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Abstract

In the manufacturing industry, industrial machines including Computer Numerical Control

(CNC) and industrial robots are widely used because of their accuracy, �exibility, and high

production rates to meet the demands for precise products. Coverage motion is one of the

dominant motions of industrial machines for manufacturing tasks such as milling, polishing,

painting, additive manufacturing, laser cutting, and inspection. To achieve high accuracy, these

tasks require precise motion; on the other hand, the tasks are repetitive and are performed for a

long time, which leads to high energy consumption. Energy saving is needed given the current

worldwide situation of high energy costs, environmental e�ects, and depletion of energy sources.

In addition, shorter operating times are key for industrial machines to meet high production

demands and guarantee pro�ts. To attain shorter operation times, machines are typically

operated at higher velocities, thus leading to high energy consumption and low precision. Precise

motion is vital for machines to manufacture high quality products. Therefore, industrial sector

is driven by a high need for machines with accurate motion, shorter operation times, and energy

saving.

Coverage motion optimization is one of the methods that play a major role in reducing time

and energy consumption while increasing motion accuracy of the machine. It is a feasible and

less costly method that does not require replacing existing machine components with new ones

or modifying the control law. Motion optimization is categorized into geometric path opti-

mization and trajectory generation while considering objective functions such as smoothness,

time, cost, and energy consumption. In the literature, many studies focused on motion opti-

mization and implemented the two processes separately; simultaneous path optimization and

trajectory generation are relatively unexplored. By integrating geometric path optimization

and trajectory generation, industrial machines can realize high quality products with higher
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machine performance and ensure environmental sustainability. Due to the high demand for

reducing production costs and environmental sustainability, objective functions of smoothness,

time, energy or both time and energy consumption are crucial to be considered for performance

enhancement. Moreover, time and energy are two con�icting objectives; the trade-o� between

time and energy should be determined. This thesis discusses several approaches of industrial

machines coverage motion optimization for accuracy and performance enhancement using tra-

jectory (velocity) optimization with simultaneous geometric path optimization. The proposed

approaches can be used for machine operations such as milling, laser cutting, inspection, gluing,

and polishing that execute point-to-point (PTP) motions.

To enhance machine performance in terms of time and energy consumption while achieving

accurate motion in industrial machines, the proposed optimization approaches are described as

follows in this thesis: Introductory remarks are presented in chapter 1 followed by a literature

review in chapter 2 describing the industrial feed drive systems, related studies in motion

optimization, and optimization methods. Chapter 3 presents the method for simultaneous path

and trajectory (velocity) optimization used to improve machine e�ciency in a coverage motion

for industrial machines by ensuring the smoothness and satisfaction of the machine constraints.

The multi-objective path and trajectory optimization are proposed to obtain a trade-o� between

time and energy consumption for coverage motion. The Jerk-limited acceleration pro�le (JLAP)

describes the trajectory where the velocity pro�les generated for each linear segment attain

desirable velocities. The energy model of an industrial two-axis feed drive system is used

to solve the optimization problem. Non-dominated Sorting Genetic Algorithm II (NSGA II)

generates a Pareto front for trade-o� time and energy consumption solutions. Simulation results

of the proposed method are validated through experiments using the industrial two-axis feed

drive system. Experimental results show the e�ectiveness of proposed approach where the

best trade-o� solution achieves time reduction and energy saving of about 10.05% and 2.10%,

respectively. Furthermore, optimized path of proposed method lowers maximum error of about

76.6% compared to the optimized path with constant commanded velocity.

In addition, an energy optimization approach for the coverage motion of industrial machines,

which simultaneously integrates trajectory generation and geometric path optimization is pre-

sented in chapter 4. The modi�ed S-curve pro�le describes the trajectory along a linear segment

with harmonic motion employed for smooth jerk continuity to enhance the motion accuracy.
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Energy consumption model of the industrial feed drive system is used to achieve optimal en-

ergy. Genetic Algorithm (GA) is applied for the optimization. Experimental validation of the

simulation results is carried out using the industrial two-axis feed drive system. Simulation and

experimental results show that the energy saving of the feed drive system is achieved under

machine kinematic limits that ensure smooth motion, which is approximately 14.6% energy

saving compared to an unoptimized solution. Furthermore, the proposed approach is compared

with the optimized path generated using the fourth-order motion pro�le. The results show that

the proposed approach increases motion accuracy with high energy saving compared to the

fourth-order motion pro�le.

Chapter 5 describes an approach that proposes optimal motion planning by simultaneous path

and velocity optimization to achieve the trade-o� between time and energy consumption. The

multi-objective optimization model for minimizing time and energy consumption is solved by

the NSGA II. The modi�ed S-curve pro�le describes the trajectory, which ensures smooth jerk

continuity. To validate the e�ectiveness of the proposed approach, simulation and experiments

are carried out using the industrial two-axis feed drive system, and the motion accuracy is

compared to that of JLAP. Experimental results reveal that the best trade-o� trajectory of the

proposed approach achieves respectively 13.9% and 3.5% of time reduction and energy saving.

The mean tracking error is reduced by 16.2% and 14.9% for the x and y axes, respectively,

compared to the JLAP. Lastly, chapter 6 presents the concluding remarks of this thesis as well

as future works.
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Chapter 1

Introduction

1.1 Background

Manufacturing sectors around the world use industrial machines extensively to produce pre-

cise products at high production rates. Although, these machines such as CNC (Fig. 1.1) are

extensively used in manufacturing industries, numerous studies indicate that their e�ciency is

about 30% [1, 2]. Their manufacturing activities are associated with high energy consumption

and environmental concerns attributed to greenhouse gases [3, 4]. Recently, worldwide energy

sources are limited, leading to high energy cost. In addition, precise motion and shorter op-

eration times are highly needed for industrial machines to realize high quality products and

production pro�ts. Due to technological advancement, industrial machines are more adaptable

and �exible, making easier to improve their performance. By improving machine performances,

global challenges can be addressed, such as reducing energy consumption and availability of

quality products. Therefore, industrial machines performance can be improved in terms of

time, energy saving or both time and energy consumption reduction to ensure high production

rates, environmental sustainability, and achieve quality products.

Many researchers have drawn attention to enhance the machine performance through di�er-

ent approaches. Energy saving and time reduction are achieved by modeling and parameters

optimization methods as proposed in [5�8]. However, ensuring precise motion requires consider-

ation of trajectory generation, which is not taken into account in these studies. Motion accuracy

1



Chapter 1. Introduction 1.1. Background

(a) CNC milling. http://www.stylecnc.com (b) CNC laser cutter. http://www.stylecnc.com

Fig. 1.1: CNC machines.

and energy saving improvement through controller designs in industrial feed drive systems are

proposed in [9, 10]. Nevertheless, their applications are limited to industrial systems where

controllers are di�cult to access. Using a lightweight design to the components of industrial

machine systems reduces moving masses, resulting in energy saving [11, 12]. The lightweight

design approach reduces energy consumption and environmental impact, but it requires high

production costs to replace existing machine components. Trajectory (velocity) optimization

for industrial machines are proposed [13�19] for time-optimal and [20�23] for energy optimal

along the prede�ned paths. However, generation of an optimal geometric path is not taken into

account. A geometric path has e�ect on the machine performance, if it is not properly planned

consumes more energy and time [24]. In [24�29], geometric paths optimization are proposed

that describes path to be represented by x and y coordinates, but a de�nition or description of

the position, velocity, acceleration, and jerk as a function of time during the machine motion

is not given which has e�ect on performance.

In the context described above, achieving quality products and high production rates while

maintaining environmental sustainability remains a challenge. Motion optimization for typical

CNC machines under their kinematic limits plays a critical role in coverage motion to increase

production e�ciency and accuracy. Furthermore, it is necessary to consider energy consumption

optimization or both time and energy consumption as multi-objective optimization problems

to achieve their trade-o� since are con�icting with each other.
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1.2 Objectives of this study

The aim of this study is to develop and implement simultaneously trajectory and geometric

path optimization approaches for the coverage motion of industrial machines based on given

working conditions and constraints. The implementation is to improve machine performance for

the coverage motion in terms of energy or both time and energy consumption while achieving

precise motion. The procedures are as follows:

■ To formulate a single-objective model for achieving energy optimal and a multi-objective

model for contradictory objective time and energy consumption of coverage motion in

industrial machines.

■ To implement optimization of the models through simulation to generate the energy

optimal solution for single-objective and Pareto-optimal solutions for the trade-o� between

time and energy consumption of a given working surface with an obstacle or island.

■ To perform experiments using an industrial feed drive system to verify the optimization

results.

1.3 Thesis contributions and outline

1.3.1 Contributions

The main contributions of thesis are as follows:

■ A method for simultaneous trajectory generation and path optimization for the machine

coverage motion for the time and energy optimal is proposed. In most cases, trajectory

generation and path optimization are implemented separately. Considering trajectory

generation and geometric path simultaneously improves accuracy and performance of

the machine. Trajectory generation along the path is described by the JLAP. Time

and energy Pareto-optimal solutions are generated using NSGA II to complete coverage

motion on a given working surface while satisfying constraints including obstacle avoidance
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(island). This is accomplished by formulating a multi-objective model to determine trade-

o� optimal values. Results show the e�ectiveness of the proposed method in generating

a trade-o� optimal paths. Therefore, based on the optimal trade-o� between time and

energy, planners can choose any solution from the Pareto front based on preference. In

addition, in most similar studies that implement trajectory generation, a single objective

is considered, and therefore this optimization approach addresses the gap in the literature

for determining the best trade-o� solution between time and energy consumption.

■ The modi�ed S-curve is proposed to describe trajectory along the path by introducing the

harmonic functions into the JLAP and achieving smooth jerk continuity. Furthermore,

an energy optimization approach is proposed for coverage motion of industrial machines,

which simultaneously integrates modi�ed S-curve trajectory generation and geometric

path optimization. Energy consumption model is used to achieve energy optimal. Simu-

lation and experimental results show that the energy optimal coverage motion is achieved

under machine kinematic limits, ensuring smooth motion. Therefore, using the proposed

method has practical advantage to improve the e�ciency of existing industrial machine

systems when energy optimal coverage motion is needed.

■ Using the modi�ed S-curve trajectory for motion description, simultaneous trajectory

generation and path optimization is proposed for the trade-o� between time and en-

ergy consumption. The multi-objective optimization model for minimizing time and en-

ergy consumption is solved. Simulation and experimental results show that the method

achieves trade-o� values time and energy consumption as Pareto-optimal solutions. From

Pareto front, planners can choose any solution based on their preferences. Furthermore,

compared with JLAP, the modi�ed S-curve describes coverage motion with higher accu-

racy.

■ A few steps of the existing NSGA II are implemented/developed di�erently to ensure a

feasible and optimal path solutions during optimization. These steps include the gener-

ation of location points, encoding (path representation), initialization of the population,

genetic operators (order crossover and inversion mutation), and assignment of �tness to

avoid obstacles (islands) in the optimization procedure. In this case, the order/sequence

of points on the path solutions during optimization is monitored, and feasible path solu-

tions are generated. Therefore, the proposed method has practical advantages over the
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existing NSGA II by ensuring feasible path solutions. Researchers can apply this ap-

proach to optimization problems based on coverage paths, while GA or NSGA II are used

as optimization methods.

1.3.2 Outline

The remainder of this thesis is organized as follows: Chapter 2 presents related studies for

improving machine performance. It describes dynamics and energy consumption model for the

industrial feed drive system. This chapter also describes di�erent motion optimizations with

trajectory generation and geometric path. In addition, optimization methods for the coverage

motion are illustrated. Chapter 3 describes a method for simultaneous path and trajectory

optimization coverage motion for time and energy optimal while achieving accuracy motion.

The JLAP is employed to describe the trajectory along a linear segment of the path. Chap-

ter 4 introduces an energy optimization approach for coverage motion of industrial machines,

which simultaneously integrates modi�ed S-curve trajectory generation and geometric path op-

timization. Chapter 5 presents an extension of proposed method in chapter 4 to solve the

trade-o� between time and energy for industrial machines coverage motion, which mainly aims

for achieving time and energy Pareto-optimal solutions while ensuring smooth motion. Chapter

6 presents conclusion and future works.

Assumption of the study

The study is proposed for general application purposes for industrial machines with operations

such as laser cutting, milling, inspection, gluing, polishing, and additive manufacturing. In

cutting/machining operations, the assumption of study is that the cutting force is negligible,

so the machine table system exerts su�cient power/force to perform the operation successfully.

In addition, o�ine coverage motion optimization approaches are proposed that consider using

a 2D plane as the working surface for the machine operation.
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Chapter 2

Literature Review and Preliminaries

2.1 Introduction

Manufacturing sector plays an important role in advancing society and the economy. This is

attributed to the use of industrial machines that are very �exible with high precision, accurate,

and speed [30]. Industrial machines such as CNC milling, router, grinder, waterjet, and laser

cutting are widely used worldwide. However, these machines are associated with high energy

consumption despite their wide use in manufacturing [31]. Most of the energy used in the

manufacturing sector for operating machines continuously is generated from fossil fuels which

results to the greenhouse gases emission and environmental impact [32, 33]. Energy consump-

tion for the machines is due to the electrical consumption of the components, including the

auxiliary units, spindle, and feed drives [34]. Auxiliary units consist of computers, hydraulic

systems, and cooling systems that consume energy when the machine is operating. The spindle

energy is the energy consumed by spindle drives system including rotary motion for the cutting

tool. The feed drives energy consumption is associated with energy supply of linear and rotary

motion along the axes (axes motion) and energy of carrying the table used to hold workpieces.

Improving energy performance of the machine is one of the e�ective measure for energy saving

and emission reduction with realization of the sustainable manufacturing [35]. A number of

studies are presented to reduce energy consumption of industrial machines. Machine parameters
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optimization are proposed in [5, 7, 36�38] and modeling approaches to predict energy consump-

tion [39�41]. These approaches involves studying di�erent machine parameters that contribute

to energy consumption; requires experimental measurements, validation, and coming up with

energy formulation. The energy models formulated are later used to estimate the machine's

energy consumption. To achieve energy saving while observing smooth motion, controller de-

signs are proposed for the feed drives systems [9, 10, 42]. The controller design approaches are

used in industrial systems with easier access to the controller since it involves modi�cation of

the control system.

Furthermore, motion optimization reduces time and energy consumption [13�29]. It is the

approach and practice that is less costly to use existing machines e�ciently. This is achieved

through e�ective generation of motion input commands to the machine motion. The generated

path motion guides the machine to move from one point to another in the intended direction

and speed to complete a working surface. During linear motion interpolation from one point

to another, execution time and energy consumption are required to move the machine table

and complete the motion along the path. Thus, generation of the motion input commands

can be incorporated with machine performance measures such as execution time and energy

consumption. These measures are incorporated into the motion generation process through

designed models. As a result, the performance of the machine can be improved. Currently,

motion optimization has commonly been executed by either trajectory generation or geometric

path optimization. Both trajectory generation and geometric path optimization have an impact

on machine e�ciency [43, 44]. The simultaneous trajectory generation and path optimization

have not been compressively investigated in the literature. Therefore, it is essential to explore

the signi�cance of simultaneous geometric path optimization and trajectory generation for time

and energy optimal while achieving accurate motion.

2.2 Industrial two-axis feed drive systems

Most CNC machines consist of feed drive systems, which are employed to move machine tool

components and workpieces towards a desired direction or location through axes [43]. A typical

structure of a feed drive system is shown in Fig. 2.1 which is composed of a servomotors,

couplings, support bearings, ball-screws, encoders, table, and linear guides supporting the table.
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Fig. 2.1: Feed drive system structure.

Feed drive systems are found in industrial machines with applications such as milling, gantry

loading, inspection, painting, and laser cutting. These applications are repetitive in nature,

leading to high energy consumption. The dynamics including frictions, back electromotive force

(EMF) terms, and driven masses of the feed drive systems in�uence its energy consumption,

where the main components a�ecting energy consumption are motors, bearings, ball-screws, and

table [45]. In addition, feed drive systems energy consumption is in�uenced by the di�erent

orientation path motion, movement directions, and working table velocity [46, 47]. Modeling of

the energy consumption model of the industrial feed drive system used in this thesis are brie�y

described as follows.

2.2.1 System dynamics and energy consumption model

Industrial two-axis feed drive system (X-Y table) is commonly utilized in manufacturing indus-

try, where it appears in machineries such as CNC milling, laser cutting, and waterjet. Fig. 2.2

shows the industrial two-axis feed drive system used in this thesis, which consists of a table

coupled with ball screws driven by alternating current (AC) servomotors. The dynamics of a
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y

x

AC Servomotors
with Built-in Encoder

Ball Screw

Fig. 2.2: Industrial two-axis feed drive system.

two-axis feed drive system can be generally expressed by decoupled second-order model [42, 48],

given as

M ẍ(t) +Dẋ(t) + F sgn {ẋ(t)} = Ik(t)KF, (2.1)

with

M = diag {mk}, D = diag {dk}, F = diag {fk},

KF = diag {kF,k}, k ∈ {x, y},

where M , D, F , and KF are matrices of inertia term, viscous friction coe�cient, Coulomb

friction, and constant force, respectively. Ik(t) and x(t) are the input current vectors and axial

positions, respectively. The energy model for the feed drive system is formulated by considering

its dynamics as proposed in [49] with three phase AC servomotor used. As the method proposed

in [20], the output power Pk is given by

Pk(t) =
√
3λkVk(t)Ik(t), (2.2)

where Vk(t) and Ik(t) are the instantaneous e�ective voltage and current of a motor for each

axis, respectively. λk is the power factor. The e�ective voltage and current are calculate by

Vk(t) = Ik(t)Z +KEẋ(t), (2.3)
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with

Z = diag{zk}, KE = diag{kE,k},

where zk and kE,k are the motor impedance and back EMF coe�cient of the kth axis, respectively,

Ik(t) =
1

KF
[M ẍ(t) +Dẋ(t) + F sgn {ẋ(t)}]. (2.4)

The energy consumption model results from the combination of (2.2) - (2.4). The crucial

property is that power is a function of velocity and acceleration. As a result, trajectory pro�les

are used to determine the power. Therefore, the energy consumption model is presented as

E =

ttf∫
t0

(|Px(t)|+ |Py(t)|)dt, (2.5)

Pk(t) = C1,kẍ
2
k + C2,kẋ

2
k + C3,kẋksgn (ẋk) + C4,k + C5,kẍksgn (ẋk) + C6,kẍkẋk,

for k = {x, y},

with

Cj = diag{cj,k}, j = {1, 2, ...., 6},

c1,k =
√
3λkm

2
k

zk
k2
F,k

,

c2,k =
√
3λkdk

(
zkdk
k2
F,k

+
kE,k
kF,k

)
,

c3,k =
√
3λkfk

(
2zkdk
k2
F,k

+
kE,k
kF,k

)
,

c4,k =
√
3λkf

2
k

zk
k2
F,k

,

c5,k = 2
√
3λkfkmk

zk
k2
F,k

,

c6,k =
√
3λkmk

(
2zkdk
k2
F,k

+
kE,k
kF,k

)
, (2.6)
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Table 2.1: Energy coe�cients of each drive axis.

kthaxis c1,k[Ws4/m2] c2,k[Ws2/m2] c3,k[Ws/m] c4,k[W] c5,k[Ws2/m] c6,k[Ws3/m2]

x ẋ ≥ 0 2.684 546.357 45.135 0.663 2.2667 90.838

ẋ < 0 2.684 476.807 -52.3333 0.891 -3.093 90.838

y ẏ ≥ 0 2.101 534.437 50.851 0.856 2.682 79.682

ẏ < 0 2.101 494.006 -48.999 0.795 -2.584 79.682

Table 2.2: Parameters values of each drive axis.

kthaxis mk[Ns2/m] dk[Ns/m] fk[N] kF,k[N/A]

x 86.76 558.62 47.50 235.62

y 99.65 795.5 58.00 331.12

where cj,k is the jth energy coe�cient for the kth axis. E is the total energy consumption for

the feed drive system from time t0 to ttf. Px(t) and Py(t) are the power at time t for the x and

y axes, respectively.

The energy consumption model parameters and coe�cients used in this thesis are identi�ed

experimentally with industrial two-axis machine (Fig. 2.2) as described in [49]. Machine coef-

�cients and parameters are presented in Tables 2.1 and 2.2, respectively.

2.2.2 Energy measurement method

Energy consumption for the feed drive system are measured using a power meter analyzer

(HIOKI13390) connected between a motor driver and a motor, directly measuring its power

consumption. The analyzer measures energy using an integration measurement approach, in

which the power is integrated every 50 ms of data update. The energy consumption is measured

in x and y axes. When the machine moves, the measurement value of energy consumption

for the two axes is displayed on the display channel. The total energy of the two axes is

recorded, and the sum is the energy consumption of the machine. To avoid inaccuracy in

energy measurements, the experiment can be repeated several times for the same motion, and

the average energy consumption is calculated.
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2.3 Coverage motion optimization

Motion optimization is a way to plan machine motions moving from one point to another that

are e�cient and feasible. It aims to obtain optimal coverage motion that passes all the required

points on the working surface while avoiding obstacles (islands) and with no overlapping of

points or path. The objective functions such as energy consumption, production time, produc-

tion costs, and surface roughness are considered in coverage motion optimization to achieve the

optimality for given decision variables and constraints. The optimization can be set as single-

objective or multi-objectives for two or more objectives. O�ine or online optimizations can be

performed, where optimal motions generated are used as input commands to the machine tool.

These commands de�ne the operations and movements of the machine table or cutting tool,

workpiece, and activities performed. The coverage motion optimization is applied to many ma-

chine application, such as milling [24, 25, 50], grinding [51], painting [52], polishing [53], laser

cutting [54, 55], and inspection [56]. These industrial motions can be optimized in two ways:

geometric path optimization/planning and trajectory generation.

2.3.1 Geometric path optimization

Path optimization refers to the generation of an optimal geometric path, where the sequence

of points for machine to move along the path is represented by the x and y coordinates, but

the de�nition of control motion time input from one point to another is not given. During

optimization process, optimal geometric path is generated based on selected objectives while

taking account of the surface working conditions such as islands/obstacles. To de�ne the given

working surface to the optimization process, sequences of points are generated and used as

path references. The working surface to be covered is discretized to create sequences of several

equidistant grid points (path locations). The discretization method is widely used because it is

easier to mark the points on a working surface and incorporated into optimization algorithms.

A number of methods are suggested to optimize geometric paths for industrial machines, includ-

ing CNC that perform PTP motions. Path optimization method for cavity milling is proposed

in [25], aiming to achieve the best trade-o� between processing time, cost, and energy. The path

for the free-form surface CNC milling is optimized to achieve energy saving and carbon emission
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reduction [24]. Path optimization method is proposed in [26] to improve smoothness e�ciency

in pocket milling using a contour strategy. Geometric path optimization for CNC milling to

achieve the shortest path is proposed [27]. A toolpath optimization approach is presented to

minimize machining time on several linear segments in the area to be machined [29]. In [55],

toolpath optimization for sheet metal laser cutting is proposed to achieve time optimal path.

Optimization of the path for drilling holes on �at surfaces is proposed to minimize airtime from

one point to another [57]. Toolpath optimization for the energy optimal hole drilling is proposed

in [58]. Optimization of polishing coverage path and material removal is proposed to ensure

high pro�le accuracy and surface quality [59]. Laser cutting path optimization is proposed in

[60], the trade-o� between shortest path distance and time are achieved. Toolpath generation

for polishing the surface area of the freeform is proposed in [53]. However, these studies present

path optimization methods; trajectory generation, including velocity, acceleration, and jerk,

are not considered. As a result, the optimized geometric path motion can generate high op-

erating speeds, excessive accelerations, and vibrations of the machine's mechanical structure,

which a�ect accuracy and performance [61]. To ensure smooth motion for optimized paths, it

is necessary to incorporate trajectory generation.

2.3.2 Trajectory generation

Trajectory generation is described as the de�nition of reference machine motion commands

such as position, velocity, acceleration, and jerk as a function of time while moving from one

point to another [62]. These are inputs to the feed drives to direct machine motion interpo-

lation while satisfying its kinematic limits. It is essential to observe machine kinematic limits

including velocity, acceleration, and jerk to achieve smooth coverage motion. For PTP motion,

interpolation of these commands/variables generates a trajectory or motion pro�les for each

linear segment depending on the direction of the axes. Motion pro�le or trajectory generation

for the linear segments needs to be performed for the machine to follow. During trajectory

generation, objective functions such as time and energy can be considered to achieve optimality

of the machine motion. Trajectory generation can be performed using functions such as trape-

zoidal velocity pro�les and JLAP. These are simple motion pro�les widely used in industrial

machines, consist of acceleration, constant velocity, and deceleration times. The trapezoidal

velocity pro�le describes motion along the linear segment consisting of three phases: constant
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Fig. 2.3: Illustration of a jerk-limited acceleration pro�le.

acceleration, constant velocity, and constant deceleration with three time motion intervals [63].

In [20, 64], trapezoidal velocity pro�les are used to increase motion accuracy and energy saving

in industrial machines. The trade-o� between time and energy is achieved in [65] while trape-

zoidal velocity is used to describe the motion along the path. However, trapezoidal pro�les

are used in these studies, there is a sudden change of acceleration values and the occurrence

of in�nite jerk values when the pro�le change from one phase to another, for example from

constant acceleration to constant velocity phase. The discontinuous acceleration and in�nite

jerk occurrence at phase transitions lead to machine excitation and a�ect machine performance

[66]. To overcome this problem, the limitation of jerk to the pro�le is proposed and used in

di�erent studies.

Jerk-limited acceleration pro�le

The JLAP or S-curve trajectory is the motion pro�le used to generate smooth trajectories for

the linear contours by ensuring the jerk is limited. The trajectory is generated in seven segments

of motion time intervals with continuous acceleration pro�le. The time intervals are used to

divide the trajectory of a linear segment in transitions including linear acceleration/deceleration,

constant acceleration/deceleration, and constant velocity. Fig 2.3 shows the JLAP trajectory.
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The de�nition of jerk in each time interval is given as

...
x k(t) =



jlim,k, t0 ≤ t < t1,

0, t1 ≤ t < t2,

−jlim,k, t2 ≤ t < t3,

0, t3 ≤ t < t4,

−jlim,k, t4 ≤ t < t5,

0, t5 ≤ t < t6,

jlim,k, t6 ≤ t < t7,

(2.7)

where jlim,k is the jerk limit for the kth axis. The time interval are calculated from velocity,

acceleration, and jerk. The time intervals are de�ned as

ta,1 = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6,

tc,1 = t2 − t1 = t6 − t5,

Tc,1 = t4 − t3,

(2.8)

where ta,1 is the linear acceleration/deceleration period, tc,1 is the constant acceleration/decel-

eration period, and Tc,1 is the constant velocity period.

The JLAP is optimized to increase the e�ciency of the machine while achieving smooth motion

using JLAP. In literature, di�erent e�ciency measures are considered to improve machine

performance. Time-optimal trajectory generation is presented in [16, 67�69] using the S-curve

pro�le for PTP motion. The optimization of the feedrate for the �ve-axis machine is performed

in [15]; the optimal feedrates are obtained from the velocity, acceleration, and jerk limit to

ensure machining accuracy while satisfying the kinematic limits of the machine. Motion pro�les

for the feed drive system along the prede�ned path are generated using the JLAP for the

trade-o� between cycle time and motion accuracy [21]. To achieve energy optimal paths of

industrial machines while achieving smooth motion, S-curve trajectories are optimized [20, 70].

In addition, JLAP is optimized to achieve the trade-o� between time and energy consumption

for PTP motion for the feed drive systems [49].

Smooth continuity in velocity and acceleration with jerk limitation during linear interpolations

as described using JLAP lessen machine excitation and improve e�ciency. However, the jerk

limitation is associated with sudden changes in the jerk value at phase transitions that degrade
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the accuracy of the machine. For some applications, smooth jerk continuity during interpolation

along the path is required to ensure higher accurate motion and energy reduction. This can

be achieved by modifying the JLAP and introducing the harmonic motion to the constant jerk

phase.

2.3.3 Simultaneous trajectory generation and geometric path opti-

mization

Machine motion optimization for a given working surface as described above can be performed in

two ways either geometric path optimization or trajectory generation, where trajectory genera-

tion is performed on a prede�ned geometric path. However, both geometric path and trajectory

generation in�uence machine performance. Hence, it is essential to plan a motion that considers

the geometric path and trajectory optimization simultaneously.

For a given working surface, for example 2D geometry (Fig. 2.4) whereby no information on the

geometric path is given, the geometric path needs to be determined. In addition, for machine

to complete the coverage PTP motion on the working surface from the start to the end of the

motion, there are several di�erent feasible geometric paths. Fig. 2.5 (a) shows one of a feasible

geometric path on the 2D geometry. Based on the coverage motion objectives such as time and

energy consumption, an optimal geometric path must be determined that satis�es the surface

working constraints. Furthermore, in linear motion interpolation, variables such as position,

velocity, and acceleration should be de�ned to direct the motion from one location point to

another while satisfying machine kinematic limits. Interpolation of these variables generates a

trajectory or motion pro�le for each linear segment depending on the direction of the axes (Fig.

2.5. (b)). Di�erent motion pro�les such as trapezoidal and S-curve trajectories can be used to

describe the trajectory for PTP linear interpolations. During trajectory generation, objectives

such as time and energy can be considered. Therefore, consideration of simultaneous geometric

path and trajectory optimization highly improves machine performance while achieving motion

accuracy. The optimization parameters are de�ned based on the geometric path and trajectory

generation de�nition of the working surface.
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Fig. 2.4: Illustration of a working surface.

Fig. 2.5: Illustration of a coverage motion.

2.4 Optimization methods

Optimization methods are techniques used to �nd the best values for a given set of objective

functions, optimization parameters, and constraints of the optimization model. There are

several methods used for optimization and can be categorized into two groups: deterministic and

stochastic. Deterministic methods such as gradient descent and linear programming are used

to �nd optimal solutions to optimization problem by directly applying some steps or exploiting
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prede�ned features of a given problem. On the other hand, stochastic methods including GA

and Particle Swarm Optimization (PSO) use randomness search in some constructive way to

attain optimal solutions [71].

Recently, in motion optimization, stochastic methods using di�erent algorithms are proven to

be e�ective in �nding global optimal solutions to the optimization problems [72]. In [25], GA

is used for generating and optimizing toolpaths for cavity milling to �nd the best trade-o�

between processing time, cost, and energy. Li et al. [24] propose energy optimal toolpath for

the free-form surface milling, GA is used as optimization algorithm. PSO and GA are used to

�nd time-optimal path machine motion [29]. GA is used to determine an optimal machining

sequence for di�erent areas of a �at workpiece in [28]. For CNC drilling path optimization,

Ant Colony Optimization (ACO) algorithm is used to achieve shorter operating time [73]. In

[74], ACO is used to �nd the shortest path for the robotic path planning. Arti�cial Neural

Network (ANN) is used for optimal selection of milling toolpath strategies [75]. Yang et al.

propose a time-optimal trajectory optimization in industrial machines using PSO [76]. Lu et al.

[67] propose a time-optimal trajectory generation using the S-curve motion for the machine tool

along the prede�ned path by PSO. For robotic path planning, Xue uses NSGA II for shorter

paths, safety, and smoothness [77]. In [78], NSGA II is used to generate Pareto solutions set for

time and cost in travel planning. NSGA II is used to solve the multi-objective optimization for

energy minimization energy, time, and surface roughness for hole path drilling in CNC machines

[58].

These stochastic algorithms can be easily linked to di�erent optimization models and explore a

wide range of applications [79]. Based on problem formulation, optimization parameters, and

constraints, algorithm is set up to �nd feasible solutions. Optimized results support decision-

making process. The problem considered can be described as single-objective optimization

in which the best single solution is determined, or multi-objective optimization that takes into

account more than one objective in order to give a set of compromised solutions for the trade-o�

between them.
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2.4.1 Single-objective optimization methods

Problems requiring optimization of only one objective function are termed as single-objective

optimization problem. The optimization aims to �nd best solution for the de�ned problem such

as execution time, energy consumption, shorter path, and surface smoothness. The main goal

is to �nd a solution with the best objective value that outperforms other solutions. Since one

best solution is determined, it is easier for the decision maker to only select the obtained best

optimized solution. The general mathematical expression of single-objective with assumption

of minimization problem is given as

F (u) = min
u

{f(u)}, (2.9)

subject to : u ∈ U,

where f(u) is the objective function to be minimized. u is the optimization parameter vector;

u = [u1, u2, .......un], n is the total number of optimization parameters.

There are several optimization methods for single-objective functions, including numerical,

enumerative, and stochastic methods. To achieve a globally optimal solution, stochastic opti-

mization methods are recently been used to determine an optimal solution for single-objective

functions, including path optimization [29, 73, 74], trajectory generation [28, 67], and process

improvement [80, 81]. Simulated Annealing (SA), GA, ANN, ACO, and tabu search are some

of the stochastic optimization methods that solve problems while ensuring global optimal con-

vergence [71]. The selection among these methods depends on the problem that needs to be

considered. The use of a GA is shown to suit optimization problems of a combinatorial nature

with a high chance of �nding global optimal results quickly [82, 83]. Therefore, in the case

of a coverage motion optimization problem which is a combinatorial problem in nature, a GA

is one of the methods that can be used to determine an optimal solution. Following problem

optimization process, a single global optimal solution that outperforms all other solutions is

selected as the best solution.
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Genetic Algorithm

Genetic Algorithm (GA) is a population-based global search that uses genetic operators to �nd

optimal solutions [82]. It is a randomized search and optimization method based on natural

genetics and selection that uses inheritance, variation, and survival struggle mechanisms [84].

With a given single-objective function problem, optimization parameters, and constraints, the

algorithm can be executed to �nd a single-objective optimal solution. The representation

of the solution to the GA is achieved by using encoding. Di�erent ways of encoding such

as binary, real, and integers (numbering) are commonly used to represent the solution [85].

Binary encoding is the approach whereby the representation of genes uses 0's and 1's, for the

real encoding uses continuous numbers for genes representation, and the numbering is used

to represent the solution in optimization using positive integers. For the path optimization

problems, numbering or integers encoding is used to represent the solutions. An array of

integers with no repetition represents a path, which is a solution. A solution in GA is called

a chromosome or individual, consisting of discrete units called genes that correspond to each

integer in the path representation. Each gene has a particular value or feature for the individual

solution. A collection of individuals is called a population. The algorithm �nds an optimal

global solution as the search evolves iteratively. In Fig. 2.6, the optimization steps of GA is

shown, and these steps are brie�y described as follows.

Step 1) Population initialization: This is the process to generate non-optimal solutions to

be optimized during the optimization process. In coverage motion optimization, population of

candidate solutions are generated using numbering encoding that contains several path options.

Random initialization is a common method used to maintain the diversity and optimality of the

solutions, while other initializations method such as heuristic can be incorporated to increase

the convergence of the algorithm [86].

Step 2) Fitness evaluation: During optimization, �tness function is incorporated into the algo-

rithm to determine the value of objective function. Each solution in the population is evaluated

using a de�ned �tness function. A �tness value is the output of a problem-solving algorithm

that indicates how good the solution is.

Step 3) Selection: Some solutions in the population are selected as parents to create a new

solutions called o�spring for the next generation. The selected solutions are entered into the
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Fig. 2.6: Illustration of a GA �ow chart.

mating pool to undergo the recombination process in order to create o�spring. Proper selection

of parents is essential to maintain good diversity and convergence of the algorithm. One of the

selection methods is the roulette wheel selection operator, which provides the chance for each

individual solution to get selected and reduces premature convergence of the solution to a local

minimum [82]. In addiction, elitism method is incorporated to the algorithm. Elitism means

that in an iterative process, few best individuals found so far during each search are kept to

the next generation.

Step 4) O�spring creation: The new solutions called o�spring are created in mating pool

aiming to improve the search toward optimal solution during the iteration process. In the
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recombination process, crossover and mutation are used as genetic operators. Crossover is a

recombination process that creates o�spring from a pair of parents that exchange their genes,

creating two o�spring [87]. Good genes from parents are expected to appear more frequently in

the o�spring, eventually leading to convergence and overall good solutions. Therefore, crossover

leads to convergence of algorithm by making the individuals in the population alike. Mutation

is a slight random change in some genes in the solution. The mutation maintains diversity in

the population and assists the algorithm search to escape from converging to the local optima

[88]. During optimization process, algorithm is sometimes executed by incorporating some of

the modi�cations to operators to improve the operation to achieve feasible solutions. This can

be accomplished using a local search technique in mutation operation. During crossover and

mutation operations, each o�spring must be created without integers being repeated, ensuring

that the path are feasible. After o�spring creation, o�spring created in the mating pool become

a new population.

Step 5) Fitness evaluation of o�spring: The created o�spring are evaluated using a de�ned

�tness function to determine the optimized value. The �tness values achieved are used in a

selection process to determine parents, which are later used in creating o�spring for the next

generation or the calculated values become the �nal solutions values of optimization when the

algorithm termination condition is met.

Step 6) Termination condition: In order to terminate the optimization of algorithm, termination

condition is set. Fitness value evaluation criteria is used to decide on the termination condition.

A maximum number of iterations is prede�ned and selected based on trial runs; the number is

selected by which the optimal �tness values do not change. When the terminating condition of

the algorithm is met, the new population becomes a �nal solutions and the solution with best

�tness value is selected as the best solution.

2.4.2 Multi-objective optimization methods

Multi-objective optimization involves optimizing a number of objectives either by maximizing

or minimizing the values of their respective objective functions. The goal of optimization is to

�nd trade-o� between contradictory objectives. A set of trade-o� solutions help in the decision-

making process by providing a compromise between contradictory objectives, which are used
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Fig. 2.7: Illustration of a feasible solutions and Pareto front of two-objective functions.

as references to reach a �nal decision. The multi-objective optimization with assumption of

minimization problems is expressed in general mathematical form as

F (u) = min
u

{f1(u), f2(u), f3(u), ........., fn(u)}, (2.10)

subject to : u ∈ U,

where u is optimization parameter vector: u = [u1, u2, u3, .....um] with m as the number of

parameters in feasible solution space U , fn(u) is the nth objective function, and the integer n

≥ 2 is the number of objectives.

There are two methods that are commonly used in �nding feasible solutions for more than one

objective function to be optimized simultaneously, namely scalarization and Pareto [89]. Scalar-

ization is a method of �nding an optimal solutions by recursively converting multi-objective

optimization problems into a set of single-objective subproblems [90]. Some of the scalariza-

tion approaches include weighted sum, weighted Chebyshev, and ϵ-constraint. For scalarization

optimization, varying parameters such as weight- or ϵ-vectors and optimizing the scalarized

function, di�erent Pareto-optimal solutions can be found. However, combining objectives into

a single-objective subproblems can lead to the possibility that the search direction is at one
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Fig. 2.8: Illustration of a dominance approach during optimization.

point and the diversity of solutions degraded as the results will be a bias in �nding a trade-o�

solutions [91, 92].

Pareto method is a technique for simultaneously direct searching for the optimal solution of

each objective function, and a set of the optimal trade-o� between the contradictory objec-

tives is represented on the Pareto-optimal front [89]. Fig. 2.7 shows a feasible region where

several set of feasible solutions are generated using the Pareto method within the objective

function space, and the optimal results are represented on the Pareto front. There are several

Pareto approaches such as evolutionary multi-objective optimization (EMO) algorithms and

deep learning multi-objective optimization. The evolutionary optimization includes NSGA II,

NSGA III, and Strength Pareto Evolutionary Algorithm 2. Multiple trade-o� solution results

are generated for each simulation run during optimization, and the solutions are distributed on

the Pareto front.

The concept of dominance is used to determine the Pareto-optimal solutions, and dominance

classi�es the solutions generated into dominated and non-dominated. The dominance is exe-

cuted by help of constraints handling methods and Pareto ranking technique [93, 94]. Fig. 2.8

shows non-dominated and dominated solutions displayed on objective function space. A set of

non-dominated solutions is found with wide trade-o� among the objectives on the Pareto front.
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Pareto optimization method starts with non-optimal random solutions. Several simulation

runs are performed to execute an optimization algorithm to generate Pareto solutions. At each

iteration, the algorithm searches for global optimal convergence and determines multiple non-

dominated trade-o� solutions. In addition, as the algorithm runs iteratively, di�erent operators

of an algorithm are used to improve the solutions toward optimality. The �nal optimal values on

the Pareto front are achieved when one objective function value cannot be improved without

degrading the other objective function value. Therefore, the Pareto-optimal front is a front

comprising a collection of optimal non-dominated solutions with full convergence. Pareto-

optimal solutions are achieved that provide a set of non-dominated solutions with the exact

values of the objective functions; but the best trade-o� solution between the objectives is not

indicated. Therefore, it is essential to �nd the best trade-o� solution.

To determine the best trade-o� solution among Pareto-optimal solutions, one of the methods

used is the normalization of objective function optimal values achieved on the Pareto front.

Each objective function value is normalized to the entries in the positive unit range [0, 1]

without a change in their ordinal positions. The normalization is carried out using the values

obtained as follows;

f ∗
ij =

f ∗
ij − fmin

i

fmax
i − fmin

i

for i = 1, ...., n, and j = {1, 2, ....,m}, (2.11)

where fmin
i and fmax

i are the minimum and maximum value of the ith objective functions. f ∗
ij

is the jth individual solution of the ith objective function with m number of the solutions. f ∗
ij

is the normalized value.

Fig. 2.9 shows a representation of two objective functions with normalized solutions features

on the Pareto front. After normalization, some of the important solutions points on the Pareto

front can be easily indicated. The anchor point is the best point/solution for each objective

function from the Pareto front, taking the example for the two objectives as shown in Fig. 2.9,

each objective achieves one anchor point; therefore, there are two anchor points. In addition,

for the case of minimization problem, the utopia point is obtained by intersecting the minimum

value of one objective function with the minimum value of another objective function. When

the Pareto front solutions are normalized, the utopia point is the origin point (0,0) as shown

in Fig. 2.9. The origin point is used as a reference to �nd the best trade-o� optimal solution
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Fig. 2.9: Illustration of a normalization for optimal solutions.

on the Pareto-optimal front. The best trade-o� solution is the one with the shortest distance

from the origin as shown in Fig. 2.9. NSGA II is one of the Pareto optimization method used

for combinatorial optimization problem and its procedures are described as follows.

Non-dominated Sorting Genetic Algorithm II (NSGA II)

This is the optimization method that is population-based algorithm and used to �nd Pareto-

optimal solutions to multi-objective optimization problems [93, 95]. The algorithm generates

Pareto-optimal solutions with good convergence and diversity, and iterations are used in the

search process. At each run, solutions of each objective are generated and their relationship

are determined using the Pareto dominance approach, in addition, population solutions are

improved by algorithm operators such as crossover and mutation [93]. The algorithm maintains

the diversity and elitism of the solutions using density estimation, crowding distance operator,

and genetic operators [95].

To implement an optimization problem in algorithm, �rst, it starts with de�ning the problem

at hand to suit the algorithm. The optimization problem is de�ned by three components which

are; set of the objective functions, optimization parameter vector, and set of constraints which
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determine or ensure feasibility of the solutions. The goal is to �nd optimal combinations of op-

timization parameters for the objective functions and obtain the Pareto-optimal solutions while

running within given constraints. NSGA II are shown to be an e�ective evolution algorithm for

optimizing several multi-objective problems, including combinatorial problems [77, 96, 97], to

generate Pareto-optimal solutions. Therefore, with the aim of simultaneous trajectory gener-

ation and path optimization of machine coverage motion, the algorithm can be executed, and

Pareto-optimal solutions can be e�ectively determined.

Path optimization is a combinatorial problem; integers/numbering encoding is used to represent

solutions in the algorithm. In addition, since NSGA II adapts some strategies from the GA,

optimization steps such as population initialization, �tness evaluation, o�spring creation, and

termination condition, are executed similarly to those described in the GA in section 2.4.1. It-

eratively, the algorithm �nds Pareto-optimal solutions that trade-o� between the contradictory

objectives. The following is a description of the NSGA II operation steps, and Fig. 2.10 shows

its �ow chart.

Step 1) Population initialization: This is a set of non-optimal solutions of size N that are

generated at the start of optimization. Numbering encoding generates a population of candidate

solutions that contain several path solutions. These solutions can be generated randomly and

incorporated with other initialization methods, such as heuristics, to increase the convergence

of the algorithm.

Step 2) Fitness evaluation: In order to determine the value of each objective function, the

�tness functions are incorporated into the optimization algorithm. Based on the number of

objective functions, more than one �tness function is assigned. Each solution in the population

is evaluated using a de�ned �tness functions. A �tness values are output of a problem-solving

algorithm.

Step 3) Non-dominating sorting and selection: The generated population solutions are sorted

based on their dominance to generate non-dominated Pareto fronts in the population of size

N [93, 95]. For each solution, a comparison is made with every other solution in the popula-

tion to determine its non-domination. The solutions are identi�ed and classi�ed into di�erent

non-dominated ranks. The ranks of non-dominated solutions form multiple Pareto fronts, num-

bered from �rst, second, and higher. In addition, the crowded-distance comparison approach is

incorporated into the algorithm to maintain a good spread in the obtained solutions. Following

28



2.4. Optimization methods

offspring fitness evaluation

Recombination and selection-II
Termination 

condition met?

Pareto optimal solutions

End

Non-dominated sorting
and selection-I

Yes

No

Start

Population initialization (N) 

Population fitness
evaluation

Offspring creation

Fig. 2.10: Illustration of a NSGA II optimization process.

the non-dominated process, some solutions are selected from the population to become parents.

Parents are selected by the binary tournament based on crowding-distance and assigned Pareto

front ranks. The parent population is used to generate o�spring by crossover and mutation.

Step 4) O�spring creation: As the iteration process continues, o�spring solutions are created

in mating pool to improve the search for optimal solutions. Genetic operators of crossover and

mutation are used in the mating pool to improve solutions by generating o�spring. It is a

necessity to ensure the correct sequence of the integers in the created o�spring, this is achieved
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using the genetic operators that maintain the order of the integers. The crossover process is a

recombination process in which two o�spring are produced from a pair of parents that exchange

their genes, resulting in two o�spring. The crossover pushes the algorithm towards convergence

by making the solutions look alike. In addition, the mutation is used to introduce slight changes

to some of the genes of the solutions to maintain diversity.

Step 5) Recombination and Selection II: The generated o�spring population is combined with

the parent population to form the population size of 2N . Recombination of parent and o�spring

populations ensures elitism [96]. Non-dominating sorting is performed to determine di�erent

Pareto fronts classi�ed into ranks. In addition, the crowding-distance approach maintains

diversity among non-dominated solutions. Using the binary tournament, crowding-distance

approach, and assigned ranks of Pareto fronts, solutions are selected to create a new population

of N [93]. The selected solutions are used to create a parent population for the next generation

or the �nal Pareto-optimal solutions when the termination condition is met.

Step 6) Termination condition: A termination condition is set to terminate the optimization

of an algorithm after several runs. To select the termination condition, evaluation criteria of

�tness values are used. It is selected based on trial runs in which the optimal �tness values do

not change, and a maximum number of iterations can be prede�ned.
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Chapter 3

Time and Energy Optimal Trajectory

Generation for Coverage Motion using a

Jerk-limited Acceleration Pro�le

This chapter proposes a path and trajectory optimization method for time and energy optimal

coverage motion of industrial machines. JLAP is used to describe motion along the path with

variable velocities depending on the length of the linear segment with full utilization of the

machine performance. An energy model of a feed drive system is used to calculate the energy

consumption to move along the path consisting of several linear segments. Multi-objective op-

timization is implemented to �nd trade-o�s between con�icting objectives of time and energy

consumption using NSGA II. The Pareto front is generated to represent the trade-o� between

time and energy for a geometric path. The best trade-o� solution is chosen as the optimal point

nearest to the origin of the normalized objective function space. Experimental veri�cation is

carried out with a two-axis industrial machine, which demonstrates the e�ectiveness of the

approach. The proposed approach achieves the best trade-o� solution with the time reduction

and energy-savings of approximately 10.05% and 2.10%, respectively. In addition, a proposed

path solution is compared to the case that constant velocity commands are used in path op-

timization. The maximum error reduction is 76.6% compared to the constantly commanded

velocity approach.
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In this chapter, simultaneous trajectory generation and path optimization are considered for

the machine coverage motion because, in most cases, the two methods are implemented sepa-

rately: trajectory generation [13�23] and path optimization [24�29]. Consideration of machine

kinematic limits and geometric path simultaneously improves the accuracy, performance, and

energy consumption of the industrial machine. Moreover, the proposed method has advantages

for each linear segment to attain the desired velocity to ensure motion smoothness compared

to the widely used approach of constant velocity command in path optimization [24, 25]. Op-

timization of time and energy to generate the best trade-o� solution addresses the gap in the

literature for considering both objectives simultaneously. Most similar studies that implement

trajectory generation consider a single objective [13�20, 22, 23]. Because time and energy are

two con�icting objectives, multi-objective optimization of time and energy is critical.

This chapter is organized as follows: Section 3.1 presents the related works. A description of

trajectory representation is described in Section 3.2. Objective functions are given in Section

3.3, followed by the optimization algorithm in Section 3.4. Section 3.5 presents the optimization

results. Section 3.6 discusses the experimental process and results, followed by concluding

remarks in Section 3.7

3.1 Related works

Industrial machines need e�ciency improvements since they are frequently used for a long

time with repetitive tasks. Machine e�ciency improvement can be achieved through trajectory

generation while observing machine kinematic limits. A feedrate optimization approach is pro-

posed by Endo et al. for accurate prediction of cycle time for CNC machine path [13]. Feedrate

optimization with higher-order constraints is presented using a heuristic trajectory generation

algorithm for curved and linear toolpath to attain time-optimality satisfying machine tool drive

constraints [14]. Sun et al. propose feedrate optimization for the �ve-axis machine; the optimal

feedrates are obtained from the velocity, acceleration, and jerk limit to ensure the required ma-

chining accuracy while satisfying the machine kinematic limits [15]. Uchiyama et al. propose

trajectory generation for a PTP motion for energy reduction and smooth motion generation

[20]. In [18], an optimal and improved control motion is proposed, attained through accurate
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dynamic modeling and generating the trajectories with continuity. A minimum-time trajec-

tory generation using jerk-limited feedrates of a given PTP motion CNC toolpath is proposed

[16]. Cycle time and motion accuracy trajectory generation is proposed for the two-axis feed

drive system [21]. In [17], time-optimal trajectory generation is presented with consideration

to kinematic and dynamic constraints for robotic manipulator along fully speci�ed paths. Shen

et al. [19] propose a time-optimal motion for ensuring the continuity of the acceleration tra-

jectory for the robotic system path-constrained. A minimum-energy trajectory generation on

robotic systems is proposed for PTP motion using trapezoidal and cycloidal speed pro�les [22].

Zhou et al. [23] propose minimum-energy trajectory planning for robotic system of sculptured

surface machining. These studies show the necessity of trajectory generation/optimization in

the coverage motion to improve machine e�ciency in energy savings, cycle time, and motion

smoothness. Generally, the time and energy consumed by industrial machines are a�ected not

only by trajectory but also by the path. To further reduce time and energy consumption, op-

timal path selection is crucial [44, 58]. However, in these studies mentioned above, trajectory

generation is implemented along the prede�ned contour paths.

In addition, the geometric path has an impact on machine e�ciency; path optimization is

another approach used in improving machine e�ciency. Zhou et al. [25] propose a toolpath

optimization method. An improved GA is used to generate and optimize the toolpath for cav-

ity milling with simultaneous optimization of cutting parameters and the toolpath aiming to

attain the best trade-o� path between processing time, cost, and energy. In [24], a toolpath

optimization method for the free-form surface milling is proposed. An image process method on

path optimization is proposed in [26] to improve the e�ciency in pocket milling using a contour

milling strategy. Hatem et al. [27] propose an algorithm for geometric path optimization for

CNC milling to achieve the shortest path. Path optimization is proposed through a discretiza-

tion framework [28], GA is used in toolpath optimization to minimize machining time and jerk

for the machine e�ciency improvement. In [29], toolpath optimization to minimize machining

time on several linear segments in the area to be machined is proposed, in which GA and PSO

are used for optimization. Edem and Mativenga propose a feed-axes energy model to estimate

time and power consumption for the CNC toolpath [98]. The model is used to analyze the

impacts of toolpath selection and geometry. However, these studies present path optimization

methods; trajectory generation, including velocity, acceleration, and jerk, is not considered. As

a result, the optimized geometric path motion can generate high operating speeds, excessive
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accelerations, and vibrations of the machine's mechanical structure, which a�ect accuracy and

performance. In addition, the same constant velocity command approach is used in [24, 25] for

geometric path optimization. For several linear segments of coverage motion, the commanded

constant velocity may not be achieved by shorter segments leading to higher machine excitation.

Therefore, it is of great importance to consider trajectory generation in path optimization to

improve motion accuracy and e�ciency.

3.2 Trajectory representation

3.2.1 Path geometry

The path geometry is a series of location points for the coverage motion. For example in pocket

milling, tool motion from one location point to another creates a linear segment. As shown in

Fig. 3.1, motion from a to b passes through several location points to create a linear segment

with motion distance L. The path consists of several linear segments. Motion a to b is the

�rst segment and b to c is the second segment up to the end of the path. The connection of

linear segments de�nes the generated geometric path.

For a given working surface whereby no information of the geometric path is given, the geo-

metric path needs to be determined. To complete the coverage motion on the working surface

from the start to the end of the motion, there are several di�erent feasible paths. It is impor-

tant to �nd the optimal geometric path based on objectives set for the coverage motion while

satisfying the surface working constraints including obstacle avoidance (island) in this chapter.

However, trajectory and machine kinematic limits such as velocity, acceleration, and jerk are

not considered during geometric path optimization.

In linear motion interpolation, variables such as position, velocity, and acceleration are com-

manded to direct the motion from one location point to another while satisfying machine

kinematic limits. Interpolation of these variables generates a trajectory or motion pro�le for

each linear segment depending on the direction of axes. Trajectory generation for the linear seg-

ments needs to be performed for the machine to follow. The machine kinematic limits velocity,

acceleration, and jerk should be observed to achieve the smooth coverage motion. Therefore,
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Fig. 3.1: Illustration of a path geometry.

to increase the e�ciency of the industrial machine, the objective functions of time and en-

ergy consumption for the coverage motion with simultaneous geometric path optimization and

trajectory generation are considered.

3.2.2 Trajectory representation of a linear segment

It is crucial to ensure smooth kinematic pro�les during trajectory generation to maintain accu-

racy and avoid exciting the machine [99, 100]. JLAP is used to generate smooth trajectories for

accurate linear contours in path optimization. It is the trajectory with continuous acceleration

pro�les generated from seven segments motion time intervals. The de�nition of the jerk in each

time interval is

...
x k(t) =



jlim,k, t0 ≤ t < t1,

0, t1 ≤ t < t2,

−jlim,k, t2 ≤ t < t3,

0, t3 ≤ t < t4,

−jlim,k, t4 ≤ t < t5,

0, t5 ≤ t < t6,

jlim,k, t6 ≤ t < t7.

(3.1)

The time intervals are determined by velocity, acceleration, and jerk limit, with the assumption

that acceleration and deceleration are the same as the behaviour of industrial machines. The
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de�nition of the time intervals are

ta,1 = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6,

tc,1 = t2 − t1 = t6 − t5,

Tc,1 = t4 − t3,

(3.2)

where jlim is the jerk limit for the kth axis, ta,1 is the linear acceleration/deceleration period,

tc,1 is the constant acceleration/deceleration period, and Tc,1 is the constant velocity period.

For a linear segment distance L of the geometric path, all machine kinematic limits should

be satis�ed to determine feasible and optimal coverage motions. The kinematic limits jerk,

acceleration, and velocity must be jlim, alim, vlim > 0, and satisfy the following requirements:

| ...x k(t)| ≤ jlim,k,

|ẍk(t)| ≤ alim,k, (3.3)

|ẋk(t)| ≤ vlim,k,

where xk(t) is the displacement of axis k. jlim,k, alim,k, and vlim,k are the jerk, acceleration, and

velocity limits, respectively. In this chapter, PTP linear contours are used with zero velocity,

acceleration, and jerk at the start and �nal position of the linear segment.

3.3 Objective functions

3.3.1 Motion time

Motion time is the total time needed in moving the machine table to complete the motion along

the path. During motion, the time for each linear segment, as suggested in [20], is calculated

using (3.4). The total motion time is a summation of all segment times of the path. The time

for each linear segment is calculated as

Ti = Tc,i + 2tc,i + 4ta,i, (3.4)
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where Ti is the required time for motion distance of the ith segment, Tc,i is the constant velocity

period of the ith segment, tc,i is the constant acceleration/deceleration period of the ith segment,

and ta,i is the linear acceleration/deceleration period of the ith segment.

3.3.2 Energy consumption

For linear segment trajectory, position, velocity, and acceleration determine the energy con-

sumption for industrial feed drive systems [20]. The important property is that power is a

function of velocity and acceleration. Therefore, the power can be estimated from trajectory

pro�les. The energy consumption model used in this chapter as described in section 2.2 in-

corporates dynamics of feed drive systems. The representation of power formulation is given

as

Pk = C1,kẍ
2
k + C2,kẋ

2
k + C3,kẋksgn(ẋk) + C4,k

+C5,kẍksgn(ẋk) + C6,kẍkẋk, for k = {x, y}.

Energy consumption is calculated for each linear segment along the path during machine cov-

erage motion. The summation of energy for all segments gives the total energy of the coverage

motion. Energy consumption for the linear segment is given by

E =

ttf∫
t0

(|Px(t)|+ |Py(t)|)dt, (3.5)

where E is the total energy consumption for the feed drive system, t0 and ttf are the start and

end motion time of the segment, respectively. Px(t) and Py(t) are the power at time t for the x

and y axis, respectively. Di�erent machine coe�cients and parameters used in this chapter are

presented in Tables 2.1 and 2.2 of section 2.2, respectively.
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3.3.3 Multi-objective model

The multi-objective model is used to obtain the trade-o� between time and consumed energy

in minimizing both objectives. The representation of the model is expressed as

F (z ) = min
z

{T (z ), E(z )}, (3.6)

where T and E are the time and energy consumption for the entire coverage motion, respectively,

and z is an optimization parameter vector that consists of variables describing the coverage

motion. The optimization parameters are the time intervals and distance for the linear segment

described as

z = [ta,1, tc,1, Tc,1, L]. (3.7)

3.4 Optimization of the model using NSGA II

NSGA II starts with initial solutions and then gets modi�ed through the iteration process

using di�erent operators. Fig. 3.2 shows an optimization �ow process. Each operation step is

described as follows.

3.4.1 Location points generation

For the machine table to move from one point to another on the working surface, the series

connection of the points de�nes the path. A series of location points is necessary for path

generation to achieve the desired geometric path. After specifying the working surface, point

locations are generated on it with equal distance from one point to another, which is 7.5 mm in

this chapter. Grid points represent location points and are stored using x and y coordinates.

Numbering is assigned for each grid location point.

38



3.4. Optimization of the model using NSGA II

Termination 

condition met?

End

Yes

No

Offspring fitness evaluation
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Generation of path points

and parameters setting

Start

Population initialization (N)

Population fitness
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Offspring creation Feasibility check

Recombination and selection-II

Non-dominated sorting

and selection-I

Fig. 3.2: Illustration of a �ow chart for NSGA II with feasibility check.
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3.4.2 Encoding

Numbers are used to generate di�erent solutions representing di�erent coverage paths. With

no repetition, each number/integer represents a location point, in a sequence such as 1 −→ 4 −→
6 −→ 2 −→ 7 −→ 3 −→ 5, where the motion starts at 1 followed by 4 up to 5. In NSGA II,

each number is a gene with point information; all genes for the path create chromosomes called

population. The total number of genes in the path equals the number of series location points

representing the geometric path.

3.4.3 Population initialization

The initial population is a set of chromosomes representing di�erent options for the coverage

motion. Initialization is a critical step to obtain the best results. If the total population is

randomly initialized, an optimal solution is obtained after a long time [86]. Two methods are

used for population initialization: random and heuristic. In this chapter, 80% of the population

is randomly generated to maintain diversity and optimality in solutions, and the remaining

population is heuristically initialized.

3.4.4 Feasibility check

For each generated solution, it is necessary to ensure feasibility that satis�es the constraints of

the coverage path. In addition, each integer should be visited only once on its path and the

sequence or order of integers should be followed since skipping an integer causes omissions and

leads to an infeasible path. The time interval segments should be 0 ≤ ta, 0 ≤ tc, and 0 ≤ Tc

and all kinematic limits in (3.3) are satis�ed.
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3.4.5 Fitness functions

Fitness functions are used to obtain solution values at each algorithm run. The �tness functions

are expressed as

T =
n∑

i=1

(
Tc,i + 2tc,i + 4ta,i

)
, (3.8)

E =

ttf∫
t0

|Pk(t)|dt, (3.9)

where T is the total time, E is the total energy, Tc,i is the constant velocity period of the ith

segment, tc,i is the constant acceleration/deceleration period of the ith segment, and ta,i is the

linear acceleration/deceleration period of the ith segment. Pk(t) is the power at time t for the

kth axis, t0 is the start motion time, and ttf is the end motion time.

3.4.6 Selection

Parents are individuals, as analogous to reproduction, used to create o�spring in the recom-

bination process. Individuals in the population of size N are selected to be parents. In this

chapter, binary tournament selection is used, as proposed in [93], based on crowding distance

comparison.

3.4.7 Crossover operation

The crossover is a recombination process that creates o�spring from a pair of parents that

exchange their genes, creating two o�spring. The crossover probability pc is set to the algorithm

as a crossover occurrence in the population. Table 3.1 illustrates the order crossover operation,

where a pair of parents is selected, and two random cuts divide parents into three separate

groups of genes. For creating the �rst o�spring, the genes between the two cuts in the second

parent are copied to �ll the position in the o�spring while maintaining their position, and
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Table 3.1: Crossover process.

Chromosome Genes

parent (1) 1 −→ 4 −→ 6 −→ 2 −→ 7︸ ︷︷ ︸ −→ 3 −→ 5

parent (2) 2 −→ 5 −→ 1 −→ 4 −→ 7︸ ︷︷ ︸ −→ 6 −→ 3

o�spring (1) 6 −→ 2 −→ 1 −→ 4 −→ 7︸ ︷︷ ︸ −→ 3 −→ 5

o�spring (2) 5 −→ 1 −→ 6 −→ 2 −→ 7︸ ︷︷ ︸ −→ 4 −→ 3

Table 3.2: Mutation process.

Chromosome Genes

parent 1 −→ 4 −→ 6 −→ 2 −→ 7 −→ 3︸ ︷︷ ︸ −→ 5

o�spring 1 −→ 4 −→
︷ ︸︸ ︷
3 −→ 7 −→ 2 −→ 6 −→ 5

the remaining genes are �lled by �rst parent genes not occupied in the o�spring. The second

o�spring is created copying genes in between the two cuts of the �rst parent by maintaining

their position as in the parent. The remaining part is �lled by the genes found in the second

parent but not found in the second o�spring.

3.4.8 Mutation operation

Mutation operation improves newly formed o�spring during the iteration process after the

crossover operation by making small changes to the selected genes. In this chapter, inversion

mutation is used in combination with a local search to improve the solutions. Table 3.2 shows

the mutation process. In inversion mutation, uniformly random two cut points are generated,

and the genes between the two cuts are inverted to form new o�spring. The local search �nds

the best new mutated o�spring during the inversion process compared to an initial individual;

there is no improvement if the initial individual is better than the mutated o�spring.
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3.4.9 Merging and sorting

After the crossover and mutation process, the newly formed population o�spring of size N

combine with the initial population parents to form a new population of size 2N . The formed

population is sorted based on their dominance to generate Pareto fronts, starting with the

�rst Pareto front to obtain population size N . The sorted population size N becomes the

new population for the subsequent recombination of operation or the �nal Pareto solutions, as

illustrated in Fig. 3.2.

3.4.10 Termination condition

The algorithm runs several iterations to improve solutions, and the maximum number of itera-

tions is prede�ned. The number is selected based on trial runs by checking if the solutions have

no further improvement of the �tness values.

3.4.11 Computation complexity

Computation complexity is the approach that aims to classify and compare the algorithm

performance when executing computational problems by evaluating the amount of resources

such as time and memory required to run it [101]. Computational complexity depends on the

size of the inputs of the computational problems. The notation symbols are used as a language

to express the complexity of an algorithm. In running the optimization problem by NSGA II,

the resource space complexity is described as O(np
2), where np is the population size [102].

Computation time is given by O(nitnonp
2), where nit, no, and np are number of iterations,

objectives, and population size, respectively [101, 102]. Thus, the optimization problem in this

chapter has a space and time complexity of O(np
2) and O(nitnonp

2), respectively.
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Fig. 3.3: Pareto front representing the optimization results and the geometric path at the

best trade-o�.

3.5 Case study

3.5.1 Optimization condition

The 2D pocket geometry part in Fig. 3.3 (b) is used for path optimization. The working surface

dimensions are 158.5 mm x 120 mm with a polygon as the island is used. The axial velocity,

acceleration, and jerk machine limits are 0.08 m/s, 1 m/s2, and 20 m/s3, respectively. The

optimization problems of (3.8) and (3.9) are used as �tness functions in NSGA II to determine

optimal motion time and energy consumption along the geometric paths. NSGA II parameters

are crossover probability pc = 0.8, mutation probability pm = 0.2, population size is 200, and

maximum iterations number is 100. The parameters are selected based on trial runs of di�erent

parameters set of pc, pm, population size, and a maximum number of iterations by checking if

the solutions have no further improvement of the �tness values. The optimization is performed

in MATLAB® 2021a environment on a laptop computer core i7-1165G7, 2.80 GHz CPU, 16GB

RAM, and Windows 10 operating system to generate optimized solutions.
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Fig. 3.4: The best trade-o� path's generated jerk, acceleration, and velocity for a linear

segments in x and y axes.

Fig. 3.5: Generated velocity pro�les for the time, best trade-o�, and energy optimality paths

in x and y axes.
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Fig. 3.6: Generated tangential velocities for the time, best trade-o�, and energy optimality

paths.

3.5.2 Optimization results

The Pareto front is generated after running the algorithm for 100 iterations. Fig. 3.3 (a) shows

the Pareto front for the trade-o� between total time and energy consumption, and Fig. 3.3

(b) shows the best trade-o� geometric path. At the best trade-o� point in Fig. 3.3 (a), the

energy consumed is 212.96 J and the total time path motion is 53.15 s. At the energy-optimal

point, the path motion energy consumption is 209.81 J and the total time is 59.09 s. The

energy consumed is 3.15 J, less than the best trade-o� path energy consumption. At the time-

optimal point, the energy consumption is 217.52 J, which is 4.56 J higher than the best trade-o�

point, and the total time is 48.83 s. Hence, the best trade-o� solution provides time reduction

and energy-saving of 10.05% and 2.10%, respectively, compared to the time and energy-optimal

solutions. As shown in Fig. 3.3, the Pareto optimal results indicate that the proposed approach

is e�ective in �nding the trade-o� between two objectives. The computation time for generating

the Pareto optimal results (Fig. 3.3) is 754.98 s.

Path motion pro�les for jerk, acceleration, and velocity in optimal case of the best trade-o� are

presented in Fig. 3.4 for the x and y axes, a linear segment motion as shown in Fig. 3.3 (b)

from Start to Point1 is used to generate the motion pro�les. Velocity pro�les for the time,

best trade-o�, and energy optimal solutions for both axes are shown in Fig. 3.5. The kinematic
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limits of all path motions are obeyed. Further, the proposed approach generates the path motion

pro�les with variable velocities for each linear segment. Tangential velocity is presented in Fig.

3.6. Trajectories are generated for each linear segment consisting of acceleration, constant

velocity, and deceleration periods, which is a pro�le used in industrial machines to generate

a smooth motion [20]. Furthermore, the optimized geometric path has longer segments that

minimize the tool's frequent lifting and reduce air time; this contributes to signi�cant time

reduction and energy saving.

3.5.3 Motion optimization of the other two working surfaces

Similar optimization procedures presented in section 3.4 are used to generate simultaneous path

and trajectory optimal results on two other working surfaces. The working surface of 2D pocket

geometry with two islands inside Fig. 3.7 (b) is optimized, the size of the working surface is

110 mm x 140 mm with point locations of equal distances of 10 mm from one point to another.

After optimization is run to the maximum number of iterations (100), the trade-o� solutions

between time and energy consumption are determined. Fig. 3.7 (a) shows the Pareto front for

the trade-o� solutions between time and energy consumption, and Fig. 3.7 (b) presents the

geometric path for the best trade-o� solution. The best trade-o� solution achieves a time of

26.34 s and energy of 133.29 J, where the energy consumption is 3.24 J less than the overall

time-optimal result, and it is 2.98 s faster than the overall energy-optimal solution. Therefore,

the best trade-o� solution achieves time and energy saving potential of about 10.21% and 2.37%,

respectively, compared to the overall extrema among the three optimal cases.

In addition, optimization of the working surface with an island Fig. 3.8 (b) is considered.

The size of working surface area is 100 mm x 100 mm, the point locations are generated with

equal distance of 10 mm from one point to another. The Pareto front optimal solutions for

the trade-o� time and energy consumption are generated and shown in Fig. 3.8 (a), with the

best trade-o� solution achieving time and energy values of 18.29 s and 73.62 J, respectively.

The time-optimal path total time is 16.42 s and the energy consumption is 75.62 J, and for the

energy-optimal path motion, the total time is 20.57 s with the energy consumption of 72.31 J.

Using three optimal cases from simulation, the best trade-o� solution achieves time reduction

and energy saving of 11.08% and 2.66%, respectively. Fig. 3.8 (b) shows the best trade-o�

geometric solution.
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Fig. 3.7: Pareto optimal solutions and the geometric path at the best trade-o� for working

surface two.

Fig. 3.8: Pareto optimal solutions and the geometric path at the best trade-o� for working

surface three.

3.6 Experiment

3.6.1 Experimental procedure

An industrial two-axis machine, as shown in Fig. 3.9, is used in the experimental veri�cation

of the proposed approach. The machine table has two AC servomotors with two ball screw

drive systems connected to each axis. The rotary encoders of 76.29 nm resolution are used to

measure the axial position of each axis of the table. A sampling time of 0.2 ms is used.
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y

x

AC Servomotors
with Built-in Encoder

Ball Screw

Fig. 3.9: Industrial two-axis feed drive system.

Table 3.3: Selected optimized paths on Pareto front.

No. Total time [s] Energy consumption [J]

1 48.83 217.52

2 51.24 214.75

3 53.15 212.96

4 55.30 211.63

5 59.09 209.81

The experiment is conducted on optimized paths from Pareto optimal solutions to verify the

simulation results. Five points are selected on the Pareto front for experimental veri�cation:

best trade-o�, energy-optimal, time-optimal solutions, and two other solutions, as shown in

Table 3.3. Reference trajectories of the paths are prepared to move the machine, and the

experiment of each path is repeated �ve times to ensure the repeatability of the results. The

electrical power consumption for each axis is recorded by a power analyzer (HIOKI3390). The

power analyzer is installed between a motor driver and a motor, directly measuring its power

consumption. The analyzer measures energy using an integration measurement approach, in

which the power is integrated every 50 ms of data update. When the reference trajectory path

moves the machine, the measurement value of energy consumption for the two axes is displayed

on the display channel. The total energy of the two axes is recorded. The experiment is repeated

�ve times for each trajectory path, and the average energy consumption is calculated.
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Fig. 3.10: Experimental and simulation results on energy consumption.

3.6.2 Experimental results

Fig. 3.10 presents simulation and experimental average energy consumption for �ve di�erent

paths results selected from the Pareto front. The experimental results obtained are similar to

the simulation results. Experimental x and y axes velocity pro�les for the time, best trade-o�,

and energy optimal cases are presented in Fig. 3.11. All the kinematic limits are obeyed and

are similar to the velocity pro�les for the simulation results (see Fig. 3.5).

The rotary encoder measures the tracking performance for the path motions. Fig. 3.12 shows

the x and y axes mean absolute tracking error for the three paths: time, best trade-o�, and

energy optimal. The tracking error at the time-optimal path is higher in x axis when compared

with other paths due to higher velocities attained by di�erent linear segments in the path as

shown in Fig. 3.11. The tracking error in y axes is similar in all of the paths since all short

segments attain almost the same velocity.

Furthermore, the same constant velocity approach [25] is used for path and trajectory optimiza-

tion to command all linear segments to achieve the commanded velocity. The selected velocity

is 0.04 m/s. The generated path is compared with the optimized best trade-o� path of the

proposed approach. Fig. 3.13 shows the experimental velocity pro�les for the best trade-o�

and constantly commanded velocity path for the x and y axes. The best trade-o� path shows

that each segment attains di�erent desirable velocities. For the constantly commanded velocity
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1*

Fig. 3.11: Experimental velocity pro�les for the time, best trade-o�, and energy optimality

paths in x and y axes.

Fig. 3.12: Mean absolute tracking error for the time, best trade-o�, and energy optimality

paths in x and y axes.

approach, each linear segment tries to attain the desired constant velocity. However, short seg-

ments fail to attain it, leading to higher machine excitation and higher maximum errors than

the proposed approach. Fig. 3.14 shows the mean absolute tracking error for the best trade-o�
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2* 2*

Fig. 3.13: Experimental velocity pro�les for the best trade-o� and constantly commanded

velocity paths in x and y axes.

and constantly commanded velocity approach. There is a slightly higher mean absolute track-

ing error for the best trade-o� path in x axis compared to the constantly commanded velocity

path because there are linear segments with higher assigned velocities, which is easier to be

tracked by the controller. In the y axis, the constantly commanded velocity path has a higher

mean absolute tracking error because almost all the segments have higher velocities compared

to the best trade-o� path.

Fig. 3.15 shows the maximum error for the two paths. Constantly commanded velocity path

has a higher maximum error in both axes. The constant velocity cannot be attained for shorter

linear segments, causing higher machine excitation. The best trade-o� path has an approxi-

mately 76.6% reduced maximum error because all linear segments attain desirable velocities.

The above results show that path optimization with variable velocities generates smoother

motion pro�les than the constantly commanded velocity approach. In addition, the energy

consumption for the constant velocity path is 221.47 J, which is 3.8% higher than the best

trade-o� path.

3.6.3 Discussion

The chapter aims to solve the multi-objective problem of simultaneous path optimization and

trajectory generation to minimize time and energy consumption for the coverage motion. As

shown in Fig. 3.10, similar Pareto fronts are obtained in both simulation and experimental
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Fig. 3.14: Mean absolute tracking error for the best trade-o� and constantly commanded

velocity paths in x and y axes.

Fig. 3.15: Maximum error for the best trade-o� and constantly commanded velocity paths

in x and y axes.

results. The optimal solution for the best trade-o� between time and energy consumption is

determined. The �ndings demonstrate that the proposed method can be used to provide a

trade-o� between time and energy consumption for the coverage motion (see Figs. 3.3 and

3.10). Hence, during process planning, the planner can choose any solution from the Pareto

front, depending on the preferences between the two objectives.

Figs. 3.3(b) and 3.5 show simulation results of the generated geometric path and the mo-

tion pro�les, respectively. From the simulation results, reference trajectories of the paths are

prepared to move the machine table. The experimental motion pro�les are recorded and plot-

ted; the motion pro�les are similar to simulated ones (see Figs. 3.5 and 3.11). From these
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results, can be concluded that the proposed method achieve simultaneous path optimization

and trajectory generation while obeying kinematic constraints. Unlike the path optimization in

[24�29], which mainly generates an optimal geometric path without taking into account kine-

matic constraints, the proposed method generates the optimal path while considering trajectory

generation, including velocity, acceleration and jerk.

The proposed approach is compared with the same constant velocity approach used in path

optimization [25]. The selected approach is widely used in practice for geometric path coverage

motion optimization. To show the same performance, the mean absolute tracking and maximum

error values are shown in Figs. 3.14 and 3.15. The proposed method shows a signi�cant

contribution in reducing the maximum error by 76.6%. As a result, it is reasonable to conclude

that the proposed method can be used to improve motion performance.

In this chapter, the energy model of an industrial two-axis feed drive system (3.5) is used.

Two-axis industrial machine feed drive systems are commonly utilized in the manufacturing

industry, where they are found in types of machinery such as CNC milling, laser, and waterjet

cutting machines. Therefore, the trajectory generation performance evaluation is performed on

an industrial two-axis feed drive system. Since the trajectory evaluation is done on a typical

feed drive system, the proposed method can also be applied to machining operations by simply

incorporating a cutting force model. In addition, the proposed approach can be appropriate in

pocket milling with islands since several linear segments have di�erent lengths.

3.7 Conclusion

This chapter proposes simultaneous path and trajectory optimization to minimize the time and

energy consumption of the 2D coverage motion. An energy consumption model for a two-axis

industrial machine is used in the optimization. Simulation results are veri�ed using a two-axis

industrial machine, which shows the e�ectiveness of the proposed approach. The best trade-

o� solution achieves a time reduction and energy savings of 10.05% and 2.10%, respectively.

In addition, the proposed method improves the path's accuracy by reducing tracking errors.

Results show that an optimized path motion with variable velocities at each linear segment
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lowers the maximum error by approximately 76.6% compared to the optimized path using the

constant commanded velocity approach.
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Chapter 4

The E�ectiveness of the Modi�ed S-curve

Trajectory for Energy Saving in Coverage

Motion

This chapter proposes a coverage motion optimization approach that simultaneously integrates

trajectory generation and geometric path optimization for energy saving of industrial machines.

PTP coverage motion is generated by linear interpolation of each segment described by the mod-

i�ed S-curve velocity pro�le. Smooth and accurate transitions between the phase changes in the

pro�le are attained with smooth continuity of machine kinematic limits jerk, acceleration, and

velocity, which are crucial to realize accurate motion. GA is used to generate an optimal cov-

erage motion using the convergence approach whereby the converged solution is selected as the

�nal solution achieving minimum energy consumption. The simulation study and experimental

validation are provided to illustrate the e�ectiveness of the proposed technique. In addition,

the proposed approach is compared with the optimized path generated using the fourth-order

motion pro�le in terms of energy saving and motion performance. The comparison results

show that the proposed approach increases motion accuracy by reducing the absolute mean

and maximum tracking error. The proposed approach reduces absolute mean error by about

25.43% and 22.76% for the x and y axes, respectively, and reduces the maximum tracking error

by 8.92% for the x axis and 4.14% for the y axis.
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4.1. Related works

This chapter is organized as follows: Section 4.1 describes the related works. In section 4.2, the

trajectory generation is presented followed by section 4.3, which presents the two-axis feed drive

energy model. Section 4.4 is the description of the optimization approach through simulation

to achieve energy saving in coverage motion. Experimental analyses are presented in section 4.5

followed by the discussion in section 4.6. Finally, section 4.7 presents the concluding remarks.

4.1 Related works

Energy saving and motion performance improvement in industrial machines' operation is crucial

to enhance productivity and lessen global issues such as energy shortages and environmental

concerns [103]. Several approaches are proposed for energy saving of industrial machines. En-

ergy saving and motion accuracy improvement through controller designs in feed drive system

are proposed [9, 10]. However, their applications cannot be applied to industrial systems with

an inaccessible controllers. Moreover, to improve machine motion performance and energy sav-

ing, a number of motion planning optimizations are proposed. Trapezoidal velocity pro�les are

used to increase motion accuracy and energy saving as proposed in [63, 64]. Trapezoidal velocity

pro�les are linked to machine excitation caused by abrupt changes in acceleration and in�nite

jerk values at the phase transitions [104, 105]. To avoid machine excitation, methods such as

notch �lters and input shaping are used [106]. However, the path geometry may be altered

using �lters and elongates the cycle times [61, 107]. In addition, to eliminate the occurrence of

in�nite jerk values in the trapezoidal motion pro�le, the JLAP is optimized to achieve energy

optimal coverage motion. Energy saving trajectory generation for PTP motion of industrial

machines is proposed by Uchiyama et al. [20], S-curve pro�le is used to describe the motion.

JLAP is used to achieve optimal time and energy in feed drive system for PTP motion [49].

Although the JLAP improves the motion by eliminating the occurrence of in�nite jerk values,

smooth jerk continuity is crucial to further improve machines' performance by smoothly inter-

polating at the phase transitions [108, 109]. Hence, it is essential to plan motion with smooth

jerk continuity while satisfying the machine kinematic limits.

In addition to the velocity pro�le signi�cance, geometric path optimization improves the ma-

chine performance. There are several studies on geometric path optimization for PTP coverage
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motion [58, 110]. In these studies, trajectory (velocity) generation is not considered. In im-

plementing a geometric path optimization, smooth trajectory generation should be considered

simultaneously for the coverage motion.

4.2 Trajectory representation

4.2.1 Jerk-limited acceleration pro�le

The JLAP or S-curve trajectory (Fig. 4.1) is widely used in current industries. It is a trajec-

tory with the con�ned jerk that provides accurate motion, maintains smooth kinematic pro�les

during trajectory generation, and reduces machine excitation [13, 99]. The JLAP is a widely

used approach to generate smooth trajectories for accurate linear contours and eliminate the

occurrences of an in�nite jerk values. The trajectory consists of continuous acceleration pro-

�les with linear and constant acceleration/deceleration forming seven motion time intervals, as

shown in Fig. 4.1. The de�nition of the jerk for each segment is given as

...
x k(t) =



jlim,k, t0 ≤ t < t1,

0, t1 ≤ t < t2,

−jlim,k, t2 ≤ t < t3,

0, t3 ≤ t < t4,

−jlim,k, t4 ≤ t < t5,

0, t5 ≤ t < t6,

jlim,k, t6 ≤ t < t7,

(4.1)

where jlim,k is the jerk limit for the kth axis. On the assumption that acceleration and decel-

eration have the same motion time interval as the typical settings of industrial machines, the

time intervals are de�ned as

ta,1 = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6,

tc,1 = t2 − t1 = t6 − t5,

Tc,1 = t4 − t3,

(4.2)
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Fig. 4.1: Illustration of a jerk-limited acceleration pro�le.

where ta,1 is the linear acceleration/deceleration period, tc,1 is the constant acceleration/decel-

eration period, and Tc,1 is the constant velocity period. The time intervals are calculated by

velocity, acceleration, and jerk as

ta,1 =
a0
j
,

tc,1 =
v0
a0

− ta,1, (4.3)

Tc,1 =
(L− S)

v0
,

where a0, v0, j, L, and S are the constant acceleration, velocity, jerk, total motion distance,

and total displacement for the acceleration and deceleration, respectively.

The total motion time is therefore summation of all time intervals along the linear segment

given as

T1 = Tc,1 + 2tc,1 + 4ta,1. (4.4)
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Fig. 4.2: Illustration of a fourth-order motion pro�le.

4.2.2 Fourth-order motion pro�le

Fourth-order motion pro�le is a trajectory pro�le that imposes a smooth velocity transition

between points composed with the trapezoidal jerk pro�le for the given prede�ned limits of

velocity, acceleration, and jerk [111�114]. The pro�le is generated based on the fourth-order

polynomial S-curve motion pro�les that ensures smooth and continuity of the velocity, acceler-

ation, and jerk as function of time. Fig. 4.2 shows the fourth-order motion pro�le for the jerk,

acceleration, and velocity consisting of an acceleration phase from t0 to t7, a constant velocity

phase from t7 to t8, and a deceleration phase from t8 to t15 with the assumption that it is

symmetrical trajectory with equal acceleration and deceleration times. The jerk pro�le consists

of linear jerk, constant jerk, and zeros for some of time intervals forming �fteen time periods.
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The trajectory of jerk pro�le is given as

...
x k(t) =



jlim,k
t
Tl
, t0 ≤ t < t1, t12 ≤ t < t13,

jlim,k, t1 ≤ t < t2, t13 ≤ t < t14,

jlim,k − jlim,k
t
Tl
, t2 ≤ t < t3, t14 ≤ t < t15,

0, t3 ≤ t < t4, t7 ≤ t < t8,

t11 ≤ t < t12,

−jlim,k
t
Tl
, t4 ≤ t < t5, t8 ≤ t < t9,

−jlim,k, t5 ≤ t < t6, t9 ≤ t < t10,

−jlim,k + jlim,k
t
Tl
, t6 ≤ t < t7, t10 ≤ t < t11,

(4.5)

where Tl is the linear jerk period and jlim,k is the jerk limit for the kth axis. Integrating (4.5),

acceleration, velocity, and position are determined. The time intervals are determined such that

the trajectory satis�es kinematic limits of jerk, acceleration, and velocity de�ned as follows;

Tl,1 = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6,

Tl,1 = t9 − t8 = t11 − t10 = t13 − t12 = t15 − t14,

tcj,1 = t2 − t1 = t6 − t5 = t10 − t9 = t14 − t13,

tca,1 = t4 − t3 = t12 − t11,

Tv,1 = t8 − t7,

(4.6)

where Tl,1, tcj,1, tca,1, and Tv,1 are the linear jerk period, constant jerk period, constant acceler-

ation/deceleration period, and constant velocity period, respectively. The total motion time of

a linear segment is expressed as the sum of all intervals of time along the segment de�ned as

T1 = Tv,1 + 2tca,1 + 4tcj,1 + 8Tl,1. (4.7)
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Fig. 4.3: Illustration of a modi�ed S-curve trajectory.

4.2.3 Proposed motion pro�le

In some applications, smooth jerk continuity is crucial to increase the smoothness of the motion

[109, 115]. To further achieve the smooth jerk continuity pro�le, harmonic functions are incor-

porated into constant jerk phases of the JLAP (Fig. 4.1 ) which is called the modi�ed S-curve

trajectory. Using the constant jerk phase, the scale parameter β is applied to obtain harmonic

motion time segments. As a result, modi�cation of the jerk pro�le leads to motion phases

consisting of �fteen segments. Fig. 4.3 depicts the motion pro�le for the jerk, acceleration, and
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velocity. The jerk trajectory pro�le for each segment is expressed as

...
x k(t) =



jlim,k

2
A, t0 ≤ t < t1, t12 ≤ t < t13,

jlim,k, t1 ≤ t < t2, t13 ≤ t < t14,

jlim,k

2
B, t2 ≤ t < t3, t14 ≤ t < t15,

0, t3 ≤ t < t4, t7 ≤ t < t8,

t11 ≤ t < t12,

−jlim,k

2
A, t4 ≤ t < t5, t8 ≤ t < t9,

−jlim,k, t5 ≤ t < t6, t9 ≤ t < t10,

−jlim,k

2
B, t6 ≤ t < t7, t10 ≤ t < t11,

(4.8)

with

A =
{
1− cos(

πt

th
)
}
and B =

{
1 + cos(

πt

th
)
}
.

By integrating (4.8) while taking into consideration its initial conditions, the acceleration,

velocity, and position are determined. Under the assumption that acceleration and deceleration

have the same motion time interval, the time intervals are de�ned as follows:

tj,1 = t3 − t0 = t7 − t4 = t11 − t8 = t15 − t12,

tca,1 = t4 − t3 = t12 − t11,

Tv,1 = t8 − t7.

(4.9)

The time intervals are calculated as

tj,1 =
a0

j(1− β))
, with 0 ≤ β ≤ 0.5, (4.10)

th,1 = βtj,1, (4.11)

tcj,1 = tj,1 − 2th,1, (4.12)

tca,1 =
v0
a0

− tj,1, (4.13)

Tv,1 =
(L− S)

v0
, (4.14)
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where tj,1, tca,1, and Tv,1 are the jerk period, constant acceleration/deceleration period, and

constant velocity period, respectively. th,1 and tcj,1 are the harmonic jerk period and constant

jerk period, respectively. β is the parameter for the jerk fraction period.

Summation of all time intervals along a linear segment gives the total segment motion time

de�ned as

T1 = Tv,1 + 2tca,1 + 4tcj,1 + 8th,1. (4.15)

Motion distance L includes displacements during constant velocity, acceleration, and decelera-

tion. The total acceleration and deceleration displacements are de�ned as follows:

Sacc =
7∑

r=1

(
Sr

)
, (4.16)

Sdec =
15∑
r=9

(
Sr

)
,

S =Sacc + Sdec,

where Sr represents the displacement of rth segment phase motion time interval.

Parameter β adjusts jerk continuity and the generation of a �fteen-segment velocity pro�le.

From (4.10), for β = 0, the time is described as follows:

tj,1 =
a0
j
,

with

th,1 = 0, and tcj,1 = tj,1.

The trajectory jerk pro�le consists of only seven-time intervals with constant jerk phases, as

shown in Fig. 4.1. For β = 0.5, the resulting jerk motion time is given as

tj,1 =
a0
0.5j

,
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with

th,1 = 0.5tj,1, and tcj,1 = 0,

the constant jerk phases of JLAP are replaced by harmonic jerk phase motion only.

To achieve feasible trajectory generation, all kinematic limits of the machine should be satis�ed.

The jerk, acceleration, and velocity limits must satisfy the following limits

| ...x k(t)| ≤ jlim,k,

|ẍk(t)| ≤ alim,k, (4.17)

|ẋk(t)| ≤ vlim,k,

where xk(t) is the displacement of the kth axis for the linear segment motion of distance L. The

segment initial and �nal positions have zero jerk, acceleration, and velocity. jlim, alim, vlim(> 0),

are their maximum values.

4.3 Energy model of industrial two-axis feed drive system

For industrial feed drive systems, position, velocity, and acceleration can be optimized to reduce

energy consumption [20]. Hence, it is essential to incorporate these factors in determining energy

consumption in path optimization. The energy consumption model used in this chapter as

described in section 2.2 incorporates the dynamics of the feed drive system with the property

that power is a function of velocity and acceleration. Energy is calculated for each linear

segment. The summation of energy for all segments of the coverage motion results to the total

energy consumption. Energy consumption for the linear segment is calculated as

E =

ttf∫
t0

(|Px(t)|+ |Py(t)|)dt, (4.18)
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Pk(t) = C1,kẍ
2
k + C2,kẋ

2
k + C3,kẋksgn (ẋk) + C4,k

+C5,kẍksgn (ẋk) + C6,kẍkẋk, for k = {x, y},

where E is the total energy consumption for the feed drive system from time t0 to ttf. Px(t)

and Py(t) are the power at time t for the x and y axes, respectively. Coe�cients of the energy

model and machine parameters are presented in Tables 2.1 and 2.2 of section 2.2, respectively.

4.4 Optimization of coverage motion using Genetic Algo-

rithm

4.4.1 Motion optimization

Genetic Algorithm (GA) is a population-based global search method with signi�cant conver-

gence using genetic operators to �nd an optimal solution [116]. This chapter aims to �nd

optimal energy coverage motion consisting of trajectory and path generation. For the working

surface such as the square in Fig. 4.5, there are several feasible solutions for the machine to

complete the coverage motion, among which optimal one is required in terms of energy opti-

mality. Machine motion is PTP that consists of several linear segments connected by points

forming a path. For optimization, the working surface to be covered is discretized into several

equidistant grid points (path locations). An optimal ordering of grid points is a representation

of the solution; if all points are visited once, a complete path is generated. To provide displace-

ment information along the linear segment, grid points are stored using the x and y coordinates.

For a linear displacement from one point to another, the trajectory, with velocity, acceleration,

and jerk, is generated. Based on the above preparations, GA �nds optimal trajectories and

path based on the feasible connection between the linear segments. For a gene representation

in the algorithm execution, each grid point is assigned an integer and permutation encoding

is applied to create chromosomes. The problem considered is combinatorial optimization in

nature, so the MATLAB® GA toolbox cannot be suitable to �nd feasible optimal solution.

Therefore, in this chapter, di�erent GA iteration steps as shown in Fig. 4.4 are prepared using

MATLAB®, and the description of each operation step is presented as follows.
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Start

Population initialization (N)

Population fitness evaluation

Selection

Offspring creation

Feasibility check

Offspring fitness evaluation

Termination?

Optimal solution

End

No

Yes

Fitness value assigned

zero

Is the population 

feasible?

Generation of path points
and parameters setting

Yes

No

Fig. 4.4: Illustration of the optimization process using GA with feasibility check.
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4.4.1.1 Population initialization

Two initialization technique are used: a random initialization and the nearest neighbor. The

nearest neighbor method is used to initialize 20% of the population to improve the search

process such as diversity.

4.4.1.2 Fitness evaluation and feasibility check

Each coverage motion generated in population is evaluated by using (4.18). To ensure that all

the paths in the population are feasible, the time interval segments are 0 ≤ th, 0 ≤ tcj, 0 ≤ tca,

and 0 ≤ Tv, all kinematic limits in (4.17) are satis�ed, and 0 ≤ β ≤ 0.5.

4.4.1.3 Selection

The selection method is applied to select individuals to be parents for creating new o�spring. In

addition, solutions are selected for the next generation. Roulette wheel method in combination

with elitism is used to ensure parents/solutions with best �tness values are selected.

4.4.1.4 O�spring creation

New population solutions are created using genetic operators. In this chapter, the order

crossover and inversion mutation are used in creating o�spring from parents. During the

crossover and mutation operations, each o�spring is created without the integer (path points)

being repeated. The crossover operation enriches the population with better individuals, while

mutation increases diversity and preventing the solution to be trapped to the local optimum.

4.4.1.5 Replacement and new generation

The genetic algorithm selects a number of individuals to be new generation using roulette

wheel and elitism. When the algorithm reaches the termination condition, the new population

becomes the �nal solution.
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Fig. 4.5: Working surface area.

Fig. 4.6: Convergence of optimal solution using modi�ed S-curve.

4.4.1.6 Termination condition

The algorithm runs several iterations to improve the solutions, and the maximum number of

iterations is prede�ned. In this chapter, the maximum number of iterations selected is 200.

Optimization results

To validate the e�ectiveness of the proposed method, the 2D geometry in Fig. 4.5 is used for

trajectory generation and path optimization. The working surface area is 90 mm x 90 mm

in size with an island inside size of 40 mm x 20 mm. In this chapter, point locations are

generated on the working surface with a 10 mm distance between neighboring points. The
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Fig. 4.7: Generated motion pro�les for the jerk, acceleration, and velocity.

machine kinematic limits velocity, acceleration, and jerk used are 0.08 m/s, 1 m/s2, and 20

m/s3, respectively. The optimization is implemented by MATLAB® 2021a environment on a

computer with Windows 10 operating system, core i7-1165G7 processor running at 2.80 GHz,

and 16 GB of RAM.

The optimization parameters in GA are set as follows: population size is 100, the maximum

number of iterations is 200, crossover probability is 0.8, and mutation probability is set to 0.2.

The proposed approach employs GA for the trajectory generation and optimization of the path

simultaneously. The �nal solution is achieved when the optimization algorithm reaches the

prede�ned (200) iterations. Fig. 4.6 shows the convergence of solutions, in which the optimal

result is obtained at the iteration number of 83 with the minimum energy value of 70.01 J,

equivalent to 14.6% energy saving compared to unoptimized solutions. The proposed approach

demonstrates the e�ectiveness with its convergence. As shown in Fig. 4.5, the feasible optimal

coverage motion is attained with the motion from the start to the end point. Fig. 4.7 shows

the generated jerk, acceleration, and velocity of the linear segment for the motion from (0,0)

to (0,-0.02) m in Fig. 4.5. From the results shown in Figs. 4.5, 4.6, and 4.7, simultaneous

trajectory generation and path optimization are achieved with satis�ed kinematic limits.
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Fig. 4.8: Optimal solutions for a working surface two.

4.4.2 Motion optimization of the other two working surfaces

Two other cases or working surfaces are considered for simultaneous trajectory and path opti-

mization using similar strategies presented in section 4.4.1 and GA steps in Fig 4.4 with the

maximum number of iterations of 200. The �rst case is the 2D pocket geometry Fig. 4.8(b)

working surface area sized 158.5 mm x 120 mm with an island inside. The path points are

generated on it with equal distance between the points, which is 7.5 mm in this case. After

optimization is run to the maximum number of iterations (200), an optimal energy coverage

solution is determined. Fig. 4.8(a) shows the convergent plot for the GA optimization and Fig.

4.8(b) presents the optimal geometric path generated. The energy optimal value is 207.89 J,

with an energy saving of approximately 13.2% compared to an unoptimized solution during the

start of optimization.

Furthermore, the working surface Fig. 4.9(b) is optimized, the size of the working surface area

is 110 mm x 140 mm with two islands inside and path points are generated with an equal

distance of 10 mm from one point to another. An optimal solution for the energy coverage

motion optimization problem is determined after running an optimization to the maximum

number of iterations de�ned. Fig. 4.9(a) shows the convergence plot of the algorithm during

optimization with the energy optimal achieved of 125.76 J. Energy saving is about 12.14%

compared to an unoptimized solution at the start of optimization. Fig. 4.9(b) presents the

optimal geometric path solution for machine motion from start to end point.
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Fig. 4.9: Optimal solutions for a working surface three.

4.4.3 Comparative study with the fourth-order motion pro�le

The proposed approach is compared with the fourth-order motion pro�le method (Fig. 4.2).

The pro�le is generated based on approach proposed in [111�114]. The motion trajectory is

similar to the proposed approach (modi�ed S-curve) that ensures a continuous jerk pro�le

without any sudden change of jerk values that consists of a linear jerk, constant jerk, and zero

for some of the time intervals. Furthermore, the trajectory pro�le ensures that the machines

operate to their maximum values of jerk and acceleration with full utilization of the machine

capacity, thus increasing the e�ciency of the machine [69, 109]. The trajectory obeys machine

kinematic limits for velocity, acceleration, and jerk while ensuring its continuity. During the

optimization process, similar optimization strategies presented in section 4.4.1 are used. The

same case study or working surface Fig. 4.5 is used with the �xed start and end point of motion.

The algorithm steps in Fig. 4.4 are used except for the feasibility check. To ensure that all

the paths solution are feasible, the time intervals for the fourth-order motion pro�le are 0 ≤ Tl,

0 ≤ tcj, 0 ≤ tca, and 0 ≤ Tv, all kinematic limits in (4.17) are satis�ed while each coverage path

in a population is evaluated similarly using the �tness function (4.18).

Optimization results

Running the GA algorithm to the maximum number of iterations (200), the optimal path and

trajectory are simultaneously obtained. The convergence plot for the algorithm is as shown
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Fig. 4.10: Convergence of optimal solution using fourth-order motion pro�le.

in Fig. 4.10 with converged optimal solution of 71.13 J achieved at the iteration number 121.

In comparison to an unoptimized solution, the energy saving is about 9.27%. Generating the

trajectory for a linear segment from (0,0) to (0,-0.02) m in Fig. 4.5 of optimized solution using

fourth-order motion pro�le, the jerk, acceleration, and velocity are shown in Fig. 4.11. All

the machine kinematic limits are obeyed and the jerk motion pro�le with trapezoidal shape

is achieved. From these simulation results, comparing the fourth-order motion pro�le to the

modi�ed S-curve, the modi�ed S-curve provides an energy saving of approximately 1.12 J, which

is about 1.57%.

4.5 Experiment

4.5.1 Experimental setup

Experiments are carried out on a typical X-Y table system as shown in Fig. 4.12. The table

consists of two AC servomotors, which generates linear motion by ball-screws. The position of

the table is measured by rotary encoders 76.29 nm resolution with 0.2 ms sampling time. The

reference trajectory motions for the modi�ed S-curve and fourth-order motion pro�le of the

optimized path in Fig. 4.5 are prepared and used for experimental veri�cation. The electrical

power analyzer (HIOKI3390) installed between a motor and a motor drive is used to measure

electrical power consumption. The PD controller is used as the control law to track the reference
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Fig. 4.11: Generated motion pro�les for the jerk, acceleration, and velocity by fourth-order

trajectory generation.

y

x

AC Servomotors
with Built-in Encoder

Ball Screw

Fig. 4.12: Industrial two-axis feed drive system.

trajectory with proportional and derivative gains of 13000 s-2 and 200 s-1, respectively, for each

drive axis.
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Fig. 4.13: Seven-times experimental trial results of energy consumption with optimized tra-

jectory for the modi�ed S-curve and fourth-order motion pro�le.

4.5.2 Experimental results

Fig. 4.13 shows the experimental average energy consumption for the optimal coverage motions

of two di�erent motion pro�les; modi�ed S-curve and fourth-order motion pro�le. Experiments

are carried out seven times for each motion pro�le, which reveal similar energy consumption

results with that of simulation. The average energy consumption for the modi�ed S-curve is

about 69.05 J for all experiments and for the fourth-order motion pro�le is about 70.58 J.

These values are almost similar to optimal values obtained by simulation shown in Fig. 4.6 and

Fig. 4.10 for the modi�ed S-curve and fourth-order motion pro�le, respectively. From these

experimental energy results, the modi�ed S-curves achieves about 2.17 % energy saving when

compared to the fourth-order motion pro�le.

In addition, Figs. 4.14 and Fig. 4.15 show simulation and experimental velocity pro�les for

a linear segment in Fig. 4.5 ((0,0)�(0,-0.02) m) of modi�ed S-curve and fourth-order motion

pro�le, respectively. Similar velocity pro�les are obtained in experiments and simulation (Figs.

4.7 and 4.11). The motion pro�les for the two di�erent trajectories satisfy the machine velocity

limits. Furthermore, a rotary encoder is used to measure the tracking performance for the path

motions during the experiments. Fig. 4.16 shows mean tracking error results for the proposed

approach and fourth-order motion pro�le in x and y drive axes. The average mean tracking

error for the proposed approach are 11.32 µm and 6.21 µm for the x and y axes, respectively.

Using the fourth-order motion pro�le, the average mean tracking error are 15.18 µm and 8.04
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Fig. 4.14: Simulation and experimental modi�ed S-curve velocity pro�le for a linear segment.

Fig. 4.15: Simulation and experimental fourth-order velocity pro�le for a linear segment.

µm for the x and y axes, respectively. The proposed approach improves the accuracy by about

25.43% and 22.76% for the x and y axes, respectively, compared to the fourth-order motion

pro�le.

Fig. 4.17 presents the maximum error for the coverage motions. Maximum tracking error for

the fourth-order motion pro�le are 48.51 µm and 30.14 µm in x and y drive axes, respectively,

as an average of all trials. The fourth-order motion pro�le has a higher maximum error in both

axis for all trials. The average maximum error for the proposed method is 44.18 µm for the

x axis and 28.89 µm for the y axis. The proposed approach improves the motion accuracy for

about 8.92% and 4.14% for the x and y axes, respectively.
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Fig. 4.16: Experimental results of absolute mean tracking error.

Fig. 4.17: Experimental results of maximum tracking error.

4.6 Discussion

The study in this chapter aims to solve single-objective problem of simultaneous path opti-

mization and trajectory generation for energy saving in coverage motion. Figs. 4.5, 4.8(b),

and 4.9(b) show the optimal geometric paths for the three di�erent working surfaces with their
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convergence plots during optimization Figs. 4.6, 4.8(a), and 4.9(a), respectively. The gener-

ated motion pro�les jerk, acceleration, and velocity for the proposed approach is shown in Fig.

4.7. These �ndings demonstrate that the proposed approach can be used for energy saving

in coverage motion. Using the simulation results of the working surface Fig. 4.5, reference

trajectories of the coverage path are prepared to move the machine. The experimental motion

pro�le is recorded and plotted as shown in Fig. 4.14; using the linear segment motion pro�les

from (0,0) to (0,-0.02) m in Fig. 4.5. The experimental motion pro�le is similar to simulated

(Fig. 4.7). The experimental energy consumption is about 69.05 J, also similar to simulation

result. From these results, can be concluded that the proposed approach can achieve energy

saving in coverage motion with simultaneous path optimization and trajectory generation while

obeying the machine kinematic limits.

From the experimental comparison results Figs. 4.13, 4.16, and 4.17 for the energy consumption

and motion performance, it shows that the proposed approach outperforms the fourth-order

motion pro�le by achieving lower energy consumption and increase the motion accuracy. Scale

parameter β and harmonic motion introduced to the proposed approach contribute to better

performance by ensuring smooth jerk continuity and determining energy saving in coverage

motion. Hence, the proposed approach can be used for industrial coverage motion planning for

energy saving while providing high accuracy motion.

4.7 Conclusion

An energy coverage motion optimization approach for simultaneous trajectory generation and

path optimization is proposed. Energy saving in coverage motion is attained, for which modi�ed

S-curve is used to describe the motion along the linear segments. The optimized energy result

from simulation is almost similar to the experimental result. Its performance is experimentally

validated using a typical industrial X-Y table system, which can be applied to many industrial

machines for manufacturing tasks such as pocket milling, inspection, polishing, gluing, and laser

cutting. In addition, the proposed motion optimization approach increases motion accuracy

when compared to the fourth-order motion pro�le.
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Chapter 5

Generation of Time and Energy Optimal

Coverage Motion using a Modi�ed

S-curve Trajectory

In this chapter an optimal time and energy trajectory generation method with simultaneous

path optimization using the modi�ed S-curve is proposed. The modi�ed S-curve generates

smooth motion while ensuring continuity of machine kinematic limits jerk, acceleration, and

velocity. Using the modi�ed S-curve to describe coverage motion, multi-objective optimization

is considered for time and energy consumption, which are two con�icting objectives. NSGA II

is used to generate a set of Pareto-optimal solutions using the Pareto dominance approach,

which represents the contradictory nature of both objectives. Simulation and experimental

results demonstrate the e�ectiveness of proposed approach using an industrial two-axis feed

drive system to achieve the trade-o� between time and energy consumption. The best trade-o�

optimal path is compared to the optimized path generated using the JLAP approach. The

comparison shows that the modi�ed S-curve increases the motion accuracy by reducing mean

tracking error. Results reveal that the proposed approach can reduce absolute mean tracking

error by about 16.2% and 14.9% for the x and y axes, respectively.

This chapter is organized as follows: Section 5.1 presents the related works followed by a descrip-

tion of motion planning described in Section 5.2. An energy consumption model is presented in
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Section 5.3, followed by the optimization algorithm in Section 5.4. Section 5.5 presents the sim-

ulation, while Section 5.6 describes the experimental results, followed by discussion in Section

5.7. Finally, Section 5.8 presents the concluding remarks.

5.1 Related works

Given the current worldwide situation of an increase in energy costs and environmental prob-

lems, energy saving and shorter production time are essential to improve machine performance

[16, 103, 117]. Trajectory optimization is one of the approaches widely used to improve the

performance of industrial machines while achieving motion accuracy. In [63, 64], trapezoidal

velocity pro�les are used to achieve optimal energy consumption in a PTP machine motion.

Bi-objective optimization between time and energy is proposed in [65], and a trapezoidal veloc-

ity pro�le is used to achieve the trade-o�. In these studies [63�65], the motion pro�les ensure

the continuity of the velocity with limited acceleration. However, trapezoidal velocity pro�les

in which the machine is accelerated/decelerated at a constant acceleration/deceleration value

consist of sudden changes in acceleration and in�nite jerk values at the phase transition. As a re-

sult, the generated reference trajectories may lead to machine excitation and a�ect the machine

performance [66]. For a smooth change in velocity and acceleration during linear interpolation

and to lessen machine excitation, jerk-limited trajectory generation is used. Lu et al. [67] pro-

pose a time-optimal trajectory generation using the S-curve motion for the machine tool along

the prede�ned path. In [68], an asymmetrical S-curve velocity pro�le is proposed to achieve

the shortest motion time, and the jerk ratio is introduced to limit the jerk value along the path

motion. A minimum-time trajectory generation is proposed in [16] via jerk-limited feedrates

for the prede�ned PTP path motion. Furthermore, the JLAP is used to achieve optimal energy

or time and energy trajectory generation during machine motion. Nshama et al. [49] propose a

time and energy consumption optimization method for the two-axis feed drive system, in which

the con�ned jerk pro�le is used to describe the motion along the path. Energy minimization

strategies are proposed in [20, 70], and the acceleration motion times of the S-curve are op-

timized to reduce energy consumption for PTP motion. The studies [16, 20, 49, 67, 68, 70]

present trajectory generation methods to improve machine e�ciency, and the jerk limitation
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used is associated with sudden value changes at phase transitions. Nevertheless, smooth jerk

continuity along the path should be considered to ensure accurate motion and energy reduction.

To further improve the motion, the fourth-order polynomial S-curve function is proposed to

ensure a smooth transition of the jerk. In [118], a time-optimal trajectory optimization is

presented via the fourth-order S-shaped curve for the coverage motion to attain high machine

performance. Fan et al. [119] propose the method to increase the machining quality using

the fourth-order S-curve trajectory generation along the prede�ned path. In these studies

[118, 119], the rate change of the jerk with respect to time is introduced for jerk continuity,

but energy consumption is not taken into account. Furthermore, several S-shaped pro�les

are proposed to enhance the machine motion accuracy and performance. Lee et al. propose

a time-optimal trajectory algorithm to achieve the smooth jerk pro�le using an asymmetric

sinusoidal waveform motion, and the method improves the smoothness of the PTP motion

compared to the symmetric jerk-limited acceleration pro�le [120]. Trigonometric functions are

proposed to attain a smooth transition of the jerk in [113, 121, 122], the constant jerk phase

for the S-curve trajectory along the linear interpolation motion are replaced by trigonometric

jerk pro�le. However, in such a motion, machine cannot operate to their maximum jerk or

acceleration values and hence the motion e�ciency is limited [69, 109, 122]. For the machines

to operate to their maximum values of jerk and acceleration, several approaches are proposed.

Wu et al. [109] propose a time-optimal PTP motion for a pick and place robot system via

an asymmetrical jerk pro�le to achieve minimum-time and ensure jerk continuity. In [69],

a time-optimal trajectory is proposed for the industrial machine, and the piecewise sigmoid

function is used to ensure that the machines operate to their maximum values of jerk and

acceleration. Using an optimized sinusoidal jerk model, Fang et al. propose a time-optimal

path that considers both the machine kinematic limits and jerk continuity [105]. However,

energy consumption optimization is not taken into account in [69, 105, 109, 113, 120�122],

despite the fact that improving pro�t margins through energy saving and lowering emissions

are two important goals in the manufacturing industry.

On the other hand, optimizing geometric paths for the machine coverage motion increases

the production e�ciency [16, 58]. Several studies have proposed geometric path optimization

methods to improve motion performance [24�26, 29]. In these studies, the velocity, acceler-

ation, and jerk machine kinematic limits are not taken into account. As a result, optimized

geometric path motion can lead to high operating speeds, excessive accelerations, and vibrations
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in mechanical structural parts that a�ect the machine accuracy and performance. Therefore,

trajectory generation with smooth jerk, acceleration, and velocity should be considered during

path optimization to further ensure motion accuracy and performance.

5.2 Motion path planning

5.2.1 Modi�ed S-curve trajectory

The modi�ed S-curve trajectory, which is a pro�le that imposes a smooth jerk transitions

consisting of acceleration, constant velocity, and deceleration phases to increase tracking per-

formance, is considered to describe motion along a linear segment for PTP motion. The pro�le

is generated by introducing harmonic motion to the constant jerk phases of the JLAP to ensure

smooth jerk continuity and increase motion smoothness. For each jerk constant phase of the

JLAP, the phase is divided into three sub-phases consisting of two harmonic motions and the

constant jerk value phase, leading to �fteen segments of motion time intervals along the linear

segment. The time intervals are calculated as

tj,1 =
a0

j(1− β))
, with 0 ≤ β ≤ 0.5, (5.1)

th,1 = βtj,1, (5.2)

tcj,1 = tj,1 − 2th,1, (5.3)

tca,1 =
v0
a0

− tj,1, (5.4)

Tv,1 =
(L− S)

v0
, (5.5)

where a0, v0, j are the acceleration, velocity, and jerk, respectively. tj,1, tca,1, and Tv,1 are the jerk

period, constant acceleration/deceleration period, and constant velocity period, respectively.

th,1 and tcj,1 are the harmonic jerk period and constant jerk period, respectively. β is the

parameter for the jerk fraction period. L and S are the total distance of a linear segment and

the total acceleration and deceleration coverage distance, respectively. The jerk pro�le equation
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is described as

...
x k(t) =



jlim,k

2
A, t0 ≤ t < t1, t12 ≤ t < t13,

jlim,k, t1 ≤ t < t2, t13 ≤ t < t14,

jlim,k

2
B, t2 ≤ t < t3, t14 ≤ t < t15,

0, t3 ≤ t < t4, t7 ≤ t < t8,

t11 ≤ t < t12,

−jlim,k

2
A, t4 ≤ t < t5, t8 ≤ t < t9,

−jlim,k, t5 ≤ t < t6, t9 ≤ t < t10,

−jlim,k

2
B, t6 ≤ t < t7, t10 ≤ t < t11,

(5.6)

with

A =
{
1− cos(

πt

th
)
}
and B =

{
1 + cos(

πt

th
)
}
,

where jlim is the maximum jerk of the kth axis. By integrating (5.6), the acceleration, velocity,

and displacement pro�les are obtained, with time intervals described as

th,1 = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6,

th,1 = t9 − t8 = t11 − t10 = t13 − t12 = t15 − t14,

tj,1 = t3 − t0 = t7 − t4 = t11 − t8 = t15 − t12,

tca,1 = t4 − t3 = t12 − t11,

Tv,1 = t8 − t7.

(5.7)

The total motion time of the linear segment is the summation of all time intervals given as

T1 = Tv,1 + 2tca,1 + 4tcj,1 + 8th,1. (5.8)

In order to ensure that the machine operates with maximum velocity, acceleration, and jerk

values with simultaneously enhancing motion accuracy while achieving optimal time and energy

consumption, the selection of optimal parameter β is of importance. Therefore, to achieve

optimal time and energy coverage motion during optimization, the parameter selection process

is included in the optimization process.
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5.2.2 Kinematic limits

For smooth motion along the linear segment, all the machine kinematic limits should be sat-

is�ed such that optimal coverage motion values are determined. All three limits of velocity,

acceleration, and jerk must be positive, and must satisfy the following requirements:

| ...x k(t)| ≤ jlim,k,

|ẍk(t)| ≤ alim,k, (5.9)

|ẋk(t)| ≤ vlim,k,

where xk(t) is the displacement of the kth axis for the linear segment motion of distance L.

In this chapter, PTP linear contours are considered, the jerk, acceleration, and velocity at the

initial and �nal positions of the segment being zero.

5.3 Energy consumption model

This chapter also considers coverage motion of an X-Y table (two-axis feed drive system), which

is widely used in industry. The feed drive dynamics are included in the energy consumption

model used as described in section 2.2. The energy model is formulated using a two-axis

industrial feed drive system with AC 3ϕ servomotors. The crucial property is that power is a

function of velocity and acceleration. As a result, trajectory pro�les are used to determine the

power. The energy consumption model is presented as

Pk(t) = C1,kẍ
2
k + C2,kẋ

2
k + C3,kẋksgn (ẋk) + C4,k

+C5,kẍksgn (ẋk) + C6,kẍkẋk, for k = {x, y},

E =

ttf∫
t0

(|Px(t)|+ |Py(t)|)dt, (5.10)
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where E is the total energy consumption for the feed drive system from time t0 to ttf. Px(t)

and Py(t) are the power at time t for the x and y axes, respectively. Machine coe�cients and

parameters used in this chapter are presented in Tables 2.1 and 2.2 as described in section 2.2,

respectively.

5.4 Optimization of coverage motion

5.4.1 Problem formulation

During linear motion interpolation, execution time and energy consumption are required to

move the machine table and complete the motion along the path. The dynamics of the machine,

velocity, acceleration, and jerk limits during trajectory generation determine the motion time

and energy required to complete a linear segment. However, time and energy consumption are

two con�icting objectives; determining optimal trajectories that trade-o� between time and

energy consumption for the optimal path is crucial. This chapter considers simultaneous path

and trajectory optimization to achieve optimal time and energy for coverage motion. Therefore,

the multi-objective model formulated to obtain the trade-o� is described as

F (u) = min
u

{T (u), E(u)}, (5.11)

where T and E are the total time and energy consumption for the entire coverage motion,

respectively, and u is an optimization parameter vector that consists of variables describing the

coverage motion for each segment.

5.4.2 Motion optimization

The motion is optimized to generate the optimal path and trajectories by using NSGA II [93].

The algorithm is a population-based global search that starts with an initial solution and then

gets modi�ed through an iteration process to generate the Pareto front solutions. Without

combining objectives into a single objective function, NSGA II is an e�ective evolution that

uses the Pareto dominance approach to generate a set of Pareto optimal solutions [77, 96, 97].
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Di�erent operators are used to modify initial solutions during the iteration process. A similar

algorithm set-up employed in chapter 3 is also used in this section for �nding Pareto-optimal

solutions. The algorithm steps to achieve the optimal coverage motion is summarized in the

following subsections.

5.4.2.1 Working space discretization and encoding solutions

The working space consists of several options for the path and trajectory of the coverage mo-

tion. As a result, the optimal path and trajectory must be determined in the processing region

simultaneously. The working space is discretized into several grid points to generate the desired

geometric path. The grid points are stored using the x and y coordinates to represent the lo-

cation points as path references during optimization process. Grid points provide displacement

information along the linear segment. Each point on the grid is assigned an integer number to

represent the geometry of the path in the optimization process using NSGA II. The integers

generate di�erent solutions representing several coverage paths. In NSGA II, each integer repre-

sents a gene with point information whereby all genes forming feasible geometric path combine

to form chromosomes known as population.

5.4.2.2 Population initialization

The initial population is the set of chromosomes representing di�erent potential solutions for

the coverage motion. Two initialization methods are adopted in this chapter, random and the

heuristic method. To ensure diversity and optimality in the solutions, in this chapter, 80% of

the population is generated randomly and the remaining 20% is heuristically initialized.

5.4.2.3 Feasibility check

During optimization process, each population solution is checked so that segment motion time

exists, and machine kinematic limits are satis�ed. Constraints are checked for the time interval

segment 0 ≤ th, 0 ≤ tcj, 0 ≤ tca, 0 ≤ Tv, and all machine kinematic limits (5.9). If any

constraints are not satis�ed, the �tness value of the solution is set to zero. In addition, the
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Table 5.1: Crossover operation.

Chromosome Genes

parent (1) 1 −→ 2 −→ 3 −→ 4 −→ 5︸ ︷︷ ︸ −→ 6 −→ 7

parent (2) 1 −→ 5 −→ 6 −→ 2 −→ 7︸ ︷︷ ︸ −→ 4 −→ 3

o�spring (1) 1 −→ 3 −→ 6 −→ 2 −→ 7︸ ︷︷ ︸ −→ 4 −→ 5

o�spring (2) 1 −→ 6 −→ 3 −→ 4 −→ 5︸ ︷︷ ︸ −→ 2 −→ 7

scale parameter β is included in the optimization process to achieve the optimal path, set

between 0 and 0.5.

5.4.2.4 Fitness evaluation

Each population is evaluated using the �tness functions from (5.8) as

T =
n∑

i=1

(
Tv,i + 2tca,i + 4tcj,i + 8th,i

)
, (5.12)

and Equation (5.10),

where T is the total motion time.

5.4.2.5 Non-dominated sorting and selection-I

In this process, di�erent solutions are sorted based on the order of non-domination. Further-

more, the population solutions are assigned with the crowding distance parameter and rank [96].

Binary tournament selection is used to choose participants based on the crowding distance and

the rank. The selected individuals are parents used to generate new o�spring.
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5.4.2.6 Creation of the o�spring

The order crossover and inversion mutation are used in creating o�spring from the parents.

The crossover probability pc is set to the algorithm as the occurrence of a crossover during

the algorithm runs. The crossover operator works with two parents to create two o�spring

and ensure no repetition of the genes (path locations) in a generated o�spring [87]. The order

crossover operation is depicted in Table 5.1. Based on genes order, the two random cuts are

generated to divide each of the selected parents into three separate substrings. In order to

create the �rst o�spring, the substring between the two cuts for the second parent is copied to

the �rst o�spring while maintaining their position, and the remaining part of the o�spring is

�lled by substrings of the �rst parent not occupied in the o�spring. Likewise, the procedure is

used to create the second o�spring.

The inversion mutation is used to improve the newly formed o�spring after the crossover oper-

ation [88]. The operator works on a single selected o�spring by dividing it into three substrings

using the generated random two cuts. The order of the substring genes between the cuts is

inverted, forming new o�spring, and the local search process �nds the best mutated o�spring

relative to an initial individual; if the initial individual is superior to the mutated o�spring,

there is no improvement. During the local search operation, the created o�spring solution val-

ues are evaluated using (5.10) and (5.12). The mutation process occurs with a certain mutation

probability pm.

5.4.2.7 Recombination and selection-II

The generated o�spring population is combined with the parent population to form the popu-

lation size of 2N . Non-dominating sorting is performed. Using elitism strategy [96], the sorted

population size N is selected as the new population for the next generation or the �nal Pareto

solutions.

5.4.2.8 Termination condition

In this chapter, the maximum number of iterations is prede�ned. The number is selected by

analyzing the algorithm output from the set of parameter inputs by running the algorithm
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Fig. 5.1: Optimal path motion on rectangle working space moving from one point to another.

several times while observing output solutions. When there is no further improvement to the

objective function values, the number is selected. In this chapter, the maximum number of

iterations selected is 150.

5.5 Simulation

5.5.1 Simulation condition

The 2D rectangle geometry part in Fig. 5.1 is used for path and trajectory optimization. The

working space area is 110 mm x 140 mm in size, with two islands inside. The point locations

are generated on the working space with a distance of 10 mm from one point equal to another.

The point locations are grids for the path references during path optimization.

The optimization problems of (5.10) and (5.12) are used as �tness functions in NSGA II to

determine optimal coverage motion time and energy consumption along the paths. The settings

for the NSGA II are as follows: population size is 200, crossover probability pc = 0.8, mutation

probability pm = 0.2, and the maximum number of iterations is 150. The algorithm parameters

are chosen based on test runs with various parameter sets, including pc, pm, population size,

and a maximum number of iterations, by determining whether the solutions do not further

increase the �tness values. The machine kinematic limits velocity, acceleration, and jerk are
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Fig. 5.2: Pareto front representing optimization results.

0.08 m/s, 1 m/s2, and 20 m/s3, respectively. The machine kinematic limits and parameters

used in optimization are selected based on machine limits and working conditions. To generate

optimal solutions, optimization is carried out in a MATLAB® 2021a environment using a laptop

with a core i7-1165G7 processor running at 2.80 GHz, 16 GB of RAM, and Windows 10 as the

operating system.

5.5.2 Simulation results

Fig. 5.2 shows simulation results of the Pareto front between the two objectives for the coverage

motions. The results demonstrate the e�ectiveness of the proposed approach to obtain the

trade-o� between time and energy consumption. The best trade-o� solution is selected from the

normalized objective function space nearest to the origin. The selected best trade-o� solution

uses the total time 27.43 s and 130.67 J energy, the time-optimal path total time is 24.40 s and

135.47 J energy consumption, and the energy-optimal path motion, the total time is 31.86 s

with energy consumption 127.11 J. Therefore, using overall extreme points, the best trade-o�

solution achieves time reduction and energy saving of 13.90% and 3.54%, respectively.

The optimized results for the trajectories jerk, acceleration, and velocity of the best trade-o�

optimal case for the x axis are shown in Fig. 5.3 which corresponds to a linear segment motion

from P1 to the endpoint in Fig. 5.1. Additionally, as shown in detail of Fig. 5.3, the jerk pro�le

has smooth continuity, unlike the jerk-limited acceleration pro�le. All the machine kinematic
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Fig. 5.3: Illustration of the jerk, acceleration, and velocity pro�les of the linear segment for

the best trade-o� optimal path.

Fig. 5.4: Tangential velocities generated for time, best trade-o�, and energy optimality cases.

limits are satis�ed. Fig. 5.4 depicts tangential velocities for the time, best trade-o�, and energy-

optimal paths. Each linear segment generates velocity trajectories consisting of acceleration,

constant velocity, and deceleration phases.
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Fig. 5.5: Pareto-optimal results and geometric path at the best trade-o� for working surface

two.

Fig. 5.6: Pareto-optimal results and geometric path at the best trade-o� for working surface

three.

5.5.3 Motion optimization of the other two working surfaces

Two other working surfaces are optimized using similar strategies presented in section 5.4. The

working surface of 2D pocket geometry with an island inside Fig. 5.5 (b) is used for simultaneous

path and trajectory optimization. The size of the working surface is 158.5 mm x 120 mm with

point locations of equal distance 7.5 mm from one point to another. Starting with population

initialization and executing an optimization to the maximum number of iterations (150), the

optimal coverage motion results are determined. Fig. 5.5 (a) shows the Pareto front for the

trade-o� between time and energy consumption, and Fig. 5.5 (b) presents the geometric path
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for the best trade-o� solution. The best trade-o� solution values for time and energy are 50.91s

and 215.35J. The time-optimal path total time is 47.78 s and 218.92 J energy consumption,

and the energy-optimal path motion, the total time is 55.15 s with energy consumption 211.73

J. Using three optimal cases from Pareto-optimal solutions, the best trade-o� solution achieves

time reduction and energy saving of 7.69% and 1.63%, respectively.

In addition, motion optimization on the working surface Fig. 5.6 (b) is considered. The size of

working surface area is 100 mm x 100 mm, the point locations are generated on it with equal

distance of 10 mm from one point to another. The Pareto front for the trade-o� time and energy

consumption is determined as shown in Fig. 5.6 (a). The best trade-o� solution achieves time

and energy values of 16.61 s and 71.26 J, respectively, and Fig. 5.6 (b) shows the best trade-o�

geometric path. The best trade-o� solution provides time reduction and energy saving of about

3.06% and 1.4%, respectively, compared to three optimal cases of Pareto-optimal solutions.

5.6 Experiment

5.6.1 Experimental procedure

An industrial two-axis machine shown in Fig. 5.7 is also used in this chapter for the experiment

to validate the optimized results. The machine comprises of two AC servomotors, where the

linear motion is acquired via ball-screw drive systems connected to each axis. The axial position

of each axis of the table is measured using rotary encoders with a resolution of 76.29 nm and 0.2

ms sampling time. Experiments are carried out on the optimized paths from the Pareto front.

Reference trajectory motion of selected points along the Pareto front are used for experimental

veri�cation. Five points are selected for experimental veri�cation; the selected solutions are

the best trade-o�, energy-optimal, time-optimal, and two other optimal solutions. Reference

trajectories for the paths are prepared to move the machine. Each experiment is performed

seven times to avoid inaccuracies in the energy measures. The consumed energy is measured

using a power analyzer (HIOKI3390) installed between a motor driver and a motor, directly

measuring the energy consumption at a 50 ms data update interval.
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y

x

AC Servomotors
with Built-in Encoder

Ball Screw

Fig. 5.7: Industrial two-axis feed drive system.

Fig. 5.8: Simulation and experimental energy consumption for the selected solutions.

5.6.2 Experimental results

The average experimental results of energy consumption for �ve solutions and simulation results

are shown in Fig. 5.8. The experimental results are similar to that of simulation. The experi-

mental results for time and energy consumption for the best trade-o� solution are 27.43 s and

131.35 J, respectively, the time-optimal path total time is 24.40 s and 136.11 J energy consump-

tion, and the energy-optimal path motion, the total time is 31.86 s with energy consumption

128.78 J. Therefore, using three optimal cases from the experiment, the best trade-o� solution

achieves time reduction and energy saving of 13.9% and 3.5%, respectively. The experimental

velocity pro�les for the x and y axes for all three optimal cases are shown in Fig. 5.9. All the

limitations are satis�ed.
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1*

Fig. 5.9: Experimental velocity pro�les for the time, best trade-o�, and energy optimal paths

in x and y axes.

5.6.3 Comparative study with the Jerk-limited acceleration pro�le

(JLAP)

The motion performance accuracy of the proposed approach is compared with the JLAP method

commonly used in trajectory generation. The JLAP pro�le is generated based on the approach

proposed in [20, 49]. Similar optimization strategies and the same limits are used in the opti-

mization process. The algorithm presented in section 5.4.2 and case study Fig. 5.1 is used to

achieve the optimal path. Similar steps are used except for �tness functions described as from

(4.4) given as

T =
n∑

i=1

(
Tc,i + 2tc,i + 4ta,i

)
, (5.13)

and Equation (5.10),

Comparative experimental results

In this section, the experimental test of the geometric path is performed. The optimal path

described by JLAP is prepared to move the machine. The experimental test is done for the
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Fig. 5.10: Experimental velocity pro�les for the proposed and JLAP in x and y axes.

JLAP path and the best trade-o� path of the proposed approach, and similar machine working

conditions and limits are used for the experimental test.

Fig. 5.10 shows experimental velocity pro�le for the best trade-o� paths of the proposed ap-

proach and JLAP method. The motion pro�les for the two approaches satisfy the machine

velocity limits. During the experiment, the tracking performance for the path motions is mea-

sured by a rotary encoder. Fig. 5.11 shows the absolute mean tracking error for the x and y

axes of each motor. The proposed approach improves the accuracy by about 16.2% and 14.9%

for the x and y axes, respectively, compared to the JLAP approach. In addition, Fig. 5.12

depicts the single-sided amplitude spectrums of the tracking error for the proposed and JLAP

optimal paths. The tracking error for the proposed is damped with a reduction in their am-

plitudes. The above results show that path optimization with the proposed approach achieves

high tracking accuracy than the JLAP. In addition, the energy consumption for the JLAP path

is 132.46 J, which is 1.3% higher than the best trade-o� path of the proposed one.

5.7 Discussion

Fig. 5.8 shows the average experimental energy consumption Pareto-optimal solutions for the

proposed approach, which is similar to the results of simulation in Fig. 5.2. The proposed

approach achieves the trade-o� between time and energy consumption. This contributes to

research gap, whereby most trajectory generation aims to achieve a single objective time-optimal

path [69, 105, 109, 113, 118�122]. In addition, as shown in Figs. 5.1, 5.3, and 5.9, the proposed

approach attain the simultaneous path and trajectory generation while observing the machine

limits.
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Fig. 5.11: Absolute mean tracking error for the proposed velocity pro�le and JLAP paths in

x and y axes.

Fig. 5.12: Single-sided amplitude spectrums of tracking errors.

From the experimental comparison results Figs. 5.11 and 5.12, it shows that the proposed

method outperforms the JLAP by achieving smooth motion and increase the accuracy by

about 16.2% and 14.9% for the x and y axes, respectively. The achievement of the smoothness

is contributed by scale parameter β and harmonic motion which are introduced to ensure the

smooth jerk continuity. Therefore, it is reasonable to conclude that the proposed method

improves the motion performance while achieving the trade-o� between the two objectives.

A feed drive system is considered for optimal trajectory generation and experimental veri�-

cation, which is widely used in the manufacturing sector with the operations such as pocket

milling, inspection, polishing, gluing, and additive manufacturing. Therefore, the proposed

approach can be widely applied in various industrial machines.
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5.8 Conclusion

This chapter illustrates motion pro�les with smooth jerk continuity for time and energy optimal

coverage motion. The modi�ed S-curve trajectory is generated to describe the motion by

introducing the harmonic motion into the JLAP and achieve smooth jerk continuity. Simulation

and experiments are carried out to demonstrate the e�ectiveness of the proposed method in

terms of energy consumption and tracking performance enhancement in industrial two-axis feed

drive system. Pareto front is generated by the NSGA II, where the solution nearest to the origin

point in the normalized objective space is selected as the best trade-o� solution. Experimental

results show that the best trade-o� solution achieves time reduction and energy saving by 13.9%

and 3.5%, respectively, compared to single objective optimal solutions. Compared to the JLAP,

the best trade-o� optimal path reduces the mean error by 16.2% and 14.9% for the x and y

axes, respectively.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Industrial machines are crucial in the manufacturing sector and are widely used. Industrial

machine operations are currently driven by the need for accurate motion, shorter operating

times, and energy e�ciency. This can be achieved by ensuring that the machines operate at high

e�ciency. In the literature, several studies are presented to improve the e�ciency of industrial

machines in terms of time and energy consumption. However, the multi-objective problem of

simultaneous trajectory generation and path optimization in industrial machines for time and

energy optimal coverage motions has not been explored much. Thus, this thesis presents multi-

objective problem-solving for time and energy optimal trajectory generation with simultaneous

geometric path optimization. Furthermore, a single-objective optimization problem is presented

for simultaneous trajectory generation and geometric path optimization for energy consumption

when a single best solution is required. A typical industrial two-axis feed drive system is used

in simulations and experiments to verify the e�ectiveness of the proposed methods for coverage

motion. The proposed solutions can be used for industrial machine operations such as milling,

laser cutting, inspection, gluing, and polishing.

In chapter 3, Pareto-optimal solutions are generated of simultaneous trajectory generation and

geometric path optimization for time and energy optimal coverage motion. To generate the

trajectory along the path, Jerk-limited acceleration pro�le (JLAP) is used to describe the
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trajectory in which velocity pro�les are generated for each linear segment to achieve the desired

velocities. To solve the optimization problem, an energy model of the industrial two-axis feed

drive system is used and Non-dominated Sorting Genetic Algorithm II (NSGA II) generates

Pareto-optimal solutions that trade-o� between time and energy. Experimental results show

the e�ectiveness of the proposed approach, where the best trade-o� solution achieves time and

energy savings of about 10.05% and 2.1%, respectively. The best trade-o� is that solution

nearest to the origin of the normalized function space. In addition, the proposed method is

compared with an approach in which the trajectory of each segment along a path is described by

a constant velocity. The proposed method with variable velocities for each segment reduces the

maximum error by about 76.6% compared to the optimized coverage motion using the constant

commanded velocity approach.

Moreover, an energy optimal solution is achieved for a single-objective optimization problem in

chapter 4. Energy optimization approach for the coverage motion of industrial machines which

simultaneously integrates trajectory generation and geometric path optimization is proposed.

In this chapter, a modi�ed S-curve is used to describe the trajectory of each linear segment. The

modi�ed S-curve is generated by introducing the harmonic motion into the JLAP and achieving

smooth jerk continuity. To achieve energy optimality, Genetic Algorithm (GA) is applied to

optimize an energy consumption model of the feed drive system. Experimental results show that

the energy optimal of the feed drive system is achieved under machine kinematic limits, ensuring

smooth motion. Compared to the initial/unoptimized solutions, the �nal optimized solution

achieves about 14.6% energy reduction. Moreover, the proposed approach is compared to

fourth-order motion pro�le. Experimental results show that the proposed method outperforms

the fourth-order motion pro�le in achieving higher motion accuracy and energy saving.

Using the Pareto optimization method, chapter 5 proposes a method for time and energy optimal

trajectory generation with a simultaneous path optimization using the modi�ed S-curve. The

modi�ed S-curve is used to describe the trajectory for each linear segment along the path to

solve the multi-objective time and energy problem. The energy model of an industrial two-axis

feed drive system is used in �nding solutions to the optimization problem. NSGA II is used to

generate a Pareto-optimal solutions for trade-o� between time and energy consumption. The

best trade-o� solution is chosen as the optimal solution nearest to the origin of the normalized

objective function space. The multi-objective optimization is solved, and the best trade-o�

solution is obtained, which achieves a time reduction and energy saving of about 13.9% and
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3.5%, respectively. Furthermore, the proposed approach is compared to the approach in which

JLAP is used to describe the trajectory of each linear segment along the path. Experimental

results reveal that the optimal path of the proposed approach reduces the mean error by 16.2%

and 14.9% for the x and y axes, respectively.

6.2 Future works

In this thesis, the proposed methods are limited to only considering the 2D working surface;

for this reason, cannot be applied to industrial machines with more than three axes. In future

works, the extension on freeform working surfaces that can be executed using three- and �ve-axis

machines can be further explored.

Furthermore, for the machining operations, a cutting force model and other constraints of ma-

chining parameters, such as spindle speed, maximum cutting force, axial and radial depth of

cut, and workpiece surface roughness, should be incorporated into the energy model and prob-

lem formulation to enhance the machining performance. This can be embodied in formulating

the multi-objective problem as an extension to the proposed methods.

The JLAP and modi�ed S-curve are used to describe the trajectory for linear segments along

the paths. These pro�les are symmetrical, which achieves equal acceleration and deceleration

magnitudes; with the acceleration and deceleration phases taking the same motion time. Con-

sideration of the asymmetrical S-curve pro�le to describe the trajectory for each linear segment

provides more variables during the optimization of the problem; thus, using an asymmetrical

pro�le to describe the trajectory can possibly provide better solutions.

In addition, the proposed method is based on PTP motions. By incorporating continuous corner

smoothing into this proposed method with PTP motions, smooth transitions can be achieved

in linear interpolation along the path from one segment to another.

The proposed methods considered solving single- and two-objective optimization problems.

Since machine e�ciency improvement has several measures, multiple objectives can be added

to �nd the Pareto-optimal solutions.
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