASY X3 NIG IS =

6871591 20y 3519/ X3|Nig ] —e—

067353 20yd 351Ny X3|nig 1j —e—
0T 3531 29y d ™ 3512AaY X3|nIg 1] —e—
177159 790V d 35I9A3Y X3 NIG ] e
£77159, 790y d T 25I8ABY X3 NIG ] e
€ 1531 0y d BSINY XB|NIG IS
Sy 1531 0y d @sINY X3 |NIg I —e—
9571531 70y 351Ny X3|NIg 1 —8—
£97159] 790y d35I9A3Y X3 NIG ] =
871581 790V d 251Ny XB|NIG LS =
6871531 0y d 951Ny X3 |NIg I —e—

06A2Q 22Y/\_35IanaY X3|nig 1 —e—
0T A3Q22Y/\~3519n3Y X3|NIg 1] —e—
TZASQT90Y/N 3519N2Y X|NIG 1] ——em—
£77A3QT90Y/W2512N2Y X|NIG 1] =l
$ETABQTIIY/N BSIBNBY XB|NIG 1] —e—
Sy TASQT9IY/N 3SIaNSY XB|NIg 1] —e—
9GN30 2Y/\35IaN3Y X3NIg 1] —e—
£97A3QT90Y/\~3513N3Y X3 NIG 1] —e—
8L A0 Y\ 9SI9NY XI|NIG IS =g
687N\2Q99Y/\ 35IaNRY XB|NIg 1] —e—

67LTSTELTTOTLISTETTI 6 £ S € T 6TLISTECTCOTLISTETI6 £ § € T 67LISTECTC6TLISTEITT 6 £ § € T 67LTSTELTTOTLISIEITI6 £ § € T

"jose)ep Xo[nig
pue seouenbos d-3 PosIoAal pur [RUOIIUSAUO0D Suisn sppowr daes[g oY) Jo

06 A3Q 22Yd 95i9A3Y X3|nig 14 —e—
0T ASQ 29V d 35I3A3Y X3|NIg 14 =g
TZ N30 20V d BSIaARY X3|NIG 1S =g
£77A3Q IOV d B5IaARY XD|NIG LS e
PETASQTI9Yd95I8ASY X3 NI IS e
S A3Q 29y d 3SIaNIY X3|NIg Jd —e—
957 A3 29V 3SIaNRY X3|NIG 1] —e—
£97A3Q 20y d BSIaARY X3|NIG 1] =l
8/ A3Q 22V d 2519AY X3 NG IS =g
687 N30 29y d 351Ny X3|NIg Id —e—
yood3

06 1531 9OYM X3|nug i - # -+
0T 73521 29YM X3[NIg 44 < @ -
TZTIS2LTOOY M XRIIG IS e e
£771581 TOOY M XBIIG Ud e e
PETISALTOIYM XN U] e e e
Gy TIS3L TOOYM XOINIG g - -+
9673531 OIYM XBINIG ] -+ -+
£971531 OO M XBINIG IS e e
871591 IOYM XRINIG S e @ ee
687159 IOy X3|NIG U4 - @ e+

UOT)ePI[eA-SSOID SP[OJ-0T JO SHNSAI oY, :g€'¢ HUNDI]

063521790y d Xa|NIg dd e ee
0T 1521700y d X3[NIg dd < 4o
TTTI58 90V d XOINIG g <o e e
£271581 790y d Xa|NIg A < e
€158 100y XR|NIG g e
G 159190y d XoInIg A s e
96715810y d XaINIG U e we e
197153170 g X3|NIG ] e e e
8£71591700Yd XB|NIG ] < e ae e
6873531790V d XOINIG Ud < we e e

06~ ASQ Y M XB|NIg 14 -+ #ee
0T ASQ oYM X3|nIg Id <+ #++
TZTASQTOIYM XBINIG IS e e
£7ASQTOOYM XBIIG IS e e
PETASQ IOV M XBINIG IS e e
SPTASQTIIYM XRIIG Id e e
95™ASQ IIYM XB|NIG I e e
£97ASQTIIYM XBINIG IS e e
8/7ASQ OOV M XB|NIG IS e wee
68 A0 OOV M XBINIG IS s e e

067120 0Yd X3|nIg 14+ #e+
0T N30 Yd Xo|nIg 1d -+ 4=+
TTTASQ Y XBINIG IS e e
£7N3Q OV KOG IS e e
PETABQ OV XBINIG IS e ee
SYTASQ Y XA|Ig Id e e
9GNS0 Y XO|NIg g e ee
£97N3QTIYd XBINIG IS e e
8LTAIQT0Y XINIG ] s e
687N3QT0Yd XA|NIg g+ e @ ee

6LTSTECTTOTLISTETTI6 £ S € T 67LTSTECTCOTLISTETTI 6 £ § € T 67LTSTECTCOTLISTETTI6 £ S € T6CLTSIECTCOTLISTETTI6 £ S € T 6ZLTSTELTCOTLISTETTI 6 £ S € T 67/TSTECTCOTLISTEITI6 £ G € T

(3n}]001 dueas 3uisn) spjoj-0T sndiod xa|nug Jo (22yW\) Adeanady pJopn

(313]001 dueas 3uisn) spjoj-0T snduod xa|nug Jo (22yd) Adeanady swauoyd

%00'16

%00'C6

%00'€6

%0076

%00°S6

%0096

%086

%05'86

%0986

%0L°86

%0886

%06'86

%00'66

%0166

%07'66

%) Aoeinooy

%) Aoeinooy



101

Chapter B

0T 73531 29y "asJanay xa|n.g Bu3 —e—
177159120 25I2A3Y X3 nIg BUT —e—
€7 1521 7I0YM ™ 9sIaARY X3|nIg” Bu3 —e—
$ETIS3L IV asIaNRY X2INIg TBUT —e—
St1591 oYM 25I2A3Y X3|nIg U —e—
951591 T20YM 95493y X3|NJg BUT —e—
£971591 729N " 2542A3Y X3|NIg "BUT —e—
871531 TV "as1an2Y X2|nIg TBUT —e—

6871521 20Y/M 2SI2A3Y T Xa|NIE UT —e—

0171581720y d"3512n0Y X3|NIg " 3uI —e—
121531 720 d"3513A%Y Xa|nIg BUT —e—
£271531 99Yd 251900y X3|nIg BUI —e—
PET1SL 20y d"asIaneY X3|NIg T FuI —e—
SpT1531 720y d"3513A0Y TX3|nIg T BUT —e—
9571531 99y 2519n0Y X3|nIg BUT —e—
1971531720y d"3512n0Y X3 |G "FuI —e—
L7153 1720y d"3513A0Y X3|nIg BUT —e—
6871591 7907 d 3519A9Y Xa|nIg Bug —e—

0T A0 ™29V~ 3518N0Y X3|NIg~BUT —e—
T2 A0 29V 3SI9N3Y X[ NIGBUT —e—
£27A30 99V 9513N9Y x| Bu3 —e—
PETAAQ IOV 3SI8NY T X3|NIGTBUT —e—
SbTASQ IOV 32Ny X3|NIG U —e—
95A3Q 99V 9512N9Y x| BuI —e—
£97AQ IOV 358Ny X3|NIGTBUT —e—
8/7AAQTIIV 312Ny X3|NIGTEUT —e—
687 N30 29V 951Ny Xa|NIg T5UT —e—

"josejep Xarnag
Sursn pajenyess pue seousnbes d-8 pasiosdl pue [RUOIIUSAUO0D SUISN S[EPOW +TLOHAYI(] 9} JO UOIYePI[RA-SSOID SP[OJ-OT JO SHNSoI oY, :F' ¢ HUNDI]

0T™A3Q ™29V d"a512AY " X2|nIg " BuU3 —e—
TZASQ Y d "3513A9Y Xa|NIg BUT —e—
€27N90 29yd 3513n0Y Xe|nIg BuI—e—
PEAS IOV 351N XR|NIG BT —e—
SbASQI9Yd3513A3Y Xa|IgTBUT —e—
957ASQ 29V 4 35133y XaINIg BuI —e—
£97AQ Y d"3513A3Y ¥R |NIgTBUT —e—
847AQ 99 d"3513A3Y Xa|NIGBUT —e—
68 N30 29V d 9SIaNY Xa|NIg TSUT —e—
yood3

0T 73531 2oy Xe|nIg Bug - @+
177152170 M X2|nIg U - &
€7 3521 T00Y/M X3|nJg BuI e w e
PETISL IOV M XRINIg TBUT - @ -
SS9 IOV M XBNIgTBUT @ ee
957359120V X3|nIg BuT - w -+
£97159, oYM X|nIgTBuT -
8/7153L OV M XB|NIGTBUT @ -
6871591 TOOYM X3|nIg T BUT @ e

0T 7153129V d X3INIg 8UT - %
1271591799V d XO|NIGTBUT e+
£273591 790V d XOINIgTBUT o m e
€IS LTIV d XRNIg TBUT - e e
G131V XU TR e
9571591 90V XOINIG BUT - -
1971591720y d X2nIg T BuT - e -
8/7152170Yd X3|nIg U - we e
6871521790V d X2|nIg TBUT - w e+

0T"ASQ 22YM Xe|nig Bu3 -+ @ =+
TZASQ2OYM XO|NIg BT e @ e
€2 ASQ 2OV M X3|NIg BUT e w e
PETASQ IOV M XOINIG TBUT - @ ee
St A2Q VM XBNIG U e @ ee
95 ASQ 2OV M X3|NIg BUT e e
L97ASQ IOV M XOINIG TBUT - @ e
8/7AQ IV M XOINIG BT -+ @

68 A2Q IV M X|NIG BUT @

0T ASq™ Y4 Xe|nIg8u3 -+ @
T2 AQ OV XN BT - e
€7 A9Q 0V X3|nig Bu .- e
PEASQTOYd XRINIGTBUT - @
SbTASQ IV XANIGTEUT
95 ASQ 0V X3|nig Bu - e
19700V XINIGTBUI - e
870V XANIGTBUT - e
687 A30 29Yd Xa|NIgBUT - @ ee

6TLTSTECTCGTLISTETTI6 L S € T 6CLZSTELTZ6TLISTEITI 6 £ § € T 6CLCSTECTZOTLISTETTI 6 £ § € T 6ZLTSTECTZ6TLISTEITI 6 £ S € T 67LCSTECTLOTLISTETTI 6 £ S € T 6ZLZSTECTCGTLISIEITI 6 £ S € T 6TLZSTECTZOILISTETTI6 £ § € T 6ZLTSTECTZOTLISTEITI 6 £ § € T 6ZLCSTECTZOILISTEITI 6 £ S € T 6ZLCSTECTCOTLISIEITI 6 £ § € T

(ap}]003 +719341Q 8uisn) spjoj-0T sNdJod xa|nJg 4O (22¥A) AdeInddY pIop

(an}1001 +712241Q Buisn) spjoy-0T snduod xa|nig 4o (92yd) Adeandoy swauoyd

P
JSsessssssnacans®aten b 4

%0S°06

%00'T6

%0S'16

%0026

%) Adeindoy

%0S'C6

%00'€6

%0S'€6

%0076

%08'L6

%06°L6

%00'86

%0T°86

%07°86

%) Adeindoy

%0€'86 ™

%07'86

%05°86

%09°86

%0L'86



102

Chapter B

06715320y _3512A94 PIANIND BUI —e—
0771531 720Y /M 9519A9Y PINAID BT —e—
T2 73531 00V _351309Y 11NN BU3 —e—
£273581 20V 3519 11ANIND_BuT —e—
yE 1531 20V _8s1an9 IQNIND_Bul —e—
Sy 7353100y 351309Y 11NN Bu3 —e—
9671531 720y " 9519AY T IINIAIY BT —e—
1971521 790y " 9512A4 IANID BUI —e—
8771531 20y 9519A9Y PINIAD BT —e—

6871531720y M 9519A9Y 1IN SUT —e—

6LTSTELTTOTLISTEITI 6 £ S € T 6ZLCSTECTCOTLISTETTI 6 £ § € T 67LZSTECTLOTLISTEITI6 £ S € T 6ZLZSTECTI6TLISIEITT 6 L § €

0671531739V d 351302y PIANIND BUT —e—
0173531790Yd2513A9Y PIANIND_BUI =t
271531720V d 3519034 1DIANIND_BU3 —e—
£271531720Yd 3519034 IANIND_BUT —e—
€ 35217 20Yd_2si2neY IANIND_Bu3 —e—
Sy 1531720yd 85193y PIANIND BUI —e—
957153 |20y d"8512A3Y T1AIANIND BUT —e—
£97153 1720y d 95123y IANIND BuI —e—
8715317 00Yd_9513A3Y PIANND_BUT =l
6871531 720Yd 351903y DIANIND BUI —e—

06~ A8Q 29Y M 3si2A3Y PIANIND BU3 —e—
0T ASQ 29V 35193y IDIANIAD U3 —e—
TZ7ARQ29Y_8si2reY ININD_BuI —e—
£27A2Q 29Y/\_2s12A2Y 1IANIND BuI —e—
7€ 30 29Y/\_351934 PIANIND U3 —e—
S A2V 9S1A2Y IANIND BU3 —e—
9§TASQ 2O M "3512A3Y " 1IANIND BUT —e—
£97ASQ 0¥/ 3513NRY PIANIND BUIT —e—
8/7ASQ 29/ 351903y IDIANIND BUT —e—
687AQ 20V 2S12ARY IANIND BUI —e—

“1eselep PIPNIND
Suisn pejenyess pue seousnbes d-3 pesioasl pue [euorjuesuod Sursn sppowr daes[g§ 9y} JO UOI}EPI[BA-SSOID SPIOJ-0T JO SHNSAI oY, :G ¢ HUNDI]

06 A3Q 22vd 35123y IANIND BuI —e—
0T ASQ 20Vd 25193y 121NN BuI —e—
T2_ASQ Y4 3s12A3Y 10IANIND_BU3 —e—
£2_A3Q Y4 _3512n3Y 1IANIND U3 —e—
PEASQ 29V d 251Ny PDIQNIND BUI —e—
Sb_A3Q 22y d_2s13M3Y PIANIND_BUI —e—
957ASQ 29V 35122y DIANIND BUI —e—
£97A3Q 29y d 2513M3Y IANND BUI —e—
8/ 7ASQ 20V d 251Ny ININD BuI —e—
687A2Q Y4 3512A3Y IANIND BUI —e—
yood3

06353130V _PIANND Bu3 -+ @+
073521 T30y JININD BUT -+ @+
23531 20YM PIANIND BUT - -+
€273531 20YM PIANIND BUT - -+
7€ 1531 0YM PIANND BUI -+ @+
SpTIS2LTOOYM IANIND BUT - @ -+
957352120V PIANIND BUT - - @
£971531 20 PIANIND Bu3 -+ -+
8L7353L 0V M PIANND BUF -~ % -+
6871531 OYM IANIND BUT - @ -+

063521 799¥d 3
0T 735317994 RIANIND_BU3

T2 3521799Yd 1PIANND_Bu3 -
€771531790Yd 1IANND Bu3 -

€ 3531 99Vd PIANND_Bul
Gy 35317994 1IANIND_BU3

9573531790V d PIANIND Bu3 -
£973531799¥d PIANND Bu3 -

8L73S31799Vd
6871521 720Yd IANIND BU3

NAD_Bu3 -

o
e
‘.
‘e
e
PN
‘.
‘.-
e
PN

06_A2Q 29 PIANIND Bu3 -
0T A0 22YM_PIANND_Bu3 - &
T27AQ_OYM PIANAD BU3 -+ @
€272 DYM PIANAD U3 -+ @
YE_AQ 29V PIANND Bu3 -+ e
ShTASQ VM PIGNIND Bu3 -+ e
957ASQ Y PIANIND Bu3 - &
£97A2qDYM PIANND Bu3 -+ ®
8L7ASQ9OYM_PIANND_BU3 - &
687AQ DY M PIANND BUT - &

06_A3Q_99¥d 3IANND Bu3 -~ @ -+
0T ASQ 0¥ IANIND BUT <+ @+
TZAQ 29Yd PIANAD BUT <+ @ oo
€272 99Yd PIANND BUI - @+
Y€ A3 99¥d IDIANND BuI - @+
S AQTO9Yd PIANAID BUF o e
957A8Q 29Yd AN BUT <+ # e+

£97A3Q 29Vd PIANIND BuT s+ @e

8/ A0V d PIANIND BUT sowee
687120 29Yd AN BUT -+ @ e+

T 62LTSTECTCOTLISTEITI6 L S € T 6CLZSTECTZOILISIEITT 6 L S € T 6LLZSTELTZ6TLISIENTT 6 £ § € T 6ZLCSTECTCOTLISIEITI 6 £ § € T 62LCSTECTCOTLISTEITI 6 £ § € T 67LCSTECTZOILISIEITI6 L § € T

(31]003 dieas Suisn) spjoy-0T snd10d TyI2AANIAD JO (99V) A9eIN2DY piom

(a3]001 daeas Buisn) sp|oj-0T sndiod T 121ANIAD 40 (29d) Adeanddy swauoyd

%00'€9

%00°59

%00°L9

%0069

%) Adeinooy

%00°'TL

%00°€L

%0016

%0516

%006

%0576

(%) Aoeanooy

%00°€6

%05°'€6

%0076



103

0T 73531729V 3513A34 IANIND_Bu3 —e—
TZ1521720VM ™ 3512A34 DIANIND 53U —e—
€7 1531 22YM 25I3A3Y PIANIND_ BUI —e—
PETIS21 72OV M 35I3A3Y T IDIANIND “BUT —e—
SYTI521 720V 2512A2Y T 1DIGNIND U3 —e—
95 3531720V 9513A3Y PIANIND BuI —e—
1971521729V 354303y T IDIANIND BUT —e—
8,715,720V M~ 2512A24 T 1DIANIND BUF —e—
687152170V 2512A24 T1DIANIND U —e—

0T 35317294 2512A24 21ANIND Bu3 —e—
T2 71531720y d2s12A2Y IIANIND BUI —e—
€7 3531 790Vd 35I3A3Y PIANIND_ Bu3—e—
pETISa1 29V d 212Ny IANIND BUT —e—
StT1591729Yd 251982y 1IGNINDBUT —e—
95 3531720V d 2sI3ARY PIANIND_ BuI —e—
1971521729V d 351902y DIANIND~BUT —e—
8/71521 729y d 251902y 11NN BUT —e—
6871521 720V~ 2512A2Y 1IANIND T BUT —e—

0T ASG 2225123y 12IANIND BuUT —e—
T2 A0 20YM 281282y T PIANIND BUT —e—
€7 A0 DY 9SI9A3Y PIANIND ™ BUT —e—
$ETASQ IOV 35I2A3Y IDIANIND “BUT —e—
SbTASQ WM 2513A2Y IANIND BUT —e—
957 A3Q VM 342N PIANIND“BuI —e—
£97ASQ Y M 2512A2Y 2IANIND BUT —e—
8£7A2Q 2OV 25122y T 1DIGNIND U —e—

687A2Q 20V 3SI2A3Y T1IIANIND BUI —e—

"jeseiep PIPNIND
Sursn pajenyeas pue seousnbes d-8 pasiosdl pue [RUOIIUSAUO0D SUISN S[EPOW +TLOHAYI(] 9} JO UOIYePI[RA-SSOID SP[OJ-OT JO SHNSSI o], :9°q HUNDI]

01™A2Q™29Vd 251902y IANIND U3 —e—
TZ7A2Q729Yd 281902y T PIANIND “BUT —e—
€T A3QTIVd 95I3A3Y PIANIND BUI —e—
PE A0 T29Vd25I2A3Y IDIANIND “BUT —e—
SbA2Q29Yd2519A2y 1IANIND BUI —e—
957 A3Q 2V d 3SI3N3Y PIANIND“ BuI —e—
£97N2Q ™29V d 25123y 1IANIND “BUT —e—
8/7N2Q29Vd2519A2y 1IANIND BT —e—
687A2020Yd2s1aA2Y T1IANIND BUI —e—

013531 29¥/M IANIAD_Bu3 -+ #
TZ7152170YM T DIANAD U3 -
€7153172¥M PIANIND BuI -+
Y€ 3531 99YM PIANAD U3 -+ »
S T1521799YM IIANIND U3 -
95 353170VM PIANAD BUI -+ &
£973531799YM PIANIAD BU3 -+ »
8(71521799YM IANIAD BU3 -+ =
6871521 70YM T IIANINDBUT -

0T 3521 729vd 32IaNND_Bu3 -
TZ73521799¥d_PIANIND_Bu3
€23531790¥d PIANIND_Bu3
€ 1521 729vd 191aNIND_3u3

95 3531 799vd PIANND Bu3
£973521799vd PIANIND_3u3
/71521 799¥d_PIANIND_3u3

PPN
P
e
P
Sb 1521 799Vd PIANND BUI -+ @+
PN
P
P
-

6871531 720Vd 121NN Bu3 -+

0T A0 22YM PIANIAD_BU3 -~ @+
TZASG VM PIANIND BUT - @-e
€27 N2Q 2OV IANND BuI - @ee
PETASQTOYM PIANIND BUT - @ -+
SYA2QTOYM PIANIND BT @<+
95N 2IYM IANIND BUI -+ @ -+
£97ASQTDYM PIANIND BUT @ -+
8/7A2072OYM PIANIND BT+ @ -+

68 A0 DYM AIANND BuI - e

0T_A2Q22vd_PIANND_3u3
TZ A0 729¥d PIANIND U3
€27 A30792¥d PIGNIND_Bu3
Y€ A2Q22vd PIANIND_3u3
St”A2QT29¥d PIGNIND U3
95 A30799¥d PIGNIND_Bu3
£97ASQ29¥d PIANIND_3u3
8(7A2Q729¥d PIANIND U3
687A20720¥d PIANIND U3

Chapter B

yood3
6TLTSTETTZ6TLTSTEITI 6 L S € T 67LZSTECTCGTLISTEITI 6 £ S € T 6ZLCSTECTCGILISTETTI 6 £ § € T 6ZLTSTECTC6TLISTETTI 6 £ § € T 6ZLTSTECTL6TLISIETTI 6 £ § € T 67LTSTECTI6TLISTEITI 6 L § € T 67/ZSTECTZOILTSTENTI 6 £ S € T 6Z/ZSCECTZOTLISTETTT 6 £ § € T 67/ZSTECTZOTLISTETTI 6 L § € T 6TLTSTEZTL6TLISTEITI6 L § € T

%0079

%0079

%0099

R v
v

.
%) Adeindoy

%0089

%00°0L
P L et Lo LTI o

PP Lo

2 %0022
gl.:‘.’i.:ﬂ.i 0

(3}]003 719241g Buisn) spjoy-0T sNAJ02 IANIAD 40 (99YAN) AdBINDDY PO
%0568
%0006

%0506

i %0016
[
§ %0ST6

(%) Aoeanooy

P,
R

%0026

.
S ¢
cntnucoo-:o-!‘-oc-lm
el
atnsssttssenstons’

sarsesrent®’ il
serssasaengsent asenategpPtITIt: Saegrteesaresast® J

-+eotaneateentanty o

" %0526

%00°€6

o
g

stessnprsteie:

%05°€6
(anj]0031 719041 Buisn) sp|oj-0T snd102 121ANIAD 40 (92Vd) Adeanddy swauoyd



Appendix C

List of English Suffixes

104



105

Chapter C

Ajyrsowiiue ‘ojewIIue ‘fewiue

o[sue

proIpue ‘OLIJUad0IpUR

Aouaye] ‘Aouenay ‘Aousfe ‘Aouroes

QoUR[NPNRY ‘90URFRARIIXO ‘@OUdpUadopUl ‘9OURISISOL
orjousgeue ‘wreIgeue ‘opour

URIOISRW ‘URLIOISIY ‘URIPIRNS ‘URSI)IR
ISINQUIBUWOS ‘9oUR[NqUE ‘d[quIe ‘Aloje[nquure
SnoIyxoprquIe

paInowreus ‘eygroriueR ‘Q[(RIte ‘SnoIoure

opniIje ‘I9joulrie

wISInI)e ‘089 I3[R ‘Ioj[e ‘Ao[[e ‘uaIe ‘IqIe ‘serpe
o)Iqre ‘ourqre

[BO1108078D ‘[RLIOJLLIOY} ‘TRINIONLI)S

[eA11S9] ‘[eSOASIP ‘[RMOARSIP ‘[RIISJSI

A1ysnpuroide ‘oInjmnorise

98eUU0) ‘OFeNULIYS ‘OFRIPNS ‘©9FRIN0D

Uorjor ‘snonsiquie ‘9)eSIARU ‘9jr)Ise ‘epuode ‘juose
SUWIOIPOISR ‘[0SOI9R ‘[RLIoR

opruUOWd| ‘OpeYO0[q

Aoewaxdns ‘Aoewrryur ‘Aoenbepe ‘Aouejur ‘Aoearrd
971eInooe ‘ainjloundnoe ‘oinoe

91el13e ‘DAI10R ‘JUSe ‘10Bal ‘OAljOR

Auowrtior ‘prioe ‘Ayproe ‘orqIede

O[(IPAIOUL ‘O[(RAJOS

Juesqe ‘pdniqe ‘oAjosqe

erwoue ‘erseyde ‘Ayjede ‘snowrAuoue ‘Aypreur ‘jswiyje ‘reorrode
(ISAPR ‘PUIIR ‘9)RIDOSSE

‘XTJe ‘9je[IIuue ‘9)ed0[[e ‘UoIssaIgse ‘isnlpe ‘Aueduwoooe ‘opise

Iogur ‘guirds ‘oI ‘purma

Iensue

UQWI JO SOTISLI9ORIRYD ‘O[eul
Ayoeded 10 AjTenb ‘9jels unoN
ssoo01d 10 Aypenb ‘93e)s ‘uorioe UNoN
moue ‘urede ‘ypeq ‘dn

uosiod unoy

yrem 09

qioq

SurvI] ‘ONI] ‘9A0]

deop ‘ysry

19730

yuowisid noym ‘93rgm

uorjeral ‘Ayenb :earoslpy
UOT)O® JO JNSOI ‘UOIJOR UNON
[10s 10 sp[ey 03 Sururejrad

UOT}OR JO JNSOI I0 ‘AJTAIJOR UNON
03 ‘anowr ‘op

uorjerar ‘arsydsour)e ‘Ire

yuLp jeoms ‘jonpoad ‘joe

Ay1renb 10 9e)S (UNON

dreys

QALID ‘jo® ‘Op

dreys ‘mos ‘19931q

ANnqe ‘raom anlpy

Jo ‘wory Aeme

moym ‘gou

Aq ‘03 UOI}IPpR Ul ‘IeaU ‘pIemo} ‘0

wriue
sue

oIpue ‘Ipue
Aouo- ‘Aoue-
90Uo- ‘ooue-
our ‘eur

ue-

mqure

qure

Jowre ‘e ‘we
e

I9)e ‘Of[R ‘IR
oqre ‘qre

[eo1- ‘[el- ‘Te-
[e-

o1ge ‘113e

oge-

j0®B ‘31 ‘13e ‘Ge
oIo® ‘Ioe

ope-

£o- ‘Aoe-

noe

3de ‘“101e

LID® ‘proe ‘I0ov
o[ql- ‘orqe-

sqe ‘qe

-ue ‘-e

1e ‘se ‘de ‘ue ‘Te
‘Se ‘Je ‘pe ‘oe ‘e

sojdurexyy

SurueoN

X1gng Jo xgaid ‘yooy

(duyd - axeyoqoox/mod xTrInsxTr0Id  MMn//:daay) sexiyng ysySug Jo ISIT 17D ATAV],


http://www.prefixsuffix.com/rootchart.php

106

Chapter C

areooadmail ‘9deoxs ‘sdeoroj ‘ydsorejur

“9deou0o ‘uotseooo ‘einjded ‘queproor ‘earjded ‘snoroeded ‘ojqedrd ‘OAI8OP ‘OATODAI
JoLIq ‘AJ1ADIQ ‘9RIADICR

araydsorq ‘eoworq wsorrjowolq ‘A3oro1rq ‘Ayderdorq

orqrg ‘“Aydeasorqrq ‘errydorqiq

[enuuRlq ‘oATRAIq ‘ATYoomIq ‘@jedinyiq ‘padiq

1Jousq ‘AIRIOYOUS( ‘UOIIDIPOUS( ‘JUI[OAUS(] ‘[RIDGOUS( ‘I0}ORJIUD(

9S0OI[[8q ‘I[[oq SNSBD ‘JUSIASBI[[O( ‘UOI[[9(D1

Iongeoleq ‘O[1[eq ‘Yeadsoq ‘yoopoq ‘9jelaq

Iojouwroreq

aunuwwroine ‘snowouojne ‘gdeidoine ‘oArjowoINe ‘OrRWOINE ‘d[IqOWOoINe
Uorjone ‘juowrsne ‘Insne

9)e[Nosne ‘IR[NoLINe ‘UOIIpNe ‘[eNSIAOIPNE ‘WNLIOPNR ‘S[IpPNR ‘OIpne ‘9ouaipne
uorjone ‘Juotugne ‘Ioyjne ¢ juomsne

UOIjRUId[e ‘UoljeARISSR ‘UOIjRZI[RIdAdS

9)B[OTAUL

91e31[00 ‘eyendure ‘OjerorPWR ‘ojenpris

91e307op ‘03eI03I9]0 ‘©3epIpurd

INRUOIISE ‘AWOUOI)SR ‘PIOIO)SE ‘YSLIO)SR ‘I9)Se

pIezim ‘prexunip ‘jredselrq

RIS O10ZOAYDIY ‘Ayprerryed ‘Ayprerryenn ‘AoIeUOW ‘OIRYDIR ‘)09)IYdIe ‘[oSurydIR
Arejmun ‘rernoedads

snoanbe

eideyde ‘osdATeoode ‘A3o1ode

Aymbryue ‘pojenbrjue ‘enbrjue

Agyednue ‘ozosnjrjue ‘serwrourjue ‘Apoquyue ‘sisoyjrjue orpdosmur ‘[RIOOSIJUR
Adoayyueriyd ‘edoryjuesiuu ‘ASojodoayjue

URIAN[IPOJUR JUIPIIOIUR ‘9jePojUR ‘WN[[OCIUR ‘WOOIOJUR ‘IOLIOJUR
JuRIuOAU0) ‘Juopuadop ‘guejrodur

Jueisery ‘quopuadop ‘yuelddjuIsIp

retuaarod ‘AresioAruue ‘Ajmuue ‘fenuue ‘[enuue

ploy 03 ‘oz1as 09} ‘o) 09

1I0UsS
o

3ooq

om)

o[yuas ‘[[om ‘poo3

Iem

109 ‘OuWRU ‘esned ‘eyeul
‘A[OAISSOOXO “NOQR ‘I9A0 ‘pUNOIR ‘U0
amssoxd ‘JySrom

J[es

oseaIoul

U9)SI| ‘I 0}

9SBAIOUL 09 ‘©)eUL3LIO 0}

91e)S SUIYNSOI ‘UOIJOR UNON
9e)s JO puny :9A1L[pY

9( 0] ISNRY :(QIOA

uor1onJ ‘901yJo ‘01els UNON

Ie)s

PoZLIDIORIRYD UNON

9[NI ‘98I ‘JOTD

09 poje[aI ‘SUI[qUIDSAI :PA1}0R[PY
Ioyem

pouLIO] ‘poyoriep ‘WO Aeme
PI1©

aysoddo ‘gsurede

urw

9I10Joq

UOT)edIpUl ‘JuoSe JO PUly :0A1300[pY
uorjor o) suriojrad yey)
SUIYIOWOS ‘YUoSe Ue UNON
A1eok

do ‘pro “4deo ‘9deo
‘A190 ‘seo ‘deo ‘peo
A9Iq

1q ‘o1q

orqIq ‘nqrq 1qiq
oulq ‘1q

ouaq

eq

°q

Ieq
ojme ‘ane
one ‘sne

¢ [4 3
sne ‘e ‘ipne ‘pne
me ‘gne ‘one

uorje-
97e-

9je-

9re-

Iise ‘191se

1Ie- ‘pre-

yore

Are- ‘1e-

nbe

yde ‘de ‘ode
ooTjuR ‘19UR
jue ‘ryue
doayjue

ajue

JUAI- ‘quo- ‘Jue-
1uo- ‘que-

ud ‘nuue ‘uue



107

Chapter C

9SBAIOUL ‘UOIJDINOR ‘JUIISAID ‘98I

AoeIO0UYD9) ‘AORID08T[) ‘JRIDOISLIR ‘JeIdojne

9SINOD ‘ISLINOD ‘9SINOISIP ‘UOISINIXS ‘INIJ0

MBUOWS0d ‘URI[OdOWSOD ‘WSOI0IINUW ‘SOWSOD

98®1.100 ‘110089

wnon] sndiroo ‘yuendiod ‘esdiod ‘yuowuysiund [erodiods ‘uoryerodiod

98RINOOUD ‘©9FRIN0D ‘PIOISIP ‘PIOOUOD ‘[RIPIOD

requnderjuoo ‘Ads1ojunod ‘AIerjuod ‘QUOARIIUOD ‘JORIIUNOD ‘JOIPRIFUOD

ULIGUOD ‘SSOJU0D ‘DSUOPUO0D ‘SNOonsuod ‘pduwod ‘9jedurod

sisougoad ‘0jrugoour ‘Orpsousde ‘9souserp ‘JuURZIUS0O ‘9ZIUS00AI

1091100 ‘QUIQUIOD ‘UTO[U0D ‘91eUd)eIU0D ‘JUSTUDAUOD ‘DOUSNPUOD ‘JordUIOd ‘OFIDAU0D
‘Arerodwoiuod ‘ssoadwiod ‘JUOWITWTOD ‘OUIATOD ‘DIRIOYR[[0D ‘9)RUS0D ‘SSOUIAISIYOD
OPNOUO0D ‘DAISNIAI ‘DAISN[OXD ‘@so[ue ‘RIqoydoIjsne[d ‘esne[d ‘opnoxe ‘opnjoul
UOIRUI[OUI ‘OTUI[O® ‘OUI[IIP

WITR[DOR ‘UOIJRUR[IDI ‘UOIIRWR[0Id ‘IOWR[D ‘UOI}RUR[IX

TOTYRZITIAID ‘URI[TAID ‘TIAID ‘OTAID

9110 ‘UOTIIRIID ‘9)IOUL

AIOYR[NOID ‘OQLIOSWINOID ‘JUSATINIID ‘UOIINIOTUWIIID

‘[RHQIOWNIIN ‘QOUSISJWINIIID ‘UOTSIOWNIILD ‘DOURISWNIIND ‘XOPUWINIIL ‘9)RSIARUNIILD
SIOSSIOS ‘UOISIOWNIIID ‘UOISIOUL ‘UOISIOUT ‘QOPIOIWIOY ‘©PIDLIJRI)

9ZIUOIYOUAS ‘WISIUOIYORUR ‘I9JOUWOUOIYD J[OTUOIYD ‘OTUOIYD ‘AZ0[OUOIYD

OIRWOIYD ‘QUWOIYIATOd ‘OUWOSOWOIYD ‘QUIOIYD

OLIJUOD99 ‘OLIUOOUO0D ‘[BSNJLIYUSD ‘A}IDLIFUDIID

opodruad ‘AIMjuod ‘[eruuajuLd

UOISSOOTS ‘PIYIX0 ‘UOISSIAS ‘OPadal ‘opadald ‘poosold ‘posdons

UOI}BSNIOR ‘DSTIOXD ‘DSTNIRII(

9ZLISINED ‘UOIP[NRD ‘OIIsned

Iojey)ed ‘A10893RD ‘engdorejed

[BUIRD ‘UOTJRUIROUIOI ‘9)BUIROUI ‘SIIOIOATUIRD
uorndes ‘ureydes ‘rejides ‘oyeyidedsp
JOJOWILIORD ‘OLIO[eD ‘OLIOed

9prIIOJOT

OpBOSED ‘90UOPRI ‘IoARDRD

MoI3

o[

9SINO0Y ‘UNI
PlI0Mm ‘9SIoATUN
1991109

Apoq

1Ieoy

aj1soddo ‘gsurede
ATy

MO 09
19393807 ‘UM

mys ‘eso 03
pueq ‘ues]
Mo AI19
UQZIIO

1IeIs ‘[reo
punore

UMOP 110 “9nd 03 ‘([ 0}
ouIry

I0[0D

I9)UR0

poIpuny

IOPUOLINS

‘08 ‘onowt ‘poIf 0} ‘03 09
QATIOW ‘9sned

1Y ‘wIng

M ‘UMmop

qsog

peoy

1eoy

uorssoooad

e} 03

9SBAID ‘1910 ‘DS9ID ‘9ID
AoelId ‘“1e10

SIND ‘1o ‘Ino ‘Inoo
ws0d

1100

dxoo

IpIed ‘100 ‘pI0d
I9IUNOD ‘“BIIUOD ‘IJUOD
uod ‘oo

sougd ‘usoo

10D ‘0o ‘U009

‘1109 ‘109 ‘800 ‘0D
sne snp ‘pno

urp

WIep ‘wed

ADD

o

wWnoIm

9SO ‘SIO ‘opId

uoIyd

woIyd

LIYUOD ‘IJUdD

e

SS90 ‘podd ‘opon ‘pad ‘sead

SN ‘OsSno ‘osned

med ‘sneo
Jed ‘ejed ‘4ed
wIed

1des ‘qrdes
I0[ed

opeo-

sed ‘ped



108

Chapter C

SOTRUAPOIPAY ‘O}IWRUAD ‘OTWRUAD ‘OUWRUAD

9INpue ‘uorjyeInp ‘o[qeInp

20NPUL ‘90npal ‘ponpep ‘jonpul

“ponpenbe ‘“qonpera ‘reonpsues) ‘onpord ‘jonpqe ‘eonpord

QUIOIPO[PA ‘OUWIOIPOIdR ‘OUIOIPUAS

ABojoxop ‘xopered ‘XOpPoId21oY ‘XOPOYHIO

AI0jTULIOP ‘juRULIOP

QUOPUOD ‘9)eUOP

urewop ‘jueurwopald ‘UOTUIWOP ‘9)RUIOP

91RULIOOPUL ‘RWFOP JUSUWINIOP ‘DULIJOOP ‘I03J00P ‘D[0P

Mpne ‘JIpoIo

Kerresip ‘rodwoystp ‘joodsorsip

‘uorjrodordsip 400UU0SIP ‘OPIAIP ‘openssIp ‘osiodsip ‘mofesip ‘IofIp ‘SsIusip
UOT)OTPIUS( ‘JOTPRIIUOD

‘“po1pIoa ‘gorpaad ‘)otpe ‘euoyde)or(] ‘103eIDIP ‘93eIITP ‘AIRUOIIIIP ‘UOI)RIIIP
OTUOIYORIP ‘SISOUSRIP ‘OT109[RIP ‘}O0[RIP ONTO[RIP ‘RUOFRIP ‘I0JoUleIp
SOPLIGOA[SIP ‘0BIOAID ‘OPIAID

Awroprxe) ‘stuwropide ‘A3ojojewtiop ‘orunropodAy

[euoporad “ISTIUOPOYLIO ‘DINJUSP ‘[RIUSP

orwepide ‘endogewop ‘Aydeidowop ‘AdeIoOwap

AJIop ‘UOIRUIAID “A)10p ‘OUIAID “A)TUIATD

AJTUSIP 9)RIODIP JUIIOP

UO[Y)ROSD ‘O)RUIIISD ‘DNIO[RIIP ‘OPRISP ‘[RUWIIIOP

9)RIOUSGOP ‘9)RPIP ‘PIOASD ‘OZLIOPOSP ‘@SkaINSP ‘o8ueltsp ‘Aofdep ‘yorjop

OI[0AD ‘ouo[0Ad ‘9[04d1q ‘o[oAorun ‘sdooLn)

QINOIURUI ‘OAIJRIND ‘I0)RIND

OATSIND ‘I0SINOaId ‘IOLINOD ‘INDDO0 “INDdI “INOUI “INOUOD ‘JUIIINOUOD ‘JUILIIND
9MLI00dAY ‘UOLIOLID ‘[ROTILIO

ONLIOOR ‘OSBAINSP ‘OSBAIOUL ‘9J9IOU0D ‘OPUDISAID

O[(IPAIOUL ‘SNO[NPAIOUL ‘SNO[NPAID ‘JIPAID ‘DOUIPAID ‘OPAId ‘PIIID

UOI}BIID ‘UOIPRAIIAIL ‘DIN)RIID

Tomod
sur)se| ‘prey
[nd ‘pesy 0y

dogs ‘una

ostead ‘uorurdo ‘ysnoyy

doors

OA13

[OI3U0D IopUN SI YOIYM e[} ‘Iojsetd
anoxd ‘yporoy

9AI3

Keme ‘70 oarrdop ‘ojeredos

‘os1oa01 ‘Jo oj1soddo ‘qou
yeads ‘Aes

U2M)9( ‘SSOIOR ‘YSNOoIY)
a[qnop ‘9orm) ‘omy

SULIDAOD ‘UINS

3003

uoryerndod ‘eoemndod ‘eydoad
PO

o[qeyns

SowIr} Uo} ‘uo)

jsurese ‘os1oadl ‘ojrsoddo oy
op 0} ‘Aeme ‘UMOp ‘WOIJ
IR[NOIID ‘O[IIID ‘[ooym

oIed

Ul

asootp ‘oyeredos

MOIS ‘asiI

QADT[Oq

91BaI0

UWRUAp
RIND

jonp ‘onp

owoIp-
Xop
ULIOP
uop
urwop
100p ‘00p
p

FIp 'SIp

JIp “321p ‘O1p

RIp

-Ap *-1p
ULISp

Juop ‘yuep
owdp ‘wop
ATp ‘1Op
udIp ‘oop
vO9p ‘09p

I@ﬁv

O[2AD ‘104D

'IND

SINO ‘Ino

LD

NIO ‘9seatd ‘1919 ‘OS9Id
poIo

©IID



109

s

Chapter C

uoI1309Ju0d ‘uoryeoyrdure

‘oInjornuRU ‘100j0 ‘joej ‘A1030€J ‘9Injes] ‘O[qIsesj ‘UOIYse] ‘) NOFIp
ssojoxd ‘Ssojuoo ‘snowe] ‘ouwej ‘Snongej ‘o[qe;

HIOAOI)XO ‘SNOJURIIXD ‘D)e[0dRI)XO ‘ATRUIPIORIIXD DISULIIXD ‘[RUIIIXD

JoARUW-X0 ‘UOISO[dXd ‘PoddXo ‘OAISN[OXO ‘O[RYXd ‘}IXd
[BUI0}0 ‘[RASIpOW

1SOGUIAT 1SoTsON ‘}808U0I)S ‘1S99R]

ssojo0d ‘ssoppod ‘ssoqjoe

SoTjop ‘S9zZIj ‘Soysny ‘Sosso[q

S90JI0Y ‘saIpe] ‘sasse[d ‘sossed

AIoae[s ‘A10[[e3 ‘A1ou003 ‘A1oxeq ‘Araqqous

riqoydo3ie ‘qdeIisosie ‘IojemwiosIe ‘ASIo[[e ‘S10 ‘ASI10U0

Jowrepd ‘xouoysip ‘repuod

JOJRIJUIOUOD ‘I0JI9[[00 ‘I0A1} ‘Toquonn ‘IoAR[d ‘10110dol ‘IoAY
Jorddey ‘199307 ‘I0UO00S ‘19931 ‘19339q

I0yenbe ‘uoryenbs ‘xoumbe ‘wunuiqimbe ‘Terojermbe ‘jueisipmbe
oyurorpide ‘ouodide ‘ongoide ‘dresrde ‘1ojuoordo

OURSOpUd ‘9d0dSOPUD ‘UOIS[OSOPUS ‘OTUOFIOPUD ‘TRIPIBIOPUD ‘OSIOPUD
Aouoye[ ‘GououItud ‘@ouspusdop ‘AoU0SIoWD ‘9oUISJOI

oduejue ‘Tomoduio ‘OAR[SUS ‘UOP[OqUIO ‘IOTIRUD

USY[IS ‘US[OOM ‘UIP[O3

uodieys ‘uojsIouw ‘USY}SUS[

poJo1) ‘pad3op ‘poLouowr ‘poSuim

peonpoIjur ‘peso[o ‘pelred ‘pape] ‘passeip

wise[do)os ‘urIepolde ‘Ydiourolod

TUOUIDGRURBUIOID ‘SaIa7ds009 ‘9ZIOu09a ‘A301009

RUWDZXO ‘ASRISOD ‘SIS900 ‘01900700 ‘osdI[do ‘0o

Io(Ie)-0 ‘[IRWID ‘OSelo ‘IS)o‘[RUINS ‘POCUILD ‘)T

AyyedsAp “@IXo[SAD ‘[RUOIIOUNISAD

oxeuw ‘op

yeods
puofaq ‘Jo apIsino

JOULIO} ‘SUrDR] ‘WOIJ AeMe ‘JO IO

ode ‘ouIly

oATje[Iadns QISAPY 10 9ATIOR[PY

orewo]

A- U1 owWOoS pue - ‘ys- ‘s- ‘Yo- Ul pud IRy}

SQI0A JO 9AIYROIpUl Juesald remauls uosiod pIryl :qIop
A- pue J- Ul SWOS

pue z- pue o- ‘Us- ‘s- ‘yo-

ur urpue sunou jsowt jo eind :unoyn

UOI}IPUOD ‘9)B)S ‘UOIJII[[0D

‘opery ‘eorjorad ‘gre ‘sorjenb oA13097[00

109]j0 ‘YI0M

UOT)OR (IOA

SUIY)ewos soop jey) July) 10 uosiod UNoN
oAreredwod :9AI309[PY

[enbo

paIele ‘I9gye ‘I9A0 ‘01 9so[d ‘uodn

Ui ‘opisur

oe)s 10 Lyenb ‘ssooord 10 uorjor UNON

)M punoxans ‘yim opraoad ‘oxpew ‘ojur nd

[RLISJRWL :2A1}0d(PY

QUWI009( 0 9STIRD 0} :(IOA

JO sorjsLIggoRIRYD 10 Ajfenb oy) Juraey :0A109[py
osuo) 9sed :qIaA

[BUI9)XO ‘OPISINO

AWOU029 10 A30[020 0} SUIFR[DI ‘JUSTUOIIAUS ‘P[OYASNOY
opIsIno ‘Jo 1Mo

pojeral yIomlou indwos ‘Aeme ANy “9no ‘Fuissiu ‘jou
o[qrIOoARIUN ‘patredul ‘)NOPIP ‘[euLIOUqR ‘pR(

®9J ‘se] Oy ‘109]
‘09] ‘g0v] ‘ovj
SS9J ‘e

-0I9Xd

‘-RI71X9 ‘-197X9
-Xd

-19 ‘-AQ

1801~ ‘180-

sso-

SoI- ‘So-

SII- ‘S9-

A1o-

319

I0- ‘Io-
I0- ‘10~
IoT- ‘I9-
-mbo
-1dd
-pud
Aduo- ‘9ouo-
-uro ‘-uo
uo-

uo-



110

Chapter C

s1ppor8ide ‘gor34[od ‘Aresso[3

A[103UuI1d

dope3is ‘0)14qesis

uo13e)$893 ‘1893U09

OURULIOS ‘ULIDS ‘UOI)RUTULIDS

A30[008 ‘O11)U00003 ‘Aydeidoo3 ‘A1jour0o3

uagorjed ‘UoSIue ‘O110Ud3 ‘9)RIOUSS ‘ATO[RIUDS ‘SOTUASNO ‘SOI}OUSS ‘SISOUOS
SnoIoua3

podoajses ‘s1yLgses ‘orouoijses ‘oLses

Awre34Tod ‘Auredouown ‘Auresiq

Ajrpuep ‘Ajisye;

ASTJSURI) ‘OSNIUOD

[njrouey

[Jyynou

98NJLIU0D ‘O8NJol ‘98nJIo)qns

[rRIy “j0RIJAI ‘UOIORIJ ‘O[ISe]] ‘UOIIORIUL ‘DINJORI]

R[NULIOJ ‘[RULIO] ‘ULIojIad ‘9)e[NULIO} ‘ULIOJU0D ‘JRULIOJ ‘ULIOJ
OPNYILIOY ‘9310] ‘AJI1110] ‘O[RYI)IO] D110} ‘}I0} ‘LI0HPO

9959.10] ‘auMN)I0] ‘1SRDSI0J

PIOjInO}

XNPUI ‘XNPel ‘0jeniong A[Juony ‘ysnyg ‘onyg ‘pmy ‘eousngut
1OTPUT “9OTPU0D ‘UOTIOT[Te

XOPUWINOID 100PIP ‘J00Pel ‘AY[IQIXOPUL ‘TOXS O[(IXO[ ‘XOPol ‘Xof
xigns ‘xgord ‘Xige ‘0Inixy ‘uorexy Xy

9[RUY ‘QUULP ‘QUULI ‘DU ‘QUYUO0D ‘YSIuy ‘9jIul ‘[eury
IOISNI[Y “19[Y ‘I09[Y ‘JUOWR[Y ‘90131

JuowISy ‘9Ingy ‘ASyJe ‘weingy

g Ioduwes ‘A0RIopejuod ‘Telope] ‘[Ppyul ‘A[OPYUL ‘JUePPUOd ‘AN[OPY ‘©IURPHUOD
AY[OpY “YuapIyIp ‘Opyuod

ugiej ‘yurej ‘UOTOY

IojsuRlI) ‘I0Jol ‘IOJUl ‘I9JOP ‘O[l)I9} ‘SNOISJIU0D ‘ALIo]
PUu0d9sO L]

snoror[[e] ‘Ajisrej ‘Aoeyrej

onguoy

[nJoIes

uotq

Ieaq ‘A1red

gred eyia

[}1eo

oonpoud ‘ol ‘yiaiq
puty

OBWO)S

agerLIew

OJUI ULIO] ‘O3eul
amod

Aq posrewr ‘SUIAIZ ‘SUIARY :9AIR[PY
ST[Y ey} Ajruenb 1o junowe Ue UNON]
o0

roIq

o[quuasaa ‘odeys
SuoI)s ‘Y)3uUaIIs
2I10Joq

Aq poyIew ‘JO IoUURW ® Ul :(IdAPY
MOf

ONLI}S

pueq

yoeyye ‘aredox
poysIuy ‘popus ‘pus
prol}

uL1oy ‘odeys

JSNI) ‘TIre]

ey ‘joreq

uorysej ‘eyewt ‘edeys
A11ed ‘Ieaq
qpuorrpenb
QATOOOP

1018 ‘sso[3

urd

8313

1503

ULIOS

003

uo8

uos

0I1)ses ‘1)se3d
wes

£3-

osny

M-

M-

o8nJ

RI] ‘Selj ‘jorIy
ULIOJ

1.10J ‘010j

9I10] ‘I0]

P19}~

xnyg ‘Ang ‘ong ‘nyg
Py

109 ‘Xof

xg

ug

1y ey

3y

1opo} ‘OpY ‘PY
PY

1@ ‘17 ‘urej ‘useJ Oy
I9]

(olilosiels

sTe ‘1rej



111

Chapter C

9INIONIJSRIJUI ‘poIRIJUL

Jogsoduut ‘orqissoduur ‘ojqeudeiduur ‘yusdouul

‘9[qreIORIHUI ‘SNONOOUUL ‘D)R[OIAUI ‘UOIIDRUI ‘DIN[OSOLIT ‘O[ISI[[T
jr0dwt ‘pesjsur

armosloxd

UOIHUST ‘SNOdUSIT ‘9)1uTI

AJ100ds

oo1Tew

SOTTOUOJD *OTJOUI}LIR

BIRELIEYS]

A1yerpAsd

uewny ‘ueriysopad

erqoyd

AderoyjoudAy ‘srsoudAy

oreounyIodAy ‘ojeriuaslodAy ‘oanjisusstodAy OroqrodAy ‘eArsuolrodAy ‘osroeradAy
e1qOYdOIPAY ‘USBOIPAY ‘SONRIPAY ‘OINRIPAY ‘JURIPAY ‘©)eIPAYP
oUBWINY ‘OUWNYXo ‘Snuny

auoydowoy ‘WATOWOY ‘[eNXSSOWOY ‘QZIUSFOWOY

sjo1dnyxes ‘199ses ‘I91oWeXAY ‘UOFeXoY

QUAPOIO)OY ‘[RNXOSOINNIY ‘STIOdUDSTOINNIY ‘XOPOIS}OY

91RIISoY ‘AIR)IPOIdY ‘JUSIOYUI ‘UOISOY0D ‘919709 ‘dIoype
pegsowdy ‘eIifiydowoy ‘Urqo[gomway ‘o8RYLIOWSY]

oLyuedorRY ‘edorjorey ‘ydeidorey

SSOUI)[RaY ‘AUj[eay ‘TeaY ‘O[RyXd ‘o[eyul

uerIesdalsd ‘93es8a139s ‘UOIIBSOISU0D ‘STOLIB3aI3

9)e)IARIS ‘9)eARISIR ‘A}1ARIS ‘OARIS

91RISUI ‘[NJojeIs ‘A}mjers ‘9je[nivIsuod

orydeas ‘ydeidoysry ‘Aydeisorq

‘rewrwreasd ‘ydeidAjod ‘wrerdorey ‘eyydersd ‘Aydeisojoyd ‘yderdojne ‘omgdeisd ‘yderd
$$0180 ‘ojenpeld ‘Tenpeisd ‘ssorgoid ‘0o13op ‘opeisd

971103938 ‘A10897€0

9)RISUIO[SUOD ‘d)eurIn(sse ‘on[3

[jeouaq
jou

SpPIRMO) ‘IROU ‘U0 ‘Ojul
Jo sonjIrenb oY) Suraey :0A1309[pYy

aI1j
9sTIRD (IO
Jo® UNON

SOUSIOS PUR S}Ie 97} 0} POYR[eI UNON
uorjeral ‘Aenb :oA1os(py

SuIeay JO 1Ie UNON

ST JBT[} 9UO ‘0} PIaje[dd UNON

SOSBISIP ‘SOWRU :UNON

dosts

QAO(R ‘I9AO

Iorem

uewW ‘PUNOIF ‘[[}Ied
ures

XIS

TUSIJIP ‘19730
1S

pPoorq

uns

punos ‘ajoym oyeut
pIeq

AyySrom ‘Aaeoy
gurseord

MRID ‘UOIILIM ‘OJLIM

08 ‘dogs ‘101303809 SuLiq 09 ‘IoY)es 0}
Ioje80} Sutiq 03 ‘19yjes o}

on[3 ‘puoq ‘duny

eIjul
It fut

wl ‘ut

ot~

STuSI

AJt-

901-

SO1 ‘OI-

or-

A1yer-

ue ‘uer-

el-

udAy

TodAy

OIpPAY ‘“eIPAY ‘IpPAY
uewny ‘wny
ooy

XS ‘sos ‘XU
019997

SOy ‘oIoy ‘I19y
owIaY ‘e
SHELI

[eoY ‘orey
8013

ARIS

1013

Je18 ‘wreisd ‘ydeid

9918 ‘ss9138 ‘prid
103
o[3 ‘n[3



112

Chapter C

030] ‘A301007 ‘ongorerp ‘eongojord ‘Soreyes
UOI0WO00] ‘93ed0[[R ‘ARO[ ‘A[[eI0] ‘UOI}eI0]
91RIDCO ‘UOIJRIDII[[R ‘[RIDI] ‘OINjRINI ‘ATRINI]
OpIoNU ‘9pI[od

QOURIDAI[OP ‘OzI[RIS(I[ ‘[RIDQI] ‘ALI0qI]

onges ‘98o[[00 ‘B39

AJTAS] ‘99RITAD] ‘O)RIAD[[R

SSO[OAIIOU

9ZIWI}IZ9] ‘OIN)e[SIFO] ‘9)e[SI3o] ‘(B3]

O[qISIP ‘AqI39] 4097102

I[Ip ‘uormnge ‘uorjo| ‘Aroyeae] ‘Iopune|
Ioqe[eq ‘SnoLIoqe|

oyeuaAn(or ‘orruoan(

resnfuoo ‘psnlpe ‘uorounl

sorpnload

uonounfuos ‘uorounlur ‘uorounluod ‘emjounl ‘utolfus ‘urutolpe
Juooelpe ‘ojemoelo ‘10alur ‘pojoalop ‘poalrajur ‘A1ojoaler) “yoofoxd ‘400fo ‘goolox

oZIse)Ue]
QAT}ISUSS ‘OAT)RIDd00D ‘OAI)SO]

QAT)RU

Ky[eaou ‘Kyrprong

oyydesd

jstiyerpod

WISTRULIOJ

USImMou

uoronpqR

9ONPOIJUL ‘UO0I1PdSOIIUT ‘JIDAOIIUL ‘9DTJOIO)UL
[RIRURIIUL ‘JOURIIUT ‘[RINUIRIIUIL

JUOYIULIONUT ‘[RUIDIUT ‘UOISSTWLIONUI ‘}Jool1ojur ‘)dodIour ‘[euoryeuIajul

SurLIdY0d
gurjordep
Surp[mq ‘Surtmims ‘SurIoof

Apnjs ‘uoseol ‘Yooads ‘Aes ‘Apnjis ‘prom
eore ‘ooe[d

SI10399]

ONLI)S

001]

me|

3

SUISSTW ‘INOYIIM :2A1}08[pY

mef

peoal 309[0s ‘I0YjeS ‘9sooyd

Usem

JIoMm

SunoA

utol 09

agpnl

utof

MOIT)

osneY :QIOA

Jo Ajrrenb oy Suraey :eA1oslpy
UOT)IPUOD UNON

Ayrenb 10 93eYS UNON

Ayrenb 10 93e3S UNON

Ioquouwl 10 uosiod :unoN

1ONPUOD IO UOIDR ‘JBI[8( ‘QULIIDOP UNON
JO I9j0RIRYD o1} SUIARY :DAIR[PY
UOT}0€ IO UOI)IPUOD UNON

premur ‘urgym ‘ojut

[}EOULIOPUN ‘SIoAR] U0aM)9( ‘SULIND ‘UTYIIM
suowre ‘usamiaq

A1A190% :2AT)OS[PY

ordroryared juosord :qIop

AJTATIOR UR JO JNSoI

‘A1TAT)OR “I0J OpRUL [RLIOJRUL UNON]

A80[0 ‘080] ‘30|
000] ‘00[

o]

opP1

ToAT[ “1oq]

89 ‘Gral ‘X9
1A9]

SSEIE

391

S1[ ‘89 “109]
my ‘901 ‘Ae[ ‘neg
Ioqe|

uoAn(

gsnf “goun( ‘Snf
oorpn(

jounl ‘urof
100 ‘oel

oz1-

OATII- ‘OATJR- ‘OAT-
QAT-

Ay “L91-

o~

Ist-

wST-

qst-

uot-

oIjul

RIJUI

Jojur

ur-

Jur-

Sur-



ol13

I

Chapter C

uonruowsId ‘10j)TUOW ‘UOIHTUOWPR ‘JUIWNUOUT
I0j0W ‘Q[IOW ‘DAOUWIAI ‘UOIjOUT

ISSIUI ‘“UOISSTW ‘JUOITULIONUL ‘YTIO ‘yruusuel) ‘grurrod ‘gruumrod “ruupe pruuqns el ‘9rurs

ISTUASOSTI ‘OxRISIUL ‘IOUWOUSIW ‘@ounouordstur 4o1dIojursTul ‘WLIOFUISIW ‘10N PUOISIUL
9[MOsSNUINI ‘IOUTU ‘Q)NUIUI

OAT[[IUI ‘WIRISI[TUI ‘PUODDST[[IX

UOJO[IY ‘93ACO[LY ‘WNIUUS][TUL

9jeldTuIwl ‘JuURISIWS ‘9)eIITW

J[OAOIOTUI ‘IDJOTOIITUW ‘DARMOIIIUL ‘PIRIOIIIM ‘WGoIotur ‘9doosororu
Ajowo[oy ‘orrjowrered ‘OLIJOWMASE ‘SOLIIOUL

I9)OUIOULIS) ‘I9JOUWIOIR( ‘I9JSUIMIRI[OA ‘I9)0UI

UOIIRULIOJUIRISU ‘[ROLIOISIRISW ‘WSI[oqrIawl ‘sisoydiowriswn ‘1oydelsu
araydsosowr ‘eorroWROSOW ‘YdIOMIOSOUL

TUOWNOOP

UOTJUOW ‘[ejuot

9[RIOWDW ‘IIOWLW ‘OJUSWSW ‘UOIJRIOWSUWIUIOD ‘O

srjodoregowt ‘034qesow ‘Oortueworegow ‘dogesow ‘uojedowr ‘ouoydedowr
WNIPOW ‘QID0IPOUIL ‘URSURLIDIIPITA] ‘[RASIPOU ‘9)RIpaUI

uoIjeul ‘9jeyoIRLIjew ‘[RUIdjell ‘AUOWLI}eTT

preuroum ‘QuWILIRW ‘[sIetl ‘QULIRTI

eruewWOIAd ‘“eruewo)doy ‘ovruewt “erueul

9jepuURW ‘puRWSl ‘Al0jRpUel

JusweSeurW ‘9jediourBuIe

‘IOATIOURT ‘)SOJIURUL ‘DINOIURUIL ‘D[ORURI ‘DOINJORINURW ‘9FeURUI ‘[enUel
JUSOY[RUI ‘90URSESJ[RIL

‘UOTIOUNJ[RU UL JUOO[R W ‘APR[RW ‘[RWSID ‘Pajsnlpereul ‘UoryeuLIojfett
Urewol ‘Uretiop ‘[resuretl ‘WeaIjsuret

WNUSeW ‘OPNIIUSeUW ‘9)euUFeu ‘SNOWIURUSRUW ‘JUdYIusew AJruseur
Iogeowl ‘pojrIoRUIo

Ayueny

opnyoxd

9RIISII[[I ‘©IRUIWIN[[I “RUN[ ‘193SN| ‘ATRUIWN] ‘JUSON[SURI)

UOINOO[WNoI ‘Tembofoo ‘snorenboy ‘yuonboro

purwar ‘urem

2A0T

pues

AIpeq ‘prq ‘Suoim
[rews ‘9331
qipuesnoyy

puesnot)

Iopuem

JJUON[[Iu ‘[rews
uonrodde ‘einsesuwipe
aanseour

a8uerp ‘puoioq
olppta

NS9O IO UOIIPUOD UNON]
puru

JOUISUIDI ‘[[RODI
UoI[[IWl ‘}ea1d
Kemjrey ‘usomiaq ‘O[pprur ‘Jrey
Joyjour

[ood ‘eos

ssoupew

purTuIOD

op ‘osew ‘puey

ATpeq ‘peq

1SOUIOI0] ‘U3 3UIIS

18913

uea|

JO IoUURW 97} Ul :(IGAPY
Aerd

3

yeods ey

uow
jour ‘Aow ‘qouwt
sstuI ‘41w

st

uru

i

o ‘Trw
eI

oIoTw

Ijouw

Iojou

vloW

osowt

UL~

hleestosg

wow

e3owt

[powt

LIjewt

Jow ‘LIewr ‘reur
RIURW

puew

nuew ‘uewt

rew

ureur
ugew

IgorU ‘-I0RUI

AT-

apn|

SN[ ‘snf ‘unp ‘wmy ‘ony
Mmooy ‘nboy



114

Chapter C

ueoo0 oyed ‘Ayoed ‘sgoed
YIOMISAO ‘[[RIDAO ‘YIOM.IOAO
SNOT10RI] ‘9SOQIOA ‘SIIO9FRINO0D ‘SNOINJUSADPR

£103991 ‘A1091119}

xopoyjroun ‘OrpadoyIo ‘ISIPUOPOYIIO ‘XOPO}I0
Iourur ‘Iowmny ‘I0Uoy ‘IOo[eA

sndo ‘9reirodood ‘9jeiado

wAuouds ‘wAuojue ‘wAuopnosd ‘snowruour
SNIOJOATUWO ‘UasaIdIutIo ‘JUaIdSIuWo ‘jyuajodiuio
Ayoxe3ro ‘o1qdoijo31[o ‘OpLIRYDIRSOSI[O ‘OUI03I[()
9ABID0 ‘URIIBUSS0)O0 ‘U03e}00 ‘sndojoo

ure1qo ‘Ipo ‘anooo ‘esoddo

SOI)RUISIUINU

9[qeIoWNUUI ‘9)RISWNUS ‘UOI)RISWINU ‘[RISWINU
Juoon[ryoou ‘xournbe ‘rewinjoou

91RAOUUIL ‘RAOU ‘9ITAOU ‘©)RAOUSI ‘[9AOU
1dLI0SOpUOU ‘DAISRIQRUOU ‘OSUISUOU ‘STIOLIOJUOU
uogeuou

SNOTUTWOUST ‘9)RUIWOU ‘9INJR[OUSTOU

WAUOUAS ‘9jeuruiou

AWou0%9 ‘AWOU0I)SeS ‘AWOU0I)Se ‘ATIoUO0INe
OI10IN_U ‘TRINSU ‘)SIF0[0INU ‘OTyjedoInau ‘SIjrImnou
Ssoupury

91euO00U ‘93AYd0odU ‘WISISO[09U ‘OUYILI NIBOANU OTYI[ODN

QOURSSIRUSI ‘QAIJRU ‘[RIRU ‘9)euul
oATRU ‘Jueugald ‘OAI)RU ‘JUSISBRU
SYONQOURU ‘PUOIISOURU

reuonyeurnymu ‘esodindiymur ‘eopnjrymur ‘Ajdiynur ‘padiymur ‘Tengul[ijnur ‘prornur
snoydiowre ‘oweydiow ‘orgdiowd[od ‘A3ojoydiow ‘stsoydiowrejour ‘orydiowtp ‘snoydiowre

Arenjiow ‘UrIOINIOW ‘A}[BIIOW ‘[RIIOWWI ‘[e)I0W

“)sIeYjouom ‘[relouow ‘sisodnuouow ‘engojouowt ‘odAjouowt ‘Ajodouowr

oorad

QAO(R ‘OAISSIOXO

09 urjeraa ‘Jo Ayrenb

oYY Suraey :9A13R[pPY

I0J SOAIdS ‘10§ 90r[d UNON
1001100 ‘JYSTRI)S

AJTATIOR IO UOIIIPUOD UNON
SI0M

owreu

AIon0 ‘e

[N MmJ

S

Aem oY} Ul ‘ysurede ‘premop
Uuroo

Joquunu

e

MU

j0u

ouru

owreu

oureu

IopIO ‘me|

AU

Ayrenb

‘UOTHIPUOD ‘99RYS UNON
Mou

3103 sutrds 09 ‘wWoIy 9¢ 0%
wI0q 9q 0}

qauorqq

onw ‘Aueut

urioy ‘edeys

)eop ‘[RIIOW

ouo

oed

I9A0

STNOT- ‘9S0-
‘SNod- ‘sSno-
AI10-

O }10

Io-

Iodo

wAuo
TUwo

0310

100

do ‘50 ‘00 ‘qo
BUISTWNU
Iownu

o0ou ‘xXou
AOU

uou

uou

UIwou ‘usuou
wAU ‘wou
wou

mnou

ssou-

oou
OSeu ‘1eu

[BU ‘JUBRUS ‘Jeu ‘Oseu
ouru

oo

ydiow

110U ‘10T

ououmt



115

Chapter C

rendod ‘snomndod ‘uoryemndod

punodurr ‘punodxs

‘uoryisod ‘eanysod ‘qisodep ‘esoduur ‘esodxo ‘yusuodord ‘yuouoddo ‘yuouodwos ‘ouodjisod
snoydrowAjod ‘AwresAjod ‘uwogAjod ‘ystoryAjod

srjodooe ‘srjodoredew ‘stjodeuerpuy ‘sorjrjod ‘eorjod ‘stjodoijowa

podiny ‘Aryerpod

‘eruowmnoud ‘orjewmnoud

snid ‘gstreanid ‘reanpd

guriodep ‘uorjerordxe ‘arordur

A1d ‘oyeordurt ‘A1dex

quaoe[dwod ‘ojeoerd ‘oqeoerd ‘proerd

1otdep ‘eangord

9104001d ‘ermoootd ‘prerejoord

uojoyd ‘stseyjudsojoyd ‘oruagojoyd ‘orrjoepojoyd ‘ydersojoyd

snoruoydne ‘Auoydwds ‘ouoydoromu ‘euoydowoy ‘oreuoyd ‘ydergouoyd ‘sotuoyd ‘ouoydoro)
eviqoydowoy ‘erqoydodie ‘erqoydenbe ‘“erqoydoioe ‘“erqoydoaysned ‘erqoyd

onyewude[yd ‘wseqyd

ormydorqrq ‘oruowreyqiyd ‘Adoayjueriyd ‘1eydosorryd

Joydosoqyd ‘uouswousyd ‘1oydd ‘oweydseq

Asejuey ‘wojueyd

a8erydorisjoeq ‘egeydoroewt

requopotiad ‘ea8trad ‘1ojewrtod ‘odoostred

opensiad ‘ojeioprad ‘exdsiod ‘qrurred ‘ejnoesied

puadde ‘eatsuad ‘efepusdde ‘pusdsns ‘wmmpuad ‘quepusd

aats[ndaa ‘uorsindxo ‘Arosmnduod ‘eyesnd ‘osndut ‘osind ‘[odoad ‘qodar ‘[pdxe ‘[odsip ‘fodurod
sorryerpad ‘ongo3epoad ‘orpadorjio

wmipod ‘epodrjue ‘A1yerpod ‘podiry ‘opadijueo ‘ueriysopad ‘opoduar ‘Teped
Ayyedoroy ‘Ayyede ‘Ayredniue Ayjedwds ‘soyged

oztuoxyed ‘uoryed ‘“jorryed ‘yorerrjyed ‘Ayruroyed

ASoroyyed ‘Ayjedwds ‘uorssed ‘quoryed

omrpered ‘eserydered ‘orpewrered ‘[euoissejordered ‘xopered

‘(suowop oy} [[e jo sorld) wnruowepued ‘eeoeued ‘weoLy-ued ‘UedLIOUTY-URJ
ABojoyoAsdoared ‘wsrjougdewosred OIYIod[RJ ‘O10Z0dRJ

oredoad ‘oredwoo ‘aredwr ‘aredod

ordoad
md ‘eoerd

Auewt

A£310

199 ‘400]

qyeadq

aI0W

[rem ‘o A1

PI%}

osesd

meIp ‘moys ‘qured
ERELUIIES:

S

punos

Teoj
UOI}RWIR UL
9A0]

yeods

9[qISIA OYRW ‘MOUS

180
punoe

QATSUDUI ‘YSNOIY}

Srom ‘Suey

o8 ‘ysnd ‘oArIp

PIH

10073

suLegns ‘Sur[es]

Totyey

Iopns ‘(o0

op1seq

e

PIO

om) ‘oge[quiesse ‘ofurire

dod
punod ‘sod ‘uod

Arod
fod
pod

uowmnsud ‘“ewnsud
snid ‘mid ‘nid
azord

Ad ‘qd

sterd ‘oerd

1o1d

oord

ojoyd ‘yoyd

uoyd

soqoyd ‘erqoyd
ewdoyd

rrud

ayd

quey ‘queyd ‘uey
‘uoyd ‘seyd ‘ueyd

o8eyd

rod

Tod

puod ‘suad ‘puad
sind ‘pod

opoad

pod ‘pad
Agyed ‘qyed
Ired ‘xored
red ‘ssed ‘ged
ered

ued

oored

oxed ‘ared



116

Chapter C

opisqns ‘opisad ‘yuoprsord ‘oprsard ‘ssessod ‘UOISSISO ‘UOISSOS ‘JUSUWIIPSS
UOI109S ‘QUBIAS ‘109SSIP ‘}00SURIY ‘109SIOYUL

opadas

yduosnuewr ‘oqriosard ‘OquIOSqNS ‘OqLIOSOP ‘OQLIOSUL ‘O[LIdS ‘OLIOS
odoosot3e)s ‘edoostiad ‘edoosoprarey ‘adoosorotu ‘edooss[o)
[JUSIDOUFO0D ‘JUSIISIUUIO ‘SNOIISUO0D ‘9OUSIIS

AJs1yeSs ‘9rRINnges ‘Juorjes

1OULBSOIORS ‘SNOIUOWIJOURS ‘UOTIOURS ‘ATenjoues ‘AJrjoues

UOIJRIN[RS ‘OFRA[RS ‘UOIIRA[RS

91RIJ9SOP ‘9JRIDSSUOD ‘UOIIOURS ‘1OURSOIIRS ‘POIORS

orqudnu ‘gdnastp ‘ydniqe ‘gdnrrejur ‘einjdna

A107€38010p ‘UOIyRBOLIOUI ‘DAI}RSOToId

9[ISLI ‘UOISLIOP ‘SNO[NOIPLI ‘O[NOIPLI ‘OPLIOP

QATJOROIJOI ‘UOISSOIZ0II0I ‘)00dsoa)al ‘10300101991

9[8URIDDI “JORIIP ‘}0II00 ‘AJI3001 ‘IR[NSDI ‘JUSTLSDL

uredol ‘osraal ‘jorIjel ‘usieal ‘jrodox

1sonb ‘oysmbxo ‘oxmbur ‘Aronb

yuowrdmbe ‘dmbo

Iojourejuad ‘ourjuad ‘uodejuad ‘sjordnjumnb ‘jojumb

syordnapenb ‘o[Suripenb

somduwoo ‘ondsip

uoryenjound ‘ernjoundnor ‘ernjound ‘uoryenjound ‘enjound

stsoypAsd ‘A3ojoypAsd ‘AryeryoAsd ‘oyoAsd

reusnpurojoxd ‘O10zorejord ‘ueozojord ‘jstuogejord ‘qooojord ‘odAjoroxd
[edoad

redournd ‘eoutid ‘peaswinid ‘Tewrid ‘Arewrid ‘oantwrnid ‘“euuop euwrid ‘Aoewrid
ofsuaypId ‘earsusyprduwod ‘pusypiduwod ‘pusrpidde

opodard

juejoduur ‘ojejuajod ‘reryuajod

orepjsod ‘ouodjysod

uoryrodoad ‘uorjrod

uorjejrodsuer) ‘proddns ‘qrodur ‘prodxe ‘qrodaa ‘qrodsuery ‘orqejrod ‘1oyrod

s

mo

woly Aeme aaouwr ‘grede
9YLIM
ojem ‘098
mouy
ysnouo
AToy
Aqyreoy ‘ojyes
paoes
yraIq

yse
Iojysne|
spIremyoeq
ue)y3rerss
urege ‘yoeq
Jse ‘yoos
drys

oAl

Imoj

RCITE

j0p ‘gurod
[nos ‘purwa
181y
premoj ‘103
151

dseid ‘ozies
oI10Joq
Tomod
purgeq ‘1s9je
areys ‘qred
A1reo

pIs ‘ssos ‘pas

298 ‘3098

oS

1dLIos ‘quIos
odoos

RBIJUIIOS ‘0108 ‘108
sIjes ‘yes

joues

npes ‘Afes

1098 ‘Oues ‘Ioes
1dna

e301 ‘01

ISIT “IPTT ‘11
01391

19901 ‘8ol

ol

Jonb ‘psonb ‘smb ‘xmb
dmb

ejuad ‘qumb
penb ‘jenb
ond

1ound

yoAsd

0jo01d

oxd

owrtad ‘wrtad ‘urad
aJopuapId
md ‘ead

r0d

1sod

uoryrod

110d



117

Chapter C

JI0AQNS ‘[euLIOUqNS

‘prepueisqns ‘ouULIRWI(NS ‘@FIoWINS ‘Poooons ‘voigns ‘yroddns ‘OATAINS ‘urejsns

Arjstura ‘A13Snpur ‘Aoq)sop ‘UOIIdNIISOP ‘JONISqO “JONISUI ‘JOTLIISUOD ‘DINIONI)S ‘ONIJSUO0D
IOJOLIISUOD RO( ‘UTRIJSAI “JOLIJSUOD “JOLIISOI ‘JOLIYS ‘JUOSULIYS

I9)SUOUI ‘19)SqO
Q0URIS ‘YSI[QRISO ‘DInje)s

uorjeaidsar ‘oxrdsiod ‘ortdxe ‘oxrdse ‘oxrdsur ‘oxrdsuod ‘qrards

proieyds ‘ersydstuoy ‘eroydsojeils ‘eroyds

Iodsoad

snonordsuoo ‘30adxe ‘ea13oadsoljur ‘oarydadsoral ‘joadsord

‘100dser ‘goadsur ‘eyernoads ‘goadse ‘oprioads ‘10jei00ds ‘Oygeds ‘usmroads

poyeonysidos ‘Aydosoriyd ‘(1003 ostm) arowoydos

IST[NQUIRTWOS “RIUTIOSUT

uomnosqe ‘9nossIip ‘9n[osal ‘UOIIN[OSAI ‘UOIIN[OS ‘O[N[OS ‘OA[OSII ‘OATOSR ‘OAJOS ‘JUIAOS
oye[osI ‘AIR)I[0S ‘OpnII[os ‘aarejrjos ‘Anboyros ‘ojos

£791008 ‘9[qRID0S

2IM)IISqNs ‘ATeUorje)s ‘O[qels ‘o1ye)s ‘9Jels ‘snjels ‘eurtue)s ‘oour)SwWINIID ‘Isisrod ‘)SISul ‘IsIsse

SNOOURNWIS ‘WNLIOR[NWIS ‘O)R[NUIIS ‘OJR[IUIISSE ‘IR[IUIIS
JUROYTUSIS ‘RTUSISUI ‘USISOP ‘©INJRUSIS ‘[RUSIS
diyspueryy ‘diysuorjersl

9AI9SqO
‘UOTJRATIOSUOD ‘OAIISOP ‘UOIPRAIISII ‘OAIISUOD ‘DAIISAIA ‘OPNIIAISS ‘JUSIATIISONS ‘OIIAIDS ‘JURAIOS
onsind ‘Onsue ‘Puodds ‘OAIINIISU0D ‘9jnoosord ‘yuenbosqns ‘[onbes ‘eousnbesuos ‘@ousnbos

reruuagdos ‘199des

UOISUOSSIP ‘AIOSUOS ‘OAI}ISUSS ‘UOIPRSUS ‘DSUOS ‘[RIUOUITIUDS ‘JUOSSIP ‘JUOSOI ‘JUISUO0D ‘JUDWIIIUIS
JUDDSOURAD ‘DOUISOUIS ‘D[IUS ‘10)RUIS ‘I0TUSS

Q[OIIDTWIOS ‘ATYJUOWIIWSS ‘[RNUURIWISS ‘SNOIISUOIIWIDS ‘[RUYIUIOS

JO peajsur ‘A[101098
‘wroxy ‘mofaq ‘repun
pringq

18ty aeap ‘qmd ‘purq

uostod
puesls

qyealdq

aroyds ‘Ireq
9[qeIOAR] IOpPUOI
998 ‘Y00

oSIM
doors

urefdxo ‘uasoo[
ouore

suorueduoo ‘urof 09
dn oyew
‘puRISYIIM ‘puR)S
SUIqUIASaI ‘oxI]
[eos ‘yIewr ‘usis
UOT)IPUOD

‘snje)s UNoN

dooy ‘oATes ‘oaes

MOT[O]
U9ADS

MUY ‘[o0f
PIO M0I3 ‘PO
rened ‘rey

sns ‘s ‘dns

‘s ‘ons ‘qns

A11s ‘Ao1s “1onI1s ‘NIl
93138

‘SurIgs ‘101138 ‘UTRI)S
I99s-

peals ‘1s ‘eys ‘198 ‘ue)s
‘rels ‘qegs ‘yuegs ‘pueis
aids

aIoyds

JTods

otds ‘1ds ‘y0ads ‘oods

ydos

uwos

MJos ‘nos ‘Ajos
snjos ‘[os

1008

138 ‘B)S ‘9SS

[uars ‘[rets
u3Is ‘ugIs
dus-

AJOS

ons ‘noas ‘nbos
1dos

SU9S ‘Juoas
U298 ‘uUds

oS



118

Chapter C

ojeIquumpe ‘ofeiquun (oxe)) “erqunuad ‘erquun

WNJRWIHN ‘9)eWIN

And £y ‘ASo10d Ay ‘1ojtimoedAy ‘AydersodLy ‘qeordAy ‘edAjoroxd ‘odAy

[rowny ‘prqang ‘qIngsip ‘yusingany

Arenquiy ‘9inNquIIsip ‘9Ingrijuod

AIeinquy ‘uonngrjel ‘9mqrIjje ‘9mMqLIyuod ‘ojngri}

[exojeqr} ‘Ajurry ‘orsuery ‘podrry

JIoonpsuriy ‘uorjeiIodsuril ‘YIUISURI) ‘OTURIOOSURIY ‘ULIOJSURIY

9[qeJORIUI ‘}ORIJUOD ‘10eI)qNS ‘10eIjop ‘jorrjold ‘J0rIJOI ‘)ORIIXD ‘UOIJORIY ‘10)0RIY ‘joRIl)R
UIXO)IUR ‘9)BIIXOJUL ‘OIX0)

SNOINYI0} ‘SNON}I0) ‘UOISIO) ‘}I0JUO0D “YIOISIP ‘JI0IXO ‘)I01DI ‘DINI0)

Awoyeue ‘Awrojoydip ‘Aurolos[isuoy ‘Auoydopusdde ‘(o[qeino jou) woje

dITIUS ‘DII39I ‘DII1)e

1oido ‘SISojuAs ‘sisoylodAy ‘sisoyjrue

RIWLIOYJ0dAY ‘)R)SOULIOY) ‘9[310( SOULIOY} ‘[RULISY} ‘WOIO9Y} ‘IoJoWOULID)

A3o1oo1) ‘wstoyye ‘wsylA[od ‘wsylouow

AJ19599 ‘)8919R ‘AUOWITISO) ‘1$9)0P ‘JULUIR)SI)

[BLI}SO1I9) ‘AIOJIII9) ‘WNIIRIIOY ‘UIRIIO)

[RUIULIOY} ‘O)RUTULIO)XO

doperoy ‘91dqeroy

osuojeld ‘UoIsue) ‘Jue)xe ‘Iopud) ‘pusjuriddns ‘pusjeld ‘pusejuod ‘puULIUI ‘PUIXS ‘AdUSPULY
urejop ‘urejrod ‘uresqe ‘UrRUOdD ‘93RUIISYO

“uaurjuod ‘guaurjrod ‘JUSIU0D ‘DAIJUDISI ‘UOIIUS)OP ‘O[RUSIUN ‘SINUD) ‘JURUD] ‘SNOIORUDY
[erodwoy ‘we) oid ‘Areroduwoiuod ‘Ajsnosuriodwoixe ‘Arerodwo) ‘oduoy

Ayyedoroy ‘Ayjyedoroy ‘3sedo[a) ‘ojoydod) ‘UOISIAL[R)} ‘0dooso[e} ‘wreldafe) ‘ydeigdae) ‘ouoydooy
Juowngo) ‘Irensa) ‘100101d ‘90930p

SNOIORUDY} ‘JUSIUO0D ‘ONUIU0D ‘UTRIDI

MIo3UIIIO0 ‘SONSIJUO0D ‘SNOIZRIU0D ‘O[qIdUe) ‘O[qI3UBIUL ‘}ORIUL ‘}10RIU0D ‘O[I}0e)

91RIIPUAS ‘SNOUOIYIUAS ‘SISOJUAS ‘Ayjeduwuds

opooradns ‘esodwrradns ‘einjeuradns ‘jdurosiodns ‘reusierdns ‘iorrodns
uonyduwmseid ‘dwms ‘omnsse ‘Omwnsuod

Mmopeys
95%]

qurad

qmjstp

OAIS

Mm09s9q ‘Aed

9017}

a8uep ‘puoisq ‘ssoroe
md ‘meip ‘Serp
uostod

Jstmy

Mo

md ‘meip

md ‘eoerd

1eo1]

pos e ‘pox)

SSou)IM Ted( 09
3189

) ‘Arepunoq ‘puo
UOT[[L

urer)s ‘yojarI)s

P1oY

ouIry

Jeje WOIJ ‘Iej ‘90ur)SIp
IOA0D

aaey] ‘dooy ‘proy

Jonoy

QUII) oUIRS O}

1R ‘107}030)

9AO(R ‘I9AO

o)sem ‘osn ‘oxe)

WnoRIqUN ‘Ioquin
BWII

dAy

0qJnj

9InqrI}

qr

LI}

sueI)

1891} ‘TRI) ‘eIl ‘joed)
X0}

1107 ‘SI07 ‘109
woy)

oI1}

1Y} ‘SIsoU}
wIey}

001[) 9y}

1891

RI1ID) ‘1199
w199

°I9)

SuaY) ‘qua) ‘pus)
urej} ‘ury ‘uoy

odurd) ‘uro)

SN

397 3099

ur) ‘yue) ‘uel ‘ure)

Sury ‘31p ‘Sey ‘Suey ‘pov)
wAs ‘ufs

eidns ‘rodns
dums ‘owmns



119

Chapter C

3

ueozojold ‘Oerpoz ‘A80700z ‘(UopIes [ed130[00Z) 00Z

Areoy ‘Areowss ‘A1due ‘A1suny

£10301A ‘AP01008

ITMTIIO] ‘MRIPTITM “IMOTIIA PIOYYIIM

9SIM)I] ‘OSIMIOO[D ‘OSIMOUITY

pIremowoy

INOASP ‘STIIOIOAIUWIO ‘STIOIOAI(ISY ‘STIOIOATULIRD ‘STIOIDRIOA

UOIIN[OAD ‘)JOASI ‘UOIIN[OATOD ‘SNOUTWN[OA ‘O[N[OA ‘OA[OADI

URO[NLA ‘OZIURI[NA ‘OURI[OA

UOI}I[OA ‘I9JUN[OA ‘JUS[OAUS( ‘JUS[OAI[RUL

[e00A ‘9AT)RI0A0Id ‘9)RI0ADR

‘9Y0ADI ‘O0A0Id ‘OY0AD ‘UOIJRIOAUIL ‘UOIIRIOAUOD ‘UOIJRIOAR ‘UOIIRIOA
OZI[R)IADIL ‘SUTWRIIA ‘TRIIA ‘UOIIISIATA ‘AJI[RIIA ‘STIOTORAIA ‘PIAIA ‘OATAINS ‘OATAOI
O[QISIAIPUL ‘MOTIADI

UOISIA “YISTA ‘R)SIA ‘OsiATedns ‘ostaal ‘O[qIsia ‘eouapraoid ‘opraoid ‘Quopias ‘09pIA
Q[IOUIAUL ‘9OUIATOD ‘JOTAUO0D ‘}OIAD ‘I0OIA

OPNIISSIOIA ‘IRIIA ‘STIOLIRIIA

JURIQIA ‘9)RICIA ‘O[QRIA

ASIOAOIIUOD ‘OSIOADI ‘O[(IIIOAUOD ‘JIDAOIIUL ‘UOISIDATIP ‘JIDAOIJUL
)IOARIJXO ‘UOISIOADI ‘JIOAUL ‘OTIIOA ‘O[IJRSIOA ‘OSIJIOAPR ‘1IOADI ‘JIDATOD
OATOA ‘OZI[RCIDA ‘AJTORIOA ‘AJLIOA

OPNYI[IWISLIOA ‘AJLIOA ‘AJLIOA ‘)OTPIOA ‘IOAR ‘ATOA

uoAld ‘YUOAPR ‘JUDAD ‘QINJUDA

JUSATUOD ‘JUSAUIL ‘JUSATUNOID ‘DNUIAR ‘JUITUIAUOD ‘ONUIA ‘QUIAIIIUL ‘OUIAUOD
JUOWOYDA ‘UOTIIAUOD ‘O[IIYOA ‘I0JIOA

IO[RA ‘ON[RA ‘Ojenyesd ‘A}IpI[eA ‘querea ‘juorearnbo
JIOPeRAUL ‘OPBAD

SNONDRA ‘JURIRA ‘UOIJRIRA ‘9JRNOBAD ‘WINNORA ‘D)RIeA
aanseswl ‘ainjoa[uod ‘einsodxs

3

WIODIUN ‘UOSTUN ‘Q}IUN ‘SNOWTURUN ‘AJTUN ‘[RSISATUN ‘[RIDIR[IUN ‘ULIOJIUN
renboun ‘gursesoun

[ewue
surARy ‘Aq poyIeW :0A1300[pY

AJ1ATIOR TR JO NSO ‘UOIHPUOD ‘9JR)S UNON
jsurege

07 pIRSSI IIM ‘JO IOUURU O} Ul :IOAPY
JoUURW IO UOIJOSIIP © Ul :(ISADPY

A[1pooIs jeo

[[o1 ‘moqe winyg

oIy

[t

re2

‘
o1 ‘oar[e
9908

Jonbuoo
NSNS ‘V3uRYD
Kem

a8uep ‘wInj

piom

HAYL

ouI0d

A1100 01

II0M ‘[[)8UDI)S

03

Aydurd

uorjounj ‘ssenvoxd
‘UOT}IPUOD ‘10® UNON
ouo

aj1soddo ‘jsurede ‘you

ERIZS

9SIM-

prem-

I0A

[OA ‘9]0A ‘AJOA
uRO[OA

oA

O3OA ‘D0A

IATA ‘RIIA ‘ATA
SIA ‘pPIA

oUIA ‘391A
SIOTA O1A

A
SIOA ‘)I0A

AJOA ‘QIOA
LIOA ‘IOA
JUOA ‘U0A

100A ‘T[OA

nrea ‘rrea ‘ofea
apea

oeA

am-

un
un



Bibliography

1]

2]

[13]

M. Tomasello, Origins of human communication: A Focus on Infrastructure, pp. 1-6. A
Bradford Book, The MIT press, 2008.

D. Diringer, The Book Before Printing: Ancient, Medieval and Oriental, p. 27. Courier
Dover Publications, 1982.

R. I. Damper, Chapter 1: Learning About Speech from Data: Beyond NETtalk, pp. 1-25.
Kluwer Academic, 2001.

T. V. Polykova, Grapheme-to-Phoneme Conversion in the Era of Globalization. PhD thesis,

Universitat Politcnica de Catalunya, Barcelona, Spain, November 2014.

U. D.Reichel and H. R. Pfitzinger, “Text preprocessing for speech synthesis,” in Proc. of
TC-Star Speech-to-Speech Translation Workshop, (Barcelona, Spain), 2006.

L. Cherry and W. Vesterman, “Writing tools : the style and diction programs,” In 4.8
BSD UNIX System Documentation, 1981.

A. Mikheev, “Periods, capitalized words, etc.,” Computational Linguistics, vol. 28, pp. 289—
318, September 2002.

M. D. Riley, “Some applications of tree-based modelling to speech and language,” in Proc.
of HLT ’89 Proceedings of the workshop on Speech and Natural Language, (Stroudsburg,
PA, USA), 1989.

R. I. Damper, Self-Learning and Connectionist Approaches to Text-Phoneme Conversion,
pp. 117-144. London: UCL Press, 1995.

N. Chomsky and M. Halle, The Sound Pattern of English. New York: NY: Harper and
Row, 1968.

G. Miller, Language and Speech, p. 49. San Francisco: W.H. Freeman and Company, 1981.

A. van den Bosch, T. Weijters, H. J. van de Herik, and W. Daelemans, “When small dis-
junts abound, try lazy learning,” in Proc. of the 7th Belgian-Dutch Conference on Machine
Learning (BENELEARN-97), (Tilburg, Netherlands), 1997.

R. L. Venezky, A Study of English Spelling-to-sound Correspondences on Historical Prin-
ciples. Ann Arbor, MI: Ann Arbor Press, 1965.

120



Bibliography 121

[14]

[15]

[16]

[18]

[19]

[20]

[26]

[27]

E. Carney, A Survey of English Spelling. London: UK: Routledge, 1994.

E. B. Bilcu, Text-To-Phoneme Mapping Using Neural Networks. PhD thesis, Tampere
University of Technology, Tampere, October 2008.

K. U. Ogbureke, C. Peter, and B. C. Julie, “Hidden markov models with context-sensitive

observations for grapheme-to-phoneme conversion,” in Proc. of Interspeech, (Japan), 2010.

H. Che, J. Tao, and S. Pan, “Letter-to-sound conversion using coupled hidden markov
models for lexicon compression,” in Proc. of the Oriental COCOSDA, (Macau, China),
pp- 141-144, 20.

S. Bartlett, G. Kondrak, and C. Cherry, “Automatic syllabification with structured svms
for letter-to-phoneme conversion,” in Proc. of The Association for Computational Lin-
guistics (ACL) with the Human Language Technology Conference (HLT), (Ohio, USA),
pp. 568-576, 2008.

S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Solving the phoneme conflict in
grapheme-to-phoneme conversion using a two-stage neural network-based approach,” IE-
ICE Transactions on Information and Systems, vol. E97-D, pp. 901-910, April 2014.

E. B. Bilcu and J. Astola, “Neural networks with random letter codes for text-to-phoneme
mapping and small training dictionary,” in Proc. of The 14th European Signal Processing
Conference (EUSIPCO), (Florence, Italy), September 2006.

M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-phoneme conversion,”

Speech Communication, vol. 50, pp. 434-451, January 2008.

S. F. Chen, “Conditional and joint models for grapheme-to-phoneme conversion,” in Proc.
of The European Conference on Speech Communication and Technology, (Geneva, Switzer-
land), p. 20332036, 2003.

S. Jiampojamarn, A. Bhargava, and Q. Dou, “Directl: a language independent approach to
transliteration,” in Proc. of ACL-IJCNLP Nammed Entities Workshop, pp. 28-31, 2009.

S. Jiampojamarn, K. Dwyer, S. Bergsma, A. Bhargava, Q. Dou, M. Y. Kim, and G. Kon-

)

drak, “Transliteration generation and mining with limited training resources,” in Proc. of

The Named Entities Workshop (NEWS), (Sweden), pp. 39-47, 2010.

S. Jiampojamarn, C. Cherry, and G. Kondrak, “Integrating joint n-gram features into
a discriminative training framework,” in Proc. of the Annual Conference of the North
American Chapter of the ACL, (California), pp. 697700, June 2010.

J. R. Novak, P. R. Dixon, N. Minematsu, K. Hirose, C. Hori, and H. Kashioka, “Improving
wist-based g2p conversion with alignment constraints and rnnlm n-best rescoring,” in Proc.
of Interspeech, (Portland, Oregon), 2012.

J. R. Novak, N. Minematsu, and K. Hirose, “Failure transitions for joint n-gram models

and g2p conversion,” in Proc. of Interspeech, 2013.



Bibliography 122

[28]

[29]

[30]

[31]

[34]

[39]

[40]

D. Wang and S. King, “Letter-to-sound pronunciation prediction using conditional random
fields,” IEEFE Signal Processing Letters, no. 2, pp. 122-125, 2011.

P. Lehnen, S. Hahn, A. Guta, and H. Ney, “Incorporating alignments into conditional

random fields for grapheme-to-phoneme conversion,” in Proc. of ICASSP, 2011.

S. Hahn, P. Vozila, and M. Bisani, “Comparison of grapheme-to-phoneme methods on

large pronunciation dictionaries and lvesr tasks,” in Proc. of Interspeech, 2012.

P. Lehnen, S. Hahn, V.-A. Guta, and H. Ney, “Hidden conditional random fields with m-
to-n alignments for grapheme-to-phoneme conversion,” in Proc. of Interspeech, (Portland),
2012.

P. Lehnen, A. Allauzen, and T. Lavergne, “Structure learning in hidden conditional random

fields for grapheme-to-phoneme conversion,” in Proc. of Interspeech, 2013.

K. Kubo, S. Sakti, G. Neubig, T. Toda, and S. Nakamura, “Grapheme-to-phoneme con-
version based on adaptive regularization of weight vectors,” in Proc. of Interspeech, (Lyon,
France), pp. 1946-1950, 2013.

K. Kubo, S. Sakti, G. Neubig, T. Toda, and S. Nakamura, “Narrow adaptive regulariza-
tion of weights for grapheme-to-phoneme conversion,” in Proc. of ICASSP, (Australia),
pp. 2608-2612, 2014.

K. Kubo, S. Sakti, G. Neubig, T. Toda, and S. Nakamura, “Structured soft margin con-
fidence weighted learning for grapheme-to-phoneme conversion,” in Proc. of Interspeech,
(Singapore), pp. 1263-1267, September 2014.

F. Malfrre, T. Dutoit, and P. Mertens, “Automatic prosody generation using supraseg-
mental unit selection,” in Proc. of 3rd Furopean Speech Communication Association
(ESCA)/COCOSDA International Workshop on Speech Synthesis, (Jenolan Caves, Aus-
tralia), 1998.

M. Tatham, K. Morton, and E. Lewis, “Modelling speech prosodics for synthesis-
perspectives and trials,” in IEEE Seminar on State of the Art in Speech Synthesis, (Lon-
don), 2000.

G. Bailly, T. Barbe, and H.-D. Wang, “Automatic labelling of large prosodic databases:
Tools, methodology and links with a text-to-speech system,” in Proc. of the ESCA Work-
shop on Speech Synthesis, (Autrans, France), September 1990.

A. W. Black and P. Taylor, “Assigning intonation elements and prosodic phrasing for en-
glish speech synthesis from high level linguistic input,” in Proc. of International Conference
on Spoken Language Processing (ICSLP’94), (Yokohama, Japan), 1994.

W. Daelemans, S. Gillis, and G. Durieux, “The acquisition of stress: A data-oriented

approach,” Computational Linguistics, vol. 20, no. 3, pp. 421-451, 1994.



Bibliography 123

[41]

[43]

[47]

[48]

[49]

C. Wightman and N. Campbell, “Automatic labeling of prosodic structure,” in Technical
Report TR-IT-0061, ATR Interpreting Telecommunications Laboratories, (Kyoto, Japan),
1994.

K. Kadowaki, T. Ishihara, N. Hojo, and H. Kameoka, “Speech prosody generation for
text-to-speech synthesis based on generative model of fO contours,” in Proc. of Interspeech,
2009.

Y. Nishigaki, S. Takamichi, T. Toda, G. Neubig, S. Sakti, and S. Nakamura, “Prosody-
controllable hmm-based speech synthesis using speech input,” in Proc. of Machine Learning
in Spoken Language Processing (MLSLP), (Fukushima, Japan), 2015.

J. Makhoul, “Linear prediction: A tutorial review,” in Proc. of the IEEE 63(4), 1975.

J. D. Markel and A. H. Gray, Linear Prediction of Speech. Berlin, Germany: Springer-
Verlag, 1976.

A. Varga and F. Fallside, “A technique for using multipulse linear predictive speech syn-
thesis in text-to-speech type systems,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 35, no. 4, pp. 586-587, 1987.

F. Charpentier and M. Stella, “Diphone synthesis using an overlap-add technique for speech
waveforms concatenation,” in Proc. of the IEEE International Conference on ICASSP,
(Tokyo, Japan), 1986.

E. Moulines and F. Charpentier, “Pitch-synchronous waveform processing techniques for
text-to-speech synthesis using diphones,” Speech Communication, vol. 9, no. 5/6, pp. 313—
324, 1990.

M. Macchhi, J. Altom, D. Kahn, S. Singhal, and M. Spiegel, “Intelligibility as a function
of speech coding method for template-based speech synthesis,” in Proc. of 8rd FEuropean

Conference on Speech Communication and Technology, (Berlin, Germany), 1993.

N. K. Kim, W. K. Seong, and H. K. Kim, Natural Language Dialog Systems and Intelli-
gent Assistants: Lexicon Optimization for WFST-Based Speech Recognition Using Acoustic
Distance Based Confusability Measure and G2P Conversion, pp. 119-127. Springer Inter-
national Publishing, 2015.

M. Levy, “Computer-assisted language learning: Context and conceptualization,” (Oxford:
Clarendon), 1997.

R. Prabhavalkar, J. Keshet, K. Livescu, and E. Fosler-Lussier, “Discriminative spoken
term detection with limited data,” in Proc. of the Symposium on Machine Learning in

Speech and Language Processing, (Portland, Oregon, USA), September 2012.

J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion, “Results of the 2006 spoken

term detection evaluation,” in Proc. of Interspeech, 2006.



Bibliography 124

[54]

[58]

[59]

H. yi Lee, Y. Zhang, E. Chuangsuwanich, and J. Glass, “Graph-based re-ranking using
acoustic feature similarity between search results for spoken term detection on low-resource

)

languages,” in Proc. of Interspeech, (Singapore), 2014.

D. Can, E. Cooper, A. Sethy, C. White, B. Ramabhadran, and M. Saraclar, “Effect of

pronunciations on oov queries in spoken term detection,” in Proc. of ICASSP, 2009.

C. Parada, A. Sethy, and B. Ramabhadran, “Query-by-example spoken term detection
for oov terms,” in Proc. of the IEEE Automatic Speech Recognition and Understanding
Workshop (ISRU), December 2009.

K. Katsurada, K. Katsuura, K. Seng, Y. Iribe, and T. Nitta, “Using multiple speech
recognition results to enhance std with suffix array on the ntcir-10 spokendoc-2 task,” in
The 10th NTCIR Conference, SpokenDoc-02, June 2013.

S. Kheang, Y. Iribe, and T. Nitta, “Letter-to-phoneme conversion based on two-stage neu-
ral network focusing on letter and phoneme contexts,” in Proc. of Interspeech, (Florence,
Ttaly), pp. 1885-1888, 2011.

M. J. Embrechts and F. Arcinegas, “Neural networks for text-to-speech phoneme recogni-
tion,” in Proc. of The IEEE International Conference on Systems, Man, and Cybernetics,
(Nashville, TN), 2000.

S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “New grapheme generation rules for
two-stage model-based grapheme-to-phoneme conversion,” Journal of ICT Research and
Applications, vol. 8, no. 2, pp. 157-174, 2014.

T. Dutoit, An Introduction to Text-to-Speech Synthesis. Springer Netherlands, 1997.

H. S. Elovitz, R. W. Johnson, A. McHugh, and J. E. Shore, “Letter-to-sound rules for au-
tomatic translation of english text to phonetics,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 24, no. 6, pp. 446-459, 1976.

W. Ainsworth, “A systems for converting english text into speech,” IEEE Transactions on
Audio and Electro-acoustics, vol. 21, no. 3, pp. 288-290, 1973.

S. Hunnicut, “Phonological rules for a text-to-speech system,” American Journal of Com-

putational Linguistics, pp. 1-72, 1976.

R. I. Damper, Y. Marchand, M. J. Adamson, and K. Gustafson, “Comparative evaluation
of letter-to-sound conversion techniques for english text-to-speech synthesis,” in Proc. of
the 8rd ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis, 1998.

E. L. Thomdike and I. Lorge, The teacher’s word book of 30,000 words. Columbia Univer-
sity: New York: Teachers College, 1994.

W. Daelemans, A. V. D. Bosch, and T. Weijters, “Igtree: Using trees for compression and
classification in lazy learning algorithms,” Artificial Intelligence Review, vol. 11, pp. 407—
423, 1997.



Bibliography 125

[68]

[69]

[70]

[71]

[72]

[73]

[78]

[80]

A. W. Black, K. Lenzo, and V. Pagel, “Issues in building general letter-to-sound rules,” in
Proc. of the 3rd ESCA Workshop in Speech Synthesis, 1998.

T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to pronounce english

text,” Complex Systems, vol. 1, 1987.

P. Taylor, “Hidden markov models for grapheme to phoneme conversion,” in Proc. of
Interspeech, 2005.

M. Bisani and H. Ney, “Investigations on joint-multigram models for grapheme-to-phoneme
conversion,” in Proc. of the International Conference on Spoken Language Processing,

(Denver, CO, USA), pp. 105-108, 2002.

Y. Marchand and R. I. Damper, “A multi-strategy approach to improving pronunciation

by analogy,” Computational Linguistics, vol. 26, pp. 195-219, June 2000.

S. Jiampojamarn, Grapheme-to-phoneme conversion and its application to transliteration.
PhD thesis, University of Alberta, Edmonton, Alberta, Canada, 2011.

R. Damper and J. Eastmond, “Pronunciation by analogy: impact of implementational

choices on performance,” Language and Speech, vol. 40, no. 1, 1997.

A. V. D. Bosch and S. Canisius, “Improved morpho-phonological sequence processing with
constraint satisfaction inference,” in Proc. of the 8th meeting of the ACL Special Interest
Group in Computational Phonology (SIGPON), 2006.

L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” in Proc. of the IEEE, 1989.

M. Collins, “Discriminative training methods for hidden markov models: theory and ex-
periements with perceptron algorithms,” in Proc. of the ACL-02 conference on Empirical
Methods in Natural Language Processing (EMNLP), 2002.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector machine learn-
ing for interdependent and structured output spaces,” in Proc. of the 21st International
Conference on Machine Learning (ICML), 2004.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data,” in Proc. of 18th International
Conference on Machine Learning (ICML), 2001.

K. Kubo, S. Sakti, G. Neubig, T. Toda, and S. Nakamura, “Structured adaptive regular-
ization of weight learning for a robust grapheme-to-phoneme conversion model,” IEICE
Transactions on Information and Systems, vol. E97-D, no. 6, pp. 1468-1476, 2014.

N. McCulloch, M. Bedworth, and J. Bridle, “Netspeak-a re-implementation of nettalk,”
Computer Speech and Language, vol. 2, no. 3-4, pp. 289-302, 1987.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data
via the em algorihtm,” Journal of the Royal Statistical Society, Series B (Methodological),
vol. 39, no. 1, pp. 1-38, 1997.



Bibliography 126

[83]

[88]

[89]

[90]

[97]

[98]

S. Deligne, F. Yvon, and F. Bimbot, “Variable-length sequence matching for phonetic tran-
scription using joint multigrams,” in Proc. of ICASSP, (Madrid), pp. 2243-2246, Septem-
ber 1995.

G. Bakiri and T. G. Dietterich, Chapter 2: Constructing high-accuracy letter-to-phoneme
rules with machine learning, pp. 27-44. Kluwer Academic, 2001.

T. J. Sejnowski and C. R. Rosenberg, “Nettalk corpus: ftp://svr-
ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/,” 1993.

J. Bullinaria, “Text-to-phoneme alignment and mapping for speech technology: A neural
networks approach,” in Proc. of the International Joint Conference on Neural Networks
(IJCNN), (San Jose, CA), pp. 625-632, 2011.

M. Davel and E. Barnard, “Extracting pronunciation rules for phonemic variants,” in ISCA

Tutorial and Research Workshop on Multilingual Speech and Language Processing, 2006.

M. Davel and E. Barnard, “Pronunciation prediction with default&refine,” Computer

Speech and Language, vol. 22, pp. 374-393, January 2008.

K. Knill and S. Young, “Hidden markov models in speech and language processing,” in

Corpus-Based Methods in Language and Speech Processing, 1997.

S. H. Parfitt and R. A. Sharman, “A bi-directional model of english pronunciation,” in Proc.
of the 2nd European Conference on Speech Communication and Technology (Eurospeech),
vol. 2, (Genova, Italy), 1991.

R. E. Donavan and P. C. Woodland, “A hidden markov-model-based trainable speech
synthesizer,” Computer Speech and Lanauge, vol. 13, no. 3, pp. 223241, 1999.

F. Jelinek, Statistical methods for speech recognition. The MIT Press, 1997.

M. D. Calms and G. Prennou, “Bdlex: a lexicon for spoken and written french,” in Proc.

of the 1st International Conference on Lanauge Resources and Fvaluation, 1998.

L. Galescu and J. Allen, “Bi-directional conversion between graphemes and phonemes
using a joint n-gram model,” in Proc. of the 4th ISCA Speech Synthesis Workshop (SSW),
(Perthshire, Scotland), September 2001.

S. Jiampojamarn and G. Kondrak, “Online discriminative training for grapheme-to-

phoneme conversion,” in Proc. of Interspeech, (Brighton), September 2009.

K. Crammer and Y. Singer, “Ultraconservative online algorithms for multiclass problems,”
Journal of Machine Learning Research, vol. 3, pp. 951-991, 2003.

D. Caseiro, I. Trancoso, and L. Oliveira, “Grapheme-to-phone using finite-state transduc-
ers,” in Proc. of IEEE Workshop on Speech Synthesis, 2002.

R. Sproat, “Pmtools: A pronunciation modeling toolkit,” in Proc. of the 4th ISCA TRWSS,
2001.



Bibliography 127

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

D. Yang, P. Dixon, and S. Furui, “Rapid development of a g2p system based on wfst
framework,” in Proc. of ASJ, pp. 111-112, 2009.

T. Mikolov, M. Karafiat, L. Burget, J. H. Cernocky, and S. Khudanpur, “Recurrent neu-
ral network based language model,” in Proc. of Interspeech, (Makuhari, Chiba, Japan),
pp- 1045-1048, September 2010.

T. Rama, A. K. Singh, and S. Kolachina, “Modeling letter-to-phoneme conversion as a
phrase based statistical machine translation problem with minimum error rate training,”
in Proc. of The NAACL HLT Student Research Workshop and Doctoral Consortium, (Col-
orado), June 2009.

V. Claveau, “Letter-to-phoneme conversion by inference of rewriting rules,” in Proc. of
Interspeech, (UK), September 2009.

P. C. Bagshaw, “Phonemic transcription by analogy in text-to-speech synthesis: Novel
word pronunciation and lexicon compression,” Computer Speech & Language, vol. 12,
pp- 119-142, April 1998.

S. Jiampojamarn, G. Kondrak, and T. Sherif, “Applying many-to-many alignments
and hidden markov models to letter-to-phoneme conversion,” in Proc. of NAACL-HLT,
(Rochester, New York), April 2007.

S. Jiampojamarn and G. Kondrak, “Letter-phoneme alignment: An exploration,” in Proc.
of The 48th Annual Meeting of the Association for Computational Linguistics (ACL),
(Uppsala, Sweden), July 2010.

M. Libossek and F. Schiel, “Syllable-based text-to-phoneme conversion for german,” in
Proc. of ICSLP, pp. 283-286, 2000.

P. Yu and F. Seide, “A hybrid-word/phoneme-based approach for improved vocabulary-

independent search in spontaneous speech,” in Proc. of Interspeech, (Korea), 2004.

Y. Furuya, S. Natori, H. Nishizaki, and Y. Sekiguchi, “Introduction of false detection con-
trol parameters in spoken term detection,” in Proc. of Signal & Information Processing
Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, (Holly-
wood, CA), December 2012.

S. Nakagawa, K. Iwami, Y. Fujii, and K. Yamamoto, “A robust/fast spoken term detection
method based on a syllable n-gram index with a distance metric,” Speech Communication,
vol. 55, pp. 470-485, March 2013.

N. Kanda, K. Itoyama, and H. G. Okuno, “Multiple index combination for japanese spoken
term detection with optimum index selection based on oov-region classifier,” in Proc. of
ICASSP, (Vancouver, BC), May 2013.

N. Bertoldi, R. Zens, and M. Federico, “Speech translation by confusion network decoding,”
in Proc. of ICASSP, (Honolulu, HI), April 2007.



Bibliography 128

[112]

[113]

[114]

[115]

[116]

[117]

[118§]

[119]

[120]

S. Xie and Y. Liu, “Using confusion networks for speech summarization,” in Proc. of the
Human Language Technologies: Annual Conference of the North American Chapter of the
Association for Computational Linguistics, (USA), 2010.

J. G. Ficus, “A post-processing system to yield reduced word error rates: Recognizer
output voting error reduction (rover),” in Proc. of IEEE Workshop on Automatic Speech
Recognition and Understanding, (Canada), pp. 347-354, 1997.

T. Schlippe, W. Quaschningk, and T. Schultz, “Combining grapheme-to-phoneme con-
verter outputs for enhanced pronunciation generation in low-resource scenarios,” in The
4th Workshop on Spoken Language Technologies for Under-resourced Languages (SLTU),
(St. Petersburg, Russia), May 2014.

S. Kheang, K. Katsurada, Y. Iribe, and T. Nitta, “Model prioritization voting schemes for
phoneme transition network-based grapheme-to-phoneme conversion,” in Proc. of the In-
ternational Conference on Computer and Information Science and Technology (CIST’15),
(Ottawa, Canada), May 2015.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-
works,” in Proc. of Neural Information Processing Systems (NIPS), (Canada), pp. 3104
3112, July 2014.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist temporal classi-
fication: Labelling unsegmented sequence data with recurrent neural networks,” in Proc.
of ICML, 2006.

K. Kubo, H. Kawanami, H. Saruwatari, and K. Shikano, “Unconstrained many-to-many
alignment for automatic pronunciation annotation,” in Proc. of APSIPA ASC, (Xi’an,
China), October 2011.

Y. Iribe, T. Mori, K. Kasturada, and T. Nitta, “Pronunciation instruction using cg ani-
mation based on articulatory feature,” in Proc. of The 18th International Conference on
Computers in Education (ICCE2010), (Putrajaya, Malaysia), pp. 501-508, 2010.

K. Rao, F. Peng, H. Sak, and F. Beaufays, “Grapheme-to-phoneme conversion using long
short-term memory recurrent neural networks,” in Proc. of International Conference on

Acoustics, Speech and Signal Processing (ICCASP), 2015.



Acknowledgements

The research presented in this thesis has been carried out at the Kasturada labora-
tory of the Department of Computer Science and Engineering, Toyohashi University of

Technology (TUT), in Toyohashi city, Aichi prefecture, Japan.

First and foremost, my sincerest gratitude goes to my supervisor, Assoc. Prof. Kouichi
KATSURADA, for his endless patience, for continuous guidance and support, for giving
me a privilege to work in a good atmosphere at the laboratory, and also for his unfailing

interest to my research, accompanied by excellent ideas and comments.

Distinguished thanks are due to my former supervisor Prof. Tsuneo NITTA and Asst.
Prof. Yurie IRIBE for their great helps, advices, encouragements and fruitful technical
discussions during my master and doctoral degrees in Japan. I also want to thank Prof.
Shigeru MASUYAMA and Prof. Junsei HORIKAWA for reviewing my thesis.

Specially, I really appreciate the Japan International Cooperation Agency (JICA) and
AUN/SEED-Net program which have provided a good scholarship to help strengthening
the human resources in the developing country like Cambodia. Without them, I would
not have a second chance to come to Japan for my doctoral degree. I am also thankful
to Amano Scholarship for providing the financial support during my last six months in
Japan. Personally, I am so grateful to give special thanks to Ms. Yumiko YOSHII, Ms.
Mikayo KURONO, Mr. Hiroshi MOCHIZUKI, Ms. Chihiro TAKENAGA, Mr. Hideki
ITO, Ms. Junko SAIGO, Ms. Kiyo KAWABUCHI, and other current and former JICA

staffs for their advices and kind supports since the beginning of my arrival in Japan.

The people from the Department of Computer Science and Engineering have greatly
contributed to the great atmosphere and working conditions of which I took benefit.
I would like to thank them all. Moreover, I am profoundly thankful to all my friends
in Toyohashi University of Technology for providing me the friendly supports, for the
unforgettable friendships and very nice time spent together. I would also like to thank
all my Cambodian friends in both Cambodia and Japan for their warm friendships and

kind supports during my stay in Japan. I will never ever forget all of them, of course.

Last but not least, I would like to express my deep gratitude from the bottom of my
heart to my beloved parents, my beloved grandparents who have been living in a peaceful
heaven, and everybody in my whole family, for every moment of my life, for encouraging
me in my studies and giving me the freedom, advices, happiness and supports to become
the person I am today. Without all of you, I could never achieved this goal of my life.
I LOVE YOU ALL VERY MUCH INDEED!

Toyohashi, JAPAN, 20 January 2016
Seng KHEANG

129



