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Abstract

With the vast amount of information available on the Internet in
the forms of Web pages, such as news articles, microblog posts,
and shopping sites, a search engine has become an essential tool
of our daily life to explore information on the Internet. When an
information need comes up in mind, the user expresses it into a set
of words (AKA, a query) and issues the query to the search engine.
Currently, given a query, a search engine responds a ranked list of
documents to satisfy the information needs of the user. However,
if the user’s issued query conveys a variety of interpretations, the
search result is far from “what the user really wants to search."
Therefore, we assume that “what the user really wants to search" is
the user’s search intent.

According to user search behavior analysis, the search query is
usually short, ambiguous, or may entail multiple search intents.
Issuing the same query, users may have different information needs,
which corresponds to diverse search intents. Traditional information
retrieval models, including the boolean model and the vector space
model, treat the issued query as a clear, well-defined representation,
and completely neglect any sort of ambiguities. Ignoring the user’s
intents underlying a query, information retrieval models may result
in documents, possibly containing too much relevant information
on a particular aspect of a query. As these documents cover only a
few intents or interpretations, the user may not be satisfied.

To satisfy the users’ intents in their Web search, a practical approach
is to diversify the documents for the given search query, that is
to present a ranked list of documents by taking into account the



coverage, popularity, and novelty of the search intents underlying a
query. Therefore, exploring the possible search intents of the query
is an essential need for the next-generation search engine.

Exploring the search intents underlying a query has gained much
interest in recent years. Researchers have proposed several meth-
ods for mining subtopics as search intents by exploiting differ-
ent resources, including the top retrieved documents, query logs,
Wikipedia, anchor texts, and the query suggestions provided by the
commercial search engines. Query suggestions hold some search
intents, however, suggested queries are often noisy and possess a
group of similar suggestions covering a single intent of the query.
Moreover, the search query and the search intents (i.e. subtopics)
are short in length. Thus, it is a challenging task to estimate the
semantic and contextual similarity between a pair of short texts.

In this dissertation, we have developed a novel framework that
explores the subtopics covering intents underlying a query, esti-
mates subtopic importance, and diversify them by considering the
relevance and novelty. To diversify the search results, we have de-
vised a new way of ranking based on a new novelty estimation that
faithfully represents the possible search intents of the query. For rep-
resenting subtopic, we have proposed new semantic features based
on a word-embedding model to capture the semantic matching of
a query with a candidate subtopic. To rank a set of candidates, we
have developed a bipartite graph-based ranking method of estimat-
ing the global importance of the candidate subtopic by aggregating
the local importance of each feature.

Estimating the contextual similarity between a pair of short texts is a
formidable task. Two short texts might not be lexically similar, how-
ever, semantically similar. Our observation is that if two short texts
represent the similar meaning, even though they are not lexically
similar, they may result in similar kinds of documents from a search
engine. Mutual information between two probability distributions



of words, extracted from the corresponding documents, may rep-
resent the contextual similarity between two short texts. Therefore,
we have proposed a contextual similarity function for short texts
through the probability distributions of terms in the top retrieved
documents from a search engine.

We have experimented and evaluated the proposed methods, and
compared with the earlier methods on benchmark data sets. We have
conducted experiments on the intent mining test collections, includ-
ing NTCIR-10 and NTCIR-12, and web corpus, including Clueweb09-
Cat-B and Clueweb12-B13. Experimental results demonstrate the
effectiveness of our proposed methods in comparison to the known
earlier methods.

In the meantime, with a vast amount of medical knowledge avail-
able on the Internet, it is becoming increasingly vital to help doctors
in clinical diagnostics by suggesting plausible diseases predicted
with data and text mining technologies. In this dissertation, we
have also proposed to rank genetic diseases for a set of clinical
phenotypes. In this regard, we have associated a phenotype-gene
bipartite graph (PGBG) with a gene-disease bipartite graph (GDBG)
by producing a phenotype-disease bipartite graph (PDBG). To es-
timate the importance weight of an edge in PDBG, we have devel-
oped a Bidirectionally-induced Importance Weight (BIW) prediction
method to PDBG by considering the content and link information
from both sides of the bipartite graph. The experimental results
exhibit that our proposed BIW method has outperformed the known
previous methods in the disease retrieval system.
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Chapter 1

Introduction

1.1 Background

With the vast amount of information available on the Internet in the forms of
Web pages, such as news articles, microblog posts, and shopping sites, a search
engine has become an essential tool of our daily life to explore information on
the Internet. When an information need comes up in mind, the user expresses
the information need into a set of words (a.k.a., a query) and issues the query to
the search engine. Currently, given a query, a search engine responds a ranked
list of documents to fulfill the information needs of the user. If the issued query
is clear and meaningful, such as, “the value of PI," user may be satisfied with
the search result. However, in most of the cases, user’s issued query conveys
a variety of interpretations, and the search result is far from “what the user
really wants to search." Therefore, we assume that “what the user really wants
to search" is the user’s “search intent." For example, given a single word query
“apple," it may refer to the company “Apple Inc" or “the Apple fruit." Assuming
that the “Disney action movie" that we saw in the airplane was interesting.
Later, we forgot the title of the movie and wanted to make sure in the search
engine. Even if a search query is “Disney action movie," the search result is
too large and may not reach to the "what is really looking." This is the scenario
of the present search engine, which does not include the user intents and the
various interpretations of the search query.

1



1.1 Background

According to user search behavior analysis, the search query is usually
vague, ambiguous, or may entail multiple intents (Song et al. (2009); Spärck-
Jones et al. (2007)). Issuing the same query, users may have different information
needs, which corresponds to diverse search intents (Ren et al. (2015)). With an
ambiguous query such as “full house," users may seek different interpretations,
including “full house youtube," “full house korean drama," and “full house
movie." With a broad query such as “t-test," users may be interested in different
subtopics1, including “t-test example," “steps of t-test," and “t-test p value."
However, it is not clear which subtopic of a broad query is actually desirable
for a user (Wang et al. (2013a)). Some intents of a search query are constantly
popular; however, some others intents are time-dependent. For example, the
query “US Open" is more likely to be target the tennis open in September and
the golf tournament in June (Nguyen & Kanhabua (2014)).

Traditional information retrieval models, such as the boolean model and the
vector space model, treat the issued query as a clear, well-defined representation,
and completely neglect any sort of ambiguities. Ignoring the user’s intents
underlying a search query, information retrieval models may result in top
ranked documents, possibly containing too much relevant information on a
particular aspect2 of a query. As these documents cover a few subtopics or
interpretations, the user may not be satisfied. To fulfill the information needs
of the user, an information retrieval model should result in a ranked list of
documents that are not only relevant to the popular intents, but also covers the
diverse intents of the search query.

From the above background, through exploring the possible intents of the
search query, there is an urgent need for the next-generation search engine,
that is to develop a mechanism that makes use of the diverse interpretations.
For this reason, given the redundant information and the ambiguous word,
the aim is to develop an algorithm that can optimally combine a variety of
interpretations underlying a query.

1Subtopic is the more specialization of the query covering an intent
2Intent and Aspect are interchangeably used

2



1.2 Dissertation Focus

1.2 Dissertation Focus

Exploring the subtopics covering intents underlying a query has gained much
interest in recent years (Liu et al. (2014); Sakai et al. (2013a)). Several methods
were proposed for mining subtopics by exploiting different resources, including
the top ranked documents, anchor text, query logs, Wikipedia disambiguation
pages, Freebase (Bollacker et al. (2008)), and the query suggestion provided by
the commercial search engines (Santos et al. (2010a); Wang et al. (2013a,c)). Query
suggestions hold some intents (Hu et al. (2015); Santos et al. (2010a)), however,
suggested queries are often noisy and possess a group of similar suggestions
covering a single intent of the search query. Moreover, the search query and
the candidate subtopic are short in length. Therefore, it is a challenging task to
estimate the similarity between a pair of short texts.

To combine the multiple intents of the search query in document retrieval,
a sensible approach is to diversify the documents initially retrieved for the
original search query. Diversification refers to the ranking of documents by
taking into account the coverage, popularity, and novelty of the search intents
underlying a query. However, diversification is formulated as an optimiza-
tion problem that aims at optimizing an objective function with regard to the
relevance and diversity (Agrawal et al. (2009); Carterette (2011); Santos et al.
(2010a)). Moreover, it is an instance of the maximum coverage problem, a
classical NP-hard problem in computational complexity theory.

In this dissertation, we have developed a novel framework that explores
the subtopics covering intents underlying a search query, estimates subtopic
relevance, and diversify them considering the relevance and redundancy. At
the same time, to diversify the search results, we have proposed a new way of
ranking based on a new novelty estimation that exploits the search intents of
the query.

We have experimented and evaluated all the components of the proposed
method, and compared the performance of our proposed method with the state-
of-the-art intent mining methods on benchmark datasets. We have conducted
experiments on the NTCIR intent mining and TREC web track diversity test

3



1.3 Our Contributions

collections. We have utilized the document corpus, including Clueweb09 Cat-
B and Clueweb12 B13 for document retrieval. Moreover, a popular academic
search engine, Indri (Strohman et al. (2005)) has been leveraged to index the
corpus for baseline retrieval. Experimental results on the benchmark datasets
demonstrate the effectiveness of our proposed methods in comparison to the
known related works.

1.3 Our Contributions

The key contributions of this dissertation are summarized as follows:

1. Word Embedding-based Features: In order to capture the importance of
the semantic matching of a query with a document, we propose three new
semantic features based on the locally-trained word embedding model, in-
cluding maximum word similarity (MWS), mean vector similarity (MVS),
and uncommon word similarity (UWS) (ULLAH & AONO (2016); Ullah
et al. (2016b)).

2. Short Text Similarity: Estimating the contextual similarity between a pair
of short texts is a formidable task. Two short texts might not be lexically
similar, however, semantically similar. Our observation is that if two short
texts represent the similar meaning, even though they are not lexically
similar, they may result in similar kinds of documents from a search
engine. Mutual information between two probability distributions of
words, extracted from the corresponding documents, may represent the
contextual similarity between two short texts. Therefore, we propose to
estimate the contextual similarity for short texts, which is used to estimate
the novelty for result diversification (ULLAH & AONO (2016); Ullah et al.
(2016b)).

3. Bipartite Graph-based Ranking: We hypothesize that a relevant document
should be ranked at the higher position by multiple effective features, and
intuitively, an effective feature should be weighted higher by multiple
relevant documents. Large weight might be given to a document that

4



1.4 Organization

tends to be ranked highly by a group of effective features, and vice versa.
Therefore, there might be a weight propagations from features to docu-
ments and from documents to features. On these intuitions, we represent
a set of features and a set of candidate documents as a bipartite graph,
and introduce weight propagation from both sides of the bipartite graph.
Given a set of features and a set of candidate documents, we propose a
bipartite graph-based ranking (BGR) method to estimate the global im-
portance of candidate documents by aggregating the local importance of
the individual feature (ULLAH & AONO (2016); Ullah et al. (2016b)).

4. Associating Bipartite Graphs: Given two sets of bipartite graphs, we
propose to associate one bipartite graph with another bipartite graph
based on the transitive property among the nodes of bipartite graphs. By
associating two bipartite graphs, all the information are embedded in a
new bipartite graph (Ullah et al. (2013a, 2015)).

5. Estimating Weights of Edges in Bipartite Graph: In order to estimate
the importance weight of an edge in a bipartite graph, we propose a
Bidirectionally-induced Importance Weight (BIW) prediction method by
considering content and link information from both sides of the bipartite
graph (Ullah et al. (2015)).

1.4 Organization

The rest of the dissertation is organized as follows.
Chapter 2 discusses the related work.
Chapter 3 includes the general concepts and terminologies used throughout

the dissertation to comprehend the readers about the contents of this disserta-
tion.

Chapter 4 describes our proposed diversified subtopics mining method.
Chapter 5 describes our proposed bipartite graph based ranking of genetic

disease.
Chapter 6 includes the conclusion and future directions of this dissertation.

5



1.4 Organization

Moreover, after each of the references in the reference section, we show the
page number ( in blue color) of this dissertation, where the reference was cited.

6



Chapter 2

Related Work

In this chapter, we conduct a literature review of previous work on search
intent mining, search diversification, bipartite graph-based ranking, and word
embedding.

2.1 Search Intent Mining

Web queries are usually short, ambiguous, and/or underspecified (Clarke et al.
(2009); Song et al. (2009); Spärck-Jones et al. (2007)). To understand the meaning
of queries, researchers define taxonomies and classify queries into predefined
categories. Song et al. (2009) classified queries into three categories: ambiguous
query, which has more than one meaning; board query, which covers a variety
of subtopics; and clear query, which has a specific meaning or narrow topics.

At the query level, Broder (2002) divided query intent into navigational,
informational, and transactional types. Nguyen & Kan (2007) classified queries
into four general facets, including ambiguity, authority, temporal sensitivity,
and spatial sensitivity. Boldi et al. (2008) created a query-flow graph with query
phrase nodes and used them for query suggestion. Query suggestion is a
key technique for generating alternative queries to help users drill down to a
subtopic of the original query (Mei et al. (2008); Zhang & Nasraoui (2006)). In
contrast to the query suggestion, subtopic mining focuses more on the diversity
of possible subtopics of the original query rather than inferring relevant queries.
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2.1 Search Intent Mining

Hu et al. (2009) leveraged the knowledge contained in Wikipedia to predict
the possible subtopics for a given query. Radlinski et al. (2010) proposed a
method for inferring query intents from query reformulations and user click-
through data. Santos et al. (2010a) exploited the query completions of a search
engine to mine sub-queries (i.e. subtopics) for diversifying Web search results.

Wang et al. (2013a) proposed a method to mine subtopics of a query either
directly from the query itself or indirectly from the top retrieved documents.
In the direct approach, several external resources, such as Wikipedia, open
directory project (ODP), query logs, and the related search services are inves-
tigated to mine subtopics. In indirect approach, subtopics are extracted by
clustering, topic modeling, and concept-tagging of the top retrieved documents.
The surrounding text of query terms in the top retrieved documents was also
utilized to mine and rank subtopics (Wang et al. (2013c)). Recently, two-level hi-
erarchical intents based search diversification methods were also proposed (Hu
et al. (2015)).

Moreno et al. (2014) proposed an algorithm called Dual C-Means to cluster
search results in dual-representation spaces with query logs and represented
the cluster label as a subtopic. Damien et al. (2013) proposed a method for
subtopic mining and ranking by fusing multiple resources. Kim & Lee (2015)
proposed a frequent pattern-based method to mine candidate subtopics from a
set of implicitly relevant documents.

Despite the fact that previous methods leveraged many resources to mine
candidate subtopics, however, their ranking methods caused some noisy and
redundant subtopics in the top rank. In contrast to previous methods, we
introduce the locally-trained word embedding to extract semantic features and
effectively diversify the candidate subtopics covering possible intents of the
query by balancing the relevance and novelty.

NTCIR1 has been organizing a research competition on query subtopic mining
in Chinese, English and Japanese languages for the last couple of years, in-
cluding NTCIR-10 INTENT-21, NTCIR-11 IMINE-12, and NTCIR-12 IMINE-23.

1http://research.nii.ac.jp/ntcir/index-en.html
1http://research.microsoft.com/en-us/projects/intent/
2http://www.thuir.org/IMine/
3http://www.dl.kuis.kyoto-u.ac.jp/imine2/
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2.2 Search Result Diversification

Some approaches have been proposed by the participants exploiting multiple
resources are discussed in (Kim & Lee (2013); Moreno & Dias (2013, 2016); Ullah
et al. (2013b, 2016a); Wang et al. (2013b); Xue et al. (2013); Yue et al. (2016)).

2.2 Search Result Diversification

To satisfy general users in Web search, an information retrieval model should
select a list of documents that are not only relevant to the popular intents,
but also covers different intents of the search query. To do that, a sensible
approach is to diversify the documents initially retrieved for the query (Clarke
et al. (2008)) based on the search intents of the query. Search diversification is
the process of ranking the documents initially retrieved for the query, taking
into account the coverage, importance, and novelty of the documents with
respect to search intents. However, search diversification is formulated as an
optimization problem that aims at optimizing an objective function with regard
to the relevance and diversity (Agrawal et al. (2009); Carterette (2011); Santos
et al. (2010a)). It is an instance of the maximum coverage problem, a classical
NP-hard problem in computational complexity theory.

Most diversification methods in the literature differ by how they implement
the objective function either as an implicit or explicit approach. Maximal
Marginal Relevance (MMR) (Carbonell & Goldstein (1998)) iteratively selects the
best document by balancing the relevance with the query and novelty with other
already selected documents in terms of cosine similarities in vocabulary. Many
researchers proposed heuristic-based diversification methods by exploiting
explicitly mined subtopics for the query. IA-Select proposed by Agrawal et al.
(2009), an intent-aware diversifying method with topical categories of queries
and documents based on ODP taxonomy. xQuAD proposed by Santos et al.
(2010a), a greedy diversification algorithm to maximize the coverage of explicit
mined query subtopics. PM2 proposed by Dang & Croft (2012), a framework for
optimizing proportionality for result diversification, which is motivated by the
problem of assigning seats to members of competing political parties. Yu & Ren
(2014) formulated diversification as a 0-1 multiple subtopic knapsack problem.
Fusion diversification proposed by Liang et al. (2014), inferred latent subtopics
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based on topic modeling. Some researchers use machine learning techniques
to diversify search results, including Structural SVMs (Yue & Joachims (2008))
and R- LTR (Zhu et al. (2014)). Recently, Xia et al. (2016) proposed to model the
novelty of document based on the neural tensor network for search research
diversification.

NTCIR has been organizing a research competition on search result diversifi-
cation in Chinese, English, and Japanese languages for the last couple of years,
including NTCIR-11 IMINE-11, and NTCIR-12 IMINE-22. TREC3 has organized
web track for diversified retrieval evaluation, including Web track 2009, 2010,
2011, and 2012.

2.3 Bipartite Graph-based Ranking to Genetic Dis-
ease

Many real applications can be modeled as bipartite graph, such as Viewers and
Movies in a movie recommendation system (Bogers (2010)), Video shots and
Tags (YANAI et al. (2015)) in video tagging system, Traders and Stocks (Sun
et al. (2005)) in a financial trading system, Authors and Papers in a scientific
literature (Barabási et al. (2002)), Conferences and Authors in a scientific publica-
tions network (Wang et al. (2013d)), Queries and URLs in query logs (Deng et al.
(2009a)), Entities and Co-List (Cao et al. (2011)) in a Web page for entity ranking,
Phenotypes and Diseases (Ullah et al. (2015)) in a disease prediction system, etc.
Similarly, we represent a set of features and a set of candidate documents as a
bipartite graph, and propose a bipartite graph-based ranking (BGR) method to
estimate the global importance of the candidate documents by aggregating the
local importance of each feature.

In the postgenomic era, it is widely established in Bioinformatics and molec-
ular biology to represent the associations between biomedical entities as net-
works, and to analyze their topology to obtain a global understanding of under-
lying relationships (Barabási et al. (2011); Butts (2009); Yıldırım et al. (2007)). In

1http://www.thuir.org/IMine/
2http://www.dl.kuis.kyoto-u.ac.jp/imine2/
3http://trec.nist.gov/data/webmain.html
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this regard, DisGeNET is a coherent tool that analyzes and interprets the human
gene network to disease network (Bauer-Mehren et al. (2010)). It visualizes
the gene-disease association network as a bipartite graph and provides gene-
centric and disease-centric views of the data. Another system which infers the
genotype-phenotype bipartite relationship using the random walk with restart
algorithm to the heterogeneous network (RWRH) (Li & Patra (2010)), where
a heterogeneous network is constructed by connecting the gene network and
phenotype network using the phenotype-gene bipartite relationship from the
OMIM database.

2.4 Word Embedding

Word embedding is a real-valued vector representation of words. The idea
behind the word embedding is to map the whole vocabulary of a language into
a vector space in such a way that, words that are semantically and syntacti-
cally similar tend to be close in this embedding space. The similarity of two
words can be quantified by the similarity of their embedding vectors. Neural
network-based method, word2vec was proposed by Mikolov et al. (2013a,b) have
been shown to be surprisingly effective at capturing the semantics, which is
useful for various Natural Language Processing (NLP) and reasoning tasks,
including word analogies. Inspired by the effectiveness of word embedding in
NLP, recently, word embedding has also been applied in information retrieval
contexts, including term re-weighting (Zheng & Callan (2015)), short-text simi-
larity (Kenter & de Rijke (2015)), query expansion (Zamani & Croft (2016)), and
estimating generalized language model (Ganguly et al. (2015)).
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Chapter 3

General Concepts and Terminology

This chapter introduces some of the basic definitions to familiarize the reader
with the notions and terminologies used throughout the dissertation. It de-
scribes about the bipartite graph, word embedding, query-dependent features,
query-independent features, and ontology.

3.1 Bipartite Graph

A bipartite graph, also called a bigraph, is a set of graph vertices decomposed
into two disjoint sets such that no two graph vertices within the same set are
adjacent. Bipartite graphs are equivalent to two-colorable graphs, and a graph
is bipartite if and only if all its cycles are of even length.

Consider a bipartite graph G = (U [ V,E), its vertices can be divided into
two disjoint sets U and V such that each edge in E connects a vertex in U and
one in V ; that is, there is no edge between two vertices in the same set. A
bipartite graph is depicted in Figure 3.1.

Definition 1 A bipartite graph is a graph G = (V,E) whose vertex set V can be
partitioned into two non empty sets V1 and V2 in such a way that every edge in E of G
joins a vertex in V1 to a vertex in V2.
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Figure 3.1: A simple bipartite graph

3.2 Word Embedding

Word embedding is defined as the real-valued vector representation of words.
The idea behind the word embedding is to map the whole vocabulary of a
language into a vector space such that words that are semantically and syntacti-
cally similar, tend to be close in this embedding space. Neural network-based
method, word2vec which was proposed by Mikolov et al. (2013a,b) introduced
two architectures for word embedding, including Continuous Bag-of-Words
(CBOW) and Skip-Gram. We will describe the CBOW model, although our
proposed word embedding based features, described in Chapter 4, are also
applicable to vectors produced by Skip-Gram model.

A word embedding F : words ! Rp is a parameterized function, which
maps words to high-dimensional vectors (i.e. p is 50 to 1000). For example, the
word vectors corresponding to “iPhone" and “Apple" are shown as follows:

W (“iphone”) = (· · · , 0.2, · · · ,�0.4, · · · , 0.7, · · · )

W (“apple”) = (· · · , 0.0, · · · , 0.6, · · · ,�0.11, · · · )

Let us consider a context, (xt�n, · · · , xt�1, xt+1, · · · , xt+n), consisting of mul-
tiple words within a fixed-sized window around a target word xt. We illustrate
a schematic diagram of the CBOW model in Figure 3.2, where V denotes the
number of words in the vocabulary, N denotes the number of units in the
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Figure 3.2: An architecture of continuous bag-of-words (CBOW) model

hidden layer (H), WV⇥N denotes the input matrix from the input (I) to hidden
layer (H), W 0

N⇥V denotes the output matrix from the hidden (H) to output layer
(O), and C denotes the number of words in the context. Both the input matrix
W and the output matrix W

0 are initialized randomly.
Each word in the context is represented with V -dimension as a one-hot

encoded vector, that means, only one out of V units, {x1, · · · , xV }, will be 1, and
all other units are 0 (Rong (2014))). All one-hot encoded vectors of the context
words are given to CBOW model as input and the input matrix W is shared by
all context words.

Given the vectors of the context words as input, the vector of hidden layer
h is linearly computed by averaging vectors of the product of input matrix W
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3.2 Word Embedding

and the vectors of context words as follows:

h =

1

C

W

T · (xt�n + · · ·+ xt�1 + xt+1 + · · ·+ xt+n)

=

1

C

(v

T
wt�n

+ · · ·+ v

T
wt�1

+ v

T
wt+1

+ · · ·+ v

T
wt+n

)

(3.1)

where (xt�n, · · · ,xt�1,xt+1, · · · ,xt+n) are the one hot-encoded vectors of the
context words and vwi is the i-th row vector of input matrix W .

Given the output matrix W

0 and the vector of hidden layer h, we can com-
pute the input to each unit in the output layer (O) as follows:

uj = v

0
wj

T · h (3.2)

where uj is the input to the j-th unit in the output layer (O). v0
wj

T denotes the
j-th column in the output matrix W

0.
We can estimate the output score of each unit in the output layer (O) by

passing its input score from Equation 3.2 through a soft-max function. The
output of the j-th unit in the output layer (O), yj is computed as follows:

yj = p(xyj |xt�n, · · · , xt�1, xt+1, · · · , xt+n) =
e

uj

PV
j0=1 e

uj0
(3.3)

By substituting the Equation 3.2 in the Equation 3.3, we may have the
following equation:

yj = p(xyj |xt�n, · · · , xt�1, xt+1, · · · , xt+n) =
e

v0
wj

T ·h

PV
j0=1 e

v0
wj0

T ·h
(3.4)

The objective function of CBOW is to maximize the log conditional probabil-
ity of the target word xt given the context words. Therefore, the loss function is
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3.3 Query Dependent Feature

defined as follows:

E =� log p(xt|xt�n, · · · , xt�1, xt+1, · · · , xt+n)

=� uj⇤ + log

VX

j0=1

e

uj0

=� v

0
wt

T · h+ log

VX

j0=1

e

v0
wj0

T ·h

(3.5)

where j

⇤ is the index of the actual target word xt.
The weights of input matrix W and output matrix W

0 are learned using back
propagation. To learn weight matrices W and W

0, the training examples are fed
into the CBOW model. The prediction error is observed through the difference
between the predicted output and the actual output. Then, with respect to
the elements of both output matrix W

0 and input matrix W , the gradients of
this prediction error are estimated. Both of the matrices are corrected in the
direction of these gradients. The row vectors of the input matrix W or the
column vectors of the output matrix W

0 are the corresponding vectors of words
in the vocabulary V .

3.3 Query Dependent Feature

Let Q be a query and D = {D1, D2, D3, ....., DN} be a set of documents. Query-
dependent features are directly computed by scoring the occurrences of the
terms of the query Q in each document D of D. Among the query-dependent
features, there are some term frequency, language modeling, term dependency,
lexical, and mutual information based features.

3.3.1 TF-IDF

The TF·IDF is a basic technique often used in information retrieval and text
mining (Salton et al. (1983)). This is a statistical measure used to evaluate how
important a term is to a document in a collection or corpus.

16



3.3 Query Dependent Feature

Term Frequency (TF) is defined as the count of the term in a document
divided by the total number of terms in it. It is usually normalized to prevent
a bias toward longer documents, which may have a higher term frequency
regardless of the actual importance of that term in the document, to give a
measure of the importance of the term ti within the particular document dj ,
where i and j are the indices of term and document, respectively. Therefore, the
term frequency is defined as follows:

TFti,dj =
|ti2dj |P
k |tk2dj |

where |ti 2 dj| is the number of occurrences of the ith term, ti in the jth document,
dj , and the denominator ⌃k|tk 2 dj| is the sum of the number of occurrences
of all terms tk in the j

th document dj , where k varies from 1 to the number of
distinct terms in document dj , that is, the size of the document |dj|.

The Inverse Document Frequency (IDF) is a measure of the general impor-
tance of the term of the ratio of the total number of documents to the number of
documents containing the term, and then taking the logarithm of that ratio.

IDFti,D = log

|D|
|{d2D|ti2d}|

where |D| is the total number of documents in the corpus, |{d 2 D|ti 2 d}|, is
the number of documents where the i

th term ti appears (that is Nti,dj 6= 0). If
the term is not in the corpus, this will lead to a division-by-zero. It is therefore
common to use 1 + |{d 2 D|ti 2 d}|.

The overall relevancy of a document with respect to a term can be computed
using both the TF and IDF. Therefore, the weight of a term ti in a document dj
is defined as follows:

weight(ti, dj)= TF · IDFti,dj = TFti,dj ⇥ IDFti,D

This measure is called TF·IDF weight. A document can be considered as a multi-
dimensional vector, where each dimension represents a term with the TF·IDF
as its weight.
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3.3 Query Dependent Feature

3.3.2 BM25

The Okapi best matching 25 (BM25) (Sparck Jones et al. (2000)) approach was
based on the probabilistic retrieval framework developed in the 1970s and
1980s by (Robertson & Zaragoza (2009)) (1981). The BM25 formula is used
for measuring the similarity between a user query q and a document d. It is
used to rank a set of documents based on the query terms appearing in each
document, regardless of the inter-relationship between the query terms within a
document (e.g., their relative proximity). It is not a single function, but actually
a whole family of scoring functions, with slightly different components and
parameters. One of the most prominent instantiations of the function is as
follows. Given a query Q, containing a set of keywords {q1, q2..., qn}, the BM25
score of a document D for the query Q is defined as follows:

weight(Q,D) =

nX

i=1

TFqi,D · (k1 + 1)

k1 · ((1� b) + (b · |D|
avgl)) + TFqi,D

⇥ log

N � n(qi) + 0.5

n(qi) + 0.5

where TFqi,D is the qi’s term frequency in the document D, N is the total
number of documents in the collection, |D|

avgl is the ratio of the length of document
d to the average document length, and n(qi) is the number of documents, where
the term qi appears. k1 and b are free parameters, usually chosen, in the absence
of an advanced optimization, as k1 2 [1.2, 2.0] and b = 0.75[1].

3.3.3 Divergence from randomness (DFR)

A non-parametric divergence from randomness (DFR) based models, DFH (Am-
ati et al. (2008)) has been shown to perform effectively across a variety of
Web search tasks (Santos et al. (2010b)). Term frequency based DFH feature,
fDFH (Q,D) is computed as:

fDFH (Q,D) =

X

w2Q

tfw,D (1� tfw,D

lD
)

2

tfw,D + 1

log2 (tfw,D
avglD

lD tfw,C
)+

0.5 log2 (2⇡tfw,D (1� tfw,D

lD
))

(3.6)
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3.3 Query Dependent Feature

where tfw,D is the frequency of the term w in the document D and tfw,C is the
frequency of the term in the collection C.

3.3.4 Language modeling with Dirichlet Smoothing

Language modeling with Dirichlet smoothing feature, fLMDS (Q,D) is a lan-
guage modeling approach to information retrieval (Song & Croft (1999)) and
smoothed using Dirichlet smoothing (Zhai & Lafferty (2001)). It is computed as
the log likelihood of the query being generated from the document. The feature
is computed as:

fLMDS (Q,D) =

X

w2Q

tfw,Q log

tfw,D + µP (w|C)

|D|+ µ

(3.7)

where tfw,Q is the number of times that w occurs in the query, tfw,D is the
number of times w occurs in the document D, |D| is the number of terms in
the document, P (w|C) is the background language model, and µ is a tunable
smoothing parameter.

3.3.5 Language modeling with Jelinek-Mercer Smoothing

Language modeling with Jelinek-Mercer smoothing ( Zhai & Lafferty (2001))
feature, fLMJM (Q,D) is defined as the linear combination of the probability of
the query term given the document and the probability of the query term in
background language model, and computed as:

fLMJM (Q,D) =

X

w2Q

� P (w|D) + (1� �) P (w|C) (3.8)

where P (w|D) is the probability of the query term w given the document D,
P (w|C) is the background language model, and � is the controlling parameter.
The parameter � is set to µ

|S|+µ , where the parameter µ is set to 2, 500.
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3.3.6 Term dependency Markov Random Field

A particularly effective approach to exploit term dependency was proposed
by Metzler & Croft (2005). In this model, unigram, bigram sequential depen-
dency, and bigram full dependency is linearly interpolated. The term depen-
dency with Markov random field based feature, fMRF (Q,D) is computed as:

fMRF (Q,D) = ↵u

X

wi2Q

logP (wi|✓D)+

↵s

X

wi2Q

X

wj2Q
j=i+1

logP (< wi, wj > |✓D)+

↵f

X

wi2Q

X

wj2Q
j 6=i

logP (< wi, wj > |✓D)

(3.9)

where the parameters ↵u, ↵s, and ↵f control the weights of the unigram, bigram
sequential, and bigram full models in the linear combination, respectively, and
✓D is the language model of the document D. Here, ↵u, ↵s, and ↵f are the free
parameters, which reflect the importance of each component.

3.3.7 Jensen-Shannon Divergence (JSD) based Similarity

Consider the set M1
+(A) of probability distributions, where A is a set provided

with some �-algebra of measurable subsets. In particular, we can take A to be a
finite or countable set with all subsets being measurable. The Jensen-Shannon
divergence (JSD) (Lin (1991)): M1

+(A)⇥M

1
+(A) ! [0,1) is a symmetrized and

smoothed version of the Kullback-Leibler divergence D(P k Q). It is defined by

JSD(P k Q) =

1
2D(P k M) +

1
2D(Q k M)

where M =

1
2(P +Q)

The distance between two probability distributions P and Q can be calcu-
lated using the above formula, JSD(P k Q) . To compute the similarity, the
weight is defined as follows:

weight(P |Q) = 1.0� JSD(P |Q)
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3.3.8 Edit Distance based Similarity

To measure the lexical similarity between the query and the document, edit
distance (Shi & Yang (2006)) based feature, fEDS (Q,D) is computed as:

fEDS (Q,D) = 1� Edit_distance (Q,D)

Max (length(Q), length (D))

(3.10)

where Edit_distance is measured based on the number of edit operations (in-
sertion, deletion, or substitution of a word) necessary to unify two strings, and
length (Q) is the number of terms in the query Q.

3.3.9 Term Overlap

Term overlap feature, fOverlap (Q,D) is simply defined as the fraction of query
terms that occur, after stemming and stopping, in the candidate document (Met-
zler & Kanungo (2008)). It is computed as:

fOverlap (Q,D) =

P
w2Q I (w 2 D)

|Q| (3.11)

3.3.10 Term synonym overlap

Term synonym overlap feature, fOverlap�syn (Q,D) is the generalization of the
overlap feature by considering synonyms of query terms. It is defined as
the fraction of query terms that either match with document term or have a
synonym that matches with document term. It is computed as:

fOverlap�syn (Q,D) =

P
w2Q I (Syn (w) 2 D)

|Q| (3.12)

where the function, Syn(w) returns the synonyms of the term w. WordNet
3.0 (Fellbaum (1998)) is to determine the synonyms of noun, adjective, verb,
and adverb POS, followed by canonicalization with Krovertz stemmer (Krovetz
(1993)) and POS tagging with Standford NLP parser (Socher et al. (2013)).
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3.3.11 Generalized Co-HITS

Co-HITS is a generalized link analysis algorithm for bipartite graph (Deng et al.
(2009a)). It incorporates the bipartite graph with the content information from
both sides as well as the constraints of relevance, and investigated based on
iterative and regularization framework. The basic idea of the iterative frame-
work is to propagate the scores on the bipartite graph via an iterative process
with the constraints from both sides, where it contains HITS, personalized page
rank, and one step propagation as a special case.

Given a query q, content information, and the matrix representation of the
bipartite graph, the ultimate goal of this algorithm is to find a set of entities
which are most relevant to the query q. Consider a bipartite graph G = (U [
V, E), where U and V are two disjoint sets such that every edge in E connects
a vertex in U to one in V. Let WUV denote the transition matrix from U to V
and W

V U denote the transition matrix from V to U, where each entry contains
a weight wuivj from vertex ui to vj . To consider the vertices in one side, then
the hidden transitional matrix in set U can be introduced as WUU , where each
entry wuiuj =

P
k2V wuivkwvkuj . Therefore, we can easily obtain the transition

matrices WUV , W V U , WUU , and W

V V .
The basic idea of the Co-HITS algorithm is to propagate scores on the bi-

partite graph via an iterative process. Let ui 2 U and vk 2 V be two vertices
in the bipartite graph, and xi is the score of ui and yk is the score of vk at some
state. The score yk of vertex vk 2 V is propagated to the vertex ui 2 V according
to the transition probability. Similarly, additional scores are propagated from
other vertices of V to ui, then the score xi of ui is updated to get a new value
xi. Similarly, the new value xi is propagated to vk. The intuition behind the
score propagation is the mutual reinforcement to boost co-linked entities in the
bipartite graph. In addition, the initial relevance scores based on the content
information provide invaluable information.

In order to incorporate the bipartite graph with content information, the
generalized Co-HITS equations can be written as follows:

xi = (1� �u)x
0
i + �u(1� �v)

X

k2V

w

vu
ki y

0
k + �u�v

X

j2U

w

uu
ji xj (3.13)
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yj = (1� �v)y
0
j + �v(1� �U)

X

k2U

w

uv
kj x

0
k + �u�v

X

k2V

w

vv
ki yk (3.14)

where �u ✏ [0,1] and �v ✏ [0,1] are the personalized parameters, x0
i and y

0
k are the

initial scores for ui and vk respectively.
The final score xi of vertex ui can be obtained through an iteratively updating

process by using Equation 3.13, and the final score yj of vertex vj can be obtained
through an iteratively updating process by using Equation 3.14. The first term
of the Equation 3.13 or 3.14 is the initial score, the second term is the one-step
propagation and the third term is the personalized PageRank.

3.4 Query Independent Features

The goal of query independent features is to encode a prior knowledge that
we may have about individual document. We describe some simple query
independent features as follows.

Given a query Q, Voting feature, fV oting (D) is defined as the number of
search engines, which returns a document D.

fV oting (D) =

NX

i=1

I (D 2 Ri) (3.15)

where I is an indicator function, which returns 1 if its argument is true, N is the
number of Search engines, Ri is the ranked list of documents from the Search
engine i.

Reciprocal rank feature, fRR (D) is defined as the reciprocal of the rank of
the document in the search results for the query Q in across search engines. It is
computed as:

fRR (D) =

NX

i=1

1p
ranki (D) + 1

(3.16)
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where ranki (D) is the rank of the document in the i

th search engine and N is
the number of Search engines.

Longer terms in the document would reflect a more thoughtful and readable
style. To focus on the readability of the document, average term length (ATL)
in a document is defined as:

fATL (D) =

1

lD

X

w2D

tfw,D lw (3.17)

where lw denotes the length of the term w in character.
Additional readability features have been recently proposed is topic cohe-

siveness (TC) (Bendersky et al. (2011)). Topic cohesiveness feature, fTC (D) is
computed as:

fTC (D) = �
X

w2D

P (w|D) logP (w|D) (3.18)

where p (w|D) is computed using a maximum likelihood estimation.

3.5 Ontology

“An ontology is an explicit specification of a conceptualization” is a prominent
definition by Gruber (1995). The definition was then extended as “an ontology
is explicit, formal specification of a shared conceptualization of a domain of
interest” by Studer et al. (1998). An ontology generally consists of entities,
including concepts, properties, and relations. It is the backbone to fulfill the
semantic web vision (Berners-Lee et al. (2000); Maedche & Staab (2004)) and is a
knowledge base to enable machines to communicate each other effectively. The
knowledge captured in ontologies can be used to annotate data, to distinguish
between homonyms and polysemy, to drive intelligent user interfaces, and even
to retrieve new information. A number of ontologies are increasing day by day
with new semantic web contents, because an ontology is being developed to
formalize the conceptualization behind the idea of semantic web. Therefore,
ontology alignment is playing an important role (Benjamins et al. (2002)) to
achieve semantic interoperability and integration.
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Chapter 4

Diversified Query Subtopic Mining

In this chapter, we present our proposed method for mining diversified query
subtopics. We have developed a novel framework that explores the subtopics
covering intents underlying a query, estimates subtopic importance, and diver-
sify them by considering the relevance and novelty. To diversify the candidate
subtopics, we have devised a new way of ranking based on a new novelty
estimation that faithfully represents the possible search intents of the query. We
have proposed new semantic features based on a word embedding model to
capture the semantic matching of a query with a candidate subtopic. To rank a
set of candidates, we have developed a bipartite graph-based ranking method
of estimating the global importance of the candidate subtopic by aggregating
the local importance of each feature. Experimental results on NTCIR subtopic
mining datasets exhibit that our proposed method outperforms the baselines,
known previous methods, and the official participants of the subtopic mining
tasks.

4.1 Introduction

When an information need is being formulated in a user’s mind, the user issues
a query as a sequence of words and submits it to the search engine. The search
engine responds with a ranked list of snippet results to meet the request of
users. According to user search behaviour analysis, a search query is usually
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4.1 Introduction

vague, ambiguous, or may entail to have multiple search intents (Song et al.
(2009); Spärck-Jones et al. (2007)). Issuing the same query, different users may
have different search intents, which corresponds to different subtopics (Ren
et al. (2015)).

With an ambiguous query such as “eclipse," users may seek different inter-
pretations, including “eclipse IDE," “eclipse lunar," and “eclipse movie." With
a broad query such as “programming languages," users may be interested in
different subtopics, including “programming languages java," “programming
languages python," and “programming languages tutorial." However, it is not
clear which subtopic of a broad query is actually desirable for a user (Wang
et al. (2013a)). In some cases, subtopics underlying a query can be temporally
ambiguous; for example, the query “US Open" is more likely to be targeting
the tennis open in September and the golf tournament in June (Nguyen &
Kanhabua (2014)).

Traditional information retrieval models, such as the boolean model and the
vector space model, treat every input query as a clear, well-defined representa-
tion, and completely neglect any sort of ambiguities. Ignoring the users’ intents
underlying a query, information retrieval models might result in top ranked
documents, possibly containing too much relevant information on a particular
aspect1 of a query. As these documents cover a few subtopics or interpretations,
the user may not be satisfied. In order to satisfy the user, a sensible approach
is to diversify the documents considering the possible subtopics of the search
query (Clarke et al. (2008)). The diversified retrieval models should result in a
ranked list of documents that provides the maximum coverage and minimum
redundancy with respect to the possible subtopics.

Identifying the subtopics underlying a query has gained much interest
in recent years (Liu et al. (2014); Sakai et al. (2013a)). Several methods were
proposed for mining subtopics from different resources, including the top
retrieved documents, anchor texts, query logs, Wikipedia, and the related search
services provided by the commercial search engines (Santos et al. (2010a); Wang
et al. (2013a,c)). Query suggestions provided by commercial search engines hold
some intents (Hu et al. (2015); Santos et al. (2010a)), however, suggested queries

1Intent and Aspect are interchangeably used
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are often noisy and possess a group of similar suggestions covering a single
aspect of the original query. Since both query and subtopic are short in length,
it is challenging to efficiently estimate the similarity between a pair of short
texts and rank them accordingly. Therefore, identifying the subtopics covering
possible intents underlying a query is a formidable task.

In this chapter, we address the problem of query subtopic mining (Sakai et al.
(2013b)), which is defined as: “given a search query, list up its possible subtopics
which specialize or disambiguate the search intents of the original query." In
our approach, we extract candidate subtopics from multiple resources and
rank the subtopics covering the possible intents of the query. To estimate the
relevance scores of the candidate subtopics with the query, we locally train
word embedding model, extract some semantic and content-aware features
followed by a supervised feature selection, and introduce a bipartite graph-
based ranking (BGR) method. Then, we diversify the candidate subtopics with
maximal marginal relevance (MMR) (Carbonell & Goldstein (1998)) model by
balancing the relevance with the query and the novelty with other candidate
subtopics. Novelty of the subtopic is estimated by combining a mutual infor-
mation based similarity and categorical similarity. Experimental results on the
publicly available test collections, including NTCIR-10 INTENT-2 (Sakai et al.
(2013a)) and NTCIR-12 IMINE-2 (Yamamoto et al. (2016)) demonstrate that our
proposed method outperforms the baselines, known previous works, and the
official participants of the INTENT-2 and IMINE-2 competitions.

To summarise, our main contributions are threefold: (1) some new features
based on locally trained word embedding model (in Section 4.4.2), (2) a bipartite
graph-based ranking (BGR) method (in Section 4.4.3.2), and (3) estimating the
novelty of the subtopic by combining a mutual information based similarity
and categorical similarity (in Section 4.4.3.3).

The rest of this chapter is organized as follows. Section 4.2 overviews related
work on query subtopic mining. Section 4.3 includes the general concepts and
terminology to comprehend the readers about the contents of this chapter. We
introduce our proposed diversified subtopic mining method in Sect. 4.4. Sec-
tion 4.5 discusses the overall experiments and results that we obtained. Finally,
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concluding remarks and some future directions of our work are described in
Sect. 4.6.

4.2 Related Work

Web queries are usually short, ambiguous, and/or underspecified (Clarke et al.
(2009); Song et al. (2009); Spärck-Jones et al. (2007)). To understand the meaning
of queries, researchers define taxonomies and classify queries into predefined
categories. Song et al. (2009) classified queries into three categories: ambiguous
queries, which have more than one meaning; board queries, which cover a
variety of subtopics; and clear queries, which have a specific meaning or narrow
topics.

At the query level, Broder (2002) divided query intent into navigational,
informational, and transactional types. Nguyen & Kan (2007) classified queries
into four general facets, including ambiguity, authority, temporal sensitivity,
and spatial sensitivity. Boldi et al. (2008) created query-flow graph with query
phrase nodes and used them for query suggestion. Query suggestion is a
key technique for generating alternative queries to help users drill down to a
subtopic of the original query (Mei et al. (2008); Zhang & Nasraoui (2006)). In
contrast to query suggestion, subtopic mining focuses more on the diversity of
possible subtopics of the original query rather than inferring relevant queries.

Wu et al. (2015) mined query subtopic from questions in the community
question answering (CQA) by proposing non-negative matrix factorization
(NMF) to cluster the questions and extract keywords from the cluster. Hu
et al. (2009) leveraged the knowledge contained in Wikipedia to predict the
possible subtopics for a given query. Radlinski et al. (2010) proposed a method
for inferring query intents from query reformulations and user click-through
data. Santos et al. (2010a) exploited the query completions of search engine to
mine sub-queries (i.e. subtopics) for diversifying Web search results.

Wang et al. (2013a) proposed a method to mine subtopics of a query either
directly from the query itself or indirectly from the top retrieved documents. In
direct approach, several external resources, such as Wikipedia, open directory
project (ODP), query logs, and the related search services are investigated to
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mine subtopics. In indirect approach, subtopics are extracted by clustering,
topic modeling, and concept-tagging of the top retrieved documents. The
surrounding text of query terms in the top retrieved documents were also
utilized for mining and ranking subtopics (Wang et al. (2013c)).

Moreno et al. (2014) proposed an algorithm called Dual C-Means to cluster
search results in dual-representation spaces with query logs and represented
the cluster label as the subtopic. Damien et al. (2013) proposed a method for
mining and ranking the subtopic by fusing multiple resources. Kim & Lee (2015)
proposed a frequent pattern-based method to mine candidate subtopics from
a set of implicitly relevant documents. Our proposed method has the same
premise as Moreno et al. (2014), Damien et al. (2013), and Kim & Lee (2015).

Two-level hierarchical intents based search result diversification methods
were also proposed (Hu et al. (2015)). The method, proposed by Kim & Lee
(2015) was to mine a two-level subtopic hierarchy based on hierarchical search
intentions. However, our approach is to mine the flat list of the subtopic.

Neural network-based method, Word2Vec was proposed by Mikolov et al.
(2013b) which represents a word in semantic space as vector is called word
embedding. Words that are semantically and syntactically similar tend to be
close in this embedding space. Despite the fact that previous methods leveraged
many resources to mine candidate subtopics, however, their ranking methods
caused some noisy and redundant subtopics in the top rank. In contrast to
previous methods, we introduce locally-trained word embedding to extract
semantic features and effectively diversify the candidate subtopic covering
possible intents of the query by balancing the relevance and novelty.

NTCIR1 have been organizing a research competition on query subtopic
mining in Chinese, English and Japanese languages for the last couple of years,
including NTCIR-10 INTENT-22, NTCIR-11 IMINE-13, and NTCIR-12 IMINE-24.
Some approaches have been proposed by the participants exploiting multiple
resources are discussed in (Kim & Lee (2013); Moreno & Dias (2013, 2016); Ullah
et al. (2013b, 2016a); Wang et al. (2013b); Xue et al. (2013); Yue et al. (2016)).

1http://research.nii.ac.jp/ntcir/index-en.html
2http://research.microsoft.com/en-us/projects/intent/
3http://www.thuir.org/IMine/
4http://www.dl.kuis.kyoto-u.ac.jp/imine2/
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4.3 General Concepts and Terminologies

This section introduces the definitions of search intent, subtopic, and diversifi-
cation.

4.3.1 Search Intent

Issuing a query into a search engine, different users seek different information
needs which correspond to search intents.

Definition 4.3.1 Search intent is defined as the intent with which a user conducts a
search, meaning the information that user is searching for.

Figure 4.1 depicts that given a query such as “apple", users may seek informa-
tion related to “apple company," “apple iphone," “apple macbook," or “apple
fruit." These might be the user’s search intent behind the query “apple."

4.3.2 Subtopic

Subtopic is a key phrase that represents a search intent underlying a query.

Definition 4.3.2 A set of words (i.e. phrase), which specializes or disambiguates the
search intent of a search query.

Figure 4.1 depicts that “apple iphone 6" is a subtopic representing the search
intent “apple iphone" behind the query “apple." Similarly, “apple job salary" is
a subtopic, which specialize the search intent “apple company."

4.3.3 Subtopic Diversification

Definition 4.3.3 Subtopic diversification is defined as a tradeoff between finding
relevant (similar) subtopics to the search query and diverse subtopics covering relevant
search intent in the result set.

In Figure 4.2, we depict the flat list of diversified subtopics covering search in-
tents underlying the query. The challenges to generate the diversified subtopics
are (a) finding relevant subtopics covering intent and (b) removing the redun-
dant subtopics as much as possible in the result list.
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Query Search Intent Subtopic 

Apple 

Apple company 
Apple pay, apple news, apple commercial, apple 

Walmart, apple vacations, apple job salary 

Apple iPhone 
Apple iPhone 5s, apple iPhone 6, apple iPhone 

unlock, apple iPhone review 

Apple MacBook 
Apple MacBook air, apple MacBook pro, apple 

MacBook review, apple MacBook sale 

Apple Botanical 
Apple fruit, Apple cider, Apple tree, Apple free, 

Oak Apple 

Figure 4.1: Illustration of a query, the possible search intents, and the represen-
tative subtopics corresponding to each search intent.

query 

Apple 

Subtopic covering [search intent] 

Apple iphone 6s [ Apple iphone] 

Apple macbook air [Apple macbook] 

Apple job salary [Apple company] 

Apple cider [Apple botanical] 

Apple fruit recipes [Apple botanical] 

Diversified 
Subtopic mining 

Figure 4.2: This figure demonstrates the diversified subtopics covering search
intent.

4.4 Diversified Subtopic Mining

In this section, we describe our approach to subtopic mining, which is com-
posed of candidate generation, features extraction, and ranking as depicted
in Fig. 4.3. Given a query, first, we extract candidate subtopics from multiple
resources. Second, to estimate the relevance of the candidate subtopics, we
extract multiple semantic and content-aware features, followed by a supervised
feature selection, and introduce a bipartite graph-based ranking (BGR) method.
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4.4 Diversified Subtopic Mining

Third, to cover the possible search intents of the query, we produce a diversified
ranked list of subtopics by balancing the relevance and the novelty. We propose
to estimate the novelty of subtopic by combining a mutual information based
similarity through the Jensen-Shannon divergence tuned for short texts through
the probability distributions of terms in the top retrieved documents from a
search engine and cluster-based categorical similarity. Our detail method is
articulated as follows:

Subtopic candidate 
generation 

Subtopic features 
extraction 

Topic 

Subtopic importance 
estimation 

Subtopic 
diversification 

Ranked 
subtopics S

ub
to

pi
c 

ra
nk

in
g 

Wikipedia Resources Google 
Yahoo 
Bing 

Figure 4.3: Diversified subtopic mining flow

4.4.1 Subtopic Candidate Generation

Inspired by the work of Santos et al. (Santos et al. (2010a)), we hypothesize
that suggested queries in across search engines hold some intents of the query.
Given a query, we collect all the suggested queries from search engines. If a
query is matched with the title of a Wikipedia disambiguation page 1, we also
extract the different meanings from that page. Then, we aggregate them by

1https://en.wikipedia.org/wiki/Apple_(disambiguation)
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filtering out the duplicates or wrongly represented ones, and consider them as
candidate subtopics. To filter out the duplicates or wrongly represented ones,
we apply canonicalization on the suggested queries using Krovetz (Krovetz
(1993)) stemmer and remove those ones which are part of the query or exactly
similar with the query. For example, given a query “old coins," we generate
a list of candidate subtopics including “old coins sell," “old gold coins," “old
coins for sale," and “old coins prices."

4.4.2 Subtopic Features Extraction

Let q 2 Q represents a query and S = {s1, s2, ....., sk} represents a set of candi-
date subtopics generated in Sect. 4.4.1. Both query and candidate subtopics are
short in length and it is a challenging task to estimate the similarity between
a pair of short texts. We extract multiple local and global features, which are
broadly organized as word embedding and content-aware features. While the
content-aware features are standard features commonly used in the literature
for learning to rank for Web search (Liu (2009)), the word embedding based fea-
tures are specifically proposed to estimate the relevance of candidate subtopics
for a query.

We propose three semantic features based on locally-trained word embed-
ding and make use of word2vec1 model (Mikolov et al. (2013b)). In order to
capture the importance of the semantic matching of a query with a subtopic, we
first propose a new feature, the maximum word similarity (MWS) as follows:

fMWS (q, s) =

1

|q|
X

t2q
sem(t, s) (4.1)

where

sem(t, s) = max

w2s
fsem(~t, ~w)

1word2vec (https://code.google.com/p/word2vec/)
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where ~t and ~w are the word vector representations from word2vec model, cor-
responding to two words t and w, respectively. The function fsem returns the
cosine similarity between two word vectors.

To measure the global importance of a query with a subtopic, we propose
our second feature, the mean vector similarity (MVS) as follows:

fMV S (q, s) = fsem(
1

|q|
X

t2q

~

t,

1

|s|
X

w2s
~w) (4.2)

Our third proposed feature, the uncommon word similarity (UWS) is defined
through the similarity of the uncommon word of query and subtopic as follows:

fUWS (q, s) = fsem(
1

|qu|
X

t2qu

~

t,

1

|su|
X

w2su

~w) (4.3)

where query q and subtopic s represent two sets of words, respectively. Then,
qu is defined as q � (q \ s) and su is defined as s� (q \ s). These three semantic
features in Eqs. (4.1), (4.2), and (4.3) are complementary to each others.

Among content-aware features, we extract term frequency, language mod-
eling, term dependency, lexical, and Web hit-count based features. Term
frequency (TF) based features are directly computed by scoring the occur-
rences of the terms of query q in a subtopic s. Term frequency based fea-
tures include DPH (Amati (2003)), PL2 (Amati (2003)), and BM25 (Robertson &
Zaragoza (2009)). Language modeling (LM) based features include Kullback-
Leibler (KL) (Lafferty & Zhai (2001)), query likelihood with Jelinek-Mercer
(QLM-JM) (Zhai & Lafferty (2001)), subtopic likelihood with Jelinek-Mercer
(SLM-JM) (Zhai & Lafferty (2001)), query likelihood with Dirichlet smooth-
ing (QLM-DS) (Zhai & Lafferty (2001)), and subtopic likelihood with Dirichlet
smoothing (SLM-DS) (Zhai & Lafferty (2001)). Term dependency (TD) based
features include term-dependency Markov random field (MRF) (Metzler &
Croft (2005)) and Tri-gram dependency.

To measure the lexical similarity (LS) between a query and a subtopic, we
extract features based on edit distance (EDS), sub-string match (SSM) (Metzler &
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Kanungo (2008)), term overlap (TO) (Metzler & Kanungo (2008)), term synonym
overlap (TSO) (Metzler & Kanungo (2008)), vector space model (VSM), and
coordinate level matching (CLM) (Salton & Buckley (1988)).

If a subtopic is frequently mentioned in the Web pages, then that subtopic
might be important than others. According to this intuition, we make use of
search engine hit count (HC) to estimate features including normalized hit count
(NHC), point-wise mutual information (PMI), and word co-occurrence (WC).
To encode a prior knowledge (PK) about individual subtopic, we also extract
simple query independent features including voting, reciprocal rank (RR),
average term length (ATL), topic cohesiveness (TC) (Bendersky et al. (2011)),
and subtopic length (SL). For each query-subtopic pair, 27 features are extracted
based on word embedding and content-aware relevance as stated in Table 4.1.

Table 4.1: Word embedding and content-aware based features in this work.

Features Type Total
MWS, MVS, UWS Word2Vec 3
DPH, PL2, BM25 TF 3

KL, QLM-JM, SLM-JM, QLM-DS, SLM-DS LM 5
MRF, Tri-Gram TD 2

EDS, SSM, TO, TSO, VSM, CLM LS 6
NHC, PMI, WC HC 3

Voting, RR, ATL, TC, SL PK 5
27

4.4.3 Subtopic Ranking

For a pair of query q and candidate subtopic s, we extract all the features
described in Sect. 4.4.2 and represent those in a feature vector, Fq,s = {fDPH(q, s),

fPL2(q, s), · · · , fUWS(q, s)}. Therefore, for a query q, we have a feature matrix,
MF = {Fs1 ,Fs2 , · · · ,Fsk}, corresponding to a set of candidate subtopics, S =
{s1, s2, ....., sk}. We normalize each feature vector using MinMax normalization
technique. To estimate the diversified rank of a subtopic, first, we employ a
supervised feature selection method to remove noisy and redundant features.
Second, we introduce a bipartite graph-based ranking approach for estimating
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the relevance of candidate subtopic. Finally, we make use of MMR model to
produce a diversified ranked list of subtopics covering the possible intents of
the query by balancing the relevance of the candidate subtopic with the query
and novelty with other subtopics.

4.4.3.1 Supervised Feature Selection

Supervised feature selection is an important technique to determine the best set
of features by reducing the noisy, redundant or highly correlated features in a
large feature set. We make use of elastic-net regularized regression method due
to its better performance over Lasso and Ridge regression (Zou & Hastie (2005)).
Given a parameter ↵ strictly between 0 and 1, and a nonnegative �, elastic-net
solves the following optimization problem:

min

�0,�
(

1

2M

MX

i=1

(yi � �0 � FT
i �)

2
+ �

pX

j=1

(

(1� ↵)

2

�

2
j + ↵||�j||)) (4.4)

where M is the number of samples, FT
i is the transpose of feature vector of

the i-th sample, and yi 2 {0, 1} is the label of the i-th sample. In our case, each
sample is a query-subtopic pair. We train elastic-net on query-subtopic pairs’
feature vectors and choose those features whose coefficients � are positive.

4.4.3.2 Subtopic Relevance Estimation

To estimate the relevance of the candidate subtopics for a query, we introduce a
bipartite graph-based ranking (BGR) approach with considering the features
selected by elastic-net in Sec. 4.4.3.1.

Bipartite Graph based Ranking Many real applications can be modeled as a
bipartite graph, including Video shots and Tags (YANAI et al. (2015)), Queries
and URLs in query logs, Entities and Co-List (Cao et al. (2011)) in a Web page,
Phenotypes and Diseases (Ullah et al. (2015)) in bioinformatics.

We hypothesize that a relevant subtopic should be ranked at the higher
position by multiple effective features, and intuitively, an effective feature
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should be weighted higher by multiple relevant subtopics. Large weight should
be given to a subtopic that tends to be ranked highly by a group of effective
features, and vice versa. Therefore, there is a weight propagation of features
to subtopics and subtopics to features. On these intuitions, we represent a set
of features and a set of candidate subtopics as a bipartite graph and introduce
weight propagation from both sides of the bipartite graph. Given a set of
features and a set of candidate subtopics, we propose a bipartite graph-based
ranking (BGR) method to estimate the global importance of candidate subtopics
by aggregating the local importance of the individual feature.

r1 

r2 

r3 

rm 

4 

s1 

s2 

s3 

sn 

7 

3 4 

6 

6 

3 
3 

Features (R) Candidate Subtopics (S) 

7 

1 

Figure 4.4: Bipartite graph based representation of subtopics and features

Let R = {r1, r2, · · · , rm} be a set of features and S = {s1, s2, · · · , sn} be a set
of candidate subtopics. Consider G = (V,E) is a bipartite graph as depicted in
Figure 4.4, where vertex set V is composed of two disjoint sets R and S, such
that each edge in E connects a vertex in R to a vertex in S; that is, there is no
edge between two vertices in the same set. For each feature ri 2 R, we obtain a
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ranked list of subtopics Lri . The weight wij of the edge between two vertices
ri 2 R and sj 2 S is defined as follows:

wij =
1p

log2(rank(Lri , sj) + 2.0)

(4.5)

where the function, rank(Lri , sj) returns the position of the subtopic sj in the
ranked list Lri for the feature ri. The reciprocal rank of the subtopic is considered
to assign high importance to the subtopic in the higher rank position.

The bipartite graph G is represented as a bi-adjacency m⇥ n matrix, M. We
assign an initial weight to each vertex in the bipartite graph G. Therefore, the
weight vector corresponding to the vertices in the set of features R is R, which
is initialized as uniform values (i.e. 1/m where m is the number of features).
The weight vector corresponding to the vertices in the set of subtopics S is S,
which is initialized by applying, either the equations (4.1) or (4.2) between a
query and a candidate subtopic.

For a bipartite graph, there is a natural random walk on the graph with the
transition probability from both sides (Deng et al. (2009b)). The transition matrix
from R to S is defined as W1 = D�1

R M, where DR is the diagonal matrix with
its (i, i)-element equal to the sum of the i-th row of M. Similarly, the transition
matrix from S to R is defined as W2 = D�1

S MT , where DS is the diagonal matrix
with its (j, j)-element equal to the sum of the j-th column of M.

The weight propagation from the set of candidate subtopics S to the set of
features R is represented as follows:

Rk+1 = �1W1Sk + (1� �1)R0 (4.6)

where 0 < �1 < 1 is a parameter, which is used to combine the initial and
the propagated scores of the features. R0 is the vector of the initial scores of the
features, Sk denotes the vector of the subtopics score after k-th iterations, and
Rk+1 denotes the vector of the features score after (k + 1)-th iterations.

Similarly, the weight propagation from the set of features to the set of
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candidate subtopics is represented as follows:

Sk+1 = �2W2Rk+1 + (1� �2)S0 (4.7)

where 0 < �2 < 1 is a parameter, which is used to combine the initial and
the propagated scores of the candidate subtopics. S0 is the vector of the initial
scores of the subtopics and Sk+1 denotes the vector of the subtopics score after
(k + 1)-th iterations.

Considering the vertices in S, by substituting equation. (4.6) for Rk+1 in
equation. (4.7), the weight equation of subtopics is represented as follows:

Sk+1 = �2W2[�1W1Sk + (1� �1)R0] + (1� �2)S0

= �1�2W2W1Sk + �2(1� �1)W2R0 + (1� �2)S0

(4.8)

The closed form of equation. (4.8) is defined as follows:

Sk+1 = (�1�2W2W1)
k+1

S0 +

kX

t=0

(�1�2W2W1)
t

[�2(1� �1)W2R0 + (1� �2)S0]

(4.9)

Since Eigen values of the stochastic matrices W1 and W2 are in [-1, 1], the
equation. (4.9) is converged. Therefore,

lim

k!1
(�1�2W2W1)

k+1
= 0

lim

k!1

kX

t=0

(�1�2W2W1)
t
= (I � �1�2W2W1)

�1
(4.10)

When k ! 1 and Sk+1 ! S

⇤, we have

S

⇤
= (I � �1�2W2W1)

�1
[(1� �1)�2W2R0 + (1� �2)S0] (4.11)

Given �1, �2, W1, W2, R0, and S0, we estimate the scores S

⇤ directly by
applying equation. (4.11). These scores S

⇤ are considered as the relevance
scores, rel(q, S) of a set of candidate subtopics S with the query q and eventually
utilized in subtopic diversification.
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4.4.3.3 Subtopic Diversification

To produce a diversified ranked list of subtopics by balancing the relevance and
novelty, we make use of MMR model. The MMR regards the ranking problem
as a procedure of successively selecting the “best" unranked subtopic. When
searching for the next best subtopic, the MMR model chooses not the most
relevant one, however, the one that best balances the relevance and novelty.
Novelty means that a subtopic is new compared to those already selected and
ranked.

Given a relevance function rel (., .) and a novelty function novelty (., .), the
MMR model can be defined as follows:

s

⇤
i = argmax

si2D\Ci

� rel (q, si) + (1� �) novelty (si, Ci) (4.12)

where � is a combining parameter and � 2 [0, 1]. D is the relevance oriented
ranked list of subtopics retrieved by equation. (4.11). Ci is the collection of
subtopics that have already been selected at the i-th iteration and initially
empty. Then,

Ci+1 = Ci [ {s⇤i }

where s⇤i is the subtopic ranked at the i-th position. The function, novelty (si,-
Ci) tries to measure the novelty of the subtopic si given the collection Ci.

We find the maximum similarity value for subtopic s with all the selected
subtopics s0 2 Ci, and flip the sign as the novelty score as follows:

novelty (si, Ci) = �max

s02Ci

sim (si, s
0
) (4.13)

Since both subtopics s and s

0 are short in length and they might not be
lexically similar. We hypothesize that if two subtopics represent the similar
meaning, even though they are not lexically similar, they may belong to the
similar categories and retrieve similar kinds of documents from a search engine.
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Mutual information between two probability distributions of words may repre-
sent the contextual similarity between two subtopics. Therefore, we propose to
estimate the novelty of a subtopic by combining the contextual similarity and
categorical similarities as follow:

novelty (si, Ci) = �max

s02Ci

 
1.0�

p
JSD(si, s

0
) +

X

x2X

[(si, s
0
) 2 x]

|x|

!
(4.14)

where JSD(si, s
0
) is estimated through the Jensen-Shannon divergence of the

word probability distributions of the top-k documents refer to the subtopics si
and s

0. X is the set of clusters obtained by applying the frequent phrase-based
soft clustering (Osiński et al. (2004)) on the set of candidate subtopics S, |x| is
the number of subtopics belong to the cluster x, and [(si, s

0
) 2 x] = 1 if true, zero,

otherwise.
JSD(s, s

0
) is defined as follows:

JSD(s, s

0
) = JSD(P,Q)

=

1

2

|V |X

i=1

(P (i) log

P (i)

T (i)

+Q(i) log

Q(i)

T (i)

)

(4.15)

where T =

1
2(P + Q). P and Q refer the word probability distributions,

extracted from the top-K retrieved documents from the search engine for
subtopics s and s

0. V is the set of words in the vocabulary, collected from
the titles and snippets of the documents corresponding to two subtopics s and
s

0. We choose Jensen-Shannon divergence over Kullback-Leibler divergence, because
of its symmetric similarity estimate.

4.5 Experiments and Discussion

In this section, we evaluate our proposed method with different settings on
the NTCIR-10 INTENT-2 (Sakai et al. (2013b)) and NTCIR-12 IMINE-2 (Ya-
mamoto et al. (2016)) English Subtopic Mining test collections and compare the
performance with the previous works.
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4.5.1 Dataset

The NTCIR-10 INTENT-2 and NTCIR-12 IMINE-2 English Subtopic Mining test
collections include a set of 50 and 100 topics (i.e. queries), respectively. Each
topic is labelled by a set of intents with probabilities and for each intent, there
is a set of subtopics as relevance judgement. The statistics of the topics, intents,
and subtopics of the INTENT-2 and IMINE-2 datasets are stated in Table 4.2. For
example, a topic “grilling," which is labelled by intents with probabilities and
a set of subtopics under each intent depicted in Figure 4.5. It shows that topic
“grilling" has several intents with probabilities and there is a set of subtopics as
examples for each intent.

Table 4.2: Statistics of Topics, Intents, and Subtopics of NTCIR-10 INTENT-2
and NTCIR-12 IMINE-2 Datasets

INTENT-2 IMINE-2
Topics 50 100
Intents 392 533

Subtopics 5,410 1652

<topic number="0410"> 
      <query>grilling</query> 
      <intent number="1" probability="0.175000"> 
          <description>grilling recipes</description> 
 <examples>summer grilling !"#$%"&'()*examples> 
      </intent> 
      <intent number="2" probability="0.165000"> 
          <description> grilling barbecue</description> 
 <examples>meat for +!$,,$-+'()*examples> 
      </intent> 
</topic> 

Figure 4.5: A topic “grilling" from INTENT-2 dataset, which is labelled by its
intents with probabilities and a set of subtopics under each intent

Both INTENT-2 and IMINE-2 organizers collected query suggestions and
query completions from Google, Yahoo, and Bing search engines corresponding
to the set of topics and included in the datasets as resources for fairly comparing
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the methods using these datasets. We made use of the query suggestions that
were included in INTENT-2 and IMINE-2 datasets.

To estimate some global features, including inverse document frequency
(IDF) and corpus frequency (CF), we indexed the clueweb12-b13 (Callan et al.
(2009)) corpus employing Indri Search Engine (Strohman et al. (2005)) and
utilized accordingly. To estimate the features, including Eqs. (4.1), (4.2), and
(4.3), for each topic, we retrieved the top-1000 documents from the clueweb12-b13
corpus based on language model and locally trained word embedding based
on word2vec. The parameters in the word2vec tool were Skip-gram architecture,
window width of 10, dimensionality of 200, and the sampling threshold of 10�3.
For estimating the novelty function in equation. (4.14), we queried the Bing
Search API1 and collected the top-50 documents corresponding to all the topics
and the candidate subtopics.

4.5.2 Evaluation Metrics

We evaluated our proposed method by estimating I-rec, D-nDCG, and D#-
nDCG at the cutoff rank 10. I-rec@10 measures the diversity of the returned
subtopics, which shows how many percentages of intents can be found. D-
nDCG@10 measures the overall relevance across all intents considering the
subtopic ranking. D#-nDCG@10 is a combination of I-rec@10 (50%) and D-
nDCG@10 (50%). It is used as the primary evaluation metric by the INTENT-2
and IMINE-2 task organizers (Sakai et al. (2013a); Yamamoto et al. (2016)). The
advantages of D#-nDCG@10 over other diversity metrics (e.g. a-nDCG and
Intent-Aware metrics) are discussed in (Sakai et al. (2013a)). In our experiments,
we utilized NTCIREVAL (Sakai (2011)), the tool provided by the NTCIR orga-
nizers to compute the above three metrics, in which the default setting was used.
Moreover, we made use of two-tailed paired t-test for statistical significance
analysis, where the significance level is 0.05 (Sakai (2014)).

1https://datamarket.azure.com/dataset/bing/search
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4.5.3 Experimental Settings

We designed three experiments to evaluate the usefulness of our proposed
method. In experiment 1, we discriminatively evaluated our proposed method
by highlighting three contributions on INTENT-2 and IMINE-2 datasets in
different settings, including Baseline, W2V-LRM-Cosine, W2V-BGR-Cosine, and
W2V-BGR-JSD. Baseline included standard content-aware features, linear rank-
ing method (LRM), and cosine similarity-based novelty function. W2V-LRM-
Cosine extended Baseline by including word embedding based features. W2V-
BGR-Cosine included a bipartite graph-based ranking (BGR) method in place
of LRM in W2V-LRM-Cosine. Our proposed W2V-BGR-JSD included novelty
equation. 4.14 in place of cosine similarity-based novelty function in W2V-BGR-
Cosine. Moreover, to show the effectiveness of the feature selection, we also
evaluated our proposed method with or without considering feature selection.

In experiment 2, we compared the performance of our proposed method
W2V-BGR-JSD on INTENT-2 dataset with the known related methods, including
Kim & Lee (2015), Moreno et al. (2014), and Damien et al. (2013), and the
baselines, including query completions (BingC, GoogleC and YahooC), query
suggestion (BingS), and a simple merging strategy (MergeBGY).

In experiment 3, we compared the performance of our proposed method
W2V-BGR-JSD with the official participants of INTENT-2 (Sakai et al. (2013a))
and IMINE-2 competitions (Yamamoto et al. (2016)).

4.5.4 Important Features and Parameter Tuning

To select the important features, we prepared the training samples by choosing
10 queries, including the corresponding subtopics from the relevance judgement
of INTENT-2 and IMINE-2 datasets, respectively. We extracted in total 27
features and employed elastic-net for feature selection. The selected features for
INTENT-2 dataset were as follows: MWS, MVS, UWS, DPH, QLM-JM, SLM-DS,
MRF, SSM, TSO, NHC, WC, RR, and ATL. Similarly, the selected features for
IMINE-2 dataset were as follows: MWS, MVS, UWS, DPH, BM25, MRF, TO,
TSO, NHC, WC, Voting, and TC. It turns out that our proposed features MWS,
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MVS, and UWS were selected for both of the datasets and are important in
subtopic ranking.
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I-rec@10
D-nDCG@10
D#-nDCG@10

!!,
Figure 4.6: An empirical analysis of the parameter �1 in equation. (4.6) for our
proposed method bipartite graph based BGR ranking on INTENT-2 dataset. The
X-axis indicates the parameter �1 and the Y-axis indicates the corresponding
scores of I-rec, D-nDCG, and D#-nDCG at the cutoff rank 10.

There were some optimization parameters in our proposed method, namely
�1, �2, and � in Eqs. (4.6), (4.7), and (4.12), respectively. With empirical evalua-
tion, we found the optimal values of these parameters for both INTENT-2 and
IMINE-2 datasets. To find out the optimal values of �1, �2 and �, we fixed the
�2 to 0.5 and changed the value of �1 at a rate of 0.1 from 0 to 1. The evaluation
result is depicted in Figure 4.6. It turns out that the curve of diversity measure I-
rec@10 is smooth from 0.6 to 0.8 values of �1. Therefore, the optimal insensitive
value of �1 is 0.8, which reflects a high importance of the propagated weights of
features than the initial weights in equation. (4.6).

Then, we fixed the �1 to 0.8 and changed the value of �2 at a rate of 0.1
from 0 to 1. The evaluation result is depicted in Figure 4.7. It demonstrates
that the curve of diversity measure I-rec@10 is smooth from 0.3 to 0.5 for
values of �2. Therefore, the optimal value of �2 is 0.4, which reveals a higher
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Figure 4.7: An empirical study of the parameter �2 in equation. (4.7). The X-axis
indicates the parameter �2 and the Y-axis indicates the corresponding scores of
I-rec, D-nDCG, and D#-nDCG at the cutoff rank 10.

importance of the initial weight than propagated weight for candidate subtopics
in equation. (4.7).

In equation. (4.12), the diversification parameter � balances the relevance
and novelty of candidate subtopics. With the optimal values of �1 to 0.8 and
�2 to 0.4, we changed the values of � at a rate of 0.05 from 0.5 to 1. The
evaluation result is depicted in Figure 4.8. It shows that if we increase the value
of �, both diversity measures I-rec@10 and relevance measure D-nDCG@10
increase. However, around a value of 0.80 of �, I-rec@10 decreases and D-
nDCG@10 increases. We found the highest value of D#-nDCG@10 metric at
0.85 for the parameter �, which reflected that MMR model assigned high scores
to relevance than novelty for subtopics diversification. Therefore, the optimal
values of the parameters �1, �2, and � for INTENT-2 dataset are 0.80, 0.40, and
0.85, respectively. Similarly, we found the optimal values of the parameters �1,
�2, and � for IMINE-2 dataset are 0.60, 0.70, and 0.80, respectively.
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Figure 4.8: Sensitivity analysis of the diversification parameter �. The X-axis
indicates the different values of the parameter � and the Y-axis indicates the
corresponding scores of I-rec, D-nDCG, and D#-nDCG at the cutoff rank 10.

4.5.5 Experimental Results

To fairly compare with the baselines and previous works, we evaluated our
proposed method on INTENT-2 topics by utilizing the parameters learned for
IMINE-2 topics. Similarly, we evaluated our proposed method on IMINE-2
topics by utilizing the parameters learned for INTENT-2 topics. In addition, we
excluded the topics which were used for feature selection.

Experiment 1: we evaluated our proposed method in different settings,
including Baseline, W2V-LRM-Cosine, W2V-BGR-Cosine, and W2V-BGR-NOV
on INTENT-2 and IMINE-2 datasets. For INTENT-2 dataset, the comparative
performances are reported in Table 4.3. It turns out that with two-tailed paired
t-test (p<0.05), W2V-BGR-JSD significantly outperforms W2V-BGR-Cosine, W2V-
LRM-Cosine, and Baseline in terms of D-nDCG@10 and D#-nDCG@10, however,
W2V-BGR-Cosine and W2V-LRM-Cosine are indistinguishable from W2V-BGR-
JSD in terms of I-rec@10.

For IMINE-2 dataset, the comparative performances are shown in Table 4.4.
With two-tailed paired t-test (p<0.05), it demonstrates that W2V-BGR-JSD signif-
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Table 4.3: Performance comparison of our proposed method in different settings
on NTCIR-10 INTENT-2 dataset at the cutoff rank 10. The best result is in bold.
† indicates statistically significant and ⇧ indicates statistically indistinguishable
from the best.

Method I-rec D-nDCG D#-nDCG
Our proposed (W2V-BGR-JSD) 0.4745† 0.5394† 0.5048†

W2V-BGR-Cosine 0.4616⇧ 0.5089 0.4850
W2V-LRM-Cosine 0.4466⇧ 0.4780 0.4626

Baseline 0.4152 0.4555 0.4360

Table 4.4: Performance comparison of our proposed method in different settings
on NTCIR-12 IMINE-2 dataset at the cutoff rank 10. The best result is in bold. †
indicates statistically significant.

Method I-rec D-nDCG D#-nDCG
Our Proposed (W2V-BGR-JSD) 0.8235† 0.6911† 0.7581†

W2V-BGR-Cosine 0.7319 0.6312 0.6837
W2V-LRM-Cosine 0.7216 0.6217 0.6704

Baseline 0.6928 0.5762 0.6377

icantly outperforms W2V-BGR-Cosine, W2V-LRM-Cosine, and Baseline in terms
of I-rec@10, D-nDCG@10, and D#-nDCG@10 metrics.

To show the effectiveness of the feature selection, we described the com-
parative performances of our proposed method with or without employing
feature selection on INTENT-2 and IMINE-2 datasets in Table 4.5. It reveals that
W2V-BGR-JSD significantly outperforms its variants without including feature
selection for all metrics on IMINE-2 datasets. However, W2V-BGR-JSD is statis-
tically indistinguishable from its variants for D-nDCG@10 and D#-nDCG@10
on INTENT-2 dataset.

Experiment 2: we compared our proposed method (W2V-BGR-JSD) with
the known related methods, including Kim & Lee (2015), Moreno et al. (2014),
Damien et al. (2013), and the baselines including BingC, GoogleC, YahooC,
BingS, and MergeBGY for INTENT-2 dataset. The comparative performances
are shown in Table 4.6. Overall, W2V-BGR-JSD outperforms the baselines, Kim
& Lee (2015), Moreno et al. (2014), and Damien et al. (2013) in terms of I-rec@10,
D-nDCG@10, and D#-nDCG@10 metrics.
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Table 4.5: Performance comparison of our proposed method with/without
feature selection (FS) on NTCIR-10 INTENT-2 and NTCIR-12 IMINE-2 datasets
at the cutoff rank 10. The best result is in bold. † indicates statistically significant
and ⇧ indicates statistically indistinguishable from the best.

Method I-rec D-nDCG D#-nDCG
NTCIR-10 INTENT-2 W2V-BGR-JSD 0.4745† 0.5394 0.5048

Without FS 0.4390 0.5279⇧ 0.4794⇧

NTCIR-12 IMINE-2 W2V-BGR-JSD 0.8235† 0.6911† 0.7581†

Without FS 0.7305 0.6245 0.6801

Table 4.6: Comparative performance of our proposed method with baselines
and known previous methods on NTCIR-10 INTENT-2 dataset at the cutoff
rank 10. The best result is in bold. † indicates statistically significant and ⇧
indicates statistically indistinguishable from the best.

Method I-rec D-nDCG D#-nDCG
Our Proposed W2V-BGR-JSD 0.4745† 0.5394† 0.5048†

Baselines

BingS 0.3068 0.2787 0.2928
BingC 0.3231 0.3268 0.3250

GoogleC 0.3735 0.3841 0.3788
YahooC 0.3829 0.3815 0.3822

MergeBGY 0.3365 0.3181 0.3273
Previous Methods Kim & Lee (2015) 0.4032 0.3681 0.3788

Moreno et al. (2014) 0.4249 0.4221 0.4225
Damien et al. (2013) 0.4587⇧ 0.3625 0.4106
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With two-tailed paired t-test (p<0.05), in terms of diversity (i.e. I-rec@10),
W2V-BGR-JSD significantly outperforms the baselines, Kim & Lee (2015), and
Moreno et al. (2014), however, Damien et al. (2013) is statistically indistinguish-
able from W2V-BGR-JSD. Despite the fact that Kim & Lee (2015) proposed
simple rules and popularity-based ranking, Moreno et al. (2014) applied Dual-C
means clustering, and Damien et al. (2013) employed Jaccard similarity based hi-
erarchical clustering to mine candidate subtopics, which often cause irrelevant
and redundant candidates, however, our proposed novelty function in equa-
tion. (4.14), which is derived by combining Jensen-Shannon divergence tuned for
short texts eliminates redundant candidate subtopics and benefits for diverse
relevant subtopics at the top rank.

In terms of relevance (i.e. D-nDCG@10), W2V-BGR-JSD shows statistically
significant improvement over the baselines, Kim & Lee (2015), Moreno et al.
(2014), and Damien et al. (2013). To estimate the relevance of the candidate
subtopics, our proposed bipartite graph-based ranking method efficiently and
effectively approximates the global importances of the subtopics by exploit-
ing the word embedding and content-aware based features. In terms of D#-
nDCG@10, W2V-BGR-JSD also significantly outperforms the baselines, Kim &
Lee (2015), Moreno et al. (2014), and Damien et al. (2013).

Experiment 3: we evaluated our proposed method W2V-BGR-JSD by com-
paring the performance with the official participants’ methods of INTENT-2
and IMINE-2 competitions. The comparative performances of W2V-BGR-JSD
with the participants of INTENT-2 are demonstrated in Table 4.7. Overall, W2V-
BGR-JSD outperforms all the official participants’ methods in terms of I-rec@10,
D-nDCG@10, and D#-nDCG@10 metrics.

With two-tailed paired t-test (p<0.05), in terms of diversity (i.e. I-rec@10),
W2V-BGR-JSD significantly outperforms all the participants’ methods except
THUIR-S-E-1A and KLE-S-E-4A, which are statistically indistinguishable from
W2V-BGR-JSD. In terms of relevance (i.e. D-nDCG@10), W2V-BGR-JSD signif-
icantly outperforms all the participants’ methods except hultech-S-E-1A and
THUIR-S-E-4A with two-tailed paired t-test (p<0.05). However, hultech-S-E-
1A, THUIR-S-E-1A, and THUIR-S-E-4A are statistically identical with W2V-
BGR-JSD in terms of D-nDCG@10. In terms of D#-nDCG@10, W2V-BGR-JSD
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Table 4.7: Performance comparison of our proposed method with the official
participants of NTCIR-10 INTENT-2 competition at the cutoff rank 10. The best
result is in bold. † indicates statistically significant and ⇧ indicates statistically
indistinguishable from the best.

Method I-rec D-nDCG D#-nDCG
Our Proposed W2V-BGR-JSD 0.4745† 0.5394† 0.5048†

NTCIR-10 INTENT-2 THUIR-S-E-4A 0.4364 0.5062⇧ 0.4713⇧

THCIB-S-E-1A 0.4431 0.4657 0.4544
THUIR-S-E-1A 0.4512⇧ 0.4775⇧ 0.4644⇧

hultech-S-E-1A 0.3680 0.5368⇧ 0.4524⇧

KLE-S-E-4A 0.4457⇧ 0.4401 0.4429
SEM12-S-E-2A 0.3777 0.4290 0.4014
ORG-S-E-4A 0.3815 0.3829 0.3822

TUTA1-S-E-1A 0.2181 0.2577 0.2379
LIA-S-E-4A 0.2000 0.2753 0.2376

significantly outperforms the participants’ methods, however, hultech-S-E-1A,
THUIR-S-E-1A, and THUIR-S-E-4A are indistinguishable.

In addition, the comparative performances of W2V-BGR-JSD with the of-
ficial participants of IMINE-2 competitions1, baseline, and Kim & Lee (2015)
are reported in Table 4.8. Overall, W2V-BGR-JSD outperforms all the official
participants’ methods, baseline, and Kim & Lee (2015) in terms of I-rec@10,
D-nDCG@10, and D#-nDCG@10 metrics. With two-tailed paired t-test (p<0.05),

1http://www.dl.kuis.kyoto-u.ac.jp/imine2/dataset/#results

Table 4.8: Performance comparison of our proposed method with the official
participants of NTCIR-12 IMINE-2 competition, baseline, and Kim & Lee (2015)
at the cutoff rank 10. The best result is in bold. † indicates statistically significant
and ⇧ indicates statistically indistinguishable from the best.

Method I-rec D-nDCG D#-nDCG
Our Proposed W2V-BGR-JSD 0.8235† 0.6911† 0.7581†

NTCIR-12 IMINE-2 KDEIM-Q-E-1S 0.7557 0.6644 0.7101
HULTECH-Q-E-1Q 0.7280 0.6787⇧ 0.7033

RUCIR-Q-E-4Q 0.7601 0.5097 0.6349
Baseline MergeBGY 0.6144 0.3884 0.5044

Related work Kim & Lee (2015) 0.5233 0.3210 0.4242
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in terms of diversity (i.e. I-rec@10), W2V-BGR-JSD shows statistically significant
performance over all related methods. In terms of relevance (i.e. D-nDCG@10),
W2V-BGR-JSD significantly outperforms KDEIM-Q-E-1S, RUCIR-Q-E-4Q, base-
line, and Kim & Lee (2015), however, the difference with HULTECH-Q-E-1Q
is insignificant. In terms of D#-nDCG@10, W2V-BGR-JSD also significantly
outperforms the related methods.

Experimental results demonstrate that our proposed bipartite graph based
ranking (BGR) method with semantic features and Jensen-Shannon divergence
based novelty function consistently performs better than previous works on
both INTENT-2 and IMINE-2 datasets.

4.5.6 Discussion

Taking query "#09 (porteville)" from the INTENT-2 dataset as an example, we
listed the top-10 subtopics returned by our proposed W2V-BGR-JSD, Baseline
(MergeBGY), Kim & Lee (2015), and Moreno et al. (2014) in Table 4.9. Note that
relevant subtopic is labeled by its intent number. It shows that our proposed
W2V-BGR-JSD returns 7 relevant subtopics covering 6 intents (out of 7) in the
top-10 ranks. Both Baseline (MergeBGY) and Kim & Lee (2015) return 3 relevant
subtopics covering 3 intents. Though Moreno et al. (2014) returns 5 relevant
subtopics, however, those subtopics are redundant and cover only 3 search
intents.

The computation bottleneck in our approach is the feature extraction, bi-
partite graph-based ranking, and diversification. However, using hash tables,
features are extracted in linear time. Though equation. (4.11) requires matrix
inversion which takes O(n3) time, however, computation time is negligible for
a few number of candidate subtopics (i.e. small n). Since the diversification
problem is NP-hard, the greedy algorithm can achieve the optimal ranking
in O(n2), which is still negligible for small n (Santos et al. (2015)). To satisfy
the diverse users, a traditional search engine can be augmented by extending
two components: subtopic mining and search diversification. Given a query,
a search engine can utilize our method to mine the possible subtopics and
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4.6 Summary

diversify the initially retrieved top ranked documents based on the mined
subtopics.

The limitations of our proposed method are carefully choosing the features,
learning the parameters of bipartite graph and diversification, and estimating
the novelty of the subtopic. Moreover, optimally combining subtopics from
heterogeneous sources might improve the performance.

4.6 Summary

We proposed a method for mining and ranking subtopics of the query. We
introduced new features based on word embedding and utilized content-aware
features that were selected by a supervised method. The relevance of the
candidate subtopic with the query was estimated by introducing a bipartite
graph-based ranking (BGR) method. For diversifying the candidate subtopics,
we introduced a novelty function to estimate the similarity between two candi-
date subtopics (i.e. short texts) by means of Jensen-Shannon divergence through
the probability distributions of terms in the retrieved documents from a search
engine. We experimented and evaluated our proposed method on NTCIR-10
INTENT-2 and NTCIR-12 IMINE-2 datasets in terms of I-rec, D-nDCG, and
D#-nDCG metrics at the cutoff rank 10. We demonstrated that our proposed
method significantly outperforms the baselines, the previously known subtopic
mining methods (Damien et al. (2013); Kim & Lee (2015); Moreno et al. (2014)),
and the official participants of INTENT-2 and IMINE-2 competitions. In future
work, we will incorporate subtopics from different resources in our subtopic
mining framework and enhance search result diversification to satisfy the users’
information needs. Our other future plan is to organize the subtopics in a
multi-level hierarchy and improve the performance of result diversification.
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Chapter 5

Bipartite Graph based Ranking of
Genetic Disease

With the widespread huge medical knowledge data available on the Internet,
it is becoming more and more practical to help doctors in clinical diagnostics
by suggesting plausible diseases. Although most of the clinical work is on
common diseases, physicians are most likely to search for information when
they encounter diagnostic difficulties. Since genetic diseases are difficult to
diagnose because of their low prevalence, large number, and broad diversity
of symptoms, genetic disease patients are often misdiagnosed or experience
long diagnostic delays. In this chapter, we present our proposed bipartite graph
based ranking of genetic diseases for a set of clinical phenotypes. In our ap-
proach, we have associated a phenotype-gene bipartite graph (PGBG) with a
gene-disease bipartite graph (GDBG) by producing a phenotype-disease bipar-
tite graph (PDBG). We have introduced the Bidirectionally-induced Importance
Weight (BIW) prediction method to PDBG for approximating the weight of the
edge of disease with phenotype, by considering link information from both
sides of the bipartite graph. Experimental results show that our proposed
method has outperformed the known related method Phenomizer in terms of
NDCG@10, NDCG@20, MAP@10, and MAP@20, however, it has performed
worse than Phenomizer in terms of Kendall’s tau-b metric at the top-10 ranks. It
also turns out that our proposed method has overall better performance than
the baseline methods.
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5.1 Introduction

5.1 Introduction

One of the challenging tasks in bioinformatics research is to understand the
underlying mechanisms of human disease. There are some genes that are
responsible for causing human disease, called disease causative genes (Barrenäs
et al. (2012)). Phenotypes, the observable characteristics (traits) of an organism,
are believed to be determined by genetic materials (DNAs) under environmental
influences. In this regard, phenotypes have associations with genes (Carter et al.
(2013); Yang et al. (2011)) and, in turn, causative genes have associations with
human diseases (Navlakha & Kingsford (2010); Radivojac et al. (2008); Tsafnat
et al. (2014)) as well. Therefore, there might be a path from a phenotype to
human hereditary disease through causative genes with weighting factor along
with the edge.

Human diseases might be developed through the phenotypical changes
due to some causative genes (Hardy & Singleton (2009); Lechner et al. (2012)),
and physicians diagnose diseases utilizing their human knowledge of a variety
of cases. However, wrong selection of clinical features or medical cases may
affect humans severely. Consequently, making the correct diagnosis is unques-
tionably the most important role of the physician. Many physicians, when
faced with difficult cases, rely on general purpose search engines or medical
databases (Kortteisto et al. (2009); Lombardi et al. (2009)). Recent studies have
shown that Google Search is the preferred resource for searching medical infor-
mation (Hider et al. (2009); Kortteisto et al. (2009); Tang & Ng (2006)), however
PubMed, a medical bibliographic search engine is also widely used (Kortteisto
et al. (2009)). Nevertheless, neither of these systems fits well with the task of
finding a diagnosis based on patient data. Google is not optimized for this task,
but rather for general web search, whereas PubMed does not rank results by
relevance, but merely sorts them by date of publication or other bibliographic
information.

Although most of the clinical work is on common diseases, physicians are
most likely to search for information when they encounter diagnostic difficulties.
Therefore, dealing with such cases is an area where a disease retrieval system
could improve the current clinical practice. This is especially important, since
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5.2 Related Work

such cases often result in misdiagnosis or diagnosis delay that could negatively
affect the patient’s outcome (Bouwman et al. (2010)). In a complex or even in
an unknown case of diseases, physicians may get assistance to make decisions
quickly and efficiently. Therefore, a disease retrieval system is an important
and supportive tool for physicians.

In our approach, we explore all paths from a phenotype to a disease by
utilizing a protein-protein interaction network (PPIN), phenotype-gene bipartite
graph (PGBG), and gene-disease bipartite graph (GDBG). In PPIN, protein-
protein interactions are considered to explore some candidate causative genes,
and the explored candidate causative genes are used to extend the gene-disease
bipartite graph. In this case, first-neighboring genes of causative genes in PPIN
are considered to be candidate causative genes. The paths of phenotypes to
diseases are examined by associating the phenotype-gene bipartite graph with
the extended gene-disease bipartite graph through their common causative
genes, and a new phenotype-disease bipartite graph is produced. The weight of
an edge of a phenotype with a disease in the phenotype-disease bipartite graph
is measured using our proposed genetic disease ranking method BIW. Finally,
candidate diseases are ranked according to the approximate weight in order to
define the most probable diseases for a given set of clinical phenotypes.

The rest of the chapter is organized as follows: Section 5.2 describes the
state of the art. Section 5.3 includes the general concepts and terminology to
comprehend the readers about the contents of this chapter. We introduce the
methodology and design of our proposed method in Section 5.4. Section 5.5
includes experiments and evaluation to show the effectiveness of our proposed
method. Concluding remarks of our work are described in Section 5.6.

5.2 Related Work

Early efforts to use computer diagnostic aids date to more than decade ago
(Miller (1994)), but health care institutions have been slow in incorporating
them into the clinical workflow. It has been repeatedly asserted in literature
that these systems have the potential to reduce diagnostic errors and improve
quality of care (Batal et al. (2013); Delaney (2008); Kawamoto et al. (2005)),
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5.2 Related Work

and the utility of some of them was even demonstrated through laboratory
evaluation studies (Kawamoto et al. (2005)), however few were tested in the
field or developed further than the prototype stage, and none of them is in
widespread use today.

Recently, there are a number of systems to address the crisis in preventive
medicine, where the primary concern is recognizing disease risk and taking
action at the earliest signs. Most of these systems are designed to make a
prediction about a single disease or a class of some specific diseases. Phenomizer
is a web-based system that produces a ranked list of hereditary diseases, taking
a set of clinical features (Köhler et al. (2009)). This system only considers the
semantic similarity metrics to measure phenotypic similarity between query
phenotypes and disease phenotypes with the use of the Human-Phenotype-
Ontology (HPO) (Robinson & Mundlos (2010)). A long list of possible diseases
is presented for a single query by adopting a statistical model to assign p-values
to the resulting similarity scores, which is infeasible in real time. However,
without considering genetic loci, structural similarity of phenotypes does not
always confirm the relevant plausible diseases.

FindZebra (Dragusin et al. (2013)) is a vertical search engine specially de-
signed for rare diseases. This system does not consider the genetic effects
on disease or phenotypic effects on genes; rather it presents a list of disease
documents for a given set of symptoms. CARE uses a collaborative filtering
method to predict each patient’s disease risk based only on their own medical
history and that of similar patients (Davis et al. (2010)). Moreover, there are
some causative genes that may be active in the organism in a different stage of
life. Another system named disease interaction prediction (Davis & Chawla
(2011)) uses patient medical histories (phenotype data) and known disease-gene
association to construct, analyze, and compare disease-disease networks. It
provides insight into the interplay between genetics and clinical realities.

In the postgenomic era, it is widely established in bioinformatics and molec-
ular biology to represent associations between biomedical entities as networks,
and to analyze their topology to obtain a global understanding of underlying
relationships (Barabási et al. (2011); Butts (2009); Yıldırım et al. (2007)). In this
regard, DisGeNET is a coherent tool that analyzes and interprets human gene

58



5.3 General Concepts and Terminologies

network to disease network (Bauer-Mehren et al. (2010)). It visualizes the gene-
disease association network as a bipartite graph, and provides gene centric and
disease centric views of the data.

Interpreting the inherited basis of human disease involves linking genomic
variation to clinical phenotypes (Frazer et al. (2009)). Establishing this relation-
ship, however, can be challenging for several reasons: the pleiotropy of genes,
the genetic heterogeneity of diseases and the limited number of cases (Gial-
lourakis et al. (2005)). There are some methods to predict the candidate causative
genes. In such, a system (Sun et al. (2011)) predicts human disease-related gene
cluster using clustering algorithm by integrating protein-protein interaction
network and gene expression data, and superimposing a set of known disease
genes on human protein-protein interaction network in a different way.

Another system which infers the genotype-phenotype relationship using the
Random Walk with Restart algorithm to the Heterogeneous network (RWRH) (Li
& Patra (2010)), where a heterogeneous network is constructed by connecting
the gene network and phenotype network using the phenotype-gene relation-
ship information from the OMIM database. However, there is more and more
evidence that most human diseases cannot be attributed to single genes but
arise due to complex interactions among multiple genetic variants and environ-
mental risk factors (Hirschhorn & Daly (2005)).

5.3 General Concepts and Terminologies

This section introduces the definitions of phenotype, genotype, bipartite graph
(bigraph), phenotype-genotype bipartite graph, gene-disease bipartite graph,
and Co-HITS to comprehend the essence of this chapter.

5.3.1 Phenotype

The phenotype of an organism is the class to which that organism belongs as
determined by the description of the physical and behavioral characteristics
of the organism (Lewontin (2011)); for example, its morphology, development,
biochemical or physiological properties, phenology, behavior, and products
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5.3 General Concepts and Terminologies

of behavior. The phenotype may change throughout the life of an individual
because of environmental changes and the changes associated with aging.

Definition 5.3.1 Phenotype is the appearance of an individual that results from the
interaction of the person’s genetic makeup and his or her environment.

5.3.2 Genotype

The genotype of an organism is the class to which that organism belongs as
determined by the description of the actual physical material made up of
the DNA that was passed to the organism by its parents at the organism’s
conception (Lewontin (2011)). The genotype is the descriptor of the genome
which is the set of physical DNA molecules inherited from the organism’s
parents. This is the “internally coded, inheritable information" carried by all
living organisms.

Definition 5.3.2 The genotype is defined as the entire set of genes in a cell, an organ-
ism, or an individual.

5.3.3 Bipartite Graph (Bigraph)

A bipartite graph, also called a bigraph, is a set of graph vertices composed
of two disjoint sets such that no two graph vertices within the same set are
adjacent. Bipartite graphs are equivalent to two-colorable graphs, and a graph
is bipartite if and only if all its cycles are of even length. Consider a bipartite
graph G = (U [ V,E); its vertices can be divided into two disjoint sets U and V

such that each edge in E connects a vertex in U and one in V; that is, there is no
edge between two vertices in the same set.

Definition 5.3.3 A bipartite graph is a graph G = (V,E) whose vertex set V can be
partitioned into two non-empty sets V1 and V2 in such a way that every edge in E of G
joins a vertex in V1 to a vertex in V2.
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5.3 General Concepts and Terminologies

5.3.4 Phenotype-Genotype Bipartite Graph

If the mechanisms of development were such that every change in genotype
resulted in a different phenotype and every different phenotype was the conse-
quence of a difference in genotype, the study of the origin of organic variation
would be greatly simplified. Given a knowledge of the phenotype, the un-
derlying causal genotype could be unambiguously inferred, and vice versa.
However, the actual correspondence between genotype and phenotype is a
many-to-many relation in which any given genotype corresponds to many dif-
ferent phenotypes, and there are different genotypes corresponding to a given
phenotype (Lewontin (2011)).

The many-to-many mapping between genotype and phenotype arises from
four sources: (1) the relation between the DNA sequence and the chemical
structure of proteins; (2) relations between the products of the transcription
and translation of the information coded in the genome; (3) the dependence
of development and physiology on both the genotype of the organism and
the temporal sequence of environments in which the organism develops and
functions; and (4) stochastic variations of molecular processes within cells.

Abnormality of the joints

Abnormality of the immune system

Abnormality of the forebrain

Abnormality of the oral cavity

Abnormality of the lower limb

Abnormality of the ear

Nystagmus

Motor delay

Hearing impairment

Phenotype Gene

FGFR3

COL2A1

LMNA

FLNA

TTBK2

PTPRQ

Figure 5.1: The phenotype-gene bipartite graph (PGBG) with unit weight of
edge. The red-colored genes are denoted as disease-causative.

For example, in Fig. 5.1, Abnormality of the ear (HP:0000598), a phenotype
which is associated with a set of genes such as FGFR3 (2261), COL2A1 (1280),
and LMNA (4000). FGFR3 (2261), for example, is a gene which is associated with
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5.3 General Concepts and Terminologies

a set of phenotypes, including Abnormality of the immune system (HP:0002715),
Abnormality of the oral cavity (HP:0000163), and Abnormality of the lower
limb (HP:0002814).

Consider a phenotype-gene bipartite graph, PGBG := (P [ G,E) where P =
{p1, p2, p3, · · · , pm} is the set of m phenotypes, G = {g1, g2, g3, · · · , gn} is the set
of n genes, and every edge in PGBG joins a phenotype in P to a gene in G with
unit weight. The PGBG is depicted in Fig. 5.1 as a bipartite graph where all
red-colored genes are denoted as disease-causative.

5.3.5 Gene-Disease Bipartite Graph

The gene-disease associations are represented as a bipartite graph consisting
of genes and diseases (Goh et al. (2007b); Newman (2003)). Gene and disease
nodes are connected through an edge if the according gene-disease associa-
tion is covered in the gene-disease database. For example, in Fig. 5.2, a set
of disease-causative genes FGFR3 (2261), COL2A1 (1280), FLNA (2316), and
HTR2A (3356) are associated with a set of human diseases, including Blad-
der Cancer (OMIM:109800), Diabetes mellitus (OMIM:125853), Colon Cancer
(OMIM:114500), Schizophrenia (OMIM:181500), and Heterotopia (OMIM:300049).

Gene 

FGFR3!
COL2A1 

LMNA 

HTR2A 
LRP5 

FLNA 

Bladder Cancer 

Colon Cancer 

Obesity 

Cardiomyopathy 

Obsessive-compulsive disorder 

Osteoporosis 
Schizophrenia 

Diabetes Mellitus 

Heterotopia 

Disease 

Figure 5.2: The gene-disease bipartite graph (GDBG) with unit weight of edge.

Consider a gene-disease bipartite graph, GDBG := (G [D,E) where G =
{g1, g2, g3, · · · , gx} is the set of x causative genes, D = {d1, d2, d3, · · · , dy} is the
set of y diseases, and every edge in GDBG connects a causative gene in G to a
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disease in D with unit weight. The GDBG is depicted in Fig. 5.2 as a bipartite
graph.

5.4 Methodology and Design

5.4.1 Data Acquisition

We selected phenotype-gene bipartite graph (PGBG), Human Phenotype On-
tology (HPO), and disease-phenotypic-annotation from (Robinson & Mundlos
(2010))1. We also selected protein-protein interaction network (PPIN), and
gene-disease bipartite graph (GDBG) from Diseasome2 (Goh et al. (2007a)). Fur-
thermore, we generated another gene-disease bipartite graph (GDBG) using
mim2gene and morbidmap files from OMIM (Hamosh et al. (2005)). Moreover,
there are multiple gene-disease bipartite graphs (GDBG) across data sources
with a difference in gene ID or symbol. Therefore, a consistent gene-disease
bipartite graph was generated by matching all the graphs so that gene ID or
symbol is compatible with the gene ID or symbol in PGBG and PPIN.

In OMIM, omim.txt3 file has 20,700 disease documents where 5,000 docu-
ments contain fields of information, such as clinical synopsis (CS), diagnostic
process, treatment, number of cases, causative genes, etc. We developed a parser
named OMIM-Parser to extract phenotype from the CS field of each disease
document. Given a disease document, our OMIM-Parser extracts a phenotype
term from the CS field, and applies term matching between the extracted phe-
notype term and the terms available in HPO for associating with phenotype
ID, and annotates the matched phenotype with the disease. However, some
phenotype terms are contrasted with the terms available in HPO in the sur-
face form, although they are similar phenotype terms. For example, “Mental
retardation, mild to moderate" differs with “Mild to moderate mental retarda-
tion", although both are different forms of the same phenotype term. Finally,

1url: http://www.human-phenotype-ontology.org/contao/index.php/downloads.html
2url: http://diseasome.eu
3url: ftp://ftp.ncbi.nih.gov/repository/OMIM/ARCHIVE/omim.txt.Z
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5.4 Methodology and Design

a phenotype-disease annotation file was generated. These phenotype-disease
associations were used during the evaluation of the system.

The configurations of the data files used in our system are as follows: in
PGBG, there are 6,327 phenotype nodes and 1,807 gene nodes, and PPIN in-
cludes 951 gene nodes. In GDBG, there are 1,271 causative gene nodes and 1,540
disease nodes.

5.4.2 Proposed System Architecture

In this part, the components of our system to estimate the rank of the candidate
diseases are described. The architecture of our system is depicted in Fig. 5.3.
The system is decomposed into two processing steps: Pre-processing step and
Main-Processing step. Pre-processing step includes three sub-processing units:
exploring causative genes, associating two bipartite graphs, and generating a
weighted data model by estimating the weight of candidate diseases. Main-
processing step includes three sub-processing units: collecting the user’s query
phenotypes, retrieving the relevant diseases from the processed weighted data
model, and ranking the retrieved diseases to present a ranked list of possible
diseases.

5.4.3 Exploring Causative Genes

In this section, we describe the procedures to explore some candidate causative
genes that might be responsible for causing diseases by exploiting PPIN and
GDBG. There are more and more evidences that most human diseases cannot
be attributed to a single gene, however they arise due to complex interactions
between multiple genetic variants and environmental risk factors (Hirschhorn
& Daly (2005)). Since disease-causative genes which are more likely to interact
with each other often lead to similar diseases or disorders, a group of genes
associated with the similar diseases or disorders should share similar cellular
and functional characteristics, as annotated in Gene Ontology (GO) (Ashburner
et al. (2000); Goh et al. (2007b)). Causative genes which are associated with
similar diseases or disorders show an increased tendency for their protein
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Pre-processing
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Weight
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Weighted Phenotype-Disease 
Bipartite Graph

Weighted
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Figure 5.3: Proposed system architecture

products1 to interact with each other through PPIN. The working hypothesis of
this approach is that the first-neighboring genes of the known causative genes
in the PPIN might be susceptible to diseases i.e. candidate-causative genes.
Based on this hypothesis, we explore some candidate-causative genes, and
ultimately extend the GDBG by adding the explored genes and corresponding
links with diseases.

The complete procedure of the exploration of candidate causative gene
makes use of the PPIN, and GDBG graph. It requires three basic operations
that are applied to the PPIN, GDBG, and extended gene-disease bipartite graph
(EGDBG). The first operation returns a set of causative genes, CG which are
associated with a disease, d in GDBG. The second operation returns a set of
first-neighboring genes, NG of a causative gene, cg ✏ CG from PPIN. Finally, the
third operation updates the EGDBG by adding the explored candidate gene,
ng ✏ NG including the corresponding links with the disease, d along with the

1Note that in the context used here genes and proteins can be used synonymously. Many
PPIN do not distinguish isoforms of genes, so that one can say that two genes interact with
each other, although actually the gene’s products interact with each other.
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existing edges of GDBG.
A simple illustration of a causative gene exploration hypothesis is depicted

in Fig. 5.4, where the left network is a sample of the original PPIN, and the
right network is a sample of the PPIN with explored causative genes. The
gene which is the first-neighbor of a causative gene in PPIN is considered as a
candidate-causative gene and denoted as a green color in the explored PPIN.

BM2!

TRI11!

WNT74!

A2M! BMP4!

BIN1!
BMP2!

ACVR1!ADD1!

CYP3A5!

AGT!

NOS3! BM2!

TRI11!

WNT74!

A2M! BMP4!

BIN1!
BMP2!

ACVR1!ADD1!

CYP3A5!

AGT!

NOS3!

Figure 5.4: A PPIN and an extended PPIN with some explored causative genes
in green.

After exploring some candidate-causative genes, it eventually increases
more causative gene nodes and edges with diseases in the EGDBG, which is
depicted in Fig. 5.5. For example, “POLG" is a candidate-causative gene denoted
by green color, which contributes three new edges (“POLG", “Bladder Cancer"),
(“POLG", “Diabetes Mellitus"), and (“POLG", “Osteoporosis") in the EGDBG.
The main goal of this candidate-causative gene exploration is to increase the
probability of deciphering more susceptible diseases for a causative gene.

5.4.4 Associating Bipartite Graphs

The method of associating two bipartite graphs is described here. Two bipartite
graphs are to be associated if there is a possibility to satisfy the transitive
property among the graph nodes. For example, if there are two bipartite graphs
A � B and B � C, it is possible to associate A with C based on the transitive
property among the nodes of A, B, and C, i.e. a 2 A is connected to b 2 B,
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Figure 5.5: An extended gene-disease bipartite graph (EGDBG) with unit weight
of edge. The green are the newly explored candidate-causative genes.

(a� b), and in turn, b 2 B is connected to c 2 C, (b� c); therefore, a 2 A can be
associated with c 2 C, (a� c).

It is strongly believed that a phenotype is associated with a set of genes (Mail-
man et al. (2007)), and in turn, a causative gene is also associated with a set
of diseases (Khoury et al. (2009); Zhang et al. (2010)). Therefore, there might
be a path from a phenotype to a disease through their associated common
causative gene. We count all the paths from a phenotype to a disease through
their associated common causative genes, and link the phenotype with the
disease in PDBG, where each edge is labelled with the counted path frequency.
Therefore, the frequency label of an edge is the total number of distinct paths
from a phenotype to a disease through one or more disease-causative genes.

The procedure for associating two bipartite graphs makes use of the PGBG

and EGDBG. It requires three basic operations. The first operation returns a
set of genes that are connected to a phenotype in PGBG. The second operation
returns a set of diseases that are connected to a causative gene in EGDBG. The
final operation updates the PDBG by linking a phenotype to a disease with
their counted path frequency.

When associating two bipartite graphs, there are some limitations in our
approach. The structure of the associated PDBG is different from the original
PGBG and EGDBG, which is similar to the one-node-class projection of the
classical bipartite graph, i.e. non 1-to-1 correspondence between the original
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structure and the associated one. Furthermore, the number of phenotypes in
the associated PDBG is fewer than the number of phenotypes in the original
PGBG and the number of diseases in the associated PDBG is fewer than the
number of diseases in the original EGDBG. This is happening due to the non-
smoothness of the PGBG and EGDBG graphs. For instance, let p be a phenotype
node, g be a gene node, and d be a disease node. Let (a � b) denotes an edge.
If (p � g) 2 PGBG and (g � d) /2 EGDBG, then (p � d) /2 PDBG. Similarly, if
(p� g) /2 PGBG and (g� d) 2 EGDBG, then (p� d) /2 PDBG. In the above cases,
phenotype node p or disease node d might be loosed from the associated PDBG

graph, which is a drawback in our approach. We might reduce these losses of
information by introducing some smoothing operation on the original bipartite
graph.

As the first-neighboring nodes are targeted for a node in the bipartite graph
PGBG or EGDBG, the information contained by the strength of the co-linked
nodes and the edges whose “target" nodes are of degree 1 in the original
graph might be loosed from the associated PDBG graph. To overcome these
shortcomings, weight propagation on the bipartite graph PGBG or EGDBG is
essential for boosting the strength of the co-linked nodes and predicting the
possible edges before introducing the procedure for associating two bipartite
graphs.

5.4.5 Estimating Candidate Weight

The methods of estimating candidate weight of diseases in PDBG are described
here. To estimate the candidate weight of diseases in PDBG, we propose a
ranking method named Bidirectionally-Induced Importance Weight (BIW).
We also adopt some well-known weighting method, such as TF·IDF, BM25,
and JSD as baselines to compare the performance with our proposed method.
Considering the phenotype as term and disease as document, we may have
a term-document matrix from the PDBG. In this regard, we apply TF·IDF,
BM25, and JSD methods to the phenotype-disease association matrix. The
weighting methods are described in the following sections.
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5.4.5.1 Bidirectionally-Induced Importance Weight (BIW) Method

When there are weight propagations on a bipartite graph, we hypothesize
that an edge carries information from the nodes of both sides of the bipartite
graph. To estimate the weight of an edge in a bipartite graph, we propose a
Bidirectionally-induced Importance Weight (BIW) prediction method that uses
the link and content information from both sides of the bipartite graph.

Consider a bipartite graph G = (U [ V,E), where each edge is labelled by
a frequency as weight. Given ui ✏ U and vj ✏ V, if there is an edge connecting
ui and vj , the transition probabilities wui,vj and wvj ,ui are positive, where wui,vj

denotes the transition probability from ui to vj , and wvj ,ui denotes the transition
probability from vj to ui; otherwise, wui,vj = wvj ,ui = 0. Since the transition
probability from state i to all other states must be 1, we have

P
vj ✏ V wui,vj = 1

and
P

ui ✏ U wvj ,ui = 1.
For a bipartite graph, there is a natural random walk on the graph with the

transition probability as discussed above. Let WUV
✏ Rm⇥n denote the transition

matrix from U to V, whose entry (i, j) contains a weight wui,vj from ui to vj . Let
WV U

✏ Rn⇥m be the transition matrix from V to U, whose entry (j, i) contains a
weight wvj ,ui from vj to ui.

Consider a phenotype-disease bipartite graph PDBG = (P [D,E), where
P is a set of phenotypes, D is a set of diseases, and the edges may capture
some semantic relations between phenotypes P and diseases D. For each edge
(pi, dj) ✏ E, we associate a numeric weight fij , known as the frequency that
denotes the number of ways the disease dj is linked with the phenotype pi

through causative genes.
The transition probability wpi,dj from the phenotype pi to the disease dj is

defined by normalizing the frequency as wpi,dj = fijP
pj ✏ D fij

, while the transition

probability wdj ,pi from the disease dj to the phenotype pi is defined as wdj ,pi =
fijP

pi ✏ P fij
. Thus, we can easily obtain the transition matrix WPD and WDP .

A sample of the phenotype-disease bipartite graph (PDBG) is depicted in
Fig. 5.6 which illustrates the estimation of weight of a phenotype with a disease.
To estimate the weight of an edge (pi, dj) of the above PDBG, we consider the
importance weight of both phenotype pi and disease dj .
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Figure 5.6: A sample of phenotype-disease bipartite graph (PDBG). This figure
depicts how the weight between the phenotype p3 and the disease d4 is esti-
mated. The phenotype p3 is connected to the diseases d1, d3, d4, and dn with
frequencies 7, 5, 6, and 6. The disease d4 is also connected to the phenotypes
p2, p3, and p4 with frequencies 7, 6, and 3. The weight of the edge (p3, d4) is
approximated based on the importance of the phenotype p3 and the disease d4

in Equation (5.1).

In order to estimate the importance weight of edge between a phenotype
pi and a disease dj , we propose a Bidirectionally-induced Importance Weight
(BIW) prediction method as follows:

weight (pi, dj) =
avglD

lpi

·
wdj ,piP
pi✏P

wdj ,pi

+

avglP

ldj

·
wpi,djP

dj✏D
wpi,dj

(5.1)

where ldj is the length of the disease dj i.e. the number of phenotypes associated
with it, avglD is the average length of all the diseases in D, lpi is the length of
the phenotype pi i.e. the number of diseases associated with it, and avglP is the
average length of all phenotypes in P.

In Equation (5.1), weight (pi, dj) is the candidate weight of an edge between
a phenotype pi and a disease dj . The first term of the right side of this equation
is the importance weight from a disease dj to a phenotype pi, and the second
term is the importance weight from a phenotype pi to a disease dj . Our BIW

method uses the link information from both sides of the bipartite graph to the
approximate global candidate weight of every edge of the graph from the local
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graph link structure. This method may also distinguish the weight of edges
even if they have similar frequencies.

5.4.5.2 TF-IDF Weight

The TF·IDF weight of a phenotype pi on a disease dj is estimated using the
following equation:

weight (pi, dj) = TFpi,dj · IDFpi,D (5.2)

where TF of a phenotype on a disease is defined as follows:

TFpi,dj =
|pi 2 dj|P
k |pk 2 dj|

(5.3)

where pi is the i

th phenotype, dj is the j

th disease, |pi 2 dj| is the frequency of
the edge of phenotype pi with disease dj , and

P
k |pk 2 dj| is the summation of

all the frequencies of edges of phenotypes pk with the disease dj .
IDF of a phenotype is defined as follows:

IDFpi,D = log

N

|{d 2 D|pi 2 d}| (5.4)

where N is the total number of diseases in PDBG, pi is the i

th phenotype, and
|{d 2 D|pi 2 d}| is the number of distinct diseases d that are connected to the
phenotype pi in PDBG.

5.4.5.3 BM25 Weight

The BM25 weight of a phenotype pi on a disease dj is estimated using the
following equation:

weight (pi, dj) =
TFpi,dj · (k1 + 1)

k1 · ((1� b) + (b · ld
avglD

)) + TFpi,dj

· IDFpi,D (5.5)

where TFpi,dj is the TF weight of the phenotype pi on the disease dj , ld means
the length of disease d i.e. the number of phenotype connected to it, and avglD
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is the average disease length.
IDF of a phenotype pi in BM25 Equation (5.5) is defined as follows:

IDFpi,D = log

N � |{d 2 D|pi 2 d}|+ 0.5

|{d 2 D|pi 2 d}|+ 0.5

(5.6)

where N is the total number of diseases, |{d 2 D|pi 2 d}| is the summation of
all the frequencies of edges of diseases that are connected to the phenotype pi.

In this model, k1 and b are free parameters, where we deduce this param-
eters through empirical evaluation. For this empirical evaluation, we make
81 combinations of values of k1 and b, whereas k1 = {1.2, 1.3, 1.4, ..., 2.0} and b

={0.50, 0.55, 0.60, ..., 0.90}. For each pair of k1 and b, we produce the average
F-measure which is depicted in Fig. 5.7. The global peak of the F-measure
curve indicates the optimized value of k1 and b, which are found to be k1 = 1.85

and b = 0.82. This pair of optimized value of k1 and b is utilized in Equation
(5.5).
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Figure 5.7: Empirical study of BM25 parameters k1 and b
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5.4.5.4 Jensen-Shannon Divergence (JSD) Weight

The JSD weight of a phenotype pi on a disease dj is estimated using the follow-
ing equation:

weight (pi, dj) = 1.0� JSD(TFpi,dj , IDFpi) (5.7)

where JSD(TFpi,dj , IDFpi) is defined as follows:

JSD(TFpi,dj , IDFpi) =
1
2KL(TFpi,dj k M) +

1
2KL(M k IDFpi)

where M =

1
2(TFpi,dj + IDFpi), KL(TFpi,dj k M) and KL(M k IDFpi) are

defined as follows:

KL(TFpi,dj k M) = TFpi,dj · log(
TFpi,dj

M )

KL(M k IDFpi) = M · log( M
TFpi,dj

)

5.4.5.5 Weighting Phenotype-Disease Bipartite Graph (PDBG)

The candidate weight of an edge is approximated by applying TF·IDF, BM25,
JSD, and our proposed method BIW individually. The complete procedure for
estimating the candidate weight of edges makes use of PDBG and a specific
weight Equation of (5.2), (5.5), (5.7) or (5.1). It requires three basic operations
to applied on the input data. The first operation returns a set of diseases D

that are connected to a phenotype pi in PDBG. The second operation applies a
specific weight Equation of (5.2), (5.5), (5.7) or (5.1) between a phenotype pi and
a disease dj ✏ D. The third operation updates the weighted phenotype-disease
bipartite graph (WPDBG) by adding the phenotype pi and disease dj with the
approximate weight. All the above processes are done as a pre-processing step.
The main-processing task is outlined in the following section.

5.4.6 Retrieving and Ranking the Diseases

During the main-processing step, given a set of clinical phenotypes by a med-
ical expert (physician), our system retrieves the weighted phenotype-disease
bipartite graph (WPDBG) from the repository as processed data model, and
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uses this graph for retrieving the possible diseases that may explain the given
set of clinical phenotypes.

Let us assume that a physician chooses a set of clinical phenotypes from
the “ABNORMALITY of ABDOMEN" branch of HPO e.g. splenomegaly
(HP:0001744), nausea and vomiting (HP:0002017), atherosclerosis (HP:0002621),
abdominal pain (HP:0002027) as patient’s query, q. Here, “HP:0001744" is the id

of a phenotype term splenomegaly in HPO.
Let us assume that the set of query phenotypes, q = {p1, p2, ..., pk}. The

specificity of a disease, d to the given query phenotypes, �d is defined as
follows:

�d =

|q|X

pi=1

weight (pi, d) if(pi, d) 2 WPDBG (5.8)

where weight (pi, d) is the weight of the edge between the phenotype pi and the
disease d in the WPDBG graph.

By applying Equation (5.8), we may have a list of diseases with their weights.
The cumulative weights of disease are estimated, and the diseases are ranked
according to their cumulative weights. Through these procedures, we produce
a ranked list of hereditary diseases for a given set of clinical phenotypes and
present the result to the medical expert.

For example, the top-5 diseases in the ranked list, retrieved by our sys-
tem based on our proposed model BIW for the above example query in-
cluding Alström syndrome (OMIM:203800), Hermansky-pudlak syndrome
1 (OMIM:203300), Sitosteolemia (OMIM:210250), Ovarian hyperstimulation
syndrome (OMIM:608115), and Ovarian dysgenesis 1 (OMIM:233300).

Physicians may observe the top-5 or top-10 diseases in the ranked list to
diagnose more accurately with the help of our assistive disease estimating
system. Physicians may also further monitor clinical phenotypes that are
associated with a specific disease for differential diagnosis. The snapshot of our
system implementation is depicted in Fig. 5.8. There is an option for choosing
the clinical phenotypes and a weight model as input to our system. Given a set
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of phenotypes and a weight model, our system may produce a ranked list of
probable diseases.

Figure 5.8: An implementation of our disease retrieval system
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Table 5.1: A set of queries

No. Query phenotypes Possible disease
1 Prominent umbilicus (HP:0001544),

Increased hemoglobin (HP:0001900),
Esophageal stricture (HP:0002043)

Polycythemia, Erythro-
cytosis, Gastric sneezing

2 Splenomegaly (HP:0001744), Nausea
and vomiting (HP:0002017), Atheroscle-
rosis (HP:0002621), Abdominal pain
(HP:0002027)

Lyell syndrome, Entero-
colitis, LCAT deficiency

3 Unilateral deafness (HP:0009900), Hyper-
acusis (HP:0010780), Pulsatile tinnitus
(HP:0000361), Abnormal speech discrimi-
nation (HP:0001963)

Pyloric atresia, Micro-
colon, Scleroderma,
Kawasaki disease

5.5 Experiments and Evaluation

5.5.1 Query Set

We made a set of 64 queries that were used in the evaluation of the system.
Each of these queries are constructed from some specific branch of HPO, based
on the observation that phenotypes in a branch are correlated with each others.
In addition, we use two sets of disease-phenotype-annotation as the ground
truth collection. A sample of the selected queries with some possible diseases is
presented in Table 5.1.

5.5.2 Evaluation Methods

The retrieval accuracies of the proposed method were evaluated using two
popular metrics in the field of information retrieval, namely, Mean Average
Precision (MAP) (Sakai (2005)) and Normalized Discounted Cumulative Gain
(NDCG) (Järvelin & Kekäläinen (2000)). In addition, pair-size comparisons
were carried out to examine the correlation between the retrieval results of the
different methods using Kendall’s tau (Kendall (1938)).
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5.5.2.1 Kendall’s Tau

The Kendall’s tau measure is one of the most commonly used measures employed
to compute the amount of correlation between two rankings. Given two ranked
lists X and Y of length N, let C be the total number of concordant pairs (pairs
that are ranked in the same order in both rankings) and D be the total number
of discordant pairs (pairs that are ranked in opposite order in the two rankings).
The Kendall’s tau value between the two lists is defined as follows:

⌧ =

C�D

N(N � 1)/2

(5.9)

If tied pairs exist on ranks, instead of Equation (5.9), the following measure,
called Kendall’s tau-b (Kendall (1945)), can be used for the computation of
associations between ranks:

⌧b =
C�Dp

(C+D+ TY )(C+D+ TX)
(5.10)

where TX is the number of pairs not tied on rank X , and TY is the number of
pairs not tied on rank Y.

5.5.2.2 Evaluation Setup

To evaluate our system in terms of NDCG, MAP and Kendall’s tau-b, we run a set
of 64 queries in our system and estimate all the evaluation metrics accordingly.
Given a query containing a list of phenotypes, our system produces a ranked list
of diseases. Each disease in the ranked list is elucidated for its relevance to the
given query phenotypes. A disease is considered relevant if it predominantly
covers one of the query phenotypes. A disease is also considered relevant if
it covers different forms of the query phenotypes i.e phenotype itself or its
synonym or even a more general branch of the phenotype. In contrast, a non-
relevant disease is one where the query phenotypes cannot be identified after
matching all the techniques. That is, the query phenotypes should be connected
to the disease directly.
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To estimate NDCG and MAP metrics, we need multilevel relevance grades.
We assume 5-level scale relevance grades i.e. irrelevant, marginally relevant,
partially relevant, fairly relevant, and highly relevant. Multilevel relevance
grades of a disease in the ranked list are measured by using Jaccard’s Index
(JI) between the set of query phenotypes and the set of phenotypes directly
connected with a disease in disease-phenotype-annotation data. Jaccard’s Index
(JI) is defined as follows:

JI =

|DP \QP |
|QP | ⇥ 100

where DP (Disease Phenotypes) denotes the set of phenotypes directly
connected with a disease d, and QP (Query Phenotypes) denotes the set of
phenotypes appearing in a given query q.

The multilevel relevance grade based on Jaccard’s Index (JI) is defined as
follows:

⇠ =

8
>>>>>><

>>>>>>:

0 if JI = 0, irrelevant

1 if JI  25,marginally relevant

2 if JI  50, partially relevant

3 if JI  75, fairly relevant

4 if JI  100, highly relevant

5.5.3 Comparison

To compare the effectiveness of our proposed method BIW with the statisti-
cal methods TF·IDF, BM25, and JSD, we estimate the metrics NDCG@20 and
MAP@20 for a set of 64 queries, Q. Given a query q 2 Q, a ranked list of
hereditary diseases is retrieved by our system based on a specific weighting
method i.e. TF·IDF, BM25, JSD, and BIW individually. The top-20 diseases
in the ranked list are elucidated for their relevancy to the query phenotypes,
and multilevel relevance grades are computed. The average NDCG@20 and
MAP@20 metrics are measured over all queries Q, which are depicted in Fig. 5.9
(a) and (b), respectively. It turns out in Fig. 5.9 (a) and (b) that our proposed
method BIW outperforms classical TF·IDF, JSD, and most of the cases perform
better than BM25.
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Figure 5.9: The comparison of our proposed method BIW with the baseline
methods including BM25, TF-IDF, and JSD; (a) NDCG@20 metric, (b) MAP@20
metric

We evaluate and compare our system’s performance with the most known
related system named Phenomizer (Köhler et al. (2009)). In this regard, we
estimate NDCG@10, MAP@10, NDCG@20, and MAP@20 for a set of 64 queries
Q based on our proposed method BIW. However, Phenomizer does not produce
any type of NDCG or other metrics; it produces a ranked list of genetic diseases
given a set of phenotypes. Therefore, we run the same set of 64 queries in the
Phenomizer system, and estimate the same metrics for the corresponding ranked
lists of diseases. The comparison results of our system with Phenomizer for
NDCG@10, MAP@10, NDCG@20, and MAP@20 are depicted in Fig. 5.10 (a),
(b), (c), and (d), respectively. It shows in Fig. 5.10 (a) and (b) that our system’s
performance is to some extent better than Phenomizer.

In Fig. 5.10 (c) and (d), it turns out that our system outperforms Phenomizer in
all aspects. From rank position 1 to 4 and 9 to 20, our system might present more
relevant diseases than Phenomizer. The top-ranked diseases are very important
from the perspective of physicians. Through these comparative experiments,
we may ascertain that our system retrieves the most relevant plausible diseases
for a given set of phenotypes in top-10 or top-20 ranks than Phenomizer.

We experiment with and compare our system’s performance with link anal-
ysis algorithm Co-HITS (Deng et al. (2009a)). The comparison results of our
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Figure 5.10: The comparison of our proposed method BIW with Phenomizer; (a)
NDCG@10 metric, (b) MAP@10 metric, (c) NDCG@20 metric, and (d) MAP@20
metric

system with Co-HITS for NDCG@22 and MAP@22 are depicted in Fig. 5.11 (a)
and (b). It turns out that our proposed method BIW outperforms Co-HITS in
disease retrieval problem. In Co-HITS, it needs k-times of iterations to estimate
the weight of a disease in the graph, however it might lose few importance
weights during these iterations.

To observe the correlation between the rankings of two systems, we estimate
the Kendall’s tau-b metric using Equation (5.10) for top-10 diseases. We divide
the set of 64 queries into four groups and estimate the average Kendall’s tau-b
metric of BIW vs. Ideal, Phenomizer vs. Ideal, and BIW vs. Phenomizer for each
group of queries, and depict the results in Table 5.2. It turns out that Phenomizer
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Figure 5.11: The comparison of our proposed method BIW with link analysis-
based algorithm Co-HITS; (a) NDCG@22 metric, (b) MAP@22 metric

Table 5.2: Avg. Kendall’s tau-b values of our proposed method BIW with Pheno-
mizer for top-10 diseases

Query Group BIW vs. Ideal Phenomizer vs. Ideal BIW vs. Phenomizer
(01-16) 0.054 0.102 0.021
(17-34) 0.286 0.401 0.089
(35-48) 0.208 0.266 0.109
(49-64) 0.490 0.111 0.122

outperforms BIW, by achieving higher Kendall’s tau-b values as referenced to
the ideal ranking of 3 out of 4 query groups. However, the result shows a
positive correlation of our proposed method BIW with Phenomizer.

We estimate the average Kendall’s tau-b metric of our proposed method with
the baseline methods, and depict the results in Table 5.3. The ranked list of
each weighting method is compared against the ideal rank list individually
and then these weighting methods are compared with each other. The result
shows that BIW outperforms other baseline methods as referenced to the ideal
ranking of 3 out of 4 query groups, although it performs worse than BM25 and
JSD for query group (01-16). The positive correlation of BIW with JSD, and
negative correlations with BM25 for query group (01-16) and TF-IDF for query
group (33-48) have been observed. It also reveals that BM25 shows a positive
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Table 5.3: Avg. Kendall’s tau-b values of our proposed method BIW with the
baseline methods for top-10 diseases

Query
Group

BIW
vs.

Ideal

BM25
vs.

Ideal

TF-IDF
vs.

Ideal

JSD
vs.

Ideal

BIW
vs.

BM25

BIW
vs.

TF-IDF

BIW
vs.

JSD

BM25
vs.

TF-IDF

BM25
vs.

JSD

TF-IDF
vs.

JSD
(01-16) 0.054 0.215 0.016 0.246 -0.021 0.096 0.085 0.196 0.183 0.256
(17-32) 0.286 0.127 0.199 0.116 0.044 0.233 0.105 0.240 0.001 -0.026
(33-48) 0.208 0.058 0.058 -0.041 0.057 -0.045 0.125 0.610 -0.038 0.028
(49-64) 0.490 0.444 0.309 0.163 0.220 0.194 0.108 0.313 0.219 0.260

correlation with TF-IDF and a negative correlation with JSD for query group
(33-48), whereas TF-IDF shows a negative correlation with JSD for query group
(17-32).

Our system retrieves more relevant diseases than Phenomizer. We use the
genetic overlapping, disease link structure, and phenotype link structure to
estimate the weight of a phenotype on a disease. However, Phenomizer might
only use the structural similarity of clinical phenotypes between the query
phenotypes and the phenotypes annotated to a disease using HPO, which is
not always sufficient to estimate the weight of the relevant disease.

There are some other state of the art works e.g. POSSUM (Bankier & Keith
(1989)), The London Dysmorphology Database (LDDB) (Fryns & de Ravel
(2002)), as well as the search routine available with the OMIM (Hamosh et al.
(2005)), Orphanet (Aymé (2003)), and FindZebra (Dragusin et al. (2013)). These
systems do not provide explicit rankings or measures of plausibility for the
potential long lists of candidate diseases. Now, we are trying to compare our
system with the rare disease search engine, FindZebra (Dragusin et al. (2013)).

Although the set of queries Q were chosen from some specific branches of
HPO, in practical cases, patients only express their relevant clinical features
to the physician, who takes some clinical test reports, and might provide the
semantically relevant clinical phenotypes to our system. In a practical case, our
system will retrieve the most relevant candidate hereditary diseases for a given
set of clinical phenotypes.
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5.6 Summary

5.6 Summary

We have proposed a new ranking method for predicting human genetic dis-
eases by associating phenotype-gene with gene-disease bipartite graphs. Our
approach is to explore all the paths from a phenotype to a disease through
their connected common causative genes, and link the phenotype to the disease
with path frequency in a new phenotype-disease bipartite graph (PDBG). We
have introduced the Bidirectionally-induced Importance Weight (BIW) method
to PDBG for estimating the candidate weights for the edges of phenotypes
with diseases, by considering link information from both sides of the bipar-
tite graph. Finally, we have utilized the weighted phenotype-disease bipartite
graph (WPDBG) for retrieving a list of plausible candidate diseases for a given
set of clinical phenotypes.

We have experimented with and evaluated our system in terms of NDCG,
MAP, and Kendall’s tau metrics, and demonstrated that our proposed method
has outperformed the previously known disease ranking method Phenomizer
for NDCG@10, MAP@10, NDCG@20, and MAP@20, respectively, however, it
has performed worse than Phenomizer for Kendall’s tau-b at the top-10 ranks.
We have further conducted comparative experiments of our method with well-
known classical statistical methods, including TF·IDF, BM25, and JSD. In a few
cases, BM25 performs better, however, our method outperforms these methods
in all aspects. The set of clinical query phenotypes to compute evaluation met-
rics are chosen from some specific branches of Human-Phenotype-Ontology
(HPO) that might be observed in real cases to patients during diagnosis. In
addition, we have conducted comparative experiments of our proposed method
BIW with link analysis-based algorithm Co-HITS, and indicated that BIW per-
forms better than it. Although our evaluations are promising, further validation
with the physician is needed to confirm the performance of this method in real
diagnosis.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this dissertation, we focus on ranking query subtopics and genetic diseases.
Our contributions refer to several significant problems in the field of informa-
tion retrieval and Bioinformatics. In order to capture the importance of the
semantic matching of a query with a subtopic, we have proposed new seman-
tic features based on the locally trained word embedding model. We have
also introduced a bipartite graph-based ranking method to estimate the global
importance of candidate subtopics by aggregating the local importance of a
group of features. To estimate the contextual similarity between a pair of short
texts, we have proposed a method of combining a categorical similarity and
a mutual information-based similarity by means of Jensen-Shannon divergence
through the probability distributions of words in the top retrieved documents
from a search engine. This contextual similarity is used to estimate the subtopic
novelty for result diversification. We have experimented and evaluated our
proposed method on NTCIR-10 INTENT-2 and NTCIR-12 IMINE-2 datasets in
terms of I-rec@10, D-nDCG@10, and D#-nDCG@10 metrics. We have demon-
strated that our proposed method significantly outperforms the baselines, the
previously known subtopic mining methods (Damien et al. (2013); Kim & Lee
(2015); Moreno et al. (2014)), and the official participants of INTENT-2 and
IMINE-2 competitions.
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6.2 Future Directions

In the meantime, we have proposed a new ranking method for predicting hu-
man genetic diseases for a set of clinical phenotypes. Given two sets of bipartite
graphs, we have proposed to associate one bipartite graph (i.e. phenotype-gene)
with another bipartite graph (i.e. gene-disease), based on the proximity and
the transitive property among the nodes of bipartite graphs. By associating
two bipartite graphs, all information is embedded in a new bipartite graph (i.e.
phenotype-disease). To estimate the weight of an edge in a bipartite graph, we
have introduced the Bidirectionally-induced Importance Weight (BIW) method
by considering content and link information from both sides of the bipartite
graph. We have experimented with and evaluated our proposed methods in
terms of NDCG, MAP, and Kendall’s tau metrics, and demonstrated that our
proposed method has outperformed the previously known disease ranking
method Phenomizer for NDCG@10, MAP@10, NDCG@20, and MAP@20, respec-
tively, however, it has performed worse than Phenomizer for Kendall’s tau-b at
the cutoff rank 10. Although our evaluations are promising, further validation
with the physician is needed to confirm the performance in real diagnosis.

6.2 Future Directions

6.2.1 Resource based subtopic mining

For subtopic mining, we have exploited the query suggestions provided by
the search engines as resources. However, we hypothesize that incorporating
subtopics from multiple resources, including query logs, anchor text, and top-
K documents in our proposed subtopic mining framework may increase the
subtopic recall and boost the accuracy of subtopic mining. These subtopics
from diverse sources can enhance the search diversification to satisfy the users’
information needs.

85



6.2 Future Directions

6.2.2 Aspect oriented subtopic ranking

There are some subtopics in the final ranked list, which convey semantically
similar meaning. That means, subtopics with similar meanings can cover a
single aspect or intent of a query. To increase the coverage of the search intent
through mining subtopics, aspect-oriented based ranking with diversification
might be useful direction. Cluster label of the candidate subtopics can represent
an aspect of the query. Embedding the subtopic candidates to estimate the simi-
larity for estimating the novelty, importance, and coverage would be another
future direction.

6.2.3 Hierarchical subtopic mining

Given a query, it is possible to generate a multi-level hierarchy of underlying
subtopics by analyzing the subtopic mining resources. As for the two-level
hierarchy of subtopics, let take the ambiguous query “windows" as an example.
The first-level subtopic may be “Microsoft Windows" or “house windows".
In the category of “Microsoft Windows", users may be interested in different
aspects (second-level subtopics), such as “Windows 10", “Windows update", etc.
Therefore, constructing a hierarchical organization organization of subtopics
might be useful for understanding the query.

6.2.4 Genetic Disease Ranking

One of our future direction is to apply some link analysis based methods to
explore the hidden association of phenotype with diseases. We will experiment
with large-scale PPIN to explore the candidate-causative gene. Moreover, we
will implement semantic similarity metrics between query phenotypes and
the disease-annotated phenotypes for re-ranking the ranked list of candidate
diseases for differential diagnosis.
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6.2 Future Directions

6.2.5 Matching Diseases and Phenotypes Ontologies

In the association of diseases with phenotypes, there are some wrong aligned
pairs, which might decrease the performance of the retrieval of diseases. To
produce more accurate alignment pairs of disease with phenotypes, one can
introduce ontology alignment algorithm on the disease ontology, gene ontology,
and phenotype ontology. In this direction, we will experiment with the dataset
in the evaluation forum of the OAEI1 workshop in the disease-phenotype
ontology alignment task.

1http://oaei.ontologymatching.org/2016
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