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Abstract

We propose a novel framework for accurately estimating depth information from a
single image. Despite its simplicity and compactness, our framework demonstrates
consistent and reliable performance by effectively integrating global and local image
features.

To address the challenge, we employ two distinct deep neural network architec-
tures. We adopt an encoder-decoder model with a two-stage strategy in the first
architecture. This approach leverages multi-task loss optimization and incorporates
adaptive learning rate adjustment based on the loss behaviour. The second architec-
ture expands the conditional GAN (cGAN) model, introducing a three-player GAN
(TP-GAN) framework. To enhance the reliability of the depth estimation, we include
the structural similarity measure (SSIM) loss as part of this architecture. By utilizing
this architecture, we aim to optimize the depth estimation performance.

Our proposed architectures utilize 1 × 1 convolution to reduce the dimensionality
of the feature maps, thereby enabling the model to focus on capturing high-level
semantics and global context. Conversely, local features are extracted through stacks
of convolution with smaller kernels relative to the input size that can help in capturing
local context and details that might be overlooked by global features alone. Combining
global and local features enables the model to leverage the overall scene understanding
and fine-grained local details to enhance the accuracy of depth prediction.

To evaluate the effectiveness of our approaches, we conducted comprehensive quan-
titative and qualitative comparisons with several state-of-the-art methods in the field.
Our experiments were conducted on two well-known publicly depth datasets, the in-
door NYU Depth v2 and outdoor KITTI datasets. The results consistently demon-
strate that our proposed method outperforms numerous previous related monocular
depth strategies and delivers reliable performance when compared to the transformer-
based model, further demonstrating its efficacy.

Furthermore, we investigated the generalization capabilities of our model to other
datasets. To assess cross-dataset adaptation, we trained our model on one dataset
and tested it on another and vice versa. Our model exhibits reliable generalization
by effectively learning scene variations across indoor and outdoor datasets. Notably,
when trained on indoor data and tested on the outdoor range dataset, our model
achieved consistent performance of SSIM scores, with some values close to one.

In addition, we conducted an in-depth analysis to assess the robustness of our
depth estimation model under different contrast levels. To evaluate our model’s per-
formance, we generated visualizations of estimated depth and calculated the (SSIM)
score using images captured under different contrast conditions. Specifically, we eval-
uated six random KITTI data samples containing scenes with normal, lower, and
higher contrast levels. The results demonstrated that our model outperformed other
methods, indicating that the SSIM metrics consistently showed superior performance
across the dataset.

In future research, it is imperative to further advance the single image depth
estimation field by focusing on developing models that exhibit enhanced generalization
capabilities across diverse datasets. This could be achieved by designing an adaptive
model that effectively discriminates between ground truth and generated depth and
accurately classifies whether the input image belongs to an indoor or outdoor dataset.
Such advancements would significantly contribute to the robustness and versatility of
depth estimation methods.
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Chapter 1

Introduction

1.1 Research Background

Depth estimation encompasses measuring the distance between the camera and each
pixel in an image. The extraction of geometric information from a scene is an essential
procedure that has significant implications in various fields, including but not limited
to robotics, autonomous driving, object recognition, scene understanding, 3D mod-
elling and animation, augmented reality, industrial control, and medical diagnosis.
The process of estimating depth requires the ability to infer the environment’s se-
mantic context and understand its fundamental geometric arrangement. The research
within the domain of computer vision has extensively focused on depth estimation
due to its inherent complexity.

In general, depth is extracted from two prevalent methodologies: multi-view (stereo)
strategies that leverage epipolar geometry by utilizing multiple viewpoints or single-
view (monocular) methods that analyze depth cues within the RGB image input.
Traditional stereo matching was the most explored due to its strong connection to the
human binocular system. It works by finding corresponding points in the two views
and computing the horizontal displacement between them. On the one hand, the
problem of establishing the geometric relation between disparity and 3D position is
deterministic and well-defined. On the other hand, determining pixel correspondence
between two images is quite challenging. Stereo vision exhibits limited performance
in regions with low texture or repetitive patterns and when objects appear differently
to both views or are partly occluded. Moreover, the resolution of the cameras and
the distance between them, also known as the baseline, affect the effective range of
accurate depth estimation. Therefore, stereo depth maps are typically post-processed
to correct wrong estimates.

Having worked on depth estimation and its application to autonomous driving in
particular, it is challenging for several reasons, including occlusion, a dynamic object
in the scene, and imperfect stereo correspondence. Reflective, transparent, and mirror
surfaces pose the greatest difficulty for stereo-matching algorithms to resolve. Conse-
quently, many companies rely on utilizing Lidar to enhance depth measurements’ ac-
curacy, reliability, and robustness. Currently, the prevailing tendency in autonomous
driving perception stacks leans towards sensor fusion, given that the extracted features
of each sensor possess unique strengths. However, ever since the emergence of deep
learning, this study area has received considerable interest and achieved remarkable
results. As a result, numerous studies have been carried out to address these concerns.

Nowadays, significant advancements have been achieved in capturing depth data

1



RGB Ground Truth Predicted

Figure 1.1: Depth Prediction on NYU Depth v2. Top: from left to right: input RGB
image, ground truth depth, predicted depth by our model, and depth colorbar distance
in meters. Bottom: from left to right: Histogram of depth value of the ground truth
and histogram of depth value of the predicted depth.

Structural Similarity Index Measure (SSIM): 0.91

Figure 1.2: The SSIM difference in error when compared against the ground truth.

information from a single image. In contrast to inferring depth from stereo images,
this technique only relies on one camera. Given that a single perspective is considered
a priori, there are no performance limitations imposed by the appearance of objects in
the field of view or their disposition in the scene. Hence, the estimation process relying
on a single image should not have an issue with objects in close range, at a considerable
distance, or when they are partially obscured. As monodepth estimation from a
single still image is less amenable to mathematical analysis than stereo vision, mono
estimators use learning strategies to infer depth from images. The feature extraction
process for depth prediction is accomplished by minimizing error on a training set.
Consequently, it cannot be assured that the model will exhibit effective generalization
in the operational setting, particularly in cases where a significant difference exists
between the operational and training environments.

Various depth estimation algorithms have been proposed to address the issue of
single view image, which remains a challenging task in computer vision. The con-
ventional approach for inferring depth from a single image has generally relied on
simplifying assumptions about the geometric structure of the scene or incorporating
some external knowledge about the scene, such as semantic labels. Recent approaches
remove the necessity for assumptions as mentioned above and instead employ super-
vised learning, exclusively relying on cues that can be inferred from the input image.

It is important to incorporate global and local information from the scene to
establish a relationship between monocular depth cues. Related to this, Eigen et al. [2]

2



RGB Ground Truth Predicted

Figure 1.3: Depth Prediction on KITTI data. Top: from left to right: input RGB
image, ground truth depth, depth predicted by our model, and depth colorbar distance
in meters. Bottom: from left to right: Histogram of depth value of the ground truth
and histogram of depth value of the predicted depth.

Structural Similarity Index Measure (SSIM): 0.92

Figure 1.4: The SSIM difference in error when compared against the ground truth.

proposed a method for estimating depth from a single image using two independent
deep neural networks. The first network generates an initial global prediction, while
the second network refines this prediction locally. Their method performance reported
remarkable results and motivated research toward using the deep neural network for
depth estimation.

1.2 Research Objectives

The first objective is to develop and implement a simple encoder-decoder based model
for single image depth estimation. This model will implement a two-stage deep neural
network, utilize multi-losses, and perform a training monitor for optimal learning rate
adjustment parameters.

The second objective is to propose and evaluate an innovative depth estimation
model utilizing a generative-based model and the structural similarity index mea-
surement (SSIM) loss. This model expands a conditional GAN to include a refiner
sub-model responsible as the third player. Here, the generator sub-model will extract
global depth features and then integrate them with local feature information from ad-
ditional sub-model to enhance the network’s ability to capture depth cues and improve
depth estimation accuracy.

The overall research objective is to contribute to the advancement of single image
depth estimation by comprehensively investigating and studying the performance of

3



the two Convolutional Neural Network (CNN) architectures. Specifically, the aim is
to explore how these proposed architectures can effectively enhance the accuracy and
robustness of depth estimation from a single image utilizing deep learning by inte-
grating global and local feature information. Additionally, this research attempts to
introduce an innovative approach, conduct experiments to demonstrate its effective-
ness, and subsequently assess the results of the experiments for the two most popular
datasets, NYU depth v2 and KITTI. We show sample image reconstruction compared
with their corresponding ground truth depth and histogram depth value for NYU
and KITTI data, respectively in Figure 1.1 and 1.3. In Addition, we provide sample
structural similarity index measurement (SSIM) differences between ground truth and
reconstruction depth images for evaluation in Figure 1.2 and 1.4.

1.3 Related Works

This section will review some of the previous related works that utilized either deep
learning or non-deep learning strategies. In the following, we provide brief descriptions
of various similarly related methodologies for extracting depth information that have
been developed in recent years. The related works are addressed in the following
paragraphs.

Initially, extracted depth information from the image used a non-deep learning
method that relied on the stereo vision approach, such as structure from motion [11,
12], structured light [13], and de-focusing method [14] which are utilizing image pairs
from the same scenes. On the other hand, various approaches have been demonstrated
for predicting the depth map from a single RGB image. Following the completion of
the work in [15] for creating a 3D model from a single photograph by composing
the geometric structure of the image region of outdoor scenes, Saxena et al. [16] had
successfully estimated depth from a single image based on learning Markov Random
Field (MRF) model. The achievement of their method later extended to develop a
3-D reconstruction of scene modeling [17]. However, their approach relies on strong
assumptions about scene geometry, which works only in such a scenario.

In recent years, convolutional Neural Networks (CNN) have been utilized to ex-
tract depth information from a single input RGB image. To mention a few, Eigen et
al. [2] estimated depth information from a monocular image using a multi-scale struc-
ture that stage-wisely refines the estimated depth map from low spatial resolution to
high spatial resolution via independent networks. Liu et al. [18] discover the unary
and pairwise potential of continuous Conditional Random Field (CRF) and train with
a CNN network. In addition, Laina et al. [19] developed a fully convolutional architec-
ture to learn feature map up-sampling in order to generate higher resolution output
dense maps. Cao et al.[20] proposed a distinctive approach to estimate depth from
a single image. They utilized fully convolutional residual networks as a classification
task instead of a standard regression procedure. Godard et al.[10] further studied
unsupervised learning with a deep CNN network for a monocular image depth esti-
mation. Their works generated disparity images employing a left-right consistency
image reconstruction loss.

Later on, Chen et al. [21] presented a residual pyramid decoder (RPD) that takes
into account the underlying picture structure at many scales. Yin et al. [22] introduced
a framework that consists of two primary modules; a depth prediction and a point
cloud module, to improve the structure of point clouds derived from depth maps in
order to recover more accurate 3D shape from a single image. Gur et al. [23] proposed

4



a deep learning-based method to estimate depth from a single image based on depth
focus cues. In their method, the model requires at least one focused image of the same
scene from the same viewpoint. Next, Bian et al. [6] proposed enhancing unsuper-
vised depth estimation by removing relative rotational motions using an Auto-Rectify
network and their innovative loss functions. Eventually, Ye et al. [24] introduced a
transformer framework for multitask dense prediction. They used an inverted pyramid
multitask transformer (InvPT) to learn long-range interaction in both spatial and all-
task contexts in a unified architecture. Subsequently, studies on enhancing the quality
of depth information using deep learning have been readily conducted.

Meanwhile, generative adversarial network (GAN) [25], also known as two players
deep learning network, has received much attention in the research community in
solving a variety of different image generating applications, including single image
reconstruction [26, 27, 28]. The standard GAN, however, has no control over the
generated image representations. In response, GAN is expanded to a conditional
GAN (cGAN) [29], in which the generator and discriminator are conditioned on some
extra information.

This research presents a simple and reliable image depth estimation task by inte-
grating global image features and local structure information. We address the problem
using two deep neural network architectures. The first architecture utilizes a standard
encoder-decoder based model by employing two-stage global and local stage networks.
Our global network base model is a minor remodel of the original ResNet-50 archi-
tecture [30], consisting of only thirty-eight convolution layers in the residual block
followed by pair of two up-sampling layers. In contrast, the second stage network is a
stack of five convolution layers that accepts the initial depth to be refined as the final
output depth. During training, we monitor the loss behaviour and adjust the learning
rate hyperparameter. Furthermore, our model evaluates loss based on a combination
of three losses; pixel-wise, gradient-direction, and structure similarity.

In the second architecture, We expand the generative adversarial network into a
three-player (TP-GAN) in order to capture the global scene layout and then combine
it with the local structure information to align the detail of the captured depth. We
adopted the residual networks (ResNet) proposed by He et al. [30] as the base model
in our first sub-model, called generator (G). Our second sub-model, discriminator (D),
is implemented as a patch GAN model [31] that effectively only penalizes structure at
the scale of local image patches in the N×N output vector as opposed to outputting a
single value indicating whether an image is fake or real. Our third sub-model, refiner
(R), stacks of six convolutional layers followed by a linear activation to capture the
depth local feature. This sub-model is later referred to as the third player in our
TP-GAN proposed network.

Further, we implement a conditional adversarial network to assist the generator
and refiner in mapping RGB images to their appropriate depths. In our practice,
the third player model learns to improve depth structure by incorporating updated
weight from the generator with local scene information and expressing feedback from
the discriminator throughout each mini-batch training session. In addition, the SSIM
loss will further evaluate the structural feature similarity rather than pixel-by-pixel
between two images, which is a more effective strategy for image reconstructing tasks,
including image depth estimation. The main idea behind this proposed strategy is to
complement the refiner to compete with the discriminator.
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1.4 Thesis Organization

This thesis is organized as follows: We first describe the research background, objec-
tives and some previous related works in Chapter 1. Chapter 2 describes an introduc-
tion about depth estimation then explain two common approach for depth estimation;
stereo vision and monocular image. Chapter 3 contains descriptions of the implemen-
tation of the convolutional neural networks in the context of monocular depth estima-
tion. Describe the deep learning method for monocular depth estimation according
its architectural design and functionality. In Chapter 4, we describe the detailed of
our proposed single image depth estimation using the global structure and local depth
features information. We explain our detailed experiment and show the effectiveness
of our model performance in Chapter 5. Futher, we provide supplementary qualitative
results to offer visual insights into the model prediction. We discuss the performance
of our research in Chapter 6. Finally, our research work conclusion and future work
are described in chapter 7.
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Chapter 2

Depth Estimation

2.1 Introduction

Depth estimation can be defined as the process of determining the depth information of
a 2D image. In computer vision, depth estimation is essential for enabling machines to
perceive the depth and 3D structure of a scene, resulting in enhanced understanding,
recognition, and interaction with the environment in various applications. In computer
vision, computing depth is one the challenging task and a wide area of research. It
has been applied in many vision applications such as 3-D modeling [32], robotics [33],
and autonomous driving [34], as well as potentially leading to improve related studies
in pedestrian detection tasks [35, 36, 37].

There are different techniques for depth estimation, but stereo vision and monoc-
ular depth estimation are two prominent approaches. The use of two or more cameras
to capture multiple images of the same scene from different points is required for stereo
vision. Monocular depth estimation, in contrast, relies only on the information present
in a single image, making it challenging to extract accurate depth information. Over-
all, stereo vision and monocular depth estimation have advantages and limitations,
and the choice between the two depends on the application’s specific requirements. For
example, stereo vision reported more reliance on providing accurate and dense depth
maps but required multiple cameras and careful calibration. In contrast, monocular
depth estimation is a more adaptable approach that can be performed using a single
camera. However, it could lead to less accurate and sparse depth information. Until
recently, researchers have reduced this limitation by incorporating external data about
the scene or by making simplified assumptions about the structure of the scene.

2.2 Stereo Vision

Stereo vision is a fundamental task for depth estimation, which involves using multiple
cameras to capture a scene from multiple perspectives. The stereo vision is widely
considered to be the most accurate representation of the natural depth perception
process, given that it involves the integration of visual cues from both eyes. The
traditional approach to stereo vision involves the computation of depth information
through the identification of corresponding points in both the left and right images,
followed by the utilization of the disparity values between them. In recent years,
there has been extensive research on stereo vision for depth estimation, leading to the
development of numerous new algorithms and techniques.
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left view right view

superimposed disparity

Figure 2.1: The Tsukuba stereo image pairs [1]

Initially, stereo-based depth estimation techniques relied on matching pixels across
several images obtained through precisely calibrated cameras. The given scenario
comprises a pair of cameras that possess established intrinsic and extrinsic properties.
Given the predicted disparity, simple geometry is then used to reconstruct the missing
depth dimension during image capture.

The stereo-matching technique is the conventional approach for determining the
disparity map for a pair of rectified stereo images. This technique computes the
correspondence between the pixels of the left and right images by comparing their
pixel-neighbourhood information for both images. The disparity map is constructed
using a stereo pair. There are a variety of stereo-matching algorithms, including local
methods such as SIFT [38], SURF [39], and ORB [40] and global methods such as
semi-global matching and graph cuts.

Stereo-matching algorithms aim to estimate a scene’s depth given two images taken
from different points of view. The Tsukuba stereo image pairs [1] as shown in Fig 2.1
have been widely used as a benchmark dataset to evaluate the performance of such
algorithms. These image pairs consist of a left and a right image, captured from
slightly different viewpoints, representing a scene with objects at different depths.

Although these techniques can achieve good results, they still need to be improved
in many aspects. For instance, these methods are not well-suited for addressing oc-
clusions, featureless regions, or highly textured regions with repetitive patterns. Nev-
ertheless, it is noteworthy that humans can effectively address such ill-posed inverse
problems by leveraging prior knowledge. We can easily infer the approximate sizes of
objects, their relative locations, and even their approximate relative distance to our
eyes.

The second generation of stereo methods tries to leverage this prior knowledge by
formulating the problem as a learning task. In contrast to traditional stereo match-
ing algorithms, which rely on manually crafted features and matching costs, deep
learning-based stereo methods learn feature representations and matching functions
through extensive training on large datasets. This stereo method enables the model
to effectively apprehend complex interconnections and leverage advanced contextual
data to enhance the accuracy of disparity estimation.
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One common method used in deep stereo is matching cost convolutional neural
networks (MC-CNN)proposed by Zbontar et al. [41]. They learn deep features by
extracting depth information from a rectified image pair. One notable aspect of MC-
CNN is its use of a siamese architecture. This architecture encourages the network to
learn shared representations and similarities between the images, improving the depth
estimation accuracy.

The authors evaluate MC-CNN on various benchmarks, including the Middlebury
stereo dataset. The results demonstrate that their relatively simple convolutional
neural network achieves competitive performance in terms of error rates. Hence,
those relatively simple CNN methods demonstrate the high potential of modern deep
learning approaches to solve the classic stereo vision computer vision problem, and
there is still a great deal of space for improvement in this area.

2.3 Monocular Image

Single image depth estimation, also known as monocular image, is a challenging prob-
lem in computer vision because depth perception typically requires multiple viewpoints
or depth cues, which are inherently missing in a single image. The objective of single
image depth estimation is to estimate the depth map of a scene from a single RGB
image without requiring additional information about the scene, such as stereo pairs
or motion sensors.

Single image depth estimation is a fundamental problem in computer vision, with
applications in robotics, autonomous driving, and augmented reality. Accurate depth
information can enable robots and autonomous vehicles to navigate their environ-
ments, whereas augmented reality applications can use depth information to place
virtual objects in the real world correctly.

Before the development of deep learning, researchers estimated depth from a sin-
gle image using traditional computer vision techniques. These methods leveraged
various cues and assumptions, such as perspective, texture gradients, shading, and
semantic priors. However, these techniques often need to be improved in handling
complex scenes, dealing with noise and ambiguities, and capturing global context.
Deep learning-based approaches have shown significant improvements in overcoming
these limitations and achieving more accurate depth estimation results.

RGB Raw Lidar Dense depth

Figure 2.2: Monocular depth of KITTI

Single image depth estimation using deep learning can be achieved using various
architectural models,such as encoder-decoder, generative adversarial networks, and
transformer attention based model. Each of these architectural paradigms provides
unique advantages and can be tailored to the specific requirements and challenges of
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single image depth estimation tasks. These models have shown great performance on
various datasets, including NYU Depth v2 [42] , and KITTI data [43].

However, using deep learning, estimating depth from a single image faces some
challenges. The accuracy of depth estimation heavily relies on the quality and diversity
of the training data. Handling occlusions, textureless regions, and depth ambiguities
can also be challenging. Furthermore, the estimated depth may be subject to scale
ambiguity because absolute depth values cannot be determined directly from a single
image.

The outdoor KITTI and indoor NYUare benchmark datasets used for depth es-
timation research. The KITTI dataset focuses on autonomous driving scenarios and
provides stereo image pairs along with accurate depth information. The NYU depth
dataset, on the other hand, consists of RGB-D images captured from indoor scenes. It
includes synchronized RGB and depth information obtained from depth sensors with
different lighting conditions, object layouts, and room dimensions. These datasets
serve as important benchmarks for evaluating and comparing depth estimation algo-
rithms.

This study focuses on deep learning-based methods, which have been shown to
effectively address any challenges associated with single image depth estimation tasks.
In addition, we will discuss some limitations and prospective research directions for
single-image depth estimation.
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Chapter 3

Convolution Neural Networks in
the Context of Monocular Depth
Estimation

Estimating depth from a single image is a fundamentally challenging task and a sig-
nificant area of computer vision research. Convolutional neural networks (CNN) have
enabled significant improvements in acquiring depth information from a single image.

Artificial intelligence has grown tremendously in bridging the gap between human
and computer capabilities. In order to achieve outstanding results, many researchers
are focusing on multiple aspects of the field. Computer vision is only one of many
such fields.

The objective of this field is to enable machines to perceive and comprehend the
world similarly to humans and to leverage this comprehension for a diverse range of
applications such as image and video recognition, image analysis and classification,
media recreation, recommendation systems, and natural language processing. Con-
volutional neural networks (CNN) are the primary method used to build and refine
breakthroughs in computer vision using Deep Learning.

CNN has been widely used for monocular depth estimation. These models dis-
cover how to predict depth maps directly from input images by minimizing a depth
loss function. The basic idea behind CNN for depth estimation is to train a neural
network to predict the depth of a scene from a single image by learning the relationship
between image features and depth. Various approaches have accomplished remark-
able improvements in extracting depth information using deep Neural Networks. It
can be categorized according to its architectural design and functionality. Three com-
mon categories for CNN networks include encoder-decoder, generative, and attention
models.

3.1 Encoder-Decoder Based Models

Encoder-decoder architecture is widely used for single image depth estimation. As
shown in Fig 3.1, the basic structure of this model consists of two major components:
an encoder and a decoder. The encoder processes the input image by progressively
decreasing its spatial dimensions and extracting high-level features. Using these fea-
tures, the decoder reconstructs the original image size and generates a depth map as
the output. In addition, researchers have studied various architectural and training
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techniques to enhance the performance of these models.
The seminal work of estimating depth using deep learning was introduced by Eigen

et al. [2]. Their work estimated depth information from a monocular image using a
multi-scale structure that stage-wisely refines the estimated depth map from low to
high spatial resolution via independent networks. Building on this foundation, Liu et
al. [18] discover the unary and pairwise potential of continuous Conditional Random
Field (CRF) and train it using a CNN. Laina et al. [19] proposed a fully convolutional
architecture to learn feature map up-sampling to generate higher resolution output
dense maps. Godard et al. [10] proposed remarkable single image depth estimation
Considering unsupervised learning for monocular depth estimation by constructing
disparity images using a left-right consistency image reconstruction loss.

Later then, several notable works have proposed to enhance the quality of depth
information using deep learning. Chen et al. [21] introduced Pyramid decoder (RPD)
that takes into account the underlying image structure at many scales for estimating
depth. Yin et al. [22] introduced a framework that consists of two primary modules; a
depth prediction and a point cloud module, to improve the structure of point clouds
derived from depth map. Gur et al. [23] proposed a deep learning-based method to
estimate depth from a single image based on depth focus cues. Bian et al. [6] proposed
an Auto-Rectify network to enhance unsupervised depth estimation by removing rel-
ative rotational motions in addition to their innovative loss functions.

They have demonstrated that deep neural networks can capture complex depth
structures and provide accurate depth predictions from a single input image. Sub-
sequently, numerous studies on improving the quality of in-depth data through deep
learning have been conducted.

Figure 3.1: Basic structure of encoder-decoder network.

3.2 Adversarial Based Models

The objective of adversarial models is to discover the input data’s underlying distri-
bution and generate new samples similar to the training data. Generative adversarial
networks (GAN) [25], also known as two-player deep learning networks, have been in-
vestigated for depth estimation. As depicted in Fig 3.2, GAN consists of a generator
network that learns to generate a realistic depth and a discriminator network that
attempts to distinguish between real and generated depth.

To mention a few, Aleotti et al. [44] introduced monocular depth estimation based
on the intrinsic ability of GAN to detect inconsistencies in images. In their research,
the generator network learns to estimate depth from the reference image to generate a
warped target image. Simultaneously, the discriminator learns to differentiate between
generated depth and target ground truth.
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Several more studies are then presented to improve depth estimation based on the
GAN-based feature-level consistency. Zheng et al. [45] proposed a two-module domain
adaptive network with a generative adversarial loss to map real and synthetic images
to the real domain. Kumar et al. [46] presented an adversarial network-based model in
which their generator network consists of depth and relative object pose in addition
to their adjustable loss functions. Pilzer et al. [47] and Kwak et al. [26] explored
unsupervised deep learning depth generation based on a cycled generative adversarial
network.

Furthermore, Zhao et al. [48] developed a Masked GAN framework comprised of
two separate networks for monocular depth estimation and ego-motion utilizing their
scale-consistency loss.

Integrating GAN into depth estimation frameworks has opened up new avenues
for exploring generative models in this field.

Figure 3.2: Basic structure of generative adversarial network (GAN)

3.3 Attention Based Models

Attention models focus on learning to selectively attend to specific regions or features
in an input image. These models assign weights or probabilities to different image
regions, enabling them to dynamically allocate attention to informative regions during
processing. Attention mechanisms allow the network to adaptively focus on relevant
areas, enhancing the network’s ability to extract meaningful information and improve
performance on various vision tasks. Transformer is a common attention-based model
used for image generation tasks, such as image depth estimation.

In Fig 3.3, we show the fundamental structure of the transformer model. This
model uses the self-attention mechanism to capture both global and local features.
Multiple studies have been proposed to enhance the depth prediction of a single image
using the transformer model.

One of the early work utilizing transformer for a single image depth estimation
is the dense prediction transformer (DPT) proposed by Ranftl et al [49]. Their ar-
chitecture, a transformer backbone inside the encoder-decoder design for fine-grained
output, has been trained on a large-scale mixed depth dataset that covers a wide
reange of scenes.
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Figure 3.3: Basic structure of transformer network.

Another approach is the inverted pyramid transformer proposed by Ye et al. [24].
an Up-transformer block is presented to allow network to learn fine-grained dense
prediction maps at higher resolution, for multi-task dense scene understanding.

In more recent work, Manimaran et al. [50] proposed Focal-WNet, a convolutional
architecture along with a transformer layers to improve monocular depth prediction.
Their architecture consists of two separate encoders and a single decoder.

These studies demonstrate the potential of transformer networks for capturing
long-range dependencies and managing global context in single image depth estimation
tasks.
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Chapter 4

Proposed Methods

The proposed approach aims to develop a simple and reliable single image depth
estimation method by integrating global and local image features. This integration
leverages the strengths of both types of features to improve the accuracy and robust-
ness of depth estimation.

4.1 Image Features

Image features are fundamental components in computer vision that facilitate vari-
ous tasks, including object recognition, image segmentation, and scene understanding.
These features serve as meaningful representations of visual information, enabling effi-
cient analysis and interpretation of images. Image features refer to distinctive patterns
or characteristics present in an image that capture essential visual information. These
features play a crucial role in depth estimation tasks as they provide cues and clues
about the spatial structure and relative distances between objects in the scene.

In depth estimation, image features can be categorized into two main types: local
and global.

4.1.1 Global Features

Global features in depth estimation using deep learning refer to information extracted
from the entire image or larger spatial regions. These features capture the global con-
text and scene-level cues allowing for an understanding of the image’s overall struc-
ture and relationships. Typically, convolutional layers extract global features and
encapsulate an image’s global representation. They can include scene architecture,
object arrangement, and semantic comprehension, essential for accurately inferring
depth. Global features are useful for capturing long-range dependencies and gaining
a global understanding of the scene.

The proposed architectures utilize 1×1 convolution to decrease the dimensionality
of the feature maps, thereby enabling the model to concentrate on capturing high-level
semantics and global context. The aforementioned layers perform a linear transfor-
mation on the input feature maps, gather information from the entire image, and offer
a comprehensive comprehension of the scene that incorporates global context.
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4.1.2 Local Features

Conversely, local features capture information from smaller spatial regions or local
patches within an image. These characteristics enable capturing local characteristics,
such as fine-grained texture details, edges, and geometric structures, contributing to
accurate depth estimation. Local features are frequently extracted from the shallower
layers or intermediate representations. They help in capturing local context and details
that might be missed by global features alone.

Incorporating contextual information from various spatial scales can be achieved
by stacking convolutional layers in the model. Each layer in the structure is taught
to extract and encode distinct local feature types. The early layers work on low-level
features such as edges and textures, whereas the deeper layers capture more complex
and higher-order features specific to the depth estimation task. These features can
include depth discontinuities, depth gradients, or geometric structures indicative of
the scene’s depth variations.

Global and local information are then combined within the network to predict the
depth values for each pixel in the image. The combination of global and local features
enables the model to leverage both the overall scene understanding and fine-grained
local details to make accurate depth predictions.

4.2 Encoder-Decoder Based Model

The first architecture uses an encoder-decoder-based model, employing a two-stage
architecture, multi-task loss optimization, and loss monitoring for optimal learning
rate adjustment based on loss behaviour [51].

4.2.1 Problem Formulation

We formulate our model depth estimation as a two-stage deep neural network. In
the first stage, we employ a residual network as our base model for computing fea-
ture depth maps. Here, we modified the original form of ResNet, which in this work
consists of only thirty-eight convolution layers wrapped in six residual blocks. This
new network is a remodelled ResNet-50 to avoid ambiguity with the original form. In
addition, we provide a 1 × 1 convolution to reduce the dimensionality of the feature
maps, enabling the model to focus on capturing global context and high-level seman-
tics. Then, we incorporate an up-sampling layer followed by two blocks of convolution
layer. Finally, we repeat this setting to handle the desired output map size, which has
been proven effective for regression problems.

The second stage of our architecture guides the network to enhancing its output
through a stack of five convolution layers. One of the main differences compared with
[2] is the number of convolution layers before concatenating the two inputs (RGB
image and initial output depth). We implement two convolution blocks with stride-2
rather than a convolution stride-2 followed by a max-pooling layer. In our second
stage network, we downscale the input RGB two times using the stride-2 convolution
to match the initial generated depth size. These settings will enable our network to
reduce the blur result of our reconstruction depth. Further, we reduce the kernel size
from 9×9 to 7 × 7 to ease the process time computation.
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Figure 4.1: Outline of our proposed encoder-decoder depth method.

4.2.2 Network Architecture

The network architecture of our depth estimation model is illustrated in Fig. 4.1. The
first part of the network is a smaller remodelled of ResNet-50 and initialized with
random weights. Thirty-eight convolution layers are employed in the residual block to
encode the RGB input image into a feature vector. A max-pooling layer, together with
the first convolution layer with stride-2, is utilized to downscale the input image by a
factor of 4. Then we pass this output into a residual block and repeat the operation
six times to downscale the previous output by a factor of 2. Two stack pairs of up-
sampling and convolution layers are then provided before fusing the residual network’s
output to the second stage network. The output size of the last residual layer will be
1/4 compared to the input RGB image.

In the second stage, we stack five blocks of the convolution layer. A stride-2
convolution is provided in the first and second block to downscale the input by a
factor of 4 to match the output size from the previous stage. We use 7 × 7 filter size
in the first and second blocks and 5 × 5 in the remaining three blocks. The rectified
linear unit (ReLU) activation function is utilized to the output of each convolution
layer but in the last layer. The convolution with the filter number of one is applied
in the last layer, followed by a linear activation function to refine the feature depth
maps into dense depth.

4.2.3 Multi-loss Function

The standard loss function for depth regression problems considers the difference be-
tween the ground truth depth map 𝑦𝑡 and the depth regression network 𝑦𝑝 prediction.
The most common loss function used in deep learning for regression tasks is a mean
square error or 𝐿2 loss. These loss functions measure the average of the squared
difference between prediction and actual observation. However, 𝐿2 loss alone has
insufficiency to predict data far from their real values.

In our work, we implement a combination of multi-task loss functions to improve
the performance of the model. This idea was encouraged by the practice from work
in [52] to compute loss based on pixel-wise, gradient-based, and structured simi-
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larity. These combination losses have proven beneficial for neural network learning
optimization and demonstrated adequate depth performance.

However, differing from their work, we utilized the Reversed Huber in Eq. (4.1),
which is more flexible than MAE loss that can behave either as a mean absolute error
(MAE) or mean squared error (MSE) depends on the prediction error result.

𝐿ℎ =

{
|𝑦𝑡 − 𝑦𝑝 |, |𝑦𝑡 − 𝑦𝑝 | ≤ 𝑐,
(𝑦𝑡−𝑦𝑝)2+𝑐2

2𝑐 , |𝑦𝑡 − 𝑦𝑝 | > 𝑐,
(4.1)

where 𝑐 = 0.2max( |𝑦𝑡 − 𝑦𝑝 |).
Equation (4.2) presents a loss function which estimate prediction error considering

its gradient direction. The gradient of ground truth depth and the depth prediction
is computed along 𝑥, and 𝑦 direction then calculate its average.

𝐿𝑔 =
1

𝑁

𝑛∑︁
𝑝

|𝑔𝑥 (𝑦𝑡 , 𝑦𝑝) | + |𝑔𝑦(𝑦𝑡 , 𝑦𝑝) |, (4.2)

where 𝑔𝑥 and 𝑔𝑦 are the gradient along 𝑥 and 𝑦, respectively.
The third loss function we used in this research is a structure similarity index

(SSIM) loss, as presented in Eq. (4.3). While 𝐿ℎ and 𝐿𝑔 compute error for each pixel
between ground truth and generated depth, 𝐿𝑠 measure similarity within pixels in the
score range [−1, 1]. Eventually, the SSIM loss will compute the perceptual difference
based on the visible structure of the ground truth and predicted image.

𝐿𝑠 = 0.5 −
ssim(𝑦𝑡 , 𝑦𝑝)

2
, (4.3)

where ssim(𝑦𝑡 , 𝑦𝑝) =
(2`𝑦𝑡 `𝑦𝑝+𝐶1) (2𝜎𝑦𝑡 𝑦𝑝+𝐶2)
(`2

𝑦𝑡
+`2

𝑦𝑝
+𝐶1) (𝜎2

𝑦𝑡
+𝜎2

𝑦𝑝
+𝐶2)

.

With:
`𝑦𝑡 and `𝑦𝑝 are the average of 𝑦𝑡 and 𝑦𝑝, respectively.
𝜎𝑦𝑡 𝑦𝑝 is the covariance of 𝑦𝑡 and 𝑦𝑝.
𝜎2
𝑦𝑡

and 𝜎2
𝑦𝑝
are the variance of 𝑦𝑡 and 𝑦𝑝, respectively.

We define the loss function for training our model as the weighted sum of the three
loss functions defined in Eqs. (4.1), (4.2), and (4.3) as:

𝐿𝑀 = 𝑤1𝐿ℎ + 𝑤2𝐿𝑔 + 𝑤3𝐿𝑠, (4.4)

where value of 𝑤1 = 𝑤2 = 1 and 𝑤3 = 0.1 were arbitrarily initiate by experimentation.

4.2.4 Learning Rate Adjustment

One of the most challenging tasks of training deep learning neural networks comprises
carefully deciding a reasonable learning rate. The learning rate is one of the critical
hyper-parameters in the model, manages the speed of the neural network model to
update their weights. On that account, it is necessary to provide a decent learning
rate value to improve the performance while the model is training the data.

Unfortunately, the optimal learning rate cannot determine theoretically. This
parameter must be observed by experimenting. Typically, a big learning rate enables
the model to learn faster and converge to its local minima solution. In contrast, an
extremely small learning rate may raise a lengthy training process, or the training
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process may get stuck. In this works, we originate our initial learning rate value to
10−3 then reduce our learning rate depend on the loss behavior.

Figure 4.2: Learning rates hyper-parameter

4.2.5 Training Details

We implement our proposed approach using the Keras framework [53] with the Ten-
sorflow backend. Training is done on Ubuntu 16.04 with an NVIDIA GeForce GTX
1080 GPU with 8 GB memory. The network is shown in Fig. 4.1 has been trained
using initialized random weight with approximately 12 million trainable parameters.
The training is performed using 16 mini-batches and load images and their depth
using an online generator for GPU memory performance.

We train our model using an adaptive moment estimation (Adam) optimizer and an
initial learning rate of 10−3. During training, we monitor the model’s performance and
adjust the learning rate hyperparameter depending on the loss behavior. Specifically,
we degraded our learning rate by order of magnitude divided by ten on epoch 45, 60,
and 75, respectively. For some other details, we trained our proposed architecture on
the multi-task loss function, as described in previous section.

4.3 Adversarial Based Model

The generative adversarial network (GAN) has significantly improved the learning
of mapping high-dimensional data distributions. It has been demonstrated that a
generative adversarial network is highly effective at capturing the global structure
of a scene and producing realistic images. In the adversarial network, the generator
model (G) is responsible for reconstructing newly synthesized images. At the same
time, the discriminator (D) evaluates the probability that a given input image is either
derived from training data or is synthetically generated.

We propose a three-player GAN (TP-GAN) that, when combined with the struc-
tural similarity measure (SSIM) loss, improves the depth estimation performance of
a single image [54]. Our study examines the advantages of including an additional
sub-model to the cGAN architecture. The broad idea here is to employ a refiner to im-
prove depth prediction by incorporating generator output and discriminator feedback.
Our strategy concurrently integrates global scene structure and local scene informa-
tion to enhance the performance of the adversarial network for a single image depth
estimation.
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4.3.1 Network Architecture

In this research, we utilize adversarial learning advantages to formulate the problem
of learning depth from monocular inputs as an image translation problem. While the
discriminator discovers how to distinguish between ground truth and synthetic depth
maps, the generator learns how to create more realistic depth maps. In fact, the
generator continuously seeks the output that appears plausible to the discriminator.

Figure 4.3: Outline of our proposed adversarial based model.

Our proposed adversarial model is a conditional generative adversarial neural net-
work (cGAN) to assist the generator and refiner in mapping input images to their
respective depth representation. This network consists of three sub-models: a genera-
tor as the first player, a discriminator as the second player, and an additional refiner
sub-model that we refer to as the third player. The refiner will be responsible for
fine-tuning the locally generated depth prediction with the global scene information.

The proposed technique updates the generator weight by back-propagating through
the discriminator during adversarial training. Meanwhile, the refiner combines the up-
dated weight of the generator and then forwards it to the discriminator model for each
mini-batch training. Further details are discussed in the succeeding subsections.

The 1st Player: Generator

We reconfigured the residual network (ResNet) [30] structure in the generator as
our backbone model, which has been demonstrated effective in improving the accu-
racy of depth prediction from a single image [6, 19, 51]. Then, we stacked some
block layers to receive input from the previous layer; the first block is a convolution
layer with 1 × 1 convolution kernels to enable feature transformation and dimension-
ality reduction while preserving spatial information. The remaining blocks consist
of transpose-convolution (up-conv-activation), followed by regular convolution block
(conv-batch-activation) with {1024, 512, 256, 128}, and 64 filters, respectively. We
utilized bilinear interpolation for our up-sampling, while Leaky ReLU activation was
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employed to minimize the vanishing gradient. The final depth extraction output layer
has a linear activation function.

The 2nd Player: Discriminator

This discriminator model is encouraged by the work of Isola et al. [31], implemented
as a patch GAN, which looks at the structure of local image patches and classifies each
patch in an image as real or fake in the 𝑁 × 𝑁 output vector rather than the entire
image level. Since the generator output is conditioned on the input, it is important to
maintain the discriminator input image in the mix. Our discriminator, a conditional
adversarial model, comprises pair of images as input: the RGB image and its ground
truth depth and the RGB image and its corresponding generated image depth. Each
of which is size 48 × 64 for NYU and 40 × 128 for KITTI data.

We concatenate the RGB with its depth before fusing them into the network. We
modify parameter values using 4 × 4 kernel size and strides-2 except in the last two
layers with {64, 128, 256, 512, 512, 1} filters, respectively. Batch-normalization is
applied in all layers but in the first and last layers. At that, in the last layer, the
convolution is utilized to map to a one-dimensional output with a size of 3×4 pixels,
followed by a sigmoid activation function. The model output will be a probability of
classifying whether the input patch images come from training or generated data.

The 3rd Player: Refiner

The refiner model in our architecture is a sequence of six block layers. The first
five blocks are a stack of convolution, batch normalization, ReLU activation, and
dropout regularization (conv-batch-activation-dropout) to handle the common over-
fitting problem with 64 filters. We use 7 × 7 kernel size and strides-2 to down-sample
our input in the first and second blocks, while the following three blocks use 5 × 5
kernel size and stride-1. With a small enough kernel size relative to the input, the
extracted feature will not depend on the value of the whole pixel in the input image.
Since the receptive field is smaller than the size of the input image, extracted features
will only depend on the local pixels. The last block is a convolution layer with a filter
number of one and 5 × 5 kernel size, followed by a linear activation to capture the
depth of local features.

4.3.2 Depth Reconstruction Loss

The discriminator is trained to maximize the predicted probability of real images and
the inverted probability of deceptive images throughout training. The generator, on
the other hand, works to maximize the log of the predicted probability of discriminator
for counterfeit images. In addition, the refiner utilizes to improve the generator result
as feedback from the discriminator. We set our depth reconstruction loss in Eq. (4.5).

min
𝐺,𝑅

max
𝐷

(𝐺, 𝑅, 𝐷) = E𝑥,𝑦 [log 𝐷 (𝑥, 𝑦)]

+ E𝑥 [log(1 − 𝐷 (𝑥, 𝐺 (𝑥)))]
+ E𝑥 [log(1 − 𝐷 (𝑥, 𝑅(𝑥, 𝐺 (𝑥))))], (4.5)

where 𝐷 (𝑥, 𝑦) is the discriminator from the input RGB image 𝑥 with conditional target
depth image 𝑦. 𝐺 (𝑥) is the generator output when given input data 𝑥, and 𝑅(𝑥, 𝐺 (𝑥))
is the refiner output that comes from the generator and real data 𝑥.
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4.3.3 Structural Similarity Index Measurement (SSIM) Loss

In general, the Mean Squared Error (MSE) or Mean Absolute Error (MAE) is taken as
the standard loss for regression tasks to calculate the discrepancies between prediction
and target outputs. Similar to MAE, MSE computes the error between two images by
comparing pixel by pixel as defined in Eq. (4.6). On the other hand, the Structural
Similarity Index (SSIM) measurement analyzes the structural difference between two
images. This structural information signifies the idea that neighboring pixels have
strong inter-dependencies with one another, which is a more effective strategy for
image reconstruction tasks.

MSE(𝑦𝑡 , 𝑦𝑝) =
1

𝑁

∑︁
𝑦𝑝 ∈ |𝑁 |

|𝑦𝑝 − 𝑦𝑡 |2 (4.6)

The SSIM formula, as expressed in Eq. (4.7), was introduced by [55], which comprises
three parameter comparison measurements: luminance, contrast, and structure.

SSIM(𝑦𝑡 , 𝑦𝑝) =
(2`𝑦𝑡 `𝑦𝑝 + 𝑐1) (2𝜎𝑦𝑡 𝑦𝑝 + 𝑐2)

(`2𝑦𝑡 + `2𝑦𝑝 + 𝑐1) (𝜎2
𝑦𝑡 + 𝜎2

𝑦𝑝 + 𝑐2)
(4.7)

In contrast to the MSE or MAE, the SSIM score range from −1 and 1, with 1 indicating
perfect similarity. We define our SSIM loss (𝐿𝑠) as expressed in Eq. (4.8) for our
generator and refiner while training our adversarial network. Eventually, the SSIM
loss will compute the perceptual difference based on the visible structure of the ground
truth and predicted image.

𝐿𝑠 = 0.5 −
SSIM(𝑦𝑡 , 𝑦𝑝)

2
, (4.8)

With:
`𝑦𝑡 and `𝑦𝑝 are the mean of 𝑦𝑡 and 𝑦𝑝, respectively.
𝜎2
𝑦𝑡

and 𝜎2
𝑦𝑝

are the variance of 𝑦𝑡 and 𝑦𝑝, respectively.
𝜎𝑦𝑡 𝑦𝑝 is the covariance of 𝑦𝑡 and 𝑦𝑝.
𝑐1 and 𝑐2 are constants represented by 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2, respectively.
𝐿 is the data range of the input image.
𝑘1 = 0.01 and 𝑘2 = 0.03 following [55].

4.3.4 Training Details

We implement our adversarial depth estimation network based on deep learning Ten-
sorflow [56] and Keras framework [53]. The training is done on Ubuntu 16.04 and
an NVIDIA GeForce GTX 1080 GPU with 8 GB memory. The network architecture
shown in Fig. 4.3 has been trained using initialized random weight. The training is
performed using 16 mini-batches and load images and their corresponding depth using
an online generator for GPU memory performance.

In our approach, we train our model for 50 epochs using an adaptive moment
estimation (Adam) optimizer with the exception of the discriminator, which uses
Stochastic Gradient Descent (SGD) as motivated in the works [57]. We started with
a learning rate of 2 × 10−4 for the generator and refiner, while for the discriminator,
we initialized from 4× 10−4 and periodically adjusted as the training progressed using
an exponential rate decay of 0.5 and 0.999 for 1st and 2nd momentum, respectively.
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Since our strategy is an adversarial model, the generator model was not trained
independently and instead had its weight updated by the loss of the discriminator.
On the other hand, the refiner model is updated by the previous generator weight as
well as the discriminator feedback for every input batch.
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Chapter 5

Experiments

In this chapter, we describe the implementation details of the depth estimation model.
The first section covers the NYU and KITTI datasets that we used for training and
testing. In this section we also describes how we processed data and how we used data
augmentation to enrich the feature of the dataset. In the next section, we describe
the evaluation metrics to evaluate performance of our approaches. The last section
present our experimentation results including our model performance generalizes to
other datasets. We examined the cross-dataset adaptation capabilities by training on
one dataset and testing on another, and vice versa.

5.1 RGBD Datasets

This section describes RGB-D datasets that are commonly used to benchmark the
performance of a system for depth estimation. We train our model using two popular
publicly available depth datasets, indoor NYU Depth v2 [42] and outdoor KITTI
data [43], commonly used in the area of depth estimation.

KITTI data contains outdoor scenes with images resolution of roughly 376×1241
captured by cameras and depth sensors in a driving car. It contains over 93K depth
maps from 56 scenes with corresponding raw LiDAR scans and RGB images. We train
our method on 25K images from the random scene and set depth upper bound of 80
meters. We test our model on the 697 images which are not included in the training,
following the split by the work of Eigen et al. [2].

Figure 5.1: Sample images on KITTI dataset from random scenes
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RGB Dense Depth

Figure 5.2: Sample input KITTI data and ground truth.

NYU Depth v2 is an indoor dataset gathered using a Microsoft Kinect camera
with a resolution of 640×480. It contains about 120K raw RGB images and their cor-
responding depth from 464 different scenes. Only 50K images from random scenes are
used for training our network. To validate the performance of our method, following
the works of Eigen et al. [2], we test on 654 from 1449 available densely labeled pairs
of aligned RGB and ground truth depth images in the maximum depth of 10 meters.

Figure 5.3: Sample images on NYU depth v2 dataset from random scenes

RGB Dense Depth

Figure 5.4: Sample input NYU data and ground truth.

5.2 Data Augmentations

Data augmentation helps minimize overfitting by diversifying the training samples
and discouraging the model from relying on particular image features. Using data
augmentation, single-image depth estimation models can learn from a more diverse and
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representative set of training samples. Hence, this results in improved generalization,
enhanced robustness, and increased accuracy in depth estimation tasks.

We practice on-the-fly data augmentation procedures to enrich the features of our
inputs during training as shown in Fig. 5.5.

Randomizing channels, the purpose of randomizing channels is to augment
the training data by introducing color variations that the model should learn to be
invariant to. This helps the model generalize better to images with different color
representations.we randomize the channels of the input RGB images using a ratio of
0.5.

Poisson noise, adding Poisson noise to the input images can improve the model’s
resilience to noise and improve generalization. It simulates the variability and noise
present in real-world depth sensors or imaging conditions. We apply a 0.25 ratio to
our input RGB images to implement Poisson noise addition.

Horizontal flip, This augmentation involves flipping the image horizontally along
the vertical axis. It helps create additional training samples by generating mirror
reflections of the original images. Horizontal flip is particularly useful when the scene
or objects in the depth images exhibit left-right symmetry. A horizontal flipping
strategy is applied at a probability of 0.25 for both RGB images and depths.

Original Random Channel Flip Poisson

Figure 5.5: Sample image augmentation on NYU depth v2 data from left to right:
RGB, randomize channel, horizontal flip, and poisson noise.
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5.3 Evaluation Metrics

We validate the performance of our proposed depth estimation method on publicly
available RGB-D NYU Depth v2 and KITTI datasets by evaluating our model com-
pared with several relevant studies. In order to objectively assess the efficacy of our
depth prediction model, we employ the following error rate and accuracy evaluation
metrics, which have been widely employed in prior research. In addition, we imple-
ment Structural Similarity Index (SSIM) as an additional metric to provide valuable
insights into the quality and perceptual accuracy of the estimated depth maps.

5.3.1 Error rate and Accuracy Performance

Specifically, we assess our method using metrics based on its error rate and accuracy
in Eqs. (5.1), (5.2), (5.3), (5.4), (5.5), and (5.6).

• Root mean squared error (RMS):
The standard deviation of the prediction errors to measure the difference between
predicted (𝑦𝑝) and the ground truth data (𝑦𝑡).√√

1

𝑁

∑︁
𝑦𝑝 ∈ |𝑁 |

|𝑦𝑝 − 𝑦𝑡 |2. (5.1)

• Average log10 error (LOG10):
The average of the absolute error of the log-transformed predicted (𝑦𝑝) and
log-transformed ground truth values (𝑦𝑡).

1

𝑁

∑︁
𝑦𝑝 ∈ |𝑁 |

| log10(𝑦𝑝) − log10(𝑦𝑡 ) |. (5.2)

• Average relative error (REL):
The ratio of the absolute error of the predicted (𝑦𝑝) to the ground truth (𝑦𝑡).

1

𝑁

∑︁
𝑦𝑝 ∈ |𝑁 |

|𝑦𝑝 − 𝑦𝑡 |
𝑦𝑡

. (5.3)

• Root mean squared log error (RMS LOG):
The Root Mean Squared Error of the log-transformed predicted (𝑦𝑝) and log-
transformed ground truth values (𝑦𝑡).√√

1

𝑁

∑︁
𝑦𝑝 ∈ |𝑁 |

| log 𝑦𝑝 − log 𝑦𝑡 |2. (5.4)

• Squared relative error (SQ REL):
The ratio of the squared error of the predicted (𝑦𝑝) to the ground truth (𝑦𝑡).

1

𝑁

∑︁
𝑦𝑝 ∈ |𝑁 |

|𝑦𝑝 − 𝑦𝑡 |2

𝑦𝑡
. (5.5)
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• Accuracy with threshold (𝑃th): percentage (%) of 𝑦𝑝 to max( 𝑦𝑡
𝑦𝑝
,
𝑦𝑝
𝑦𝑡
) = 𝛿 < 𝑃th,

where:

𝑃th ∈
{
1.25, 1.252, 1.253

}
. (5.6)

Here, 𝑦𝑝 and 𝑦𝑡 are the predicted and ground-truth depth, respectively, and 𝑁 is the
total number of pixels. With the exception of the accuracy with threshold, lower
numbers indicate higher performance for all metrics.

5.3.2 Structural Similarity Index (SSIM) Metrics

While the previously mentioned depth-specific metrics are are more commonly used
to evaluate depth estimation tasks, SSIM offers a different perspective that can be
beneficial in understanding the performance of the depth estimation model.

In recent years, researchers have recognized the significance of incorporating per-
ceptual quality assessment into the evaluation of depth estimation models. In this
context, the SSIM has emerged as a valuable supplementary metric that complements
depth-specific measures. SSIM is widely employed as an image quality assessment
metric and has demonstrated a strong correlation with human perception of image
similarity.

By implementing SSIM as an additional evaluation metric for single image depth
estimation, we gain valuable insights into the perceptual quality of the generated depth
maps. The SSIM formula, as expressed in Eq. (4.7), measures the structural similarity,
luminance, and contrast information between the predicted and ground truth depth
maps, offering a comprehensive evaluation of their visual resemblance.

Incorporating SSIM as an additional metric for single image depth estimation
provides a more comprehensive evaluation aligned with human perception. It enables
us to identify regions in the estimated depth maps where perceptual differences may
exist, thus facilitating a deeper understanding of the model’s performance. Moreover,
it highlights the model’s capability to capture intricate details, edges, and textures,
which are important for achieving visually convincing depth maps.

5.4 Ablation Studies

The ablation study comprehensively analyzes the performance of models trained with
different tasks. Our research presents the quantitative evaluation metrics for different
tasks and discusses their implications.

We conducted comprehensive ablation studies to assess the impact of utilizing a
combination of loss functions on our encoder-decoder model’s performance, specifically
incorporating three distinct loss functions: Huber loss, gradient loss, and Structural
Similarity Index (SSIM) loss.

Our study assessed the model’s performance when trained with each loss function
individually and with the combination (multi) of Huber, gradient, and SSIM losses.
We retrained our encoder-decoder model for 40 epochs, maintaining the same param-
eters except for the alteration in the loss function setting. We compute accuracy every
epoch for each task and report the accuracy performance for the best epoch. This
comprehensive approach enables us to assess whether the multi-loss functions result
in the best model performance compared to using any one of them individually.

To offer a more comprehensive understanding, we have prepared an interactive vi-
sualization report accessible at the following URL: https://tinyurl.com/mr4ddtfp.
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Figure 5.6: Training accuracy (1st column) and error performance(2nd column) com-
parison to evaluate the impact of utilizing a multi-loss functions.

An intriguing observation emerged from our experiments, highlighting the inadequacy
of utilizing gradient loss as a sole loss function for single image depth estimation.
While gradient loss was able to capture local structure information effectively, it lacks
the ability to address perceptual aspects important for depth estimation accuracy
comprehensively. However, our findings demonstrated that when incorporated as an
additional loss function alongside other metrics like Huber loss and SSIM loss, gra-
dient loss substantially enhances the model’s ability to produce depth maps that are
not only geometrically accurate but also perceptually meaningful.

As shown in Fig. 5.6 and Tab. 5.1, our findings emphasize the significance of a
multi-loss approach, revealing that the integration of Huber, gradient, and SSIM losses

Methods 𝛿1 𝛿2 𝛿3

Encoder-Decoder Huber 0.867 0.967 0.990
Encoder-Decoder SSIM 0.873 0.968 0.990
Encoder-Decoder Multi 0.883 0.973 0.992

Table 5.1: Accuracy performance of different task utilizing Huber, SSIM and Multi-
loss function.
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offers a more comprehensive evaluation strategy for single image depth estimation
models. This approach bridges the gap between numerical accuracy and perceptual
quality, ultimately leading to improved depth estimation algorithms that align with
human perception.

We also perform an ablation study to examine the proposed three-player adver-
sarial with a non-adversarial model counterpart to discover the effectiveness of our
proposed approach. We report the quantitative result in terms of accuracy in Tab. 5.2
on the outdoor KITTI dataset. We observe that the presence of the third sub-model
improves the depth performance of the standard GAN model. Further improvement is
found by utilizing Stochastic Gradient Descent (SGD) optimizer in the discriminator
compared using adaptive moment estimation (Adam) to all sub-models. Finally, the
TP-GAN model achieves greater improvement by utilizing the Structural Similarity
Index Measure (SSIM) loss rather than the standard Mean Squared Error (MSE).
In particular, the TP-GAN-ADAM-SGD-SSIM improves the standard GAN-ADAM-
MSE accuracy by 3%, 1%, and 0.5% for the threshold 𝛿 < 1.25, 𝛿 < 1.252, and
𝛿 < 1.253, respectively.

Table 5.2: Ablation study on the outdoor KITTI data

Optimizers* Accuracy Thresholds**

(G) (D) (R) Loss 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Standard-GAN-ADAM-MSE ADAM ADAM — MSE 0.854 0.963 0.987
TP-GAN-ADAM-MSE ADAM ADAM ADAM MSE 0.869 0.969 0.990
TP-GAN-ADAM-SGD-MSE ADAM SGD ADAM MSE 0.880 0.971 0.991
TP-GAN-ADAM-SGD-SSIM ADAM SGD ADAM SSIM 0.884 0.973 0.992
∗(G) generator, (D) discriminator, (R) refiner.
∗∗The higher the better.

Figure 5.7: Training accuracy comparison to evaluate the influence of SSIM loss in
our adversarial model.
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Furthermore, we extended our study by conducting several additional ablation ex-
periments. We re-trained our model over 35 epochs in these experiments to thoroughly
investigate the implications of integrating the SSIM loss within the generator (G) and
refiner (R) sub-models.

• TP-GAN SSIM(G-R): Our model using SSIM loss in both (G) and (R).

• TP-GAN SSIM(G) MSE(R): our model using SSIM in (G) and MSE in (R).

• TP-GAN MSE(G) SSIM(R): our model using MSE in (G) and SSIM in (R).

• TP-GAN MSE(G-R): our model using MSE loss in both (G) and (R).

The study reveal that employing SSIM loss for both the generator and refiner consis-
tently yields improved accuracy, highlighting the compatibility of structural loss with
the task and enhancing overall model performance. We have additionally assembled
an interactive visualization chart that can be accessed through the designated URL:
https://tinyurl.com/42e3ph88

Methods 𝛿1 𝛿2 𝛿3 Best epoch

TP-GAN SSIM(G-R) 0.88322 0.97295 0.99209 30
TP-GAN SSIM(G) MSE(R) 0.86821 0.97010 0.99219 28
TP-GAN MSE(G) SSIM(R) 0.86965 0.96941 0.99178 25
TP-GAN MSE(G-R) 0.86526 0.96548 0.99103 30

Table 5.3: Accuracy performance on the best epoch for each task.
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5.5 Experimental Results

The performance of our approach has been evaluated by conducting both quantitative
and qualitative comparisons with several prior related methods on the publicly NYU
and KITTI datasets.

5.5.1 Qualitative Performance

We present a comprehensive evaluation of the qualitative performance of our single
model depth method, using RGB images taken directly from the original papers of
related methods. The objective is to evaluate the algorithm’s efficacy and emphasize
its advantages over existing approaches.
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Figure 5.8: Depth Prediction on NYU Depth v2 from top to bottom: (a) RGB image,
(b) ground truth, (c) Eigen et al. [2], (d) our encoder-decoder model, (e) our adver-
sarial model.

Compared to [2] shown in Fig. 5.8 and 5.9, as well as [3] depicted in Fig. 5.10, our
approach exhibits significant improvements in capturing fine details and subtle depth
cues. Surface irregularities, object contours, and depth variations are more accurately
represented in the depth maps generated by our algorithm, contributing to a more
visually compelling and immersive representation of the scene’s depth structure.
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Figure 5.9: Depth Prediction on NYU Depth v2 from top to bottom: (a) RGB image,
(b) ground truth, (c) Eigen et al. [2], (d) our encoder-decoder model, (e) our adver-
sarial model (cont.)
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Figure 5.10: Additional qualitative result on NYU depth v2: (a) RGB image, (b)
ground truth, (c) Liu et al. [3], (d) our encoder-decoder model, (e) our adversarial
model.
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In comparison to the works by [4, 5, 6] shown in Fig. 5.11, although our approach
does not achieve the highest performance, it consistently exhibits reliable results. Our
method produces depth maps that demonstrate improved consistency and smoother
transitions, particularly in regions with gradual depth changes. Despite the unavail-
ability of ground truth depth for direct comparison, the estimated depths align closely
with the expected values, resulting in visually pleasing and perceptually accurate rep-
resentations of the scene.

R
G
B

[4
]

[5
]

[6
]

O
u
rs
-1

O
u
rs
-2

Figure 5.11: Additional qualitative result on NYU Depth v2 from left to right: RGB
images, Godard et al. [4], Zhao et al. [5], Bian et al. [6], our encoder model, and our
adversarial model.
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Additionally, compared to the recent research works by [7, 8], our single model
depth estimation method demonstrates a notable advantage in effectively handling
challenging scenarios. It reliably infers depth information, resulting in more coherent
depth maps with fewer artefacts or inconsistencies, as depicted in Fig. 5.12. Although
our method may perform less than the compared approaches, it consistently delivers
reliable results, showcasing its robustness and capability to handle challenging depth
estimation scenarios.
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Figure 5.12: Additional qualitative result on the NYU dataset against Yuan et al. [7]
and Agarwal et al. [8].

Similarly, we conduct a qualitative comparison on the KITTI dataset to showcase
the effectiveness of our single model depth estimation approach in outdoor scenarios,
as illustrated in Fig. 5.13 and 5.14.
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Figure 5.13: Qualitative comparison result on KITTI data. (a) RGB image, (b)
ground truth, (c) Eigen et al. [2], (d) Liu et al. [3], (e) Kutznizov et al. [9], (f) Godard
et al. [10], (g) our encoder-decoder model, (h) our adversarial model.
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Figure 5.14: Additional qualitative result on KITTI data from top to bottom: (a)
RGB image, (b) ground truth, (c) Kutznietsov et al. [9], (d) our encoder-decoder
model, (e) our adversarial model.

When compared to [2, 3, 10] and [9] in Fig. 5.13 and 5.14 respectively, our
approach consistently generates depth maps that exhibit adequate accuracy and more
effective preservation of depth boundaries. It effectively captures the depth variations
and occlusions present in outdoor scenes, yielding depth maps that closely resemble
the ground truth. The estimated depths proficiently convey the relative distances be-
tween objects, road surfaces, and distant structures, thereby contributing to a visually
compelling representation of the depth structure within outdoor scenes.

Our estimated depths align effectively with the ground truth, contributing to a
more immersive and realistic representation of the outdoor scenes. This accuracy is
essential for applications such as autonomous driving, where precise depth percep-
tion is crucial for making informed decisions in dynamic environments. Through this
evaluation, it becomes evident that our algorithm performs better in various aspects,
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including accuracy, detail preservation, and depth representation.

5.5.2 Quantitative Performance

We present a comprehensive analysis of the quantitative performance of our single
depth estimation method in comparison to several state-of-the-art approaches on two
challenging datasets: the indoor NYU Depth V2 dataset Tab. 5.4 and 5.5 and the
outdoor KITTI dataset in Tab. 5.6 and 5.7. To evaluate the performance, we em-
ployed commonly used metrics as described in Sec. 5.3. The objective is to provide
an in-depth assessment of the proposed methods accuracy and error performance in
estimating depths from a single image.

Table 5.4: Accuracy comparison with previous works on NYU Depth v2.

Accuracy*

range [m] 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Adversarial Methods

Zheng et al. 2018 [45] 1–10 0.540 0.832 0.948

Kwak et al. 2020 [26] — 0.834 0.941 0.976

Non-adversarial Methods

Eigen et al. 2014 [2] 0–10 0.611 0.887 0.971

Eigen et al. 2015 [58] 0–10 0.769 0.950 0.988

Wang et al. 2015 [59] — 0.605 0.890 0.970

Roy et al. 2016 [60] 0–10 — — —

Chakrabarti et al. 2016 [61] — 0.806 0.958 0.987

Li et al. 2019 [62] — 0.788 0.958 0.991

Zhao et al. 2020 [5] — 0.701 0.912 0.987

Gur et al. 2020 [23] 0–10 0.772 0.942 0.984

Bian et al. 2021 [6] 0–10 0.820 0.956 0.989

Ye et al. 2022 [24] — — — —

Our Encoder Model 0-10 0.784 0.947 0.984

Our Generative Model 0-10 0.819 0.960 0.989
∗the higher the better.

Upon careful examination of the quantitative results, it is evident that our single
depth estimation method may achieve a lower performance compared to the state-of-
the-art approaches. However, it demonstrates reliable and consistent performance on
the indoor NYU Depth V2 and outdoor KITTI datasets.
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Table 5.5: Error rate comparison with previous works on NYU Depth v2.

Error Rates**

range [m] RMS LOG10 REL

Adversarial Methods

Zheng et al. 2018 [45] 1–10 0.915 — 0.257

Kwak et al. 2020 [26] — 0.652 — —

Non-adversarial Methods

Eigen et al. 2014 [2] 0–10 0.907 — 0.215

Eigen et al. 2015 [58] 0–10 0.641 — 0.158

Wang et al. 2015 [59] — 0.824 — 0.220

Roy et al. 2016 [60] 0–10 0.774 — 0.187

Chakrabarti et al. 2016 [61] — 0.620 — 0.149

Li et al. 2019 [62] — 0.635 0.063 0.143

Zhao et al. 2020 [5] — 0.686 0.079 0.189

Gur et al. 2020 [23] 0–10 0.546 0.063 0.149

Bian et al. 2021 [6] 0–10 0.532 0.059 0.138

Ye et al. 2022 [24] — 0.518 — —

Our encoder Model 0-10 0.547 0.065 0.153

Our adversarial Model 0-10 0.509 0.060 0.143
∗∗the lower the better.

Table 5.6: Accuracy comparison with previous works on KITTI data.

Accuracy*

range [m] 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Adversarial Methods

Kumar et al. 2018 [46] — 0.732 0.897 0.959

Pilzer et al. 2018 [47] 0–80 0.789 0.918 0.965

Aleotti et al. 2018 [44] 0–80 0.808 0.939 0.975

Zheng et al. 2018 [45] 1–50 0.867 0.960 0.986

Almalioglu et al. 2019 [63] 0–50 0.867 0.970 0.983

Li et al. 2019 [64] 0–80 0.823 0.936 0.974

Puscas et al. 2019 [65] 0–80 0.828 0.933 0.967

Groenendijk et al. 2020 [66] — 0.847 0.945 0.975

Zhao et al. 2021 [48] 0–80 0.821 0.942 0.978

Non-adversarial Methods

Eigen et al. 2014 [2] 0–80 0.692 0.899 0.967

Liu et al. 2015 [3] — 0.647 0.882 0.961

Godard et al. 2017 [10] 0–50 0.861 0.949 0.976

Kutznietsov et al. 2017 [9] 0–80 0.862 0.960 0.986

Zhan et al. 2018 [67] 0–80 0.820 0.933 0.971

Our encoder Model 0–80 0.872 0.969 0.990

Our adversarial Model 0–80 0.884 0.973 0.992
∗the higher the better.

The obtained results demonstrate that our method consistently achieves reliable
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Table 5.7: Error rate comparison with previous works on KITTI data.

Error Rate**

range [m] ABS REL SQ REL RMSE LOG

Adversarial Methods

Kumar et al. 2018 [46] — 0.211 1.979 0.264

Pilzer et al. 2018 [47] 0–80 0.152 1.388 0.247

Aleotti et al. 2018 [44] 0–80 0.150 1.414 0.216

Zheng et al. 2018 [45] 1–50 0.114 0.627 0.178

Almalioglu et al. 2019 [63] 0–50 0.137 0.892 0.201

Li et al. 2019 [64] 0–80 0.150 1.127 0.229

Puscas et al. 2019 [65] 0–80 0.135 1.1815 0.235

Groenendijk et al. 2020 [66] — 0.122 0.928 0.215

Zhao et al. 2021 [48] 0–80 0.139 1.034 0.214

Non-adversarial Methods

Eigen et al. 2014 [2] 0–80 0.190 1.515 0.270

Liu et al. 2015 [3] — 0.217 1.841 0.289

Godard et al. 2017 [10] 0–50 0.114 0.898 0.206

Kutznietsov et al. 2017 [9] 0–80 0.113 0.741 0.189

Zhan et al. 2018 [67] 0–80 0.135 1.132 0.229

Our encoder Model 0–80 0.110 0.673 0.166

Our adversarial Model 0–80 0.103 0.624 0.156
∗∗the lower the better.

accuracy and precision in depth estimation compared to the several previous meth-
ods. The lower error values indicate a closer alignment between the estimated depths
and the ground truth depths. These findings reinforce the algorithm’s reliability and
potential for applications such as 3D reconstruction, where even minor errors can
significantly affect the overall quality of the reconstructed scene.

5.5.3 Parameters and Hyper-parameters Comparison

We compare the conciseness of our single depth estimation model’s parameters and
hyperparameters with those of other related methods. Conciseness refers to the ability
to achieve optimal performance while maintaining simplicity and efficiency in terms
of the number of parameters and hyperparameters involved.

To ensure a fair comparison, we carefully selected a set of state-of-the-art methods
known for their performance in depth estimation. We focused on evaluating the com-
pactness and efficiency of our model’s parameters and hyperparameters in relation to
these methods. We compare the parameters on KITTI dataset and NYU Depth v2 in
Tab. 5.8, 5.9 and 5.10, respectively.

Regarding the model parameters, we analyzed various factors, including the train-
ing and testing parameters and the number of training data and batch size used in
one epoch. Our model is designed to strike a balance between model complexity and
performance. We achieve conciseness without compromising accuracy by employing a
streamlined network architecture with a reduced number of training and testing pa-
rameters and a smaller training data size. This reduction in parameter count enables
efficient memory usage and computational efficiency regardless of our GPU device
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during both the training and testing stages.
In addition to parameters, we investigated the model’s hyperparameters, such as

the learning rate. We aimed to strike a balance between fine-tuning the model’s perfor-
mance and keeping the hyperparameter space concise. Through careful optimization,
we selected a set of hyperparameters that provide optimal results without unnecessary
complexity.

Table 5.8: Compare Parameters and Hyper-parameters with previous related works
on KITTI data.

Methods GPU Device
Training
Time

# Params
Train/Test

Epochs
Converge

Init LR
Batch
Size

𝛿1

Our
Adversarial

Ge Force
GTX 1080:
8GB

39.5
min/epoch

59M/520K 28
2𝑒 − 04
4𝑒 − 04

16 0.884

Our Encoder
-decoder

Ge Force
GTX 1080:
8GB

14.6
min/epoch

12M/12M 70 1𝑒 − 03 16 0.872

Manimaran
et al. 2022

2 Nvidia
RTX 3090:
2×24GB

- - 35 1𝑒 − 04 16 0.926

Bian
et al. 2021

Tesla
V100:
16GB

44.4
min/epoch

- 50 1𝑒 − 04 4 0.873

Zhao
et al. 2020

- - - 50 1𝑒 − 04 8 0.871

Ranjan
et al. 2019

Tesla
V100:
16GB

7 days
for all
iterations
(depth,
cam motion,
opt flow,
& segm)

- - 1𝑒 − 04 4 0.826

Godard
et al. 2019

Titan X
12GB

36
min/epoch
(12 hours)

- 20 1𝑒 − 04 12 0.876

Zou
et al. 2018

Testa
K80:
12GB

- - - 2𝑒 − 04 6 0.806

Zhan
et al. 2018

- - - - 1𝑒 − 03 - 0.820

Kutznietzov
et al. 2017

GTXTi
6GB

- -
at least

15
- 5 0.862

Liu
et al. 2015

GTX 780
6GB

- 20M/ 60 1𝑒 − 04 - 0.647

Eigen
et al. 2014

- - - - 1𝑒 − 03 32 0.692

Zhao
et al. 2021

RTX 8000 - - 50 2𝑒 − 04 - 0.821

Groenendijk
et al. 2020

- ∼31.6M - 50 - 8 0.847

In conclusion, the evaluation of our model’s parameters and hyperparameters high-
lights its conciseness when compared to other methods. The streamlined network ar-
chitecture, reduced parameter count, and optimized hyperparameters allow our model
to achieve competitive performance in depth estimation tasks while maintaining sim-
plicity and efficiency. These findings reinforce the model’s suitability for resource-
constrained environments, where a balance between performance and conciseness is
most importance.
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Table 5.9: Compare Parameters and Hyper-parameters with previous related works
on KITTI data (cont.)

Methods GPU Device
Training
Time

# Params
Train/Test

Epochs
Converge

Init LR
Batch
Size

𝛿1

Puscas
et al. 2019

- - - - 1𝑒 − 04 8 0.828

Li
et al. 2019

GTX 1080Ti - - - 1𝑒 − 04 4 0.823

Almalioglu
et al 2019.

Titan V - - - 1𝑒 − 01 8 0.867

Zheng
et al. 2018

- - - - 1𝑒 − 04 - 0.867

Aleotti
et al. 2018

Titan X
Pascal

- 39M/31M 50 - - 0.808

Pilzer
et al. 2018

Tesla K80
12GB

45
hours

- 50 1𝑒 − 05 8 0.789

Kumar
et al. 2018

- - - - - 32 0.732

Table 5.10: Compare Parameters and Hyper-parameters with previous related works
on NYU depth v2.

Methods GPU Device
Training
Time

# Params
Train/Test

Epochs
Converge

Init LR
Batch
Size

𝛿1

Our Adversarial
Ge Force
GTX 1080:
8GB

50
min/epoch

59M/520K 36
2𝑒 − 04
4𝑒 − 04

16 0.819

Our Enc-decoder
Ge Force
GTX 1080:
8GB

24
min/epoch

12M/12M 65 1𝑒 − 03 16 0.784

Zheng
et al. 2018

- - - - 1𝑒 − 04 - 0.540

Kwak
et al. 2020

Ge Force
GTX 1080 Ti:
11GB

- - - - - 0.834

Eigen
et al. 2014

- - - - 1𝑒 − 03 32 0.611

Eigen
et al. 2015

- - - >100 1𝑒 − 01 32/16 0.769

Wang
et al. 2015

Tesla
K40:
12GB

4 days - - - - 0.605

Chakrabarti
et al. 2016

Titan
X:
12GB

- - 14 1𝑒 − 02 - 0.806

Li
et al. 2019

Titan
X:
12GB

50 hours - 2-3 1𝑒 − 03 16 0.806

Zhao
et al. 2020

- - - 50 1𝑒 − 04 8 0.701

Gur
et al. 2020

Titan
X Pascal:
12GB

- - - 2𝑒 − 05 3 0.772

Bian
et al. 2020

GeForce
RTX 2080:
8GB

44 hours - 50 2𝑒 − 04 8 0.820
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5.5.4 SSIM Reconstruction Error

We comprehensively evaluated the SSIM reconstruction error on a diverse range of
datasets on sample 45 images from random scenes in the indoor NYU Depth V2 and
outdoor KITTI datasets.

We utilize the SSIM score to assess how well the predicted depth maps align with
the ground truth depth maps to demonstrate the effectiveness of our method. A higher
SSIM score indicates a better similarity between the predicted and ground truth depth
maps, indicating a more accurate depth estimation and supporting the reliability and
effectiveness of our approach.
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Figure 5.15: SSIM error compare with the ground truth depth on NYU Depth v2.
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Figure 5.16: SSIM error compare with the ground truth depth on NYU Depth v2
(cont.)
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Figure 5.17: SSIM error compare with the ground truth depth on NYU Depth v2
(cont.)
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Figure 5.18: SSIM error compare with the ground truth depth on NYU Depth v2
(cont.)

On the indoor NYU Depth V2 dataset, depicted in Fig. 5.15, 5.16, 5.17, and 5.18,
our method exhibited remarkable performance in terms of SSIM reconstruction error.
The reconstructed depth maps closely resembled the ground truth, preserving fine de-
tails and accurately representing the structure of the scene. This results demonstrate
the effectiveness of our method in capturing depth variations and generating visually
pleasing depth maps.
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Figure 5.19: SSIM error compare with the ground truth depth on KITTI data.
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Figure 5.20: SSIM error compare with the ground truth depth on KITTI data (cont.)

Similarly, in Fig. 5.19, 5.20, 5.21, and 5.22, we present the strong performance of
our methods in terms of SSIM reconstruction error on the outdoor KITTI dataset.
Despite the challenges posed by dynamic objects, varying lighting conditions, and
complex scenes, our method effectively reconstructed the depth maps with high fi-
delity. This highlights its robustness and ability to handle diverse outdoor scenarios.
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Figure 5.21: SSIM error compare with the ground truth depth on KITTI data (cont.)
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Figure 5.22: SSIM error compare with the ground truth depth on KITTI data (cont.)

The results on both the indoor NYU Depth V2 and outdoor KITTI datasets
demonstrate the consistent performance and reliability of our method in producing
accurate and visually appealing depth maps. These findings further support the suit-
ability of our method for a wide range of applications, including 3D reconstruction,
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augmented reality, and scene understanding in indoor and outdoor environments.

5.5.5 Depth Value Distribution

We present the experimental results of evaluating the depth value distribution his-
togram and comparing the histograms of the predicted depths with those of the ground
truth. This analysis provides insights into the consistency and accuracy of our single
depth estimation method in capturing the depth value distribution.

We conducted a thorough evaluation of both the indoor NYU Depth v2 and out-
door KITTI datasets to assess the performance of our method. Our primary objective
was to compare the predicted depth value distribution histograms with the ground
truth histograms, allowing us to examine the similarity and alignment between the
two distributions.

A well-performing model should yield depth estimates that closely align with the
true depths in the scene. We compute depth value histograms from 45 randomly
selected images for each dataset to provide insights into the accuracy of the estimated
depths.
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Figure 5.23: Depth value histogram from random images on NYU Depth v2.
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Figure 5.24: Depth value histogram from random images on NYU Depth v2 (cont.)
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Figure 5.25: Depth value histogram from random images on NYU Depth v2 (cont.)
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Figure 5.26: Depth value histogram from random images on NYU Depth v2(cont.)

On the indoor NYU Depth V2 dataset shown in Fig. 5.23, 5.24, 5.25, and 5.26,
while the majority of the predicted depth value distribution histograms closely matched
those of the ground truth, there were instances where some deviations were obscured.
These deviations could be attributed to various factors such as challenging scenes,
occlusions, or limitations in the depth estimation process. This signifies the accuracy
and reliability of our method in estimating depth values and preserving the overall
distribution characteristics.

Similar situation were observed in Fig. 5.27, 5.28, 5.29, and 5.30 on the outdoor
KITTI dataset, where some of the predicted depth value distribution histograms ob-
scured deviations from the ground truth histogram. These deviations may arise due to
complexities in outdoor scenes. Despite the challenges posed by outdoor scenes with
varying complexities, our method consistently estimated depth values that aligned
well with the ground truth distribution.
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Figure 5.27: Depth value histogram from random images on KITTI data.
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Figure 5.28: Depth value histogram from random images on KITTI data (cont.)
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Figure 5.29: Depth value histogram from random images on KITTI data(cont.)
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Figure 5.30: Depth value histogram from random images on KITTI data (cont.)

Despite these obscured deviations, it is important to note that the overall trend
and similarity between the predicted depths and the ground truth histograms were
still apparent. The majority of the histograms exhibited similar shapes, peaks, and
distribution patterns, indicating that our method captures the general depth value
distribution effectively.

While some deviations may be obscured in certain instances, it is crucial to inter-
pret the evaluation results in the context of the overall performance of our method.
The consistent alignment and similarity between the predicted depths and the ground
truth histograms, in the majority of cases, still validate the accuracy and reliability
of our approach.
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5.5.6 Cross-Data Dependency

We examine the cross-dataset adaptation capabilities to provide a comprehensive un-
derstanding of how well our model can generalize to unseen data from different sources
or domains.

We present the experimental results of evaluating the cross data validation between
the indoor NYU Depth V2 and outdoor KITTI datasets using the Structural Similarity
Index (SSIM) metrics. The objective was to assess the performance of our model when
applied to data from a different domain, specifically examining the impact of using an
outdoor-trained model on indoor data and vice versa.
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Figure 5.31: Qualitative results of our adversarial model approach (trained on NYU
depth v2) on images of the KITTI data.
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Figure 5.32: Qualitative results of our adversarial model approach (trained on NYU
depth v2) on images of the KITTI data (cont.)
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Figure 5.33: Qualitative results of our adversarial model approach (trained on NYU
depth v2) on images of the KITTI data (cont.)
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Figure 5.34: Qualitative results of our adversarial model approach (trained on NYU
depth v2) on images of the KITTI data (cont.)

Upon thorough analysis, we observed a mixed performance when applying the
model trained on one dataset to the other dataset. In some cases, our model’s per-
formance decreased when examining indoor data using the outdoor-trained model,
and similarly, a decrease in performance was observed when evaluating outdoor data
using the indoor-trained model. These findings indicate the challenges and limitations
associated with cross-domain data validation.
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Figure 5.35: Qualitative results of our adversarial model approach (trained on KITTI)
on images of the NYU depth v2.
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Figure 5.36: Qualitative results of our adversarial model approach (trained on KITTI)
on images of the NYU depth v2 (cont.)

61



SSIM:0.70 SSIM:0.75 SSIM:0.76 SSIM:0.65 SSIM:0.70

SSIM:0.78 SSIM:0.81 SSIM:0.51 SSIM:0.75 SSIM:0.70

SSIM:0.68 SSIM:0.80 SSIM:0.82 SSIM:0.87 SSIM:0.71

Figure 5.37: Qualitative results of our adversarial model approach (trained on KITTI)
on images of the NYU depth v2 (cont.)
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Figure 5.38: Qualitative results of our adversarial model approach (trained on KITTI)
on images of the NYU depth v2 (cont.)

Specifically, when evaluating the SSIM metrics on the indoor NYU Depth V2
dataset using the outdoor-trained model, we observed a decrease in the SSIM scores
compared to when using the model specifically trained on indoor data. This decrease
suggests a degradation in the model’s ability to capture the structural similarities
between the predicted depths and the ground truth depths in the indoor scenes.

Similarly, when applying the indoor-trained model to the outdoor KITTI dataset,
a decrease in performance was observed, indicating a mismatch between the model’s
learned features and the characteristics of the outdoor scenes. Since the model was
primarily trained on indoor data, it lacks exposure to outdoor-specific variations and
complexities, leading to difficulties in accurately estimating depths in outdoor envi-
ronments.

Despite the decrease in performance during cross-dataset validation, our model
still exhibits reliable performance overall. Further research and improvements in cross-
domain generalization could enhance the model’s performance and enable it to handle
diverse datasets with higher consistency and accuracy.

63



5.5.7 Internet Images

We assess our model performance on random outdoor and indoor images downloaded
from internet to provide preliminary insights into the model’s performance. The test-
ing images encompass a wide range of scenes, including both simple and complex
scenarios.

We present the experimental results of evaluating the qualitative performance of
our depth estimation model on a diverse set of indoor and outdoor images downloaded
from the internet. Using internet images allows for assessing the model’s performance
on real-world, diverse data that may not be present in curated datasets. However, it
also poses challenges related to data quality, ground truth availability, and potential
biases.

Figure 5.39: Qualitative results of our adversarial model on outdoor images from
internet.

Upon visual examination, we observed distinct differences between the predicted
depths using the NYU trained model and the KITTI trained model on the indoor
and outdoor images. Both models demonstrated certain strengths and limitations
depending on the environment they were trained on.

To evaluate the outdoor internet images, we employed the outdoor-trained model
that was trained on the KITTI dataset. The outdoor images in Fig. 5.39 were sourced
from various internet platforms and covered a wide range of outdoor scenes, including
urban environments, and street views. Similar to the evaluation of indoor images,
we relied on qualitative assessments to evaluate the model’s performance on outdoor
scenes. We examined the model’s ability to handle complex scenes, dynamic objects,
and challenging lighting conditions. Additionally, we assessed the accuracy and re-
liability of the estimated depth maps in representing the structure of the outdoor
scenes.
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Figure 5.40: Qualitative results of our adversarial model on indoor images from inter-
net.

In the case of indoor internet images, we utilized the indoor-trained model trained
explicitly on the NYU Depth V2 dataset. Images in Fig. 5.40 represent diverse indoor
scenes, including living rooms, and bedrooms. The objective is to assess the model’s
ability to estimate accurate depths in various indoor contexts. Due to the unavail-
ability of ground truth depth information, we performed qualitative evaluations by
visually inspecting the generated depth maps. We focused on evaluating the preserva-
tion of fine details, the representation of scene structure, and the overall visual quality
of the depth maps.

Due to the absence of ground truth depth information in the downloaded internet
images, the evaluation primarily relies on qualitative assessments rather than quan-
titative metrics. The focus is on the visual quality and perceptual accuracy of the
generated depth maps in relation to the scene content and complexity.
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5.5.8 Contrast Level

We present the experimental results of evaluating the qualitative performance of our
depth estimation model on the KITTI dataset, specifically examining the impact of
contrast variation on the predicted depth maps. We compared the predicted depths
under normal, bright, and dark contrast conditions with the ground truth depth, using
the Structural Similarity Index (SSIM) metrics as the evaluation criteria.

To assess the model’s ability to handle contrast variation, we conducted a compre-
hensive analysis of the predicted depth maps across different contrast levels. We eval-
uate the robustness of our adversarial based model (TP-GAN) against light intensity
by adjusting the contrast level. We compare our TP-GAN SSIM score with [4], [10],
and our encoder-decoder model as shown in Fig. 5.41, 5.42, 5.43, and 5.44. We com-
pare the similarity stucture of the adjusted constrast images (normal, brighter and
darker) against the ground truth depth and then compute the error.

(GT) (RGB) [10] [4] (Ours-1) (Ours-2)

Normal vs GT

SSIM: 0.90 SSIM: 0.90 SSIM: 0.95 SSIM: 0.96

Brighter vs GT

SSIM: 0.90 SSIM: 0.90 SSIM: 0.95 SSIM: 0.96

Darker vs GT

SSIM: 0.89 SSIM: 0.90 SSIM: 0.91 SSIM: 0.95

Figure 5.41: SSIM error on different contrast images; normal, brighter, and darker
against ground truth
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(GT) RGB [10] [4] (Ours-1) (Ours-2)

Normal vs GT

SSIM: 0.91 SSIM: 0.90 SSIM: 0.94 SSIM: 0.96

Brighter vs GT

SSIM: 0.91 SSIM: 0.90 SSIM: 0.93 SSIM: 0.95

Darker vs GT

SSIM: 0.91 SSIM: 0.89 SSIM: 0.86 SSIM: 0.95

Normal vs GT

SSIM: 0.90 SSIM: 0.91 SSIM: 0.94 SSIM: 0.96

brighter vs GT

SSIM: 0.90 SSIM: 0.91 SSIM: 0.94 SSIM: 0.96

Darker vs GT

SSIM: 0.90 SSIM: 0.90 SSIM: 0.92 SSIM: 0.96

Figure 5.42: SSIM error on different contrast images; normal, brighter, and darker
against ground truth (cont.)
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(GT) RGB [10] [4] (Ours-1) (Ours-2)

Normal vs GT

SSIM: 0.85 SSIM: 0.80 SSIM: 0.89 SSIM: 0.92

Brighter vs GT

SSIM: 86 SSIM: 0.81 SSIM: 0.90 SSIM: 0.92

Darker vs GT

SSIM: 0.84 SSIM: 0.79 SSIM: 0.82 SSIM: 0.93

Normal vs GT

SSIM: 0.82 SSIM: 0.82 SSIM: 0.91 SSIM: 0.94

Brighter vs GT

SSIM: 0.82 SSIM: 0.82 SSIM: 0.92 SSIM: 0.94

Darker vs GT

SSIM: 0.83 SSIM: 0.81 SSIM: 0.86 SSIM: 0.94

Figure 5.43: SSIM error on different contrast images; normal, brighter, and darker
against ground truth (cont.)
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(GT) RGB [10] [4] (Ours-1) (Ours-2)

Normal vs GT

SSIM: 0.93 SSIM: 0.90 SSIM: 0.94 SSIM: 0.96

Brighter vs GT

SSIM: 0.93 SSIM: 0.89 SSIM: 0.93 SSIM: 0.96

Darker vs GT

SSIM: 0.93 SSIM: 0.89 SSIM: 0.88 SSIM: 0.96

Figure 5.44: SSIM error on different contrast images; normal, brighter, and darker
against ground truth

When comparing the predicted depths under normal contrast conditions, we ob-
served a relatively high SSIM score, indicating a close resemblance between the pre-
dicted depths and the ground truth depths. The model demonstrated its capability
to accurately estimate depths in scenes with balanced lighting and moderate contrast,
effectively capturing structure of the scene.

Under brighter contrast conditions, where the scene’s lighting was increased, the
model’s performance exhibited a slight decrease. The predicted depth maps showed
some discrepancies when compared to the ground truth depths, suggesting a challenge
in accurately estimating depths in scenes with high contrast. However, despite the de-
crease in SSIM scores, the model still captured the overall depth structure reasonably
well, although with reduced accuracy and fidelity.

In contrast, under darker contrast conditions, where the scene’s lighting was de-
creased, the model’s performance also experienced a slight decrease in accuracy. The
predicted depth maps exhibited more pronounced deviations from the ground truth
depths, indicating a challenge in estimating depths accurately in low-contrast scenes.
However, similar to the brighter contrast condition, the model still provided reliable
depth information, albeit with a reduced level of accuracy.

These findings highlight the model’s sensitivity to contrast variations and its ability
to adapt to different lighting conditions. While the model performed best under
normal contrast conditions, it showed a little decrease of accuracion for estimating
depths in scenes with extreme contrast levels.
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Additionally, We conduct experiments to evaluate the qualitative performance
of our depth estimation model on the KITTI dataset, specifically focusing on the
impact of contrast variation. We compared the predicted depth maps under normal
contrast conditions with those under brighter and darker contrast conditions, using
the Structural Similarity Index (SSIM) metrics as the evaluation criteria.

The objective of this analysis was to assess how well our model handled con-
trast variations and how it affected the quality of the predicted depth maps. By
examining the SSIM scores, we could determine the degree of similarity between the
predicted depths and the ground truth depths. We provide qualitative comparison in
Fig. 5.45, 5.46, and 5.47.

(GT) RGB [10] [4] (Ours-1) (Ours-2)

Brighter

Brighter vs Normal

SSIM: 0.99 SSIM: 0.99 SSIM: 0.99 SSIM: 0.99

Darker

Darker vs Normal

SSIM: 0.99 SSIM: 0.98 SSIM: 0.94 SSIM: 0.99

Brighter

Brighter vs Normal

SSIM: 0.99 SSIM: 0.99 SSIM: 1.00 SSIM: 1.00

Darker

Darker vs Normal

SSIM: 0.98 SSIM: 0.98 SSIM: 0.97 SSIM: 0.98

Figure 5.45: SSIM error on different contrast images; brighter, and darker against
normal contrast.
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(GT) RGB [10] [4] (Ours-1) (Ours-2)

Brighter

Brighter vs Normal

SSIM: 0.99 SSIM: 0.99 SSIM: 0.99 SSIM: 0.99

Darker

Darker vs Normal

SSIM: 0.99 SSIM: 0.98 SSIM: 0.94 SSIM: 0.99

Brighter

Brighter vs Normal

SSIM: 0.99 SSIM: 0.99 SSIM: 0.99 SSIM: 1.00

Darker

Darker vs Normal

SSIM: 0.99 SSIM: 0.97 SSIM: 0.98 SSIM: 0.99

Figure 5.46: SSIM error on different contrast images; brighter, and darker against
normal contrast (cont.)
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(GT) RGB [10] [4] (Ours-1) (Ours-2)

Brighter

Brighter vs Normal

SSIM: 0.99 SSIM: 0.99 SSIM: 0.99 SSIM: 0.99

Darker

Darker vs Normal

SSIM: 0.98 SSIM: 0.97 SSIM: 0.95 SSIM: 0.99

Brighter

Brighter vs Normal

SSIM: 0.99 SSIM: 0.99 SSIM: 0.99 SSIM: 0.99

Darker

Darker vs Normal

SSIM: 0.97 SSIM: 0.97 SSIM: 0.92 SSIM: 0.97

Figure 5.47: SSIM error on different contrast images; brighter, and darker against
normal contrast (cont.)

We compare the performance of our model on images with normal contrast against
images with brighter contrast. The objective is to evaluate how the model handles
scenes with increased contrast levels. We selected images with normal contrast and
adjusted a separate set for brighter contrast. The model’s performance was assessed
by computing the SSIM scores for the depth maps generated from these two sets of
images. We analyze the results to determine if the model can accurately estimate
depths in scenes with varying contrast levels.

Similarly, we evaluate the model’s performance on images with normal contrast
against darker ones. This comparison examines the model’s ability to handle scenes
with decreased contrast levels. Like the previous comparison, we selected a set of
images with normal contrast and adjusted another set to have darker contrast. The
SSIM scores are calculated for the depth maps generated from these sets of images.
Analyzing the results, we assess the model’s performance estimating depths in scenes
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with reduced contrast.
The evaluation of contrasting conditions provides insights into how our model

responds to variations in image contrast. By comparing the SSIM scores, we can
determine whether changes in contrast levels affect the model’s performance. We also
examine the visual quality and reconstruction error of the depth maps in brighter and
darker contrast conditions to better understand the model’s robustness and reliability.

Overall, comparing depth estimation results between normal contrast and contrast-
ing conditions (brighter and darker) using the SSIM metric allows us to evaluate the
model’s performance under different contrast scenarios. The results provide valuable
insights into the model’s ability to handle contrast variations and generate accurate
depth maps.
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5.6 Supplementary Results

In addition to all the previous results, we provide supplementary qualitative results to
offer visual insights into the model’s predictions, highlighting its strengths, weaknesses,
and potential areas for improvement.

5.6.1 Depth from Different Environments

we present the experimental results of evaluating the qualitative performance of our
depth estimation models on totally different environments compared to the train-
ing data. We conducted evaluations using three distinct types of images: natural
images, underwater images, and coral reefs underwater images downloaded from in-
ternet. Additionally, we compared the performance of models trained on the NYU
Depth v2 dataset and the KITTI dataset to assess their generalization capabilities
across different environments.

Natural Images

In Fig. 5.48 and 5.49, we evaluated the models’ performance on natural images. We
conducted the evaluation using two trained models: one trained on the indoor NYU
Depth V2 dataset and another trained on the outdoor KITTI dataset.

Figure 5.48: Qualitative results of our TP-GAN on nature images from internet, top
(NYU) and bottom (KITTI).
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In certain cases, using the NYU-trained model yielded better results, while in other
cases, the KITTI-trained model outperformed the NYU-trained model. This indicates
that the selection of the appropriate model depends on the specific characteristics and
challenges of the natural image environment. The results demonstrated that both
models are capable of generalizing to natural environments, despite being trained on
different datasets with diverse characteristics.

Figure 5.49: Qualitative results of our TP-GAN on nature images from internet, top
(NYU) and bottom (KITTI) (cont.)

Underwater Images

We assessed the models’ performance on underwater images. Underwater scenes
present unique challenges due to light absorption, scattering, and color distortion.

Figure 5.50: Qualitative results of our TP-GAN on underwater images from internet,
top (NYU) and bottom (KITTI)
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Figure 5.51: Qualitative results of our TP-GAN on underwater images from internet,
top (NYU) and bottom (KITTI) (cont.)

The model trained on the KITTI dataset demonstrated reasonable qualitative
performance, although with some limitations. It accurately estimated depths in most
regions of the underwater images, providing valuable depth information for scene
understanding.

However, there were instances where the model difficult to capture fine details and
depth variations, potentially due to the differences between the training data and the
specific characteristics of underwater scenes. Similarly, the model trained on the NYU
Depth v2 dataset exhibited a comparable performance, suggesting its ability to adapt
to underwater environments to some extent.

Our evaluation on underwater images using the NYU and KITTI trained models
revealed that the choice of the trained model depends on the specific characteristics
of the underwater environment.

Coral Reefs Images

Finally, we evaluated the models on coral reefs underwater images in Fig. 5.52 and 5.53.
Coral reefs are known for their intricate structures and vibrant colors, making them
a challenging environment for depth estimation. The model trained on the NYU
Depth v2 dataset showed a reasonable performance, accurately capturing the overall
structure of the coral reefs. However, there were instances where the model struggled

Figure 5.52: Qualitative results of our TP-GAN on coral reef images from internet,
top (NYU) and bottom (KITTI)
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to accurately estimate depths in regions with complex textures and color variations.
The model trained on the KITTI dataset exhibited difficulty of generalizing across
vastly different environments.

These results underscore the challenges and limitations of applying depth estima-
tion models to environments that significantly differ from the training data. While
both models demonstrated a degree of adaptability, they showed varying levels of per-
formance depending on the environment. Future research should focus on developing
models that are specifically trained on data from the target environment to achieve
more accurate and reliable depth estimation results. Additionally, techniques such
as domain adaptation and transfer learning can be explored to enhance the models’
generalization capabilities across diverse environments.

Figure 5.53: Qualitative results of our TP-GAN on coral reef images from internet,
top (NYU) and bottom (KITTI) (cont.)

Note that some performance degradation was observed when the model was applied
to datasets with significantly different characteristics from the training dataset.
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5.6.2 3-D Point Clouds

We apply our model to generate 3-D point cloud visualizations from two different
environments: indoor NYU and underwater coral reef sample images.

We present the experimental results of evaluating the qualitative performance of
our depth estimation models in generating 3D point clouds based on the predicted
depth maps. The 3D point clouds provide a geometric representation of the scene,
allowing for a comprehensive understanding of the spatial structure and depth infor-
mation.

Indoor NYU Images

The indoor NYU images, which are captured in controlled indoor environments, pro-
vided a favorable setting for our depth estimation models. The generated 3D point
clouds exhibited smooth surfaces, accurate object shapes, and well-defined depth tran-
sitions. The point clouds accurately represented the relative distances between objects
and conveyed a realistic sense of depth.

(RGB) (predicted depth map)

(front) (back)

(left) (right)

Figure 5.54: 3-D point cloud of sample NYU
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(RGB) (predicted depth map)

(front) (back)

(left) (right)

Figure 5.55: 3-D point cloud of sample NYU (cont.)
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Coral Reefs Images

On the other hand, generating 3D point clouds from coral reef images presented more
challenges due to the complex and dynamic nature of underwater scenes. Despite
these challenges, our depth estimation models still produced reasonably accurate and
visually plausible 3D point clouds from the coral reef images. However, the level of
detail and accuracy in the generated point clouds was comparatively lower than those
generated from the indoor NYU images.

(RGB) (predicted depth map)

(front) (back)

(left) (right)

Figure 5.56: 3-D point cloud of sample coral reef images
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(RGB) (predicted depth map)

(front) (back)

(left) (right)

Figure 5.57: 3-D point cloud of sample coral reef images (cont.)

The results reveal that our depth estimation models successfully produce visually
plausible and coherent 3D point clouds. The point clouds exhibit a consistent and
connected structure, capturing the general shape and layout of the objects in the scene.
Despite the absence of ground truth reference, the generated point clouds display
a high level of detail, preserving fine geometric features such as object boundaries,
surface irregularities, and depth variations.

Moreover, the generated 3D point clouds exhibit accurate representations of depth
transitions, suggesting that our models effectively capture depth cues from the input
images. The point clouds convey a sense of depth and spatial relationships between
objects, contributing to a realistic and immersive representation of the scene’s 3D
structure.

While the lack of ground truth 3D point clouds limits our ability to quantitatively
evaluate the accuracy of the generated point clouds, our qualitative assessment indi-
cates that our depth estimation models are capable of producing visually plausible
and reasonably accurate 3D representations of indoor scenes.

These results highlight the potential of our depth estimation models for applica-
tions that rely on 3D reconstruction and scene understanding. The visually plausible
and coherent 3D point clouds generated from the predicted depths provide valuable
insights into the scene’s geometry and depth structure, paving the way for various
applications in computer vision, robotics, and augmented reality.
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5.6.3 Depth from videos

we present the experimental results of evaluating the qualitative performance of our
depth estimation models in generating depth maps from videos. Specifically, we eval-
uated our models using two types of videos: high-resolution videos downloaded from
the internet and low-resolution videos captured by a car dash camera, to evaluate
using our outdoor KITTI trained model.

The high-resolution videos downloaded from the internet provided a diverse range
of scenes and visual content. The depth estimation models were able to accurately
estimate depth maps from these videos, capturing the scene’s structure and depth
information with good fidelity. The generated depth maps exhibited clear boundaries,
accurate depth transitions, and preserved fine details, resulting in visually pleasing
representations of the scenes.

(Internet video)

Figure 5.58: Depth generated from high-resolution video.

On the other hand, the low-resolution videos captured by the car dash camera pre-
sented additional challenges due to their lower quality and limited visual information.
Despite these limitations, our depth estimation models were still able to generate rea-
sonably accurate depth maps from these videos. The generated depth maps captured
the overall depth structure of the scenes and provided a meaningful representation
of the depth variations, despite the lower resolution and potential noise in the input
videos. Qualitatively evaluating the generated depth maps from both types of videos
revealed the capabilities and limitations of our models in capturing depth informa-
tion. The high-resolution videos demonstrated the ability of our models to produce
highly detailed and accurate depth maps. In contrast, the low-resolution videos show-
cased the models’ adaptability to lower-quality inputs, generating depth maps that
still conveyed the general depth structure of the scenes.

The visual inspection and analysis of the generated depth maps from high-resolution
and low-resolution videos provided valuable insights into the performance and robust-
ness of our depth estimation models in video-based depth estimation.
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(Dash camera video)

Figure 5.59: Depth generated from low-resolution video.

These results demonstrate the potential of our depth estimation models in gener-
ating accurate and visually appealing depth maps from videos. The ability to estimate
depth from videos opens up opportunities for applications in video analysis, object
tracking, scene understanding, and augmented reality, among others.
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Chapter 6

Discussion

In this study, we proposed a novel depth estimation method based on deep learning
method using our proposed architectures. We evaluate depth estimation on indoor
NYU Depth v2 up to maximum distance of 10 meters and 80 meters for the outdoor
KITTI dataset. We delivered an in-depth analysis and interpretation of the research
findings.

6.1 Model Performance

We compare our proposed architectures with some of the most notable single image
depth estimation methods. We consider a range of approaches to be compared that
span from the pioneering work [2] to the some current methods.To confirm an adequate
and meaningful evaluation, we analyze the effectiveness of our model using the same
metrics and similar dataset split validation technique as Eigen et al. [2].

6.1.1 Quantitative Results

We examine our model with several previous adversarial networks and non-adversarial
methods on NYU Depth v2, as shown in Tab. 5.4 and Tab. 5.5. In the adversarial ap-
proach, ours performs slightly accuracy lower than [26] in the first threshold (𝛿 < 1.25)
but perform better in other metrics with a significant margin. Compared to the non-
adversarial based methods, our generative model outperforms our encoder-decoder
model and the preceding works [2, 23, 24, 58, 59, 60, 61] and achieves comparative
performance, even better than [6, 62]. Here, ours achieves better than [62] on the
thresholds (𝛿 < 1.25 and 𝛿 < 1.252), and error rate performances (root mean square
error (RMS) and the average log error (LOG10)). Whereas [6] performs better only in
the first threshold (𝛿 < 1.25) with a small margin, our generative consistently improves
performance in the other two thresholds (𝛿 < 1.252 and 𝛿 < 1.253) and performs the
lowest RMS with a large margin.

We report the performance of comparison with several similar strategies on the
KITTI dataset, both adversarial and non-adversarial. In terms of metrics of interest,
as demonstrated in Tab. 5.6 and 5.7, our technique surpasses our encoder-decoder
model and all the nine previous adversarial works [44, 45, 46, 47, 48, 63, 64, 65, 66] as
well as non-adversarial methods [2, 3, 4, 5, 9, 10, 67, 68, 69, 70] by significant margins
for all the three thresholds 𝛿 < 1.25, 𝛿 < 1.252, and 𝛿 < 1.253, but performs lower than
the work in [50] with a small margin. While transformer attention models have shown
remarkable success in [50], their implementation presents a number of disadvantages
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in comparison to encoder-decoder or generative models. Using transformer attention
models for depth estimation is limited primarily by their complexity and increased
more GPU memory requirements.

6.1.2 Qualitative Results

We provide qualitative visualization results for more analysis of our proposed method.
We compare our predicted depth with the work of [2] in Fig. 5.8, [3] in Fig. 5.10,
[4, 5, 6] in Fig. 5.11 and also the works of [7, 8] in Fig. 5.12 on the NYU Depth
v2 dataset. To ensure a reasonable visualization comparison, we use similar sample
images adopted from their paperworks. It demonstrates that our proposed approach
is sufficient to generate more reproducible image depth estimation performance, in
which some results are close to their ground truths.

Meanwhile, the performance of our depth estimation on the KITTI data along
with the works [2, 3, 9] and [10] are shown in Fig. 5.13 and in Fig. 5.14 to that of [9]
from differen sample images. Compared to their output depth, it can be seen that our
method yields more visually satisfying predictions with more visible transitions that
correlate with local depth information. We show that our strategy is more proficient
at detecting the proper depth structure of the image for both datasets.

Further, we demonstrate the effectiveness of our proposed method in generating
consistent better depth visualization by visualizing their SSIM error reconstruction
images, and calculating the SSIM scores. Fig. 5.15, 5.16, 5.17, 5.18 and Fig. 5.19,
5.20, and 5.21 show the effective of our model to predicet depth on NYU and KITTI,
respectively. In overall, our method prediction on achieves a good performance in
which some results are relative to the ground truth, as represented by their SSIM
error scores being close to 1.

In Fig. 5.22, 5.23, 5.24 and Fig. 5.25, 5.26, 5.27, we study the depth value distri-
bution by analyzing the histogram from the ground truths and its predicted images
for NYU and KITTI data, respectively. This analysis offers insights into the distribu-
tion characteristics and potential discrepancies between the predicted depths and the
ground truth.

The histogram analysis revealed interesting patterns in the distribution of the
depth values. We computed histograms for both the predicted depth values and the
ground truth values, using 256 number of bins to capture the distribution across the
entire range of depth values.

Upon comparing the histograms, we observed that the predicted depth values
exhibited some obscured deviations from the ground truth. This skew indicated a
tendency towards overestimation in certain depth ranges. Notably, we noticed a small
number of outliers in the predicted depth values, representing extreme cases where
the model struggled to estimate the depths accurately. Despite these limitations,
it is important to note that the depth estimation system still demonstrated overall
promising performance. The majority of the predicted depth values aligned reasonably
well with the ground truth, indicating that the model captured the underlying depth
structure to a satisfactory extent.

6.2 Conciseness

We demonstrated that the model we proposed in this research is rather concise, yet
its performance is reliable. We focus on the ability of our model to achieve opti-
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mal performance while maintaining simplicity and efficiency in terms of the model
architecture and the number of parameters.

6.2.1 Architecture

To assess the conciseness of our model, we analyze its architecture and evaluating the
investigate layers in our model. Our objective is to strike a balance between model
complexity and performance, ensuring that our model is both effective and efficient.
By emphasizing simplicity and efficiency of our model, we aim to provide valuable
insights and advancements in depth estimation, enabling more practical and efficient
solutions for various applications.

We reconstruct residual networks (ResNet-50) following two blocks of the up-
sampling layer in the first stage of our encoder-decoder model. While in the second
stage, we stacked five instead of four convolutional layers and reduced the filter size,
which is proved effectively improved the final depth prediction. Since both networks on
each stage consist of a very shallow layer and small filter size, our model is inexpensive
with respect to the number of network parameters and produces a more accurate
output image depth prediction.

Our adversarial model is comprised of only three simple sub-models, the first of
which is a ResNet50V2-based generator sub-model. The second sub-model, a discrim-
inator, consists of a stack of six convolution layers constructed as a patch GAN model.
The final sub-model consists of a series of six convolution blocks which the first five
blocks comprising convolution, batch normal- ization, Relu activation, and dropout.
The last block contains a convolution layer following a linear activation.

We confirmed that regardless of its simple structure, the proposed architectures
effectively improves the overall depth prediction performance of the model.

6.2.2 Parameteres

We focus on reducing excessive parameter redundancy without sacrificing depth es-
timation accuracy. We aim to achieve a more concise representation of the depth
estimation task by optimising the model’s parameter count.

The two architectures in this research utilizes their parameters efficiently. As
shown in Tab. 5.8, 5.9, and 5.10 we could affirm that our proposed architectures
strives to achieve good performance with a minimal number of parameters.

Our encoder-decoder method requires much fewer network parameters and less
amount of input training data. For instance, compare with the work in [2] , our model
required number of iterations about 234K vs 3.5M and with fewer input training data,
50K vs 120K for the NYU v2 depth data. While, for the KITTI data our model only
need about 80K vs 3.5M iteration numbers and required 17K vs 40K samples training
data.

Meanwhile, our adversarial model has around 59.2M training parameters, which
51.7M for the generator, 7M for the discriminator, and 520K for the refiner sub-
model. During testing, only the refiner parameter is taken into account. It takes
about 39.5 minutes and 50 minutes to finish one epoch for training KITTI and NYU
data, respectively, measured in a single 8GB NVIDIA GeForce GTX 1080. All the
results presented in this thesis work, the training process typically takes around 36
epochs for the NYU and 28 epochs for the KITTI dataset to converge with a batch
size of 16.
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In comparison to Eigen et al. work [2], our adversarial model utilizing 50𝐾 vs.
120𝐾 for training on the NYU v2 depth data and around 25𝐾 vs. 40𝐾 for the KITTI
data. Whereas 25K vs. 39K training data on KITTI compared with the works [9, 10].

6.3 Robustness

We discuss the robustness of our method by analyzing its performance on different
lighting conditions, and evaluating its generalization capabilities across two different
datasets.

6.3.1 Different lighting conditions

In this study, we investigated the robustness of our depth estimation model under
different contrast level. Variations in contrast level can result in differences in the
intensity, color, and distribution of light, thereby affecting the overall appearance of
the scene. We recognize that lighting variations, particularly in KITTI data, pose
significant challenges to accurate depth estimation, and thus, it is crucial to assess the
performance of our model under various lighting scenarios.

To evaluate the performance of our model, we generate visualization estimated
depth and compute the SSIM score comprising images captured under varying con-
trast level conditions. We evaluate six random KITTI data which consists of scenes
with normal contrast, lower contrast and higher contrast level as shown. We evaluate
the robustness of our model performance on adjusted contast level (normal, brighter
and darker) against ground truth in Fig. 5.36, 5.37, and 5.38. Whereas, SSIM recon-
struction error of normal image contrast is computed against brighter and darker image
in Fig. 5.39, 5.40, and 5.41. This evaluation helps assess the model’s adaptability to
different lighting conditions and provides insights into its real-world performance.

We conducted a comparative analysis to benchmark our model against existing
depth estimation methods on the same dataset. The results demonstrated that our
model outperformed other methods, reflected the SSIM metrics consistently indicated
superior performance across the dataset. This comparison validates the robustness
of our approach and highlights its superiority in accurately estimating depth under
varying lighting conditions.

Although our model exhibited robustness, there are some limitations to consider.
Certain extreme lighting conditions, such as scenes with extremely low-light or scenes
with overexposed regions, still posed challenges to the accuracy of depth estimation.

The qualitative evaluation of our depth estimation model on KITTI data with
contrast variation revealed variations in performance under different contrast levels.
The model achieved accurate depth estimation under normal contrast conditions, but
faced challenges under both brighter and darker contrast conditions. These results em-
phasize the importance of further development to enhance the model’s adaptability to
scenes with extreme contrast, leading to more accurate and reliable depth estimation
in practical applications.

6.3.2 Cross dataset adaptation

We perform cross dataset validation by training on one dataset and testing on another
to evaluate the generalization of the proposed architecture across diverse datasets. The
results of the cross-dataset validation indicated promising performance of the proposed
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method while trained using indoor NYU data and testing on outdoor KITTI as shown
in Fig. 5.28, 5.29, and 5.30.

However, it is important to note that the proposed method exhibited certain lim-
itations when applied to different datasets. In some cases, our model performance
decreases while examining indoor data for the outdoor trained model. As shown in
Fig. 5.31, 5.32, and 5.33 trained KITTI model has difficulty generating depth for some
particular objects on the NYU indoor dataset. The observed performance degradation
can be attributed to the differences in data distribution and characteristics between
the training and testing datasets. NYU scene introduced novel variations in terms
of scene complexity, lighting conditions, and object compositions, which were not
adequately captured during the training phase on KITTI data.

These results emphasize the importance of domain-specific training for achieving
optimal performance in depth estimation tasks. The inherent differences between in-
door and outdoor scenes, such as lighting conditions, object appearances, and scene
complexities, pose challenges for models trained on one domain when applied to an-
other.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

Performance of our two model architectures have been demonstrated. First, we pro-
posed a distinct multi-stages architecture in the form of smaller residual network for
predicting depth from a single image along with the multi-loss and adjustable learn-
ing rates. Our model achieves a reliable yet better performance compare with several
previous related works while required fewer iteration number and input training data.

Next, the use of an additional sub-model to integrate global scene structure and
local scene information in a generative adversarial network (GAN)has been success-
fully demonstrated for single image depth estimation. We confirmed that regardless
of its simple structure, the presence of the third player (TP) in adversarial learning
effectively improves the overall depth prediction performance of the model. Extensive
experimental results demonstrate that employing a third player along with the SSIM
loss is beneficial in a single image depth estimation. The global performance of our
proposed method revealed adequate depth prediction. we demonstrated that our pro-
posed model required less training time to converge compared with the aforementioned
related methods regardless the GPU device.

7.2 Future Work

Our future work is encouraging to develop a robust single image depth estimation,
greater generalization capability across different datasets to be applied not only for
indoor or outdoor data, but also will be applicable for such a complex environment
e.g. underwater or coral reefs.
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