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In order to build social robots that can coexist with human beings, it is necessary to understand the 

mechanisms of how communication protocols are developed in human-robot interactions. Our 

main goal was to explore how a communication protocol can be established incrementally between 

a human and our minimally designed robots. The first robot that we consider in our work is called 

Sociable Dining Table (SDT). SDT integrates a dish robot put on the table and behaves according 

to the knocks that a human emits. To achieve our goal, we conducted two experiments: a 

human-human experiment (Wizard-of-Oz) and a human-robot interaction (HRI) experiment. The 

aim of the first experiment was to explore how people build a protocol of communication. Based 

on the first experiment, we suggested an actor-critic architecture that simulated in an open-ended 

way the adaptive behavior which we determine in the first experiment. After that, we demonstrated 

in the HRI experiment how our actor-critic architecture enabled the adaptation to individual 

preferences in order to obtain a personalized protocol of communication. 

However, one of these challenges that we encountered after that with our robot is in the difference 

between the user's retained mental model consisting of the instructions triggering the robot's 

different behaviors and the robot's previously taught instructions by the user. More specifically, we 

remark a divergence between what was remembered by the non-expert user or believed taught to 

the robot in a previous HRI instance and what was actually taught to it. This divergence could lead 

to a waste of time when the robot is reused before it could be used effectively to achieve a task. 

Some users may not have the patience to reteach the robot a new version of instructions if they 

realize that they have forgotten previous version. Some non-expert users may not even be aware 

that they changed the instructions previously taught to the robot and this triggers different 

behaviors in the robot.  

During the HRI, we remarked that the formed CP was not only personalized to the pair of the 

non-expert user and robot, but also to the HRI instance. This means that the CP changed each time 



 

the human started a new interaction session with the SDT. The main reason behind the change was 

the non-expert users' forgetfulness of the previously established communication protocol (PECP) 

and their issuing of a different set of new instructions to the SDT rather than maintaining the old 

instructions and continuing to teach the robot new skills. 

Thus, one of the challenges that we investigate is how we can modify the way the minimally 

designed robot communicates back to the human so that the CP could be maintained and time 

wasted constructing a new CP could be avoided. We describe feedback strategies combining 

inarticulate utterances (IUs) with the minimally designed robot's visible behaviors, to trigger an 

increased remembrance of the PECP.  

The results provide confirmatory evidence that using IUs combined with the minimally designed 

robot's visible behaviors assist in driving non-expert users to maintain the PECP and avoid time 

wastage, negligence of the robot or task achievement failure. 

We show also that the key point that made participants cooperate with the robot when it uses the 

IUs is the social bonding that users may feel towards minimally designed robots. To investigate so, 

we considered another robot called ROBOMO. ROBOMO is a mobile robot that uses IUs and 

gestures to form a communication protocol along with the human during the HRI. 

Finally, we show also that for some users which we call them though-minded users (users that do 

not feel the social bonding towards the robot), it is necessary to consider the combination of 

different persuasive strategies so that we can convince them to continue using the robot even if 

some breakdowns are encountered during the PECP reuse.   
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Chapter 1

Introduction

In this chapter, we introduce a number of important issues regarding the behavior based

robotics concept, the ecological psychology, the ecological robotics, the challenge of scaf-

folding HRI when the teacher is a non-expert user as well as the different breakdowns that

the interaction may face in such case.

Mitigating these breakdowns may help to maintain a long-term communication protocol

and affords the interaction with the chance to become aesthetically more convenient for the

human.

However, mitigating breakdowns can be insufficient to guarantee a long-term interaction

with humans. Another dimension which we assume could be convincing enough for the

human to keep on using the robot, is the attachment or broadly speaking the social bonding.

Four factors may help measuring the social bonding which we intend to present in more

details in the coming paragraphs: the attachment, the commitment, the belief and the in-

volvement.

Also, we straddle the line under a very important factor that it is the robot’s behavior style:

for example a funny robot or a proactive robot, etc.. Such styles include a range of behaviors

that should be displayed for the human by the robot. For example, combining eye-gaze with

gestures and along with some specific jokes in order to assume that we have for example a

funny robot. So instead of adding incrementally the behaviors so that we can explore the ef-

fect of so on the HRI, we could create combinations of behaviors in order to verify whether

a specific behavior style may increase social bonding.

Social bonding could evolve for some people while it is not the case for example for cold-

hearted people, that it is why we assume that the robot should afford more attention for this

kind of people. When an error occurs while the non-expert user is scaffolding the robot’s

behaviors or reusing the previously established communication protocol, the robot should

exhibit a specific behavior style that may guarantee the human to be persuaded when an
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error occurs. Errors could be described in this context as dissonant informations that are

contrary to the human’s preconceptions. That it is why, for people who persue always con-

sonnant ideas, such a situation (when an error occurs during the HRI) could be threatening

and leads quickly to the learned helplessness if the robot was not persuasive enough. That it

is why, another important issue which we suppose that we will discuss in here is the concept

of persuasive robotics.

1.1 Behavior-Based Robotics

Behavior-based robotics or behavioral robotics is an approach in robotics that focuses on

robots that are able to exhibit complex-appearing behaviors despite little internal variable

state to model its immediate environment, mostly gradually correcting its actions via sensor-

motor links. The concept of behavior based robotics was introduced in the mid 1980s, and

was championed by Rodney Brooks [1] and others. It consists on building ready-to use con-

trollers such as a controller of obstacle avoidance. A resulting interaction between the robot

and it surroundings is just the consequence of switching among controllers in response to

environmental changes. It seems to be that the robot’s behaviors are environment-centered

to make the robot looks like behaving optimally and not in any case taking care of any spe-

cial social norms such as proximity or turn taking protocols, etc.. Due to the limitations

concerning the amount of internal representation that the robot following behavior-based

paradigm should afford to include the social norms, a robot that adopts the behavior-based

robotics could fail to be integrated in the society with humans.

1.2 Ecological Psychology

As the behavior-based robotics consisting on making the robot looks smart even though it

does not include taking account of the social norms could fail to make the interaction natural

and intuitive enough for the human while interacting with a social robot, we should find out

another paradigm that consists on taking into account the social attitudes and the behavior

norms. We assume that ecological psychology could help on studying the environment and

the human-human interaction before that we implement any controller so that we could

extract the special norms needed to be added on the robot’s controller as well.

The term ecological originated in the field of biology and seems to be very adjacent to

social areas such as social psychology and the studies of perception. For example, Kenneth

R. Hammond highlighted a special issue named "ecological validity" [2] while Gibson [3]

discussed the "theory of ecological perception". Eco-social psychology, then, can be defined
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as an approach to this science that investigates how mind and behavior are shaped in part by

their natural and social habitats and how natural and social habitats are in turn shaped partly

by mind and behavior. The main goal of this approach is to delineate how individuals and

social ecologies define each other [4]. Thus, there are no controllers that could be designed

without taking into account people’s ecologies and more specifically social norms and daily

natural laws of interaction even if they are not optimal.

1.3 Ecological Robotics

The study of sensory guided behaviors in living animals has become of general significance

not only for scientists working in neuroscience and computational neuroscience but also for

scientists working in robotics and distributed artificial intelligence, who were using unfor-

tunately functional principles generated from the study of living animals as models to build

computer based automata that display complex sensorimotor behaviors. Our research effort,

which follows these lines, is tied together by concepts from eco-social psychology as well,

to help generating an intuitive natural human-robot interaction that it is social.

Many researchers were interested to this concept of ecological robotics such as Grémillet

et al [5], Stirling et al [6], Pfeiffer et al [7], etc.. Most ecological robots to be used in are

mobile, and can be classified according to: the equipment they carry, their size, where they

operate, their mobility and autonomy. The factor of minimal design is very important in this

context to avoid the emergence of complex patterns that the robot could use and may lead to

abnormalities such as a combination of words generated by trial and error and which could

lead to an inconvenient situation if the robot’s resultant speech is mean-less.

1.4 Minimal Design

Minimal Design Policy is first proposed by Matsumoto et al., who conclude that the robot’s

appearance should be minimized in its use of anthropomorphic features so that the humans

do not overestimate or underestimate the robot’s skills [8]. By minimal design, we mean

eliminating the non-essential components and keep only the most fundamental functions.

We expect that in the future minimally designed robots will be affordable. People will use

such minimally-designed robots for many tasks such as cleaning, and here we may mention

Roomba the robot [9] or to engage more with autistic children through therapeutic sessions

of interaction while cooperating with Keepon the robot [10], etc.

Minimal design policy is applied to develop many other robots such as Muu [11], ROBOMO

[12], CULOT [13], etc. The simple nature of minimally designed robots allows humans to
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interact easily with such robots on a daily basis. On the other hand, we must pay attention to

sociability and adaptation factors. In fact, interacting with an affordable minimally designed

robot may represent the first experience of a human interacting with a robot. This, leads

us to assume that people will possibly have high expectations about the robot’s adaptive

capabilities.

1.5 Non-Expert Users Scaffolding Ecological Social Robots

Scaffolding is the process by which a human organizes a new skill into manageable steps

and provides support such that a child could achieve something that they could not achieve

independently [7] [14].

An important characteristic of a good learner is the ability to learn both on one’s own and by

interacting with another. Children are capable of exploring and learning on their own, but

in the presence of a teacher they can take advantage of the social cues and communicative

acts provided to accomplish more. For instance, the teacher often guides the child’s search

process by providing timely feedback, luring the child to perform desired behaviors, and

controlling the environment so the appropriate cues are easy to attend to, thereby allowing

the child to learn more effectively, appropriately, and flexibly.

If we try to apply the scaffolding in the human-robot context then the human must teach the

robot on real time and in a dynamic way. Dynamic scaffolding exists as well in human daily

interaction with others as an example, one can cite the child-caregiver interaction. Dynamic

scaffolding in daily life corresponds to the notion that adults create a learning situation that

is of the right level of complexity for the learner. The adult adjusts dynamically to make

sure the child is working within the zone of proximal development. One way to describe

this is that the teacher creates "micro worlds" for the learner to master parts of the task in

isolation before moving on, providing safety and intermediate attainable goals [15]. For

example, with language parents first treat anything as conversational speech, but eventually

they raise their expectations, scaffolding the child’s conversational abilities [16].

Prior works have pointed out how supervision or more clearly dynamic scaffolding might

benefit a machine learner such as a robot [17] [18] , however, for robots to realize their

transformative potential, they need to be able to efficiently learn how to perform challeng-

ing tasks from humans who, although experts in the tasks their teaching, may have little

expertise in autonomous robotics or computer programming. Therefore, there is a great

need for new methods that facilitate the interaction between human teachers who are not

expert in computer programming and learning minimally designed robots.

The feedback that the human provides during such interaction can take many forms, e.g.,



1.6 Mitigating Scaffolding Breakdowns 5

reward and punishment [19] [20], advice [21], guidance [22], or critiques [17]. Within them

for example, learning from rewards generated by a non-expert trainer observing the robot

in action promises to be a powerful method for non-expert users in autonomous robots to

teach the robot to perform challenging tasks. However, how to make the robot learn most

efficiently from such non-expert trainers is still under-addressed.

Intuitively, when learning from non-expert users, the robot’s performance depends critically

on the efficiency of the interaction between the robot and non-expert trainer. It also depends

on the information within the feedback provided by the robot trainer. Therefore, we con-

sider how the interaction between the non-expert trainer and the robot should be designed to

reduce the trainer’s effort or cost to train the robot to perform a task well. Previous studies

[23] showed that the way that the robot interacts with the non-expert trainer can greatly af-

fect the trainer’s engagement and the robot’s performance and that the interaction between

the robot and the non-expert trainer should ideally be bi-directional.

1.6 Mitigating Scaffolding Breakdowns

Minimally designed robots that operate in the real world could make mistakes once taught

by non-expert trainers because such trainers could have high or low expectations, they may

afford the robot with wrong instructions since they are confused about the needed input.

In fact minimally designed robots has a low number of sensors and actuators to make it

affordable. However, this may lead to mis-processing of the information by non-expert

users because they are used to the world of multimedia and the easy processed information.

Thus, those who design and build systems will need to understand how to provide best ways

for robots to mitigate those mistakes. We need to consider how to mitigate breakdowns

in services provided by minimally designed robots. Such robots that provide a personal

service through HRI create interdependence between the robot and the user. Prior research

suggests that the nature of this interdependence and the robot’s design can affect people’s

responses to system errors [24]. Non-expert trainers may feel a loss of control when they do

not understand why the robot fails [25]. In one study, participants blamed their robot partner

more when the robot was human-like rather than machine-like [24]. In another study, the

more autonomous a robot was, the more people blamed it for failure, and explaining the

reason for the failure did not help much [26]. People may have high expectations of robotic

services that complicate their experience where there is a service breakdown and while

interacting with a minimally designed robot. That it is why it is important to mitigate service

breakdowns when non-expert trainers are interacting with non-minimally designed robots

so that the interaction may look aesthetically more convenient and the taught knowledge
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or what we call in our works communication protocol could be maintained on a long term

basis.

1.7 Emotions Promote Belongingness

Emotions help people get along better. Mostly, people’s emotions promote their ties to oth-

ers. Forming social bonds is linked to positive emotions [25] [27]. The fact that emotions

promote belongingness is yet another important instance of our general theme that what hap-

pens inside people serves what happens between people and robots. Emotions help promote

good interpersonal relations. The link between emotion and behavior is far from clear, but

social bonding that emerges thanks to this linking influences thinking and learning. In fact,

social bonding makes up a feedback system that helps people process information about the

world and their own actions in it in a better way so that the communication could be main-

tained [28]. A long-standing communication protocol held that social bonding undermine

rational and make people be more flexible with other agents. That it is why, social bond-

ing may help developing an acute sense of belonging to the robot and this is worthy to be

investigated so that we can verify whether positive emotions may evolve while interacting

with minimally designed robots so that social bonding may emerge and may guarantee that

humans will continue using the robot on a long term basis.

1.8 Prosocial Behavior: Reciprocating Others’ Noble Acts

Social bonding may emerge once we link positive emotions with convenient behaviors. So,

if we assume that a robot could display the right behaviors that induce positive emotions,

there is then a high possibility that social bonding could evolve. To create positive emotions

a robot could offer help for the human. Offering help (prosocial behavior) to the human by

the robot may activate what we call reciprocity. Reciprocity is defined as the obligation to

return in kind what another has done for us. Folk wisdom reorganizes reciprocity with such

sayings as "You scratch my back and I will scratch yours". Reciprocity norms are found in

all cultures in the world [29].

If I do something for you and you don’t do anything back for me, I m likely to be upset or

offended and next time around I may not do something for you. If you do something for me

and I don’t reciprocate I am likely to feel guilty about it. People are designed by nature to

belong to a system based on fairness and social exchange. As one sign of the importance

of fairness to human nature, the feeling that one has no value to others-that you are a taker

rather than a giver- is a major cause of depression [30]. To be sure, there are plenty of
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obnoxious people who take more than they give, but most of them don’t see themselves that

way. People who do see themselves as taking more than they give may become depressed.

To avoid depression, people may seek to contribute their fair share. Consequently, if we

suppose that we are seeking behaviors creating positive emotions, one of the prominent

behaviors that may lead to the emergence of such positive emotions are prosocial behaviors

that could be afforded by robots so that humans feel positive emotions. Further, they can

even reciprocate so with a happy mood. Consequently, not only social bonding is boosted

here but also a positive long-term interaction.

1.9 Persuasive Robotics

Psychological studies have shown that people who lack emotions (often because of brain

injuries or other problems) are not really better off in terms of thinking and learning. And

social bonding that may emerge for common people to afford the chance to interact with a

robot a longer time could be not be possible for people who lack emotions or in a lighter

version for people who are cold-hearted. If there are no emotions felt than there will be

no social bonding with the robot and thus the human-robot interaction (HRI) is threatened

because such people have no counter factual thinking [31].

If we go to the point when we highlighted that faulty robot’s behaviors could occur because

of the scaffolding mediocre quality of non-expert trainers and we add to that the fact that

social bonding cannot evolve for such cold-hearted (utilitarian) trainers, we could easily see

that we need to add a robot’s mechanism that it is based on logical arguments to convince

such utilitarian people that they should continue interacting with the robot.

As for common people, anxiety when their preconceptions are defeated can be considered

as the "shadow of intelligence" because it helps them to plan ahead and avoids taking un-

necessary risks [32]. Planned behavior is related to explicit attitudes. Explicit attitudes are

controlled by conscious evaluative responses. Now, when interacting with a robot and an er-

ror occurs, we cannot determine whether the human (whatever is his character: cold hearted

or relational) will use the explicit or the implicit attitude. The implicit attitude can activate

implicitly a spontaneous behavior. Such implicit attitude are automatic and non-conscious

evaluative responses.

According to that, and since we are not sure whether implicit or explicit attitude will take

control of the situation, social bonding could be helping but also if some implicit negative

attitudes are encoded on the human’s cognitive miser, it could be difficult to convince the

non-expert trainer (whether he is relational or cold-hearted (called also utilitarian)) to con-

tinue using the robot. The only solution left is to enable the robot to convince the human
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on the proper time to continue the interaction which means that we need to make the robot

more persuasive.

1.10 Thesis question and contributions

With the previous motivations in mind, this thesis focuses on many questions that can be

summerized as follows: The general problem of learning from human reward is previously

undefined. This thesis gives an operational methodology of what we term the ecological

social information processing for proto-communication patterns extracted on-line while the

non-expert trainer is dynamically scaffolding the robot and how can we mitigate robot’s

service breakdowns that occur because of the scaffolding mediocre quality to guarantee a

maintain of the communication protocol on a long term basis. Maintaining the same commu-

nication protocol does not guarantee that people will continue using the robot, that it is why

a primer interest that we highlight is the key role that attachment or broadly speaking social

bonding could play to motivate people continue using the robot. However, if the behavior

that the human activates once there is an error is related to implicit attitudes, the behavior

cannot be planned and the reactive evaluative answer once an error occurred during the HRI

cannot be predicted and even can be difficult to be changed. That it is why, persuasion is

another specific issue that we need to address too in our thesis.

In addressing this question, this thesis yields these core contributions:

1.10.1 Communication Protocol Establishment

Mutual adaptation is the key concept for this first study while we explain how a Woz ex-

periment may help extracting the key patterns that help building communication protocol

incrementally and how it is possible for humans to preserve some chunks of the communi-

cation protocol when they reuse the robot on a post-interaction instances.

1.10.2 Increase of Communication Protocol Recall

Here we mention about the general problem of proposing an implicit feedback that may

increase the human’s awareness when he is about to change the pre-established communica-

tion protocol during post-interaction instances. This thesis gives an operational methodol-

ogy of what we term the implicit and visible feedback combination to enhance the human’s

recall of the communication protocol without causing any face-threatening act. As a conse-

quence, gracefully mitigating the HRI breakdowns leads to a maintain of the communication

protocol on a long term basis.
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1.10.3 Increase of the Social Bonding

This thesis introduces ROBOMO framework, which directly addresses the thesis question of

how can we integrate in a minimally designed robot robot’s visible behaviors with the inar-

ticulate utterances so that we increase the social bonding which is a motivator to maintain a

long term interaction with a social robot.

1.10.4 Problem definition of A Standardized Method to Measure So-

cial Bonding

Included in the thesis are directives for how to measure social bonding , accounting for four

factors that Hirschi’s define as for the social bonding measurement in general. We expose

a case-study of the usage of such standardized tool measuring social bonding to make the

right decisions concerning some of the issues that are related to the social robot’s design.

1.10.5 Problem definition of the Cognitive Dissonance EncounteredWhen

A Breakdown Occurs While Interacting with A Social Robot

In this thesis, we empirically examines numerous plausible techniques for persuasion to

guarantee a long term interaction with social robots even when some breakdowns are faced

while interacting with robots and even when we consider that implicit attitudes or utilitarian

people are concerned with the HRI.

In our work, we try to test out some social and factual based persuasive strategies that

may help overcoming the cognitive dissonance and elaborate a positive counter attitudinal

behavior which is in this context consists on keeping on interacting with the robot.





Chapter 2

SDT: Meaning Acquisition Exploration

in Knock-Based Proto-Communication

2.1 Introduction

As robots move from the research lab to the real world, it is interesting that users, including

those without programming skills, can teach robots customized behaviors [33][34]. If so-

phisticated methods were developed in order to allow users to transfer their knowledge, we

may be able to guarantee long-term communication and mutual understanding. Developing

robots with mutual understanding skills and exploring the meaning acquisition process in

the human-human interaction is a cornerstone to build robots which can work alongside hu-

mans. By using human adaptation capability adequately, robots are capable of adapting to

humans and will be easily adaptable as well. Such a process can commonly be observed in

a pair who can communicate smoothly, such as a child and a caregiver.

Understanding how a caregiver behaves with a child is required to achieve key ideas

about the behaviors, that can be used to design intuitive robots [35][36][37][35]. Many is-

sues have been of interest to the HRI community, such as how children learn to talk [38],

grasp an object [35], and navigate [39], etc. Understanding how such issues occur helps

roboticists building intuitive robots. During a child-caregiver communication scenario, the

child and the caregiver try to adapt to each other using a limited number of communica-

tion channels which they initially do not master in the same way. Incrementally, they be-

come familiar to each other’s patterns of communication. The meaning decoding of each

other’s behavior is no more difficult for both parties. In fact, each party implicitly infers

the meanings of the other party’s most commonly used patterns and links the most often

used patterns to the context of the interaction. Such linking leads to an implicit formation of
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Fig. 2.1 A participant interacts with the Sociable Dining Table

(patterns-meanings) cartography, which in our study is called a "communication protocol".

A non-expert user and a minimally designed robot also try to customize a communication

protocol which depends on the patterns emerging from limited communication channels that

are not mastered in the same way during the initial communication stages.

In this vein, the purpose of this study is to explore how non-expert users can cooper-

ate with a minimally designed robot in order to acquire a communication protocol. The

challenge is to investigate how people aggregate communication patterns. We want also to

investigate how to adequately take advantage from the adaptation ability of humans in order

to enable our minimally designed robot SDT to adapt to new situations during a novel in-

teraction scenario that integrates minimal communication channels. Understanding how to

take advantage from the human’s adaptation strategy helps us to tailor a control model for

minimally designed robots that have a minimal number of communication channels. The

final designed control model has to guarantee the establishment of flexible communication

protocols just as in the child-caregiver interaction context.

Therefore, we draw a scenario inspired from the child-caregiver interaction and opt for

knocking as the only one communication channel used by humans. Knocking is a novel

communication channel that had not been used in a similar task. This guarantees that the

user and the robot have the same amount of knowledge about the communication scenario.

Thus, to have a successful interaction both parties need to adapt to each other. To explore

how the adaptation occurs, we conduct our first experiment. It is a human-human (H-H)

experiment (Figure 2.1). For each instance of interaction during the H-H experiment, we

engage two participants. The first participant is the one that knocks on the table while watch-

ing the robot moving on the table (room (A)). The second participant is the one remotely

controlling the robot according to the knocking sounds. Thereby, the robot is controlled via
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an interface. The second participant is located in another room (room (B)).

Both parties have to cooperate in order to make the robot visit different checkpoints marked

on the table. We informed each new pair (knocker-controller) that the robot can use 4 behav-

iors (going forward, going back, going left, going right). Based on this experiment, we want

to investigate whether the task can be achieved using our only communication channel. In

the case of a successful interaction, we want to explore what are the stages that the commu-

nication went through and what are the best adopted practices that led to the emergence of a

communication protocol? After that, we want to implement in the robot the components and

the functionalities that may guarantee to make our robot adaptive. Finally, we conduct an-

other experiment (HRI experiment) to verify whether our robot was adaptive like in the H-H

experiment. Also, we compare the H-H and the HRI experiments in terms of performance,

emergent communication protocols, and the way the task is solved in each experiment.

2.2 Related Work

Adaptation is a term referring to the ability to adjust to new information and experiences,

track the new facets of the environment and adopt the most convenient strategies based on

the sequentially gathered information. Many studies point out the robot and human’s adap-

tation to each other as being a very attractive and promising solution for the HRI [40][41].

Robot and human’s adaptation to each other consists of the fact that if the human changes

his behavior, the robot must adapt to this new behavior. Humans also have to change their

behavior patterns to adapt to the robot’s new proposed behaviors during an instance of an

HRI [40]. Yamada et al.[42] investigate the capability of the human and the agent to detect

each others’ state of mind based on few social cues such as facial expressions [43]. The

concept of adaptation is explored in many other HRI studies [44][45][43].

Some studies use many modalities integrated into the robot [46][47][48] in order to de-

sign an adaptive artifact. Other studies [49][50] examine how a speaking robot can infer

the adequate speech by combining words to particular contexts through observing differ-

ent situations. Kanda et al. use the robot Robovie in HRI studies to investigate children’s

interaction in a museum [51] and a school [52]. Thomaz et al [53] investigate the active

learning to refine the robot’s knowledge where multiple types of queries are used by the

robot to demand an explicit spoken answer facilitating the robot’s concept learning process.

Subramanian et al [54] use the explicit answer of Pacman game users concerning the best

interactive options that they imagine are effective for the agent teaching. These interactive

options are learned in an offline mode and introduced later into the robot. These studies

[52][51][54][50] explore the explicit verbal communication to implement adaptive systems
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while the meaning can be inferred in real time implicitly based on the behavioral interaction.

We do not address the general problem of multimodal communication channels and instead

we focus on a minimal communication channels concept which we expect can guarantee the

emergence of simple communication patterns and is suitable for minimally designed robots.

Minimal Design Policy is first proposed by Matsumoto et al., who conclude that the

robot’s appearance should be minimized in its use of anthropomorphic features so that the

humans do not overestimate or underestimate the robot’s skills [8]. By minimal design, we

mean eliminating the non-essential components and keep only the most fundamental func-

tions. We expect that in the future minimally designed robots will be affordable. People

will use such minimally-designed robots for many tasks such as cleaning, and here we may

mention the Roomba robot [9] or to engage more with autistic children through therapeutic

sessions of interaction while cooperating with Keepon the robot [10], etc.

Minimal design policy is applied to developmany other robots such asMuu [11], ROBOMO

[12], CULOT [13], etc. The simple nature of minimally designed robots allows humans to

interact easily with such robots on a daily basis. On the other hand, we must pay attention

to sociability and adaptation factors. In fact, interacting with an affordable minimally de-

signed robot may represent the first experience of a human interacting with a robot. This,

lead us to assume that people will possibly have high expectations about the robot’s adaptive

capabilities.

In addition to humans having a natural tendency to forget quickly, there are not exact

details of how an interaction occurs and what are the instructions used. For this, a human at-

tempts to come up with any similar instructions to solve the problem. A similar phenomenon

occurs in the human-pet interaction when the human forgets the exact instruction taught to

the pet [55]. Interestingly, the human in that case does not recognize the difference and the

pet tries to grasp the meaning incrementally in order to satisfy the human’s request. In this

context, we believe that robots need an extra capability which enables them to grasp the

meaning of the newly introduced instructions and satisfy the human’s new request. Kiesler

[56] concurs with our point of view while he confirming in his studies that a minimally de-

signed robot has to integrate a process which makes it adaptive [57]. Thus, one contribution

of this work is to determine how a minimally designed robot can incorporate an adaptive

process that helps establishing a communication protocol with non-expert users and adapt

to their different communication patterns.

To achieve the above goal, we chose to conduct a WOZ experiment to explore how a

communication protocol can be established between the users and a minimally designed

robot. It is a well-known principle in robot design, that the roboticist should involve hu-

mans early in the design process, rather than in the final evaluation phase [58]. Many HRI
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studies [59][60][61] use the WOZ experiment in order to test early aspects of the robot’s

design. We agree with the fact that WOZ can help in exploring the best features which can

be later incorporated in the robot’s design. Also, we believe that robots are not sufficiently

advanced to interact autonomously with people in a socially appropriate way. Therefore, we

started our study by conducting a WOZ experiment that helped exploring the best practices

humans adopt in order to establish a communication protocol. Based on the first experiment,

we gained some insights in order to incorporate in our robot’s architecture the best adopted

practices that can get along with people’s communication patterns in the context of the SDT

interaction. Finally, we attempted to validate our robot’s architecture through an HRI exper-

iment in order to compare the HRI performance to the WOZ experiment performance.

We start by exposing the architecture of the SDT in section 3. In section 4, we explain

our H-H experiment. In section 5, we explain our proposed architecture. Finally, in section

6 we validate our minimal architecture based on an HRI experiment.

2.3 Architecture of the SDT

Computer

Ce i l ing lamp

←

Image Process ing

Webcam

Rotary Encorder

4 M icrophones

Sound Source
Loca l izat ion

Table

Create
Ac t ionThe Dish Robot

Fig. 2.2 The overall architecture of the SDT: The human’s knock is detected by four micro-

phones while the robot executes the different behaviors using the servomotor.

Our system consists of a webcam to compute the robot’s positions and its angle of orien-

tation. The robot’s coordinates are used only for further analysis purposes (Figure 2.2). The

robot uses four microphones to localize the knock’s source based on the weighted regres-

sion algorithm [62]. It communicates with the host computer through Wi-Fi using a control

unit (a macro computer chip (AVR ATMEGA128)) and employs a servomotor that helps to

exhibit the different behaviors: right, forward, left and back. Finally, five photo reflectors

are utilized to automatically detect the boundaries of the table and avoid falling (Figure 2.3).
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Fig. 2.3 A close-up picture showing the inside of the SDT robot.

2.4 Experiment 1: Human-Human Interaction

We expect that H-H experiment allows the envisioning of future useful features that can be

integrated into the robot’s architecture in order to make our minimally designed robot SDT

adaptive .

2.4.1 Experimental Setup

Each time we conducted an instance of the H-H experiment, we gathered a new pair of par-

ticipants and assigned the first one to the role of a knocker while the other to the role of a

controller. The knocker was the one that has to knock on the table in order to help the robot

visit different points marked on the table. The controller was the one that has to remotely

control the robot based on the knocking.

Before a knocker enters the experimental room (A), the instructor told him the purpose of

the experiment is to help the robot to land on different checkpoints marked on the table.

The knocker did not know that a human controlled the robot when he knocked, while the

controller did not know that another person emitted the knocking. This helped us to simu-

late convenient conditions guaranteeing that any possible emerging communication protocol

would emerge if we were in a real HRI. Also, by exploring how gradually a communication

protocol emerged we may find out the key ideas that we needed to integrate in order to elabo-

rate a convenient adaptive architecture for our robot. The knocker was located in a first room

(A) and can visualize the robot as well as all the checkpoints on the table. In another room

(B), the controller remotely controlled the robot while listening to the knocking without see-

ing the predefined checkpoints. The controller could only visualize an interface showing

the robot moving since he was in another room. We isolated each party in a different room

in order to make sure that no eye contact or facial expressions could be exchanged between

both parties. The instructor told the controller that he needed to listen to the knocking, guess
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Fig. 2.4 In the first trial (left), the controller tries to understand the knocker’s patterns of

knocking in order to move the robot into five decided places on the table (start, 1, 2, 3, and

goal) by means of knocking patterns. In the second trial (right), we change the place of

the former points on the table, and then the knocker and the controller have to exploit the

emerged rules of communication of the first experiment to guide the robot into the newly

defined points.

.

the meaning and then choose the convenient direction based on his own opinion. Finally,

after the experiment ended we interviewed both participants (knocker and controller). Im-

portantly, we asked them to describe their experience with the robot through simple phrases.

In the first trial, the pair (knocker-controller) had to cooperate in order to lead the robot

to different sub-goals (Figure 2.4). In the second trial, we changed the coordinates of the

former points and the pair (knocker-controller) had to cooperate to reach the new check

points. We chose several different configurations. At each time the goal position and the

intermediate check points were changed. This may guarantee that the participants were not

accustomed to the configuration. Also, it helped us confirming the pairs (knocker-controller)

used their adaptation abilities and the emerging communication patterns rather than mem-

orizing the different transitions that helped to achieve the task in the previous trial. There

are two trials, each lasting 20 minutes1 and video-recorded. During each new trial, the new

controller and the new knocker try to cooperate in order to achieve the task. We did not

indicate for the pairs that they must follow a special knocking strategy so that they interact

in a natural way with the robot and we can also see whether they aggregated some redundant

patterns to form a communication protocol with the robot.

2.4.2 Subjects

We hired thirty Japanese students (ages: Mean (M)=20.2, Standard Deviation(SD)=2.0

[years]) from different universities. Sessions 1 and 2 were performed with thirty subjects

1We estimated this period based on a previous pilot study.
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(eighteen males and twelve females). A written informed consent was obtained from all the

subjects.

2.4.3 Results

After the experiment was finished, we attempted to analyze the interaction scenarios in

order to verify whether a communication protocol was established between the knockers’

knocking patterns and the chosen actions. We also attempted to detect the components that

led to the possibly emergent communication protocols.

We analyzed the video data by annotating with a video annotation tool called ELAN.

Two coders, one of the authors and one volunteer, analyzed the behavioral data captured

in the video camera using the same coding rules for the first and the second trials. We

picked ten data sets arbitrarily from our entire data set which were coded based on rules.

We calculated the average of Cohen’s kappa to investigate the reliability. As a result, we

confirmed that there was a reliability with κ = 0.98

Evaluation of the Command-Like and the Continuous-Knocking Patterns based on the

Videos

We remarked that there are 2 types of patterns: continuous - knocking patterns and command-

like patterns. Command-like pattern consisted of combining each behavior with a different

combination of knocks (e.g., 2 knocks for Forward). Continuous-knocking was used when

there was contiguous interruptions in the robot’s behavior2. We counted the number of both

types of patterns based on the coded data for each participant and for the two trials. We

noticed that there was a significant usage of the command-like patterns (90.26% of the pat-

terns were command-like during trial 1 compared with 89.47% of the patterns during trial

2).

To verify whether the usage of command-like was statistically significant, we conducted

a t-test between the number of command-like patterns and the number of continuous-knocking

patterns used by the participants during the trial 1 : (t=6.973, d.f=14, p-value < 0.01) and

trial 2: (t=4.750, d.f=14, p-value< 0.01). For both t-tests, we found that there was a signif-

icant difference between both types of patterns usage during trials 1 and 2, highlighting that

participants were trying to simplify the input in each interaction cycle for the robot.

Participants confirmed through most of their answers that they wanted to simplify the

input for the robot. One of the participants indicated : "...I was confused initially but as

2Continuous-knockingwas related to the presence of contiguous disagreements about the shared rules, and

we defined a disagreement state in the section 4.3.2
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Fig. 2.5 The first (left), second (center) and final (right) time segmentations of an extract of

the interaction from the first experiment where in the first line we have action executed by

the robot: F, R, L and B stands for forward, right, left and back behaviors; in a second line,

the corresponding knocking patterns such as 2 or 3 knocks, etc.; and in a third line the time

progress in seconds.

time goes by I start to compose simple redundant input to get the regular intended output...",

another participant confirmed that: "...The robot is smart, while there are some repetitive

combinations between my knocking and the chosen actions and thus I started to track the

best knocking that led to the convergence to stable combinations. It has to be slow modu-

lated knocking..."

Evaluation of an Interaction’s Scenario

To investigate the different stages of pattern emergence, we tried to explore the flow of the

interactions. A sample flow of pair 15 is depicted in Figure 2.5 where in grey we have the

knocking while the corresponding action is represented by the colorful line.

Figure 2.5 shows that most of the time when the controller received a knocking pattern,

the latter waited a small period of time in order to choose the behavior that he thought the

most appropriate for the received knocking pattern. As an example, we could see that when

the knocker emitted a new knocking pattern, the controller stopped for a while to think

before attributing the behavior according to his own assumptions (all red circles). Conse-

quently, if the knocker was satisfied with the controller’s choice he would not knock, other-

wise the knocker would knock again before 2 seconds (based on the knocker’s reaction time

(KRT) distribution: [mean:1.93 ;sd:0.12] seconds) elapsed in order to implicitly indicate to

the controller that he must change direction again. Some exploration was adopted [55-57s]

when encountering a new pattern. In fact, the controller chose the correct behavior for the

new pattern (1 knock) even if the pattern was encountered for the first time. Interestingly,

if we track the mapping of the knocking patterns and the robot’s behavior, we find that in

some occasions the rule was maintained for several times such as for the pattern (2 knocks)

when it was associated with the left behavior ([15-16s], [45-47s] and [79-81s]), and the (3

knocks) pattern when it was associated with right behavior ([30-32s] and [102-104s]). How-

ever, at other times there was a change in the rule combination such as when (1 knock) was

initially associated with the forward behavior ([55-57s]) and later with the back behavior

([114-116s]).
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When the controller and the knocker shared the same assumption about one of the knock-

ing pattern-robot’s behavior combinations that was maintained over time we call that state

an "agreement state". If the combination knocking pattern-robot’s behavior changed over

time we call that state a "state of disagreement". The participants were then blending in-

crementally in a trial-and-error process the agreement and disagreement states in order to

establish shared rules organizing the communication.

Adaptation’s Evaluation based on the Agreement and Disagreement States Compari-

son
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Fig. 2.6 The percentage of agreement and disagreement states during the experiment 1.

To evaluate the different pair interactions’ convergence toward a stable protocol, we

counted the number of the agreement and the disagreement states based on the coded data

for both trials and all the pairs. We computed the t-test between the agreement and the

disagreement states of the trial 1. The results were significant with (t=2.242, d.f=14, p-

value=0.033<0.05). Figure 2.6 shows the percentage of the agreement states (blue color)

as well as the percentage of the disagreement states (red color) during the trials 1 and 2 3.

By examining the percentage of the agreement and disagreement states of the trial 1, we

deduced that during the trial 1, disagreements (61.91%) were more significantly frequent

than agreements (38.08%) (Figure 2.6).

We computed the t-test between the agreement and the disagreement states of the trial

2. The results were also significant with (t=2.067, d.f=14, p-value = 0.048 < 0.05). By

displaying the percentage of the agreement and disagreement states of the trial 2, we de-

duced that during trial 2, agreement states (64.97%) were more significantly frequent than

3As an example, the percentage of agreement states= number of agreement states/(number of agreement

states+number of disagreement states)
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disagreement states (35.02%) (figure 2.6). Finally, we calculated the t-test between the

trial 1 and 2 disagreement states. The results were statistically significant with (t =2.948,

d.f=14, p-value = 0.006<0.01). By displaying the percentage of the trial 1 disagreement

states (61.91%) and the percentage of the trial 2 disagreement states (35.02%), we deduced

that during the trial 1, disagreement states (61.91%) were significantly more frequent than

disagreement states of the trial 2 (35.02%) (Figure 2.6).

Comparison of the Task Completion Time in Trial 1 and Trial 2
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Fig. 2.7 Task completion time distributions during trials 1 and 2 (experiment 1).

The time to reach the different sub-goals was estimated based on the videos. The distri-

bution of the task completion time datasets of the trial 1 (first boxplot in grey) and 2 (second

boxplot in white) are represented in Figure 2.7. Results showed that there is a decrease on

the task completion time during the trial 2 (Figure 2.7). A t-test showed that there was a

statistically significant difference between the task completion time of the trial 1 and 2 with

(t=2.143, d.f=14, p-value=0.041<0.05). This highlighted that although during the second

trial we changed the configuration by changing the point coordinates (which may imply that

the pairs would have to adapt to each other again in a new context), the pairs succeeded on

achieving the task more quickly during the trial 2.

Cooperative Communication for the Task Achievement

To study the incremental adaptation to each others’ behaviors, we calculated the number

of confusion states and the remedial knocking states. Figure 2.8 helps to understand the

meaning of these two practices. As you may see in the Figure 2.8, the robot executed

initially the forward behavior, and when the controller detected that he received a knocking
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pattern (2 knocks in red), he picked left as a new behavior. Within a few milliseconds, we

can see that the controller changed the behavior to back. We called such situation a state

of confusion since the controller changed the behavior after recently choosing an action

and without being prompt by any knocking. As a response the knocker, composed of a

remedial knocking pattern (2 knocks in orange: the same previous knocking pattern) so

as to help the controller overcome the situation by resuming with the previous executed

behavior. The presence of states of confusion indicated that the controller tried to establish

the rules of communication but may go through some confusing states. Consequently, the

knocker also tried to adapt to the controller’s state of confusion by composing a remedial

knocking pattern.

We calculated the Pearson correlation between the confusion states and the remedial

knocking of the first and second trials. The value of R during the trial 1 is 0.6149 with (P-

Value from Pearson (R)=0.014; d.f=13; The result was significant at p<0.05) and during the

trial 2 with R value (P-Value from Pearson (R)=0.00019. d.f=13; The result was significant

at p<0.01). This meant that there was a tendency for high confusion states values went

with high remedial knocking values (and vice versa). Consequently, if the confusion states

occured more frequently, the knocker would try to cooperate most of the time with the

controller in order to maintain the rules which he thought they were shared between him

and the controller.

0 2

Time (s)

Knocks 

Behaviors 

4 6

Forward Left Back Left

Confusion State
Remedial Knocking

Fig. 2.8 A scenario showing an example of a state of confusion and a remedial knocking

pattern.

Communication Protocol Analysis

The subjective results and the previously discussed objective analysis showed that there was

a cooperation between the knockers and the controllers in order to adapt to each other and

establish communication protocols. To visualize the emergent communication protocols, we

used the correspondence analysis. Correspondence analysis is an exploratory technique that

helps analyzing the two-way frequency cross-tabulation tables containing measures of corre-

spondence between the knocking patterns and controllers’ interpretations of these patterns.

The results provide information which is similar in nature to those produced by Factor Anal-
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Fig. 2.9 Correspondence analysis for both trials for the pair 9 (Left: first trial, Right : second

trial) in the first experiment where Ni represents the knocking patterns ; e.g., : N2 represents

2 knocks.

ysis techniques, and they allow us to explore the structure of our two variables (knocking

patterns and controllers’ interpretations to these patterns) by means of derived dimensions

F1, F2,.., Fn.

To understand how the dimensions are derived, we need to consider the Chi-square statis-

tic for two-way tables like in our example (knocking patterns and the related controllers’

interpretations of these behaviors). Any deviations from the expected values (expected un-

der the hypothesis of complete independence of the knocking patterns and the controllers’

interpretations) would contribute to the overall Chi-square. Thus, another way of looking at

correspondence analysis is to consider it a method for decomposing the overall Chi-square

statistic (or Inertia=Chi-square/Total N) by identifying a small number of dimensions in

which the deviations from the expected values can be represented. This is similar to the

goal of Factor Analysis, where the total variance is decomposed, so as to arrive to a lower-

dimensional representation of the variables that allow us to reconstruct most of the variance

matrix of variables.

For a matter of illustration, we chose to depict the associations between knocking pat-

terns and controllers’ interpretations of pair 9 (Figure 2.9). It appeared that based on the two-

way frequency table associating the pair 9’s knocking patterns to the controllers’ interpre-

tations, we had two derived dimensions. With a single dimension F1 (trial 1: F1=53.163%

and trial 2: F1=55.550 %) as we represented in Figure 2.9 53.163% in trial 1 and 55.550%

in trial 2 of the inertia can be "explained," that is, the relative frequency values can be re-

constructed from a single dimension and reproduced 53.163% of the total shi-square value

(and, thus, of the inertia) for the case of our two-way table. Two dimensions allowed us to

explain 100% of the data with F2 (trial 1: F2=46.837% and trial 2: F2=44.450% (Figure
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2.9).

Based on the (Figure 2.9(right)), we remarked that right behavior is materialized by 1

knock, forward was represented by 2 and 3 knocks, and left by 4 knocks. In the second trial

(Figure 2.9(left)), the protocol was slightly ameliorated where we could see a clear catego-

rization of forward that was represented by only 2 knocks while left was represented by 3

knocks and right was always represented by 1 knock.

Performance Evaluation based on the Convergence Metric Values
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Fig. 2.10 The convergence metric values of the first and second trial (experiment 1).

We wanted to explore whether there was a statistically significant difference between the

convergence level to a stable communication protocol during trials 1 and 2. For this purpose

and based on the correspondence analysis results, we calculated the Euclidean distance

between each of the robot’s behaviors (red triangles as presented in the Figure 2.9) and the

different patterns (blue circles as presented in the Figure 2.9). Thus, for each behavior we

calculated the n possible Euclidean distances (assuming that we have n possible patterns).

After that, we picked for each behavior the most minimal distance. We summed up the 4

most minimal distances and the resultant value afforded information about the most minimal

distance that the pair knocker-controller achieved to form stable rules. We called this value

the convergence metric which evaluated the system’s performance. We repeated the same

procedure for the 15 pairs and for the two trials.

We computed the t-test between the convergence metric values of the trial 1 and 2 which

revealed significant differences: t=2.503, d.f=14, p-value = 0.018<0.05. We displayed the

results of the trial 1 and 2 convergence metric values where in blue we had the convergence

metric values of the first trial and in red the convergence metric values of the second trial

(Figure 2.10). Figure 2.10 showed that 12 out of the 15 pairs (80%) succeeded in reducing
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the convergence metric values during the second trial, indicating that the pairs were closer

to the convergence to stable protocols’ formation.

Table 2.1 The test of independence (Chi-Square) between the knocking patterns and the

robot’s behaviors as well as the Cramer’s V (CV) values of the trial 1 (experiment 1)

Pairs Chi-square CV

Pair1 χ2=55.515, d.f=18, ***p-value<0.01 0.446

Pair2 χ2=21.978, d.f=18, p-value=0.233 –

Pair3 χ2=12.394, d.f=9, p-value=0.192 –

Pair4 χ2=18.6565, d.f=12, p-value=0.097 –

Pair5 χ2=9.828, d.f=12, p-value=0.631 –

Pair6 χ2=26.345, d.f=15, **p-value=0.035 0.331

Pair7 χ2=10.222, d.f=3, **p-value=0.017 0.698

Pair8 χ2=2.475, d.f=6, p-value=0.871 –

Pair9 χ2=12.634, d.f=8, p-value=0.125 –

Pair10 χ2=50.068, d.f=18, ***p-value<0.01 0.590

Pair11 χ2=5.528, d.f=9, p-value=0.786 0.166

Pair12 χ2=19.307, d.f=9, **p-value=0.023 0.529

Pair13 χ2=9.828, d.f=12, p-value=0.631 –

Pair14 χ2=14.215, d.f=2, ***p-value<0.01 0.823

Pair15 χ2=17.071, d.f=18, p-value=0.518 –

Consistent Protocol Formation Evaluation

To statistically measure the relationship between the knocking patterns and the different be-

haviors, we computed the test of independence (Chi-square) between the knocking patterns

and different behaviors as well as the Cramer’s V-Values. Table 2.1 and 2.2 exhibited the

results of the first and second trials for the different participants. Based on the Table 2.1

we deduce that 7 out of 15 pairs (46.66% of the pairs) succeeded in establishing a stable

communication protocol during trial 1, where the chi-square values were significant for 7

pairs, with a Cramer’s V-Values ranging from 0.331 to 0.823, indicating a strong relation-

ship between the knocking patterns and the controller’s interpretations of these patterns. We

noticed that during the trial 2 (Table 2.2), the number of pairs that succeeded in establishing

a communication protocol increased to 11 out of 15 pairs (73.3% of the pairs) with high

Cramer V-Values, indicating that there was also a strong relationship between the knocking

patterns and the controller’s interpretations of these patterns. Consequently, we deduced that

gradually there was a strong relationship between the knocking patterns and the controller’s

interpretations of these patterns.
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Table 2.2 The test of independence (Chi-Square) between the knocking patterns and the

robot’s behaviors as well as the Cramer’s V (CV) values of the trial 2 (experiment 1).

Pairs Chi-square CV

Pair1 χ2=31.640, d.f=12, ***p-value=0.002 0.568

Pair2 χ2=28.119, d.f=8, ***p-value<0.01 0.404

Pair3 χ2=0.877, d.f=2, p-value=0.645 –

Pair4 χ2=10.297, d.f=12, p-value=0.590 –

Pair5 χ2=4.422, d.f=4, p-value=0.352 –

Pair6 χ2=18.033, d.f=8, **p-value=0.021 0.308

Pair7 χ2=4.6, d.f=4, p-value=0.331 –

Pair8 χ2=8, d.f=2, **p-value=0.018 0.9

Pair9 χ2=12.036, d.f=4, **p-value=0.017 0.501

Pair10 χ2=26.813, d.f=12, ***p-value=0.008 0.829

Pair11 χ2=22.610, d.f=6, ***p-value<0.01 0.408

Pair12 χ2=17.714, d.f=4, ***p-value<0.01 0.859

Pair13 χ2=23.517, d.f=6, ***p-value<0.01 0.637

Pair14 χ2=34.476, d.f=15, ***p-value=0.003 0.384

Pair15 χ2=32.799, d.f=9, ***p-value<0.01 0.594

2.4.4 Discussion

We started with a H-H experiment to evaluate the knockers’ and controllers’ adopted be-

haviors that led to the emergence of communication protocols. Understanding both parties’

strategies facilitated for us the tailoring of a control model that could be integrated into the

robot and may lead to a similar flexible communication protocol formation.

Evaluation of the Command-Like and the Continuous-Knocking Patterns based on the

Videos

Based on the coded videos, we remarked that the communication was patterned. It was

crucial for the pairs to scaling the problematic to a small number of entry states (1 knock,

2 knocks, etc.). The use of continuous-knocking was a way to overcome the contiguous

disagreements. By examining the percentages and the t-test results, we remarked that there

were potential trend to use the command-like more frequently during the trials 1 and 2. The

objective of the pairs was to minimize the expected infinite horizon of states to a small

number of states in order to easily track each of the states successful combinations with

the controller’s interpretations of these patterns. Thus, during the communication protocol

establishment, users restricted the number of states to facilitate inferring the communication

rules (even if we do not impose for the human a way of an interaction with the minimally

designed robot).
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Evaluation of Interaction Scenarios

Interrupting the controller’s executed action was associated with the presence of knocks

(negative reward for the controller), while no knocks implied the controller was doing well

(positive reward). Based on this trial-and error process, the pairs were incrementally es-

tablishing communication protocols by mainly going through multiple agreements and dis-

agreements about the shared rules as the Figure 2.5 showed.

Adaptation Evaluation based on a Comparison of Agreement and Disagreement States

Based on the t-test results and Figure 2.6 we concluded that disagreement states decreased

significantly from trial 1 to trial 2. We deduce also that the agreement states were signifi-

cantly inferior than the disagreement states during the trial 1 in addition to the fact that the

same thing occurred during the trial 2. These results suggested that even though the pairs

normally had to adapt again to each other during trial 2 in order to share the communication

rules (since we had a new configuration with different checkpoint coordinates), there was a

better convergence during the trial 2. We deduced implicitly that there were some first trial

rules which facilitated the convergence during trial 1 and that were transferred to trial 2. As

an example, we saw in Figure 2.9 that the rule combining the behavior right with the pattern

1 knock was maintained during the trial 2.

Cooperative Communication for the Task Achievement

Knocker
Controller

(1). Behavior

(3). Critisism of the previ-

ous chosen action

based on the (+/-) reward

(4). Online Decision 

Making 

(2).Implicit (-/+) Reward
Feedback 

received 

Fig. 2.11 Cooperative behavior between the controller and the knocker during the commu-

nication protocol formation.

By examining the data and Pearson correlation test values, we maintained that there was

a significant correlation between the confusion states and the remedial knocking. On the one
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hand, this indicated that the controller was trying to maintain stable rules that he thought

organizing the interaction. On the other hand, this indicated that the knocker cooperated

with the controller in order to altogether shape a stable protocol of communication (Figure

2.11).

During the interaction, the controller tried to establish the communication rules by choos-

ing the behavior that was previously more frequently (greedy policy4) associated with the

received knocking pattern. He also auto-criticized his strategy based on his own assumptions

and this was proved by the presence of some confusion states. He refined his assumptions

according to the new rules that he imagined shared with the knocker. Finally, he chose a

new behavior. His choice might lead to an agreement or a disagreement state. These insights

led us to think about a model which integrated two components during the communication

protocol formation, one related to the action choice and the other to the criticism of the

executed action.

Performance Evaluation

Shared rules formation led to a significant decrease (as the t-tests and Figure 2.7 shows)

of the task completion time during trial 2. We also noticed that there was a decrease in

the convergence metric values during trial 2 (Figure 2.10). We deduced then that the pairs

were growing closer to the stable communication protocol formation. This decrease was

revealed by the elaboration of clear rules. As an example, pair 9 in Figure 2.9 succeeded

on associating for the forward behavior 2 knocks during trial 2 after being confused during

trial 1 between two patterns (2 knocks, 3 knocks). By applying the chi-square and Cramer’s

V (tables 2.1 and 2.2) tests, which evaluated the relationship between the knocking patterns

and the controller’s interpretations of these patterns, we found that the number of pairs

showed a statistically significant relationship between the patterns, and that the behaviors

increased from 7 out of 15 pairs (46.6%) to 11 out of 15 pairs (73.3%), indicating our

scenario helped the users to acquire the meaning of the different emergent patterns and

form communication protocols incrementally based on the previous interactions.

4It consists of choosing the most frequent behavior that was previously associated to the same number of

knocks previously received and led to an agreement state; e.g.,: choosing the left behavior when we have 3

knocks led most probably to an agreement state while choosing back may have led to a disagreement because

it has led less frequently used for an agreement state based on the previous interactions.
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2.5 Modeling the Architecture of the Robot

2.5.1 Insights from the Human-Human Experiment

We seek to enable non-expert users to shape a communication protocol with a minimally

designed robot. The fact that the robot used a novel minimal communication channel caused

some confusion for the human. It required adaptation from him in order to understand how

to provide the most convenient input for the robot while guaranteeing the intended output.

In this vein, we noticed that people aggregated a small number of redundant patterns (such

as 1 knock, 2 knocks, etc.) in order to guarantee a systematized output (e.g.: 1 knock for

the left direction, 3 knocks for the back direction, etc.). For each instance of interaction,

the controller chose an action based on the received knocking while he tried to affect for the

gathered pattern the most frequently successful action that was tested previously. Afterward,

the knocker would judge the controller’s choice. If the chosen action did not converge with

the knocker’s desired direction, the knocker would compose another knocking pattern in 2

seconds (approximated value based on the KRT distribution) indicating that the controller’s

choice was incorrect. Since the controller tried to track the best combinations between the

knocking and the robot’s action, any new knocking that disrupted the execution of the newly

chosen action (action interrupted before 2 seconds elapse) would lead to a disagreement with

the controller’s assumptions about the knocking pattern-action combinations. However, if

no knocking was received the action is correct and consolidated the controller’s assumptions

about the knocking pattern- action combinations. We also found there were times that when

the controller chose the action, he got confused and changed the action without being prompt

by any knocking. This indicated that the controller chose the action but also criticized his

choices. The knocker sometimes detected the controller’s confusion which confirmed again

that there were rules shared between both parties. The knocker then tried to cooperate by

composing the same previous knocking pattern, indicating that the controller (or the robot

here since the knocker did not know that a controller wizarded the robot) had to return to

the other recently executed action.

In parallel to our insights, Reinforcement Learning (RL) is " learning through a trial-and-

error process how to associate states to actions in order to maximize a numerical reward.

The learner has to discover which actions yield the most rewarding state using the greedy

policy and finally reach a meaningful state-action combinations" [63]. Therefore, if we

suppose that:

• Command-like patterns referred to the states in the RL while we had different states

such as 1 knock state, 2 knocks state, etc.
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• The different robot’s behaviors were the actions for the RL (4 actions: right, left, back,

forward).

• The controller’s choice that consisted of choosing the most frequently used action pre-

viously tested corresponded to the greedy action chosen based on the greedy policy.

• The presence of knocking after the robot started the execution of the chosen action

and before 2 seconds elapsed is the negative reward.

• The absence of knocking (for 2 seconds) after the robot started the execution of the

chosen action was the positive reward.

• The fact that the interaction went through agreement and disagreement states indi-

cated that the adaptation corresponded to a sequential trial-and-error process just like

in the RL.

• Both parties established different combinations of (knocking pattern - controller’s

interpretations) corresponded to the (state - action) cartography that emerged during

a RL process.

We may deduce then that RL algorithms fitted to our problematic adequately. In addition,

the decision making should be in a real time5 because we obtained different communica-

tion protocols for the different pairs, indicating that any hand-programming of a possibly

supposed same protocol adopted by all the pairs would fail. We should therefore reduce the

scope of useful RL algorithms to only the online RL algorithms. Finally, and based on the

first experiment’s insights, we found that the controllers at times were auto-criticizing their

strategies. This made us think about the actor-critic as an online RL algorithm that fitted to

our problematic. An actor-critic algorithm integrates a critic and an actor. The critic uses a

temporal difference learning (TD) to criticize the action that has been chosen, and the actor

is updated based on the information provided by the critic [64]. Incrementally, the actor

chooses the greedy action while the critic observes the relevance of the actor’s choice after

receiving the feedback. The relevance of an executed action is materialized in our case, by

the presence (negative reward) or the absence (positive reward) of the knocking and leads

to an agreement or a disagreement state. The proposed actor-critic model should lead to

similar performance (decrease in the disagreement states, the task completion time and the

5Real time: Because the communication patterns emerge in a sequential fashion and we remarked that

communication protocols were personalized to the pairs, any attempt to integrate a batch learning method to

the robot’s architecture could not succeed in establishing the same customized protocols that we had seen in

the first experiment, and that it is why we needed an online machine learning method. An online machine

learning method gathers the data and learns incrementally
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Fig. 2.12 Figure shows the re-adjustment procedure of state parameters; (1) the decided

action value is outside of the standard deviation interval (Figure [a,b,c]); (a) current shape

of the state distribution and decided action value, (b) mean shifting has started, and (c)

the state parameters are updated and a new shape of the distribution is established; (2) Re-

adjustment procedure of state parameters when the decided action value is inside of the

standard deviation interval (Figure [d,e,f]):(d) the current shape of the state distribution and

decided action value, (e) indication the shifting has started, and (f) the state parameters are

updated and a new shape of the distribution is established.

convergence metric values) as in the H-H experiment. It should also guarantee transfer learn-

ing of the shared rules during trial 2 (while some combinations knocking-action of the first

trial’s communication protocol should be used during trial 2) so that stable communication

protocols emerge.

2.5.2 Actor-Critic Algorithm:

Actor Learning:

Each knocking pattern (state) has its own distribution. X(st)≈ N(µX(st),σX(st)
) where X(st)

is defined as the number of knocks, µX(st) and σX(st )
are the mean value and the variance

while Π(st) is the corresponding probabilistic policy associated to X(st). We also assigned

a distribution for the continuous-knocking pattern6 that also helps in learning what behavior

should be chosen once a continuous knocking is received by the robot. Initially, the action

is chosen according to the probabilistic policy Π(st). The state of the interaction changes to

the state st+1 according to the user’s knocking presence (disagreement)/absence (agreement).

If the human interrupts the robot’s behavior execution before 2 seconds 7 by composing a

new knocking pattern, we have a disagreement state about the previous pattern’s meaning

(which was received from about 2 seconds). Consequently, the action that is chosen based

on the probabilistic distribution in an attempt of exploiting the emerged knowledge failed.

The actor updates the probabilistic policy Π(st)nbknocks and chooses the action henceforth

6We suppose that a knocking pattern that involves a number of knocks superior than 4 knocks
7We calculated approximately the value based on a pilot study
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(until we meet an agreement state as a closure for the current pattern meaning’s decoding

process) by a pure exploration based on the equation

A(st) = µX(st)+σX(st )

√

−2log(rnd1)Sin(2Πrnd2) (2.1)

where rnd1 and rnd2 are random equations that are designed to bring the values of the

action between 0 and 3.

Critic Learning:

After each action selection, the critic evaluates the new state to determine whether things

has gone better or worse than expected. The action is evaluated based on the presence or

absence of knocking (positive or negative reward). This evaluation process is called the

temporal difference (TD) error. The critic calculates the TD error (δt) as the reinforcement

signal for the critic and the actor where

δt = rt + γV (st+1)−V (st) (2.2)

with γ is the discount rate and 0≤ γ ≤ 1. According to the TD error, the critic updates the

state value function V (st) based on the equation:

V (st) =V (st)+α ∗δt (2.3)

where 0 ≤ α ≤ 1 is the learning rate. A positive TD error indicates that the tendency to

select at when receiving the i-th current pattern should be strengthened for the future. A

negative TD error indicates that the tendency to use that action with the gathered current

pattern should be weakened, and in our case we weaken the possibility to choose the action

at for the i-th current received pattern. As long as the current pattern meaning’s decoding is

not achieved (exploration phase), (exploration phase), the critic will each time it encounters

a disagreement state updates δt , V (st) and the distribution N(µX(st),σX(st)
):

µX(st) =
µX(st)+A(st)

2
(2.4)

σX(st) =
σX(st)+ |A(st)−µX(st )|

2
(2.5)

The modification during the update process helps to readjust the shared rules according to

the previous interactions and assigns the most frequently correct behavior for the i-th current

pattern received.
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The idea here is to attempt to obtain the correct action inside the interval that represents

the possible actions which should be executed when gathering the i-th pattern. The chosen

behavior can be inside (when the action is chosen based on the probabilistic policy) or

outside of the distribution (when the previously chosen action fails). If the behavior was

outside of the distribution of the pattern, this means that the human has changed the rule

concerning the i-th pattern. We operate in this case the mean shifting and the variance

enlarging to recuperate the value inside the distribution (Figure 2.12(c)). As the decided

action value is already inside the standard deviation interval and the TD was positive (Figure

2.12(d)), then our approach attempts to shift the mean value (Figure 2.12(e)) toward the

action value while minimizing the standard deviation (Figure 2.12(f)). Shifting occurs when

TD is positive by choosing the correct behavior as a part or the center of the distribution. In

fact, if the action was outside the distribution then we assume that we are not sure that it is

the new sustained rule (we only know that it was correct for one time) so we recuperate it

inside. If that same action was combined with the same knocking pattern to which it was

previously associated (i-th pattern), it becomes the mean because the robot is more certain

it is the new rule of the i-th pattern.

2.6 Experiment 2: Human-Robot Interaction

Through this experiment, we tried to validate the robot’s implemented architecture and ver-

ify whether the human and the robot can establish stable communication protocol.

2.6.1 Experimental Protocol

Each time we had a new participant, the instructor told him that he had to lead the robot to

different checkpoints marked on the table before reaching the final goal point using knock-

ing (Figure 2.4). We had two different configurations for the two trials of the experiment 2.

We asked the participants to describe their experience when they finished the task.

In the first trial (Figure 2.4(left)), we expected the knocker to cooperate with the robot

to invent his own protocol of communication by focusing on the most successful patterns

that led mostly to agreement states just like in the first experiment. Meanwhile, we expected

that the robot would focus on the rules’ acquisition. The robot has to keep on guessing

the most possibly correct behavior that must be combined with the right knocking pattern.

It has also to refresh it assumptions in real time so that a stable communication protocol

could be finally established. In the second trial, we assumed that the communication would



34 SDT: Meaning Acquisition Exploration in Knock-Based Proto-Communication

-0.5 0.0  0.5

1.0

0.0

-0.5

-1.0

0.5

Right

Forward Left

Forward

Left

Right
N2

N4

N1

N1

N4

N3

Back

N3

0.5

-0.5

-1.0

0.0

-0.5 0.0  0.5-1.0 -1.5-2.0

-1.0

N2
Back

F2: 41,597% F2: 45,872%

F1: 51,523% F1: 30,670%

Fig. 2.13 Correspondence analysis for both trials for the participant 3 (Left: first trial, Right:

second trial) in the first experiment where Ni represents the knocking patterns, e.g. : N2

represents 2 knocks.

become smoother as in the second trial of the first experiment. In this experiment, we had

10 participants (6 male, 4 female) ranging in age from 20 to 24 years old.

2.6.2 Results

After the experiment was finished, we tried to analyze the interaction scenarios in order to

verify whether a communication protocol was established between the knockers’ knocking

patterns and the chosen actions.

We analyzed the video data by annotating with a video annotation tool called ELAN.

Two coders, one of the authors and one other volunteer analyzed the behavioral data using

the same coding rules for the first and the second trials. We calculated the average of Co-

hen’s kappa from six arbitrarily selected videos in order to investigate the reliability. As a

result, we confirmed that there was a reliability with κ = 0.819.

Evaluation of the Command-Like and the Continuous-Knocking Patterns based on the

Videos

Based on the coded data, we counted the number of continuous-knocking pattern and the

number of command-like pattern for all the participants and for the two trials to see whether

participants had tendencies to use the command-like mode just like in the experiment 1. We

discovered the participants were mainly using the command-like patterns with percentages

(trial 1 : 91.14% of the patterns were command-like) and (trial 2 : 95.46% of the patterns

were command-like). We conducted 2 t-tests to verify whether there was a significant dif-

ference between the 2 patterns usage: trial 1: (t=4.596, d.f=9, p-value<0.01), and trial 2:

(t=7.486, d.f=9, p-value<0.01). As a result, we found a significant effect for usage of the
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command-like patterns during both trials, while a new state in the interaction cycle corre-

sponded most of the time to a command-like pattern just as in the first experiment.

Participants confirmed also the fact that they need to use the simple command-like mode

while one of the participants said: " ...I tried to knock slowly, to focus on the most useful

knocking that will lead the robot to execute the right direction...", another one said:"...It is

clear that I have to pay attention to the knocking and then I tried to affect 1, 2 knocks, etc.

to facilitate remembering of the most convenient knocks...."’

Communication Protocol Analysis

For a matter of illustration, we had chosen to depict the associations between knocking

patterns and robot’s chosen behaviors of the participant 3 based on 2 dimensions for the

trial 1:(F1=51.523% - F2=41.597% ) and trial 2:(F1=45.872% - F2=30.670%)8, just as in

the first experiment (Figure 2.13). Based on the (Figure 2.13(right)), we maintained that

right behavior was materialized by 1 knock, forward and represented by 2 and 4 knocks,

left by 4 knocks and back by 3 knocks. In the second trial (Figure 2.13(left)), the protocol is

slightly ameliorated where we can see a clear categorization of forward that is represented

by only 4 knocks, while left is represented by 2 knocks, right is always represented by 1

knock, and back by 3 knocks.

Adaptation Evaluation based on the Agreement and Disagreement States Comparison
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Fig. 2.14 The agreement and disagreement percentage during trials 1 and 2 (experiment 2).

8Here we had actually 3 dimensions for each of the trials F1, F2 and F3 to reach 100%, but the highest

possible representation in 2 dimensions consisted of choosing the F1 and F2 more so than either F1 and F3 or

F2 and F3



36 SDT: Meaning Acquisition Exploration in Knock-Based Proto-Communication

We counted the number of agreements and disagreements during trials 1 and 2 and for all

the participants. A t-test showed that there were significant differences between the number

of agreements and the number of disagreements usage during the trial 1 with a value: t

= 2.37, d.f = 9, p-value = 0.028<0.05. We displayed the percentage of the first trial’s

agreements and disagreements in the Figure 2.14, where in blue we have the percentage

of the agreements and in red we have the disagreements during the trial 1 and 29. Based

on the Figure 2.14, we noticed also that the number of disagreement states (73.15%) was

higher than the number of agreement states (26.68%) during the first trial. A t-test showed

that there were statistically significant differences between the number of agreements and

disagreements during the trial 1 with a value t=2.37, d.f=9, p-value=0.028<0.05.

Based on Figure 2.14, we also noticed that the number of agreements exceeded the

number of disagreements with a percentage value respectively 62.63% and 37.37% during

the trial 2. A t-test between the agreement and disagreement states during trial 2 showed that

this excess was statistically significant with (t-test:t=2.108, d.f=9, p-value =0.049<0.05).

Finally, by calculating the t-test between the number of agreements of the first trial and

the second trial, we obtained the above value (t=5.359, d.f=9, p-value<0.01). We can

therefore conclude then that even though the second trial involved a configuration with new

checkpoints, there were a higher number of agreements during trial 2. This implies that

a transfer of learning occurred and facilitated the formation of a communication protocol

during the trial 2 just like in the second trial of the first experiment.

Comparison of the Task Completion Time of the Trial 1 and 2
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Fig. 2.15 Task completion time distributions during trial 1 and 2 (experiment 2)

9The percentages were calculated based on the same formula used during the experiment 1



2.6 Experiment 2: Human-Robot Interaction 37

The distribution of the task completion time datasets during the trial 1 (first boxplot in

grey) and 2 (second white boxplot) were represented in Figure 2.15. Figure 2.15 shows that

there was a decrease in the task completion time during trial 2. We applied a two-tailed t-test

to verify whether there were statistically significant differences between the task completion

time of the first and second trial. The results were significant with t-test value:(t=2.959,

d.f=9, p-value= 0.008<0.01).

Performance Evaluation based on the Convergence Metric Values

We wanted to explore whether there was a statistically significant difference between the

system’s performance during trials 1 and 2. For this purpose and based on the correspon-

dence analysis results, we calculated the Euclidean distance between each of the robot’s

behaviors (red triangles as presented in the Figure 2.13) and the different patterns (blue cir-

cles as presented in the Figure 2.13). Thus, for each behavior we calculated the n possible

Euclidean distances (assuming that we have n possible patterns). After that, we picked for

each behavior the most minimal distance. We summed up the 4 most minimal distances

and the resultant value afforded information about the most minimal distance that the pair

knocker-controller achieved to form stable rules. We called this value the convergence met-

ric which evaluated the system’s performance. We repeated the same procedure for the 10

participants and for the two trials.
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Fig. 2.16 The convergence metric values during trials 1 and 2 (experiment 2).

As in the first experiment, we display the results of trials 1 and 2 convergence metric

values, where the convergence metric values of the first trial are shown in blue and the

convergence metric values of the second trial are shown in red (Figure 2.16). Figure 2.16

shows that 70% of the pairs (7 out of 10 pairs) succeeded in reducing the convergence metric
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Table 2.3 The test of independence (chi-square) between the knocking patterns and behav-

iors, as well as the Cramer’s V (CV) values of trial 1(experiment2)

Users Chi-square CV

User1 χ2=51.977, d.f=10, ***p-value<0.001 0.425

User2 χ2=9.747, d.f=10, p-value=0.463 –

User3 χ2=20.531, d.f=8, ***p-value=0.009 0.206

User4 χ2=8.613, d.f=6, p-value=0.197 0.4194

User5 χ2=12.727, d.f=6, **p-value=0.048 0.477

User6 χ2=13.847, d.f=6, **p-value=0.031 0.397

User7 χ2=73.605, d.f=10, ***p-value<0.001 0.511

User8 χ2=11.563, d.f=3, ***p-value=0.009 0.525

User9 χ2=28.119, d.f=8, ***p-value<0.001 0.404

User10 χ2=6.111, d.f=6, p-value=0.411 –

values during the second trial, which indicated the pairs where closer from the convergence

to stable communication protocols formation during the trial 2.

We computed the t-test between the convergence metric values of the trial 1 and 2 to

verify whether there were statistically significant differences. We found then significant

differences with t-test result as follows (t=2.776, d.f=9, p-value=0.012<0.05), indicating

that users attempts to converge to stable protocols were more significant during the trial 2.

Communication Protocol Evaluation based on the Independence Test Results

To statistically measure the dependency between the knocking patterns and the different

robot’s behaviors, we computed the test of independence (Chi-Square) between the knock-

ing patterns and the different behaviors as well as the Cramer’s V values. Table 2.3 and

Table 2.4 exhibited the results of the first and second trials for the 10 participants. Based

on the Table 2.3, 7 out of the 10 participants (70%) succeeded in establishing a commu-

nication protocol with a Cramer’s V-values ranging from 0.206 to 0.525 and thus ranging

from a moderate to very strong relationship. During trial 2 (Table 2.4), the number of pairs

that succeeded in establishing a communication protocol was almost the same despite the

new configuration (the point coordinates of the checkpoints have been changed) which re-

quired adaptation for the human and the robot. Cramer’s V-Values ranged from 0.283 to

0.387, which meant the relationship between the behaviors and the knocking patterns was

moderately strong.
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Table 2.4 The test of independence (chi-square) between the knocking patterns and behav-

iors as well as the Cramer’s V (CV) values of trial 2 (experiment2)

Users Chi-square CV

User1 χ2=14.772, d.f=10, p-value=0.141 –

User2 χ2=31.977, d.f=10, ***p-value<0.001 0.381

User3 χ2=22.419, d.f=6, **p-value=0.001 0.387

User4 χ2=14.625, d.f=6, **p-value=0.023 0.355

User5 χ2=26.883, d.f=8, ***p-value=0.001 0.291

User6 χ2=13.073, d.f=6, **p-value=0.042 0.291

User7 χ2=17.885, d.f=8, **p-value=0.022 0.283

User8 χ2=3.583, d.f=8, p-value=0.893 –

User9 χ2=10.044, d.f=10, p-value=0.437 –

User10 χ2=15.714, d.f=6, **p-value=0.015 0.304

2.6.3 Discussion

Command-Like and Continuous Knocking Usage Evaluation

We remarked that command-like was more frequently used in comparison to the continuous

- knocking mode. We concluded that the command-like mode was chosen spontaneously

so that the problem can be decomposed into static number of states without telling the

participants that they needed to modulate their knocking just like in the first experiment.

Interaction’s Evaluation based on the Agreement and Disagreement

Based on the Figure 2.14, we found that the percentage of disagreement states exceeded the

percentage of agreement states during the trial 1 and that the percentage of the agreement

states exceeded the percentage of the disagreement states during trial 2 as well just as in the

first trial. The t-test between agreement and disagreement states was significant during the

trial 1 and 2. This indicated that, even though the second trial evolved a new configuration

(former checkpoints coordinates changed), the participants were able to achieve significantly

more agreement states during the second trial. This paved the way to conclude that during

the second trial the pairs did not start from scratch again to establish the communication

protocol, although there were some previously shared practices which helped to facilitate

the communication protocol formation (transfer learning) just like in the first experiment.

Performance Evaluation

The rules sharing led to the significant decrease of the task completion time (Figure 2.15)

with a significant t-test between the task completion time of the trial 1 and 2 where p-
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Table 2.5 A comparison between the first and second experiments in terms of states of

aggregation and performance

H-H Exp, T1 HRI Exp T1 H-H Exp, T2 HRI Exp T2

%State: CL-CK 90.26 - 9.73 91.14 - 8.85 89.47 - 10.52 95.46 - 4.53

%Agrmt-% Disagrmt 38.08 - 61.91 26.68 - 73.15 64.97 - 35.02 62.63 - 37.7

% users with stable protocols 40 70 73 70

value=0.008<0.01. We also remarked that the interaction led to better performance during

trial 2 (Figure 2.16). The t-test showed that there were significant differences between the

trial 1 and trial 2 convergence metric values. These results indicated that the participants

were growing closer to the stable communication protocol formation. By applying the chi-

square and Cramer’s V tests, which evaluated the relationship between the patterns and the

behaviors, we found out that the number of pairs showed a statistically significant relation-

ship between the patterns and the behaviors did not decrease. This indicated that gradually

there was a strong relationship between the knocking patterns and the robot’s chosen behav-

iors.

2.7 Summary of the H-H and the HRI Experiments Re-

sults

We may conclude based on the previous results of the HRI experiment that most of the

participants succeeded in establishing personalized communication protocols. In the table

2.5, we attempted to compare the human-human experiment (H-H Exp) and the human-

robot experiment (HRI Exp) results, while CL and CK correspond respectively to command-

like and continuous-knocking patterns. Based on the table 2.5, we can see that the number

of disagreements of the experiment 2 and during the two trials 1 and 2 (trial 1: 73.15% -

trial 2: 37.7%), exceeded the number of disagreements of the experiment 1 (trial 1: 61.91%

- trial 2: 35.02%). We may explain this by the absence of an implemented strategy in the

robot that can decode the continuous - knocking patterns which occurred less during the

HRI experiment and dropped during the trial 2 (trial 1: 8.85%, trial 2: 4.53% ) vs. a higher

value during the H-H experiment which increased during trial 2 (trial 1: 9.73%, trial 2:

10.52%). This increase during the H-H experiment can be explained by the fact that the

controller could detect the hazardous continuous-knocking patterns and decode them, while

the knockers detected in the first trial that the continuous-knocking was handled by the

wizarded robot. If we compare the percentage of participants that reached a convergence

metric value under 0.25 during experiments 1 and 2, we found that only 40% of participants
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finally reached 0.25 as a convergence metric value vs. 90% of participants who finally

reached 0.25 as a convergence metric value during the HRI highlighting. Even though we

did not implement a strategy that handled the continuous-knocking patterns that emerge

during the interaction, we still had better results in terms of convergence to stable protocols

formation. We may explain this by the fact the participants during the HRI might had

detected that command-like was the best strategy to guarantee a systematized output and that

continuous-knocking led to a hazardous output, so they adapted themselves and implicitly

avoided that strategy.

2.8 Conclusion

In this first part, we presented a human-human WOZ experiment, an actor-critic architec-

ture and an HRI experiment. The WOZ experiment aimed at tracking down the interaction

between the knocker and the controller to identify the best practices that may lead to the

mutual sharing of the communication rules and facilitated the tailoring of a flexible con-

trol model which can be integrated in a minimally designed robot. We extrapolated these

emerging patterns and the pairs (knocker - controller) succeed by shaping their adaptive

strategies. In a second step, we implemented the robot’s control model. Finally, we con-

ducted the HRI in order to validate our architecture. Our work afforded a methodology that

helped bootstrapping how an adaptive model can be tailored and integrated in a minimally

designed robot. However, we remarked that for some of the participants the rules previously

established are forgotten in trial 2 and those participants were blaming the robot for their

forgetfulness of the previously established communication protocol. That it is why, in our

next study we will try to find out a method that can help us mitigating the communication

protocol reuse and maintain the communication protocol on a long term basis.





Chapter 3

Gracefully Mitigating Communication

Protocol Reuse Breakdowns

3.1 Introduction

The drive for consistency when interacting with a robot can promote learned helplessness

[65]. In fact, altered predicting error signaling while reusing interaction rules that were pre-

viously established during past HRI instances between the human and the robot or what we

call PECP may contribute to some of the hallmarks of learned helplessness. Specifically,

the human may have high confidence about the interaction rules of the PECP that he re-

members being established previously between him and the robot while he could have got

confused. Because he cannot predict errors and cannot accurately retrieve the rules of the

interaction’s protocol previously established, possibilities of inconsistency during the HRI

increase and the human may feel lost during post HRI instances (when the PECP is sup-

posed to be reused) [66].

Such a scenario can even lead to worse consequences. According to the attribution theory,

in order to maintain a positive self-image while performing a task, people tend to attribute

failure outcomes to external factors, such as the robot’s imperfection [67] [68]. They may

feel better about their abilities by shifting the blame for unsuccessful attempts while at-

tempting to recall the PECP from themselves to the robot [69]. One can think that the robot

might tell the human through direct speech that he (the human) is the wrong party because

he has forgotten the PECP. However, considerable research from HRI and politeness theory

shows that people cannot readily accept that technology defeats them by showing rejection

for the human’s orders [70]. Showing rejection for the human’s orders can be considered as

a harm especially for self-esteem seekers [71] while a robot may not injure a human being
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or, through inaction, allow a human being to come to harm according to Isaac Asimov’s

famous three laws of robotics [72].

Furthermore, research from literature in HRI focuses on PECP recall boosting for only multi-

modal expensive robots and no considerable research to the little of our knowledge was

conducted in order to investigate the PECP recall challenge when a non-expert user has to

remember the PECP previously established between him and a minimally designed robot1.

In our current research, we are more interested in minimally designed robots that are af-

fordable (cost) for non-expert people. Adding another dimension that it is minimal design

paradigm is challenging because rejecting directly the non-expert user’s requests may lead

in addition to the previously elicited problems that may cause the human’s social face harm
2, another problem for the case of minimally designed robots that it is "the adaptation gap".

The adaptation gap is related to the differences between the functions of the robot that users

expect before starting their interactions which are highly related to the robot’s appearance,

and the functions they perceive after their interactions. An adaptation gap resulting from

the difference between the minimalistic robot appearance and its role as an authority that

may dictate to the human how to interact when the human forgets the PECP, may lead to a

decrease in the robot’s likeability and perceived competence [75].

Given the centrality of these issues, we propose to use indirect non deliberative IUs as non-

linguistic utterances combined with the minimally designed robot’s visible behaviors rather

than the direct rejecting speech of the non-expert’s requests when the non-expert user cannot

remember the PECP. We argue that once IUs are combined with the robot’s visible behav-

iors, the communication protocol can be maintained. Many cartoon films use IUs rather than

natural language as a means of communication where viewers will coordinate the cartoon

character’s behavior with the IU to understand the context, e.g: Pingu. Thus, we assume that

IUs contribute on the context’s understanding. By combining, the situation presented in the

cartoon with the IU, the human may understand the complete meaning. Linking a visible

situation with an auditory icon many times (information encoding phase) may increase the

possibility that we remember that particular information (recall phase). This is related to

Paivio’s dual coding theory that is based primarily on combining visual information with

an auditory icon that can be a nonverbal sound to facilitate the information recall in the

future [76]. It has been proven that cued recall consisting of presenting the non verbal or

pictorial format of the information encoded may lead to better recall results rather than free

1A minimal designed robot have small number of sensors and simplified in terms of anthropomorphic

features. The design of the robot should be efficient enough to make the minimalistic robot sociable but also

affordable (cost) for common non-expert users.
2Social face: It is the individual’s portrayed identity in a particular situation [73]. It is highly related to

self-esteem [74].
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recall when it is the human’s responsibility to retrieve the complete information without us

presenting anything to him [77]. Thus, if we assume that the non-expert user combines the

robot’s different visible behaviors (pictorial format of the information) with the non verbal

IUs (non verbal format of the information) during a first HRI’s instance (encoding phase),

we might have high recall of the PECP if the robot generates the non verbal format (cued re-

call) of the information before executing the robot’s behavior in order to facilitate the recall

of the PECP.

This work seeks to answer two research questions: How to increase the PECP recall in

shorter time for the case of interaction between a non-expert user and a minimally designed

robot? Can we improve the participants’ perceptions of the minimally designed robot’s

performance once we apply our proposed solution (dual coded feedback)?

3.2 Related Work

Since the proposed study and its experimental evaluation is motivated by theories from

Social Psychology, design concepts and studies from HRI, this section provides an overview

on relevant theoretical foundations in human-human interaction and design concepts as well

as other HRI related work.

3.2.1 Face Threatening Acts

While it is laborious to establish a completely error-free interaction in HRI design, the issue

of how to make non-expert users aware of their errors is critical to the concept of user-

centered design [78]. It seems obvious that during an HRI, a robot may disagree with a

non-expert user making an error while trying to retrieve the PECP. But, when the robot

disagrees with the human’s decision, the human will be embarrassed and may exhibit a

negative reaction. As a reminder, we call that situation when the robot disagrees with the

human and shows a less supportive behavior for the human’s social face, a face threatening

act (FAT).

The concept of FATs was originally described by Geertz [79] and Goffmann [80]. They

discuss numerous principles of politeness theory that should be integrated in a human’s

daily interaction in society including face supportive behaviors. A fundamental assumption

of politeness theory is that all individuals are concerned with maintaining a good public

image or what we call a "social face" [81].

In this context, the main idea that we want to highlight is that any solution that it is proposed
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for the issue that we discussed should avoid threatening the non-expert user’s social face

[82].

3.2.2 Proposed Solutions to Deal with or Prevent Miscommunication

in HRI

In this subsection, we expose different miscommunication resolution methods presented in

the HRI that can be categorized into two types which are the implicit and explicit methods.

Explicit Method

Several studies successfully explored miscommunication arising from users giving instruc-

tions in real-time interaction with an artificial agent executing those instructions during the

experiment [83] [84], and related error handling is integrated in spoken dialog systems [85].

Error handling through the usage of spoken speech may cause lexical or conceptual difficul-

ties while the robot sometimes cannot cope with the complexity and vagueness of natural

language [86]. Argumentation was another alluring solution for the HRI community [87].

Argumentation consists on deriving reasoning semantics by analyzing the supports and de-

feats [88]. For that purpose, the robot should query the human for more information that

may help it get the whole picture during the HRI. That it is why, inquiry and information-

seeking dialogues could be employed to resolve interaction errors due to miscommunication

[89]. But, again we are putting at risk the HRI, because the non-expert user is not supposed

to deal with a robot that may waste their time with argumentation as the user expects total

obedience from the robot.

Other studies in HRI, go beyond Asimov’s laws of robotics and find that it is possible to

reject a human’s request while using some directives for that purpose [90]. We believe that

the robot has to avoid negative frame speech including rejecting the human’s requests which

may in turn threaten the user’s social face. People have a tendency to treat others much as

others have treated them so in case the robot rejects the human, according to the law of

reciprocity, humans will sooner or later do the same [26].

By extending the line of our research we believe that a speech act during an HRI has to

support the human’s social face, and ought not to be used to increase a human’s frustration

through disagreeing with the human’s propositions [91]. Consequently, we avoid to use an

explicit method (e.g:speech act) to alert the human about their faulty interaction attempts.

We prefer to use an implicit method that helps to support the human’s social face and suc-

ceed with diffusing frustration.
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Implicit Recall Methods

In order to avoid a situation when a human does not understand the feedback or forgets each

instruction’s objectives, a few studies use a LED light as an implicit feedback strategy such

as Naoki O. et al [92] where the LED light is used to remind silent bystanders to talk during

a multiparty conversation. Thus, a miscommunication because of a user’s speech prevail-

ing during an interaction can be avoided. Knox W.B. et al [93] used red and green LED

lights for TAMER the robot during a demonstration session in order to indirectly remind

the user of the incorrect ways of using the pre-programmed robot. Some other studies use

a pseudo-implicit method (forewarning) while an instructor explains how to use the robot

before the interaction starts [44]. In [94], a whiteboard near Simon (the robot) is provided

as a reminder about the concept representation and the types of sentences that the teacher

could articulate.

First, we believe that, a LED light is an implicit communication channel but not sophisti-

cated enough to inform the human about their error without accentuating the frustration (e.g:

the red light indicating error increases the negative feelings). Besides, informing the human

before the interaction starts just like in [44], may lead to the human’s confusion about the

instructions and feeling that the interaction is not quite natural. Moreover, a forewarning

is not useful when the amount of instructions organizing the interaction increases. Finally,

writing on the board ([94]) to remind the person of the concepts taught to the robot, is also

inconvenient because it is not a natural communication channel as an important HRI com-

munity goal is to make the communication intuitive and natural.

Another work [95] straddles the line under the usage of hesitation gestures in collaborative

tasks while transferring information indirectly to the human that a miscommunication is

occurring during the HRI. That implicitly may cause a trust problem because a non-expert

user may attribute the hesitation gestures as an indication of a robot that may make errors in

the future [96].

Interfaces seem to be another solution that may help to avoid miscommunication while in

[97], Pierre Rouanet et al considered using interfaces such as smartphones, wiimotes and

lasers as a good means to avoid any miscommunication. We argue that these interfaces, al-

lowing the non-expert user to understand, vary in the kind of feedback provided to the user

which may lead to an increased cognitive workload in addition to the fact that it is unnatural

communication method.
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3.2.3 Child-Caregiver Interaction

To think broadly about the interaction between caregiver and infant is extremely important.

First, this is the starting point in life where initial relationships are built. Second, the baby’s

limited ability to communicate is important to consider. Adults can communicate through

facial expressions, actions; voice, language, text and symbols, and the baby will only use

hummed sounds. Even though there are limited means of communication between the care-

giver and the baby, they still can interact and reuse simple communication protocols that

may orchestrate their daily interactions [98]. This, is undoubtedly of great significance and

a valuable inspiration source helping to resolve the issues related to our study. Since people

accept the use of hummed sounds or what we call IUs, are able to establish a communication

protocol via IUs and remember it during future child-caregiver interactions, there is also a

possibility that the same thing may occur when we use the IUs during the HRI.

3.2.4 Inarticulate Utterances (IUs)

We define IUs as sounds consisting of chirps, squeaks, hummed sounds etc. which are used

as social cues during HRI. It is still possible to include many similarities between natural

language and IUs. For example, general prosodic features from the human voice may be

mapped to IUs in order to make them sound more natural or child-like [98] [99] [100] [101]

since we are interested into reproducing similar interaction circumstances in the HRI that

are present in the child-caregiver interaction. Our IUs consist of utterances designed to re-

semble natural language, but deliberately have no linguistic semantic content. A prominent

example of this can be found in the robot Kismet [98], where IUs were used in place of

natural language.

The standpoint that we take in this work is that IUs do not constitute a real language. Us-

ing the fundamental properties of a language as proposed by Hackett [102] as a reference,

namely displacement, arbitrariness, semantics, discreteness and cultural transmission, we

argue that IUs have the capacity to accommodate all of these. However, there are three vital

elements missing: syntax, lexicon, and grammar.

We believe that IUs may be considered as a proto-language. IUs are non linguistic and

are unable to communicate complex ideas (e.g. "go 5 meters to reach the location") when

compared to natural language. This is why we urge caution in thinking about IUs in the

sense of a pure language and we also believe that it will not cause social face threatening. In

addition to that, it is an implicit natural communication channel since it is used by children

in the child-caregiver interaction context and helps to maintain the communication protocol.

Moreover, we argue that people readily attribute meaning to novel IUs as suggested by some
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HRI studies [103] [104]. As meaning can be attributed to these IUs, combining them with

robot’s visible behaviors may lead to an increase in the communication protocol recall in

future interaction instances if the robot presents the IU before executing the corresponding

action (cued recall). Dual coding in this context, consists of combining the IU with the

robot’s visible behavior [105]. Finally, one may add that using IUs suits the minimally de-

signed robot because it does not require expensive extra tools that have be integrated in a

minimally designed robot.

3.3 ROBOMO Architecture

Robot’s Behavior

Inarticulate Utterance Gesture

Generate Behavior

Utterance

Movement ServoMotorsx5

Speaker

USB
Web Camera

USB
Microphone

Tracing 
Human Face

Dynamic 
Adaptation

Human Request
Recognition

Fig. 3.1 The overall architecture of ROBOMO: The user’s voice is captured using the micro-

phone, the robot decodes the user’s request using Julius (a software of Japanese language

recognition). After that, the robot uses the speaker to generate the IU satisfying the user’s

request.

To communicate with ROBOMO, the user has to talk on the microphone so that, the

robot can recognize using Julius3 [106], the meaning of the user’s request. ROBOMO

tracks the user’s face using a Web Camera whilst listening to the human because we believe

that face tracking can increase a user’s engagement (Figure 3.1). ROBOMO integrates a

micro PC to adapt to the user’s request and provides a verbal response through the speaker.

ROBOMO uses five servo-motors (AX-12+) to exhibit different gestures such as ’bowing

to the left, right, forward or back’, ’a confirmation gesture’, etc..

ROBOMO has a long shaped body utilizing an attractive container (made of plush material)

and has no arms. We intentionally gave ROBOMO a pitcher plant (Nepenthe) appearance

3Julius is a continuous real-time speech recognition decoder for speech-related studies that does not require

training.
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to encourage people to interact with it, much as one might with a young child or a pet.

Although used for personal navigation, our accompanying mobile robot is unable to walk.

degrees of freedom
camera

Speaker

microphone

servo

motors

micro PC inside

(a) (b) (c)

Fig. 3.2 (a) A picture of ROBOMO interacting with a user; (b) A close-up picture showing

the inside of ROBOMO the robot; (c) The robot is made of plush material and may emerge

from the bag whenever the human interacts with it.

3.4 Research Questions

The evaluation of the approach presented in the previous sections included one laboratory

study that sought to demonstrate the feasibility of the proposed approach in enabling mini-

mally designed robots to indicate indirectly to non-expert users erroneous instructions which

are issued by the non-expert users and that do not comply with the communication protocol

that was previously established in previous interaction instances.

More specifically, the study sought to answer the question, does combined IU (auditory

information) with the minimally designed robot’s visible behavior (visual information) en-

ables the minimally designed robot to display appropriate social feedback to the human?

Can it minimize changes in the communication protocol that was established in previous

interaction instances? If we could validate these two research questions then this may help

reducing the information retrieval time in the new interaction instances since the number of

erroneous instructions would be reduced.

That it is why, another research question that we may draw is: does our approach facilitate

the PECP recall in a shorter time? Also, does it increase the minimally designed robot’s

perceived likeability, competence and human’s social face support?
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3.5 Experimental Design and Conditions

To study the research questions above, the study followed a three-by-one, between-participants

design. Participants were randomly assigned to one of the three conditions. The three ex-

perimental conditions included the following:

IUs condition: The minimally designed robot combined its behaviors with the IUs to facil-

itate the human’s memorization and recall of the PECP (one IU per one robot’s behavior;

e.g: IU "A" is combined to the left behavior.).

Changed IUs during the recall phase condition (manipulated condition): The minimally de-

signed robot combines IUs with behaviors just like in the Us condition. However, in the

recall phase the IUs used during the encoding phase will be changed. This may help us to

validate the importance of IUs usage and maintenance during both phases (encoding and

recall) so that the dual-coded feedback could afford the expected communicative outcomes

(better recall of the PECP and an amelioration of the non-expert user’s perception of the

robot’s performance).

No IUs used (baseline): The minimally designed robot displayed only its visible behaviors

while no IUs will be combined with its behavior.

3.6 Hypothesis

The study sought to test the central hypothesis that, by using IUs combined with the mini-

mally designed robot’s visible behavior, the minimally designed robot will enable the human

to better memorize and recall the PECP in a shorter time which may produce positive out-

comes on the objective and subjective levels while the minimally designed robot will be

judged more competent, likeable, and supportive for the human’s social face.

Paragraphs below outline specific instantiations of this central hypothesis.

3.6.1 Hypothesis 1.a

In a given task, IUs generated according to the IUs condition will elicit stronger communica-

tive outcomes such as improved communication protocol recall and a shorter time required

for the recall rather than the other two conditions.
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3.6.2 Hypothesis 1.b

In a given task, IUs generated according to the IUs condition to hopefully activate the same

effect of dual coding theory will improve the participants’ perceptions of the minimally

designed robot in measures such as likability, competence, and human’s social face support

more than the other two conditions.

3.7 Setup

3.7.1 Main Task in the Videos

START

GOAL

(a) (b)

Fig. 3.3 (a): The experimental setup: The volunteer has to knock on the table so that the

robot can translate the composed knocking and chooses an appropriate behavior; (b) a user

interacting with SDT the robot.

We considered in our experiment two minimally designed robots called ROBOMO and

SDT which we presented previously.

In all conditions, the minimally designed robots try to collaborate with the human in order to

achieve a task. We designed these robots in order that they can be used as service minimally

designed robots in the future.

Our experiment included two human-robot interaction scenarios:

• Visiting some checkpoints marked on the table with SDT the robot (first scenario:

Figure 3.3).

• Collaborating with ROBOMO to find a location (second scenario: Figure 3.6).

Task Related to SDT

In the first scenario (Figure 3.3), the task consists of collaborating with a minimally designed

robot that it is SDT to make the dish robot visit different checkpoints marked on the table.
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In this context, a volunteer has to knock on the table (Figure 3.3) in order to make the robot

visit the different checkpoints.

Fig. 3.4 As time goes by the distribution of each behavior is narrowed so that for each

knocking pattern, only one action is associated.

Four microphones positioned under the table help to detect the sound and modulate the

knocking in a way that the minimally designed robot can detect whether it is a rapid or a

slow knocking and they also help to calculate the number of knocks. As an example, one

can imagine a human knocking twice on the table very quickly. The knocking input in this

case for the robot is 2 rapid knockings. The robot is capable of showing nine behaviors

which are: "going forward", "going left", "going back", "going right", "stop", "vibration",

"a whole turn from right to left", "a whole turn from left to right" and "denial" to refuse

moving. Our minimally designed robot named SDT will try determine the right behavior to

be executed from a composed knocking pattern.

The robot uses an algorithm that is an actor-critic which was generalized in comparison to

the old version in order to include 9 behaviors rather than only four behaviors in our previous

work [107]. In fact, the robot will affect for each knocking pattern a normal distribution that

will finally converge in to a small set of possible behaviors. e,g: for the behavior "going

right", the human will make 2 rapid knocks, the robot will learn that 2 rapid knocks means

"going right", the numeral of the right behavior (each behavior has a numeral: e.g: 3) will

be the mean of the normal distribution related to 2 rapid knockings. After some time the

human changes his mind and affects the 2 rapid knockings to going left, in this case the

normal distribution related to the 2 rapid knockings will be shifted so that it includes the

numerals of the two actions (going right and left) (Figure 3.5). If an action is no more

associated with the knocking pattern, the distribution will be updated as well in order that

the action can be discarded (Figure 3.4).

As time goes by, the human will try to mirror only one robot’s behavior to each knocking
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Fig. 3.5 As time goes by, each of the actions that are no longer required when a special

knocking is composed will be discarded from the knocking pattern distribution.

pattern and that it is how a communication protocol is established while the rule in this

context is in the form of "for x knocking, we have the robot’s behavior y" [107].

Task Related to ROBOMO

Traffic Light
Award

Fig. 3.6 The experimental setup: The volunteer has to hold the robot and ask ROBOMO

about the correct direction to finally reach the hidden award.

In the second scenario (Figure 3.6), we setup an indoor space for a navigation task that

contained intersections (Figure 3.6). A volunteer interacts with ROBOMO in order that

he/she can find out the directions to visit a particular location. To pick the right behavior,

the volunteer is instructed by the robot. While walking a volunteer, may stop sometimes

and asks ROBOMO whenever he believes that he needs the robot’s help by saying: "what
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should I do?".

The volunteer can ask about directions or the traffic light colors in order to complete the task

and reach the reward (music compilation in a DVD) location. The volunteer was instructed

to ignore the reward location and to only rely on the robot’s directions in order to reach

it. We have chosen a typically complex configuration containing different checkpoints to

increase the number of times when the volunteer has to ask the robot. The robot is capable

of using a range of expressive body gestures in order for it to inform the volunteer about

the right behavior that they can undertake. The robot’s behaviors may express different

contexts related to the volunteer’s question: "go right", "go left", "go back", "go straight",

"stop", "confirmation", "denial", "go", "slow down". Now, depending on the condition, each

gesture can be associated with only one IU, multiple IUs, or no IUs. ROBOMO is controlled

by a controller that may assign the right answer for each time the volunteer asks. He may

also control the robot’s gestures as well as the IUs remotely.

3.7.2 Procedure to Record the Videos: Two Scenarios

For each scenario, the volunteer’s interaction was recorded in three different videos that

elicit the 3 different conditions explained in paragraph 3.5.

In the conditions one and two, the robot used pre-recorded IUs, modulated in pitch to be

gender-ambiguous and that are combined with the robots’ visible behavior. For the case

of SDT, the visible feedback consists of the robot’s movement and body behavior such as

vibration. For the case of ROBOMO, the visible feedback consists of the robot’s body

gestures.

After the videos of the volunteer interacting with the robot are recorded, we randomly assign

participants to one of the videos.

3.7.3 Resulting Generated Videos

In the condition 1, the social-scientific specifications in the dual coding theory indicates

that in general people remember better a behavior or a situation when it is combined with

an auditory icon such as the IUs that we proposed. We call this video (since we have 2

scenarios; one related to SDT and another to ROBOMO) : Video1 Category.

In the condition 2, the IUs that the minimally designed robot used to combine with the

behaviors changed during the recall phase. In fact, during the video recording each IU is

combined with one of the robot’s behaviors. We present the video for the participants so

that they can have an idea about the CP. For the whole videos the goal was to verify whether

participants remember the PECP or not by presenting (cued recall) or not (free recall) the
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IUs. Specifically, the participants in condition 2 have to remember the PECP based on a

cued recall. However, instead of presenting the same IUs used on the video during the recall

phase, we change the range of IUs so that we can be sure that any remembrance of the

PECP during condition 1 using the dual coded feedback is due to the usage of IUs: Video 2

Category.4.

Finally, in the no IUs video, the interaction included no specific feedback but as a feedback

afforded for the human, the human can only obtain the robot’s visible movement. We call

this video (since we have 2 scenarios): Video 3 Category.

3.8 Experimental Procedure

3.8.1 Participants

A total of 32 participants took part in the study. All participants were English speakers from

the Toyohashi area with an average age of 22.07 years (SD=3.06), ranging from 18 and 43.

Average familiarity with minimally designed robots among the participants was relatively

low (M = 2.25, SD =1.7) and average familiarity with the experimental tasks was also low

(M = 4.5, SD = 1.8) on a scale of one to seven. Participants were recruited through an

email invitation via our JFS database and through personal contacts of the researcher. The

majority of participants were students of the Toyohashi University of technology of Japan.

Participants each received 1000 yen compensation for their effort.

3.8.2 Procedure

After signing the consent form, the participant is seated behind a desktop. During a baseline

period of five minutes, participants filled a questionnaire about their current mood5. After

that, a male experimenter greeted the participant and provided a brief introduction on the

goals of the study. The participant watches the first video of the first scenario (five minutes),

which is followed by a five-minute break while the experimenter prepares for the second

scenario’s video. The participant then watches the second scenario’s video. After the sec-

ond scenario finishes, the participant completes some questionnaires regarding likeability

[108], social face support [109] and competence [110].After one week, the participant has

to return to the laboratory to participate in a small quiz concerning the first scenario.

4This may help us to validate the importance of IUs usage and maintenance during both phases (encoding

and recall) so that the dual-coded feedback could afford the expected communicative outcomes (better recall

of the PECP and an amelioration of the non-expert user’s perception of the robot’s performance).
5htt p : //irtel.unimannheim.de/pxlab/demos/indexSAM.html
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If the presented video of scenario 1 was from the "Video 3 category", we ask the participant

what rules were used to make the robot moves or does each of the different SDT’s robot

moves (scenario 1). A crucial variable that can be deduced is the number of correctly re-

called rules. If the previous videos were Video 1 or 2 categories, then we present the IU

to the participant and we ask them to identify the rules that were used to make the SDT

execute each of the different moves. For Video category 1, we present the same IUs that

are used during the first time (when the human watched the video). However, as for video 2

category, we changed the range of IUs by a new set of IUs that are different then those used

previously (when the human watched the video related to condition 2) just as we explained

in paragraph 3.7.3.

As for scenario 2 (ROBOMO task generated videos), we try to extract the reaction time

(time needed to correctly exhibit ROBOMO’s appropriate behavior combined with the vol-

unteer’s question) that is delimited by the end of the instructor’s spoken phrase of whether

there are some rules that the participant remembers and which were used in the video of

ROBOMO and the end time during which the human is correctly imitating the robot’s ges-

ture that is related to the participant’s evoked command. In this context, the participant has

to evoke the activating command and the related behavior by imitating through a body ges-

ture. Each time the participant finishes with imitating one rule, we ask them whether they

think that there are more rules to be considered and we then start calculating the reaction

time from the end of the instructor’s question about whether there are extra rules or not and

the end of correctly imitating the new behavior after evoking the command correctly.

If the scenario 2 video is from category of videos 1 or 2, the instructor asks whether there

are some extra rules that ROBOMO has used, exposes a generated IU (that was used or not

in the video: this depends of the condition) and then waits for the participant’s answer. In

this context, the reaction time is the period of time that it is delimited by the end of the IU

generation and the end of imitating the robot’s gesture correctly.

After finishing, the participant was debriefed, thanked and received 1000 yen for his partic-

ipation.

3.8.3 Measurement and Analysis

The two independent variables in the study were the IUs manipulation (no IUS (condition

3) vs dual coded feedback (condition 1) vs manipulated condition (condition 2)) that the

robot used and participant gender. The dependent variables included objective measures of

task performance such as communication protocol rules recall (for scenario 1: SDT) and

the time needed to recall the rules (for scenario 2: ROBOMO) as well as some subjective
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measures related to the participants’ perceptions of the robot (likeability, competence, social

face support).

Objective Measures

The first measure considered the participant’s recall of the communication protocol rules.

This measure included a total of nine questions, all related to the rules of the communication

protocol established in the first scenario. The questions follow a multi-select format where

for each knocking pattern (SDT) a behavior should be combined.

The second measure is related to the time it took the participants to finish imitating the

robot’s gesture correctly after evoking the corresponding command correctly. Specifically,

this measurement captured how quickly the participants finished eliciting the correct rules

relating to: (1) the directions (right, left, back, forward), (2) traffic lights (go, stop, slow

down)(3) the confirmation (yes)/the denial (no).

Subjective Measures

The post-experiment questionnaire included scales to measure the participants’ perceptions

of the robot in dimensions of competence of behavior (seven items; Cronbach’s alpha= 0.78),

social face support (14 items; Cronbach’s alpha = 0.89), and likeability (5 items; Cronbach’s

alpha = 0.83). The participants rated all questionnaire items using seven-point rating scales.

3.8.4 Conditions Checks

To test whether the manipulation in the IUs condition was successful, the post-experiment

questionnaire included a number of items on whether they combined the robot’s behavior

with the IUs (a matching could be established), and whether the robot’s proposed IUs are al-

ways the same when combined with the robot’s behaviors and if they noticed some variation

in the combinations of (robot’s behaviors, IUs)6.

3.8.5 Analysis Methods

The analysis of data followed one-way analysis of variance (ANOVA), while the analysis

of data on objective and subjective measures involved a two-way ANOVA, including par-

ticipant gender as a second factor to control for gender differences. These tests included

Omnibus tests to identify the general effects of experimental manipulation on dependent

variables and contrast tests that compared the IUs condition against the baseline condition

6This is related to the manipulated condition



3.9 Results 59

and the manipulated condition for hypothesis testing. All contrast tests used the Scheffe

method for adjusting significance levels in multiple comparisons.

3.9 Results

3.9.1 Conditions Checks

The analysis of data from condition checks showed that the participants were able to iden-

tify the differences across the different videos. The experimental manipulation of the IUs

had a significant effect on whether they thought that the behavior which the robot executes

and combines with the IUs matched, F(2,26) = 9.58, p <0.001, η2
p = 0.42, and whether

they found the robot’s proposed IUs are always the same when combined with the robot’s

behaviors or if there is a variation., F(2,26) = 6.42, p=0.006, η2
p = 0.33.

3.9.2 Hypothesis 1.a: Correctly recalled rules

As a reminder Hypothesis 1. can be elicited as follows: In a given task, IUs generated ac-

cording to the IUs condition will elicit stronger communicative outcomes such as improved

communication protocol recall rather than the other two conditions.

Hypothesis 1.a: Number of Correctly Recalled Rules

The data from the information recall measure provided support for this prediction. The num-

ber of correct answers out of ten questions in the recall test were on average (mean=4.74 sd,=

1.38), (mean=4.37, sd=1.95), and (mean=7.37, sd=2.66) for the no IUs condition (video3

category), manipulated condition (video 2 category), and condition 1 (video 1 category),

respectively.

The ANOVA found a significant main effect of the robot’s IUs stability (using the same IUs

during the encoding phase) on recall accuracy, F(2,26)=7.18, p =0.003, η2
p = 0.35.

Contrast tests showed that recall performance was significantly higher in the condition 1

(video 1 category) usage than in the manipulated condition (video 2 category), F(1,26) =

13.71, p = 0.001, η2
p = 0.34, or than in the No IUs used (video 3 category), F(1,26)=7.87,

p=0.009, η2
p = 0.23. Figure 3.7 illustrates these results.

Hypothesis 1.a: Time needed to correctly recall the previously established rules

Hypothesis 1.a also predicted that there is a reduced time needed to remember the rules, in

the condition 1 (video 1 category) in comparison to the other conditions (videos 2 and 3
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Fig. 3.7 Results on rules correctly recalled and reaction time to retrieve the learned rules

watched on the videos. (±), (*), (**), and (***) denote p <0.10, p <0.05, p <0.01, and p
<0.001, respectively.

categories).

The analysis of data from this measure partly supported the hypothesis; when the end of the

robot’s inarticulate utterances (in the case of video 1 or 2 categories) or the instructor’s end

of spoken question (in the case of video 3 category) was set to zero, the average times in

milliseconds that the participants took to remember the corresponding robot’s behavior were

(mean=457.03, sd= 292.43), (mean=582.14, sd= 612.71), and (mean=-975.22, sd = 405.4)

for the No IUs (video 3 category), Highly variated IUs (video2 category), and constant

(only one IU per one behavior to facilitate the recall) IUs conditions (video 3 category),

respectively. The ANOVA found the main effect of the experimental manipulation on the

time measure, F(2,26) = 28.1, p <0.001, η2
p = 0.61. Contrast tests showed that participants

in the IUs (video 1) condition located objects in significantly shorter time than participants

in the highly variated IUs (video 2) condition, F(1,26) = 52.4, p <0.001, η2
p = 0.61, and No

IUs condition (video 3), F(1,26) = 33.2, p <0.001, η2
p=0.55, did (Figure 3.7).
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Fig. 3.8 Results on the human’s perceptions about the robot in terms of competence, like-

ability and social face support. (±), (*), (**), and (***) denote p <0.10, p <0.05, p <0.01,
and p <0.001, respectively.

3.9.3 Hypothesis 1.b: The participant’s perception of the robot

Hypothesis 1.b predicted that the participants would perceive the robot to be more likable,

more competent in behavior, and more human social face supportive in the IUs condition

than they would in the other conditions. The data from subjective measures provided partial

support for this hypothesis. The analysis showed the main effect of the experimental manip-

ulation on participants’ perceptions of the robot’s competence, F(2,26) = 4.33, p = 0.024,

η2
p = 0.250, and human’s social face support, F(2,26) = 12.67, p <0.001, η2

p = 0.49, but not

on it likability, F(2,26)=2.25, p=0.125, η2
p=0.11.

In particular, participants in the IUs condition (video 1) rated the robot to be more com-

petent than they did in condition 2(video 2), F(1,26) = 5.31, p = 0.03, η2
p = 0.17, and No

IUs condition (video 3), F(1,26) = 7.97, p = 0.009, η2
p = 0.24. Similarly, the participants

in the IUs condition (video 1) rated the robot to be more human social face supportive than

they did in the condition 2 (video 2), F(1,26) = 15.84, p <0.001, η2
p = 0.38, and No IUs

condition (video 3), F(1,26) = 23.14, p<0.001, η2
p = 0.47. Contrast tests with the data from

the likability measure showed that participants rated the robot as marginally more likable

in the IUs condition (video 1) than they did in the condition 2 (video 2), F(1,26) = 3.95, p

=0.05, η2
p = 0.13, and the No IUs condition (video 3), F(1,26) = 3.09, p =0.091, η2

p = 0.106.

Figure 3.8 also illustrates these results.
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3.10 Discussion

The results provided support for Hypothesis 1.a in measures of information recall. The use

of IUs enabled the robot to elicit improved recall of the PECP rules that were presented in

the videos.

A close look at the participants’ behaviors in the no IUs condition (video 3 category) and

the condition 2 with the second scenario illustrates why the robot’s behaviors in these con-

ditions elicited inferior task outcomes. In fact, the data showed that the participants needed

400-600 milliseconds to recall the rule while barely in condition 1 when the robot starts the

IU , the human remembered the activating command and the related behavior before even

that the robot finished the IU.

The results also supported Hypothesis 1.b in measures of the robot’s perceived competence,

social face support, and partially in the likability measure. The ability to facilitate the com-

munication protocol encoding based on the IUs usage enabled the robot to elicit improved

perceptions of the robot in dimensions of competence and the human’s social face support,

while resulting in marginal improvements in the robot’s likeability.

A potential explanation for the lack of significant improvements in the likeability measure

is that, while competence and social face support are key qualities for a robot providing a

service to a human (like in the case of our robots that it are trained to be used in a restaurant

or in the street and as the instructor told to the participants), the participants might not have

found likeability to be particularly relevant to the social situations in which they interacted

with and evaluated the robot. In fact, as we debriefed the participants to get an idea about

their opinions concerning the robot’s new design, we remarked that 72% of the participants

ascribed positive traits to the robots in condition 1. However, they indicated that robots that

need to afford a service for a user, should be more friendly enough to be socially accepted

by people. Participants afforded many propositions to make the robots more friendly such

as adding more degrees of freedom related to the robot’s movement, adding an IU related

to laughing and mourning, etc. None of the comments indicated that the proposed IUs are

not likeable. That it is why, an alternative explanation is that, given the marginal effects

in the predicted direction, the study lacked sufficient statistical power to show significant

differences due to the small sample size.

3.11 Conclusion

This study presented a novel approach that may help in the future to enable minimally de-

signed robots to indicate to humans without threatening their social faces that the PECP is
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about to change. This approach helps on doing so without evocation of whether the human

is the faulty party or not and without that the robot takes the responsibility of reconstructing

again the communication protocol in the new interaction instance because that may decrease

the robot’s likeability and lead the human to use the robot as a scapegoat rather than focusing

on their own errors while reusing the PECPs. In our work, we tried to study the feasibility

of using a different kind of feedback that consists of combining what it is seen when the

robot is displaying a behavior (can be considered as a mental image) and what it is heard

(auditory icon: IU) in order that the human indirectly retains in his memory the communi-

cation protocol in an easy and indirect way.

We tried to compare three conditions: baseline condition that consists of the robot exhibiting

only it visible behavior (no IUs are used), manipulated condition that consists of changing

the IUs during the recall phase (video 2 category) and the IUs condition (video 1 category).

We measured the differences between the three conditions in terms of rules recall and time

needed for rules retrieval. Results indicated that using simple IUs where for each robot’s

visible behavior, we have one IU that it is combined, ameliorates the human’s remembrance

of the previously encoded (established) rules in previous interaction instances in a shorter

time. We also remarked that changing IUs during the recall phase leads to worse interaction

outcomes in terms of recall and the robot’s subjective evaluation in comparison to the IUs

condition (when the IUs are maintained the same during the recall phase).

In our next experiment, we will try to verify whether this study’s insights could be applied

for the case of a real HRI. Another issue that we need to take care of in the next study is to

propose a technique that helps people to not get bored while listening to the same IUs. In

fact, some of the participants felt that the interaction is a bit boring. That it is why, in the

next study, we will try to propose a variation-repeat technique that may help hopefully to

decrease boredom and thus increase the user’s impression about the robot’s performance.





Chapter 4

How A Robot can Help Maintaining the

Communication Protocol

4.1 Introduction

The use of robots in our daily life has long been a goal of robotists with a vision that alludes

to robots being able to cooperate and communicate, but also learn from human partners.

Several realms related to different disciplines such as machine learning [111], ecological

psychology [112], etc. are actively working towards the goal of making a robot teachable.

However, in order to efficiently learn from interactions with non-expert users, robots do not

only need sophisticated machine learning algorithms, but also attention should be paid to

the non-expert users way of teaching to the robots [78]. A good teacher should maintain

an accurate mental model of the robot’s state (e.g., what is understood so far, what rules of

interaction (CP) have been established that can be considered as the basic blocks in order to

construct more complex rules in the future, etc.) in order to increase the interaction’s out-

comes. The robot, in turn, helps the teacher by making its learning process transparent to

him through expressive feedback. It should demonstrate its current knowledge and mastery

of the task [113], [114]. Through this reciprocal and tightly coupled interaction, the teacher

and the robot cooperate to simplify the task of CP construction and maintenance. However,

this tradeoff is far from being easy to achieve as numerous challenges are encountered when

we have a minimally designed robot and a non-expert user.

The minimal design concept was first proposed by Okada et al.[115]. Okada et al. [115] con-

cludes that the robot’s appearance should show minimal use of anthropomorphic features,

so that humans do not overestimate or underestimate the robot’s skills [8]. By minimal

design, we mean eliminating non-essential components and keeping only the most funda-
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mental functions. We expect that, in the future, minimally designed robots will be more

affordable than other multi-modal robots [107]. People will use such minimally-designed

robots for a variety of tasks and services. As an example, one can mention "cleaning the

floor" with Roomba the robot [9]. Interacting with such minimally-designed robots may

represent the first experience of a non-expert user interacting with a robot. This leads us to

assume that non-expert users will possibly have high expectations about the robot’s adap-

tive capabilities [116]. They expect that a robot should show an obvious obedience when the

non-expert user assigns an instruction for it. As a result, in the case of minimally-designed

robots, the probability of inconsistent feedback afforded by the non-expert user during the

CP construction or reuse, can increase for multiple reasons.

First, the non-expert user may assign the same instruction each time in a different way while

the robot should stick to what it learned previously. In such a case, the robot may adapt to

the new instruction. However, as long as the non-expert user could not see that they should

adhere to the rules (CP) taught previously to the robot (PECP), they may blame the robot

for being non adaptive. In such a case, the non-expert user will stop using the minimally de-

signed robot. Second, forewarning a non-expert user about the fact that they should adhere

to the CP taught to the robot may drive them to think that the HRI is not natural since in all

cases they will have to handle a machine that cannot meet their expectations of adaptation,

obedience and sociability. Finally, a non-expert user that tries to maintain such a reality (the

robot cannot be perfect enough to deduce implicit rules like humans do) and who realizes

that they forget the taught PECP, may use the robot as a scapegoat to avoid any responsibil-

ities and stop using the robot.

In this vein, in order that the long-term use of minimally designed robots could be guaran-

teed, a main challenge that should be resolved here is the increase of PECP remembrance

without putting significant burden on the non-expert user by expecting that he can memorize

all of the taught rules (CP). In fact, through the reciprocal and tightly coupled interaction

that we presented we have a weak node that is "having a good teacher" (since we address

the problem of having a non-expert user). That it is why, the other node of the reciprocal

interaction should be strengthened to maintain an equilibrium. Consequently, that it is how

we arrive at the solution that the minimally designed robot should guide the non-expert user

by making its learning process more transparent to him through a more expressive method

of feedback.

We expect that the new expressive feedback that can be used by the minimally designed

robot may reduce the cost of PECP modification because of the user’s forgetfulness with-

out reducing the robot’s final, asymptotic performance. Even though a minimally designed

robot cannot use multiple communication channels; which may lead the robot to become
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costly, the feedback should be expressive enough to guarantee sociability, a decrease of

PECP forgetfulness and a cheap cost.

One of the main theories of Paivio in the context of information recall is the dual coding

theory. Paivio used the idea that forming mental images aids on recall [117]. According to

Paivio, there are two methods one can expand on learned material: sound associations and

visual imagery. Dual-coding theory postulates that both visual and sound information are

used to represent the information [118] in the human mind. The mental codes correspond-

ing to these representations are used to organize incoming information that can be stored,

and retrieved for subsequent use. Both visual and sound codes can be used when recall-

ing information [118] (cued recall1). Presenting images could be a burden for a minimally

designed robot since we would have to add a screen in addition to the fact that it is not a

natural way of communication that we use in daily life. Therefore, we decided then to focus

on sound information. The main idea will consist of combining the robot’s visible behavior

and sound information (an IU) with the instruction that is taught to the robot. During the

reuse, the robot has just to generate the sound information before executing the action to

reduce the error rate and time wastage. We expect that such sound information (the IU) may

refresh the user’s memory and lead him to remember the correct instruction.

Previously, we designed a novel scenario where the non-expert can use only one commu-

nication channel which is knocking [107]. To communicate with our minimally designed

robot SDT, the non-expert user has to knock on the table to express his intention of making

the robot go left, right, backward or forward. The robot has to learn the meaning of the

knocking, and choose an action that converges with the human’s intention. We showed that,

we can simulate the procedure that the human uses to make the robot incrementally establish

a CP.

In our current study, the main point that we focus on consists of the fact that, in each SDT-

robot interaction instance (trial), we remark that the non expert user-robot pair creates a

new CP that is completely different from the PECP of the previous HRI instance because

of the user’s forgetfulness of the PECP. We want to investigate whether users can maintain

the same CP if the robot combines visible behavior and sound information (an IU) with

the taught instruction. During the reuse of the PECP, SDT has just to generate the sound

information (IU) before executing the action to reduce the error rate and time wastage. We

expect that this may hopefully refresh the user’s memory and lead him to remember the

correct instruction.

1It is a cued recall because the robot tries to help the human to remember the rules by presenting cues

which are in a visual or sound format.
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4.2 Related Work

Since the proposed study and its experimental evaluation is motivated by theories from

Social Psychology, design concepts and studies from HRI, this section provides an overview

on relevant theoretical foundations in human-human interaction and design concepts as well

as HRI related work.

4.2.1 Proposed Solutions to Deal with or Prevent Miscommunication

in HRI

In this subsection, we will expose different miscommunication resolutionmethods presented

in the HRI that can be categorized into two types which are the implicit and explicit methods

before explaining more about the inspirational motives behind our choice of IUs and the

robot’s visible behavior combination.

Explicit Methods

In our context that it is miscommunication occurring during the HRI, by explicit methods

we mean deliberative messages. These messages afford direct conclusions to the humans in

order to argue with them, reject their request or make a confusing proposition.

Several studies successfully explored miscommunication arising from users giving instruc-

tions to an artifact executing instructions [83] [84], as well as related error handling that

is integrated in spoken dialog systems [119]. Error handling through the usage of spoken

speech may cause lexical or conceptual difficulties and the robot sometimes cannot cope

with the complexity and vagueness of natural language [86].

Argumentation was another solution proposed by the HRI community [87]. Argumentation

consists in deriving reasoning semantics by analyzing the supports and defeats [88]. The

robot should ask the human for more information that may help it get the whole picture dur-

ing the HRI. That it is why, inquiry and information-seeking dialogues could be employed

to resolve interaction errors due to miscommunication [89]. However in this case, we put at

risk the HRI because the non-expert user is not supposed to deal with a robot that wastes his

time with argumentation instead of executing actions.

Other studies in HRI, went beyond Asimov’s laws of robotics and found that it is possible

to reject a human’s request. For that, some directives were suggested [90]. We believe that

the robot has to avoid negative framed speech, including rejecting the human’s requests, be-

cause it threatens the user’s social face. A social face is related to the human’s concern of

maintaining a good public image [81]. Any act that goes against the maintaining of a good
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public image is considered to be a face-threatening act [80]. So, if an explicit speech act

goes against the maintaining of a good public image, it is considered to be a face-threatening

act. People have a tendency to treat others much as others treat them. In a case where a robot

rejects a human, according to the law of reciprocity, humans will sooner or later do the same

[26].

By extending the line of our research we believe that a speech act during an HRI has to

support the human’s social face, but ought not to be used to increase human’s frustration

through disagreeing with the human’s propositions [91]. Furthermore, another more chal-

lenging point is related to the robot’s minimalistic design that makes it difficult to include a

defeating speech rejecting, arguing or pointing out the human’s errors. A minimalistic robot

that does so may lead to an adaptation gap resulting from the difference between the mini-

malistic robot’s appearance and its role as an authority that may dictate to the human how to

interact [75]. It may lead to a decrease in the robot’s likeability and perceived competence .

Consequently, we avoid to use an explicit method. We prefer to use an implicit method that

helps to support the human’s social face and succeed on diffusing any frustration.

Implicit Methods

In our context that it is miscommunication occurring during the HRI, by implicit methods

we mean non deliberative information that helps shaping indirect conclusions related to the

human’s behavior in order that they change their attitude and pay attention to the instruc-

tions that they afford to the robot. We believe that, implicit methods can be considered

as overheard messages. Overhearing a message is more powerful than direct conclusions

[120] in terms of attitude change. People are more persuaded by information that does not

seem to be designed to influence them because they do not realize when the information is

over there and they let down their guards. There were many studies in HRI that discussed

implicit methods guiding implicitly the human to pay attention to his behavior [92] [93]

4.2.2 Inspirational Points

As we highlighted in the introduction, we need a more expressivemethod that may empower

the interaction between a minimally designed robot and a non-expert user so that the user’s

forgetfulness of the PECP can be avoided. The proposed solution should respect the fact that

the robot is minimally designed and be harmonious to its simple appearance so as to not lead

to an adaptation gap. The suggested method should also operate on the robot’s expressive

feedback rather than relying on the non-expert user to focus like an expert teacher on the

HRI process.
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According to the presented HRI studies, an implicit method could be more powerful to

indirectly shape a human’s retrieval of the PECP because it is not face threatening in addition

to the fact that it can be considered as overheard material that can remain in a non-expert

user’s memory since it affords no direct conclusions.

Child-Caregiver Interaction

Adults are capable of communicating through actions; voice, language and symbols. A child

can only use hummed sounds. Even though, there are limited means of communication

between a caregiver and a child, both parties still can interact and reuse PECP that may

orchestrate their daily interactions [98]. This is undoubtedly of great significance and of

value to be an inspiration source to resolve the issues related to our study. People accept

the use of hummed sound or what we call IUs. They are able to establish a CP via IUs and

remember the PECP during future child-caregiver interactions. That it is why there is also a

possibility that the same thing may occur when we use the IUs during the HRI. As a result,

inspired from the child-caregiver interaction, we expect that using IUs during the HRI can

be considered by non-expert users as a natural way of communication. Also, we think that

using IUs can lead easily to CP formation and PECP retrieval just as in the child-caregiver

interaction.

Need for Cognition

Another reason that we believe may lead non-expert users to focus on IUs when there is

a confusing situation is people’s natural need for cognition that may drive them to explore

hidden regularities. Need for cognition is "the tendency for an individual to engage in

and enjoy effortful thinking." [121]. That it is why we expect that the presence of IUs

combined with the robot’s visible behaviors rather than presenting only the robot’s visible

behaviors, would lead to better results because we assume that people will enjoy putting

effort on linking IUs with the robot’s visible behaviors to discover the logical redundant

dually coded2 rules of the CP.

4.2.3 Inarticulate Utterances (IUs) as Expressive Feedback

We define IUs as short auditory icons consisting of hummed sounds etc. which are used as

social cues during an HRI. IUs consist of utterances designed to resemble natural language,

but have no linguistic semantic content [98].

2By dually coded rule, we mean the usage of the robot’s visible behavior (a pictorial format of the situation)-

IU combination that it corresponds to a specific robot’s instruction.
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IUs can be considered as an implicit natural communication channel since they are used by

children in the child-caregiver interaction context and help to maintain the PECP. Moreover,

we argue that people readily attribute meaning to novel IUs as suggested by some HRI stud-

ies [122][104]. As meaning can be attributed to these IUs, combining them with a robot’s

visible behaviors may lead to an increase in PECP recall in future interaction instances if

the robot presents the IU before executing the corresponding action (cued recall). Dual cod-

ing in this context, consists of combining the IU with visible behavior [105]. Finally, we

can add that using IUs suits the minimally designed robot because it does not require extra

expensive tools for it to be integrated into a minimally designed robot.

4.2.4 Variation-Repeat Feedback

Whilst there is no single definition of diversification, there is a general recognition of di-

versification as good [123]. Diversification of the robot’s output is desirable during a so-

cial interaction. It represents new events and changes generated by the robot via behavior-

generating algorithms and which may arouse people’s curiosity to discover yet unpredictable

regularities in the robot’s behavior. As there is no meaning-making without a certain degree

of creative imagination, such a diversification always involves from a person’s behalf during

the meaning construction of the new evolved behaviors, an adaptation to the robot [124] and

in addition to that, users will start to believe more that the robot is somehow a conscious

agent [124]. Thus the perception of the robot by human users is always positive and may

not decrease over time. In fact, the first studies on the temporal progress of user experi-

ence in households equipped with a robotic vacuum cleaner indicate an initial enthusiasm

in human users. However, any enthusiasm may decrease over time due to habituation to the

robot’s feedback [125]. Interactive robots may even raise initial enthusiasm [126], but in

some cases humans may be willing to explore the limits of robots, as observed in robotic

applications developed to operate in public spaces, where even a bullying type of behavior

was shown by human passers-by towards the robot, e.g. [127].

In fact, even if a person initially likes for example a simple message, they do not want to

hear it too many times or message wear-out might occur. Message wear-out is a condition

of inattention and possible irritation that occurs after a person encounters a specific message

too many times [127]. They may remember letter by letter the message but may dislike the

message or try to avoid hearing it over and over. One good way to prevent message wear-out

is to use repetition with a variation-repeat of the same information, but in a varied way [128].

That it is why, in our current study, we intend to add a technique of variation-repeat so that

the robot can propose different IUs per the robot’s visible behavior. Thus, the human can
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avoid this state of IUs wear-out which may influence their perception of the robot even if

the PECP could be retrieved because of the repetition.

4.3 Setup

The subsections below outline the robot’s IUs generation method and variation-repeat IUs

generation technique.

4.3.1 Hypothesis

Our study sought to test the central hypothesis that, by using IUs combined with the robot’s

visible behaviors, the robot will be capable of displaying better expressive feedback for

the non-expert user leading to better interaction outcomes that literature, related to child-

caregiver interaction (4.2.2), dual coding theory (explained more deeply in the introduction)

and the human’s need for cognition tendency (paragraph 4.2.2), predict. Therefore, com-

pared to a baseline condition that is displaying the robot’s visible behavior as the only feed-

back offered to the human, a feedback combining IUs with the robot’s visible behaviors

could enable the robot to exhibit feedback that more effectively elicits these outcomes. The

hypothesis below outlines specific instantiations of this central hypothesis.

Hypothesis 1. In a given task consisting on reusing a PECP, using the minimally designed

robot’s visible behaviors as the only feedback afforded for the non-expert user by the mini-

mally designed robot would lead to a poor PECP rules maintain and increase in the task com-

pletion time during a second interaction’s instance in comparison to the first interaction’s

instance when the human had no pre-established rules of interaction with the minimally de-

signed robot. In such a situation, the HRI mediocre process during the recall of the PECP

leads to a poorer non-expert’s perception of the minimally designed robot performance in

terms of likeability, competence and social face support in comparison to a situation where

a non-expert uses a minimally designed robot for the first time.

Our previous work [107] strongly supports the first hypothesisit has been shown that peo-

ple succeed on creating CPs customized to the human-robot pair but also personalized to

each HRI instance because people forget the PECPs. We chose to add hypothesis 1 to show

through numerical results one case study of a real minimally designed robot encountering a

problem of interaction with a non-expert user who forgets the PECP.

Hypothesis 2. IUs combined with the minimally designed robot’s visible behaviors im-

prove the PECP recall in shorter time and helps in finishing the task faster in comparison to

a situation when only the robot’s visible behavior (B) is the only feedback afforded by the
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minimally designed robot to the non-expert user. Also, it helps ameliorating the human’s

perception of the robot’s performance in terms of competence, likeability and social face

support.

This hypothesis is supported by different studies from social psychology and human-human

interaction [98] [105] [121]. Studies in child-caregiver interaction suggest that using IUs

is a natural way of communication to interact. It can be expressive enough for adults to

adapt to it. Also, it helps teaching the child different concepts and tasks [98]. This, makes it

alluring to think about integrating it in the HRI. Moreover, by offering IUs combined with

the robot’s visible behaviors, the rules of interaction will be dually coded, while for each

rule, the corresponding instruction will be coded in a visual format (by remembering what

was the robot’s behavior when that instruction is afforded by the human to the robot) and in

a sound format through the presence of IUs [105]. The human will not lack a need for ex-

ploring these dually coded rules since people have a tendency to search for cognition when

a situation is a bit confusing. Furthermore, using IUs is a novel communication channel that

may trigger their curiosity [121].

Keeping the same IUs across different HRI instances is one of the key points in the dually

coded rules that empower the combination of IUs with the robot’s visible behaviors usage in

terms of PECP recall. If we suppose that in a specific setup, we will make in a first trial the

robot use an ensemble of IUs "A" during the robot’s teaching, or what we call the encoding

phase, while each IU from the ensemble "A" is combined with one of the robot’s behavior3

and in trial 2 (a new HRI instance) we use a new ensemble of IUs "B" during the recall

phase (when the human is supposed to recall the PECP), we may draw then the hypothesis

3 as follows.

Hypothesis 3. Using a new ensemble of IUs "B" during the recall phase may lead to a

confusion while recalling the PECP. It can also cause a longer time for rule retrieval and a

greater period of time will be needed to achieve the task during the recall phase (when the

PECP is supposed to be reused) in comparison to a situation when we use the same ensem-

ble of IUs "A" that was used during the encoding phase (trial 1). Using a new ensemble of

IUs "B" leads to worse human perception of the robot’s performance in terms of likeability,

competence and social face support in comparison to the situation when we keep the same

ensemble of IUs "A" that was used during the encoding phase.

The next hypothesis is derived from research that has shown how repeating the same mes-

sage may lead to message wear-out. One good way to prevent message wear-out is to use

3The IU is a sound format that it is played before the robot starts executing the behavior. The sound is

the first code and the displayed behavior (the executed one) is the second one, while the information that it is

coded is the instruction that the non-expert user should afford for the robot to get a specific behavior executed

by the robot.
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repetition with variation-repeat the same information, but in a varied way [128]. So if we

consider that the information that needs to be generated in a varied way using a variation-

repeat technique is the IU, then one can draw the following hypothesis.

Hypothesis 4. IUs generated according to the variation-repeat proposed technique lead to

the same interaction outcomes during the encoding phase just like in the case when we con-

stantly combined the same IU with the same robots’ behavior so that a robot’s instruction

could be remembered correctly by non-expert users. When using such a variation-repeat

technique, we expect to have the same performance in terms of PECP remembrance, time

needed for rules retrieval and period of time needed for task completion time in comparison

to when we use the technique of maintaining an IU per one robot’s visible behavior. Also,

we expect that when the minimally designed robot uses a variation-repeat technique, we

have higher ratings in the non-expert’s perception of the minimally designed robot’s perfor-

mance in terms of likeability, competence and social face support in comparison to when

the minimally designed robot uses the same IUs assigned to the robot’s visible behaviors".

Knocking Pattern Design Space

In our previous work [107], we remarked that there are two types of patterns: continuous-

knocking patterns and command-like patterns. Command-like patterns consist of combining

each behavior with a different combination of knocks (e.g.,3 knocks for Forward).

Continuous-knocking was used when there was contiguous interruptions in the robot’s be-

havior4. We counted the number of both types of patterns based on the coded data of our

previous work for each participant and for the two trials. We noticed that there was signifi-

cant usage of the command-like patterns.

Users in our previous work were debriefed. Participants confirmed through most of their

answers that they wanted to simplify the input for the robot in a way that they attribute

modulated knocking. As an example, one can attribute 3 knocks when he wants the robot to

move forward and 2 knocks when he wants for example to make the robot move to the right

direction (Figure 4.1), etc.

4.3.2 Dually Coded Feedback

An IU consists of a single tone and prosodic component without any articulation or

phonemic. We used the architecture proposed by Okada et al [129] so that we can generate

IUs. We used this system just so that we can ensure that IUs that are generated are suitable

4Continuous-knocking was related to the presence of contiguous disagreements about the shared rules.
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Fig. 4.1 A scenario showing an example of a short interaction between a user and SDT.
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Fig. 4.2 Outline of the front-end modules used for capturing the speech and processing

the signal to generate a sequence of frames comprising of the voice-only portions in the

utterance: The goal of this processing is to translate the sound uttered by the user–which is

received in the device as a series of amplitude samples from its microphone and Analog-to-

Digital (A/D) converter–into a representation suited for the generation of a feature descriptor

that corresponds to an inarticulate utterance.

for the robot’s appearance [130]. The system works as follows (Figure 4.2): We asked a vol-

unteer to read the utterances aloud. The volunteer’s voice is captured and sampled at 16 kHz

(A/D Conversion) (e.g: some of the utterances: go forward, go left, etc.). We call the result

of the sampled recorded voice xi. After that, the time sequence of the power pattern P(i)

is calculated, e.g., the level of volume of the human voice, is calculated for each utterance

(Power Calculation) Pi. The segmentation of each utterance is determined by the thresh-

old energy based on the result of the power calculation (Utterance Segmentation). Then,

the time sequence of an F0(i) pattern is computed (F0 Pattern Detection). The F0 patterns

are experimentally detected by the average magnitude differential function algorithm [131].

The final IUs are synthesized by combining sine waves based on the power calculation and

F0 pattern (IU Generation). The following equation shows an example of synthesized wave

x′i.

phase(i) = 2×Π×F0(i−1)/FS (4.1)

amp(i) = P(i−1) (4.2)
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x′i = amp(i)× (sin(phase(i))+ sin(2× phase(i))

+ sin(3× phase(i)). (4.3)

where phase(i) is the value of the phase, amp(i) means the value of the amplitude and FS

means the value of the sampling frequency. Each produced IU corresponds to an audio

saved file that can later be called by SDT.

4.3.3 Variation-Repeat Dually Coded Feedback

The goal is to produce a variation-repeat IUs so that for each of the robot’s behaviors, three

IUs can be generated to indirectly code a knocking pattern that it is associated to the robot’s

behaviors. The robot has to generate when receiving a particular knocking pattern and

before an action (right, left, backward, forward) is executed, one of the three IUs per one

behavior (e.g; When receiving a two knock pattern, the robot had to generate IU "A", "B"

or "C". When receiving a one knock pattern, the robot had to generate IU "D", "E" or "F"

), etc. So as a summary if the robot has to establish four rules on the form of "instruction

- robot’s behavior", with the VRDCF there will be twelve rules while for each one of the

instructions, there will be three possibilities.

4.4 Study Performance

To explore the effectiveness of IUs as expressive feedback, that may resolve the problem

of PECP forgetfulness if combined with the minimally designed robot’s different visible

behaviors, we used the workspace from our previous work to conduct a between-participants

study of different setups and we drew different hypothesis to be validated.

4.4.1 Study Design

We included 3 different feedback methods the minimally designed robot may use to display

feedback for the human:

• Baseline method (B): The robot uses its visible behavior, that is the robot’s movement

(moving to the right, left, forward or back), as the only feedback afforded to the

human.
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Fig. 4.3 In the first trial (left), the participant has to understand how the communication

protocol is acquired in order to make the robot move into the designated locations on the

table (start, 1, 2, 3, and goal) by means of knocking patterns. In the second trial (right), we

change the sequence of the former points on the table, and then the user have to reuse the

emerged rules of communication of the first trial to guide the robot into the newly defined

locations.

• Dually coded feedback (DCF): The robot combines each of the instructions (knocking

patterns) to two codes: a pictorial format through the situation pictured by the human

(the robot’s visible behavior) and a sound format through the usage of IU.

• Variation-repeat dually coded feedback (VRDCF): The robot combines each of the

instructions (knocking patterns) to two codes: a constant pictorial format which con-

sists of the situation pictured by the human (the robot’s visible behavior) and a sound

format that it is varied through the usage of different IUs. These IUs can be combined

with the different robot visible behaviors in a way that many IUs could have been com-

bined with only one pictorial format (only one robots’ visible behavior; e.g: moving

to the left). As we assume that humans have a natural tendency to explore regularities,

we expect that they will track the sound codes (the IU) during the interaction that were

attributed to each of the robot’s behaviors and meanwhile people will not get bored

because of a repeated same sound per behavior 5.

4.4.2 Task

Each time we conducted an instance of the experiment, we gathered a participant and an

instructor to take care of him through exposing the different guidelines of the experiment.

5This feedback method was introduced to avoid the wear-out message problem, to keep the human con-

stantly curious about the new proposed IUs that are combined with the different robot’s visible behaviors and

give the human the impression that the robot is a competent agent that knows how to diversify its output to

increase the human’s likeability and better support their social face needs.
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The participant has to knock on the table in order to help the robot visit different points

marked on the table (Figure 4.4). Before the participant enters the experimental room, the

instructor told him the purpose of the experiment is to help the robot landing on different

checkpoints marked on the table. The robot needed only to listen to the knocking, learn the

meaning and then choose a convenient direction based on the gathered knowledge.

In the first trial, the participant had to cooperate in order to lead the robot to different sub-

goals (Figure 4.3). In the second trial, we changed the coordinate sequence of the former

points and the participant had to cooperate with the robot to reach the new coordinates

sequence of the check points. Changing the coordinate sequence of the check points may

guarantee that the participants were not accustomed to the configuration. Also, it helped us

to confirm the participant used their adaptation abilities during the encoding phase (trial 1)

and the PECP retrieval to succeed during the recall phase more specifically in the onset of

trial 2. There are two trials, each lasting 10 minutes.6

Fig. 4.4 A participant interacting with the SDT.

4.4.3 Scenarios

As we explained in the paragraph 4.4.2, each participant will take part in two trials. In para-

graph 4.4.2, we had not explained the feedback modality that the robot would use in these

two trials. In fact, based on the three different feedback modalities explained in paragraph

4.4.1 we designed four different setups. For each setup, we assigned 20 participants that

have to take part in the two trials. For each setup, the participant has to go through the same

6We estimated this period based on a previous pilot study.
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task explained in paragraph 4.4.2. However, the only thing that differs from one setup to

another is the robot’s feedback modality.

• Setup 1: The robot uses (B) as a feedback modality for the two trials.

• Setup 2: The robot uses (DCF) as a feedback modality for the two trials.

• Setup 3: The robot uses (DCF) as a feedback modality for trial 1 while during the

encoding phase each IU from the ensemble "A" of possible IUs (four IUs since we

have four different robot’s behaviors) is combined with one of the robot’s behaviors

(four behaviors). During the recall phase that corresponds to trial 2 (when the human

is supposed to recall the PECP), the robot will use a new ensemble of IUs "B" com-

bined with the robots’ behaviors according to the same strategy that it is DCF rather

than the ensemble "A" of the IUs that the human expects.

• Setup 4: The robot uses the (VRDCF) as a feedback modality during trial 1 (the

encoding phase). In such case, for each of the robot’s behaviors (four behaviors),

the robot would have combined three different IUs to avoid the message wear-out

phenomena that we discussed earlier in paragraph 4.2.4. So, for each of the four

instructions (since we have four different robot’s behaviors), the robot would have

one pictorial code (the robot’s visible behavior) and three different sound codes (three

IUs). During trial 2 (recall phase) each time the robot received a knocking pattern (the

instruction that is composed by the non-expert user), before that the pictorial code is

displayed (the action is executed), the robot would present one of the three different

IUs which are supposed to be combined with the same future behavior (in trial 1).

Obviously, the robot has to generate the sound format before that it executes the action so

that the human remembers the correct rule and verifies whether the rule converges with

their intention. This, may help reducing wrong steps and hopefully refreshes the human’s

memory to remember the different rules of the PECP (which instruction goes with which of

the robots’ behaviors; e.g: two knockings pattern is related to the robot going forward and

by generating the IU(s) related to that behavior before it is executed by the robot, the human

is capable of verifying whether the action that it is going to be executed is the one that they

want, the robot does. In such a case, the IU(s) will help them to guess the action that it is

going to be executed.).

4.4.4 Participants

We recruited 80 participants (47 males, 33 females) placing 20 individuals in each of the

unique four different setups. Participants are from diverse majors and occupations. Ages
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ranged from 18 to 46 (M = 22.7, SD = 5.92). All the participants are from the Toyohashi

University of Technology of Japan. They were recruited through email.

4.4.5 Procedure

Following informed consent, participants were seated in the experiment room. The exper-

imenter explained the task to the participant, started the robot, and left the room. The

participant then has to go through trial 1 as explained in paragraph 4.4.2. Before starting

the interaction, one setup related to the robot’s feedback modality is chosen randomly (e.g:

setup one). Setups are chosen randomly but in a way that each setup would have been used

by 20 participants at the end of the experiment. The interaction is video recorded. The

participant has to finish trial 1 and then answers three questionnaires related to the robot’s

likeability, competence and social face support (paragraph 4.4.6).

After one week, the participant has to again visit the laboratory and cooperate with the robot

so that it can visit the new sequence of the different checkpoints marked on the table (trial

2). The robot has to stick to the setup chosen previously. The interaction is video-recorded.

Once the participant finishes, they again answer three questionnaires related to the robot’s

likeability, competence and social face support (paragraph 4.4.6). At the end of the study,

the instructor debriefs the participant. The procedure took approximately 35 minutes. The

participant is thanked and received 1000 yen for their participation.

4.4.6 Measures and Analysis

Our dependent variables reflected both objective and subjective outcomes.

Objective Measures

For each task, three objective measures described the effectiveness of the robot’s feedback

in helping the human to remember the PECP and achieve the task goal. These objective mea-

sures are the number of recalled rules, the time needed for the recall and the task completion

time. All these variables can be determined by analyzing the recorded videos.

Subjective Measures

Often news is heard repeatedly because it is shown many times on TV. Does this help or

hurt the material in the news? Recall that the mere exposure effect is the tendency for novel

stimuli to be liked more after the individual has been exposed to it repeatedly. Accumu-

lated research confirms that repeated exposure to information does influence memory [132].
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More specifically, the initial attitude toward the information that is to be repeated makes a

difference [133]. If the person has a neutral or positive response to the message initially,

then repeated exposure can make the message more effective; if the person hates the mes-

sage right off the bat, hearing it again and again will only make things worse. In an analogy

to that, if we assume that the message in our case is the IU(s) then we need to verify whether

by the end of each trial, the user has a neutral or positive response toward the robot. We

measured the robot’s perceived likeability and competence. Also, we assume that IUs do

not construct a mere language, we think that we need to validate this assumption by mea-

suring the user’s social face support to verify whether the non-expert users were the victim

or not of a face-threatening act when we used the (B), (DCF) and (VRDCF) in the differ-

ent setups. Participant responses to questionnaires on seven-point rating scales measured

the competence [110] (Cronbach’s α = 0.73) to evaluate the robot’s competence, the social

face support[109] (Cronbach’s α = 0.81) to verify whether the user’s social face was sup-

ported during the HRI, and the robot’s likeability [108] (Cronbach’s α = 0.8). Additionally,

participants were debriefed.

Video Coding

After the experiment finished, the interaction scenarios were analyzed in order that we iden-

tify the different established CPs. We analyzed the video data by annotating with a video

annotation tool called ELAN. Two coders, one of the authors and one volunteer, analyzed

the behavioral data captured in the video camera using the same coding rules for the first and

the second trials. We calculated the average of Cohen’s kappa to investigate the reliability.

As a result, we confirmed that there was a reliability with κ = 0.73.

There were simple rules that we used in the videos’ coding. In fact, videos of trial 1 help

determining the CPs (that correspond to PECPs for trial 2). To determine the final CP rules

by the end of the interaction of trial 1, the coder has to track for each direction what was

the corresponding instruction (knocking pattern); e.g: By the end of trial 1, the coder deter-

mined that two knocks were associated with the left behavior, three knocks with forward,

one knock with the right behavior, four knocks were associated with the back behavior while

a continuous knocking could express the user’s request from the robot to stop. By the begin-

ning of the interaction in trial 2, the coder has to determine what was the knocking that was

correctly associated with the right behavior so that the PECP (the CP of trial 1) is preserved.

Changed rules indicate that the user failed to recall the rules of the PECP.
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Analysis

Data analysis involved paired t-tests for the first hypothesis and independent t-tests for the

other hypothesis. G*power software was used to calculate the effect sizes.

4.5 Results

We discuss our results below. In each case, we cite the hypothesis that need to be tested as

a reminder and then we expose the results. Competence, likeability and social face support

are our subjective measures (three dependent variables). Number of recalled rules, time

needed to recall and the task completion time are our objective measures (three dependent

variables).

4.5.1 PECP Forgetfulness

Hypothesis 1 predicted that in a given task consisting on reusing a PECP, using the mini-

mally designed robot’s visible behaviors as the only feedback afforded for the non-expert

user by the minimally designed robot would lead to a poor PECP rules maintain and would

increase the task completion time during trial 2 in comparison to trial 1. In such a situation,

the HRI mediocre process during the recall of the PECP leads to a poorer non-expert user’s

perception of the minimally designed robot performance in terms of likeability, competence

and social face support in comparison to the situation when the non-expert used the mini-

mally designed robot for the first time (comparison of trials 1 and 2 of setup 1).

We chose to add this hypothesis to show, through numerical results, one case study of a real

minimally designed robot encountering a problem of interaction with a non-expert user who

forgets the PECP.

Objective Results

0
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Number of Recalled Rules

Fig. 4.5 The figure shows the number of recalled rules during trial 2 of setup 1.
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Figure 4.5 shows the different 20 participants that used setup 1 and their corresponding

number of recalled rules. As a reminder, setup 1 consists of using the method (B)7 for both

trials. Based on Figure 4.5, 35% of the participants forget completely the PECP established

during trial 1, only 20% of the participants remember 50% of the PECP and no participant

succeeded on remembering the whole PECP.

As, for the task completion time, we remarked that there is a main statistical difference

between the task completion time in trials 1 and 2 with t-test= 2.872; p-value=0.009; d.f=19

and effect-size=0.642 (paired t-test between trial 1 and 2). Figure 4.6 shows the different

subjective results as well as the task completion time of trials 1 and 2. Based on Figure 4.6,

we notice that the task completion time decreased. This can be explained by the fact that

some participants remembered some rules of the PECP. This reduced the time of interaction

since such participants do not have to start constructing the CP all over again but they still

remember some of the PECP’s rules.
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Fig. 4.6 The figure shows the subjective results as well as the task completion time corre-

sponding to both trials of setup 1 (*:P-value<0.05, **:P-value<0.01, ***:P-value<0.001).

Subjective Results

While the analysis did not find the main effect of using the robot’s visible behaviors (B) on

a human’s perceived competence of the robot, there were significant statistical differences

7The minimally designed robot’s visible behaviors are the only feedback afforded for the human.
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between trials 1 and 2 in terms of likeability (t-test=6.18; p-value= < 0.001; d.f=19; effect

size= 1.38) and social face support (t-test=2.66; p-value=0.015; d.f=19; effet size=0.60) (for

both measures, we applied paired t-tests between trials 1 and 2). These results indicate that,

although not all participants remember the rules previously established in trial 1, they still

assign higher values (Figure 4.6) in trial 2 for both measures: likeability and social face

support.

We may explain so by the fact that participants found it reassuring to discover that the robot

still remember some of the rules of the PECP. However, they still think that the minimally

designed robot is not competent enough because it does not correctly choose the right be-

haviors. Based on the participants debrief, participants were supporting this insight. One

of the participants confirm:"Do I seriously have to teach the robot each time what it has

forgotten?". Another participant during the debrief said:"I suppose that the robot has to be

partly reprogrammed each time I need to use it. It acts like a baby: initially it will make

some errors but I can see that it has learned something since the last time which is appeasing

but not enough."

4.5.2 DCF to Maintain the PECP

Hypothesis 2 predicted that IUs combined with the minimally designed robot’s visible be-

haviors (DCF) improve the PECP recall in shorter time and helps finishing the task faster in

comparison to the situation when only the robot’s visible behavior (B) is the only feedback

afforded by the minimally designed robot to the non-expert user. Also, it helps to ameliorate

the human’s perception of the robot’s performance in terms of competence, likeability and

social face support.

Objective Results

By comparing the objective measures in trials 2, we remarked that there is statistically sig-

nificant differences between trials 2 of both setups 1 and 2 in terms of the number of recalled

rules (t-test=7.55; p-value< 0.001; d.f=38; effect size=1.44), time needed for the recall (t-

test=4.57; p-value< 0.001; d.f=38; U-test=23; p-value< 0.001; effect size=2.31) and the

task completion time (t-test=5.58; p-value< 0.001; d.f=38; effect size=1.76)

Figure 4.7 shows the first part of the objective results corresponding to trials 2 (number of

recalled rules and the time needed for recall) of both setups 1 and 2. Figure 4.8 shows the

subjective results and the second part of objective results (task completion time) of trials 2

corresponding to both setups 1 and 2 (trial 2 of setup 1 and trial 2 of setup 2). Based on

figures 4.7 4.8, we notice that trial 2 of setup 2 gives higher results in terms of the number
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Fig. 4.7 The figure shows the first part of trials 2 objective results (number of recalled rules

and the time needed for recall) corresponding to both setups 1 and 2 (*:P-value<0.05, **:P-
value<0.01, ***:P-value<0.001).

of recalled rules and lower results in terms of the time needed for the recall and task com-

pletion time in comparison to trial 2 of setup 1.

These results converge with our hypothesis 2. DCF (setup 2) helps to increase the recall

of the PECP in shorter time which lead to shorter task completion time in comparison to a

condition when the minimally designed robot uses its visible behaviors as the only feedback

afforded to the non-expert user (setup 1 with condition B).

Subjective Results

By comparing trials 2 subjective measures of both setups 1 and 2, we remarked that there are

statistically significant differences between trials 2 of both setups 1 and 2 in terms of com-

petence (t-test=9.84; p-value=0.006; d.f=38; effect size=3.11), likeability (t-test=3.95; p-

value=0.003; d.f=38; effect size=1.25) and social face support (t-test=9.39; p-value< 0.001;

d.f=38; effect size=2.97)

Based on figures 4.7 4.8, we notice that trial 2 of setup 2 gives about higher results in

terms of competence, likeability and social face support in comparison to trial 2 of setup

1. These results support our hypothesis 2. The usage of IUs combined with the minimally
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Fig. 4.8 The figure shows the subjective results as well as the second part of trials 2 objective

results (task completion time) corresponding to both setups 1 and 2 (*:P-value<0.05, **:P-
value<0.01, ***:P-value<0.001).

designed robot’s visible behaviors (DCF) reported significantly higher ratings for the non-

expert users’ perceptions of the robot’s performance.

4.5.3 Importance of Maintaining the Same IUs During the Encoding

and the Recall of the PECP

Hypothesis 3 predicted that using a new ensemble of IUs "B" during the recall phase may

lead to confusion while recalling the PECP, a longer time for rules retrieval and a greater

period of time will be needed to achieve the task during the recall phase (when the PECP

is supposed to be reused) in comparison to the situation when we use the same ensemble of

IUs "A" that was used during the encoding phase (trial 1). Using a new ensemble of IUs

"B" leads to worse human’s perception of the robot’s performance in terms of likeability,

competence and social face support in comparison to the situation when we keep the same

ensemble of IUs "A" that was used during the encoding phase.

This hypothesis corresponds to the setup 3 when the robot uses four different IUs each

one assigned to one of the robot’s visible behaviors during the encoding phase while in the

recall phase the four different IUs used previously are changed by a new ensemble of other

IUs that were never heard previously by the non-expert user. We included this hypothesis
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to highlight the importance of IUs maintenance and how implicitly changing it a bit may

confuse a non-expert user. The robot used the condition DCF in trial 1 and changed the

ensemble of IUs used in trial 1 during trial 2 by a new ensemble of IUs using the same

technique DCF.
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Fig. 4.9 The figure shows the first part of trials 2 objective results (number of recalled rules

and the time needed for recall) corresponding to setups 2 and 3 (*:P-value<0.05, **:P-
value<0.01, ***:P-value<0.001).

Objective Results

By comparing trials 2 objective measures of both setups 2 and 3, we remarked that there

are statistically significant differences between trials 2 results of setups 2 and 3 in terms of

number of recalled rules (t-test=2.94; p-value=0.005; d.f=38; effect size=0.93), time needed

for the recall (t-test=2.91; p-value=0.005; d.f=38; effect size=0.92) and the task completion

time (t-test=4.26; p-value<0.001; d.f=38; effect size=0.88).

Figure 4.9 shows the first part of trials 2 objective results corresponding to both setups 2 and

3 (number of recalled rules and the time needed for recall). Figure 4.10 shows the subjective

results and the second part of trials 2objective results (task completion time) corresponding

to setups 2 and 3. Based on figures 4.9 4.10, we notice that trial 2 of setup 3 gives lower

results in terms of number of recalled rules and higher results in terms of time needed for

the recall and task completion time in comparison to trial 2 of setup 2.

These results converge with our hypothesis 3. Changing the IUs ensemble used during the

encoding phase (trial 1) in trial 2 (recall phase) leads to a decrease in the number of recalled
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Fig. 4.10 The figure shows the subjective results and the second part of trials 2 objective

results (task completion time) for both setups 2 and 3 (*:P-value<0.05, **:P-value<0.01,
***:P-value<0.001).

rules. It also leads to a longer time needed for the PECP recall and longer period of time

needed to achieve the task in comparison to the condition when the minimally designed

robot uses the same IUs during both phases the encoding and the recall phases (setup 2).

Subjective Results

By comparing trials 2 subjective measures, we remarked that there are statistically signif-

icant differences between trials 2 of setups 3 and 2 in terms of competence (t-test=3.49;

p-value=0.001; d.f=38; effect size=0.8), likeability (t-test=4.83; p-value<0.001; d.f=38; ef-

fect size=1.55) and social face support (t-test= 5.34; p-value < 0.001; d.f= 38; effect size=

1.05).

Based on figures 4.9 4.10, we notice that trial 2 of setup 3 gives lower results in terms of

competence, likeability and social face support in comparison to trial 2 of setup 2.

These results support our hypothesis 3. Participants answers during the debrief afforded

some explanations for this decrease in ratings assigned by the non-expert users to the min-

imally designed robot. One of the participants indicated: "I suppose that the robot tries to

make tricks because it changed the words that used previously. I tried to remember these
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sounds and whether I have heard them before. Unfortunately, I think that I forget or the

robot tries to frustrate me!".

4.5.4 IUs Wear-out and the Proposed Variation-Repeat Dually Coded

Feedback

Hypothesis 4 predicted that IUs generated according to the variation-repeat IUs proposed

technique (setup 4) lead to the same interaction outcomes during the encoding phase just

like in the case when we combined constantly the same IU with the same robots’ behavior

(setup 2) so that a robot’s instruction could be remembered correctly by non-expert users.

We expect to have, when using such variation-repeat IUs technique (setup 4), the same

performance in terms of PECP remembrance, time needed for rules retrieval and period of

time needed for task completion time in comparison to when we use the technique DCF

(setup 2). Also, we expect that when the minimally designed robot uses a variation-repeat

IUs technique (setup 4), we will have higher ratings in the non-expert’s perception of the

minimally designed robot’s performance in terms of likeability, competence and social face

support in comparison to when the minimally designed robot uses the same IUs assigned to

the robot’s visible behaviors (setup 2)".
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Fig. 4.11 The figure shows the first part of trials 2 objective results (number of recalled rules

and the time needed for recall) of both setups 2 and 4 (*:P-value<0.05, **:P-value<0.01,
***:P-value<0.001).
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Objective Results

By comparing the objective measures, we remarked that there are statistically significant

differences between trials 2 of both setups 2 and 4 in terms of recalled rules number (t-test=

2.56; p-value= 0.014; d.f= 38; effect size= 0.81), time needed for the recall (t-test=2.02; p-

value=0.049; d.f=38; effect size=0.64) and the task completion time (t-test=2.02; p-value=0.028;

d.f=38; effect size=0.72).

Figure 4.11 shows the first part of the objective results corresponding to trials 2 of both

setups 2 and 4 (number of recalled rules and the time needed for recall). Figure 4.12 shows

the subjective results as well as the second part of trials 2 objective results of both setups 2

and 4 (task completion time). Based on Figures 4.11 4.12, we strikingly notice that trial 2

of setup 4 gives lower results in terms of the number of recalled rules and higher results in

terms of the time needed for the recall and task completion time in comparison to the values

of trial 2 with the same measure values of setup 2.

These results do not meet our expectations included in hypothesis 4. Using a variation-

repeat dually coded feedback technique (VRDCF) in a way that different IUs could mean

the same instruction (knocking pattern) backfired and led to degraded performance.

Subjective Results

By comparing trials 2 subjective measures of both setups 2 and 4, we remarked that there

are statistically significant differences between trials 2 results of both setups 2 and 4 in

terms of competence (t-test=2.59; p-value=0.013; d.f=38; effect size=0.81), likeability (t-

test=5.32; p-value<0.0001; d.f=38; effect size=1.68) and social face support (t-test=4.56;

p-value<0.0001; d.f=38; effect size=1.44).

Based on figures 4.11 4.12, we notice that contrary to what we hypothesized, trial 2 of setup

4 gives about lower results in terms of competence, likeability and social face support in

comparison to trial 2 of setup 2. These results do not support our hypothesis 4.

Although, we enabled the robot with the capability of generating different IUs for the same

behavior through the variation-repeat dually coded feedback technique to avoid message

wear-out and to guarantee that the non-expert user enjoys the interaction, the results indi-

cate that in terms of objective results, the performance is degraded where we have more

PECP forgetfulness with such a technique in addition to the fact that non-expert users found

that the robot is less competent, less likeable and less supportive for their social faces in

comparison to the same constructs values in trial 2 of setup 2.

Participants of setup 4 indicated during the debrief that the robot was a bit entertaining the

first time. However, during the second time (trial 2) of setup 4 some of the participants
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Fig. 4.12 The figure shows the subjective results as well as the second part of objective re-

sults of trials 2 (task completion time) for setups 2 and 4 (*:P-value<0.05, **:P-value<0.01,
***:P-value<0.001).

Table 4.1 Summary of hypotheses and results for primary measures.

Hypothesis Objective Measures Subjective Measures

Hypothesis 1 Supported Partly Supported Partly

Hypothesis 2 Supported Supported

Hypothesis 3 Supported Supported

Hypothesis 4 Not Supported Not Supported

revealed some insights which are related to the gathered results. One participant indicated:

"I understand when the robot said something that it means having a chance to checkout the

action before it is executed, however I get lost because I could not retain all the spoken

sounds that correspond to the same action. There were a lot of sounds right!" This means

that increasing the number of IUs per robot’s behavior can backfire even if the human may

like it the first time.

4.6 Discussion
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4.6.1 Hypothesis 1: Illustration of PECP Recall Problem

Hypothesis 1 predicted that in a given task consisting of reusing a PECP, using the minimally

designed robot’s visible behaviors as the only feedback afforded to the non-expert user by

the minimally designed robot would lead to poor PECP rules maintenance and would in-

crease the task completion time during trial 2 in comparison to trial 1. In such a situation,

the HRI mediocre process during the recall of the PECP leads to a poorer non-expert’s per-

ception of the minimally designed robot performance during trial 2 in terms of likeability,

competence and social face support in comparison to the situation when the non-expert user

used the minimally designed robot for the first time (trial 1).

The results provide conditional support for this hypothesis and, more importantly, suggest

that although on an objective scale the performance was degraded, users still think that the

robot is likeable and supportive for their social faces (Figure 4.6). In fact, by recalling

some of the PECP rules, some participants felt that the robot was not frustrating since they

succeeded even partly on guiding it to the different checkpoints without that they felt them-

selves obliged to put a lot of effort into reconstructing the whole CP during trial 2 (Figure

4.5).

Participants answers during the debrief support this insight. As the participants felt inte-

grated during the HRI, they attributed positive traits to the robot during the debrief ("striving

to finish the task", "slow but careful", "cute", etc..) which may explain the higher likeability

results. This is in line with the human’s asymptotic tendency to attribute positive feedback

so that an agent such as a robot could succeed. Thomaz et al [44] highlighted this tendency

that was noticed when a non-expert user was supposed to teach "sophie" the agent to achieve

different tasks in the kitchen in the context of a game-based setup. In such a setup, users

assign positive feedback to motivate the agent while it is just a virtual agent. Furthermore,

participants could have attributed lower values in terms of the competence construct because

we informed them that the robot is conceived to be used as a service robot that may help

users suffering from Parkinson disease when they have to eat. When a robot is conceived to

afford a service and the users are informed about that, it was proven that they adopt an util-

itarian way [134] of judgment and a construct such as competence is related to the service

"part" of the HRI (Table 4.1).

4.6.2 Hypothesis 2: Dually Coded Feedback to Increase PECP Recall

Hypothesis 2 predicted that IUs combined with the minimally designed robot’s visible be-

haviors improve the PECP recall in shorter time and helps finishing the task swifter in com-

parison to the situation when only the robot’s visible behavior (B) is the only feedback
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afforded by the minimally designed robot to the non-expert user. Also, it helps to amelio-

rate the human’s perception of the robot’s performance in terms of competence, likeability

and social face support (Table 4.1).

As expected, the results supported this hypothesis. Using a dually coded feedback helped

with ameliorating the objective results in comparison to trial 2 results of setup 1. In fact,

users could remember the PECP in a shorter time which led to a decrease in the task com-

pletion time (Figure 4.7). Participants who received a dually coded feedback reported sig-

nificantly higher levels of social face support, competence and likeability (Figure 4.8) .

4.6.3 Hypothesis 3: Changing IUs Lead to a Worse HRI Outcomes

To verify whether hypothesis 2 higher results during trial 2 of setup 2 were related to the us-

age of IUs and whether IUs interfered in the PECP recall process, we elaborated Hypothesis

3. Hypothesis 3 predicted that using a new ensemble of IUs "B" during the recall phase may

lead to a confusion while recalling the PECP, a longer time for rules retrieval and a greater

period of time will be needed to achieve the task during the recall phase (when the PECP

is supposed to be reused) in comparison to the situation when we use the same ensemble of

IUs "A" that was used during the encoding phase. Using a new ensemble of IUs "B" leads

to a worse human perception of the robot’s performance in terms of likeability, competence

and social face support in comparison to the situation when we keep the same ensemble of

IUs "A" that was used during the encoding phase.

For this purpose, we compared trials 2 results of setups 2 and 3. The results support this

hypothesis; users who performed the task in the presence of the same IUs during the en-

coding and the recall phase (setup 2) reported significantly higher levels of PECP recall, in

a shorter time and the task was achieved quicker than those who performed the task when

the IUs were changed. Subjective results were affected by trial 2 of the setup’s 3 degraded

performance (Figure 4.9). Users assigned lower values for the robot in terms of competence,

likeability and social face support in trial 2 of setup 3 (Figure 4.10).

In fact, to be useful, a dual code should be preserved. For example, in our case we have the

robot visible behavior as the pictorial first code related to the instruction (knocking pattern),

the second code is the IU. If we suppose that we want the user to remember the instruction

needed at time T, and that a robot’s behavior (pictorial code) could not be displayed because

the goal is to reduce the wrong steps, since steps are costly in terms of robot’s energy, time

and may cause frustration if they are wrong, one can directly deduce that an IU that it is

generated before the robot executes any behavior could be suitable to refresh the non-expert

user’s memory so that they can remember the adequate composed instruction (knocking pat-
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tern) that it is associated with the intended behavior before it is too late and the robot starts

executing a wrong behavior (Table 4.1).

4.6.4 Hypothesis 4: Variation-Repeat Technique Backfires

Finally in the context of hypothesis 4, we conducted a comparison between trials 2 results

of setups 2 and 4 that aimed to provide further insights into the question of whether using

a variation-repeat dually coded feedback strategy leads to the same interaction outcomes in

terms of objective performance and subjective evaluation.

Hypothesis 4 predicted that IUs generated according to the variation-repeat IUs proposed

technique (setup 4) lead to the same interaction outcomes during the encoding phase just

like in the case when we combined constantly the same IU with the same robots’ behavior

(setup 2) so that a robot’s instruction could be remembered correctly by non-expert users.

We expect to have, when using such variation-repeat IUs technique (setup 4), the same per-

formance in terms of PECP remembrance, the time needed for rules retrieval and the period

of time needed for task completion time (Figure 4.11) in comparison to when we use the

technique DCF (setup 2). Finally, we believe that when the minimally designed robot uses a

variation-repeat IUs technique (setup 4), we have higher ratings related to the non-expert’s

perception of the minimally designed robot’s performance in terms of likeability, compe-

tence and social face support (Figure 4.12) in comparison to when the minimally designed

robot uses an IU per robot’s visible behavior (setup 2)".

Results contrast with this hypothesis. Although, our goal was to avoid the wear-out mes-

sages problem, using different IUs assigned for the same robot’s behavior backfired and led

to worse PECP recall for a longer time and increased the task completion time. In line with

the objective results, subjective evaluation dropped in trial 2 of setup 4. This degraded per-

formance could be related to the fact that the participant’s memory could not retain all the

IUs per one behavior. The remembrance problem when using the variation-repeat technique

was mentioned in 80% of the participants speech while being debriefed (setup 4). This indi-

cates that using the same IU per one robot’s visible behavior is safer if we want to increase

the PECP recall (Table 4.1).

4.7 Implications of the Results

The findings suggest that non-expert users must have more expressive feedback rather than

mere feedback that consists of the robot’s visible behaviors for increasing the PECP remem-

brance in order to sustain intrinsic motivation to assign higher subjective evaluation related
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to the human’s perception of the robot’s performance.

When users have no feedback other than the robot’s visible behaviors, they characterize

the robot as non competent and the overall HRI performance is rather stable or degraded

because non-expert users cannot remember the PECPs. The current experiment provided

users with four setups to evaluate their performance: no dual coded feedback (setup 1), dual

coded feedback (setup 2), modified version of IUs during the recall phase (setup 3) and the

variation-repeat technique (setup 4). Users who did not receive dual coded feedback had

reported the lowest levels of PECP recall and time needed to recall. Users who did receive

dual coded feedback reported an increase in PECP recall and thus an increase as well in

the overall performance. The somewhat encouraging finding is that when we change the

IUs, the objective and subjective results are affected which highlight that IUs usage with

minimally designed robots activates the memory related to dual coded rules recall [105].

Furthermore, the effect of the VRDCF technique backfired; that is, giving many IUs for

the same robot’s behavior did not provide any additional increase in objective or subjective

results which we should as a conclusion avoid to do with minimally designed robots if we

want to increase the PECP recall and the human’s perception of the robot.

4.8 Limitations

Although these results suggest that minimally designed robots should provide non-expert

users with dual coded feedback, this approach might have three drawbacks. First, research

on dual coding suggests that dual coding is most effective when the human is capable of

building referential connections between the information and the codes. Building refer-

ential connections between IUs and the robot’s visible behaviors includes some cognitive

effort. That it is why increasing the number of rules could be useless and more harmful.

Second, another problem that we have not encountered while conducting our experiment

that it is related to socially anxious non-expert users. In fact, people who suffer from social

anxiety have a sickly state that it is activated when they are anxious. Such people predict

and imagine the worst when they have to recall information which may lead to drastic per-

formance if we use the dual coded feedback method to encode on the memory rules of

interaction and later implicitly drive them to recall these rules [135].

Third, our evaluation focused on testing only the effects of the proposed dual coded method

on participants who have low cold-heartedness. In fact, in [136], Aziz-Zadeh et al suggested

that the perception and recognition of IUs are affected by the human’s cold-heartedness

level. Cold-heartedness is one of the constructs of the Personality Inventory-Revised (PPI-

R) [137]. The PPI-R cold-heartedness scale was used as an additional measure of affective
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empathy, and it was proven that it would negatively correlate with IUs perception. That it

is why, we plan to extend our work to explore a more diverse set of cold-heartedness levels

and long-term effects of the proposed strategies on PECP recall.

4.9 Conclusion

As robots move into roles that involve providing users with services, such as cleaning the

floor and working in offices, they need to employ strategies for affording an effective expres-

sive feedback to facilitate communication with them. In this work, we described two key

feedback strategiesDCF and VRDCFbased on observations of human-human interactions

and social psychology theories. We implemented these strategies on a robot that coopera-

tively interacts with its users to visit different checkpoints marked on the table. Wemeasured

the interaction outcomes in terms of the objective performance and subjective evaluation of

the robot. Our results showed that, when the robot combined IUs and the robot’s visible

behaviors, participants completed the task faster and assign higher ratings for the robot. We

also found that using the VRDCF strategy increased the time needed to recall the PECP,

as the PECP is recalled incorrectly and the human’s perception of the robot’s performance

was mediocre. We believe that increasing the number of instructions results in a tradeoff

between cognitive load and breakdowns related to memory struggles during the recall of

the PECP when there is a high number of rules that need to be recalled. This suggests that

robots should selectively use these strategies based on the goals of the instruction.

Based on the previous studies, we may confirm that using IUs help to gracefully mitigate

communication protocol reuse and help establishing long term communication protocols.

However, to be able to predict whether there will be future interaction instances during

which the communication protocol could be maintained, we need to verify whether people

feel attached to the minimally designed robot. In fact, emotions provide a feedback system.

For example, they may help us to learn how to maximize the outcomes while interacting

with others. Emotions promote belongingness and good interpersonal relationships and thus

people may feel attached to a task, a person or simply a social agent. In our next study, we

will explore whether using IUs and the robot’s visible behaviors (VBs) help on increasing

people attachment to a minimally designed robot. Positive emotions (such as attachment)

that people may feel are the motivator to develop some empathy during the interaction for

the robot. They can help people put forward some effort to remember the encoded rules.

Consequently, it is essential to measure whether such positive emotion emerge or not.



Chapter 5

Exploring Attachment Evolvement for a

Minimally Designed Robot

5.1 Introduction

Social bonding suggests that taking part in a communication increases the attachment and

consequently the adaptation capability which may enhance the meaning acquisition process

[138]. As an example, infants who form a social bond with their caregivers establish a better

sense of their surroundings. In fact, slowed voice tones and physical contact, help the child

to establish a preference for the caregiver and a mutual interest in communication evolves

[139]. In such scenarios, children distinguish the different voices, and turn their heads to

pick up the tones. They can intentionally generate imitations of hand gestures and voice

sounds, with different expressions transferring a knowledge, an interest, an excitement, etc.

[140]. Meanwhile, caregivers, excited by the infant’s expressions, respond with affectionate

behaviors by using rhythms of speech and slowed gesture with a soft voice and a moderate

modulation of pitch [141]. Incrementally, the attachment evolves and the mutual understand-

ing occurred by mirroring the patterns of each others’ expressions [142]. Another similar

example that involves the attachment process is the human-pet relationship. Many studies

[143][144][145] investigated the beneficial effects of pet ownership on human’s interper-

sonal relationships and explored the importance of the human-animal interaction for the

human’s relational development [144][145][146]. Sparks et al [146] defines the behavioral

attachment during the human pet interaction 1 as a prominent factor that helps the human to

understand the pet’s signals. It is then reasonable to presume that attachment between the

1Behavioral attachment: It consists on the human’s involvement in different tasks with their pets such as

play or teaching them new instructions where the pets are using their inarticulate sounds and their bodies

movements to transfer the meaning to the owner
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human and others plays a unique role that helps on understanding others and the environ-

ment.

In this vein, we are interested in understanding whether inarticulate sounds and simple

gestures help to establish the attachment process between the human and our mobile ac-

companying robot. We believe that we can use them to create a social bond just like in

the caregiver-child or the human-pet scenarios and then enhance the adaptation within the

human-robot interaction. Designing a robot that is not related to any language or any special

cultural behaviors, will afford the chance to create a universal form of communication for

the human-robot interaction just as in the child-caregiver scenario that is based on the at-

tachment between both parties and the use of simple cues to establish online the customized

social rules. To measure the social bonding, we intend to assess the values of five factors :

the degree of adaptation to the social creature, the stress felt by the subject, the friendliness

of the robot, the cooperation and the achievement degrees.

5.2 Background

Many studies investigated the attachment of humans to social robots [9][147]. Sung et al

[147] indicated that people had a tendency to name their robots. Findings such as this

suggested that people may treat robots like they treat a child or a pet [148]. In fact, if the

robot exhibits a social behavior, a social bond will be formed and then people feel more

comfortable with robots [149]. As an example, Samani et al [149] proposed Lovotics, a

robot that uses audio and touch channels along with internal state parameters in order to

establish long standing bonds with individuals. Lovotics afforded for the users an intimate

relationship and people felt so comfortable that they even hugged the robot. Hiolle et al

[150] used the Sony AIBO robot during their experiment where they showed that people

tend to form a social bonding with needy robots that demanded assistance from users. The

latter study suggests that robots do not need multi-modal communication to develop the

attachment process and that exhibiting a simple behavior can be attractive enough for the

human to feel attached to the robot and to embark on a positive constructive relationship

with its. In our study, we will use similar simple behaviors that can be assembled under

the immediacy cues category: the gestures and inarticulate sounds. We want to explore

whether these two social cues can help to ground the attachment process and explore the

social bonding’s effect on the interaction’s meaning acquisition. Inarticulate sounds were

used to establish playground language with autistic children [13] and were studied in the

context of the human-computer interaction [115] where it was proved that it can lead to a
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Fig. 5.1 ROBOMO’s design.

Table 5.1 The different behaviors that ROBOMO can exhibit.

Code of the Behavior Behavior Description of the Behavior

IS inarticulate sounds yes, no, right, left, forward

ND nodding en..well, thank you, I’m not sure

GS gestures turning left, turning right

compassionate effect. Iconic gestures [151] 2 facilitates the human-robot interaction [152]

and were used in different contexts such as hosting activity [153], showing hesitation [154],

etc... In our current work, we intend to ground the attachment process that may evolve

between ROBOMO and the participants. We want to verify whether a social bonding can

emerge in the context of the human-ROBOMO interaction and whether it can guarantee to

transfer the meaning once meshed with the iconic gestures and the inarticulate sounds.

5.3 ROBOMO Design

We respected the minimal design paradigm which consists on reducing the robot’s design

and preserving only the most elementary components [115]. ROBOMO has a long shaped

body with an attractive container (made of plush) and has no arms. We had intentionally

given ROBOMO a pitcher plant (Nepenthe) appearance to encourage people to interact with

it, much as one might with a young child or a pet. We believe that exposing a half hairy

head (Fig. 5.1), makes the robot looks cute and affords a starting point for the social bonding

process formation. Although used for personal navigation, our accompanying mobile robot

is not designed to walk which may create a sort of an empathetic feeling towards ROBOMO.

Inarticulate sounds were produced according to Okada et al’s [129] generation method of

2They are speech-related gestures that mention concrete objects for example showing the direction for the

human.
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Fig. 5.2 A snapshot of our mobile accompanying robot interacting with a participant during

the experiment.

inarticulate sounds. Three types of behaviors were exhibited (i) the inarticulate sounds with

meaning (ii) the nodding (iii) gestures (table 5.1).

5.4 Experimental Protocol

The main objective is to explore the effectiveness of the attachment process and its impact

on the meaning acquisition within a human-robot interaction. We expect that gradually,

the communication will be clearer. We setup an indoor ground for navigation task that

contains cross points (Fig.5.2). To pick the right behavior, the participant is instructed by

the robot. We asked the participant to talk to ROBOMO with simple words and slowly. 12

participants with age varying in [22−30], take part in 3 sessions. We have chosen several

configurations during the 3 sessions to guarantee the diversity of the participant’s responses.

It helps also to ensure that any successful meaning guessing of ROBOMO’s behaviors is

not related to the fact that we are using the same configuration but it is related to the social

bonding which enhances the participants’ adaptation. In our scenario, if the human does not

perceive the robot’s response, he will repeat his question within a short period for direction’s

confirmation. In such case, the robot exhibits a body behavior such as pointing to the left

or right direction using its upper body part combined with the right inarticulate sound as a

response. On the other hand, in the short periods of silence (when the user is not addressing

any request), a nodding behavior is displayed. Each student interacts with ROBOMO for 2

minutes and then answers the same 5-Likert Scale questionnaire (13 questions). The table

5.2 contains the different questions.
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Table 5.2 The questionnaire evaluating the attachment’s five factors.

Factors Code Questions

Cooperation Q1 Has ROBOMO tried the best it can to help you?

Q2 Do you feel that ROBOMO needed your help?

Q3 Have you wanted to help ROBOMO?

Achievement Q4 Had you recognized the direction indicated?

Q5 Can you distinguish ROBOMO behaviors’ different meanings?

Q6 Do you think that you established a good relational contact?

Friendliness Q7 Can you consider ROBOMO as a friend?

Q8 Have you felt that ROBOMO was familiar for you?

Stress-Free Q9 Was it hard for you to understand ROBOMO?

Q10 Can you get the feeling of ROBOMO?

Adaptability Q11 Do you think that ROBOMO is a smart robot?

Q12 Can you feel that ROBOMO showed some animacy?

Q13 Do you think that ROBOMO behaved like a baby?

Our evaluation of the social bonding process is articulated around five factors: the adapta-

tion, the stress, the friendliness, the cooperation and the achievement. We tried to record

on log files the participants’ requests and the robot’s instructions. We recorded also the

interaction videos that helped us to detect the spatial points when the gestures were used.

5.5 Results

5.5.1 Questionnaire Based Results

To statistically identify the most ameliorated social bonding factors, we applied ANOVA

based on the users’ answers. Table 5.3 exhibits the different p-values and the Fig.5.3 dis-

plays the average mean opinion score (MOS) values of the different subjects per session

where the horizontal axis shows the social bonding five factors combined with their related

questions during the three sessions and the vertical axis shows the MOS values for 12 sub-

jects. TheMOS is the arithmetic mean of all the individual scores, that ranges from 0 (worst)

to 5 (best) where a value that is equal to 3 is acceptable.

Based on the Figure5.3, we can see that cooperation, achievement and stress-free fac-

tors slightly went up by means of sessions. Table 3 showed that, the questions Q1, Q2 and

Q3 which evaluate the cooperation factor were statistically significant with p-values respec-

tively equal to ***p=0.0024<0.005; *p=0.0927<0.1 and *p=0.0993<0.1. The questions

evaluating the achievement (Q4, Q5 and Q6) showed also significant results with p-values re-

spectively equal to ***p=0.001<0.005, *p=0.0615<0.1 and **p=0.0137<0.05. Finally, the
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Fig. 5.3 Results of the average mean opinion score (MOS) based on the 13 questions’ an-

swers and for the 3 sessions of the experiment.

questions that concern the stress-free (i) Q9: **p=0.0391<0.05 (ii) Q10: **p=0.0185<0.05

showed also that there were statistically significant results. These results suggest that the

robot’s cooperation capability using the inarticulate sounds and the gestures helped on

achieving the task and leaded to stress reduction while interacting with ROBOMO.

Based on the Figure.4, we can see that friendliness and adaptability increase slightly while

statistically there was no significant differences between the different sessions with respec-

tively (i) Q7: p=0.2439 (ii) Q8: p=0.1573 for friendliness and (i) Q11: p=0.2038 (ii) Q12:

p=0.2875 (iii) Q13: p=0.4785 for adaptability. We asked from people to write down their

opinions before and after experiment. We analyzed the participants’ different subjective

answers and we found out that users confirm that it is easy to adapt with ROBOMO. They

found its friendly and cute before even starting the experiment. Thus, the robot’s appearance

played a key role to reduce the adaptation gap and to give a good first impression.

5.5.2 Real Time Interaction Results

Based on the stored log files of the speech recognition system and the recorded videos, we

counted the user’s picked directions based on the robot’s indications and the related robot’s

behaviors (getures, nodding, inarticulate sounds) (table 5.4) We used the data of the table

4 to evaluate the relationship between participants’ behaviors and robot’s behaviors. Table
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Table 5.3 ANOVA evaluation of the questionnaire results

Factors Code P-value Results

Cooperation Q1 ∗p= 0.0927< 0.1, d.f=11 significant

Q2 ∗∗∗p= 0.0024< 0.005, d.f=11 significant

Q3 ∗p= 0.0993< 0.1, d.f=11 significant

Achievement Q4 ∗∗∗p= 0.001< 0.005, d.f=11 significant

Q5 ∗p= 0.0615< 0.1, d.f=11 significant

Q6 ∗∗ p= 0.0137< 0.05, d.f=11 significant

Friendliness Q7 p= 0.2439, d.f=11 not significant

Q8 p= 0.1573, d.f=11 not significant

Stress-Free Q9 ∗∗ p= 0.0391< 0.05, d.f=11 significant

Q10 ∗∗ p= 0.0185< 0.05, d.f=11 significant

Adaptability Q11 p= 0.2038, d.f=11 not significant

Q12 p= 0.2875, d.f=11 not significant

Q13 p= 0.4785, d.f=11 not significant

Table 5.4 The contingency table integrating the human behavior and the related robot’s

behavior during the 1st, 2nd and 3rd sessions

Session 1 Session 2 Session 3

Human Behaviors Human Behaviors Human Behaviors

Behaviors Forward Left Right Forward Left Right Forward Left Right

IS 9 13 12 13 20 32 9 12 27

Nodding 13 12 18 14 7 11 16 12 13

Gestures 12 6 21 11 11 10 7 17 11

Table 5.5 Chi-Square test of independency and the corresponding P-values evaluating the

relationship between the human behaviors and the robot’s behaviors during the different

sessions of the experiment.

Sessions Chi-Square Values P-Values Results

Session 1 χ2=5.21, dof=4 p= 0.266 not significant

Session 2 χ2=7.53, dof=4 p= 0.110 not significant

Session 3 χ2=12.2, dof=4 p= 0.016< 0.05 significant
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5.5 shows the different Chi-square test’s results where we can see that gradually the p-value

increases by means of sessions: p1 < p2 < p3 with a statistical significance during the

third session. We noticed also that there was no significant results during the two initial

sessions. This incremental p-value increase suggests that gradually a strong relationship

evolves between the human and the robot’s behaviors.

5.5.3 Correspondence Analysis Results

In order to visualize the relationship between the robot and the users’ behaviors, we used a

visual approach which is the correspondence analysis. The bi-dimensional map exposed the

relationship among categories spatially on empirically derived dimensions. The frequency

for each category (forward, right, left) and for each variable (nodding, inarticulate sounds

(IS) or gestures) is considered in order to expose the Euclidean distance in two dimensions.

Figure 5.4 depicts the associations between categories of robot’s behaviors and participants’

picked directions during the three trials. The red triangles represent the participants’ chosen

directions and the blue dots represent the robot’s behaviors. Considering the first trial’s cor-

respondence analysis Fig.5.4 (left), we can see that there was no clear relationship between

the robot’s behaviors and the human’s chosen directions. By analyzing the second session

results Fig.5.4 (center), we can see that the robot’s behaviors starts to be mapped with the

human chosen directions. In fact, there is a tendency to attribute the nodding behavior with

the left direction, the inarticulate sounds with the right direction while the gestures were

associated with the forward direction. During the final session Fig.5.4 (right), the Euclidean

distance between the robot’s behaviors and the human chosen directions becomes shorter

and the tendency to associate for each direction a specific robot’s behavior becomes clearer.

In fact, human turning right behavior was related to inarticulate sounds, turning left was as-

sociated with the nodding, while going forward occurred when the robot exposes gestures.

5.6 Discussion

Based on the questionnaire results (Fig.5.3 and table5.3), we noticed a gradual ameliora-

tion on the human’s attachment process. The stress was decreasing during the interaction

(Fig.4) which explains the different significant p-values (p=0.0391, p=0.0185). Cooperation

had also significant values with p=0.0024, p=0.0927 while achievement p=0.001, p=0.0615.

This highlights the effectiveness of using inarticulate sounds and iconic gestures to decrease

the stress, encourage the human to cooperate with the robot in order to achieve the task
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Fig. 5.4 The correspondence analysis of the trial 1 (left), trial 2 (center) and trial 3 depict-

ing the association between the robot’s behaviors (inarticulate sound and gestures) and the

directions (forward, right, left).

and thus helps on creating a social bonding during the human-robot interaction which may

facilitate the meaning’s acquisition. In fact, we remarked a common interest on finding

the frequent successful patterns combining for each robot’s behavior a particular direction.

Based on the table 5.5, we remarked that there was an increasing tendency to associate the

robot’s behaviors with the available directions during the navigation task (p1 < p2 < p3).

The incremental formation of attuned patterns which maps the robot’s behaviors with the

human’s chosen direction was clearer during the sessions 2 and 3 as the Fig.5.4 shows. Our

experiment leads us to the conclusion that our accompanying mobile robot succeeded in

eliciting positive and affectionate behavior from participants. We conclude then that the

inarticulate sounds and gestures that were used by ROBOMO during this dyadic interaction

appeared sufficient for the attachment evolvement and helped on acquiring the meaning of

the robot’s behaviors.

5.7 Conclusion

Our study explored the human’s attachment toward our accompanying robot. ROBOMO

used inarticulate sound and iconic gestures in a desynchronized way in order to help people

navigating in a block-based environment. It was surprising to see no anxiety-avoidance type

of attachment existing in the participants towards ROBOMO which helped to decrease the

stress and strengthens the human-robot cooperation in order to achieve the task. The results

showed that inarticulate sounds and iconic gestures helped on grounding the attachment

process during the experiment and that the participants gradually acquire the meaning of

the robot’s behaviors so that a communication protocol could finally be established. How-

ever, we remarked that there were no special significant results in terms of friendliness and

adaptability. We may explain so, by the fact that the gestures and robot’s IUs were not syn-

chronized so that the human feels that the robot is adaptive and friendly. In our next work,
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we will try to measure not only the attachment but also 3 other factors which are belief,

commitment and involvement and which are related to the social bonding. In fact, social

bonding theory consists of not measuring only the attachment but 4 factors including the

attachment. In the HRI community and to the little of our knowledge, there were no tools

created to measure the social bonding’s four factors. That it is why one of the issues of our

next study will be the establishment of a complete social bonding questionnaire measuring

the 4 factors. After, we validate our tool, we use it in a case study, to verify whether it is

better to have a minimally designed robot that it is proactive or reactive. Our robot in the

next study, will be synchronizing the robot’s gestures with the IUs to verify whether we

have an increase in terms of attachment factors by means of interaction instances.



Chapter 6

Exploring Social Bonding’s Four Factors

And the Prosociability Effect

6.1 Introduction

It has become increasingly apparent that, designing robot behaviors that trigger bonding

with humans is a necessary requirement in many application areas and contexts where robots

need to interact and collaborate with humans [155][156]. Such robot leading to social bond-

ing formation may trigger a positive reaction from humans and lead to a positive human-

robot relationship (HRR) [157]. In fact, in daily life, a human’s positive attitude toward

others is driven by the social bonding that evolves during their interactions. Social bonding

is an indirect trigger that leads to a reciprocation of another’s kindness with a noble act and

brings about a more positive human-to human relationship.

In this context, we want to investigate whether similar social bonding can evolve between a

human and a robot so that we can ensure that users will reciprocate the robot’s attempts to

achieve the task by agreeable reciprocated acts and whether it may lead to a positive HRR.

Travis Hirschi’s social bonding theory argues that, people who believe in societies rules, are

attached to others. Therefore, they have a high commitment to achieve conventional activi-

ties and reciprocate the agreeable gestures of others [138]. They can feel highly involved in

their daily life so that, they begin to invest more time and energy in activities which serve

to further bonds with others. As a result, less time is left for them to become involved in

deviant activities [158]. Gottfredson and Hirschi [159] proved that people who have a weak

bonding are more likely to deviate and have bad relationships with others.

On this basis, if we design the robot’s behaviors in a way that we measure the social bond-

ing evolving each time we integrate a new behavior in the robot’s behavioral design, we can
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then have the capability to detect the most prominent behaviors yielding to a better social

bonding formation, and as a result, to a more positive Human-Robot Relationship (HRR).

Two communication channels are integrated in our robot, called ROBOMO, which are inar-

ticulate utterances (IUs) and some gestures (Gs), while we try to measure the social bonding

each time we use one or both of the communication channels.

The proposed four elements metrics measuring social bonding should converge in order that

we may validate the usability of the proposed metrics and in order for us to guarantee the

reliability of such suggested metrics to measure the social bonding each time we need to

add a new behavior to the robot and to judge whether it is a useful behavior that increases

social bonding or not. Another study that joins the same insight is the Belapeme et al [160]

study where he confirms that synchronizing different communication channels may increase

social bonding.

Furthermore, models from social psychology describe how humans predict the events and

behaviors of other humans [161]. That it is why, a reactive accompanying robot would be

preferred over a proactive accompanying robot since a human may feel that they control

the situation and may predict the robot’s behavior. A robot can be reactive if it responds

in a timely manner to changes in the external asynchronous human’s requests. It cannot

anticipate neither has it any kind of task planning ability because it can only react and, for

example, it cannot take a decision to initiate an interaction. A proactive robot can be defined

as a robot that may propose for the human to undertake some tasks or to engage in a conver-

sation without the human emitting any request to make the robot propose such suggestions.

However, the proactivity of an accompanying robot can be thought to be equally important

in order to induce the human’s engagement in the interaction when the accompanying robot

initiates a conversation.

Therefore, the current study is concerned with the issue of exploring the effect of ’reactive’

and ’proactive’ response modes adopted by the robot on the social bonding evolving during

the interaction with a minimally designed accompanying robot. If the proposed metrics mea-

suring the social bonding are validated in the first step (when we tried to measure the bond

evolving when IUs and Gs are combined) assessing which type of behavior (’reactive’ or

’proactive’) an accompanying minimally designed robot should adopt to increase bonding

should be both straightforward and reliable since we intend to use the validated proposed

metrics.
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6.2 Related Work

Since the proposed study and its experimental evaluation is motivated by theories from

social psychology and previous concepts and studies from HRI, this section provides an

overview on relevant theoretical foundations in human-human interaction, design concepts

and HRI related studies.

6.2.1 Social Bonding

Hirshi [138] attempted to measure bonding using four elements which are ’attachment’,

’commitment’, ’belief’ and ’involvement’ in the context of high school students. He defined

attachment as the emotional linkage between a person and society, commitment as the effort

a person puts forward in social activities, belief as the person’s conviction that a particular

social activity or task is useful and involvement as the extra time and energy being put

forward in order to prove that they are highly implicated in society. Hirshi [138] found that

measures of attachment (caring, relaxation and likeability), commitment (average of grades,

participation in school activities), belief (respect for social rules) and involvement (extra

school tasks the student does as they become adapted to the school atmosphere), help with

predicting a student’s delinquency. He highlighted that measuring only one element does

not permit accurate predictions of future human-society relationships [138].

Many studies adapted Hirschi’s theory of social control in order to consider studying the

bonding between humans and robots. Bethel et al, [162] investigated whether children were

able to share a secret with a robot. The results indicated that, children were likely to share

the secret and that they interacted with it in a similar way as they would with a caregiver.

Similarly, Swerts et al [163] investigated whether children considered playing with the robot

to be like playing with a friend. The results suggested that children enjoyed playing with the

robot more than playing alone but not better than when playing with a friend. In another HRI

study, the robot’s ability to establish and maintain a social bond with a child was examined

in the context of a hospital [160]. Results suggest that children become accustomed to

interacting with the accompanying robot and a bonding evolves during the interaction. Fior

et al [164] investigated whether children could form relationships with robots and view

them as friends. Their results showed that most children thought the robot could be t heir

friend and almost half of the children would even share a secret with the robot. Kanda

et al [52] conducted a child-robot experiment at a Japanese elementary school using two

"Robovie" robots with first-grade and sixth-grade children. They wanted to investigate the

possibility of using accompanying robots as social partners to teach the children the English

language. Although the majority of the children did not improve their English skills, the
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children were attached to the robot. Up to now, research studies in HRI focused on only one

element to predict bond evolvement, being attachment. However, Hirshi [138] highlighted

that we need to explore the evolvement of four factors (belief, attachment, commitment and

involvement) and not only the attachment factor in order for us to determine the evolvement

trends (positive or negative) of the social bonding. Another point that we tackle in our

research concerns the bonding evolving between adults and an accompanying minimally

designed robot rather than to use the classical condition where only the social bonding

between children and the robot is studied.

6.2.2 Accompanying Robots and the Issue ofMinimal Design Paradigm

In the last few years, most of the studies have focused on the goal of building social ac-

companying robots that have an enormous number of communication channels and which

can be safely operated [165][166]. By accompanying, we mean a robot that stays close to

the human because the task (or the service that need to be afforded for the human) requires

that. Some studies [167][168], examine how a speaking accompanying robot can infer ad-

equate speech by combining words to particular contexts in different situations. In some

other studies, vision-based scene understanding and language recognition are combined and

integrated in the accompanying robot [168][169] in order to make it adaptive to human pref-

erences. Kanda et al integrated such a combination of vision-based scene understanding and

language recognition in an accompanying robot called Robovie in order to investigate the

HRI in a museum [170] and a school [171]. Although using numerous sensors can be a key

element to realize an advanced accompanying robot, such an accompanying robot would

not be affordable1 for common users.

We need to build affordable accompanying robots that are expressive enough to satisfy the

user and induce human social bonding [172]. In addition to the desire to design affordable

robots, rather than expensive robots that possess a high number of sensors and effectors, we

should consider as robotists that this leads to the emergence of complex interaction patterns

and may further lead to anomalies during the HRI if the robot exposes a combination of

complex patterns that it is not handled or accepted in daily life (e.g: the situation when the

robot uses inadequate speech for the situation). That is why one key concept in our work

needs to be highlighted here; that being minimal design. The minimal design concept can

be defined as the minimization of the robot’s appearance and communication channels in

its use of anthropomorphic features so that humans do not overestimate or underestimate

its skills. This was first proposed by Okada et al [8]. So, in our current work, we are pri-

1By affordable, we mean that increasing the number of sensors and effectors would increase the manufac-

turing cost of robot and once commercialized, common users would consider it to be unaffordable.
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marily interested in minimally designed (minimal number of sensors and anthropomorphic

features) accompanying (it has to assist the human and be close to him during the service

attribution) robots.

6.2.3 Reactive versus Proactive Accompanying Robots

We define a proactive behavior as taking the initiative, whenever it is necessary, to achieve a

task. It is a means to satisfy internal social aims [173], but also to engage with others. More-

over, it can often be embarrassing when you need to ask someone to help you. Therefore,

we believe that a proactive accompanying robot can be more appreciated than a reactive

accompanying robot. Providing the accompanying robot, with an ability to offer proactive

behaviors for humans, is one of the most important topics within the HRI community [174].

Satake et al [174] proposed a model of approaching behavior to initiate a conversation with

walking pedestrians. Another topic concerns the study of the appropriate moment to start an

interaction [175]. Several works consider when to decide to initiate a conversation with the

human depending on their trajectory or the distance to the accompanying robot [176]. Esti-

mating intended human motion was used to enable an accompanying robot to give proactive

assistance to an active human partner [176]. Achieving the proactive behavior of agents

through goal reprioritization is suggested in [177].

Although we expect that proposing proactive behaviors may ensure a better bonding be-

tween humans and robots [178], we must also lend support to the claim that, using a so-

cially reactive robot might be more valued. In fact, an accompanying robot that acts like

a friend and provides us with proactive behaviors is much more complicated to achieve

[179]. It requires to attract a real personality to attract the user [180]. Therefore, people

can adopt a negative attitude towards proactive accompanying robots because they are more

lifelike [178]. People could fear that proactive accompanying robots could lose control and

threaten them [181]. In fact, proactive accompanying robots make decisions of when trig-

ger an interaction with a person, thus potentially leading to situations where users’ may

perceive that they are not in control of the interaction [177]. An overview of such issues,

such as controllability, privacy, and transparency is provided by [182]. In fact, control is

also crucial in maintaining a good HRR. As an example, the Microsoft Office Paper-Clip

assistant "Clippy" was evaluated as being annoying because of it being a proactive agent

that indirectly controls the users of Microsoft Office attention, however, users indicated that

they would in fact, prefer a reactive "Clippy" [183]. Essentially we are particularly inter-

ested in another topic that being the investigation of using our proposed bonding metrics to

verify whether users may bond more with a minimally designed accompanying robot when

it follows a reactive or a proactive behavior mode.
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6.3 Method

6.3.1 Interacting With ROBOMO

ROBOMO has a long shaped body utilizing an attractive container (made of plush material)

and has no arms2. We intentionally gave ROBOMO a pitcher plant (Nepenthe) appearance

to encourage people to interact with it, much as one might with a young child or a pet. We

believe that exposing a half hairy head (Figure 6.1), makes the robot look cute and affords a

starting point for the social bonding process formation. Although used for personal naviga-

tion, our accompanying mobile robot is unable to walk.

The human has to carry the robot just as we might carry a baby. In [184], Kemper et al

found that touching a robot decreases the perceived machine-likeness of the robot and the

human’s feeling of dependability. This makes our robot more human-like and can be used

as an indirect trigger for users to bond with ROBOMO. ROBOMO uses the IUs and Gs

as two communication channels helping to generate different behaviors (indicate directions,

confirmation or denial behaviors, happy and sad gestures or tones). Tones are generated

based on Text-to-Mary Speech software that a markup language, can lead finally to the gen-

eration of a file that contains the speech with the emotion indicated in <emotion><category

name="happy or sad"/>Speech </emotion>. If the category name is indicated the main

program EmoSpeak related to Text-to-Mary speech will use 3 dimensions related to Mehra-

bian’s PAD model with special coefficients for each descriptor related to the emotion in

question. e.g: <dimension name="arousal" value="0.3"/><!–lower-than-average arousal–

> <dimension name="pleasure" value="0.9"/><!–very high positive valence–> <dimension

name="dominance" value="0.8"/><!–relatively high potency–>.

The IUs were produced according to the generation method for IU described by Okada et

al.[129]. An IU can be defined as a porosodic component of speech that it is capable of

transferring a meaning to the listener. As an example, one can cite the earcons (non verbal

audio messages), the humming sound of a baby, etc. We used the hummed sound because it

is proven in daily life that humans like a babies hummed sounds, may establish communica-

tion protocols using it and even memorize it. Two types of behaviors were exhibited: (i) the

IUs:yes, no, right, left, back, forward, go, stop, slow down, happy or sad tones based on the

user’s guessing of the next direction and (ii) Gs: turn left, turn right, yes (to implicitly mean

"go"), no (to implicitly mean "stop"), bow to the front, bow to the back, happy (small gesture

of a dance) and sad (a sad posture while the robot’s head bows down) gestures. A user has to

ask the robot to give information about the direction (reactive mode). So, by reactive mode,

we mean that the human has to emit the request and the robot will respond asynchronously

2ROBOMO’s design was awarded in ICSR 2012
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to that human’s request. When the robot automatically helps the user without the human

asking, it is called a proactive behavior.

degrees of freedom
camera

Speaker

microphone
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motors

micro PC inside

(a) (b) (c)

Fig. 6.1 A picture of our accompanying robot named ROBOMO.

6.3.2 Availability of our Research

The issue under scrutiny in this work is the design of four measures for the quantification

of social bonding between humans and robots. If the four measures for the quantification of

social bonding are validated we then may use them to test out whether a modification on the

robot’s design, by adding or taking out a behavior, may bring about better social bonding. In

daily life, if the social bonding increases, the human’s dedication and implication on society

increases too [138]. By analogy to that, if the human’s social bonding increases during the

HRI, we have a positive HRR and we may say that a state of harmony governs the HRI.

A unique point regarding the current study, is that it is premised on the assumption that

the four factors defining social bonding should be taken into account rather than only one

factor being the attachment; that being the only element used to measure bonding and used

in many previous HRI studies [162][164], etc. Another unique topic in our study concerns

the fact that we want to measure the bonding between a robot and an adult rather than just

focusing on the bonding that may evolve between a child and a robot for two reasons. The

first reason is that, we think that adults have to test out the robot initially before feeling that

it is safe and convenient for their children to use. Secondly, only a minority of social robots

are conceived for usage by children and most of the HRI studies consider only adult users.

So as a summary, it is very reasonable to consider the bonding between adults and children.

Furthermore, most of the HRI studies that concern the accompanying robots focus on the

achievement of the task and did not approach the problematic issues of social bonding.

In addition to that, they focused on accompanying robots that integrate a large number

of sensors and effectors. In our study, we focus on both task achievement and the social
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bonding that may evolve between the user and the accompanying robot. Our accompanying

robot is minimally designed to make it affordable, simple to use and to avoid any adaptation

gap related to the robot using a very high number of sensors and effectors which may, in turn,

increase people’s expectations about the robot’s functions. By elaborating on the nature of

the minimalist robot, a human will have low expectations relating to the robot’s functionality

and may better tolerate the robot’s eventual mistakes [75].

Finally, if our designed four measures for the quantification of social bonding are reliable,

it would be interesting to present a case study where we use them for measuring the social

bonding which evolves between a human and a robot if we add a new behavior. Thus,

although there is overwhelming evidence corroborating the notion that a proactive robot

is preferred over a reactive robot, it can be of paramount importance to test out the social

bonding trend in both behavior mode cases (reactive and proactive) and choose the most

appropriate mode.

6.3.3 Task and Experimental Procedure

Fig. 6.2 A user interacting with ROBOMO.

We setup an indoor ground for a navigation task (10mx6m) that contained many inter-

sections (Figure 6.3). In each intersection, the participant should ask about the direction to

be chosen. To pick the next direction, the participant is instructed by the robot. Users need
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Fig. 6.3 The experimental setup: The human has to hold the robot and emits his request to

ROBOMO.

to complete the task and reach the reward (music CD) location. They ignore the reward

location and only rely on the robot’s guidelines in order to complete the task. Thus, the

general task was to follow the robot’s instructions in order for the location of the reward to

be reached. However, we designed the experiment using four different conditions3. When

answering the human’s request, in condition 1 (C1), the robot uses only IUs, in condition

2 (C2), the robot uses only gestures, in condition 3 (C3), the robot combines the IUs and

the Gs in a reactive mode of behavior (a reactive mode of behavior corresponds to the robot

only answering the user’s requests without any anticipation of the human’s demands) and

in condition 4 (C4), the robot combines the IUs and the Gs in a proactive mode of behavior

(a proactive mode of behavior corresponds to the robot taking the initiative and telling the

user about the next direction without the user asking). 10 participants took part in each of

the different conditions. In each condition, the participant interacted with ROBOMO for

at least two minutes and then answered the questionnaires indicated in the section 6.3.4.

Participants ages vary from [22− 30] years old (Figure 6.2). We told to each participant

that they may ask the robot’s again in cases where they did not get the robot’s answer the

first time. The whole experiment was video recorded so that the users’ facial expressions4

could be detected. We formed the first hypothesis (H1) regarding how combining numerous

channels of communication may enhance social bonding while:

3By condition here we mean the way the robot will adopt to interact with the human
4Features used to determine the facial expressions are the lips, eyebrows, eyes
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• H1: Participants who are taking part in the third condition show better social bonding

and rate their experience with the robot as more positive than those who participate

in conditions 1 or 2. This prediction follows the baby-caregiver schema and joins

Belpaeme et al [160] insights. Belpaeme et al [160] suggested that using synchronized

communication channels may bring about better social bonding.

If participants of condition 3 show better social bonding than those in conditions 1 and 2,

we can validate our conceived social bonding measures and we can further use it for more

difficult design choices in order to enhance bonding. Our second design choice concerns

the comparison of conditions 3 and 4. Thus, hypothesis 2 can be formed as follows:

• H2: We expect that participants who take part in the condition 4 show better social

bonding and rate their experience with the robot as more positive than those who

participate in conditions 3.

6.3.4 Bond Metrics

To measure the social bonding we established, based on each of the bond’s factors definition

a set of subjective and objective metrics. We associated the belief factor5 for the human’s be-

lief in the robot’s social presence and it conscious agency. We then calculated the instances

of eye contact (based on the recorded videos), the rate of respect6, the number of averted

gazes, and finally the cooperation metric (a 7 point Likert-scale questionnaire inspired from

[129]).

As for the attachment factor7, is the emotional link that may evolve during the HRI, we used

7 point Likert-scale metrics, one that included : the pleasure [185], the caring [110], the

perceived closeness [129], the stress-free [129] and the likeability [108].

The commitment factor8 involves time, energy and effort expressed in conventional lines

of action to achieve the task goals. To measure this commitment, we measured cognitive

effort using a 7-point Likert-scale with the following metrics: the arousal [185], the mutual

attention, the users evaluation of the robot’s "cognitive" effort through the perceived com-

petence [110] and the perceived intelligence [108]. We also measured the user’s: success-

5The actual questions related to the survey for the belief component are described in: http://goo.gl/forms/

6DXgwH3poK
6Rate of respect=number of times the human asked the robot/number of total times the human should have

asked the robot (a specific number for each configuration). This indirectly gives us an impression of the overall

system’s performance and the participants’ ability to understand the feedback (intelligibility)
7The actual questions related to the survey for the attachment component are described in: http://goo.gl/

forms/eoikVunVjG
8The actual questions related to the survey for the commitment component are described in: http://goo.gl/

forms/ItqTMqKVpU



6.3 Method 117

ful cognitive effort9, expanded energy (physical effort rate10) and time (interaction time).

Achievement was also measured (achievement [129]) just like Tanioka and Glaser [186]

used achievement scores to measure the commitment factor in schools. Finally, we asked

users to describe their experience with the robot (situational empathy11) just like Lasley et

al. [187] used self-report descriptions of high school students to assess their evaluation of

the attainment of good grades. In our case, the human subject was required to talk about the

most prominent achievements that they believed the HRI succeeded in attaining.

The involvement factor12, is closely tied to the commitment factor in that it entails the

actual amount of extra expanded time a human takes to pursue the HRI. It is also an in-

dicator of the human’s adaptation according to Chris et al [188]. It focuses on the idle

time available when one is not engaged and the effort expended during that extra time. We

used 7-point Likert scale questionnaires to assess the involvement bond through different

metrics: positive13 and negative14 human faces support [109]. We calculated based on the

recorded videos, the number of times that eyes were wide open (surprised)15, the corners

of the mouth were turned upwards (disgust), one eye brow raised (wondering)16 and mouth

corners raised (happy) since these are optional behaviors that the human is not obligated to

express and which indicates that they are emerged by (involved in) the HRI. These param-

eters are coded two times and then to eliminate confusion about the ambiguous situations

another coder interfered to give his opinion (cohen’s kappa reliability 0.72).

Finally, we conceived another extra measurement, that of harmony17 (not an extra factor).

In fact according to Hirschi’s social bonding, if the person believes (belief) on the usability

of the interaction with society, shows that they are indeed committed to social activities,

appears attached to society and social events and finally proves that they may even afford

extra energy to become highly involved in society (involvement), meaning that there will

9Successful cognitive effort= successful interactions/ total number of interactions. It indirectly gives us

some idea about the overall system’s performance and the participants’ ability to understand the feedback

(intelligibility)
10Physical effort rate=number of steps/ total number of due steps (a specific number for each configuration).

It indirectly provides us with an idea of the overall system’s performance itself and the participants’ ability to

understand the feedback (intelligibility)
11It is the human’s empathic reactions in a specific condition
12The actual questions related to the survey of the involvement component are described in: http://goo.gl/

forms/YUCtIVuNz0
13Positive Social face [188]: It includes one’s desire to be included and appreciated during the interaction

with others.
14Negative Social face [188]:It also includes one’s desire that their interaction with others can be free from

imposition and constraints so that they can feel free.
15The contour of the eyes becomes bigger but the eye brows do not move.
16The eyes contour does not change but one eye brow position changed.
17The actual questions related to the survey of the harmony are described in: http://goo.gl/forms/

M7DWeM1mqO
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be less chances that the person deviates or shows inadequate behaviors. By analogy to that,

we designed a harmony factor that is related to one’s overall acceptance and positive rating

of the HRI. Harmony is articulated in three points which are the robot’s persuasiveness, the

user’s level of trust on the robot and whether the human will use the robot on a long term

basis or not. To measure persuasiveness, we instructed subjects to arrange a list of words

according to their own priorities and then we calculated the level of persuasiveness using the

Kendall-tau distance metric [189]. We also measure trust based on the questionnaire cited

in [110] and the expected long-term use based on the questionnaire cited in [129].

In fact, by measuring the four different designed factors, we may be able to evaluate the

social bonding level. By comparing the social bonding level with the harmony factor we

can more sure about the social bonding results. In fact, if social bonding increases and the

harmony results increase too, that means that we have reliable results about the bonding.

6.4 Results

6.4.1 Investigation of Hypothesis 1 [H1]:Social Bonding Evaluation in

the Three First Conditions

We conducted ANOVA and Tukey-HSD tests to compare the bonding results of conditions

1, 2 and 3. We present in Table 6.1 the comparison results. Table 6.1 shows the Tukey-HSD

results comparing conditions 1 and 3 (C1 vs C3), the comparison of conditions 1 and 2 (C1

vs C2) and the comparison of conditions 2 and 3 (C2 vs C3). We also indicate for each

metric the percentage of users whose related bonding metrics’ values increase in conditions

1, 2 or 3.

By comparing conditions 2 and 3, we remark that condition 3 affords higher social bonds

metrics’ values.

By comparing conditions 1 and 3 Tukey-HSD results (Table 6.1), we notice that there are

statistically many differences between these two conditions except for some metrics which

are: the successful cognitive effort and the number of times the user was disgusted or won-

dering.

This leads us to deduce that the IUs were sufficient to understand the interaction’s context

(no statistical differences for the metric successful cognitive effort). Consequently, if the hu-

man understands the interaction’s context in condition 3 it is not dedicated to the presence

of Gs, because the robot uses only IUs in condition 1 and we still have the same rates of

successful cognitive effort18 as in condition 3.

18As a reminder, it is the number of times a participant guesses what has the robot meant by his guidelines.
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Bond Metric F-test P-value C1 vs C3 E C2 vs C3 E C1 vs C2 E

B

nb of eye contact 272.065 < 0.001 < 0.001 C3 (100%) < 0.001 C3 (100%) < 0.001 C1 (100%)

rate of respect 129.157 < 0.001 < 0.001 C3 (100%) 0.0052 C3 (85%) < 0.001 C1 (100%)

nb of averted gaze 27.990 < 0.001 < 0.001 C1 (15%) 0.0006 C2 (85%) 0.2 C2 (20%)

cooperation 127.733 < 0.001 < 0.001 C3 (100%) < 0.001 C3 (90%) < 0.001 C1 (100%)

A

pleasure 46.672 < 0.001 < 0.001 C3 (90%) 0.0003 C3 (70%) < 0.001 C1 (100%)

caring 63.687 < 0.001 0.0336 C3 (100%) < 0.001 C3 (90%) < 0.001 C1 (100%)

perceived closeness 56.394 < 0.001 < 0.001 C3 (100%) 0.001 C3 (90%) < 0.001 C1 (100%)

stress-free 106.935 < 0.001 < 0.001 C3 (90%) < 0.001 C3 (95%) < 0.001 C1 (100%)

likeability 174.427 < 0.001 < 0.001 C3 (90%) < 0.001 C3 (100%) < 0.001 C1 (100%)

C

arousal 21.187 < 0.001 0.019 C3 (60%) 0.001 C3 (65%) < 0.001 C1 (80%)

mutual attention 46.046 < 0.001 < 0.001 C3 (90%) 0.001 C3 (100%) < 0.001 C1 (100%)

achievement 23.267 < 0.001 < 0.001 C3 (85%) N/A N/A C1 < 0.001 C1 (90%)

perceived competence 172.972 < 0.001 < 0.001 C3 (100%) 0.021 C3 (70%) < 0.001 C1 (100%)

perceived intelligence 49.662 < 0.001 0.024 C3 (70%) < 0.001 C3(100%) < 0.001 C1 (100%)

physical effort rate 93.596 < 0.001 < 0.001 C3 (100%) < 0.001 C3 (100%) < 0.001 C1 (100%)

successful cognitive effort 4.873 0.011 0.072 N/A 0.734 N/A 0.010 C1 (70%)

interaction time 163.299 < 0.001 < 0.001 C3 (100%) 0.640 N/A < 0.001 C1 (100%)

I

HPFS 19.357 < 0.001 < 0.001 C3 (100%) 0.278 N/A < 0.001 C1 (100%)

HNFS 12.980 < 0.001 < 0.001 C3 (85%) 0.500 N/A 0.001 C1 (70%)

adaptability 70.999 < 0.001 < 0.001 C3 (100%) 0.843 N/A < 0.001 C1 (100%)

surprised 14.672 < 0.001 0.001 C1 (10%) 0.294 N/A < 0.001 C1 (5%)

disgusted 1.815 0.172 N/A N/A N/A N/A N/A N/A

wondering 1.798 0.201 N/A N/A N/A N/A N/A N/A

happy 12.590 < 0.001 < 0.001 C3 (80%) 0.011 C3 (30%) N/A N/A

H

trust 35.417 < 0.001 < 0.001 C3 (95%) N/A N/A < 0.001 C1 (95%)

long term use 26.826 < 0.001 < 0.001 C3 (85%) N/A N/A < 0.001 C1 (100%)

persuasiveness 14.845 < 0.001 0.001 C3 (75%) N/A N/A < 0.001 C1 (80%)

Table 6.1 The comparison results of C1, C2 and C3 (One way ANOVA and Tukey-HSD

tests). E stands for the % of participants whose metric X (while X varies between number

of eye contact to persuasiveness) results increase in C1, C2 or C3. N/A refers to cases when

further statistical tests were not warranted (F-test is not significant).
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Although users equally successfully guess the interaction’s context meaning in conditions

1 and 3, participants seem to be happier in condition 3 and show the same level of some

negative feelings (disgust, wondering).

As the social bonding increases mainly in condition 3, we expected that the harmony metric

would increase too in that same condition (condition 3). That it is why, we compared the re-

sults of social bonding (the 4 different factors) with the harmony metric’s results. Analyzed

data show that, the robot is more persuasive, more trustworthy and thus people expect that

they will use the robot on a long-term basis in condition 3 (Table 6.1).

Summing all up, we notice that by exclusively using only one of the behaviors (e.g using

only the IUs or only the Gs and vice versa), the involvement bond does not show any ame-

lioration (column 3 in Table 6.1) and as a result there are no statistical differences in the

harmony results and the overall bonding in both conditions 1 and 2. We remarked also that

IUs are easy to decode in condition 1 and that it is why there were no statistical differences

concerning the cognitive effort put forward in order to achieve the task. So, if condition 3

succeeded on increasing social bonding as we have seen in Table6.1, it is because aestheti-

cally it is better to combine communication channels and give the impression that there is

a synchronization between the robot’s speech and gestures [160]. Thus, we join Belpaeme

et al [160] insights when they highlighted that a multimodal robot synchronizing communi-

cation channels may bring about better social bonding. This paves the way to us to validate

our measurements of social bonding since they lend support to the same insights expressed

in other HRI studies and encourage us to use these measures to evaluate the social bonding

evolving in conditions 3 and 4 so that we can decide whether it is better to adopt the reactive

or the proactive behavior mode for a minimally designed accompanying robot.

6.4.2 Investigation of Hypothesis 2 [H2]: Proactivity versus Reactivity

In this section, we compare the results of conditions 3 and 4. Table 6.2, shows the impaired

two-tailed t-test comparison results of conditions 3 and 4. We call evolution (E) the per-

centage of participants whose given metric X (X varying from number of eye contact to

persuasiveness) results, increase in conditions 3 or 4.

Based on Table 3, we notice that there is a statistically significant increase in the results of

all the bonds except for some metrics. We remark that the number of averted gaze has no

significant differences between both conditions (reactive and proactive conditions).

Also, we remark that there were no significant differences concerning the number of times

the user was surprised. Finally, for the other three most redundant facial expressions (dis-

gusted, wondering, happy), there were no special tendencies highlighting that one of the

conditions led to significantly better results concerning these three facial expressions states.
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Fig. 6.4 Extra effort and time put forward by the user in C4.

Participants were able to add extra time, physical and cognitive effort during condition 4

(Figure 6.4) while barely finishing the task in condition 3. Figure 6.4 shows that, partici-

pants add extra interaction time in condition 4 which explains the increase in the number

of requests, steps, correct guesses (guesses of the robot’s generated IU’s meaning), and the

number of times the user made eye contact with the robot.

As the overall bonding was higher during condition 4, we expect that the harmony factor

values will ameliorate as well in the same condition (condition 4). By examining the results

of the harmony metric19 we remark that, for both groups, there is a rise in the persuasive-

ness, trust and expected long-term use of the robot during condition 4. To summarize, these

results highlight that for an accompanying minimalist designed robot like ROBOMO, a

proactive mode is preferred over a reactive mode in terms of social bonding.

6.5 Discussion

6.5.1 Social Bonding Measures Validation

We tried to investigate whether we have higher bonding and as a result better harmony met-

ric results when the robot uses the IUs, Gs or the combination of IUs and Gs. If we are able

to use our conceived metrics and join Belapeme et al [160] in saying that broadly speaking

a combination of communication channels is better for social bonding evolvement, we can

then ensure that our tool measuring the bonding in a more standard way (just like Hirschi

described in [159]) is reliable and we can use it for further difficult design decisions. As an

19It helps to give an idea about the tendency evolvement of the human robot relationship.
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Table 6.2 The comparison results of C3 and C4 (2 tailed impaired two-tailed t-test, df=19,

alpha=0.05: proactivity versus reactivity). E stands for the % of participants whose metric

X (X varying from nb of eye contact to persuasiveness) results increase in C3 or C4. N/A

refers to cases when further statistical tests were not warranted (t-test is not significant).

Bond Metric T-test P-value E

B

nb of eye contact 6.321 < 0.001 C4 (75%)

rate of respect 4.004 < 0.001 C4 (70%)

nb of averted gaze 0.115 0.909 N/A

cooperation 2.257 0.03 C4 (50%)

A

pleasure 5.12107 < 0.001 C4 (85%)

caring 5.976 < 0.001 C4 (95%)

perceived closeness 3.707 0.001 C4 (80%)

stress-free 9.612 < 0.001 C4 (100%)

likeability 5.881 < 0.001 C4 (85%)

C

arousal 7.922 <0.001 C4 (100%)

mutual attention 2.123 0.04 C4 (60%)

achievement 2.081 0.044 C4 (65%)

perceived competence 2.26 0.03 C4 (80%)

perceived intelligence 5.984 <0.001 C4 (95%)

physical effort rate 2.879 0.007 C4 (95%)

successful cognitive effort 9.126 <0.001 C4 (100%)

interaction time 4.389 < 0.001 C4 (100%)

I

HPFS 3.733 0.001 C4 (100%)

HNFS 3.715 0.001 C4 (75%)

adaptability 9.185 <0.001 C4 (100%)

surprised 0.551 0.585 N/A

disgusted 0.2 0.515 N/A

wondering 0.811 0.422 N/A

happy 0.571 0.572 N/A

H

trust 2.633 0.012 C4 (70%)

long term use 2.796 0.008 C4 (65%)

persuasiveness 2.125 0.04 C4 (65%)
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example, deciding whether a minimally designed accompanying robot should be reactive or

proactive. Referring to Table 6.1, we remarked that IUs are enough to guarantee the user’s

understandability of the interaction. That it is why there were no statistically significant

differences between conditions 1 and 3 in terms of successful cognitive effort. We remarked

also by comparing conditions 1 and 2 in that, because involvement bond did not evolve,

there was no amelioration in the harmony metrics indicating that in both conditions (1 and

2), the user evolves the same involvement when we use the IUs or the Gs. However, when

we combine the Gs with the IUs, we notice that, the involvement increases significantly

indicating that users were more engaged in the interaction. These insights are in line with

Belpaeme et al [160] insights when they highlight that combining multiple types of com-

munication strategies have a strong positive effect on the HRI. Belpaeme et al [160], used

gestures and eye-gaze while in our current research, we use other alternative communication

channels (IUs and Gs).

Therefore, taken together, our findings suggest that Belpaeme et al [160] insights can be

extended to the case when the robot uses simply the IUs (rather than speech) and the Gs

as powerful channels that have a strong effect on the HRI in terms of bonding evolvement.

Consequently, one can validate and summarize hypothesis H1 as follows: Based on the four

factors measuring the social bonding, combining IUs with Gs is better to evolve higher so-

cial bonding. This insight is in line with Belpaeme et al [160] insights which makes our

measures reliable and encourages us to use them to decide whether it is better to adopt a

proactive or a reactive robot.

6.5.2 Social Bonding Measures Promote the Proactive Behavior Mode

Based on the results exhibited in Table 6.2, we remark that participants have higher so-

cial bonding evolvement in the proactive condition in comparison to the reactive condition.

There were some exceptions, while for example we notice that, the number of times the

human makes an averted gaze to the robot is higher in condition 3 which means that the

human’s belief on the usefulness of the communication with the robot is inferior during con-

dition 3. Furthermore, we notice that a user’s facial expressions are not synchronized with

the user’s internal mood. In fact, although participants attributed higher pleasure results in

condition 4, they were concentrating on the task achievement and so they had not the reflex

to exhibit neither negative nor positive facial expressions. As a result to the increase of the

factors in condition 4, harmony metrics values rise too during condition 4 indicating that,

we have more social bonding when the robot starts to be proactive.

One important reason behind people preferring the proactive behavior is the reciprocity so-

cial law. Reciprocity is defined as the obligation to return in kind what another has done for
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us. In fact, if the robot affords a service proactively to the human, we expect that the hu-

man will also afford high subjective ratings to the robot that can be longer interaction time

because they enjoyed the interaction, tolerance of the robot’s errors because it was adaptive

to the human’s requests and could propose help before that the human asks for it, etc. Folk

wisdom recognizes reciprocity with such sayings as "You scratch my back and I’ll scratch

yours". The reciprocity norm is so powerful that it even applies to situations in which you

do not ask for the favor [190]. So, participants had an acute sense of fairness when they are

receiving help from the robot and they reciprocate that help indirectly by over benefiting the

robot with higher social bonding ratings through the questionnaires results in the proactive

mode because the robot was proactive when it offered the help.

6.6 Conclusion

We proposed four measures for the quantification of social bonding between humans and

robots. We used these measures to assess social bonding in the presence of verbal and gestu-

ral interactions in ’proactive’ and ’reactive’ versions of a minimally designed accompanying

robot called ROBOMO. The approach aims to measure four factors which are: ’belief’, ’at-

tachment’, ’commitment’ and ’involvement’. For that, we compared the social bonding

values in the following different conditions: ’robot using only gestures’, ’robot using only

verbal behaviors’, ’robot combining gestural and verbal behaviors’. We showed that com-

bining verbal and gestural behaviors increased the user’s preference of the robot and thus

social bonding. Our proposed metrics were also used for the social bonding assessment

when we decide to add proactive or reactive behaviors. Based on the results, we show that

in the context of a minimally designed accompanying robot, a proactive mode adopted by

the robot is preferred over a reactive mode. In fact, it leads to an amelioration of the social

bonding.

Now, we studied the case when positive emotions may emerge and lead to social bonding. A

long-standing stereotype held that emotions undermine rational thinking and make people

do convenient choices such as interacting with others and enjoy the communication. How-

ever, psychological studies have shown that people who lack emotions (often because of

brain injuries or other problems) are not really better off. They have great difficulty adjust-

ing to life and making decisions. That is why, some people are not qualified enough to have

the social bonding emerging. For such people, when service breakdowns would occur, tak-

ing a decision of continuing with the the minimally designed robot or move to another task

would be difficult and lead to what we call cognitive conflict. In our next chapter, we en-

tame a new experiment that may help us to find out a way to make these people who cannot
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evolve emotions take decisions quickly by making the robot propose a persuasive strategy

to convince them continuing the interaction with the robot.





Chapter 7

TU/e Research

7.1 Abstract

Previously, we highlighted that some people do not evolve social bonding because they can-

not have any kind of emotions when interacting with others. We call them utilitarian people.

We clarified previously that in order that people could remember the rules of the PECP, they

need to feel social bonding so that they cooperate with the robot during the HRI. However,

for utilitarian people there a big chance that this kind of bonding does not emerge. Thus,

the rules could not be encoded in the utilitarian user’s mind. That it is why, we need to find

out way that may convince them continuing the interaction with the robot even if the HRI

encounters some breakdowns.

If we assume that initially the non-expert trainer (whatever is his profile: utilitarian or re-

lational1) holds some preconceptions about the PECP and which are defeated by the robot

behaving in a different way than expected, such a human may experience a cognitive con-

flict because of the difference of what it is expected and what it is perceived. We call such

cognitive conflict, a cognitive dissonance.

This study investigated how social robots might use a persuasive technique after the no-

expert trainer is stricken by the cognitive dissonance. When cognitive dissonance governs

the situation, the human might want to overcome this dilemma by resuming the interac-

tion with the robot or by abandoning the robot. We propose to apply a persuasive speech

technique in an educational context, when the robot has to accompany a student that it is

preparing himself for an exam. The insights that we might get, will have important implica-

tions for the educational use of robots, particularly for understanding of whether robots can

positively affect learning through behavior change. The results of this study also contribute

1emotional
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to our understanding of the extent to which the findings from social psychology got in real

world between humans may carry over into contexts of human-robot interaction.

Furthermore, the timing choice to expose the persuasive message for this context of the

study contributes to robot design by providing a new concept that it is the "gamma win-

dow"2 related to how can we take advantage from aspects of the cognitive dissonance to

obtain increased student’s productivity and avoid the learned helplessness in the context of

science learning by introducing the persuasive content during the "gamma window". This

investigation was contextualized in science learning and, therefore, required gaining a better

understanding of the student’s learning science main struggles, the cognitive dissonance and

the persuasive techniques that can be used in this context and which we will detail more in

the coming sections.

7.2 Introduction

The field of social robots has grown into an extensive body of literature over the past years,

with a wide variety of approaches for extracting human patterns and modeling robots’ skills.

Robots operate as partners, peers or assistants in a range of tasks such as with autistic chil-

dren [191] [192], at homes [193], in hospitals [194] or for having fun; e.g: SONY Rolly

[195], or the robotic toys from Wowwee [196], etc.. However, to be safely engaged during

the human-robot interaction the robot has to exhibit it potential to influence the human’s

beliefs and attitudes at least to guarantee the human’s trust about it usefulness. An attempt

to change attitudes or behaviors or both corresponds to the definition of persuasion [197].

Many studies from HRI tackled the fact of how to afford the robot with the ability to per-

suade people in many application fields such as at school [198] , as story-tellers [199], or as

inciters to conserve energy [200], etc.. For this purpose different points were investigated

such as the effect of the robot’s perceived gender on the robot’s persuasiveness potential

[201], the impact of using different types of social feedbacks (evaluative, factual, ambient,

subliminal or supraliminal) on the robot’s persuasiveness [200], the effect of the message

source’s physical appearance (picture, text message, video) on its persuasiveness [202], etc..

However, to the best of our knowledge no concern was paid to the serious conflicts that stu-

dents encounter at schools while learning science (e.g: Mathematics, Physics, Chemistry,

etc..) and the social robot key persuasive role that can be played in such a case.

Based on Abramason et al [203], these conflicts may lead to an objective non contingency

while nothing the student does makes a difference to what happens, then a perceived non

2A period of time that starts after the human perceives that a cognitive dissonance occurs and the time

when he finally take a decision to continue the interaction with the robot or to abandon it.
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contingency where the student notices that nothing he does makes a difference, after that a

negative attribution is formed where the non contingency is attributed to internal, global and

stable factors, more expectations of non contingency are created where the student imagines

that future tentative will make no difference to what happens and finally learned helpless-

ness symptoms can be recognized based on the student’s behavior when he has to resolve a

science exercise. In such case, the student may experience a depression coupled with moti-

vational deficits and with time he/she will avoid to resolve any science exercise.

According to the MODE model which is a model of attitude-behavior relation in which mo-

tivation and opportunity are necessary to make a determinant behavior, a lack in motivation

or opportunity may activate attitudes that are highly accessible and those attitudes will acti-

vate their correspondent spontaneous behaviors.

In such a case, many parameters play key role to determine whether the student will be chok-

ing under pressure by using his pre-established negative highly accessible attitude (avoiding

to redo the difficult exercise that led to the failure) or will keep an intrinsic motivation

(be redoing the difficult exercise with a pure desire to strive to success) to ameliorate his

understanding of the science exercise by accessing to his pre-established positive highly ac-

cessible attitude (consisting of defeating the science exercise if we suppose that the student

is a defeater by nature).

In this context, the choice of the highly accessible attitude can be guessed through the stu-

dent’s habits. An emotional student that takes decisions in general based on his emotions

and who is experiencing in addition to that the learned helplessness may avoid science learn-

ing and starts to elaborate a phobia from science. An utilitarian (cold-hearted) student that

takes a decision based on reasonable thinking can strive to understand the science content

rather than avoid it and still some other factors that can increase the possibility that he

may avoid to redo the task as well. In fact, utilitarian people have high self esteem. High

self-esteem people have positive illusions that may help them in their life but also that may

cause perception perturbation and a high self-esteem that may make the student diminish the

problem’s magnitude and avoids in a twisted manner to answer the science exercise while

pretending to be "not in the mood" for example.

Based on the theory of Planned behavior if we consider that the student will plan his future

behavior rather than that it will be inferred spontaneously once he encounters a difficult

science exercise, one can already know that no positive attitude will be activated when a

cognitive conflict occurs because there will be weak perceived behavioral control since the

student does not believe that he can perform (one of the symptoms of the learned helpless-

ness) a relevant positive behavior (by redoing the science exercise). In fact, in order that

a strong positive behavioral intention (which determine whether a positive behavior is acti-
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vated or not) can be formed we need to have strong perceived behavioral control which is in

this context inhibited because of the learned helplessness symptoms that stricke the student

once he/she experiences the cognitive dissonance. Consequently, it is important to give a

serious attention to the issue of the dangerous consequences of cognitive dissonance while

learning science for both types of students (utilitarian and relational students). We need to

grant the social robot with the ability to follow closely the student’s engagement and em-

ploy persuasive strategies that may decrease the cognitive conflict which students may get

through while learning science.

In our study, we intend to use a speech-based persuasive strategy inspired from social psy-

chology, which was not experimented yet in the HRI studies combined with the factual and

social feedback of an entity. This entity could be an embodied (box), an anthropomorphic

minimally designed entity (such as a minimally designed robot), a human or nothing at all

(baseline condition). We expect that such a combination of feedback may persuade the stu-

dent and help with time to establish positive counter attitudes which if highly accessed it

may help to predict the student’s future behavior once he faces the same situation even if

the persuader (the entity) is not there.

With such a setup, the human in the case of SDT for example will not have to feel the social

bonding but have to evolve a new attitude implicitly thanks to the non deliberative persua-

sive technique proposed by SDT during the gamma window. If highly accessible, this new

attitude can become a stable attitude in the human’s cognitive miser (whatever is his pro-

file). Even if the HRI encounters some breakdowns, the human will pay more attention to

the robot and will not abandon it even if some breakdowns are encountered once an implicit

new attitude emerged and which consists on resuming the interaction with the robot.

As for the speech-based persuasive strategy, we expose a wide range of different techniques

such as : "foot-in-the-door technique", "labeling technique", "door-in-the-face-technique",

"that’s not all technique", "disrupt then reframe" while in our study for experiment design

purposes related to the power analysis, we will consider only one persuasive message tech-

nique that it is "that’s not all technique"

As for persuasive message sources, we consider a factual feedback message source repre-

sented by a tablet (presenting persuasive text), an anthropomorphic minimally designed so-

cial agent which is a robot called ROBOMO. Finally as another persuasive message source,

we consider including in our study a human as a persuasive message source that also com-

bines the speech based persuasive technique with a high level of social feedback.
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7.3 Background

7.3.1 Cognitive Dissonance

There are many terms that were proposed with similar meanings to cognitive conflict such

as cognitive gap [204], conceptual conflict [205] but also cognitive dissonance [206]. Cog-

nitive dissonance is a discomfort that one in general experiences when an individual holds

beliefs, attitudes or behaviors that are at odds with one another (the ratio between dissonant

and consonant facts).

In [207], Douglas et all, confirm that to measure cognitive dissonance, we need to focus on

three components which are the cognitive, emotional and behavioral components (Figure

7.1).

The cognitive component is related to the human’s belief about the inconsistency after the

decision is made (figure 7.1). Once the situation is evaluated, it leads directly to a bad

emotional reaction. After some time elapses or what we call the gamma window (a period

between the decision taking and the new action that should bring about more consistency)

during which the human experiences an extensive causal analysis because of the new situa-

tion high distinctiveness, low consensus and low consistency 3, the counter attitudinal action

is determined and that it is the behavioral component (figure 7.1).

In fact, after, introspection the human will take a counter attitudinal behavior based on the

heuristics and the stereotypes that he believes he holds. Three different counter attitudinal

behaviors are possible:

• An active attitude change (rationalization) with a new heuristic created. If that heuris-

tic is brought to mind many times (the accessibility increases), it can be an essential

element on the cognitive miser and it can help the human to strive to a better private

and public self. The access to that heuristic depends of a simple tradeoff between

accuracy (reliability) and speed (simplicity) (A).

• Minimize the importance of the cognitive dissonance (belief change) (B).

• Get new information to support his previous decision (perception change) (C).

Now, interestingly, when the student is experiencing a mixture of negative emotional

state and cognitive dilemma, it is obvious that somehow the cognitive abilities will be used

more and more to shut down as soon as possible the inconsistency alarm anyhow are the

3Consensus, distinctiveness and consistency are the attribution cube componentswhich may define whether

people will attribute a situation to internal, external causes or will arouse the person’s curiosity to do an

extensive causal analysis before taking the decision
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costs. That it is why, an enlightening swift persuasive technique with some arguments during

gamma window may empower the student to make an easy shortcut, reduce the cognitive

workload and follow what the message given guidelines rather than putting a lot of effort to

find out a convenient counter attitudinal behavior. Informational Influence here may play a

key role while the student is choking under the stress (during the gamma window) (Figure

7.1).

Beliefs 

(cognitions)

  Answer

Dissonance 

(Emotional 

Component)

Dissonance Reduction

(behavioral component) 

Choice of one of the 3 

counter attitudinal 

behaviors (CAB)

Con!ict with 

preconceptions 

(cognitive component)

(A)

(B)

(C)

Gamma Window

During this time, we assume that the human can be

easily directed by the slightest persuasive message to

choose one of the 3 counter attitudinal behaviors.

A persuasive message 

could be introduced by a 

message source so that 

the human chooses (A).

(A): active attitude change.

(B): Belief change.

(C): Perception change.

Fig. 7.1 Temporal relations among dissonance concepts.

7.3.2 Cognitive Dissonance Related Factors

Interestingly, there are a lot of factors that may determine whether a person may experience

a cognitive dissonance or not. According to the situation some people may not feel cognitive

dissonance because of different factors. In fact, to be stricken by the cognitive dissonance,

we need to have the luxury of "free choice situation" so that we can feel the responsibility

against any damage and avoid any automatic egotism emergence. We must also avoid the

shortcut of "I cannot anticipate the results" so the consequences should be foreseeable. The

human should be aroused and he must strive for consistency motive even if the phenomenal

self appears weak under the pressure of the cognitive dissonance situation.

Another point is that, the human must evaluate seriously the situation as his "private and
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public self" are at risk and avoid making any false consensus 4 , self serving bias, illusionary

correlation, etc. The cognitive dissonance can be of a great magnitude if there is a vested

interest in the current faced situation that led to the cognitive conflict because things gain in

value in our mind-set when they touch the self (endowment effect).

7.3.3 Persuasive techniques

There are a lot of speech based persuasive techniques that may empower the persuasive

message.

Foot-in-the-Door Technique: (Going gradually from small to big requests)

It consists on starting a small request to get a larger compliance with a larger request. Com-

plying with small requests seems like no big deal but it increases the possibility of comply-

ing with larger requests later on. If the increment in compliance requests is gradual then the

request may seem like a small request. The main idea is that once people had committed

themselves with a small request, they feel obligated to continue behaving consistently.

Labeling Technique: (A vivid message that sticks a positive label on your public self)

It involves assigning a label to the individual and then requests a favor that it is consistent

with the label. For example telling to a student: I know you are striving to success and

deep inside you are a hard worker. In such a case, the student has more tendency to live up

with the positive label. Thus, one way to make a human produces the desired behavior is to

assign positive label to him/her so that you can drive him/her to live up with that label and

maintain that positive consistency which serves the public image of the person as well as

his/her self-esteem.

Door-in-the-Face-Technique: (If not a huge advantage then what about a small one)

Here, we need to start by an inflated request and then retreat to a smaller request. After the

first request is rejected the human will feel that he needs to change his opinion since the

initial request has changed (a matter of reciprocity).

4False consensus effect: I believe that all people would do the same thing if they were in my place.
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That’s not all-Technique (framed positively): (Incrementally, we give different positive

arguments: slow speech speed with strong arguments)

Here, we need to present a positive framed message while we give arguments incrementally

in a way that we embellish our request each time by a new positive request so that we

increase the person’s engagement. E.g: tell for a student that according to Harvard’s table of

calories burned during different activities, concentrating during 30 minutes helps on burning

from 53 to 78 calories which is an easy task and we got already the opportunity...That’s not

all you will increase also the neurons number and you increase your brain plasticity.. And

guess what, that’s not all.. once you finish this exercise we may say that you achieved the

level 2 of this lesson.

That’s not all-Technique (framed negatively): (Incrementally give different negative

arguments that may increase the fear: slow speech speed with strong arguments)

Here, we need to present a negative framed message while we give negative arguments incre-

mentally. Nobody can deny the magic of fear how it is useful to go through an exceptional

experience of different unknown multiple emotions. So introducing a bit of fear in the per-

suasive message can help to make the student for example more aroused and focusing; of

course with the condition that we afford some small reward to erase the fear effect. How-

ever, we have to be careful to maintain the intrinsic motivation of the student because once

the student ties the reward to the science study task, the motivation will be extrinsic and he/

she will no more does his/her science exercises unless she/he gets a reward.

Disrupt-and-Reframe Technique: (Disrupt with humor and give only few arguments

with fast speech speed)

A momentary component is introduced in order to disrupt one’s attention. That component

can absorb critical thinking and prevents individuals from processing information. In fact,

the main idea here is that when people are focusing a lot on some matter they are a bit diffi-

cult to be persuaded and it is better to guide them to use the peripheral route for arguments

evaluation. As an example, if we tell to the student a small joke and then we ask him to go

back to the exercise, he might comply.

In our work we will be using only one method that it is "that’s not all technique positively

framed" for purposes related to the experiment’s design (power analysis). We intend to

consider the other techniques in a future work.
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7.3.4 Persuasive Methods Related Factors

There are lots of factors related to the persuasiveness as well as many strategies that can be

used to persuade people in general to make a "healthy" introspection and make the "right"

choice once enlighten by a persuasive message.

We may give a small list of those factors as follows:

Normative Influence (Pathos and Etheos)

The fact to be liked gives you the power to easily influence. So, we must measure the

likeability of the persuader.

Intellectual Appeal (Logos)

It mainly concerns the fact whether people think that the persuader has a deep knowledge

and he makes usage of analytical methods so it is interesting to measure the perceived ex-

pertise of the persuader.

Credibility

We have always that urge to feel that the message is coming from an honest source. But,

somehow if the arguments are persuading, people may detach the message from the source

(what we call the sleeper effect). Thus, measuring credibility is always a good option be-

cause people may determine unfortunately in delayed time whether the message was per-

suading with great arguments or not so that they can detach it if the persuasive message

source was not credible.

Need for Cognition

Here we need to focus on whether the audience needs cognition (strong arguments) or it is

not that important (weak arguments may suffice).

Concern About Public Image

It is not obvious that all people are seeking to work on their public self because there are

some self esteem seekers that can even sacrifice their partners just to increase their self-

esteem.
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Age

It is not easier to make people between 34 and 83 change their opinions while it is easy

to do so for young adults, children and adolescents. So, to avoid a biased sample and to

guarantee the ecological validity, it is better to think of taking participants of different ages

(e.g: In our case, we talk about students so it is better to consider students of all ages.). For

purposes related to the power analysis, we cannot consider a wide range of age. That it is

why, a generalization is possible when we conduct more studies with students from many

ranges of age.

Gender

There are some assumptions that females are easier to be persuaded.

Source of attractiveness

This is a quiet tricky way to transfer your persuasive message. You just need some subtle

cues when a distracting source is there because in that time you are calling upon the au-

tomatic processing of information of people rather than their conscious processing system

(peripheral route).

Personal Relevance

When affording a persuasive message, it is better to think about including something that it

is relevant to the audience.

Initial attitude

If the initial attitude is strong, changing the audience mind can be a bit difficult.

Sufficient Prior knowledge

We need to have a minimum of knowledge when we are in a conflicting situation so that we

can judge what it is good and what it is bad. In our study, we need to measure these different

factors to determine the different persuasive message source influence on students.
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7.3.5 Factors Related to the Application area

Based on [198], [208] and [209], different other independent variables that can be consid-

ered to study the students’ reactions while learning science. The independent variables

which can be considered in our case are:

Prior knowledge

whether the student has some prior knowledge about the learned subject.

Cognitive Closure

whether the student’s looks for consistency.

Motivation and interests

whether the student is motivated to learn science in general.

Evaluation of the participants’ perception of the robot (related to attribution theory:

thoughts listing task):

Attitudes can be measured through free-answers explicitly. The information gained from

the student’s explicit answers helps to gain an idea about how student may take the decision

when they have to decide about deliberate information.

7.4 Study’s Relevance and Hypothesis

Based on previous studies, we have afforded a framework helping to enable robots with

the capability of building in an adaptive way communication protocols. The main problem

was that users forget their previously established communication protocols (PECP) and the

HRI during a new interaction’s instance may encounter many breakdowns that need to be

gracefully mitigated so that the non-expert trainer does not feel bored or that he thinks that

the robot is useless and he continues the dynamic scaffolding or at least the PECP reuse.

That it is why, we focused on the usage of IUs combined with the robot’s visible behaviors

synchronously so that the human could form implicitly some audio icons on his mind to

remember the PECP when it has to be used.

During the first HRI instance there will be the encoding of the communication rules using

the IUs as audio icons while in the second interaction instance, there will be a recall of the

PECP using these same IUs. In such a way, the users social faces will not be threatened by
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a defeating speech saying that they are wrong while reusing the PECP. Also, they will be

implicitly more aware next time that they need to remember the PECP and IUs may help

them to memorize the rules. However, to be able to cooperate to such a level there must be

a minimum of positive emotions or what we call social bonding felt by the human towards

the robot. That it is why, we conceived our tool helping to measure the social bonding and

we used it in a case study to conclude that proactive minimally designed robots may trigger

more social bonding formation when IUs are synchronized with the robot’s visible behav-

iors.

However, to feel positive emotions the human has to evolve some empathy or at least we

may say that the human must be not cold-hearted because cold-hearted or what we call in

our manuscript utilitarian people, do not feel emotions so that they could implicitly form

such rules of interaction. Consequently, we need a method that may help us to convince

such utilitarian people to continue the interaction with the robot even if some breakdowns

occur. In the previous paragraphs, we assumed that if a persuasive message spoken by a per-

suasive source during gamma window, we could better convince people to continue reusing

the robot.

So the research question H1 of the first experiment (H1E1): "consists on comparing the

persuasiveness effect when a persuasive message is spoken "during gamma window", "after

gamma window", "before gamma window" and a baseline condition when "no persuasive

message is proposed by the persuasive source". In this experiment, we have the robot as

the persuasive source that will generate the persuasive message. The technique that will be

considered is the "that’s not all technique" and there are different variables (independent and

dependent) that will be measured in order to make the comparison which we explain more

in section 7.7.

In our second experiment, we have not made the differentiation between relational and utili-

tarian people and we decided to consider both profile types to conduct a comparison between

both types. In fact, even relational people could sometimes deviate. We explained previ-

ously that sometimes the human’s behavior is spontaneous and triggered by the automatic

processing system of the human. For each behavior, there is an activating stored attitude in

the human’s cognitive miser. We do not know whether the human’s behavior when a break-

down is encountered will be activated by the automatic processing system (spontaneous

behavior) or will be a planned behavior while the human will be fully aware and would call

upon his positive emotions to cooperate with the robot during the interaction and using the

IUs. So, if accidentally the relational person has a negative attitude stored in the cognitive

miser and acts sometimes spontaneously, he may stop at least sometimes the interaction

with the robot which will not help to achieve the task and may cause on long-term to distort
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the relationship between the human and the robot.

Consequently, in our first hypothesis of the second experiment(H1E2): We expect that the

more a participant scores high on the dimension of relational (vs utili), the more that par-

ticipant will be persuaded since we assume that they are more cooperative than utilitarian

participants.. Here, we have three different persuasive sources ("a gadget in a box", "the

robot", "a human") as well as a baseline conditionwhere there is no persuasive source. In our

second hypothesis of the second experiment (H2E2): We expect a main effect of persuader

social agency type. That is, we expect that when a participant interacts with a gadget in a

box, he or she will be persuaded less than when that participant interacts with a robot, in

which situation the participant will be persuaded less than when that participant will inter-

act with a human and of course having a persuasive source is better than nothing.

Finally, in our third research hypothesis of the second experiment(H3E2): We expect, most

importantly, an interaction between the manipulation of persuader social agency and per-

suaded relational-utilitarian type. We are interested in whether the persuader’s agency is

equally effective for utilitarian and relational people (it is the change in the simple main ef-

fect of persuader’s agency over levels of profile: 2 levels (utilitarian and relational)). That

is, for people who are relational, they are more prone to follow equally the human or the

robot’s persuasive message rather than the box’s persuasive message and overcome the cog-

nitive dissonance. In contract, for people who are utilitarian, the effect of the persuasive

message is of the same magnitude independently from the message’s source but the presence

of a persuasive message is better than the condition when there is no persuasive message

(when the utilitarian human is left alone to face the cognitive dissonance).

7.5 Setup

Participants are first given a brief description of the experiment procedure. After the intro-

duction, they were asked to answer a pre-experiment survey (section ). The instructor will

then demand from the student to enter to a room. After the participant is seated, the instruc-

tor will demand from the student to pay attention to the main screen placed in front of the

student. He has to start resolving the science exercises (physics, mathematics, algorithmics

exercises). The graphical interface has two blocks. One that it is reserved to the current exer-

cise which the student needs to answer and another one that it is related to the next exercise.

In the first block, we have also a text area where the student can write his analytical answer.

In block 1, we have also a text area dedicated to the numerical answer. Once the student is

sure from here answer, he has to click on the bottom submit. If the answer was correct the

score will be 10. If the numerical answer was incorrect and the analytical answer quotes
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Student

Robot

Eye Tribe

Current Exercise    Next Exercise

Fig. 7.2 The general setup of the experiment.

correct the student will have 5. If the student’s answer was incorrect he has two options:

whether redoing the current exercise or moving to the next exercise. To make sure that the

next exercise easiness will not influence the student’s choice (without you redo the current

exercise or not) we managed to make the next exercise’s picture fuzzy. Consequently, the

student one striking by his incorrect answer he has to face the situation without being influ-

enced by the exercises. Here the student can choose to jump to the next exercise. In such

a case the student is making a belief change (B). If the student chooses to redo the current

incorrect exercise he is engaging himself in an active attitude change (A). However if the

student redoes weed and feed yourself no delete the exercise while not changing his answer

in comparison to the previous answer, we might say that the student is making a perception

change (C). To assess in real time the student’s cognitive process replacing an eye tribe in

parallel to the graphical interface displaying the exercises. The eye tribe helps to track the

student’s eye movement in real time. We managed as well to add a mouse listener to the

interface so that we can detect the user’s choices process before making the final decision

(whether to do the next exercise or to stay who is the current exercise).

We had students from three levels: second, third and fourth grade. For each level there

are three different options: Doing a mathematical exercises serie or doing an algorithmic

exercises serie or doing physics exercises serie. In fact, by asking teachers we noted that
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students whose main speciality is mathematics, do not like algorithmic exercises. So, when

we gather a student whose main speciality is mathematics, we assigned for him an algorith-

mic exercise to be sure that he will be striken by the cognitive dissonance. Another example

could be students whose speciality is algorithmics. These students do not like physics ex-

ercises. That is why, we manage to assign for these students only physics exercises so that

they can experience the cognitive dissonance.

Each exercises’ collection integrated five exercises. We indicated for the student that he she

can redo the same current exercise multiple times as long as he wishes. When the student

feels that he wants to leave the room or when he finishes the exercises collection we thank

him and we give him a post-experiment survey to be filled. Finally, we paid the participant

and debriefed him. In each time we have a new participant, we redo the eye tribe calibration

(Figure 7.2).

7.5.1 Experiment 1 Conditions

In experiment 1, we placed on the table next to the screen our robot ROBOMO (Figure 7.3).

There are four conditions:

{item Condition 1: The robot affords a persuasive message before gamma window.

{item Condition 2: The robot affords a persuasive message after gamma window.

{item Condition 3: The robot affords a persuasive message during gamma window.

{item Condition 4: No persuasive message is afforded.

The persuasive message follows the technique that’s not all. Example: Einstein tried multi-

ple times to apply for a position in the faculty. However, his request was rejected many times.

Perseverance he is one of the ingredients for success. That’s not all... Leonel Messi had a

problem related to walking but he insisted on trying to work and then becomes an incredible

Runner. Insisting on achieving one’s goals is rentable. That’s not all... As long as you try

to understand the difficult exercises you are spending more time and according to Harvard

table of calories lose, you can burn in 30 minutes up to 50 calories just by concentrating so

there is no big deal to take your time.

7.5.2 Experiment 2 Conditions

Based on the first experiment we can determine which of the different periods is the most

suitable period during which the persuasive message source could deliver the persuasive

message. In our second experiment, we considered to verify which of the two students’ pro-

files will be more influenced by the persuasive message. We also want to investigate whether
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Fig. 7.3 The setup of the first experiment.

the persuasive message source agency has an influence on the persuasiveness degree. That

is why, in the second experiment, we had four conditions (Figure 7.4):

{item Condition 1: Baseline condition (no persuasive message source). {item Condi-

tion 2: A box that includes the tablet showing the persuasive message textual format.

{item Condition 3: The robot ROBOMO using speech, guestures, different tones, face

tracking. The speech consist of the persuasive message text spoken by the robot. The

gestures consist of the robot moving its head right and left to indicate a refusal, mov-

ing the head to indicate that the robot agrees with the student’s behavior, moving the

head backward high quickly to indicate that the robot was surprised, moving the head

slowly to the front to indicate that the robot is sad, moving the body to the left, front

and the right to indicate that the robot is happy. As for the tunes, they were generated

by text-to Mary-speech. We conceived tones in a way that they could fit the robot

guestures. The tone, the guestures and the robot’s speech were synchronized. {item
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Condition 4: The same tones, gestures and speech are used by a human as a persuasive

message source.

                         EYE      TRIBE

    Current Exercise

            Button

       Next Exercise

            Button

Current Exercise    Next Exercise

   Submit   Numerical

     Answer

   Analytical

     Answer

   Robot 

Fig. 7.4 The setup of the second experiment.

7.6 Survey

In each interaction’s instance, the student has to fill a pre experiment survey and a post

experiment survey. Questionnaires were written in English and French languages.

7.6.1 Pre-Experiment Survey

Initially, we asked the participant to write his age, gender. The student has to answer ques-

tionnaires related to self-esteem, NARS (to assess the student’s anxiety when interacting

with a robot), epistemological belief, need for cognition, prior knowledge, mood, cognitive

closure, motivation to do the experiment, the student profile (utilitarian or relational).
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7.6.2 Post-Experiment Survey

After the experiment finished, the student has to answer questionnaires related to the persua-

sive message source: Trust (to measure the student trust on the persuasive message source),

likeability (to measure the student likeability for the persuasive message source), credibility

(to measure the persuasive message source’s credibility that it is perceived by the student),

perceived intelligence(to measure the persuasive message source’s level of intelligence that

it is perceived by the student), the explicit attitude (by answering two questions:

• Why do you think you have rechecked or not the wrong answer?

• Do you think that you will consider redoing an exercise in the future when you makes

an error while doing it?

), the implicit attitude (implicit association test) to verify whether the student evolved an im-

plicit attitude that supports science learning (this is important to verify whether the student

is convinced about the fact that he needs to strive for learning science rather than adopting

a negative implicit attitude that supports learned helplessness).

7.7 Variables

7.7.1 First experiment variables

We have different independent and dependent variables related to our study.

Independent variables

In our second experiment, we have many independent variables such as: gender, age, self-

esteem, NARS, epistemological belief, need for cognition, prior knowledge, cognitive clo-

sure, motivation to do the experiment.

We considered to measure the different independent variables to ensure we have the needed

factors cited in the different science learning studies. We we wanted to have an equilibrated

data set. For example: We wanted to high and low self esteem students. Also, we wanted to

have the same number of females and males. NARS is measured to consider only students

that have no social anxiety when interacting with a robot. We measured epistemological

belief, need for cognition, prior knowledge, cognitive closure, motivation to do the exper-

iment to be sure that the students have some knowledge about the science exercises that

we consider to assign for the student, whether they believe that science is useful (we con-

sider it to have a bit disciplined students who believe on the utility of science (do not suffer
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from learned helplessness)), whether in their daily life they look for consonant concepts in

general. We considered three ages (16 17 18 years old).

Dependent Variables

As for the dependent variables we have: cognitive dissonance, dominance, likeability, per-

ceived intelligence (pintelligence), implicit attitude (IAT). We have also some other depen-

dent variables which are measured using eye tribe and the mouse listener. We may enumer-

ate them as follows:

• The quotient: Number of times the user redoes the exercise when it is incorrect/ num-

ber of times the user makes an error.

• FWhenMSGisdelievered: % of frames looking to the message source when the mes-

sage is delivered

• FAfterMSGisdelievered: % of frames during which the user looks to the source after

the message is delivered. (eye gaze)

• Nbtimeslooksbwexercises: number of times the user "dwells" with eye gaze between

the 2 exercises before taking the decision to redo the current exercise that was previ-

ously answered in an incorrect way (eye gaze).

• Nbtimesmovesmousebwexercises: number of times the user "dwells" with mouse

movement between the 2 exercises before taking the decision to redo the current exer-

cise that was previously answered in an incorrect way (mouse movement).

7.7.2 Second experiment variables

We have different independent and dependent variables related to our study.

Independent variables

In our second experiment, we have many and independent variables such as: gender, age,

self-esteem, NARS, epistemological belief, need for cognition, prior knowledge, cognitive

closure, motivation to do the experiment, the user’s profile (utilitarian or relational).

We considered to measure the different independent variables to ensure we have the needed

factors cited in the different science learning studies. We we wanted to have an equilibrated

data set. For example: We wanted to high and low self esteem students. Also, we wanted to

have the same number of females and males. NARS is measured to consider only students



146 TU/e Research

that have no social anxiety when interacting with a robot. We measured epistemological

belief, need for cognition, prior knowledge, cognitive closure, motivation to do the exper-

iment to be sure that the students have some knowledge about the science exercises that

we consider to assign for the student, whether they believe that science is useful (we con-

sider it to have a bit disciplined students who believe on the utility of science (do not suffer

from learned helplessness)), whether in their daily life they look for consonant concepts in

general. We considered three ages (16 17 18 years old).

Dependent Variables

As for the dependent variables we have: cognitive dissonance, mood (pleasure, dominance,

arousal), trust, likeability, credibility, perceived intelligence (pintelligence), explicit attitude

(free answers), implicit attitude (IAT). We have also some other dependent variables which

are measured using eye tribe and the mouse listener. We may enumerate them as follows:

• The quotient: Number of times the user redoes the exercise when it is incorrect/ num-

ber of times the user makes an error.

• FWhenMSGisdelievered: % of frames looking to the message source when the mes-

sage is delivered

• FAfterMSGisdelievered: % of frames during which the user looks to the source after

the message is delivered. (eye gaze)

• Nbtimeslooksbwexercises: number of times the user "dwells" with eye gaze between

the 2 exercises before taking the decision to redo the current exercise that was previ-

ously answered in an incorrect way (eye gaze).

• Nbtimesmovesmousebwexercises:numberof times the user "dwells" with mousemove-

ment between the 2 exercises before taking the decision to redo the current exercise

that was previously answered in an incorrect way (mouse movement).

7.7.3 Categorization of the variables

We may categorize these variables into two categories: subjective and objective variables.

Categorization of the first experiment variables

In the case of the first experiment, the subjective variables include:

• cognitive dissonance.
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• dominance.

• likeability.

• perceived intelligence (pintelligence).

• implicit attitude (IAT).

While the objective variables include:

• The quotient.

• FWhenMSGisdelievered.

• FAfterMSGisdelievered.

• Nbtimeslooksbwexercises.

• Nbtimesmovesmousebwexercises.

Categorization of the second experiment variables

In the case of the second experiment, the subjective variables include:

• cognitive dissonance.

• dominance.

• pleasure.

• arousal.

• trust.

• credibility.

• likeability.

• perceived intelligence (pintelligence).

• implicit attitude (IAT).

• explicit attitude.

While the objective variables include:
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• The quotient.

• FWhenMSGisdelievered.

• FAfterMSGisdelievered.

• Nbtimeslooksbwexercises.

• Nbtimesmovesmousebwexercises.

7.8 Demographics

We conducted two experiments with different number of participants. The G*Power soft-

ware was used to determine an appropriate sample size for the proposed experiments. G*Power

is an open source statistical software primarily used for power analysis. An a Priori Power

Analysis calculation given an error probability value (/alpha= 0.05), power (P=0.95), and

effect size (f=0.25) revealed the need for a total sample size of 66 participants (N=66) as for

experiment 2 and more than 35 participants for experiment 1.

7.8.1 Demographics of the first experiment

40 students took part in our experiment while 33 are utilitarian and 33 are relational. From

the utilitarian students, we have 20 males and 20 females. They were hired via their teachers.

The teachers have helped us as well to identify students that have low science learning

capacities.

7.8.2 Demographics of the second experiment

66 students took part in our experiment while 33 are utilitarian and 33 are relational. From

the utilitarian students, we have 20 males and 13 females. As for the relational students

we have 15 males and 18 females. We noticed that utilitarian students are high self-esteem

students while relational students are low self-esteem student. This may explain partly if

we have better results in terms of persuasiveness in the case of relational students the reason

why such relational students are easy to be persuaded in comparison to the others. In fact,

high self esteem people are difficult to be influenced because they believe that they are more

powerful, smart and they stick to the positive innate illusions to protect their public self-

images. Students are hired from a tunisian college (in Tunisia). They were hired via their

teachers to the experiment. The teachers helped us to better choose the students who start
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to have problems with science learning. They even have identified the weak points for each

of the different students (without that the students know about that).

7.9 Analysis Methods

The analysis of data on manipulation checks followed a repeated measures analysis of vari-

ance (ANOVA) for the first experiment while a mixed two-way repeated measures ANOVA

was used to analyze the data of the second experiment. These tests included Omnibus tests

to identify general effects of the experimental manipulation on dependent variables and con-

trast tests that compared the different conditions for the case of two way ANOVA of the

second experiment.

7.10 First experiment results

So, as a reminder, the hypothesis H1 of the first experiment (H1E1): "consists on comparing

the persuasive message effect when the message is spoken "during gamma window", "after

gamma window", "before gamma window" and a baseline condition when "no persuasive

message is proposed by the persuasive source".

7.10.1 Subjective results

Table 7.1 The tests of within-subjects effects table for the different subjective measures

to indicate whether there was an overall significant difference between the means at the

different time points.

(F,P-value, eta2)

Dominance (23.93, p<0.001, 0.38)
IAT (39.27,p<0.001, 0.502)
Perceived Intelligence (99.5,p<0.001, 0.718)
Cognitive dissonance (69.93, p<0.001, 0.642)
Likeability (104.8,p<0.001, 0.729)

Based on the results there were no violation of the sphericity assumption. Table shows

the results of the ANOVA for the within subjects variable. There is a sum of squares for

the within subject effect of each of the different subjective variables. The p-value of each

of the different subjective constructs is inferior than 0.001 which means that there were

significant differences between the different conditions:" before gamma", " after gamma","

during gamma" and the baseline condition.
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Table 7.2 Repeated measures ANOVA helping to compare the "gamma condition" with the

"no gamma condition" and the "gamma condition" with the "before gamma condition" in

terms of subjective measures. In each of the two last columns, we have the F-test, p-value

and the eta2 that describes the effect size.

G VS no G (F,p,eta2) G VS B (F,p,eta2)

Dominance (75.6,P<0.001,0.66) (34.54,p<0.001, 0.447)
IAT (155.37,p<0.001, 0.79) (3.29, 0.07)

Perceived Intelligence (256.05, p<0.001, 0.868) (133.32, p<0.001, 0.774)
Cognitive dissonance (127.14, p<0.001, 0.765) (44.89, p<0.001, 0.535)
Likeability (479.9,p<0.001, 0.927) (151.6, p<0.001, 0.795)

By looking at tables 7.2 7.3 7.4, we can see that there were significant differences be-

tween the different conditions except for the case of the implicit association test (IAT) when

we compare the conditions "during gamma window" vs "before Gamma window", the per-

ceived intelligence when we compare ’after Gamma window" vs "no message"(baseline

condition), for the case of dominance when we compare "after Gamma window" with the

"before Gamma window" conditions and the cognitive dissonance when we compare the

"after gamma window" and the "no Gamma window".

Table 7.3 Repeated measures ANOVA helping to compare the "after gamma condition"

with the "before gamma condition" and the "no gamma condition" with the "before gamma

condition" in terms of subjective measures. In each of the two last columns, we have the

F-test,p-value and the eta2 that describes the effect size.

A vs B (F,p,eta2) No G vs B (F,p,eta2)

Dominance (0.05,0.943) (9.82,p=0.003, 0.2)

IAT (9.13, 0.004, 0.19) (70.55,p <0.001, 0.644)
Perceived Intelligence (17.29, p <0.001, 0.307) (47.9,p <0.001, 0.551)
Cognitive dissonance (27.4, p <0.001, 0.535) (45.985, p <0.001, 0.541)
Likeability (13.2,0.001, 0.253) (50.8, p <0.001, 0.566)

Based on these results, we can deduce that proposing a message for the participant

after the gamma window does not make the robot looks intelligent, has no effect on the

cognitive dissonance and as a result has no effect on the implicit attitude formation, an

attitude that should support the strive to understand the science exercise or more explicit

words an attitude that dictates spontaneously for the human to redo the current exercise that

was previously answered in an incorrect way.

In table 7.1, we colored in blue the constructs that have significant results. In table 7.2,

we colored in pink the constructs that have significant results. The pink color indicates that

the "gamma window" condition mean value for each of the subjective variable is higher than
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Table 7.4 Repeated measures ANOVA helping to compare the "gamma condition" with the

"after gamma condition" and the "after gamma condition" with the "no gamma condition"

in terms of subjective measures. In each of the two last columns, we have the F-test,p-value

and the eta2 that describes the effect size.

G vs Af (F,p,eta2 ) A vs no G (F,p,eta2 )

Dominance (19.56,p< 0.001, 0.334) (14.84,p< 0.001, 0.27)

IAT (20.79, p< 0.001, 0.348) (16.7, p< 0.001, 0.336)

Perceived Intelligence (153.9, p< 0.001, 0.798) (0.091, 0.764)

Cognitive dissonance (27.4, p< 0.001, 0.413) (0.943, 0.34)

Likeability (151.6, p< 0.001, 0.795) (0.64, 0.427)

the mean of the same variable in the condition "before gamma" and the baseline condition.

Consequently, a message that it is proposed during "gamma window" leads to a stronger

feeling that the robot is dominant, intelligent, likeable and that the situation is governed by

higher cognitive dissonance when a persuasive message is pronounced during the gamma

window. This could be explained by the fact that students become more aware that they

should take the situation more seriously once they are choking under the stress of the incor-

rect answer.

In table 7.3, we colored in yellow the constructs that have significant results. The yel-

low color indicates that the "before gamma window" condition mean value for each of the

subjective variable is higher than the mean of the same variable in the conditions "after

gamma"and the baseline. Based on the table 7.3, it is clear that when a persuasive message

source is received before the human makes an error makes, the robot starts to look more

likeable, intelligent, triggers higher cognitive dissonance and leads to higher implicit associ-

ation tests (a test showing that users evolve the implicit attitude to continue with the current

exercise if the corresponding answer was incorrect.) in comparison to the baseline condition

and the "after gamma window". We also remark that the robot will be more dominant in

conditions "before gamma window" in comparison to the baseline condition. Consequently,

one can conclude that having a message that it is delivered before the gamma window have

a more positive influence on the user’s global evaluation of the robot’s traits (likeable, in-

telligent), stronger awareness about the cognitive dissonance critical situation and leads to

the formation of a more positive spontaneous attitude activated by the automatic processing

system in comparison to the situations when the message is delivered "after the gamma win-

dow" or when no message is delivered (baseline condition).

In table 7.4, we colored in pink and green the constructs that have significant results. The

pink color indicates that the "before gamma window" condition mean value for each of the

subjective variables is higher than the mean of the same variable in the condition "after
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Table 7.5 Repeated measures ANOVA helping to compare the objective results of the differ-

ent conditions ("after gamma condition", "before gamma condition", "no gamma condition",

"gamma condition"). In each of the last column, we have the F-test,p-value and the eta2 that

describes the effect size.

Factor (F,P-value, eta2)

FAfterMSGisdelievered (27.29, < 0.001, 0.412)

FwhenMSGdelivered (44.27, p< 0.001, 0.532)

Nbtimesmousemovesbwexercises (121.37, p< 0.001, 0.757)

Errorquotient (14.97, p< 0.001, 0.277)

Nbtimelooksbwexercises (53.49, p< 0.001, 0.578)

gamma". The green color indicates that the "after gamma window" condition mean value

for each of the subjective variables is higher than the mean of the same variable in the base-

line condition. When we compare subjective results for the " gamma window" and the "

after gamma window" conditions, we can see that there are significant results and that the

pink color prevails in the different cells indicating that participants felt that the robots is

more dominant, intelligent, likeable and leads to the involvement of a more positive implicit

attitude. It also triggers more cognitive dissonance.

When we compare the results of the conditions " after gamma window" with the Baseline

condition witty remark that there are significant statistical differences. The green Colour

prevails as well indicating that the robot is more dominant and likeable when a message is

delivered after the gamma window. However, there were no differences in terms of robot’s

intelligence and the cognitive dissonance that is triggered by the robot.

7.10.2 Objective results

The table 7.5 shows that there are many statistical differences for the different objective

constructs. The blue color indicates that there are significant results with p-values inferior

than 0.001. We applied the pairwise comparisons between the different condition in terms

of objective results in the following tables.

Based on the table 7.6, it is clear that there were significant statistical differences in

terms of objective measures. We use the pink color to indicate that the mean value of the

objective construct in "gamma window" condition is higher than the mean value of the

same objective construct in the Baseline condition and " before gamma window" condition.

By looking at the table 7.6, one can see that the pink color prevails indicating that the

participants have higher percentage of a frames during which they look to the robot after the

message is delivered and when the message is delivered. Also, it indicates that the number
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Table 7.6 Repeated measures ANOVA helping to compare the objective results of the

"gamma condition" with the "no gamma condition" and the "gamma condition" with the

"before gamma condition". In each of the two last columns, we have the F-test,p-value and

the eta2 that describes the effect size.

Factor G VS no G (F,p, eta2) G VS B (F,p, eta2)

FAfterMSGisdelievered (38.7, p <0.001, 0.499) (14.25, 0.001, 0.268)

FwhenMSGdelivered (74.45, p <0.001, 0.656) (165.09, p <0.001, 0.809)
Nbtimesmousemovesbwexercises (12.45, 0.001, 0.242) (188.28,p <0.001, 0.828)
Errorquotient (40.72, p <0.001, 0.511) (15.21, p <0.001, 0.281)
Nbtimelooksbwexercises (155.85, p <0.001,0.8) (188.285, <0.001, 0.828)

Table 7.7 Repeated measures ANOVA helping to compare the objective results of the

"gamma condition" with the "after gamma condition" and the "after gamma condition" with

the "no gamma condition". In each of the two last columns, we have the F-test,p-value and

the eta2 that describes the effect size.

Factor G vs Af (F,p,eta2) A vs no G (F,p,eta2)

FAfterMSGisdelievered (44.93, <0.001, 0.535) (1.1, 0.29)

FwhenMSGdelivered (160.01,p <0.001, 0.801) (3.69, 0.062)

Nbtimesmousemovesbwexercises (8.48, 0.006, 0.179) (38.6,p <0.001, 0.498)
Errorquotient (25.34, p <0.001, 0.394) (3.71, 0.061)

Nbtimelooksbwexercises (73.12, p <0.001, 0.652) (41.13, p <0.001, 0.513)

of times during which the most is moving between the two exercises as well as the number

of times during which the human is looking between the two exercises and finally the error

quotient which indicates whether the student is a striving to understand the wrong answer car

higher during " gammawindow" condition. Consequently, even if the participant looks more

perplexed we have someone moving mouse and a more movement in the eyes, he seems to

be more convinced that he has to pay attention to the current exercise in comparison to the

conditions " before gamma window" and the Baseline condition.

The table 7.7 shows that there are significant statistical differences between objective

results of both conditions " during gamma window" and " after gamma window". The pink

color was used to indicate that the mean value of each of the objective constructs is higher

in the condition "during gamma window". We can see that in the first column, the pink color

prevails. This indicates that the robot led to more consideration of the situation by the par-

ticipant. That is why we noticed that the percentage of frames during which the participant

is looking to the message source after the message is delivered, the percentage of frames

during which the human is looking to the robot after the message is delivered, the number

of times the human moves the mouse between the two exercises, the number of times the
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Table 7.8 Repeated measures ANOVA helping to compare the objective results of the "after

gamma condition" with the "before gamma condition" and the "no gamma condition" with

the "before gamma condition". In each of the two last columns, we have the F-test,p-value

and the eta2that describes the effect size.

Factor A vs B (F,p,eta2) No G vs B (F,p,eta2)

FAfterMSGisdelievered (18.97, <0.001, 0.327) (14.25, 0.001, 0.268)

FwhenMSGdelivered (52.46, p<0.001, 0.574) (17.95, p<0.001, 0.315)
Nbtimesmousemovesbwexercises (3.52, 0.058) (290.9, p<0.001, 0.882)
Errorquotient (0.597, 0.44) (9.02, 0.005, 0.188)

Nbtimelooksbwexercises (0.463, 0.57) (25.23, p<0.001, 0.393)

participant looks between the two exercises are higher during the " gamma window" con-

dition. Consequently, the error quotient increases indicating that the human is considering

the situation in a more reasonable way by redoing the current exercise that was previously

answer it in a wrong way.

The green color was used to indicate that the mean value of each of the objective constructs

is higher in the condition "after gamma window". By looking to the second column, we can

see that there were significant differences between "after gamma window" and the Baseline

conditions in terms of the number of times the participant moving the mouse or the eye

gaze between the two exercises. The green color was used to indicate that the mean value

of each of the objective constructs is higher in the condition "after gamma window". So,

although the participant seems to be more perplexed when a message is delivered "after the

gamma window", there were no fruitful consequences one can see that the error quotient

has no significant differences in comparison to the Baseline condition. Using a message

after the "gamma window" may help to increase some of the subjective results. However,

it is not enough to increase the error quotient which indicates that the participant is putting

more effort to redo the wrong current exercise. The table 7.8 shows the objective results

comparison of different conditions which are the " after gamma window" and the " before

gamemawindow" as well as " before gammawindow" and the Baseline conditions. We used

the yellow color to indicate that the mean value of the objective construct is higher in the

condition " before gamma window" in comparison to the Baseline condition and the " after

gamma window". The green color was used to indicate that the mean value of the objective

construct was higher in the condition " after gamma window" in comparison to " before

gamma window". By looking the second column of the table 7.8, we can see that the yellow

color prevails which indicates that globally it is better to have a persuasive message that is

delivered before gamma window rather than the condition where there was no message that

is delivered. By looking to the first column, we can see that the participant seems to look to
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the robot after the message is delivered more when the message is delivered during gamma

window. However, the student looks more to the Robot after the message is delivered when

the latter is delivered after the gamma window (it seems to be like the human was surprised

by the message because he has already taken his decision and there is no reason why the

robot should talk). As for the error quotient, there where no statistical differences which

indicates that using a message before or after gamma window is not useful enough to make

the participant reconsiderate the current exercise that was previously answered in a wrong

way. However, based on the second column, it seems to be that proposing the message be-

fore gamma window is better than proposing nothing. Generating a message after gamma

window does not lead to better results in comparison to the Baseline condition while propos-

ing the message during gamma window seems to lead to better results in comparison to all

the other conditions.

7.11 Results of the Second Experiment

We applied the two way mixed repeated ANOVA analysis to investigate the three hypothesis

that are related to the second experiment.

7.11.1 Hypothesis 1 Investigation

So, as a reminder, the hypothesis H1 of the second experiment (H1E2) consists on verifying

whether:" the more a participant scores high on the dimension of relational (vs utilitarian),

the more that participant will be persuaded since we assume that they are more cooperative

than utilitarian participants.."

Table 7.9 shows that there were no violation of the sphericity end that Levin tests are

not significant too which means that there were no main correction of the F-test values. The

blue color in the tables 7.10 7.11 7.12 7.9 indicates that the results are significant why is the

P-value values in the range of 0.031 and inferior than 0.001.

By applying the pairwise comparisons, for the subjective (table 7.9) and the objective (ta-

ble 7.11) constructs, one can see that there were main differences between utilitarian and

relational students.

Tables 7.12 7.10 show that relational students seem to have higher mean values for the

objective constructs and the subjective measures except for the pleasure construct. These

results indicate that the more a participant scores high on the dimension of relational (vs

utilitarian), the more that participant will be persuaded since we assume that they are more

cooperative than utilitarian participants.
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Table 7.9 Two-way mixed repeated measures ANOVA subjective results that are related

to the first hypothesis (first main effect: relational Vs utilitarian). In the first and second

columns, we have sphericity and homogeneity test results. In column three, we have the

between subject effect F and P-value results by means of the different constructs presented

vertically.

factor Ma(W,pval) Lev (F, p-val)

Arousal (0.98,0.5) >0.05 (5.6, 0.021)

Dominance (0.979, 0.513) > 0.05 (4.214,0.044)

Trust (0.95, 0.228) > 0.05 (10.6,0.002)

Pleasure (0.98, 0.674) > 0.05 (4.84,0.031)

Credibility (0.98,0.235) > 0.05 (33.38,p<0.001)
IAT (0.84, 0.06) > 0.05 (4.18,0.045)

Perceived Intelligence (0.97, 0.48) > 0.05 (33.22, p<0.001)
Cognitive Dissonance (0.84, 0.064) > 0.05 (84.43,p<0.001)
Likeability (0.947, 0.43) > 0.05 (71.311, p<0.001)

Table 7.10 The mean and standard deviation of relational and utilitarian students by means

of the different constructs presented vertically and which are related to the

factor Relat (M,sd) Utilit (M,sd)

Arousal (3.85,0.15) (3.34,0.15)

Dominance (3.313,0.14) (2.89,0.14)

Trust (39.41,1.4) (32.99,1.4)

Pleasure (3.22,0.169) (3.74,0.169)

Credibility (16.86,0.425) (13.39,0.42)

IAT (0.615,0.026) (0.539,0.026)

Perceived Intelligence (19.82,0.537) (15.45,0.537)

Cognitive Dissonance (18.44,0.389) (13.39,0.38)

Likeability (22.10,0.51) (15.93, 0.51)

Table 7.11 Two-way mixed repeated measures ANOVA objective results that are related to

the first hypothesis (first main effect: relational Vs utilitarian). In the first columm, we have

Maulchy’s test results. In column number two we have Leven test results. In column three,

we have the between subject effect F and P-value results.

factor Ma(W,pval) Lev (F, p-val)

FAfterMSGisdelievered (0.92, 0.09) >0.05 (103.7, p <0.001)
FwhenMSGdelivered (0.95, 0.239) > 0.05 (52.4,p <0.001)
Nbtimesmousemovesbwexercises (0.88, 017) > 0.05 (61.5,p <0.001)
Errorquotient (0.90, 0.208) > 0.05 (10.93,0.002)

Nbtimelooksbwexercises (0.93, 0.54) > 0.05 (98.02, p <0.001)
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Table 7.12 Two-way mixed repeated measures ANOVA objective results that are related

to the first hypothesis (first main effect: relational Vs utilitarian). We have in the last two

columns, the mean and standard deviation of relational and utilitarian students and by means

of the different constructs presented vertically.

factor Relat (M,sd) Utilit (M,sd)

FAfterMSGisdelievered (9.53,0.29) (5.23,0.29)

FwhenMSGdelivered (5.76,0.19) (3.74, 0.19)

Nbtimesmousemovesbwexercises (6.492,0.18) (4.485, 0.18)

Errorquotient (0.516,0.02) (0.413, 0.02)

Nbtimelooksbwexercises (13.10,0.34) (8.23, 0.34)

7.11.2 Hypothesis 2 Investigation

As a reminder, hypothesis 2 of the experiment 2 (H2E2) consists on investigating whether

there is a main effect of the persuader’s social agency type. That is, we expect that when a

participant interacts with a gadget in a box, he or she will be persuaded less than when that

participant interacts with a robot, in which situation the participant will be persuaded less

than when that participant will interact with a human and of course having a persuasive

source is better than nothing (the baseline condition).

Table 7.13 Two-way mixed repeated measures ANOVA subjective results that are related

to the second hypothesis (second main effect: baseline vs box vs human vs robot). We

have in the second column, the F and p-value by means of the different constructs presented

vertically and whenever the statistical differences are significant, we color the corresponding

cell with the blue color.

Factor Main Comp

(F,P-value)

Arousal (16.06, p <0.001)
Dominance (64.76, p <0.001)
Trust (67.51, p <0.001)
Pleasure (84.51, p <0.001)
Credibility (79.55, p <0.001)
IAT (52.98, p <0.001)
Perceived Intelligence (232.16, p <0.001)
Cognitive dissonance (16.06, p <0.001)
Likeability (302.716,p <0.001)

Based on the table 7.13, we can see that there are significant within subject effect dif-

ferences (the blue color prevails in the cells of the second column). Thus, we applied the

pairwise comparisons.
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Table 7.14 Two-way mixed repeated measures ANOVA subjective results that are related to

the second hypothesis (second main effect: baseline vs robot; human vs robot; box vs robot)

by means of the different constructs presented vertically.

Factor Pairwise Comparisons (F, P-value)

Box VS robot Robot vs human Baseline vs robot

Arousal (27.44,p < 0.001) (2.25,p=0.138) /

Dominance (115.96, p <0.001) (93.12,p <0.001) /

Trust (117.71,p <0.001) (54.54, p <0.001) /

Pleasure (149.305, p <0.001) (83.58, p <0.001) /

Credibility (147.92,p <0.001) (67.82,p <0.001) /

IAT (21.92,p <0.001) (2.293, p=0.135) (103.005, p <0.001)
Perceived Intelligence (431.7,p <0.001) (171.94, p <0.001) /

Cognitive dissonance (136.8,p <0.001) (88.57,p <0.001) (180.12,p <0.001)
Likeability (578.05,p <0.001) (242.6, p <0.001) /

Based on the table 7.14, we can say that there were significant statistical differences in

terms of subjective constructs whenever we use the robot as a persuasivemessage source that

it is compared to the different other persuasive message sources. there were no differences

in terms of IAT (implicit association test) which means that the human and the robot have

the same effect on the cognitive miser.

Table 7.15 Two-way mixed repeated measures ANOVA subjective results that are related to

the second hypothesis (second main effect: baseline vs box; baseline vs human; human vs

box) by means of the different constructs presented vertically.

Factor Pairwise Comparisons (F, P-value)

Box VS human Baseline vs human Baseline vs box

Arousal (18.14, p < 0.001) / /

Dominance (0.521,p=0.473) / /

Trust (15.99, p <0.001) / /

Pleasure (16.34, p <0.001) / /

Credibility (12.79,0.001) / /

IAT (37.54, p <0.001) (165.56, p <0.001) (17.91, p <0.001)
Perceived Intelligence (65.38, p <0.001) / /

Cognitive dissonance (17.97,p <0.001) (40.4,p <0.001) (2.15, p=0.14)

Likeability (63.31, p <0.001) / /

Based on the table 7.15, we notice that there were statistical differences between the

baseline vs box conditions except for the cognitive dissonance while they (baseline and the

box) seem to lead to the same level of cognitive dissonance; baseline vs human conditions
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and the human vs box conditions except for the dominance construct which means that the

box and the human dominance are equal which we did not expect.

Table 7.16 The mean and standard deviations of the subjective results and which are related

to the second hypothesis (baseline, box, human, robot) by means of the different subjective

constructs with blue color indicates that the condition holds the highest results in terms of

the subective measure, then comes the pin color after that the green color and lowest results

are colored with the gray color for each of the different measures ([1]blue; [2]pink;[3]green;

[4]gray.).

Baseline (m,sd) Box (m,sd) Robot (m,sd) Human (m,sd)

Arousal / (2.75,0.16) (4.22,0.21) (3.81,0.18)

Dominance / (2.24,0.16) (4.65,0.18) (2.42,0.16)

Trust / (26.65,1.47) Ψ (48.48,1.77) (33.47,1.14) Ψ
Pleasure / (2.09,0.209) (5.25,0.18) (3.1,0.16)

Credibility / (12.03,0.44) (19.37,0.47) (13.98,0.46)

IAT (0.217,0.037) (0.483,0.047) (0.77,0.039) Ψ (0.838,0.03) Ψ
PIntelligence / (11.97,0.346) (24.56,0.605) (16.39,0.546)

Cog.dissonance (11.621,0.5) Ψ (12.712,0.588) Ψ (23.561,0.728) (15.788,0.369)

Likeability / (12.21,0.425) (27.83,0.531) (17.01,06)

Based on the table 7.16, one can see that the blue color that it is related to the condition

which leads to the highest results prevails in the robot’s condition while in the human’s

condition, the blue color existed only for the IAT (implicit association test). However, using

(/Psi) indicates that there are no significant results. So, globally, there were main differences

between the robot and human conditions with the robot having higher subjective results. The

robot leads to higher arousal, is more dominant, trustworthy, pleasant, credible, intelligent,

likeable and triggers higher cognitive dissonance.

The box condition seems to lead to higher results than the baseline condition but lower to

the human conditions while there were no significant differences between the human and

box conditions in terms of trust. Also, there were no special difference in terms of cognitive

dissonance between the box and baseline conditions.

As a summary, students seem to appreciate the presence of a robot that delivers the message

during gamma window more than the human while there were no differences in terms of

implicit attitude formation. The human presence is better than the box’s presence while the

baseline condition has the worst subjective results.

Table 7.17 shows that there are many main statistical differences between the different

conditions. That it is why, we applied the pairwise comparisons. Table 7.18 shows that there

were significant statistical differences whenever we consider to compare the robot condition

with the other conditions.
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Table 7.17 Two-way mixed repeated measures ANOVA objective results that are related

to the second hypothesis (second main effect: baseline vs box vs human vs robot) for the

different constructs presented vertically.

Factor Main Comp

(F,P-value)

FAfterMSGisdelievered (37.91, p<0.001)
FwhenMSGdelivered (35.09, p<0.001)
Nbtimesmousemovesbwexercises (165.47, p<0.001)
Errorquotient (16.56, p<0.001)
Nbtimelooksbwexercises (59.74, p<0.001)

Table 7.18 Two-way mixed repeated measures ANOVA objective results that are related to

the second hypothesis (second main effect: robot vs box; human vs robot; baseline vs robot)

for the different constructs presented vertically.

Factor Pairwise Comparison (F-test, P-value)

Box VS robot Robot vs human Baseline vs robot

FAfterMSGisdelievered (55,66, p <0.001) (42.91, p <0.001) /

FwhenMSGdelivered (18.34, p <0.001) (14.65, p <0.001) /

Nbtimesmousebwexs (240.84, p <0.001) (284.16, p <0.001) (407.36, p <0.001)
Errorquotient (26.09,p <0.001) (18.63, p <0.001) (48.73, p <0.001)
Nbtimelooksbwexs (84.4, p <0.001) (71.08, p <0.001) (155.05, p <0.001)

Table 7.19 Two-way mixed repeated measures ANOVA objective results that are related to

the second hypothesis (second main effect: baseline vs box vs human vs robot). In the

table, we have the different pairwise comparisons (Box VS human), (Baseline vs box) and

(Baseline vs human) for the different constructs presented vertically.

Factor Pairwise Comparison (F-test, P-value)

Box VS human Baseline vs box Baseline vs human

FAfterMSGisdelievered (5.96, 0.017) / /

FwhenMSGdelivered (79.04, <0.001) / /

Nbtimesmousemovesbwexercises (8.49,0.005) (9.75,0.003) (38.6,<0.001)
Errorquotient (0.517,0.475) (2.212,0.142) (7.9,<0.001)
Nbtimelooksbwexercises (0.054,0.817) (21.47,<0.001) (14.112,<0.001)

Based on table 7.19, we notice that there were significant statistical differences between

the box and the human conditions except for two construct which are the error quotiet and

the number of times the human looks between the two exercises. There were also significant

differences between the baseline and box conditions except for the same construct (error

quotient). By comparing the box and the baseline conditions, it is clear that there were no

differences between both conditions when we consider the error quotient construct. Finally
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it is clear that there are always statistical differences between the baseline and human con-

ditions in terms of objective measures. To determine the evolution’s tendency of each of the

Table 7.20 The mean and standard deviation values for the baseline and box conditions and

for the different constructs presented vertically.

Baseline (m,sd) Box (m,sd)

FAfterMSGisdelievered / (5.56,0.34)

FwhenMSGdelivered / (3.27,0.27)

Nbtimesmousemovesbwexercises (3.58,0.171) (4.35,0.21)

Errorquotient (0.353,0.028) (0.42,0.032)

Nbtimelooksbwexercises (10.01,0.422) (7.72,0.34)

objective constructs, tables 7.20 and 7.21 show in pink the condition that have the highest

values for each of the different objective constructs (for example Errorquotient is colored in

pink [1] when it is associated to the robot’s condition. This means that the robot’s condition

leads to the highest results in terms of errorquotient in comparison to the other conditions.),

then comes the blue color [2] that it is related to the second highest values for each of the

different objective constructs, after that we have the green color [3] and finally the gray color

[4] (Example: for the error quotient, we can see that the highest results are in the case of the

robot condition (pink[1]), the second highest results are in the human condition (blue[2]),

then comes the box condition with the third highest results(green [3])). Finally, we have the

lowest results in term of error quotient in the baseline condition (gray[4]).)

Based on tables 7.20 and 7.21, we can see that globally the highest objective results were

in the robot’s condition except the number of frames during which the user is looking to

the persuasive message source (FwhenMSGdelivered) while the human condition holds the

highest results. After that comes the human condition that holds the second highest results

except for two constructs which are the FwhenMSGdelivered and the number of times the

student looks between exercises before choosing to redo the current exercise (Nbtimelooks-

bwexercises) because it is the baseline condition that holds the second highest results. The

third highest results belong to the box’s condition except for the Nbtimelooksbwexercises

(the baseline condition holds the third highest results) and finally comes the baseline condi-

tion that holds the lowest results.

In summary, strickigly, using the robot as a persuasive message source has the same

effect on the evolved implicit attitude that encourages redoing the exercise that it is wrong.

As for the other subjective results, it looks like the robot holds the highest results in com-

parison to the other conditions then comes the human condition, after that the box condition

and finally comes the baseline condition with the lowest results.

In terms of objective results, it is the robot that holds the highest results as well except for
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Table 7.21 The mean and standard deviation values for the robot and human conditions and

for the different constructs presented vertically.

Robot (m,sd) Human (m,sd)

FAfterMSGisdelievered (9.88,0.45) (6.71,0.28)

FwhenMSGdelivered (4.88,0.25) (6.12,0.197)

Nbtimesmousemovesbwexercises (8.89,0.23) (5.14,0.204)

Errorquotient (0.633,0.031) (0.452,0.029)

Nbtimelooksbwexercises (15.06,0.47) (9.87,0.47)

the FwhenMSGdelivered and this could be explained by the fact that the human’s presence

could give to the student’s the sensation that the human is staring at him/her so that it is why

by social compliance, students look to the human too. After, the robot condition comes the

human’s condition with the second highest results globally, followed by the box condition

and the worst objective results were in the baseline condition.

7.11.3 Hypothesis 3 investigation

subjective results

As a reminder, our third hypothesis of the second experiment (H3E2) can be formulated as

follows: We expect, most importantly, an interaction between the manipulation of persuader

social agency and persuaded relational-utilitarian type. We are interested in whether the

persuader’s agency is equally effective for utilitarian and relational people (it is the change

in the simple main effect of persuader’s agency over levels of profile: 2 levels (utilitarian and

relational)). That is, for people who are relational, they are more prone to follow equally

the human or the robot’s persuasive message rather than the box’s persuasive message and

overcome the cognitive dissonance.

In contrast, for people who are utilitarian, the effect of the persuasive message is of the same

magnitude independently from the message’s source but the presence of a persuasive mes-

sage is better than the condition when there is no persuasive message (when the utilitarian

human is left alone to face the cognitive dissonance).

Based on the table 7.22 comparing the interaction effect (student’s profile X the persua-

sive source’s agency) in terms of subjective measures, we can see that there were significant

results for whole the constructs while p-value varies from 0.04 to < 0.001 and that it is why

all the cells of the second column were colored in blue (in fact in blue we colored the con-

struct that have significant statistical differences when we compare the different interaction

effects).
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Table 7.22 The within subjects effect table of the interaction effect (comparing the baseline,

robot, box and human conditions) related to the subjective measures and which correspond

to the third hypothesis by means of the different constructs presented vertically

Factor Main Comp

(F,P-value)

Arousal (64.361,p=0.001)

Dominance (9.008,p <0.001)
Trust (13.73,p=0.04)

Pleasure (3.64,p=0.029)

Credibility (3.12,p=0.048)

IAT (52.98,p <0.001)
Perceived Intelligence (9.59,p <0.001)
Cognitive dissonance (12.8,p=0.003)

Likeability (11.98,p <0.001)

Table 7.23 The pairwise comparison of the interaction effect values (box vs robot; robot

vs human; baseline vs robot) related to the subjective measures by means of the different

constructs presented vertically.

Factor Pairwise Comparison (F-test, P-value)

Box VS robot Robot vs human Baseline vs robot

Arousal (5.4, 0.023) (112.94, p <0.001) /

Dominance (5.62,0.021) (4.14,0.046) /

Trust (20.20,p <0.001) (0.112,p=0.738) /

Pleasure (5.75,0.019) (0.149,p=0.701) /

Credibility (5.44,0.023) (0.137,0.712) /

IAT (0.1,0.753) (069,0.409) (5.12,p=0.027)

Perceived Intelligence (18.28,p <0.001) (5.34,p=0.024) /

Cognitive dissonance (16.68,p <0.001) (16.93,p <0.001) (180.12,p <0.001)
Likeability (17.81,p <0.001) (0.002,0.965) /

Based on the table 7.23, we can see that there were significant statistical differences in

terms of arousal, dominance, perceived intelligence and cognitive dissonance (second col-

umn cells that are colored in blue). By comparing the robot and box conditions, we notice

that there were significant differences for all the subjective values except for two constructs

which are the IAT (implicit association test). Finally, by comparing the baseline and robot

conditions, we can see that there are significant differences for the IAT and the cognitive

dissonance.

In the same context, table 7.24 helps comparing the interaction effects between utilitarian

and relational students while taking into account the persuasivemessage source agency level.
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Table 7.24 The pairwise comparison of the interaction effect values (box vs human; baseline

vs box; baseline vs human) related to the subjective measures by means of the different

constructs presented vertically.

Factor Pairwise Comparison (F-test, P-value)

Box VS human Baseline vs box Baseline vs human

Arousal (81.11, p <0.001) / /

Dominance (15.77,0.003) / /

Trust (24.06,p <0.001) / /

Pleasure (4.46,0.039) / /

Credibility (4.56,0.037) / /

IAT (0.099,0.754) (5.17,p=0.026) (11.11,p=0.001)

Perceived Intelligence (4.429,p=0.039) / /

Cognitive dissonance (0.945,0.335) (2.158,p=0.147) (40.40,p <0.001)
Likeability (21.1,p <0.001) / /

It is clear based on the first column of the table 7.24 that there were significant differences

except for two measures which are the IAT and cognitive dissonance. By comparing the con-

ditions baseline and human, we remark that there are significant differences in terms of IAT

and cognitive dissonance and it is the same insight that we got when we compare the condi-

tions baseline and box except the cognitive dissonance construct. We calculated the contrast

Table 7.25 Contrast Values related to hypothesis 3 of the different conditions (Robot-Box)

and (Human-Box) for both types of profile (relational and utilitarian).

Robot-Box Human-Box

Rel Util Rel Util

Arousal (+) 0.82 (+) 2.12 (+) 3.3 (+) -1.18

Dominance (+) 2.94 (+) 1.88 (+) 1.18 (-) -0.82

Trust (+) 30.88 (+) 12.79 (+) 15.18 (-) -1.55

Pleasure (+) 2.55 (+) 3.79 (+) 0.48 (+) 1.55

Credibility (+) 8.76 (+) 5.94 (+) 3.12 (+) 0.79

IAT (+) 0.27 (+) 0.31 (+) 0.37 (+) 0.34

Perceived Intelligence (+) 15.18 (+) 10 (+) 5.58 (+) 3.27

Cognitive Dissonance (+) 14.64 (+) 7.06 (+) 6.06 (+) 0.09

Likeability (+) 18.36 (+) 12.88 (+) 7.58 (+) 2.03

values that are related to the interaction effect (the student’s profile X persuader’s agency).

Tables 7.25, 7.27 7.26 show the contrast values related to hypothesis 3 of the different condi-

tions (Baseline-Box), (Human-Robot), (Robot-Box), (Human-Box), (Robot- Baseline) and

(Human-Baseline) for both types of profile (relational and utilitarian). The blue color is

related to the relational students group that hold the highest results for the construct that it
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is indicated in the first column, the pink color is associated to the utilitarian students group

who have higher construct (indicated in the first column) results while in yellow we have

the comparison that lead to no significant difference between both groups contrast values.

Mainly, based on the tables 7.25, 7.27 7.26, we deduce that relational students have higher

contrast values then the utilitarian students when we consider the robot-baseline, human-

baseline conditions. Also, we remark that relational students have higher contrast values

then the utilitarian students when we consider the robot-box, human-box conditions except

for IAT and conitive dissonance where there were no significant differences and (arousal

and pleasure) where utilitarian students have higher contrast values.

Table 7.26 Contrast Values related to hypothesis 3 of the different conditions (Robot-

Baseline) and (Human-Baseline) for both types of profile (relational and utilitarian).

Robot-Baseline Human-Baseline

Rel Util Rel Util

Arousal / / / /

Dominance / / / /

Trust / / / /

Pleasure / / / /

Credibility / / / /

IAT (+) 0.68 (+) 0.43 (+) 0.78 (+) 0.46

Perceived Intelligence / / / /

Cognitive Dissonance (+) 15.73 (+) 8.15 (+) 7.15 (+) 1.18

Likeability / / / /

Based on the table 7.26, we remark that relational students are more sensitive to the

shifting of the persuasive message source from baseline to robot and from baseline to the

human as a persuasive source. Utilitarian students are also influenced by this shifting but

with less proportions.

Now, if we compare the human-robot contrast values of the two groups (utilitarian and

relational students), we remark that there were no main differences between both groups

concerning the measures trust, pleasure, credibility and IAT which means that both groups

find that the human and the robot are equally trustworthy, pleasant, credible and helps to

evolve a positive implicit attitude that consists on redoing the science exercise when it is

answered previously in an incorrect way. Always in the first comparison column of the

table 7.27, there were negative evolution tendency of contrast values when we consider util-

itarian students and this is reproduced for the constructs (arousal, dominance, perceived

intelligence and cognitive dissonance). This means that as we have noticed previously that

broadly speaking using a robot is better than using a human as a persuasive message source
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Table 7.27 Contrast Values related to hypothesis 3 of the different conditions (Baseline-Box)

and (Human-Robot) for both types of profile (relational and utilitarian).

Human-Robot Box-Baseline

Rel Util Rel Util

Arousal (+) 2.48 (-) -3.3 / /

Dominance (-) -1.76 (-) -2.7 / /

Trust (-) -15.7 (-)-14.33 / /

Pleasure (-) -2.06 (-) -2.24 / /

Credibility (-) -5.64 (-) -5.15 / /

IAT (+) 0.11 (+) 0.03 (+) 0.41 (+) 0.12

Perceived Intelligence (-) -9.61 (-) -6.73 / /

Cognitive Dissonance (-) -8.58 (-) -6.97 (+) 1.09 (+) 1.09

Likeability (-) -10.79 (-)-10.85 / /

and that relational students have higher subjective and objective results globally, by com-

paring the interaction effects, we can conclude that relational and utilitarian students are

equally influenced by the usage of a robot or a human in terms of subjective measures (trust,

pleasure, credibility, IAT) and sometimes the usage of a human could lead to more drastic

subjective contrast results for utilitarian while the contrast values are negative which means

that using a robot leads to positive contrast values. For some of the subjective results, we

remark that perceived intelligence, cognitive dissonance and likeability have negative con-

trast values as for relational students which are higher if we consider the absolute value of

the contrast results. Some of the subjective results show that using a human have higher in-

teraction effect with a negative tendency for the utilitarian group, using a robot have higher

interaction effect with a negative tendency for the relational group for some other subjective

constructs and some have no special differences between both groups when we consider the

comparison of the robot condition vs the human condition.

objective results

Table 7.28 the main comparison of the objective results related to hypothesis 3 (F,p-value).

Factor Main Comp

(F,P-value)

FAfterMSGisdelievered (9,p <0.001)
FwhenMSGdelivered (3.623,p=0.029)

Nbtimesmousemovesbwexercises (13.32, p <0.0001)
Errorquotient (9.55,p <0.001)
Nbtimelooksbwexercises (8.19,p=0.006)
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Table 7.29 The contrast objective values comparison of relational and utilitarian students for

the comparisons (Human-Robot) and (Box-Baseline).

Human-Robot Box-Baseline

Rel Util Rel Util

FAfterMSGisdelievered -3.12 -3.21 / /

FwhenMSGdelivered (+) 1.12 (+) 1.36 / /

Nbtimesmousemovesbwexercises -4.36 -3.15 (+) 1.36 (+) 0.18

Errorquotient -0.2 -0.16 (+) 0.22 -0.08

Nbtimelooksbwexercises -5.36 -5 (+) 3.3 (+) 1.27

Table 7.28 shows the statistical differences between the different conditions (persuader’s

agency) X (student’s profile) while in blue we have the F-test values that led to statistical

significant differences. By looking at the table 7.28, we remark that all the objective results

F-tests have significant p-values and that it is why they were colored in blue.

By applying the comparison of both groups in conditions box-robot, box-human and robot-

human, we remark that there were no significant results in terms of error quotient between

the different interaction effect results. There were also no significant differences between

contrast values of both groups when we consider the robot vs human condition in terms of

FAfterMSGisdelievered and FwhenMSGdelivered. So both groups are equally influenced

in terms of eye gaze movement when a cognitive dissonance occurs.

Table 7.30 Pairwise Comparison of the objective results related to hypothesis 3: 3 compar-

isons (Baseline vs box), (Baseline vs robot) and (Baseline vs human).

Factor Contrast Values Pairwise (F, P-value)

Baseline vs box Baseline vs robot Baseline vs human

FAfterMSGisdelievered / / /

FwhenMSGdelivered / / /

Nbtimesmousemovesbwexercises (5.7,p=0.02) (36.45, p<0.001) (15.16,p<0.001)
Errorquotient (11.14,p=0.001) (24.66,p<0.001) (24.47,p<0.001)
Nbtimelooksbwexercises (4.23,p=0.044) (17.37,p<0.001) (15.74,p<0.001)

By considering the tables 7.30 and 7.29 , we can see that relational students are more

influenced in a negative way when we change the persuasive message source from the robot

to the human and that it is why it has higher results colored in blue as for the constructs

Nbtimesmousemovesbwexercises and Nbtimelooksbwexercises.

Based on these objective contrast results, we can conclude that utilitarian students are

equally influenced in comparison to the relational students and with the same evolution

tendency in terms of eye gaze and error quotient and are less influenced than the relational



168 TU/e Research

Table 7.31 The contrast objective values comparison of relational and utilitarian students for

the comparisons (Robot-Baseline) and (Human-Baseline).

Robot-Baseline Human-Baseline

Rel Util Rel Util

FAfterMSGisdelievered / / / /

FwhenMSGdelivered / / / /

Nbtimesmousemovesbwexercises (+) 6.91 (+) 3.73 (+) 2.55 (+) 0.58

Errorquotient (+) 0.48 (+) 0.08 (+) 0.28 (-) -0.08

Nbtimelooksbwexercises (+) 9.79 (+) 4.88 (+) 4.42 (-) -0.12

students in terms of Nbtimesmousemovesbwexercises and Nbtimelooksbwexercises.

Based on the table 7.29, one can see that by comparing box-baseline condition objective re-

sults, relational students seen to be more sensitive to the shifting of the persuasive message

source from the box to the baseline. Utilitarian are less sensitive to this shifting.

By considering tables 7.31 and 7.30 , we can see that relational students seem to be

more influenced than utilitarian students if we shift the persuasive message source from the

baseline to the robot. The evolution tendency of this influence is positive indicating that

relational students prefer to have a robot as a persuasive message source rather than having

no persuasive source. They also prefer the human as a persuasive message source rather

than nothing and they are even more influenced than the utilitarian students again when we

shift the persuasive message source from the baseline to the human. However, this time we

can see that some of the utilitarian students do not prefer to have the human as a persuasive

message source and that it is why the main contrast variable that indicates the number of

times the human redoes the wrong exercise which is the error quotient decreases (-0.08)

instead of increasing like as for the relational students (0.28). Even the Nbtimelooksbwexer-

cises contrast value decreases too (-0.12) rather than that it increases whe we compare it to

the relational students that were positively influenced when we shift the persuasive message

source from the baseline to the human. Consequently, it seems to be that utilitarian students

do not like the human’s presence and it has a negative influence on the objective results.

Based on the tables 7.32 7.33, we can see that there were no statistical differences be-

tween the human and the box conditions in terms of Nbtimesmousemovesbwexercises, Er-

rorquotient and Nbtimelooksbwexercises contrast values if we compare the evolution of

these contrasts for the utilitarian and relational groups. However, there were significant dif-

ferences between both group contrast values of the constructs FAfterMSGisdelievered and

FwhenMSGdelivered where relational students seem to be more sensitive to the shifting of

the persuasive message source from the box to the human. The same insight can be drew if

we maintain the same constructs but the persuasive message source changes from the box to
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Table 7.32 Pairwise Comparison of the objective results related to hypothesis 3: 3 compar-

isons (Box VS robot), (Box VS human) and (Robot vs human).

Factor Contrast Values Pairwise (F, P-value)

Box VS robot Box VS human Robot vs human

FAfterMSGisdelievered (10.36,p=0.002) (16.37,p<0.001) (0.009,p=0.925)

FwhenMSGdelivered (5.11,p=0.027) (5.153,p=0.027) (0.139,p=0.71)

Nbtimesmousemovesbwexercises (2.12,p=0.15) (2.12,p=0.15) (7.4,p=0.008)

Errorquotient (5,p=0.03,) (4.76,p=0.049) (0.176,p=0.676)

Nbtimelooksbwexercises (4.6,0.036) (0.088,0.786) (6.87,0.011)

Table 7.33 The contrast objective values comparison of relational and utilitarian students for

the comparisons (Robot-Box) and (Human-Box).

Robot-Box Human-Box

Rel Util Rel Util

FAfterMSGisdelievered (+) 6.18 (+) 2.45 (+) 3.06 -0.76

FwhenMSGdelivered (+) 2.45 (+) 0.76 (+) 3.58 (+) 2.12

Nbtimesmousemovesbwexercises (+) 5.55 (+) 3.55 (+) 1.18 (+) 0.39

Errorquotient (+) 0.26 (+) 0.16 (+) 0.16 0

Nbtimelooksbwexercises (+) 6.48 (+) 3.61 (+) 1.12 -1.39

the robot except that this time relational students again seem to have higher contrast values

if we take into account the variable Nbtimelooksbwexercises.

7.12 Discussion

7.12.1 First Experiment Insights

Based on the first experiment, we remarked that there were significant statistical differences

in terms of subjective and objective measures (tables 7.1 7.5 7.6 7.7). By looking to the

different subjective constructs, we remark that "during gamma window" leads to higher sub-

jective results if we compare it to the baseline (table 7.2), before gamma window (table 7.2)

and after gamma window (table 7.4 ) except for one measure that it is IAT (implicit asso-

ciation test) when we compared "Gamma window" condition to "before gamma" condition.

This indicates that both conditions lead to the same implicit attitude formation. An implicit

attitude that incites according to the test to redoing difficult science exercices that were an-

swered in a wrong way to strive for more success. Consequently, it is better to annouce a

message during gamma window.

If we compare before gamma window condition to the other conditions (table 7.3), we re-
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mark that "before gamma window" condition leads to the second highest results in terms of

subjective results except for dominance where there were no statistical difference between

after and before conditions indicating that proposing the message before or after has no ef-

fect on the dominance because it is maintained at the same level.

Now in terms of objective results (table 7.8), "before gamma window" condition seem to

lead to higher results than the baseline condition. However, there were no special differences

between "after gamma window" and "before gamma window" in terms of Nbtimesmouse-

movesbwexercises, Errorquotient, Nbtimelooksbwexercises which means that the message

is proposed before or after the gamma window does not influence the mouse movement that

dwells between the two exercises neither the eye gaze dwelling between the 2 exercises be-

fore making the final choice. It is the same level of dilemma then that we trigger when the

message is triggered if the message is proposed before or after gamma window. Also, it is

the same level of error quotient which means that proposing before or after gamma window

may have some influence on the subjective evaluation of the persuasive message source but

it has after all no special effect on the final decision taken by the student that it is related to

the variable error quotient.

As for the FAfterMSGisdelievered , we remark that by comparing the after and before

gamma (table 7.8) window conditions, we have higher results in the condition "after gamma

window" because students were suprised when the robot suddently start talking after gamma

window while it should have talked before that he/she takes the decision. they even indi-

cated so when debriefed; One of the participant highlighted: "I think I was a bit surprised

and sometimes annoyed when the robot start to talk while I am concentrating on redoing the

current exercise." As for the FwhenMSGdelivered, it is the "before gamma window" that

holds higher results than the "after gamma window" condition indicating that students are

paying attention to the robot when the it talks eventhough they are concentrating on resolv-

ing the current exercise before that they are stricken by the cognitive dissonance. Students

may accept so and do not accept it when they are redoing the current exercise because in the

firt time (when the message is spoken before gamma window), the students are stricken by

the exercise difficulty and the message distracted them from the difficulty, while when the

message is spoken "after gamma window" and that the user has chosen to redo the current

exercise 5, he needs his full concentration and that it is why the likeability is higher in the

condition "before gamma window" rather than "after gamma window" (table 7.3).

5we count only the number of times when the student redoes the current exercise that was answered incor-

rectly and we do not considerate the number of times when the student rejects redoing the current exercise
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7.12.2 Second Experiment Insights

Hypothesis 1: Main Effect (Relational Vs Utilitarian)

When comparing objective and subjective results (tables 7.11 7.9) of the relational and util-

itarian students, we can conclude that there are significant differences between relational

and utilitarian students. Based on the tables 7.107.12, we can see that relational students

have the highest results if we do not take into consideration the persuasive message source.

This gives us a first insight that relational students are easy to be influenced than utilitarian

students. There were an exception for the pleasure construct, while we can notice based on

the table 7.10 that utilitarian students have higher results than relational students.

Although, utilitarian students are known to be serious students and highly disciplined, they

seem to be more enjoying the experiment. Using the debrief results, one of the utilitarian

students says :"I enjoy myself while doing this experiment because finally I can see some-

thing new added to this old-fashioned education institution", another utilitarian students

indicates:"It is wise to think about taking care of the courses that we take in a different

way and I prefer to have something that can accompany me but I am sorry because I do

not like that a human that accompany me to stare at me Let it be anything else that acts in

a logical and reasonable way." Relational students were happy to conduct the experiment.

But according to the statistical results, they were not happier than utilitarian students al-

though relational students were supposed to feel positive emotions easily in comparison to

the utilitarian students.

Hypothesis 2: Main Effect (baseline vs gadget(box) vs robot vs human)

Based on the tables 7.13 7.17, we can see that there were signficant statistical differences

between the different conditions.

Pairwise comparisons in tables 7.14 7.15 7.18 7.19 show that there are manily signficant dif-

ferences between all the conditions and for the different objective and subjective constructs

except for:

• errorquotient when we compare box vs human and baseline vs box: This means that

the usage of a box or a human is has the impact in terms of how many times the

student decides to redo the current exercise that was answered previously in a wrong

way.

• Nbtimelooksbwexercises when we compare box vs human: it seems to be that using a

box or a human triggers the same eye gaze activity and thus the same dilemma level.
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• Dominance when we compare the box and the human conditions: This means that

both sources have the same level of dominance; Implicitly, we could deduce that the

human’s presence was not more captivating than a mere box that contains a gadget

showing a text.

• cognitive dissonance: when we compare the baseline and the box. This means that

using a box or nothing at all has no special imact on the cognitive dissonance that

the student feels at least based on the student’s subjective ratings because we should

highlight that humans have in general a tendency to deny the occurence of any kind of

cognitive dissonance and this is attributed to our natural tendency to maintain a good

public image.

• IAT and arousal: when we compare the robot and the human conditions and this

means that in both conditions (robot or the human), the student ended up with the

same level of arousal and the same implicit conviction about the usefullness of redoing

an incorrect exercise to understand one’s errors.

Based on the tables 7.16 7.20 7.21, we can see that globally, the robot condition has the

highest results, then comes the human condition, after that the box condition and finally we

have the baseline condition with some exceptions related to some constructs.

if we focus on the conditions that have the highest impact in our reserach and which we can

focus more, we can compare the robot and the human conditions The robot case has superior

results than the human case except for the IAT while they seem to lead to the same implicit

attitude formation’s level ( an attitude that it is activated by the automatic processig system

and which encourages learning more deeply science and redoing the wrongly answered

exercises to learn tthe science concepts in a proper way). In terms of objective measures,

we can mention that the "error quotient" is the dependent variable that mostly indicates

whether the student was able to redo the exercise or not when it is answered the first time in

a wrong way. By comparing error quotient results if conditions robot and human, we can say

that the robot holds the highest results than the human condition. Thus the robot globally is

more appreciated by the student in terms of objective measures while based on subjective

results, we can see that implicitly it led to the formation of the same attitude formation level

which means that we end up with the same positive convictions about science learning even

if we consider a human as a persuasive message source However, it is not guaranteed that

we will have the same level of error quotient (because it was not the case based on the data’s

experiment).
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Hypothesis 3: Interaction Effect (Student’s Profile) X (Persuader’s agency)

Based on the tables 7.28 7.22, we can say that there were significant statistical differences for

the different resulting conditions of the second experiment’s design which can be described

as follows (persuader’s agency X the student’s profile).

Pairwise comparisons are applied too in tables 7.23 7.24. Blue color prevailed in the tables

7.23 and 7.24 indicating that there are many statistically signficant results. However, there

were no statistical differences in terms contrast values related to the following constructs:

• IAT: when we shift the persuasive message’s source from the box to the robot. No

change in implicit convictions whether it is a box or a robot.

• trust, pleasure, credibility, IAT and likeablity: when we shift the persuasive message’s

source from the robot to the human.

• IAT: when we shift the persuasive message’s source from the box to the human. No

change in implicit convictions whether it is a box or a human.

• cognitive dissonance : when we shift the persuasive message’s source from the base-

line to the box or the box to the human. No change in implicit convictions.

When we compare tables 7.33, 7.26 and 7.27, we can see that relational students are

more sensitive in a positive way in comparison to the untilitarian students when the persua-

sive message is spoken by a robot rather than the baseline condition and by the human rathan

than the baseline. Using a box rather than nothing as a persuasive message source seems to

be more convincing for relational students rather than utilitarian ones (IAT: (+)0.41. Most

importantly, when the persuasive message source is shifted from the robot, it looks like there

are no special differences between relational and utilitarian students contrast values in terms

of trust, pleaure, credibility and IAT with relational and utilitarian having the same evolu-

tion’s tendency while we can see that it is mostly a negative evolution’s tendency except for

the IAT that seem to increase slightly for both groups. A comparison between both contrast

group values when the persuasive message source shifts from the robot to the human shows

that utiitarian students seem to be more sensitive with a negative evolution mode in terms of

arousal, likeability and dominance in comparison to relational students. So, utilitarian stu-

dents seem to be less aroused and less dominant and found the human less likeable when the

persuasive message source is the human while in terms of perceived intelligence and cogni-

tive dissonance relational students seem to found the human less intelligent than the robot

and they got less trigerred cognitive dissonance in comparison to utilitarian students that

have the same tendency too. If we consider the comparison of the shifting from the robot to
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the human for both groups (utilitarian and renational students) and baed on table 7.29, we

can see that there were higher contrast values for relational rather than utilitarian students

in terms of dilemma levels (Nbtimesmousemovesbwexercises, Nbtimelooksbwexercises),

while there are no special differences in terms of FAfterMSGisdelievered, FwhenMSGde-

livered and Errorquotient contrast values which means that relational people get more in

dilemma when the human is the persuasive message source, however and after all the vari-

able that shows that the exercise is done or not after this dilemma has the same level of

contrast values indicating that after all there were no special differences on the final deci-

sion taken even if the process that both groups go through is a bit different.

If we compare the situation when we use a persuasive message source rather than nothing

(tables 7.30 7.31), we can see that using a persuasive message source is better and that rela-

tional students are more sensitive to the shifting from no message source to one of the three

proposed persuasive message sources (the human, the robot or the box.)

Based on the tables 7.32 and 7.33, we notice that relational students are more sensitive

whether during the active attitude change process (FAfterMSGisdelievered, FwhenMSGde-

livered, Nbtimelooksbwexercises) or when the decision is taken to redo the wrong exercise

(Errorquotient) when the persuasive message is changed from the box to a robot and from

the box to the human (except for the construct Nbtimelooksbwexercises).

7.13 Conclusion

We conducted an experiment with the objective to verify whether people who has a diffi-

culty with positive emotions formation (utilitarian students) and people who spontaneously

choose to trigger their bad habits because they have no planned behavior on the moment

of choice but they choose their behaviors spontaneously while activating unintentionally

the automatic processing, can keep on interacting with the robot if some breakdowns occur

during the interaction. For this purpose, we drew a similar experimental setup where we

want to investigate whether there were special differences between the relational and utili-

tarian people, whether using a persuasive message source rather than the robot could lead to

higher persuasiveness, whether proposing the message during gamma window is better and

whether there were special interaction effects when we shift from one persuasive message

source to another if we take into account the user’s profile. It is just that instead of verify-

ing whether people will keep interacting with the robot, we verify whether students keep

on doing a difficult task once they are stricken by the cognitive dissonance. The cognitive

dissonance that it is assumed to arise as well when the non expert trainer finds out that his

preconceptions about the previously established communication protocol are defeated by a
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robot’s behavior that it is different than expected.

Results show that globally relational people scored high whether in terms of subjective or

objective constructs, that proposing a message during gamma window is better than before

gamma window which is better than after gamma window and proposing a persuasive mes-

sage source is better than nothing (baseline). Also, we found that strikingly there were a

preference for the robot by Tunisian students then comes the human, after that the box and

finally we have the baseline. Based on the interaction effect results analysis, it is clear that

in terms of subjective constructs, when we start to use rather than the box relational stu-

dents seem to attribute higher values to the robot rather than utilitarian students, however,

relational students seem to report higher arousal, pleasure and implicit positive attitude for-

mation than the relational students. Shifting from the box to the human as a persuasive

message source reveals that relational students are more sensitive to such shifting while al-

ways is it that relational students are more sensitive than utilitarian students if we shift from

the baseline to the robot, box or the human.

Shifting from the robot to the human as a persuasive message source seems to lead to a more

sensitivity for utilitarian students with a negative evolution in terms of arousal, dominance

and likeability, while in terms of perceived intelligence and cognitive dissonance it is rela-

tional students who have higher contrast values and still many other subjective constructs

seem to have so special differences whether we considerate the human or the robot as a

persuasive message source. In terms of objective measures, shifting from the robot to the

human seems to lead to no special contrast differences in terms of number of frames the user

looks to the persuasive message source whether during the message reception (FwhenMS-

Gdelivered) or after the message reception (FAfterMSGisdelievered), the dilemma seem to

be felt more by relational students (Nbtimesmousemovesbwexercises, Nbtimelooksbwexer-

cises), however in terms of decision taking (Errorquotient) no special differences exist when

we shift from the robot to the human. Consequently, if we want to maximize the chances of

keeping on doing something difficult (doing a difficult exercise or interacting with a robot

that makes errors), having a persuasive message source during gamma window is better and

this persuasive message can be a robot if we suppose that a human that it is available for the

user to speak a persuasive message could be difficult to achieve while there will be more

dilemma for relational students during the active attitude change and the possibility that a

decision to redo the difficult task will be the same for both types of people (utilitrian or rela-

tional). It could be that in such case relational students will feel more cognitive dissonance

and that the robot came at the proper time (more intelligent) to save them from this difficult

moment if the robot is the persuasive message source rather than having a human that speaks

the persuasive message. However, always on the same context, utilitarian students seem to
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be more engaged with a robot (arousal, dominance) rather than a human as a persuasive

message source which leads to higher likeability to the robot rather than the human.



Chapter 8

Conclusion

In the first chapter, we gave a brief introduction where we highlighted the importance of

using behaviors that make the robot sociable so that it can be easily integrated in the society.

We highlighted as well that our work involves non-expert trainers that do the dynamic scaf-

folding with minimally designed robots. We highlighted that the main first challenge in this

case consists in finding a way to grant the robot with the capability to act autonomously. As

we are interested in ecological robotics, we managed to conduct a human-human experiment

to verify the redundant patterns which lead to the formation of a communication protocol.

We showed that the process is incremental and leads to the emergence of agreements and

disagreements about the common communication patterns. The first human knocks on the

table to express his desire to make the robot moves right, left, forward or back and another

human located in another room tries to translate these knocking patterns based on his inter-

action experience that it is formed online while interacting with the knocker. Based on the

analysis of the data, we could have proposed an actor critic architecture that helps on build-

ing a smooth communication protocol. This architecture is built, integrated on the robot and

tested out while we remarked that the robot succeeded when acting using this architecture

to build communication protocols that are customized to the human-robot pairs.

However, there were a main problem when the robot is abandoned for a long period and then

used by the non-expert trainer. The latter thinks that he is correct while assigning the instruc-

tions and that the robot should have tried to remember properly the previously established

communication protocol (PECP). However, the problem was related to the human who does

not pay attention to the teaching quality and forgets the rules of interaction. As the robot

was taken as a scapegoat unintentionally and that a robot protesting by saying to the human

he is the wrong party could be threatening for the human’s social face, we proposed to use

an implicit method that may trigger the human’s memory to easily remember the previously

encoded (during the first interaction’s instance) communication rules. We used inarticulate
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utterances (IUs) that may play the role of audio icons facilitating the memorization of the

interaction context if synchronized with the interaction’s context and maintained during the

reuse of the PECP. In such a case, in a second interaction’s instance after a period of robot’s

abundance, the robot has just to generate an IU when a special instruction is given by the

human to announce the code of the robot’s behavior that it is about to be executed. If the ac-

tion is correct the human will not react but if the robot’s action that it is about to be executed

is incorrect then the human has to remember the right instruction or at least knows that the

action that it is about to be executed is related to another robot’s behavior. Such a method

has brought about better remembrance of the PECP. We highlighted that proposing a differ-

ent version of IUs during the PECP recall leads to worse performance and that proposing a

variation repeat technique in a way that for each robot’s behaviors we will have a dataset of

IUs leads to a mediocre performance.

However, to be sure that the human will be cooperative enough to pay attention to the rules

that he is forming, a minimum level of positive emotions should evolve while interacting

with the minimally designed robot. Initially, we measured only the attachment that could

evolve between the human and the robot. But, we remarked that the adaptation and friend-

liness scored low which indicates that IUs should be synchronized with the robot’s visible

behaviors (Vbs).

As the social bonding involves four factors (belief, commitment, involvement and attach-

ment) rather than only the attachment, we shifted our goal to the creation first of a tool that

could help measuring the social bonding more appropriately.That it is why, we created a

special tool that may help us to asses the social bonding that could evolve during the HRI by

taking into account the four factors. We tested it in a context where the robot is synchroniz-

ing his IUs with his Vbs and we expected that social bonding would increase just like in the

child-caregiver scenario where they synchronize the most used IUs and the baby’s behav-

iors. Results were encouraging and indicate that social bonding increases when the robot is

synchronizing the IUs with the Vbs. As the results were compatible with the results that a

caregiver could achieve while interacting with a baby, we intended to use our validated tools

in a case study where we have to make the choice between designing a minimally designed

robot that it is proactive or reactive. Knowing whether we have to conceive a proactive or

reactive robot is of great use because we can determine how can we boost the social bonding

by keeping the same robot’s behavior and only program some initiatives that may make the

robot looks like proactive. If some initiatives could have a positive influence on the social

bonding, then all what we have to so is just to program some initiatives in the minimally

designed robots to increase the social bonding felt by the human during the HRI. The results

indicate that conceiving a minimally designed robot that is proactive is better than designing
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a minimally designed robot that it is reactive.

While doing the experiment about the social bonding, we remarked that a very small pro-

portion of the participants do not feel social bonding. By applying the PPI-R, we remarked

that these participants are a bit coldhearted. And thus, we deduced that for some of the

cold-hearted (or what we call utilitarian)students it is difficult to have a proper cooperation

with the robot that uses IUs during the interaction. In fact, these utilitarian people have

some trouble on evolving positive emotions in general. It is true that we could not report

this claim based on data because of the few proportion of people that has these problems

of social bonding evolvment absence, however in [136] Zadeh et al, highlighted the same

issue and indicates that people who are cold-hearted have a problem on interpreting and

responding to another party’s inarticulate porosody.

Consequently, we assumed that such people who are utilitarian could feel better engaged

during the HRI if a persuasive message could be generated when an error occurred during

the HRI. As an example, we can say a robot that makes errors while reusing a PECP just

like in our case. Such breakdowns could be annoying for utilitarian people and since they

cannot process the inarticulate prosodic information, we though that a message influencing

them to continue using the robot even if some breakdowns occur could resolve the problem.

Such a persuasive message could also be influencing for impulsive relational students who

use their automatic processing when they are in difficulty and call upon their stored attitudes

from the cognitive miser. If the triggered attitudes are negative the human might feel like he

wants to abandon the robot even if consciously or in a proper way in his planned behavior

intentions he said that he can keep interacting with such a robot that it is making errors

(according to his thinking because after all in the case of PECP reuse, it is the human who

is making errors).

To propose a persuasive message, we should take into account different parameters and we

should pay attention to the concept of cognitive dissonance that it is tightly coupled with

the persuasiveness paradigm. One of the main points that one can mention, when we talk

about cognitive dissonance is the gamma window. Gamma window is a period of time that

it is characterized by a cognitive and emotional dilemma that leads the human to adopt a

counter attitudinal behavior to resolve the dissonant concepts. There are some parameters

that should be there if we want to mention that cognitive dissonance might occur (which

we call in our study as pivots: cognitive closure, foreseeable consequences, etc..) which

need to be measured. After that comes the choice of the moment during which the robot

could deliver a persuasive message. Based on our experiments, the best moment is during

the gamma window. Now, there are plenty of persuasive message techniques. In our study,

we chose "that’s not all technique" while more techniques could be tested out in future work
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to see whether there are some differences. We also, highlighted in our experiment that rela-

tional students scored high in terms of objective and subjective results and that using a robot

is the best solution in order to persuade the person to continue doing a task that it is difficult

(such as redoing a a difficult exercise or interacting with a robot that makes multiple errors)

whether he is relational or utilitarian.
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