
Deep Perception-Action Coupling and Sensor Fusion

for End-to-end Autonomous Driving

（End-to-end自動運転のための深層学習に基づく

知覚-行動結合とセンサフュージョン）

July 2023

Doctor of Philosophy (Engineering)

Oskar Natan

オスカー ナタン

Toyohashi University of Technology

iii

Abstract

In autonomous driving, how should we integrate perception and action components
properly? What do we need to process and fuse multi-modal data from various sen-
sors? In this study, we aim to answer these questions by conducting some experi-
ments on end-to-end autonomous driving to achieve excellent drivability in complex
environments under diverse conditions and scenarios.

End-to-end autonomous driving is a method that allows an autopilot model to
directly use raw sensor data as the inputs and outputs the low-level control such
as steering angle and throttle level. Since manual integration for joining perception
and action parts is no longer needed, this method has become a preferred approach
as the model can examine the necessity of information all by itself. Moreover, this
method can be combined with imitation learning or behavior cloning which can be
done easily with the supervised learning technique. By using the end-to-end behav-
ior cloning strategy, we can create a single deep learning model to mimic an expert
driver manipulation on vehicle control in handling complicated situations, which
can be simulated using a simulator or derived from publicly available datasets to
enrich the driving experiences. Although this method has plenty of benefits in per-
forming human-like autonomous driving, there are two fundamental issues that re-
main and need to be addressed carefully. First, since the model has multiple outputs
as it deals with perception and control tasks simultaneously at the same time, we
must ensure that the solution for each task can be learned at an equal pace. This
is necessary to prevent the model from tending to focus only on one specific task
during the training process. Second, we need to design a complex network archi-
tecture using the correct layers and tune some hyperparameters accordingly, so that
the model can handle multiple input data with different modalities. This challenge
arises as we must create a compact unified model to avoid the burden of linking
some independent task-specific modules, which may lead to information loss dur-
ing the process of forming a connected modular system.

To tackle those issues, we propose an end-to-end multi-task model that can ex-
tract meaningful information from a set of observations retrieved by vehicle sensors
and solve multiple tasks from the perception stage to the action stage in one forward
pass. We also propose an adaptive loss weighting algorithm to balance the learning
signal for each task equally. Then, we evaluate our proposed model by doing ab-
lation and comparative studies with other models for clearer performance justifica-
tion. The experimental results show that our model achieves superior performance
in many criteria and aspects of driving. To better clarify the findings, this study is
conducted gradually and step-by-step from the perception parts to the integration
of perception and action parts, from predicting some driving records to performing
automated driving, and from the utilization of simulation programs to real-world
implementation on a robotic vehicle. Furthermore, as part of this thesis and to sup-
port future studies, we share the codes and data used in our publications publicly at
https://github.com/oskarnatan. See the publication page for more details.

https://github.com/oskarnatan

v

Contents

Title Page i

Abstract iii

Contents v

1 Introduction 1
1.1 Research Background . 1

1.1.1 Classical Autonomous Driving 2
1.1.2 End-to-end Autonomous Driving 3

Driving Perception . 4
Joined Perception and Control 4

1.2 Goal and Contribution . 5
1.3 Thesis Structure . 6

2 Literature Review 7
2.1 Perception-Action Coupling with Deep Learning 7
2.2 Leveraging Sensor Fusion Technique . 8

3 Multi-sensor Driving Perception with Balanced Learning 11
3.1 Motivation . 11
3.2 Related Work . 12

3.2.1 Handling Different Data Modalities 12
3.2.2 Bird’s Eye View and LiDAR Representation 13
3.2.3 Balancing Multiple Vision Tasks 14

3.3 Methodology . 15
3.3.1 Proposed Model 1 . 15
3.3.2 Proposed Model 2 . 16
3.3.3 Loss and Metric Formulation . 18
3.3.4 Adaptive Loss Weighting . 19
3.3.5 Training Configuration . 22

3.4 Experiment Setup . 22
3.4.1 Simulated Environment . 23
3.4.2 Real Environment . 24
3.4.3 Data Representation . 25

3.5 Result and Discussion . 28
3.5.1 Performance Gain by Feature Fusion 29
3.5.2 1 Layer vs 15 Layers of LiDAR Representation 31
3.5.3 Static vs Adaptive Loss Weighting 34
3.5.4 Loss Weighting Behavior . 34
3.5.5 Single-task vs Multi-task Models 36

3.6 Findings . 38

vi

4 Simulation-based End-to-end Autonomous Driving 39
4.1 Motivation . 39
4.2 Related Work . 41

4.2.1 End-to-end Multi-task Model . 41
4.2.2 Sensor Fusion Strategy . 41

4.3 Methodology . 42
4.3.1 Proposed Model . 42

Perception Module . 42
Controller Module . 44

4.3.2 Behavior Cloning . 46
4.3.3 Training Configuration . 48

4.4 Experiment Setup . 49
4.4.1 Task and Scenario . 49
4.4.2 Performance Evaluation . 50

4.5 Result and Discussion . 52
4.5.1 Drivability in Normal and Adversarial Situations 53
4.5.2 Adaptability to Various Weather Conditions 54
4.5.3 Models Behavior . 55
4.5.4 The Importance of SDC and Multi-agent 55
4.5.5 Task-wise Evaluation . 57

Semantic Segmentation . 57
TL State and Stop Sign Prediction 57
Waypoints Prediction . 58
Navigational Controls Estimation 59

4.6 Findings . 60

5 Vision-based End-to-end Autonomous Driving 61
5.1 Real-world Imitation Learning . 61
5.2 DeepIPC: Deeply Integrated Perception and Control 62

5.2.1 Network Architecture . 63
5.2.2 Model Improvement . 64
5.2.3 Dataset . 66
5.2.4 Training Configuration . 67

5.3 Experiment and Analysis . 68
5.3.1 Evaluation and Scoring . 68
5.3.2 Offline Test . 69
5.3.3 Online Test . 70

5.4 Findings . 72

6 LiDAR-based End-to-end Autonomous Driving 73
6.1 LiDAR-powered Perception . 73
6.2 DeepIPCv2: Highly Robust Perception and Control 74

6.2.1 Network Architecture . 75
6.2.2 Dataset . 78
6.2.3 Training Configuration . 79

6.3 Experiment and Analysis . 81
6.3.1 Evaluation and Scoring . 81
6.3.2 Offline Test . 82
6.3.3 Online Test . 83

6.4 Findings . 85

vii

7 Summary 87
7.1 Conclusion . 87
7.2 Future Work . 88

7.2.1 Future Research Direction . 88
More Sensors with Better Fusion Technique 88
Better Reasoning for A Higher Degree of Understanding 89
Vehicle-to-Everything (V2X) . 89
Imitation Learning and Reinforcement Learning 90

A Learning Curve and Task Balancing Behavior 91
A.1 DeepIPC Training with Simulation Dataset 91
A.2 DeepIPC Training with Real-world Dataset 91
A.3 DeepIPCv2 Training with Real-world Dataset 93

B Preliminary Experiments with a Real Car 95
B.1 Sensors and Observation Data . 95
B.2 Addressing New Challenges . 96
B.3 Transformer-powered Model . 97

Bibliography 99

Publication 117

Acknowledgement 119

ix

List of Figures

1.1 The difference between classical and end-to-end driving systems. . . . 3
1.2 Point-to-point navigation task. 6

3.1 The inputs and outputs of the proposed model. 12
3.2 The architecture of the proposed model 1. 15
3.3 The architecture of the proposed model 2. 17
3.4 The process flow of the MGN algorithm. 20
3.5 Sensors placement on a car. 23
3.6 A set of pre-processed samples in nuScenes-lidarseg. 25
3.7 Point clouds pre-processing. 27
3.8 Inference results on the test images in set A and set B. 30
3.9 Inference results on the test images in set C (rainy night). 32
3.10 Inference results on the test images in nuScenes-lidarseg (sunny day). . 33
3.11 Loss weights update log. 35

4.1 The process flow inside DeepIPC. 40
4.2 The architecture of DeepIPC. 43
4.3 Semantic depth cloud mapping. 43
4.4 Driving footage. 53

5.1 The inputs and outputs of the modified DeepIPC. 62
5.2 The architecture of the modified DeepIPC. 63
5.3 The area for experiments. 66
5.4 Sensor placement on a robotic vehicle. 67
5.5 Driving footage. 71

6.1 The inputs and outputs of DeepIPCv2. 74
6.2 The architecture of DeepIPCv2. 75
6.3 The encoders and the feature fusion module. 75
6.4 The area for experiments. 79
6.5 Sensor placement on a robotic vehicle. 80
6.6 Driving footage. 84

7.1 The illustration of vehicle-to-everything communication (V2X). 89

A.1 DeepIPC training log on simulation dataset. 92
A.2 DeepIPC training log on real-world dataset. 92
A.3 DeepIPCv2 training log on real-world dataset. 93

B.1 Devices and sensors placement. 95
B.2 Sets of driving records. 96
B.3 The utilization of LeGO-LOAM to estimate trajectory. 97
B.4 DeepIPC architecture with transformers. 98
B.5 Encoder blocks and transformers. 98

xi

List of Tables

3.1 Data Generation Setting . 24
3.2 Multi-task Performance Score for Comparative Study 1 29
3.3 Multi-task Performance Score for Comparative Study 2 31
3.4 Model Specification . 37

4.1 Data Generation Setting . 47
4.2 Model Specification . 51
4.3 Driving Performance Score for Comparative Study 52
4.4 Driving Performance Score for Ablation Study 56
4.5 Semantic Segmentation Score . 58
4.6 TL State and Stop Sign Prediction Score 58
4.7 Waypoints Prediction Score . 59
4.8 Navigational Controls Estimation Score 59

5.1 Dataset Information . 67
5.2 Model Specification . 69
5.3 Multi-task Performance Score . 70
5.4 Drivability Score . 71

6.1 Dataset Information . 80
6.2 Model Specification . 81
6.3 Multi-task Performance Score 1 . 82
6.4 Multi-task Performance Score 2 . 83
6.5 Drivability Score . 84

1

Chapter 1

Introduction

In recent years, autonomous driving technology has entered society advancing the
transportation system in many sectors. This technology aims to automate vehicle op-
erations to support human work, ranging from personal to corporation uses. Since
this technology has been applied in diverse areas, it is important to ensure its safety
by keeping up the drivability.

1.1 Research Background

Autonomous driving technology contains a lot of essential elements, either on the
hardware side or software side [1]. On the software side, specifically based on
the functional perspective, processing step, and information flow, a complete au-
tonomous driving system is composed of four main parts: perception, planning,
control, and system supervision [2]. The main objective of the perception part is
to perceive the surrounding area around the ego vehicle by processing given data
provided by various sensors that usually come with different modalities. Percep-
tion has always been a challenging task in developing the foundation of a complex
autonomous driving system. The system needs to fully understand what kinds of
objects are showing up on cameras and their relative distance from the ego vehi-
cle [3]. Once clear information is available, the system is ready to receive commands
like goals or missions for the planning part. Then, after the trajectory or navigation
path is generated, any instruction related to the actuator can be executed in the con-
troller part. Finally, the system supervision is responsible to monitor all aspects of
the vehicle and ensure that everything works as planned [4].

There are two main techniques to integrate all of those parts into a unified sys-
tem or model. The first technique works by joining each part where the outputs of
a certain module are connected to another module for further information process-
ing. This technique is often called classical autonomous driving where everything is
integrated manually using a combination of hand-crafted methods that also incor-
porates the use of machine learning and rule-based algorithms [5]. Meanwhile, the
other technique is referred to as end-to-end autonomous driving. True to its name,
this technique allows a model to directly process multi-modal raw sensor data and
output navigational controls to drive a vehicle [6]. In end-to-end autonomous driv-
ing, the model can almost be made entirely with deep multi-task learning that is
capable of examining the necessity of information all by itself. Therefore, such a
manual integration is not necessary. Both techniques still have limitations in many
aspects such as handling unexpected situations, reliance on very accurate high-cost
sensors, difficulty in inclement weather or low visibility, etc. However, researchers
and engineers are actively working to address these challenges and improve the
safety and reliability of autonomous driving technology.

2 Chapter 1. Introduction

1.1.1 Classical Autonomous Driving

Classical autonomous driving is a technique to make a complete driving system by
integrating some independent or task-specific modules. It relies on a combination of
sensors to gather information about the surroundings [7]. This information is then
processed by a set of algorithms to make decisions about how the vehicle should
navigate in the environment. In classical autonomous driving, these algorithms are
typically designed to handle specific tasks, such as lane-keeping, path planning, and
decision-making. Then, this method works by manually connecting the outputs of
a specific module to another module for further processing [8]. In this section, we
list some notable works in the field of classical autonomous driving where some of
which are currently deployed on the street, ranging from lab projects to the products
developed by many automobile companies in a chronological order as follows.

• Carnegie Mellon University’s NavLab [9] [10] [11]: Initiated in 1984, this project
was among the earliest efforts to develop autonomous driving technology that
enabled vehicles to drive on public roads. This project laid the foundation for
many subsequent projects and initiatives in this field.

• An Autonomous Land Vehicle in a Neural Network (ALVINN) [12]: Published
in 1988, this project developed a neural network-based algorithm that could
recognize road features, such as lane markings and road signs, and steer a
vehicle along a predetermined path.

• DARPA Grand Challenge [13]: Held since 2004, this competition spurred sig-
nificant advances in the field of autonomous driving as teams worked to de-
velop vehicles capable of navigating difficult terrain and completing complex
tasks without human intervention.

• Google’s self-driving car: In 2009, Google began developing its self-driving
car technology, which was based on a combination of sensors, cameras, and
software algorithms, and was designed to enable fully autonomous driving.
In late 2016, Waymo, which is the successor of Google’s self-driving car tech-
nology, began testing fully self-driving cars on public roads without a human
safety driver.

• Tesla’s Autopilot: Initially introduced in 2014, Tesla’s Autopilot system offered
driver assistance features, such as lane keeping and adaptive cruise control,
but required drivers to remain attentive and ready to take control of the vehicle
at any time. This system will be replaced by Tesla’s Full Self-Driving (FSD)
Beta that is currently under testing.

• Toyota’s Guardian and Chauffeur systems: In 2018, Toyota announced the
development of two autonomous driving systems: Guardian and Chauffeur.
The Guardian system assists human drivers with advanced driver assistance
features, while the Chauffeur system is designed to enable fully autonomous
driving.

• Mobileye’s EyeQ Ultra: Introduced in 2022, this fifth-generation system-on-a-
chip is designed to power advanced driver assistance systems and autonomous
driving. It includes a range of sensors and software algorithms and is capable
of processing massive amounts of data in real time to enable highly accurate
and reliable autonomous driving.

1.1. Research Background 3

LiDAR Sensor

RGBD Camera

GNSS Receiver

IMU Sensor

Speedometer

End-to-end Autonomous Driving Model

Perception

Localization

Path planning

Controller

Steering

Throttle

Brake

Vehicle Sensors

Vehicle Actuators

Classical Autonomous Driving System

Safety Driver
or

Passenger

Intervention

FIGURE 1.1: The difference between classical and end-to-end driving
systems.

In classical autonomous driving, the system is composed of several task-specific modules
that are integrated manually to perform automated driving. Meanwhile, in end-to-end au-
tonomous driving, the system is represented with only one single model that can do equal
jobs as the task-specific modules combined together. Usually, both systems are still covered
with a kind of safety system that allows a driver or passengers to intervene for preventing
any accidents.

1.1.2 End-to-end Autonomous Driving

End-to-end autonomous driving is a technique that allows a compact unified model
to perceive the environment and drive a vehicle simultaneously at the same time.
Unlike the classical autonomous driving system, an end-to-end autonomous driving
model can use raw sensor data as its inputs and outputs the navigational controls
directly in one forward pass [14]. Be noted that both systems still have to be cov-
ered with a kind of emergency or safety system that allows a driver or passenger to
take over the vehicle actuators for safety reasons such as preventing any accidents
due to system malfunction. The basic analogical difference between classical and
end-to-end autonomous driving can be seen in Fig. 1.1. Compared to the classical
approach, the end-to-end approach is way more sophisticated as a tedious manual
integration is no longer needed. Moreover, we do not have to worry about informa-
tion loss as the model can examine the necessity of data and extracted information
all by itself [15]. Although end-to-end autonomous driving is not reliable enough
to be deployed at this moment, this technique is said to be promising for future
autonomous driving compared to existing classical systems.

In this section, we first explain perception as the core of reasoning in autonomous
driving. Environmental perception and scene understanding can be said as funda-
mental keys in end-to-end autonomous driving as they play an important role that
affects everything in the next stages. Then, we describe how perception and con-
troller parts can be integrated or connected in an end-to-end manner in a single
deep multi-task learning model.

4 Chapter 1. Introduction

Driving Perception

As the first stage in an autonomous driving system, perception holds an important
role in scene understanding, which is the foundation before making any further de-
cisions [16] [17]. To better understand the surrounding areas, a model may perceive
the environment by performing many kinds of vision tasks such as object detec-
tion [18], semantic segmentation [19], and depth estimation [20]. When it comes to
computer vision problems, deep learning algorithm, especially convolutional neural
network (CNN) has been proven as state-of-the-art by plenty of research [21] [22].
However, employing a single-task deep learning model to handle each vision task
can be costly and inefficient. Thus, a multi-task learning (MTL) model with a task-
balancing algorithm that can handle multiple perception tasks simultaneously is
preferable [23] [24]. Furthermore, perception with different perspectives of views
is also important to improve scene understanding. This can be solved by mounting
some sensors at several positions on the ego vehicle or projecting data into differ-
ent perspectives of views [25]. Besides that, there are plenty of other challenges
that must be tackled to achieve an excellent scene understanding [26]. For instance,
the environmental condition can be varied such as the weather can be sunny, cloudy,
foggy, or rainy. The situation on the road is also unpredictable as there are numerous
vehicles and pedestrians along with their uncertain behavior. Therefore, the system
must be supported with multiple kinds of sensors to provide various data and cover
each other’s weaknesses [27]. For example, a system cannot rely only on the RGB
camera as it may fail in poor illumination conditions. To overcome this problem,
another sensor such as dynamic vision sensor (DVS), radar, and LiDAR can serve
as alternatives [28] [29] [30]. This leads to another issue on how to process multiple
data with different modalities. To answer this issue, a sensor fusion technique that
fuses different data such as combining RGB images with DVS images [31] [32] or
with depth (RGBD) images [33] can be utilized to provide meaningful information
in representing the environmental condition [34] [35]. With various data modalities
taken as inputs, the model is expected to perform better in a dynamically changing
environment.

Joined Perception and Control

Not only handling the vision-related tasks in the perception stage, but an autonomous
driving system also deals with other tasks in the control stage [36] [37]. As a complex
intelligent system, an autonomous driving system consists of several subsystems
that handle multiple subtasks. The solution for each task can be done by simply
employing a specific module [38]. However, this approach is costly and inefficient
as a further configuration is needed to form an integrated modular system [39]. For
example, we must assign the information provided by perception modules (e.g., se-
mantic segmentation, object detection) as the input for the controller module. This
integration process can be very tedious and may lead to information loss as a lot of
parameters adjustment is done manually. With rapid deep learning research, plenty
of works have been conducted to address this issue by training a single model in
end-to-end manners [40] [41] [42]. The model can be trained to provide the final ac-
tion solely based on the observation data captured with a set of sensors. As there is
no manual tuning, the model leverages the extracted features all by itself [43]. End-
to-end learning has become a preferable approach in autonomous driving as manual
configuration to integrate task-specific modules is no longer needed. This technique

1.2. Goal and Contribution 5

allows the model to share useful features directly from perception modules to con-
troller modules. Moreover, the model can learn and receive extra supervision from
a multi-task loss function that considers several performance criteria. All these ben-
efits result in a better model performance even with a smaller model size due to its
compactness [44]. To date, there have been a lot of works in the field of end-to-end
autonomous driving, whether it is based on simulation [45], or offline real-world
where the model predicts a set of driving records [46], or online real-world where
the model is deployed for automated driving [47]. Besides dealing with diverse con-
ditions, another challenge that remains in online real-world autonomous driving is
that the model must deal with noise and inaccuracy of sensor measurement. This
issue needs to be addressed as it affects model performance [48]. To address this is-
sue, some works have been conducted with a focus on simulation-to-real adaptation.
Although the models still suffer from performance losses due to sensor inaccuracies
and diverse conditions, these approaches are said to be promising for future au-
tonomous driving [49] [50]. Different approaches have been proposed with a focus
on end-to-end imitation learning where the model is trained to mimic an expert in
dealing with the issues [51] [52]. These approaches are preferable as they are eas-
ier and can be done with simple supervised learning. Moreover, plenty of publicly
available datasets along with self-made datasets can be used for training the model
to enrich its driving experiences.

1.2 Goal and Contribution

The goal of this study is to develop an end-to-end autonomous driving model that
can handle both perception and control tasks simultaneously in one forward pass.
The model acts as an autopilot agent that drives a robotic vehicle safely in diverse
environments with various conditions. The model must have excellent drivabil-
ity in the point-to-point navigation task determined by the capability of driving in
the traversable area and following a set of route points in GNSS coordinates while
avoiding any obstacles to prevent collisions as illustrated in Fig. 1.2. In order to
accomplish this goal, we develop some essential components, which are also the
contribution of this study as follows.

• A task-balancing algorithm called Modified Gradient Normalization (MGN)
for ensuring a multi-task model can learn how to solve many tasks at an equal
pace. We implement the algorithm to train some models that process multiple
data modalities and perform multiple vision tasks simultaneously. Using the
multi-task model, we also study how sensor fusion and different data repre-
sentations can improve the overall performance [53] [54].

• An end-to-end autonomous driving model that takes multi-modal inputs pro-
vided by several sensors to perform both perception and control tasks in one
forward pass. Evaluated in a simulated environment, the model achieves ex-
cellent drivability under different conditions and scenarios [55].

• A real-world autonomous driving demonstration by deploying the model to
drive a robotic vehicle in real environments. This shows how a proof-of-concept
study can be realized by addressing some implementation issues. Moreover,
this also exhibits the usefulness of end-to-end imitation learning for multi-
input multi-output models [56] [57].

6 Chapter 1. Introduction

FIGURE 1.2: Point-to-point navigation task.

The model drives a vehicle safely following a set of route points in the form of GNSS coor-
dinates. The model must obey traffic rules and avoid any obstacles to prevent collisions.

1.3 Thesis Structure

Following Chapter 1, which describes the background and purpose of this study, we
provide some literature reviews in Chapter 2 that examine two critical components:
perception-action coupling and sensor fusion in autonomous driving. Then, the rest
of this thesis is arranged based on our publications that are organized as follows.

• Chapter 3: We propose an adaptive loss weighting algorithm to balance the
learning signal of a compact model that solves multiple vision tasks simul-
taneously [53] [54]. This is important as we need to achieve excellent driving
perception, which is the fundamental stage in autonomous driving technology.

• Chapter 4: We develop an end-to-end model that unifies the perception and
control parts in its architecture to perform autonomous driving in one forward
pass [55]. The model is evaluated in a CARLA-simulated environment to jus-
tify its drivability and clarify some other aspects of driving performance.

• Chapter 5: We conduct real-world experiments by deploying the model to
drive a robotic vehicle in real environments [56]. This exhibits the usefulness
of imitation learning for a complex model in the real world.

• Chapter 6: We improve the model architecture so that it can deal with more
challenging conditions [57]. The model is employed to drive the robotic vehicle
at night when the illumination is poor and everything is not clearly visible.

Based on the experimental results in each chapter, we provide analysis and dis-
cussion to disclose several findings. Finally, we summarize the conclusion and list
some future research directions based on those findings in Chapter 7.

7

Chapter 2

Literature Review

In this Chapter, we provide some literature reviews of two critical components in
our study, which are perception-action coupling and sensor fusion for end-to-end
autonomous driving. Then, more detailed reviews explaining related works are also
provided in the next chapters.

2.1 Perception-Action Coupling with Deep Learning

Perception is a crucial component of autonomous driving technology, and ongoing
advancements in this field are critical for making self-driving cars safe and reliable
for everyday use. Among various approaches to autonomous driving, perception
has always been the first stage as it is important to understand the surrounding area
before planning and action. Perception refers to the ability of the system to inter-
pret data from various sensors, such as cameras and lidar, in order to understand
the surrounding area and identify different objects such as pedestrians and other
vehicles on the road. As a core of reasoning in autonomous driving, environmen-
tal perception can be achieved by performing various vision tasks such as semantic
segmentation, depth estimation, and object detection [58] [59] [60]. In the field of
autonomous driving research, Hahner et al. proposed a segmentation model that
is made specifically to deal with foggy conditions [61]. Then, different work is pro-
posed by Rajaram et al. [62] where a model called RefineNet is used to perform
object detection. Besides completing a single vision task, the model can be pushed
further to perform multiple vision tasks simultaneously to achieve a better scene un-
derstanding [63]. In deep learning, the process of learning to perform several tasks
simultaneously is called multi-task learning (MTL). MTL aims to leverage shared
feature maps during the training process to boost the performance of each task [64].
There are plenty of studies in the MTL area that are applied to autonomous driv-
ing vehicle problems. For instance, Teichmann et al. [65] proposed an MTL model
called MultiNet that is used to perform several perception tasks such as road seg-
mentation, vehicle detection, and street classification simultaneously. The model
works well, however, it needs improvement in recognizing more crucial and var-
ious objects on the road. Kocic et al. [66] presented a network architecture called
J-Net that processes RGB images to perform various control tasks such as control-
ling the steering wheel, speed, brake, etc. However, the simulation condition still
needs to be improved to test the model generalization. These issues are solved by
Cipolla et al. [67] where they develop a semantic segmentation model to recognize
more various kinds of objects in the Cityscapes dataset [68]. It also performs instance
segmentation and depth estimation by creating a branch of task-specific decoder for
each task. However, it would be better if the model can take multiple inputs with
multiple data modalities so that it can be applied to multi-view systems for a better
scene understanding.

8 Chapter 2. Literature Review

A model also needs to use the information from the perception parts to support
the controller parts. In the field of end-to-end autonomous driving where perception
and control are coupled together, better visual perception means better drivability as
the controller gets better features directly from the perception module [69]. With the
rapid deep learning research, perception and control parts can be coupled together
in an end-to-end manner to avoid manual integration that prone to information loss.
An end-to-end model is proven to have a better generalization as it can leverage the
feature-sharing mechanism within its layers. Moreover, each neuron can receive ex-
tra supervision from a multi-task loss formula that considers multiple performance
criteria. This results in a compact model that is relatively small but has a great per-
formance which is preferable for real deployment [70]. Recent progress is made by
Ishihara et al. [71] where an end-to-end model is deployed to perform multiple vi-
sion tasks and predict navigational controls. It is disclosed that performing vision
tasks can improve drivability as the controller receives better perception features.
Similar work is also proposed by Chitta et al. [72] where a camera-powered model
called AIM-MT (auto-regressive image-based model with multi-task supervision) is
deployed to perform automated driving in a simulated environment. This model
completes perception and control tasks simultaneously to drive a vehicle. The RGB
encoder of this model is guided by bird’s eye-view (BEV) semantic prediction to pro-
vide better features to the controller decoder. Although it has a promising perfor-
mance in poor illumination conditions, this model is practically hard to implement
as it is difficult to provide the BEV semantic ground truth for the training process.

2.2 Leveraging Sensor Fusion Technique

Sensor fusion is a technique that leverages rich information provided by various
sensors. Since each sensor comes with different data modalities, this technique must
have the ability to handle all information as its input. In the field of autonomous
driving, a model that is capable of processing multiple different inputs has been
proposed by Hane et al. [73] where several cameras are placed in several different
positions on the ego vehicle. Thus, the model will have a better capability in under-
standing the environmental condition. Although it has more views of RGB images,
the model may still fail during nighttime or heavy rain due to poor illumination
conditions. Processing one kind of data modality is not reliable for autonomous
driving as it can be failed under certain conditions. Therefore, more heterogeneous
data is needed to cover each other’s weaknesses and produce more meaningful in-
formation through sensor fusion techniques [74]. A dynamic vision sensor (DVS)
camera can be used as an alternative for providing information, especially in per-
forming an active perception [75]. Hence, the idea of using the DVS camera can also
be adopted in solving driving perception problems. To handle various data modal-
ities, Nobis et al. [76] have demonstrated that a deep learning model can be used
to process multiple sensor data by fusing extracted feature maps from each input
modality. Nobis et al. proposed an object detection model called CameraRadarFu-
sionNet (CRF-Net) that processes camera and radar data to get a better performance
on a challenging autonomous driving dataset namely nuScene dataset [77]. CRF-Net
provides a specific encoder for each input data and fuses extracted feature maps into
the Feature Pyramid Network [78] to perform bounding boxes regression and classi-
fication in one forward pass. Then, another similar work is proposed by Niesen and
Unnikrishnan [79] where camera and radar are fused to achieve accurate 3D depth
reconstruction on the highway.

2.2. Leveraging Sensor Fusion Technique 9

With using complex deep learning architectures, sensor fusion techniques can
also be applied to end-to-end autonomous driving. Recent work is proposed by
Prakash et al. [80] where a model that is supported with a camera, LiDAR, GPS re-
ceiver, and speedometer is used to perceive the environment and drive a vehicle at
the same time. Inside its architecture, the model has two main modules, which are
the perception module and the controller module. In the perception module, the
camera is used to capture an RGB image in front of the vehicle, while LiDAR is used
to capture point clouds around the vehicle. Then, the point clouds are projected
into a 2-bin histogram over a 2D BEV grid with a fixed resolution [81]. Further-
more, a certain transformer-based module called TransFuser [82] is used to learn
the relation between the RGB image and the projected point clouds to achieve a
better perception. With this configuration, the model can perceive from the front
and BEV perspectives. Meanwhile, in the controller module, a gated recurrent unit
layer [83] is used to bias the extracted perception features with GPS coordinates and
speed information. Then, the biased features are decoded into several waypoints
that are translated into throttle and steering levels by a certain controller. Later sim-
ilar work is proposed by Shao et al. [84] where a set of transformers is used to learn
the contextual relationship between four RGB images (front, left, right, focus) and
BEV-projected LiDAR point clouds. The model named InterFuser interprets its scene
understanding and reasoning in the form of an object density map that shows the
existence of any objects near the ego vehicle. Then, this map is used to constrain
the final control action and maintain a safe distance from any objects. Both Trans-
Fuser and InterFuser show promising performance by combining multi-modal data
to perceive the environment, however, other issues come as mounting two or more
different sensors can cost more space, equipment, and extra budget. Therefore, using
an equivalent sensor that is cheaper and can do a similar function may be preferable
to tackle this problem. For example, a LiDAR can be replaced with a depth camera
(merged with an RGB camera) to perceive the depth [85]. In the use of RGBD image
for autonomous driving, Huang et al. [86] demonstrated how RGB image and depth
map can be fused and extracted from the early perception stage to provide better
features for the controller. Furthermore, the depth map can be also projected so that
the model can perceive from a different perspective for a better perception.

11

Chapter 3

Multi-sensor Driving Perception
with Balanced Learning

Our study begins with the experiment on driving perception which is the first stage
of the autonomous driving system. In this Chapter, we present a novel compact deep
multi-task learning model to handle various autonomous driving perception tasks
in one forward pass. The model performs various computer vision tasks such as
semantic segmentation, depth estimation, point cloud segmentation, and bird’s eye
view projection simultaneously in multiple views without being supported by other
models. We also provide an adaptive loss weighting algorithm to tackle the imbal-
anced learning issue due to plenty of given tasks. Through data pre-processing and
intermediate sensor fusion techniques, the model can process and combine multiple
input modalities retrieved from RGB cameras, dynamic vision sensors (DVS), and
a light detection and ranging (LiDAR) sensor placed at several positions on the ego
vehicle. Therefore, a better understanding of a dynamically changing environment
can be achieved. Based on the ablation study, the model variant trained with our
proposed method achieves a better performance. Furthermore, a comparative study
is also conducted to clarify its performance and effectiveness against the combina-
tion of some recent models. As a result, our model maintains better performance
even with much fewer parameters. Hence, the model can infer faster with less GPU
memory utilization. Moreover, the result tends to be consistent in three different
CARLA simulation datasets and one real-world dataset namely nuScenes-lidarseg.

3.1 Motivation

To achieve a compact scene understanding and fulfill the needs in the perception
stage, we conduct some experiments that focus on driving perception as shown
in Fig. 3.1. Given a set of input data, we propose a model that performs various
perception tasks with multiple perspectives of views: front (F), left (L), right (Ri),
rear (R), and top (T). To be more specific, our model performs semantic segmen-
tation (SS), depth estimation (DE), LiDAR segmentation (LS), and bird’s eye view
projection (BEVP) simultaneously. We use 4 RGB cameras, 4 DVS, and 1 LiDAR to
provide rich information on a dynamically changing environment. Then, data pre-
processing and sensor fusion techniques are used to handle multiple kinds of data
modalities [87] [88]. Thus, a compact scene understanding, especially in the sur-
rounding area of the ego vehicle can be achieved. We consider using the multi-task
learning (MTL) approach since handling each task with a single-task model can be
very costly and inefficient [89] [90]. However, for an MTL model, learning by com-
bining several tasks is not always consistently better than in single-task learning.
Different combined tasks may be conflicting with the gradient signals during the

12 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

RGB and DVS Semantic Segmentation and Depth Estimation DVS
L F Ri R

DE

IN

GT

1L

16L
+MGN

R
ainy night

R
ainy

Rainy night 001719

LiDAR LiDAR Segmentation and
Bird’s Eye View Projection

Te:
020530

FIGURE 3.1: The inputs and outputs of the proposed model.

Given four views (L-F-Ri-R) of RGB and DVS images, and a top-view of pre-processed Li-
DAR point clouds as inputs (blue), the model performs four views of semantic segmentation
and depth estimation along with a top-view of LiDAR segmentation and bird’s eye view
projection as outputs (red) simultaneously in one forward pass.

training process. If this issue is ignored, the outcome of the MTL approach cannot
be optimal and cause performance degradation, or the training process may focus
on one specific task only [91]. Hence, a proper strategy to balance the gradient and
prevent imbalanced learning is a must. One of the possible answers is to give a set
of loss weights to compensate for the imbalance. However, tuning a combination of
loss weights can be tedious and computationally expensive. Therefore, rather than
giving a fixed set of values [92], loss weights need to be tuned automatically [93] [94].

3.2 Related Work

In this section, we review several related works in the field of autonomous driving
perception. We consider adopting and modifying some approaches to address chal-
lenges and issues in developing our model. In each subsection, we also summarize
how these works are contributing to our study.

3.2.1 Handling Different Data Modalities

The idea of learning multiple tasks simultaneously is to leverage shared features
during the training process. In the area of multi-task learning (MTL) for autonomous
driving perception, Lv et al. [95] develop a model that takes a single RGB image to
predict lane area and lane marking simultaneously. With a simple encoder-decoder
style, the model is made with one RGB encoder and then branched into two task-
specified decoders. A similar approach has been done by Chen et al. [96] where
an MTL model called driving scene perception network is used to perform real-
time joint detection, depth estimation, and semantic segmentation simultaneously.
Moreover, Nakamura et al. [97] also conduct similar research to develop an MTL
model that performs instance segmentation and depth estimation in one forward
pass. Meanwhile, a different approach is presented by Yan et al. [98] where the
model takes LiDAR point clouds to perform real-time occlusion-free road segmen-
tation, dense road height estimation, and road topology recognition simultaneously.
However, all of these approaches rely on one kind of input modality only which may

3.2. Related Work 13

fail in unexpected environmental conditions. Due to the diversity of environmental
conditions, an autonomous driving agent cannot rely on one kind of sensor only.
For example, an RGB camera will be failed to capture the surrounding information
during poor illumination conditions. To address this issue, another kind of sensor
can be used as an alternative to retrieve the information. Therefore, a sensor fusion
strategy may be needed to combine various data representations.

In the field of sensor fusion, Muresan and Nedevschi [99] combine LiDAR and
RGB cameras to create affinity measurement and positional descriptor functions for
an autonomous driving agent to perform multi-object tracking. Pre-trained mod-
els are used to process LiDAR point clouds and RGB images separately to obtain
both LS and SS images. Then, a hand-crafted feature extractor and aggregator are
used to perform the final calculation of object tracking. Another application of sen-
sor fusion is presented by Dawar and Kehtarnavaz [100] where a depth camera and
an inertial sensor are used for action detection and recognition in a continuous ac-
tion stream. To extract depth images and inertial signal features, two separate deep
learning-based encoders are used to process each input. A convolutional neural net-
work (CNN) is used to handle the depth image, while a combination of CNN and
a long short-term memory (LSTM) network is used to process inertial signals. Each
encoder is performing detection and recognition, then a separate decision fusion
model is used to make the final decision by leveraging extracted features from each
encoder. However, this kind of late fusion strategy can lose potentially useful infor-
mation as the extracted features are not shared among the encoders. To address this
issue, Nie et al. [101] develop a multi-modality fusion framework called Integrated
Multimodality Fusion Deep Neural Network (IMF-DNN) based on the intermediate
fusion strategy where the extracted features are fused at some points in the network
architecture. Their model takes multiple input modalities composed of LiDAR point
clouds and RGB images, then fuses the extracted features several times. As a result,
the IMF-DNN achieves higher performance in performing object detection and end-
to-end driving policy in a diverse environment.

For our works, we imitate the architecture style presented by Lv et al. [95] that
simply branches the decoder for each task. Hence, we have a task-specific decoder
for each task on each view. Then, we adopt the intermediate fusion strategy pro-
posed by Nie et al. [101] to combine multi-modal inputs retrieved from RGB cam-
eras, DVS, and LiDAR by creating some fusion layers in the network architecture.

3.2.2 Bird’s Eye View and LiDAR Representation

By having a bird’s eye view projection (BEVP), an autonomous driving agent will
have a better scene understanding whether in the form of a point-dot LS image or
fully reconstructed BEVP image representations. In the field of BEVP, Reiher et al.
[102] use four semantic segmentation images to construct BEVP. However, the model
relies on other semantic segmentation models to provide four SS images. Thus, the
entire process is not completed in one forward pass. With a similar concept, Palazzi
et al. [103] develop a model that takes the front view RGB image along with its pre-
predicted bounding boxes coordinate to estimate the bounding boxes on top-view
perspective. Both approaches may fail due to poor illumination problems (night
and heavy rain) since they only use a monocular camera to provide the information.
Another similar approach is conducted by Mani et al. [104] where a single model is
used to estimate BEVP without any help from other models. However, the model
cannot estimate another view since it takes the front RGB image as the only input.

14 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

Besides using multiple RGB cameras, a 360o LiDAR sensor can be used to collect
point clouds that contain meaningful information about the surroundings. More-
over, LiDAR is more robust as it is not affected by light illumination conditions.
Currently, there have been plenty of studies that conduct research on processing
LiDAR point clouds to fit the input of a deep learning model. Point cloud-based
models [105] [106] are known as the pioneers in taking the LiDAR point clouds di-
rectly, learning the feature, and predicting the label for each point. This mechanism
is quite simple but the model tends to fail in capturing the local structure of an ob-
ject. Then, in view-based models [107] [108], LiDAR point clouds are projected into
several 2D frames with multiple perspectives of views, then a simple convolution
layer is used to process each frame. However, the number of possibilities of views
can be large and lead to an expensive computational cost. Thus, an effective way to
pre-process LiDAR point clouds is needed to reduce the computational load while
preserving useful information for the learning process.

In the BEVP task, any unnecessary projections can be eliminated since the sur-
rounding objects are projected into the top-view perspective. Imad et al. [109] project
raw LiDAR point clouds into a top-view RGB image that has three channels so that a
transfer learning method from various pre-trained models can be applied to perform
the BEVP task. Although the heatmap coloring technique is used to differentiate the
data, a lot of information can be lost due to the limited scale. Then, an improved
pre-processing approach is presented by Yang et al. [110] where LiDAR point clouds
are stored in a 3D tensor with the height information of the point cloud kept as the
third dimension like channels in an RGB image. Thus, a simple 2D convolution with
a larger number of filters can be applied to process each channel. This data repre-
sentation strategy is adopted by Zhang et al. to solve the LS task using the proposed
model called PolarNet [111]. Finally, Chen et al. [112] develop a model that takes a
top-view LS image to solve the BEVP task.

For our works, we also utilize all front, left, right, and rear images to support
both LS and BEVP tasks as demonstrated by Reiher et al. [102]. Meanwhile, in pre-
processing LiDAR point clouds, we combine two different techniques presented by
Imad et al. [109] and Yang et al. [110]. Therefore, we will have a 3D tensor that
stores all point clouds into two forms of representations that contain more useful
information for the learning process.

3.2.3 Balancing Multiple Vision Tasks

A proper loss weighting strategy plays an important role in the training process of
an MTL model, especially in tackling the imbalanced learning issue due to heteroge-
neous tasks with various loss functions. Cipolla et al. [67] conduct research in multi-
loss weighting on an MTL model that performs scene understandings such as se-
mantic segmentation, instance segmentation, and depth regression simultaneously.
By conducting MTL experiments, they show that homoscedastic task uncertainty is
an effective way to perform loss weighting on several tasks. Meanwhile, a different
approach is presented by Chen et al. [113] where a loss weighting algorithm called
Gradient Normalization (GradNorm) is proposed to control the training dynamics
by manipulating the gradient during the training process. By adjusting the gradient
signal, the learning conflict from different tasks can be minimized.

For our works, we adopt GradNorm [113] to deal with the imbalanced learning
problem caused by plenty of tasks with different characteristics. We also do some
modifications to the algorithm to meet our model needs.

3.3. Methodology 15

FIGURE 3.2: The architecture of the proposed model 1.

Blue and green boxes represent the inputs and feature maps for each view. Dark blue and
dark green boxes are the concatenation across all views, while the dark red box is the con-
catenation of all feature maps. Then, grey and yellow boxes represent feature maps and
outputs for each view of depth estimation (DE) and semantic segmentation (SS). 5 boxes in
the center are considered as the bottlenecks where a dropout layer (purple) is applied for
each. Dark grey and dark yellow boxes are the specific bottlenecks for each task. Solid lines
represent the convolution block, while dashed lines represent the skip connection and con-
catenation (orange boxes). Each dashed line connects the feature map on the encoders with
its symmetric feature map on the decoders. Denoted with numbered small blue squares
and green circles, both encoders are used to support both tasks decoders. Finally, red lines
represent the final pointwise convolution followed by an activation function.

3.3 Methodology

In this section, we explain the details of our proposed methods which are inspired by
some related works reviewed in Section 3.2. First, we describe the model architecture
and the proper loss and metric formulation. Then, we explain how we develop the
adaptive loss weighting algorithm to tackle the imbalanced learning issue.

3.3.1 Proposed Model 1

To understand the contribution of the sensor fusion technique, we propose a model
that takes RGB images and DVS images to perform semantic segmentation (SS) and
depth estimation (DE) in multiple views. The visualization of the model architec-
ture can be seen in Fig. 3.2. The model follows the encoder-decoder style [114]
with additional skip connections inspired by U-Net paper [115]. Each feature map
in both RGB and DVS encoders is connected to its symmetric feature maps in both
DE and SS encoders. With this configuration, each encoder can act as a support for
one other. For example, when the illumination is very poor and RGB cameras are
failed to capture enough information about the surroundings, the network can learn
how to leverage extracted information mainly from the DVS encoder. On the other
hand, when the car is not moving (e.g. at the crossroads) and there is not enough
information as the brightness change is very rare, the network can learn how to rely

16 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

more on the RGB encoder. In this architecture, each convolutional block on the en-
coder and decoder has 2× ((3× 3) convolutional layer + batch normalization [116]
+ ReLU activation [117]). Meanwhile, each convolutional block on the bottlenecks
has 3 times more of them to extract more information from all views concatenation.
Then, they are followed by (2× 2) max-pooling on the encoder side and (2× 2) bi-
linear upsampling on the decoder side. To deal with the overfitting issue, several
dropout layers with p = 0.5 are placed on the bottleneck [118]. Finally, a pointwise
(1× 1) convolutional layer is used to reduce the channel number of feature maps to
match the ground truth size. Then, it is followed by a sigmoid activation for SS and
a ReLU activation [117] for DE.

In order to discover the advantage of sensor fusion on an MTL model, we per-
form an ablation study as follows. First, we remove the DVS input block (blue boxes)
so that the model only processes RGB images to perform semantic segmentation and
depth estimation. We refer to this model as A0 where only RGB images are fed into
the network. Then, on the second model named A1, DVS inputs are added so that
the model processes four pairs of RGB and DVS images. Feature maps from DVS
encoders are concatenated to the semantic segmentation and depth estimation de-
coders as well as feature maps from RGB encoders. Furthermore, we also conduct a
comparative study with another model to understand the usefulness of the feature-
sharing mechanism in multi-task learning (MTL).

3.3.2 Proposed Model 2

Following the first model described in Subsection 3.3.1, we propose another model to
study the contribution of adaptive loss weighting algorithm for a multi-input multi-
output model. As shown in Fig. 3.3, we use a common encoder-decoder style with
a specific encoder and decoder for each input and output as demonstrated by Lv et
al. [95]. Then, we add several skip connections to connect the feature maps on the
encoder side with their symmetric feature maps on the decoder side inspired by the
famous U-Net architecture [115]. This mechanism aims to enhance the model per-
formance by leveraging combined feature maps on the bottleneck with the specif-
ically extracted features from each decoder. Each RGB encoder is connected and
concatenated to each semantic segmentation (SS) decoder that has the same view
and spatial dimension. Rich color, shape, and much more extra information con-
tained in the RGB image can be helpful for segmentation problems. Meanwhile, the
DVS input is specifically used to support the depth estimation (DE) task by connect-
ing and concatenating each pair of symmetric encoder-decoders in a similar way to
the RGB-SS pair. DVS image can be helpful for estimation problems, especially dur-
ing poor illumination conditions since it contains contrast information even if there
is only a small brightness change. Then, we connect the encoder of pre-processed
LiDAR point clouds to the LiDAR segmentation (LS) decoder in line with the LS
encoder to the bird’s eye view projection (BEVP) decoder as they have the same top
perspective of view. Similar to Chen et al. [112], our model performs BEVP by lever-
aging LS image. However, instead of taking the LS image directly as its input, we
feed the model with the raw LiDAR point clouds that have been pre-processed to
perform LS, then utilize the LS output to perform the BEVP task. Thus, there is no
need to use another model to specifically support the LS task first. Our model also
leverages 4 views of SS images as inspired by Reiher et al. [102] along with 4 views
of DE images to support the LS encoder in performing BEVP. Finally, by following
the intermediate fusion technique presented by Nie et al. [101], we create two bot-
tlenecks in the form of convolution blocks to fuse and process multiple extracted

3.3. Methodology 17

RGB
3×128²

DVS
2×128²

(4x)16x128² (4x)16x128²

(4x)32x64² (4x)32x64²

64×
32²

64×
32²

192×
32²

128×
16²

64×
32²

64×
32²

32×64² 32×64²

96×64²96×64²

16×128² 16×128²

SS
23×128²

DE
1×128²

48×128²48×128²

SS
23×128²

DE
1×128²

LS
23×128²

16×128² 16×128² 16×128²

32×64² 32×64² 32×64²

128×
64²

64×
32²

64×
32²

192×
32²

128×
16²

64×
32²

32×64²

96×64²

16×128²

BEVP
9×128²

48×128²

LiDAR
C×128²

16x128²

32x64²

32×64²

96×64²

16×128²

LS
23×128²

48×128²

128×
64²

64×
32²

128×
64²

64×
32²

64×
32²

128×
64²

16×128² 16×128²

32×64² 32×64²

16×128²

32×64²

1st Bottleneck 2nd Bottleneck

Convolution block
Skip connection
Point-wise conv. + final act.
Feature map
Concatenation
Output
Input
Dropout layer

FIGURE 3.3: The architecture of the proposed model 2.

To be noted, each view (Front, Left, Right, and Rear) on RGB, DVS, SS, and DE have its own
encoder, while LiDAR and LS only have one encoder as there is only one view (Top). The
text written inside each box is the tensor size in C× S2, where C is the number of channels
and S2 is the spatial dimension (height × width). For the LiDAR encoder, the network can
take 1 or 15 layers of pre-processed LiDAR point clouds (see Subsection 3.4.3).

feature maps from various input encoders. The 1st bottleneck is used to store the ex-
tracted latent space from three inputs (RGB, DVS, and LiDAR) and used to perform
SS, DE, and LS tasks. Meanwhile, the 2nd bottleneck is used to store the extracted
information from those tasks and perform BEVP as the final task. Hence, a compact
architecture that performs multiple tasks in one forward pass can be obtained.

The detailed explanation of the network architecture shown in Fig. 3.3 is as fol-
lows. Each red line represents the skip connection that connects each pair of sym-
metric encoder-decoders followed by a concatenation process. The dark green line
represents a common convolution block that consists of 2× (3× 3 convolution layer
+ batch normalization [116] + ReLU activation [117]) and is followed by a 2 × 2
max-pooling layer for encoder path or 2× 2 bilinear upsampling for decoder path.
On the encoder path, the spatial dimension of the tensor is reduced by half while
the number of feature maps in the channel axis is doubled each time it passes the
convolution block. Meanwhile, on the decoder path, the spatial dimension is dou-
bled while the number of feature maps is reduced by half gradually. Finally, the blue
line represents a point-wise 1× 1 convolution layer that reduces the channel so that
the number of output elements will match the number of channels of the ground
truth. Then, a sigmoid layer is used to perform point-wise classification for SS, LS,
and BEVP tasks and a ReLU layer for point-wise regression in a positive normalized
range of 0 to 1 for the DE task. To prevent overfitting, we add a dropout layer [118]
with a drop rate of p = 0.5 on each convolution block in the bottlenecks.

18 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

3.3.3 Loss and Metric Formulation

To train the model and monitor its performance, loss and metric functions are needed
to be formulated carefully. Loss functions are used to update the model weights
while metric functions are used to monitor the model performance. Therefore, we
use the metric scores to decide whether the training must be stopped or the learn-
ing rate should be reduced. To be noted, comparing loss values will not give a fair
comparison due to different loss weights computed by the adaptive loss weighting
algorithm. Hence, we use several metric scores as their calculation remains the same
on each training epoch. As for the depth estimation (DE) loss (LDE), we calculate
Huber loss as in (3.1).

LDE =
1
V

V

∑
i=1

1
N

N

∑
j=1

zij, (3.1)

where zij is given by (3.2).

zij =

{
0.5(ŷij − yij)

2 if |ŷij − yij| < δ

δ(|ŷij − yij| − 0.5δ) otherwise
(3.2)

We average the loss across all tensor elements N on all views V = 4. The number
of N is also equal to the number of elements in pre-processed ground truth for DE
task IDE (see Subsection 3.4.3). Then, yij is the value of jth element of the ground
truth IDE with view i, while ŷij is the predicted value of jth element of the predicted
depth output with view i after ReLU activation. Huber loss is widely used and
suitable for the DE task as it takes the advantage of both mean squared error (MSE)
and mean absolute error (MAE) based on the prediction results. We set δ = 0.5 as the
threshold for the Huber loss to start to curve like MSE if |ŷij − yij| < δ or constantly
have a large gradient which is the same as MAE if |ŷij − yij| ≥ δ. Meanwhile, for the
rest of segmentation-related tasks, we use the combination of standard binary cross
entropy (BCE) and Dice loss as in (3.3) to calculate LSS, LLS, and LBEVP.

L{SS,LS,BEVP} =
1
V

V

∑
i=1

(
1
N

N

∑
j=1

yijlog(ŷij) + (1− yij)log(1− ŷij)

)
+

(
1− 2|ŷi ∩ yi|
|ŷi|+ |yi|

)
(3.3)

Similar to the Huber loss function, in the BCEDice loss function, the final loss cal-
culation is also averaged across all tensor elements N and all output views V = 4 for
semantic segmentation (SS) task and V = 1 for LiDAR segmentation (LS) and bird’s
eye view projection (BEVP) tasks. Then, yi is the ground truth ISS or ILS or IBEVP
with view i and ŷi is the predicted output of view i. Finally, the total loss can be cal-
culated by multiplying each loss Li with a loss weight wi and summing all of them.
In addition, to prevent overfitting, a weight decay [119] with λ = 0.0001 is used to
penalize model complexity by multiplying the sum-squared of model weights W
and added to the total loss as in (3.4).

Ltotal = λΣW2 +
T

∑
i=1

wiLi (3.4)

To be noted, Li is an element in a set of losses {LDE,LSS,LLS,LBEVP}. Then, for
the metric functions, we use MAE (3.5) for depth estimation (DE) task and intersec-
tion over union (IoU) (3.6) for segmentation-related tasks.

3.3. Methodology 19

MAEDE =
1
V

V

∑
i=1

1
N

N

∑
i=1
|ŷij − yij| (3.5)

IoU{SS,LS,BEVP} =
1
V

V

∑
i=1

|ŷi ∩ yi|
|ŷi| ∪ |yi|

(3.6)

Finally, the total metric (TM) is calculated by summing all metric scores as for-
mulated in (3.7). To be noted, we use TM to determine the best model as it represents
overall model performance in all tasks. The total loss (3.4) cannot be used for com-
parison as it is affected by the multiplication of loss weights and weight decay which
are varied amongst models. Then, in order to know the discrepancy between tasks
and show how balanced the performance is across all tasks, we calculate the metric
variance (MV) within MAEDE, 1− IoUSS, 1− IoULS, and 1− IoUBEVP with (3.8).

TM = MAEDE + (1− IoUSS) + (1− IoULS) + (1− IoUBEVP) (3.7)

MV =
1
T

T

∑
i=1

(
Mi −

TM
T

)2

, (3.8)

where Mi is the metric score of task-i and TM
T is the mean of all metric scores with

total tasks T = 4. Keep in mind that the lower TM and MV scores mean the better
and more balanced the model performance.

3.3.4 Adaptive Loss Weighting

An adaptive loss weighting strategy can be used to deal with the imbalanced learn-
ing issue caused by plenty of given tasks with different characteristics. Hence, we
adopt the GradNorm algorithm [113] and do some modifications to match our pro-
posed model. The overall process of the modified GradNorm (MGN) algorithm can
be seen in Fig. 3.4. Normally, the total loss for a multi-task model can be computed
with (3.9).

L(t) =
T

∑
i=1

wi(t)Li(t), (3.9)

where Li is the loss function of task-i from a T number of tasks and a static loss wi
is used to balance the learning process at training step t. Usually, the loss weights
are tuned empirically which results in a huge computational cost to find the best set
of loss weights. To address this issue, the GradNorm algorithm [113] is invented to
learn the loss weight wi by adjusting the gradient norms dynamically so that differ-
ent tasks can be trained at similar rates. However, in their original paper, this algo-
rithm is used to balance the learning process of the multi-task model of three tasks
with only one input and one bottleneck of shared layers. Meanwhile, our model
has four tasks with three data modalities, five different views as the input, and two
bottlenecks of shared layers. Besides that, the loss weights are updated on each step
and cause a huge computational load. We solve this issue by modifying the update
process only at the last step t = s for each epoch which means that there is only one
update for one epoch. The number of maximum steps s is equal to the number of
samples in the training set divided by the batch size. To be noted, the number of
training samples on each dataset is different which means that the maximum step s
can be varied depending on what dataset is currently used.

20 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

1

2

3

4

Forward passMGN process
F L

R Ri

F L

R Ri

F L

R Ri

F L

R Ri

T T T

1st

Bottleneck
2nd

Bottleneck

1 2 3 4+ + + → L
L → ∇L → Loss WeightsMGN MGN

MGN

FIGURE 3.4: The process flow of the MGN algorithm.

The loss weight for each output on both SS and DE decoders is the same on each view since
each SS loss and DE loss is averaged across all views.

Before the loss weights are updated on each epoch at step t = s, there are several
quantities that need to be defined first as follows.

• Subsets of weights W from entire model weightsW where the algorithm will
be applied. We pick 2 subsets of weights as there are 2 bottlenecks in the net-
work architecture shown in Fig. 3.3. W(s) selection is expressed as (3.10).

W(s) = {W1(s), W2(s)} ⊂ W(s) (3.10)

We pick W1(s) and W2(s) from the first layer of the 1st and 2nd bottleneck re-
spectively. These layers are chosen since they have rich information on shared
latent space from the concatenation of multiple feature maps.

• The L2 norm of the gradient of the weighted single-task loss (wi(s)Li(s)) with
respect to the chosen subset of weights W(s) that can be calculated with (3.11).

G(i)
W (s) = ‖∇W(wi(s)Li(s))‖2 (3.11)

Based on the network architecture shown in Fig. 3.3, the gradient of the weighted
single-task loss for BEVP is respected to W(s) = W2(s), while the others are
respected to W(s) = W1(s). For further process, we need to compute GW(s)
which is the average of G(i)

W (s) across all tasks T with (3.12).

GW(s) =
1
T

T

∑
i=1

G(i)
W (s) (3.12)

• The ratio between Li at the last step t = s and first step t = 0 that can be
computed with (3.13).

L̄i(s) =
Li(s)
Li(0)

(3.13)

Concisely, the loss ratio L̄i(s) is also a measure of the inverse training rate of
task-i where a lower ratio means a faster rate of learning task-i.

3.3. Methodology 21

Algorithm 3.1: Training with the MGN algorithm
Initialize model weightsW with kaiming init [120]
Set initial loss weights wi(0) = 1∀i
Set asymmetry alpha α = 1.5
. .

for training step t = 0 to s do
• Input batch x(t) and get prediction ŷ(t)

• Compute each single-task loss Li(t)

• Compute total loss L(t) with (3.9)

if t = 0 then
Set initial task loss Li(0) = Li(t)

else if t = s then
Pick W(s) with (3.10)
Compute G(i)

W (s) with (3.11) for each task-i
Compute GW(s) with (3.12)
Compute L̄i(s) with (3.13) for each task-i
Compute ri(s) with (3.14) for each task-i
Compute G(i)W (s) with (3.16)
Compute LMGN(s) with (3.15)
Compute MGN gradients ∇wiLMGN(s)
Update each wi(s) using ∇wiLMGN(s)
Normalize new wi(s) with (3.17)

end

• Compute gradients ∇WL(t)

• Update network weightsW(t) using ∇WL(t)

end
. .
Maximum training step s can be calculated by dividing the total training samples by
batch size. It can be varied as the number of samples is different on each dataset

• The relative inverse training rate of task-i which can be calculated with (3.14).
This variable is used to balance gradients during the training process.

ri(s) =
L̄i(s)

1
T ∑T

i=1 L̄i(s)
(3.14)

The higher relative inverse training rate ri(s) means the higher gradient mag-
nitude for task-i which results in the task being learned faster.

The detailed steps of the modified GradNorm (MGN) algorithm can be seen on
Algorithm 3.1. To be noted, there are only two training steps in one epoch to be con-
sidered for MGN computation which are the first step t = 0 and the last step t = s.
Li(0) is very crucial, especially at the first epoch of the training process. Thus, proper
model weightsW initialization and task loss Li formulation need to be considered
carefully. Furthermore, both depth estimation (DE) and semantic segmentation (SS)
tasks have multiple inputs from 4 different views while LiDAR segmentation (LS)

22 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

and bird’s eye view projection (BEVP) tasks only have one input from a top perspec-
tive. Thus, the Li for both DE and SS tasks are averaged across all views first before
computing Li(0) and Li(s). This means that the loss weight wi for each DE task and
SS task will be the same on any view. The MGN algorithm is deployed as a loss
function that computes the MAE between the target and actual gradient norms as in
(3.15) for each task in every last step t = s on each epoch.

LMGN(s) =
T

∑
i=1

∣∣∣G(i)W (s)− G(i)
W (s)

∣∣∣ , (3.15)

where the loss is summed across all tasks T with the target gradient G(i)W (s) is given
by (3.16).

G(i)W (s) = GW(s)ri(s)α (3.16)

We set the asymmetry α = 1.5 as an additional parameter to control the balanc-
ing rate. The higher α value means stronger balancing enforcement which is usually
used if tasks are significantly different [113]. Then, we use stochastic gradient de-
scent (SGD) algorithm [121] to compute the gradients ∇wiLMGN(s) and update the
loss weights wi(s). We set the initial update rate ηMGN0 = 0.1 and reduce it by half
until a minimum value of ηMGNmin = 0.0001 if there is no drop in total metric score in
validation dataset in 4 epochs in a row. Finally, each loss weight wi(s) is normalized
with (3.17) so that the sum of all loss weights will always equal T.

winew(s) =
wi(s)

∑T
i=1 wi(s)

T (3.17)

3.3.5 Training Configuration

We use two GPUs, the NVIDIA RTX 2080 super and GTX 1080 Ti separately to
train the model along with its variation described in Section 3.5. We develop the
model entirely from scratch using PyTorch [122]. We do not use any pre-trained
network to perform transfer learning and fine-tuning. As mentioned in Subsection
3.3.4, weights initialization can be crucial as it affects Li(0), especially at the early
epoch of the training process. Therefore, the Kaiming initialization strategy [120] is
used to initialize the entire model weightsW . Then, a small batch size of 6 is enough
since the model already takes multiple views of inputs. Similar to the loss weight
updates, we use SGD [121] with momentum µ = 0.9 to update the model weights
during the training process. We set the initial learning rate η0 = 0.1 and reduce it by
half gradually until ηmin = 0.00001 if there is no drop on the validation total metric
(TM) score in 4 epochs in a row. We also stop the training process automatically if
there is no drop in the validation TM score in 25 epochs in a row.

3.4 Experiment Setup

To strengthen our findings, we conduct experiments on four different datasets com-
posed of three simulation datasets gathered using CARLA simulator [123] and one
real-world dataset called nuScenes-lidarseg [77], which is also used to illustrate the
implementation of the proposed model in a real-world scenario. Then, the pre-
processing steps are explained to understand the data representation. We also pro-
vide a brief explanation of the training configuration.

3.4. Experiment Setup 23

-30o
20o

L

Ri
20o

Front

FR T

RGB & DVS
camera LiDAR

FIGURE 3.5: Sensors placement on a car.

Both RGB and DVS cameras are placed at four different positions, while the 360o LiDAR
sensor is placed at the top of the ego vehicle.

3.4.1 Simulated Environment

We use CARLA simulator [123] to generate simulation datasets to train our model.
We collect a large amount of data composed of RGB images, DVS arrays, and LiDAR
point clouds as the inputs and semantic segmentation (SS) images, depth estima-
tion (DE) images, LiDAR segmentation (LS) images, and bird’s eye view projection
(BEVP) images as the outputs. We create three different datasets namely set A, B,
and C for the experiment and strengthen our justification. In dataset A, we gather
the simulation data from map Town01 as the training set and Town02 for both vali-
dation and test sets. Then, in dataset B, we collect the training set from Town02 and
the rest validation and test sets from Town01. Meanwhile, in dataset C, we generate
all simulation data from all maps (Town01 to Town05) for training, validation, and
testing sets. Each map has different characteristics and contains various objects.

To retrieve more information, several sensors are mounted on the ego vehicle as
shown in Fig. 3.5. We place RGB and DVS cameras at four positions, which are front
(F), left (L), right (Ri), and rear (R). Each camera has a 90o horizontal and vertical field
of view, 20o upward rotation, and resolution of H ×W = 128× 128. Then, a 360o

LiDAR sensor with 64 lasers and 32 meters of the maximum range is placed at the
top (T). The LiDAR lasers are vertically spread between the range of−30o to 20o from
the horizontal line. The same configuration is also applied to get the ground truth
data for each task. During the data gathering process, we create a realistic condition
by changing the weather dynamically where the environment can be sunny, rainy,
foggy, morning, noon, evening, and night. Each condition also varies on a scale of
0 to 100% and can be combined. In addition, we also spawn non-player characters
such as pedestrians and other vehicles to mimic the real situation on the road. The
detailed data generation setting can be seen in Table 3.1.

24 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

TABLE 3.1: Data Generation Setting

Train : Val : Test ratio 3 : 1 : 1

Total data 2000 (set A and B), 10000 (set C)

Maps used 2 (set A and B), 5 (set C)

Simulation time Morning, noon, evening, and night

Weather Sunny, rainy, cloudy, and foggy

Non-player characters Other vehicles (truck, car, bicycle, motorbike)
and pedestrians

Object classes for SS and LS Unlabeled, building, fence, other, pedestrian,
pole, road lane, road, side walk, vegetation,
other vehicles, wall, traffic sign, sky, ground,
bridge, rail track, guard rail, traffic light, static
object, dynamic object, water, terrain

Object classes for BEVP Road, road lane, road centerline, other vehi-
cles, ego vehicle, green traffic light, yellow
traffic light, red traffic light, pedestrian

CARLA version 0.9.10.1

3.4.2 Real Environment

To illustrate how our model can be deployed in a real-world scenario, we also use
nuScenes-lidarseg dataset [77] as the fourth dataset in our experiment. However,
this dataset has a different sensor configuration and is not providing DVS images
and ground truth for both semantic segmentation (SS) and depth estimation (DE)
tasks. Thus, we consider modifying and pre-processing the dataset to meet the
model needs. First, we use front-left and front-right images as the replacement for
left and right images which are not provided in nuScenes-lidarseg. As there are
no DVS images for the model inputs, we remove all DVS encoders in the network
architecture and branch each RGB encoder to support both SS and DE decoders.
Therefore, the model will take RGB inputs only to perform DE and SS tasks. More-
over, this dataset does not come with the ground truth for SS and DE tasks. Thus,
we use the provided LiDAR point clouds associated with class and distance infor-
mation to create ground truths for SS and DE tasks. We create SS and DE ground
truths using the point clouds that are shown on each camera’s perspective of view.
Concisely, we plot each point cloud’s associated class data as the SS ground truth
and distance data as the DE ground truth. Then, to fill the gap between plotted
frame’s pixels, we give neighboring pixels the same class or value as the filled pixel.
With this mechanism, we can obtain nearly similar ground truths as retrieved from
the CARLA simulator. To be noted, we also resize all images to have a spatial di-
mension of H ×W = 128× 128 which is the same as in datasets A, B, and C. Thus,
there is no need to make any further modifications to the model input size. Finally,
since nuScenes-lidarseg has 32 possible object classes to be recognized, therefore,
the number of channels of semantic segmentation (SS), LiDAR segmentation (LS),
and bird’s eye view projection (BEVP) outputs become C = 32. A set of nuScenes-
lidarseg samples can be seen in Fig. 3.6.

3.4. Experiment Setup 25

RGB only DVS
L F Ri R

DE

IN

GT

1L

16L
+MGN

R
ainy night

R
ainy

Rainy night 001719

LiDAR
LS
BEVP

MiniNu:
209302
000003
43

Semantic Segmentation and Depth Estimation

FIGURE 3.6: A set of pre-processed samples in nuScenes-lidarseg.

From left to right views: L-F-Ri-R while LiDAR, LS, and BEVP only have a top-view. There
are no DVS images for model inputs so all DE decoders will retrieve extracted RGB feature
maps only. Since there are no ground truths given for DE and SS tasks, the information of
the LiDAR point cloud’s associated class and distance are used to create the ground truth
for both tasks.

Originally, the nuScenes-lidarseg dataset has 1000 driving scenes obtained from
Boston and Singapore which have dense traffic and challenging situations. How-
ever, we only use the original train and validation (train-val) set (850 scenes) for
our experiment. Meanwhile, the original test set (150 scenes) is excluded since the
ground truth is not publicly available. Hence, we cannot measure the performance
of the model. The nuScenes-lidarseg’s train-val set has a total sample of 34149 from
850 scenes that are different from one another. We divide the original train-val set
into the train, validation, and test sets with the ratio of 3:1:1 (the same as in datasets
A, B, and C) based on the number of scenes so that the sample will be completely
different on each set. Thus, there are 510 scenes (20418 samples) for training, 170
scenes (6873 samples) for validation, and 170 scenes (6858 samples) for testing.

3.4.3 Data Representation

An image is retrieved as IRGB ∈ {0, ..., 255}3×128×128 representing a set of 8-bit pixel
values in the form of RGB channel (C) × height (H) × width (W). Different from
IRGB, the DVS array is retrieved as ADVS ∈ RN×4 where N is the total number of
pixels that are considered to have a brightness change in one simulation step and R

is an array with four elements consisted of timestamp, pixel’s x-coordinate, pixel’s
y-coordinate, and pixel’s polarization. The pixel’s polarization can be positive or
negative depending on the brightness change. Meanwhile, a set of LiDAR point
clouds is retrieved as ALID ∈ RM×4 where M is the total number of point clouds
retrieved in one simulation step and R is an array with four elements composed of
point’s x,y,z-coordinate and cos of incident angle (cos(θ)).

We normalize RGB images on a scale of 0 to 1 as IRGB ∈ {0, ..., 1}3×128×128. Since
the model already takes multiple inputs of views, there is no need to feed the model
with a bigger input size. Thus, it can reduce the computational load during the
training and validation processes. To meet the input shape of the model, both ADVS
and ALID need to be pre-processed first due to the possibility of numerous N and
M which are affected by the simulation condition at a time. Thus, to deal with this
issue, we pre-process both ADVS and ALID to become a 3D tensor with a fixed shape.
With a maximum x,y coordinate range of (127, 127), we project ADVS into IDVS ∈
{0, 1}2×128×128 with the x,y-coordinate takes place on the spatial dimension (H ×
W = 128× 128) and the polarization takes place on the channel dimension C = 2.
In the channel axis, the positive polarization takes place on the first channel while

26 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

the negative polarization takes place on the second channel of IDVS. We convert
the polarization status into a value of 0 or 1 with (3.18). Meanwhile, the timestamp
attribute in ADVS is used to synchronize with other sensor data.

IDVSij =

{
1 if there is polarization record in ADVSxy

0 otherwise,
(3.18)

where IDVSij is the i,j-coordinate derived from ADVS’s x,y-coordinate. Meanwhile,
for the LiDAR point clouds, we propose two different techniques to pre-process the
LiDAR point clouds and perform an ablation study to understand their influence.
The first method ignores ALID’s z-coordinate and projects the LiDAR point clouds
into a tensor with top-view perspective ILID ∈ {0, ..., 1}1×128×128 with (3.19). This
kind of input representation is similar to Imad et al. [109], however, instead of using
heatmap color (in 3-channel RGB), we only use one channel to store the cosine of the
incident angle (cos(θ)) of each point cloud. Therefore, a newly formed tensor ILID
looks like a heat map-like gray image.

ILIDij =

{
cos(θ) if there is a point record in ALIDxy

0 otherwise
(3.19)

The ILID’s i,j-coordinate has been shifted and scaled from the original ALID’s x,y-
coordinate. The center (x, y) = (0, 0) of ALID is at the top of the ego vehicle and
the range of the x and y-axis are -32 to 32 meters (the maximum range of LiDAR).
Therefore, we need to shift and scale the ILID’s i,j-coordinate so that the center is at
(i, j) = (64, 64) and the minimum and maximum coordinate are at (i, j) = (0, 0) and
(i, j) = (127, 127) respectively. The shifting and scaling process of the i,j-coordinate
from the original x,y-coordinate can be done with (3.20) and (3.21) respectively.

ILIDi =

⌊
ALIDx − (−32)

32− (−32)
× 127

⌉
(3.20)

ILIDj =

⌊
ALIDy − (−32)

32− (−32)
× 127

⌉
(3.21)

Both ILIDi and ILIDj represent the ILID’s i,j-coordinate while ALIDx and ALIDy rep-
resent ALID’s x,y-coordinate. Meanwhile, 127 is set to be the highest point of ILID’s
i,j-coordinate. Then, we also give a value to the nearest pixels from ILIDij as the same
as the pixel’s value of ILIDij itself. Thus, the pre-processed ILID will have a better area
coverage from the top perspective of view. However, the first method can lose points
that have the same ALID’s x,y-coordinate but with a lower ALID’s z-coordinate since
the method only stores one point with the highest ALID’s z-coordinate.

In the second LiDAR pre-processing method, we adopt the LiDAR pre-processing
technique presented by Yang et al. [110] that takes the ALID’s z-coordinate into ac-
count. Then, we stack the pre-processed point clouds with the data from the first
method to provide more rich information. The visualization of this method can be
seen in Fig. 3.7. Concisely, the second method projects the LiDAR point clouds into a
3D tensor ILID ∈ {0, ..., 1}15×128×128. Here, we set the number of channels n(k) = 15
where k ∈ {0, ..., 14} based on the vertical field of view and the maximum range
of the LiDAR sensor. As can be seen in Fig. 3.5, the sensor has a 30o view below
and 20o view above the horizon line. Since the sensor is placed on the top of the
ego vehicle which is 2 meters from the ground, then the lowest point of the point

3.4. Experiment Setup 27

k: 0,1,2,
 3,4

k: 5,6,7,
 8,9

k: 10,11,12,
 13,14

z
y

x

007002

FIGURE 3.7: Point clouds pre-processing.

All point clouds are mapped into a tensor ILID ∈ {0, ..., 1}15×128×128 where each layer holds
the height information that spreads from -2 meter (lowest point) to 11 meters (highest point).

cloud is equal to -2. Meanwhile, the highest point of the point cloud can be cal-
culated with dsin(20) × 32e = 11. Therefore, we set n(k) = 15 where the first 14
channels (k ∈ {0, ..., 13}) are used to store point clouds based on their height defined
by ALID’s z-coordinate which are spreading from the lowest point of -2 meter to the
highest point of 11 meters. Then, the last channel (k = 14) is used to store all flat-
tened point clouds from the first method. We map the ALID’s z-coordinate into k
channels with (3.22).

ILIDk =

⌊
ALIDz − (−2)

11− (−2)
× 13

⌉
, (3.22)

where ILIDk is the ILID’s k-coordinate (channels) and ALIDz is the original ALID’s
z-coordinate. The multiplier of 13 is used to ensure that there are no point clouds
stored in the last channel (k = 14) as it has been reserved to store all flattened point
clouds from the first method. The maximum and minimum values of ALIDz are set to
11 and -2 for all recorded point clouds so that the scale for all pre-processed ILID will
be the same. Thus, the network can easily learn to segment objects based on their
height even if the maximum point of each recorded point cloud is different. Finally,
similar to the first method, we also give the same value to the nearest pixels around
ILIDijk . To be noted, if there are 2 points or more with different ALID’s x,y,z-coordinate
but have the same ILID’s i,j,k-coordinate after pre-processing, only the point that has
the highest ALID’s z-coordinate that can take place on the ILID’s i,j,k-coordinate to
prevent multiple data points stored in one coordinate. Therefore, having a large
number of k channels would be better since there is more space to store point clouds.
However, processing a larger input would also cost more computational time.

On the output side, we read the depth estimation (DE) ground truth as a ten-
sor IDE ∈ {0, ..., 1}1×128×128. Thus, the output layer of the model for the DE task
will only have 1 channel with the spatial dimension of (128× 128) that predicts nor-
malized depth values within the range of 0 to 1. With this mechanism, we can use
simple ReLU activation for the final output layer of the DE decoder. Meanwhile, the
original semantic segmentation (SS), LiDAR segmentation (LS), and bird’s eye view
projection (BEVP) ground truths are retrieved as I{SS,LS,BEVP} ∈ {0, ..., 255}3×128×128

which are following the color palette in Cityscapes dataset [68]. To meet the needs
of the network architecture, especially on its output layers for segmentation-related
tasks (SS, LS, and BEVP), we perform one hot encoding process to convert the 8-bit
RGB representation. As a result, each ground truth become ISS ∈ {0, 1}23×128×128,
ILS ∈ {0, 1}23×128×128, and IBEVP ∈ {0, 1}9×128×128. Therefore, a sigmoid activation

28 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

can be used at the output layer of SS, LS, and BEVP decoders. The number of classes
in the CARLA simulation dataset is 9 for the BEVP task and 23 for both SS and LS
tasks as mentioned in Table 3.1. Meanwhile, in the real-world nuScenes-lidarseg
dataset, the number of classes is 32 for all SS, LS, and BEVP tasks as mentioned
in Subsection 3.4.2. Hence, the number of channels (axis C) of I{SS,LS,BEVP} is also
become 32 as well.

3.5 Result and Discussion

To evaluate our proposed methods, some ablation and comparative studies are con-
ducted by comparing all model variants along with the combination of single-task
and multi-task models for all given tasks. For sensor fusion experiments, we con-
duct a comparative study against another MTL model named W-Net [124] that per-
forms the same tasks. We create four W-Net models as there are four different views
around the ego vehicle. Meanwhile, for adaptive loss weighting experiments, we
configure the comparative study as follows. For depth estimation (DE) and seman-
tic segmentation (SS) tasks, we compare our models with the multi-task GradNorm
model [113]. In the LiDAR segmentation (LS) task, we compare our model with
PolarNet [111] which performs the same top-view LiDAR segmentation. Finally,
for the bird’s eye view projection (BEVP) task, we replicate the works by Chen et
al. [112] and perform some modifications in their model’s final output layer to be a
point-wise convolution layer for one-hot encoded prediction so that we can calcu-
late the IoU and perform a fair comparison. The best model is defined by the lowest
total metric score as formulated with (3.7). Moreover, as mentioned in Section 3.4,
we compare all models on three simulation datasets generated by CARLA simula-
tor [123] and one real-world dataset from nuScenes-lidarseg [77]. Concisely, there
are four points that will be disclosed in this Chapter as follows.

• The influence of adding DVS data into the model. As described in Subsection
3.3.1, we create two model variants namely A0 and A1 that are deployed to
perform inference on test sets, A and B.

• The influence of providing 15-layer LiDAR data into the model. We compare
a model that takes 1 layer of LiDAR data (1L) and a model that takes 15 layers
of LiDAR data (15L). Then, we observe its influence based on the TM score.

• The influence of using the MGN algorithm during the training process. By
using the MGN algorithm, the model is expected to have better performance as
the imbalanced learning problem will be solved by giving appropriate weight
to each loss function. Therefore, to understand its effectiveness, a comparative
study is conducted on the model with adaptive loss weights (15L+MGN) and
the model with static loss weights (15L with wi = 1∀i). We also provide a
separate subsection to discuss the behavior of this algorithm.

• A comparative study with the combination of some recent models. We com-
pare all of our model variants as follows. For multi-task SS and DE, we com-
pare A0 and A1 with W-Net [124]. Meanwhile, for multi-task SS, DE, LS, and
BEVP, we compare 1L, 15L, and 15L+MGN with the combination of two single-
task models and one multi-task model which are PolarNet [111] for LS, Chen
et al. [112] for BEVP, and GradNorm model [113] for multi-task DE and SS.
Furthermore, we also compute the number of model parameters, model size,
GPU memory usage, and inference speed to justify the model efficiency.

3.5. Result and Discussion 29

TABLE 3.2: Multi-task Performance Score for Comparative Study 1

Dataset Model TM ↓ MAEDE ↓ IoUSS ↑ FPS↑
A0 0.196 ± <0.001 0.056 ± <0.001 0.860 ± <0.001 100

Test A A1 0.188 ± <0.001 0.059 ± <0.001 0.871 ± <0.001 83
W-Net [124] 0.166 ± <0.001 0.057 ± <0.001 0.891 ± <0.001 58

A0 0.193 ± <0.001 0.038 ± <0.001 0.845 ± <0.001 104
Test B A1 0.186 ± <0.001 0.035 ± <0.001 0.849 ± <0.001 84

W-Net [124] 0.220 ± 0.001 0.038 ± <0.001 0.818 ± <0.001 57

The uncertainty on each prediction score is measured by calculating the variance over all
inference results. Meanwhile, the speed test is conducted on the same NVIDIA RTX 3090
GPU with batch size = 1 and calculated in frame per second (FPS). The FPS difference on
both datasets is caused by the fluctuating GPU condition.

3.5.1 Performance Gain by Feature Fusion

RGB images are usually used as the only input when dealing with semantic segmen-
tation (SS) and depth estimation (DE) tasks. In this Chapter, we study the influence
of providing DVS images as the input and fused together with RGB images in the
network architecture to leverage the extracted information. As explained in Subsec-
tion 3.3.1, we first remove the DVS input block on Fig. 3.2 and named the model as
A0 model, then compare its performance with the A1 model that has both RGB and
DVS input blocks on its architecture. To clarify the influence of DVS images, we use
2 different datasets, A and B.

Based on the inference result on testing sets shown in Table 3.2, the A1 model also
has lower TM scores of 0.188 (set A) and 0.186 (set B). Considering that the A1 model
has a better score in all validation and testing sets, it can be said that DVS is giving
a positive influence on the model performance. However, as a result of having more
encoders to process DVS data, the A1 model inference is slower than the A0 model
with an FPS rate of around 83 to 84. Meanwhile, the qualitative result can be seen in
Fig. 3.8 where both A0 and A1 models are deployed at night (test set B: Town01, left)
and on a cloudy day (test set A: Town02, right). The A1 model seems to have a better
result compared to the A0 model. The A1 model is more stable in segmenting rare
objects such as poles and the small appearance of surrounding vehicles, especially
during poor illumination conditions as it can leverage the information provided by
the DVS camera. Meanwhile, both models have comparable performance in solving
the depth estimation task.

A further comparative study against another MTL model is conducted to clarify
the performance of our proposed model. We compare our model with W-Net [124]
which is composed of two serially connected U-Net models [115]. W-Net uses its
first U-Net block to perform semantic image segmentation. Then, the prediction is
concatenated with the RGB image as the input for the second U-Net block to perform
depth estimation. Therefore, W-Net is able to perform both semantic segmentation
and depth estimation simultaneously in one forward pass. For a fair comparison, we
follow the training configuration described in the W-Net paper to train the model
using our datasets. The performance comparison result can be seen in Table 3.2. To
be noted, each metric score is averaged across all views as there are four independent
W-Net models.

Based on Table 3.2, both A1 and W-Net models can be said to be comparable to
each other. On test set A, W-Net performs better than the A1 model with a lower

30 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

FIGURE 3.8: Inference results on the test images in set A and set B.

Note: F (front); L (left); R (right); B (back); GT (ground truth).

TM score of 0.166. Meanwhile, on test set B, the A1 model surpasses W-Net with a
lower TM score of 0.186. Then, as shown in Fig. 3.8, W-Net seems to have a better
result, especially when the illumination is enough (set A) as it has much more layers
compared to the A1 model. W-Net can estimate and segment very thin objects such
as light poles on both left images of depth estimation and semantic segmentation.
However, in terms of inference speed, the A1 model is still better with an FPS rate
of more than 80 on both datasets. Meanwhile, W-Net only achieves an FPS rate of
below 60 when tested with the same device. Therefore, even though the TM score
is comparable, it can be said that a single A1 model is preferable as it can perform
faster inference compared to the combination of four W-Net models.

3.5. Result and Discussion 31

TABLE 3.3: Multi-task Performance Score for Comparative Study 2

Dataset Model MAEDE ↓ IoUSS ↑ IoULS ↑ IoUBEVP ↑ TM ↓ MV ↓
Chen et al. [112] - - - 0.654 ± <0.001
PolarNet [111] - - 0.483 ± <0.001 - 1.430 0.024

Set GradNorm† [113] 0.113 ± <0.001 0.546 ± 0.002 - -
A 1L 0.090 ± <0.001 0.619 ± 0.001 0.406 ± <0.001 0.613 ± <0.001 1.452 0.032

15L 0.083 ± <0.001 0.636 ± 0.002 0.424 ± <0.001 0.575 ± <0.001 1.448 0.032
15L+MGN 0.084 ± <0.001 0.627 ± 0.002 0.470 ± <0.001 0.594 ± <0.001 1.393 0.027

Chen et al. [112] - - - 0.567 ± 0.003
PolarNet [111] - - 0.723 ± <0.001 - 1.160 0.016

Set GradNorm† [113] 0.095 ± <0.001 0.645 ± 0.003 - -
B 1L 0.096 ± <0.001 0.675 ± <0.001 0.621 ± 0.001 0.589 ± 0.002 1.211 0.015

15L 0.095 ± <0.001 0.682 ± <0.001 0.680 ± <0.001 0.603 ± 0.001 1.131 0.013
15L+MGN 0.099 ± <0.001 0.679 ± <0.001 0.704 ± <0.001 0.630 ± 0.002 1.086 0.011

Chen et al. [112] - - - 0.637 ± <0.001
PolarNet [111] - - 0.735 ± 0.001 - 0.976 0.013

Set GradNorm† [113] 0.055 ± <0.001 0.706 ± <0.001 - -
C 1L 0.069 ± <0.001 0.751 ± <0.001 0.573 ± 0.001 0.606 ± <0.001 1.138 0.020

15L 0.062 ± <0.001 0.765 ± <0.001 0.645 ± 0.001 0.602 ± <0.001 1.050 0.017
15L+MGN 0.063 ± <0.001 0.756 ± <0.001 0.678 ± <0.001 0.630 ± <0.001 0.999 0.014

Chen et al. [112] - - - 0.788 ± <0.001
PolarNet [111] - - 0.696 ± <0.001 - 1.124 0.020

nuScenes GradNorm† [113] 0.112 ± <0.001 0.504 ± 0.005 - -
-lidarseg 1L* 0.119 ± <0.001 0.527 ± 0.009 0.597 ± 0.001 0.804 ± <0.001 1.191 0.021

15L* 0.123 ± <0.001 0.538 ± 0.007 0.682 ± <0.001 0.824 ± <0.001 1.079 0.017
15L+MGN* 0.123 ± <0.001 0.536 ± 0.008 0.685 ± <0.001 0.833 ± <0.001 1.069 0.017

†Scores are averaged across all views performed by 4 independent GradNorm models.
*The model only takes extracted feature maps from RGB encoders to perform DE and SS as
there is no DVS data in nuScenes-lidarseg.
The higher IoU and the lower MAE, total metric (TM), and metric variance (MV) scores
mean the better the model. Be noted, the TM score is used to determine the best model as
it represents overall performance on all tasks. Meanwhile, the uncertainty on each metric
score is calculated by computing the variance across all inference results on each test set.

3.5.2 1 Layer vs 15 Layers of LiDAR Representation

LiDAR point clouds contain a z-coordinate that represents the height of the object
captured by the LiDAR lasers. The idea of our second LiDAR pre-processing method
is to differentiate the object based on height data so that the model can leverage this
useful information during the training process. As shown in Fig. 3.7, each layer
contains a specific object based on its height. For example, the lower layer holds
objects which are mostly on the ground such as roads, sidewalks, etc. Then, the
middle layer holds other vehicles, pedestrians, etc. Then, the upper layer holds tall
objects such as buildings, trees, etc. Finally, stacking all point clouds pre-processed
by the first method into the last layer will provide more information.

As shown in Table 3.3, the model that takes 15-layer LiDAR data (15L) has a
better performance compared to the model that takes 1 layer only (1L). The com-
parison between both models is consistent where the 15L model has a lower total
metric (TM) score than the 1L model on all test sets. The TM score gets lowered
from 1.452 to 1.448 (set A), 1.211 to 1.131 (set B), 1.138 to 1.050 (set C), and 1.191 to
1.079 (nuScenes-lidarseg). Intuitively, adding more layers of information will boost
the LS performance as it has inline skip connections from the LiDAR encoder to the
LS decoder. This is proven by comparing the IoULS score where the 15L model has
a higher score than the 1L model on all test sets. However, in the BEVP task, both
model variants are comparable to each other as the 15L model has higher IoUBEVP
scores on dataset B and nuScenes-lidarseg but has lower scores on dataset A and

32 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

L F Ri R L F Ri R

RGB
/ DVS

SS
/ DE

Grad
Norm

1L

15L

15L+
MGN

rainy 009307

LiDAR LS / BEVP
PolarNet

/ Chen et al. 1L 15L 15L+MGN

Top view
only

FIGURE 3.9: Inference results on the test images in set C (rainy night).

A qualitative comparison between our model variants (1L, 15L, and 15L+MGN) and com-
bination of STL (single-task learning) and MTL models by Chen et al.’s [112] (BEVP), Polar-
Net [111] (LS), and GradNorm [113] (DE and SS).

set C. Then, the other interesting thing is the result of DE and SS tasks. Based on
MAEDE and IoUSS scores, we found that adding more LiDAR layers is somehow
improving DE and SS performance. Consistently, the 15L model has higher IoUSS
and lower MAEDE than the 1L model on all simulation datasets, and only the DE
performance is degraded on nuScenes-lidarseg. As the pre-processed LiDAR keeps
the vertical information (ALIDz to ILIDk) and both RGB and DVS images are natu-
rally at the LiDAR’s z-axis, the performance on DE and SS are getting improved.
Although there is no specific transformation applied to the network architecture,
the 15L model can learn the relationship between shared feature maps. This means
that the LiDAR also plays an important role in DE and SS tasks and shows that the
15L model successfully leverages shared feature maps through intermediate fusion.

3.5. Result and Discussion 33

sunny 00029800

L F Ri R L F Ri R

RGB
only

SS
/ DE

Grad
Norm

1L*

15L*

15L+
MGN*

LiDAR LS / BEVP
PolarNet

/ Chen et al. 1L* 15L* 15L+MGN*

Top view
only

No DVS input

FIGURE 3.10: Inference results on the test images in nuScenes-
lidarseg (sunny day).

A qualitative comparison between our model variants without DVS inputs (1L*, 15L*, and
15L+MGN*), and a combination of STL (single-task learning) and MTL models by Chen et
al.’s [112] (BEVP), PolarNet [111] (LS), and GradNorm [113] (DE and SS).

Furthermore, based on the qualitative results shown in Fig. 3.9 (rainy night) and
Fig. 3.10 (sunny day), the image quality of both 1L and 15L models are comparable
on both DE and LS tasks. To be more specific on the model inference on sunny
day images (samples from nuScenes-lidarseg), the 15L model performance is quite
similar to the 1L model. However, if we take a close look at the rear SS image, the
15L model can segment temporary road barriers successfully while the 1L model
cannot. Besides that, on the model inference on rainy night images (samples from
set C), the 15L model performs better as it can segment the road lane on the front
view SS image. Furthermore, based on the quality of the BEVP images, it is also
better at recognizing surrounding vehicles.

34 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

3.5.3 Static vs Adaptive Loss Weighting

Plenty of tasks can lead to an uneven loss value which depends on what kind of
loss function is used. Even if multiple related tasks are handled with the same loss
function, it still can lead to imbalanced learning due to the different number of el-
ements and characteristics at the output layer. For instance, the elements in ILS are
much larger than in IBEVP and significantly different from ISS. Therefore, a proper
set of loss weights is needed to balance the task-learning process. Moreover, it has
to be tuned automatically to avoid an expensive computational cost in finding the
best combination. Therefore, we propose the MGN algorithm to balance the rate of
task learning by tuning each task’s loss weight adaptively.

Based on Table 3.3, the model trained with the modified GradNorm (MGN) al-
gorithm (15L+MGN) has a better performance compared to the previous best model
with static loss weights (15L) on all test sets. With a consistent result, the total metric
(TM) score gets lowered from 1.448 to 1.393 (set A), 1.131 to 1.086 (set B), 1.050 to
0.999 (set C), and 1.079 to 1.069 (nuScenes-lidarseg). However, even with lower TM
scores, not all tasks are getting improved by the model. The 15L+MGN variant may
have better performance on LS and BEVP tasks where IoULS and IoUBEVP scores
are higher than the 15L variant. However, the 15L model still performs better than
the 15L+MGN by achieving lower MAEDE and higher IoUSS on DE and SS tasks
respectively. Be noted, the goal of the MGN algorithm is to improve the overall
model performance by balancing the rate of learning on each task. Instead of im-
proving the performance of each task, the MGN algorithm is focused on balancing
the gradient signal among the tasks. Therefore, the 15L model may still have a better
performance on some tasks. In this case, there is a performance trade-off, especially
between DE-SS tasks and LS-BEVP tasks. Besides the TM score (3.7), the metric vari-
ance (MV) (3.8) can be used to determine the model performance based on the rate
of discrepancy between tasks. As can be seen in Table 3.3, the MV of the 15L+MGN
model is smaller than the 15L model on all simulation datasets and has the same MV
on nuScenes-lidarseg. A lower MV indicates that the model performance on overall
tasks is getting balanced with just a little discrepancy.

Based on the qualitative results shown in Fig. 3.9 (a rainy night) and Fig. 3.10
(sunny day), we can see that the 15L+MGN model has a better BEVP performance
where it has a more clear projection of a car behind the ego vehicle (sample of a rainy
night in dataset C) and a better projection of the roadmap (sample of a sunny day
in nuScenes-lidarseg). Meanwhile, the 15L model has a better SS performance on
overall views. To be more specific, the 15L model can segment the sidewalk in the
right SS image (set C) and the temporary road barriers (nuScenes-lidarseg).

3.5.4 Loss Weighting Behavior

The loss weights update process of the 15L+MGN model during the training phase
can be seen in Fig. 3.11. In all simulation datasets, at the time when the model con-
vergence, the modified GradNorm (MGN) algorithm tends to have similar behavior
where it gives the highest loss weight to the depth estimation (DE) task followed
by LiDAR segmentation (LS) at the second, semantic segmentation (SS) at the third,
and bird’s eye view projection (BEVP) at the last. Meanwhile, the order between LS
and SS is swapped in nuScenes-lidarseg. From the loss weights change behavior,
the MGN is penalizing less on the BEVP task so that it will not cause a high imbal-
ance. As shown in the network architecture in Fig. 3.3, the BEVP decoder is placed
after the 2nd bottleneck meaning that the network has more focus during training.

3.5. Result and Discussion 35

(A) Loss weights update on dataset A (B) Loss weights update on dataset B

(C) Loss weights update on dataset C (D) Loss weights update on nuScenes-lidarseg

FIGURE 3.11: Loss weights update log.

The vertical black dashed line shows the exact epoch where the model convergence. The
vertical axis on each figure is the loss weight while the horizontal axis is the epoch.

The gradient produced from BEVP also affects the decoder of SS, DE, and LS tasks
on the previous layer. Thus, it makes sense that the MGN penalizes the BEVP task
less than the other tasks. For tasks that are placed before the 2nd bottleneck, the DE
task loss calculated with the Huber loss function (3.1) produces a smaller loss value
compared to LS and SS losses which are calculated by BCEDice loss function (3.3).
Hence, the MGN algorithm gives a higher loss weight to the DE task to compensate
for the imbalance. With this mechanism, the network will not lose its focus on the
DE task learning while still maintaining progress on learning the other tasks.

Moreover, even if the number of elements in ILS is equal to ISS, both tasks have a
significant difference in characteristics. In ILS, many elements are filled with 0 since
there are plenty of vacant points caused by LiDAR lasers limitation. Meanwhile, in
ISS, many elements are filled with 1 representing the one-hot object class on each
tensor channel and have a strong correlation as all points are captured by the RGB
camera. As a result, LSS tends to be bigger than LLS even when computed with
the same loss function. Therefore, to balance the task learning, MGN gives higher
weight to the LS task than to the SS task. However, the loss weighting behavior
on SS and LS tasks is not consistent in the real-world dataset. The weight order
is swapped between those tasks as the characteristic nuScenes-lidarseg is different
from the simulation dataset. To be noted, the sum of all loss weights will always be
equal to T = 4 as they are normalized with (3.17) at the end of each epoch.

36 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

3.5.5 Single-task vs Multi-task Models

We also conduct further model testing by comparing our models with some recent
models for each task. In the multi-task depth estimation (DE) and semantic segmen-
tation (SS) comparison, we train the original GradNorm model [113] for each view
so that there are four models in total. We use the GradNorm SegNet [125] version
with VGG16 encoder [126] and symmetric task decoders for comparative study as
the GradNrom authors only use this model for in-depth analysis. The training setup
is configured to be the same as described in the GradNorm paper where Adam op-
timizer [127] along with pixel-wise cross-entropy and squared losses are used to
train the model. Then, in the LiDAR segmentation (LS) comparison, we train Polar-
Net [111] to take our pre-processed LiDAR point clouds. We use the same training
configuration written in the provided code as the author did not mention the de-
tail in their paper. Concisely, Adam optimizer [127] along with cross-entropy loss
is used to train the model until convergence. Finally, in the bird’s eye view pro-
jection (BEVP) comparison, we replicate Chen et al.’s model [112] that takes front
RGB and top-view LS images as the input. The model has a BEVP decoder to per-
form BEVP and input reconstruction modules that reconstruct the front RGB and
LS images. However, LS input and BEVP output are represented in RGB image
representation {0, ..., 255}3×128×128. This kind of representation is not suitable for
segmentation-related tasks. Thus, we change it into a one-hot encoded image, so
that each of them is represented as {0, 1}C×128×128 where C is the number of possible
classes. Then, we put 1 extra point-wise (1× 1) convolution layer and a sigmoid
activation at the last layer of the LS input reconstruction module and BEVP decoder.
With this modification, the metric function IoU (3.6) can be calculated for compari-
son purposes. Furthermore, besides comparing all metric scores, we also compare
the number of model parameters, model size, GPU memory utilization, and infer-
ence speed to measure how efficient the model is.

Based on Table 3.3, our best model variant (15L+MGN) is better than the combi-
nation of Chen et al., PolarNet, and GradNorm models. In small and large datasets,
the 15L+MGN model has lower total metric (TM) scores of 1.393 (set A), 1.086 (set B),
and 1.069 (nuScenes-lidarseg). Meanwhile, the other variants still maintain a com-
parable performance with a small gap. However, in the medium dataset (set C), the
combination has a better performance with a TM score of 0.976. Independently, Po-
larNet consistently gives a better LS performance by achieving the highest IoULS in
all datasets. Meanwhile, Chen et al. and GradNorm models are still comparable in
BEVP, DE, and SS tasks. However, based on the qualitative results shown in Fig. 3.9
(a rainy night) and Fig. 3.10 (sunny day), both Chen et al. and GradNorm models
are missing the surrounding vehicles. On BEVP images, Chen et al.’s model is able
to locate the occupied area by the surrounding vehicles, but cannot segment the ve-
hicle correctly (set C). It also cannot project the local roadmap as well as our models
(nuScenes-lidarseg). Then, as shown on SS images, GradNorm is facing difficulties
in segmenting vehicles on a rainy night. On the other hand, our model faces the
same difficulties, but it can locate the occupied region properly. During rainy condi-
tions, the DVS sensor is distracted by the raindrops. As a result, the DE performance
of our model is getting degraded. Then, as shown on LS images, both PolarNet and
our models have a similar performance where both models can segment all objects
from the top-view perspective and locate the corresponding pixel class nearly the
same as in the ground truth. Then, based on Table 3.4, our models have much fewer
parameters where they only have less than 2% of the total parameters owned by
the combination. Even with that small number of parameters, the 15L+MGN model

3.5. Result and Discussion 37

TABLE 3.4: Model Specification

Dataset Model Parameters↓ Total Parameters↓ Size↓ Total Size↓ GPU Usage↓ FPS↑
Chen et al. [112] 10365211 83.061
PolarNet [111] 13403701 136728752 107.342 1094.867 1987 44.472

Simulation 4×GradNorm† [113] 4×28239960 4×226.116
(A, B, C) 1L 2519488 2519488 20.549 20.549 1049 57.117

15L 2521504 2521504 20.565 20.565 1049 56.018
15L+MGN 2521504 2521504 20.565 20.565 1049 54.428

Chen et al. [112] 10372539 83.120
PolarNet [111] 13404286 136757437 107.347 1095.099 2025 48.236

nuScenes 4×GradNorm† [113] 4×28245153 4×226.158
-lidarseg 1L* 2275604 2275604 18.557 18.557 1015 65.969

15L* 2277620 2277620 18.574 18.574 1017 65.426
15L+MGN* 2277620 2277620 18.574 18.574 1017 65.192

†The number of parameters and model size of the GradNorm model are multiplied by 4 as
there are 4 models in total.
*These model variants do not have DVS encoders as there are no DVS images recorded in
the dataset.
For a fair comparison, we use the same GPU device (NVIDIA GTX 1080 Ti) to run all models
with batch size = 1. However, the inference speed measured in frames per second (FPS) is
slightly different on each dataset due to the fluctuating GPU performance. Therefore, we
average the FPS over A, B, and C datasets for the inference on simulation data. We separate
the measurement on nuScenes-lidarseg as it has different characteristics. Thus, there is a
small change in the number of parameters, model size (in MB), and GPU usage (in MB).

maintains a better performance with less GPU memory utilization. Hence, it has a
smaller size and can infer faster with a speed of around 54 frames per second (FPS)
on simulation datasets and 65 FPS on a real-world dataset. Considering the per-
formance result shown in Table 3.3 and Table 3.4 along with the qualitative result
shown in Fig. 3.9 (a rainy night) and Fig. 3.10 (sunny day), it can be said that our
model is better and more efficient than the combination. Moreover, our model is
preferable due to its compactness and smaller size.

The reason why our model can outperform the combination even with fewer pa-
rameters is that it can leverage feature sharing on its encoders that process multiple
views of input to efficiently learn the features. The network architecture makes it
possible for each decoder to take the advantage of the extracted features from each
encoder. Besides that, our proposed techniques are also playing an important key in
boosting the model performance and keeping the performance balanced. Based on
Table 3.3, without using these methods, our model cannot be better than the combi-
nation. Our 15L+MGN model may win on datasets A, B, and nuScenes-lidarseg but
lose on dataset C with a TM score gap of 0.023. However, if we take a close look at
the scores on dataset C, the lowest TM score obtained by the combination is mostly
influenced only by the outstanding performance of PolarNet which achieves IoULS
of 0.735. In fact, PolarNet has always maintained to be the best on the LS task in all
datasets. In dataset C, PolarNet outperforms our model with an IoULS gap of 0.057
which is the largest among all experiments. If the gap on IoULS is similar to the
gap in other datasets, our model might have won on dataset C. PolarNet has what is
called “ring-connected CNN“ that is specifically used to process LiDAR data. There-
fore, with a larger number of learnable parameters, it is more capable of capturing
more useful features in varying areas. Be noted, based on the number of towns used
on each dataset, it can be said that dataset C is more varied as it contains five differ-
ent maps while datasets A, B, and nuScenes-lidarseg only have two maps, and both
are similar to each other.

38 Chapter 3. Multi-sensor Driving Perception with Balanced Learning

3.6 Findings

In this Chapter, we develop a compact deep multi-task learning (MTL) model to per-
form various driving perception tasks simultaneously in one forward pass. Through
data pre-processing and multi-sensor fusion techniques, the model can process and
combine multiple input modalities. In addition, we propose an adaptive loss weight-
ing algorithm to tackle the imbalanced learning issue and boost overall performance.
To understand the influence and behavior of our proposed methods, an ablation ex-
periment is conducted by creating several variants. Finally, a comparative study
against the combination of some recent models is conducted to clarify performance
and efficiency. Based on the ablation and comparative results on both simulation
and real-world datasets, we disclosed several findings as follows.

• Fusing both RGB and DVS images will boost the overall model performance
since the model can take more distinctive information from both RGB and DVS
encoders. This is supported by the comparison result between A0 and A1,
where A1 outperforms A0 in semantic segmentation (SS) and depth estimation
(DE) tasks.

• Keeping the height information of the LiDAR point clouds ALID’s z-coordinate,
the overall model performance is improved, especially in the LS task that has
direct skip connections from the LiDAR encoder. This is proven by the 15L
model which has a better performance compared to the 1L model. Moreover,
with rich vertical features given from the LiDAR encoder through intermedi-
ate fusion at the first bottleneck, the 15L model gains better performance on
DE and SS tasks.

• The MTL process is successfully balanced and results in a better model by
using the modified GradNorm (MGN) algorithm to update the loss weights
adaptively based on the gradient signal. Based on the comparison result, the
15L+MGN model performs better than the 15L model where it has lower total
metric (TM) and metric variance (MV) scores.

• The MGN algorithm makes a better trade-off between DE-SS tasks with LS-
BEVP tasks. Based on the loss weighting behavior, the MGN algorithm tends
to penalize less on the task that has a higher focus by default such as the bird’s
eye view projection (BEVP) task that is placed at the end of the network. This
algorithm is also capable of compensating for small or large losses produced by
different loss functions with varying output elements. As evidence, the depth
estimation (DE) loss computed with the Huber loss function has a bigger loss
weight than LiDAR segmentation (LS) and semantic segmentation (SS) loss
computed with the BCEDice loss function.

• Based on the comparative study with the combination of some recent mod-
els, our best model variant (15L+MGN) maintains better performance even
with much fewer parameters. Hence, it can infer faster and consume less GPU
memory which is preferred for further deployment.

39

Chapter 4

Simulation-based End-to-end
Autonomous Driving

Continuing our work described in Chapter 3, we propose a novel deep learning
model called DeepIPC (Deeply Integrated Perception and Control) that is trained
with end-to-end and multi-task learning manners to perform both perception and
control tasks simultaneously. Focusing on the task of point-to-point navigation for
autonomous driving, the model is deployed to drive an ego vehicle safely by follow-
ing a sequence of routes defined by the global planner. The perception part of the
model is used to encode high-dimensional observation data provided by an RGBD
camera while performing semantic segmentation, semantic depth cloud (SDC) map-
ping, and traffic light state and stop sign prediction. Then, the control part decodes
the encoded features along with additional information provided by the GNSS re-
ceiver and speedometer to predict waypoints that come with a latent feature space.
Furthermore, two agents are employed to process these outputs and make a de-
cision that determines the level of steering, throttle, and brake as the final action.
DeepIPC is evaluated with CARLA simulator that simulates various scenarios made
of normal-adversarial situations and different weathers to mimic real-world condi-
tions. In addition, we conduct a comparative study with some recent models to
justify the performance in multiple aspects of driving. Moreover, we also conduct
an ablation study on SDC mapping and multi-agent to understand their impact on
the model. As a result, DeepIPC achieves the highest driving score even with fewer
parameters and computation load.

4.1 Motivation

Currently, the challenge that remains for an end-to-end model is how to encode or
extract useful features so that the controller module can decode them into proper
navigational controls. Obviously, the perception module needs to be supported with
many kinds of information that represent the detailed condition around the ego ve-
hicle. In this case, sensor fusion-based models have been proven to achieve better
performance as they use various kinds of sensors to gather more detailed informa-
tion [128] [129]. However, a huge computation load is inevitable as bigger models
are needed to process large data. Moreover, a data pre-processing technique is also
necessary as varying sensors often come with different data modalities [130] [131].
Even with a good set of encoded features, there is still another challenge that re-
mains for an end-to-end model that is the controller module can be stuck with a
certain behavior due to its learning experience from limited driving records. There-
fore, more decision-makers may be needed to translate extracted information into a

40 Chapter 4. Simulation-based End-to-end Autonomous Driving

Encoder Decoder

Mapping

 Controller
Module

Encoder

GNSS
Speedometer

Steering
Throttle

Brake

Semantic SegmentationInput: RGB

Input: Depth Semantic Depth Cloud

FIGURE 4.1: The process flow inside DeepIPC.

DeepIPC takes a set of input data provided by RGBD camera, GNSS receiver, and
speedometer to perceive the environment and drive the ego vehicle. A more detailed net-
work architecture can be seen on Fig. 4.2.

different aspect of driving control [132] [133]. Furthermore, the imbalance of learn-
ing during the training process could be another issue since the solution for both
perception and control tasks is learned simultaneously. Hence, a method to balance
the training signal is also necessary to ensure that all tasks are learned at the same
pace [134] [135].

To answer those challenges, we propose an end-to-end deep multi-task learn-
ing model namely DeepIPC, which stands for Deeply Integrated Perception and
Control as illustrated in Fig. 4.1. This model is made of two main modules, the
perception module (blue) and the controller module (green) that are deeply con-
nected inside the network architecture. As the main input for its perception mod-
ule, DeepIPC takes RGB images and depth maps of the front view. Thanks to the
rapid development of sensor devices, both observation data can be provided with
a single RGBD camera so that there is no need to mount more sensors on the ego
vehicle [136] [137] [138] [139]. Besides that, RGB images and depth maps also have
similar dimensions and representations so that both data can be processed easily.
Meanwhile, the controller module is responsible for decoding the extracted features
from the perception module along with additional information on route location
and measured speed provided by the GNSS receiver and speedometer. By using
two different agents, more varied navigational controls can be made considering
multiple aspects of driving [140] [141] [142]. Furthermore, we design the model to
only have a small number of neurons or trainable parameters to reduce the compu-
tation load footprint. We consider imitation learning, especially the behavior cloning
technique as it can leverage the use of large-scale datasets to train the model to near-
human standard [143]. Finally, we use an adaptive loss weighting algorithm namely
modified gradient normalization (MGN) to tackle the imbalance learning problem
by weighting the training signal [54]. Therefore, the model can be prevented from
tending to focus only on a single task during the training process.

4.2. Related Work 41

4.2 Related Work

We review some related works in the area of end-to-end autonomous driving with
the imitation learning approach. Then, we explain how they inspire our work.

4.2.1 End-to-end Multi-task Model

There are two main advantages of a model to be trained in end-to-end and multi-
task learning manners. With an end-to-end learning fashion, there are no additional
settings needed to integrate all submodules so that such kinds of information loss
and human error can be avoided. Then, with a multi-task learning (MTL) strat-
egy, the model can leverage shared features to speed up the training process. In
the field of autonomous driving research, Ishihara et al. [71] have demonstrated
the usefulness of training a model in end-to-end and multi-task manners. Similar
to CILRS [144] (conditional imitation learning with ResNet [145] and speed input)
model, their model takes front RGB image, speed measurement, and discrete high-
level navigational command to predict the level of steering, throttle, and brake used
to drive the vehicle. In addition, the MTL approach to depth estimation, semantic
segmentation, and traffic light state prediction is used to improve the quality of ex-
tracted features in the perception module. With better features, the controller mod-
ule is expected to be better at determining navigational controls. A similar imitation
learning-based approach has been studied by Chen et al. [146] where the same set
of inputs is used to drive the vehicle. However, instead of using discrete high-level
navigational commands directly, the model produces a set of waypoints used by two
PID controllers to drive the vehicle.

For our work, we take the idea of performing multiple perception tasks of seman-
tic segmentation and traffic light state prediction as extra supervision demonstrated
by Ishihara et al. [71] to guide the perception module in producing better features
for the controller module. However, instead of performing depth estimation, we
use a depth map provided by the RGBD camera as an input to the model which
opens the possibility of sensor fusion strategy in performing better scene under-
standing [48] [131] [53]. Another issue that needs to be addressed in the multi-task
learning approach is the imbalanced learning problem where the model may tend
to focus on a certain task only [94] [134] [135]. To address this issue, we use an
adaptive learning algorithm called modified gradient normalization to ensure that
all tasks are learned at the same pace [54].

4.2.2 Sensor Fusion Strategy

By using the sensor fusion technique, a model can have a better scene understanding
as it opens plenty of possibilities to perceive the environment in multiple kinds of
representation. In the field of autonomous driving research, Huang et al. [86] have
proposed a sensor fusion-based model that takes an RGB image and depth map to
capture a deeper global context in front of the vehicle. Both inputs are fused at an
early stage to form low-dimensional latent features. The extracted features are pro-
cessed by the controller module to determine a set of actions. Similar to Ishihara
et al. [71] and Chen et al. [146], this approach also uses navigational commands to
drive the vehicle. The sensor fusion technique also opens the possibility of perceiv-
ing the environment from a different perspective. Prakash et al. [80] has developed
a sensor fusion-based model that takes an RGB image and pre-processed LiDAR
point clouds. The RGB image contains information on the front-view perspective

42 Chapter 4. Simulation-based End-to-end Autonomous Driving

while the LiDAR contains information on the top-view or bird’s eye view (BEV)
perspective. By fusing both features, the model can perform a better scene under-
standing [81] [147]. Moreover, unlike most current works, this model does not use
high-level navigational commands to drive, instead, it takes sparse GNSS location
of predefined routes provided by a global planner.

For our work, we also use a combination of an RGB image and a depth map pro-
vided by a single RGBD camera. However, instead of extracting depth features at
the early stage, we project the depth map and perform semantic depth cloud (SDC)
mapping with a BEV perspective. Therefore, the model can take advantage of per-
ceiving the environment from the top-view perspective [80] [81] [147]. Moreover,
since the SDC map stores semantic information, the model will have a better under-
standing as the occupied or traversable regions become clearer than pre-processed
LiDAR point clouds which only contain height information. We also consider using
a sequence of routes instead of high-level navigational commands as it makes more
sense for driving an autonomous vehicle in real-world conditions [148] [149] [150].

4.3 Methodology

In this section, we describe the details of the network architecture of DeepIPC that
acts as a pilot for driving an ego vehicle autonomously. Then, we explain the data
generation process and data representation. Furthermore, we also define the train-
ing configuration including the formulation of the loss function.

4.3.1 Proposed Model

As shown in Fig. 4.2, DeepIPC is composed of two main modules, the perception
module (blue) and the controller module (green). Concisely, the perception module
is responsible for complex scene understanding and providing useful information to
the control module. Specifically, the perception module performs semantic segmen-
tation, semantic depth cloud (SDC) mapping in a bird’s eye view (BEV) perspective,
traffic light state prediction, and stop sign prediction. Then, the controller module
leverages the given information in the form of encoded features together with ad-
ditional inputs of current speed measurement and the GNSS location of the route.
This module provides waypoints and navigational controls as the final outputs.

Perception Module

The perception module takes an RGB image and depth map provided by a single
RGBD camera as the main inputs. We consider a region of interest (ROI) of 256× 256
at the center for a fair comparison with other models (see Section 4.5 for more de-
tails). Another purpose is to eliminate the distortion at the corner that causes RGB
images and depth maps to have a different appearance. As shown in Fig. 4.2, we
begin the perception phase with ImageNet normalization on the RGB image since
we use EfficientNet version B3 [151] pre-trained on ImageNet [152] as the RGB en-
coder. EfficientNet is chosen as it can perform excellently on many vision-related
tasks with a small number of parameters. Then, the extracted feature maps are
learned by the segmentation decoder to perform semantic segmentation in 23 dif-
ferent classes mentioned in Table 4.1. The decoder is made of multiple convolution
blocks (2×(3× 3 convolution + batch normalization [116] + ReLU [117]) + bilinear
interpolation) and a final pointwise 1× 1 convolution with sigmoid activation. It
is also enhanced with different scales of extracted feature maps from the encoder

4.3. Methodology 43

Pretrained
Eff.Net B3

Segmentation
Decoder

Semantic Depth
Cloud Mapping

Modified
Eff.Net B1

Global Pool
+ Linear + ReLU

[,]

Point-wise
Convolution
+ Global Pool

+ Linear

+

Linear

Traffic Light
Stop Sign

Linear

Input: Route

Waypoints (x,y)

MLP
+ ReLU

PID

[,]

3x looping

N
o

rm
alizatio

n

Steering
Throttle

Brake

Semantic Segmentation Input: Depth

Input: RGB

with the visualization of
Route & Waypoints

Denormalization

Input: Speed

GRU

(Δx,Δy)

+

MGN
Weighting &
Thresholding

Semantic Depth Cloud

Local Coordinate
Transformation

Init.
(0,0)

Skip Connections

FIGURE 4.2: The architecture of DeepIPC.

The light-colored items are not trainable. Blue-colored items are considered as the percep-
tion module while green-colored items are the controller module. The process inside the
dashed green line box is looped over three times. Meanwhile, items inside the dashed red
line box are only used for driving. Therefore, the model predicts waypoints and estimates
the level of steering, throttle, and brake separately during the training process. Inside the se-
mantic depth cloud, the route is represented with a white hollow circle, while the waypoints
are represented with small white circles.

Depth Map

0 32m-32m

64m

0

MAPPING

Segmentation

x-axis

FIGURE 4.3: Semantic depth cloud mapping.

Each layer holds one unique class mentioned in Table 4.1.

connected with some skip connections [53] [153]. In addition, we also create a sep-
arate module consisting of a global average pooling layer, linear layer, and ReLU to
specifically predict the traffic light state and stop sign. Although both tasks can be
considered classification problems, we choose ReLU rather than sigmoid since we
want to avoid information loss as the prediction outputs will be encoded later in the
controller module for extra supervision.

In addition to the front-view perspective, the scene understanding capability
can be improved further by providing more information from the BEV perspective.
Thus, the agent can have a better capability in estimating the traversable regions.
Hence, we perform semantic depth cloud (SDC) mapping using segmentation pre-
diction and depth map as shown in Fig. 4.3. However, we ignore the height informa-
tion (y-axis) as we consider the BEV perspective which relies on the x-axis and z-axis

44 Chapter 4. Simulation-based End-to-end Autonomous Driving

(given by depth map). Therefore, if there are multiple object classes corresponding
to one point on the 2D plane, then the object that has the highest location is selected.
The SDC mapping process can be summarized as follows.

• Define the distance range of 64 meters to the front and 32 meters to the left and
right forming a coverage area of 64× 64 square meters. This means that the
ego vehicle is always positioned at the bottom center. Then, define the spatial
dimension of the SDC tensor H ×W = 256× 256, so that one element is equal
to an area of 25× 25 square centimeters.

• Get segmentation tensor S , depth tensor D, transformation matrix for x-axis
Tx (formed with camera parameter fx and ROI size of 256× 256).

• Compute x-axis (Px) and z-axis (Pz) coordinates and normalize them to match
the spatial dimension of the SDC tensor with (4.1) and (4.2).

Px =

⌊
(D × Tx + 32)

64
× 255

⌉
, (4.1)

Pz =

⌊(
1− D

64

)
× 255

⌉
, (4.2)

Keep in mind that the tensor index starts from 0, hence, we use 255 instead of
256. Unlike the standard cartesian coordinate system, any of (x,0) coordinates
are located at the top of the 2D plane. Thus, we do mirroring and shifting
(1− D64) on Pz computation.

• Project every element containing a certain semantic class in S to a 256× 256
matrix based on Px and Pz.

• Finally, apply one-hot encoding to obtain SDC tensor R ∈ {0, 1}23×256×256,
where 23 is the channel representing the number of classes and 256× 256 is
the spatial dimension.

With this representation, DeepIPC can perceive better to drive the ego vehicle
safely in the environment. We use a smaller variant of EfficientNet named B1 [151]
for the SDC encoder. There is no need to use the same or even a bigger variant
than the RGB encoder as the SDC already contains distinctive information. Since
the SDC contains 23 layers of semantic segmentation classes, we modify the first
convolutional layer to receive a tensor with 23 channels. Then, the entire encoder is
initialized with Kaiming initialization [120] to catch up with the RGB encoder during
the training process. Finally, both RGB and SDC features are concatenated to form
a tensor with the size of C× H ×W = (1536 + 1280)× 8× 8, where 1536 and 1280
are the number of channels in RGB and SDC features, respectively. To be noted, the
RGB features have more channels than SDC features as it is extracted with a bigger
EfficientNet variant. Meanwhile, the spatial dimension of 8× 8 is a result of multiple
downsampling through the EfficientNet architecture.

Controller Module

The controller module is used to decode concatenated RGB and SDC features given
by the perception module. We begin the control phase by employing a fusion block
composed of a point-wise (1× 1) convolution layer, global average pooling layer,
and linear layer to process the features. The point-wise convolution layer is used

4.3. Methodology 45

to fuse and learn the relation of each feature element along the channel axis and
results in a smaller feature tensor with a size of C× H×W = 384× 8× 8. Then, the
global average pooling layer is used to obtain the global context by averaging 8× 8
array on each channel. Meanwhile, the linear layer is used to reduce the number of
feature elements from 384 to 232, so that the upcoming layers do not need to process
an enormous number of neurons to save computational load.

We use a gated recurrent unit (GRU) introduced by Cho et al. [83] to further pro-
cess the features from the fusion block. In the network architecture, GRU is chosen
as the model needs to keep relevant information for the waypoints prediction that
relies on the previous prediction stored in the GRU memory. Moreover, GRU has
been proven to be able to eliminate the vanishing gradient problem in a standard
recurrent neural network (RNN) using so-called update and reset gates. Besides
that, GRU has a better performance-cost ratio than the other RNN layers as it can be
trained faster [154]. Since there are three waypoints that will be predicted, the pro-
cess inside the dashed green line box on Fig. 4.2 is looped over three times during
the forward pass. In the first loop, GRU takes the features as an initial hidden state
and uses the current waypoint coordinate in BEV space (local vehicle coordinate),
route location coordinate transformed to BEV space, and current speed (measured
in m/s) as the inputs. To be noted, the initial value for the current waypoint co-
ordinate is the vehicle’s local coordinate which is always at (0,0) positioned at the
bottom-center of the semantic depth cloud (SDC) map. Then, global (xg,yg) to local
(xl ,yl) coordinate transformation can be done with (4.3).[

xl
yl

]
=

[
cos(90 + θv) − sin(90 + θv)
sin(90 + θv) cos(90 + θv)

]T [xg − xvg
yg − yvg

]
(4.3)

The relative distance is the gap between the route’s global coordinate (xg,yg) and
the vehicle’s global coordinate (xvg,yvg). We use 90 + θv (vehicle rotation degree) in
the rotation matrix since the GNSS compass is oriented to the north. Then, the next
hidden state coming from the GRU is biased by the prediction of the traffic light state
and stop sign which is encoded by a linear layer and added through element-wise
summation. For waypoints prediction, we use a linear layer to decode the biased
hidden state into ∆x and ∆y. Then, the next waypoint can be obtained with (4.4).

xi+1, yi+1 = (xi + ∆x), (yi + ∆y), (4.4)

where i is the current step in the loop process (dashed green line box). On the next
loop, the current hidden state (before biased by traffic light state and stop sign) is
taken by the GRU to predict the next hidden state with the first waypoint replacing
the vehicle’s local coordinate (0,0) as the input (along with the same route location
and speed measurement). At the end of the looping process, there will be three pre-
dicted waypoints and a latent space biased by traffic light state and stop sign predic-
tion. As shown in Fig. 4.2, we use two agents that act as the final decision-makers.
The first agent is a multi-layer perceptron (MLP) network composed of two linear
layers and a ReLU that decodes the latent space into a set of navigational controls
in a normalized range of 0 to 1 (see Subsection 4.3.2 for more details). The second
agent is two PID controllers (lateral and longitudinal) that compute the predicted
waypoints along with the current speed into a set of navigational controls as sum-
marized in Algorithm 4.1. We set Kp, Ki, Kd parameters for each PID controller as
the same as Chen et al. [146] and Prakash et al. [80]. Each agent computes diverse
levels of steering, throttle, and brake. Then, the final control actions that actually
drive the ego vehicle are made by a control policy defined in Algorithm 4.2.

46 Chapter 4. Simulation-based End-to-end Autonomous Driving

Algorithm 4.1: PID agent

Θ = ωρ1+ωρ2
2 ; θ = tan−1 (Θ[1]

Θ[0]

)
; γ = 2× ||ωρ1 −ωρ2||F

PID steering = Lateral PID(θ)
PID throttle = Longitudinal PID(γ− ν)
. .
θ: heading angle based on first and second waypoints, ωρ1 ωρ2
γ: desired speed, 2 × Frobenius norm between ωρ1 and ωρ2
ν: current speed measured by speedometer

Algorithm 4.2: Control Policy

if MLP throttle ≥ 0.2 and PID throttle ≥ 0.2 then
steering = β00MLP steering + β10PID steering
throttle = β01MLP throttle + β11PID throttle
brake = 0

else if MLP throttle ≥ 0.2 and PID throttle < 0.2 then
steering = MLP steering; throttle = MLP throttle; brake = 0

else if MLP throttle < 0.2 and PID throttle ≥ 0.2 then
steering = PID steering; throttle = PID throttle; brake = 0

else
steering = 0; throttle = 0; PID brake = 1
brake = β02MLP brake + β12PID brake. .

β ∈ {0, ..., 1}2×3 is a set of control weights initialized with:
β00 = α4

α4+α7
; β10 = 1− β00; β01 = α5

α5+α7
; β11 = 1− β01; β02 = α6

α6+α7
; β12 = 1− β02

where α4, α5, α6, α7 are loss weights for steering, throttle, brake, and waypoints which
are tuned by the MGN algorithm [54] (see Subsection 4.3.3)

There are two reasons why we predict three waypoints even though only two of
them are used by the PID agent. First, the last waypoint prediction ensures that the
final hidden state contains the information of the second waypoint which is being
used by the GRU as its input. Therefore, it makes the MLP agent act based on the
same information as provided to the PID agent. Second, by predicting an extra way-
point, neurons in the GRU and the waypoint prediction layer can have more learning
experiences. As described in Algorithm 4.2, to make DeepIPC becomes more cau-
tious in driving the ego vehicle, we only consider full brake and set the minimum
active threshold for the throttle level to 0.2 for each agent.

4.3.2 Behavior Cloning

We consider imitation learning, especially behavior cloning where the goal is to learn
a policy π by mimicking the behavior of an expert with a policy π∗ [44] [143]. We
define the policy as a mapping function that maps inputs to waypoints, steering,
throttle, and brake levels which can be approximated with a supervised learning
paradigm. Therefore, we use CARLA simulator [123] to generate a dataset for train-
ing and validation. As described in Table 4.1, we use all available maps and weather
presets to create a more varying simulation environment. We also spawn non-player
characters (NPC) to mimic real-world conditions. In generating the dataset, an ego
vehicle driven by an expert with privileged information is rolled out to retrieve a
set of data for every 500ms. One set of data consists of an RGB image and depth
map along with semantic segmentation ground truth and the corresponding expert

4.3. Methodology 47

TABLE 4.1: Data Generation Setting

Maps All CARLA Towns

Route sets* Long (1000-2000m), short (100-500m), and
tiny (one turn or one go-straight)

Weather presets Clear noon, clear sunset, cloudy noon, cloudy sun-
set, wet noon, wet sunset, mid rainy noon, mid
rainy sunset, wet cloudy noon, wet cloudy sunset,
hard rain noon, hard rain sunset, soft rain noon,
soft rain sunset

Non-player characters Other vehicles and pedestrians

Object classes Unlabeled, building, fence, other, pedestrian, pole,
road lane, road, sidewalk, vegetation, other ve-
hicles, wall, traffic sign, sky, ground, bridge, rail
track, guard rail, traffic light, static object, dynamic
object, water, terrain

CARLA version 0.9.10.1

*The number of routes in long, short, and tiny route sets is different in each town due to
varying map complexity and characteristic.

trajectory, speed measurement, and navigational controls. The trajectory is defined
by a set of 2D waypoints transformed in the local vehicle coordinate, while the nav-
igational control is the record of the level of steering, throttle, and brake at the time.
For comparison purposes, we also gather LiDAR point clouds which are needed by
other models. Following the configuration used by Prakash et al. [80], we give the
expert a set of predefined routes to follow in driving the ego vehicle. Each route is
defined with a sequence of GNSS coordinates provided by the global planner and
high-level navigational command (e.g., turn left, turn right, follow the lane, etc.).
There are three kinds of route sets namely long, short, and tiny. In the long routes
set, the expert must drive for 1000-2000 meters comprising around 10 intersections
for each. In the short routes set, the expert must drive for 100-500 meters comprising
three intersections for each. In the tiny routes set, the expert must complete one turn
or one go-straight in an intersection or turn. To be noted, the number of routes for
each kind of route set is different in each CARLA town depending on the map topog-
raphy, road length, and other characteristics. Town01 to Town06 have all kinds of
route sets, while Town07 and Town10 only have short and tiny route sets. We create
two datasets, one for clear noon-only evaluation and one for all-weather evaluation
(see Subsection 4.4.1 for more details).

Each generated dataset is expressed as D = {(Xi, Yi)}J
i=1 where J is the size of

the dataset. X is considered as a set of inputs composed of RGB image, depth map,
LiDAR point clouds, speed measurement, GNSS locations, and high-level naviga-
tional command at a time. To be noted, DeepIPC does not take LiDAR point clouds
and high-level navigational command to drive the ego vehicle. Meanwhile, Y is
considered as a set of outputs composed of semantic segmentation ground truth,
waypoints, and the record of navigational controls at the time together with the
state of traffic light and stop sign appearance for additional supervision. Originally,
RGB image and depth map are retrieved at a resolution of 300× 400 then cropped
to 256× 256 for some reasons described in Subsection 4.3.1. Thus, both RGB image

48 Chapter 4. Simulation-based End-to-end Autonomous Driving

and depth map are represented as R ∈ {0, ..., 255}3×256×256 which is the set of 8-bit
values in a form of RGB channel (C)× height (H)×width (W). Then, the true depth
value for each pixel i in the depth map can be decoded with (4.5).

Rdec
i =

Ri + 256Gi + 2562Bi

2563 − 1
× 1000, (4.5)

where Rdec
i is the decoded true depth of pixel i, (Ri, Gi, Bi) are stored 8-bit value of

pixel i, 256 is the highest decimal value of 8-bit, and 1000 is the actual depth range
of RGBD camera in meters. Meanwhile, LiDAR point clouds are converted into a
2-bin histogram over a 2D BEV image R2×256×256 representing the point above and
on/below the ground plane [80] [81] [147]. Then, segmentation ground truth is rep-
resented as R ∈ {0, 1}23×256×256 where 23 is the number of classes mentioned in
Table 4.1 with 0 if the pixel does not belong to any class and 1 if the pixel belongs to
a class. Then, the waypoints are represented in BEV space with {ωρi = (xi, yi)}3

i=1.
Keep in mind that the center (0,0) of the BEV space (local vehicle coordinate) is on the
ego vehicle itself positioned at the bottom center. The model estimates the naviga-
tional controls in a normalized range of 0 to 1, then they will be denormalized to their
original value with steering ∈ {−1, ..., 1}, throttle ∈ {0, ..., 0.75}, and brake ∈ {0, 1}.
For the traffic light state and stop sign prediction, we set 1 if a red light/stop sign ap-
peared, otherwise, they are 0. Meanwhile, speed measurement (in m/s) and GNSS
locations are sparse, and high-level navigational commands are one-hot encoded.

4.3.3 Training Configuration

To learn multiple tasks simultaneously, several loss functions need to be defined
first. For the semantic segmentation loss function (LSEG), we use a combination of
binary cross-entropy and dice loss that can be calculated with (4.6). With this formu-
lation, we can obtain the advantage of distribution-based and region-based losses at
the same time [54] [153]. Giving extra loss criteria to the semantic segmentation task
is necessary as the rest of the network architecture depends on it.

LSEG =

(
1
N

N

∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi)

)
+

(
1− 2|ŷ ∩ y|
|ŷ|+ |y|

)
, (4.6)

where N is the number of pixel elements at the output layer of the semantic seg-
mentation decoder. Then, yi and ŷi are the value of ith element of the ground truth
y and prediction ŷ respectively. Meanwhile, we use a simple L1 loss as formulated
in (4.7) for the other tasks: traffic light state loss (LTL), stop sign loss (LSS), steering
loss (LST), throttle loss (LTH), brake loss (LBR), and waypoints loss (LWP).

L{TL,SS,ST,TH,BR,WP} = |ŷ− y| (4.7)

To be noted, only LWP needs to be averaged as there are three predicted way-
points. As explained in Subsection 4.3.1, DeepIPC outputs ∆x and ∆y instead the
exact x,y-coordinate location. Thus, the waypoints need to be calculated first with
(4.4) before computing the loss. Meanwhile, the prediction of navigational controls
(steering, throttle, brake) needs to be denormalized first as described in Subsection
4.3.2. Finally, the total loss that covers all penalization can be calculated with (4.8).

LTOTAL = α1LSEG + α2LTL + α3LSS + α4LST + α5LTH + α6LBR + α7LWP, (4.8)

4.4. Experiment Setup 49

where α1,..,7 is the loss weight for each task. We use an adaptive loss weighting algo-
rithm called modified gradient normalization (MGN) to tune the loss weights adap-
tively for each training epoch [54]. For a multi-task model, balancing task learning
by modifying the gradient signal is necessary to prevent imbalance problems where
the model tends to focus on a certain task only. We use Adam optimizer with de-
coupled weight decay of 0.001 to train DeepIPC until convergence [155] [127]. The
initial learning rate is set to 0.0001 and reduced gradually by half if there is no drop
on validation LTOTAL in 3 epochs in a row. Additionally, the training will be stopped
if there is no improvement in 15 epochs in a row to prevent unnecessary computa-
tional costs. We implement DeepIPC with PyTorch framework [122] and train it on
NVIDIA GeForce RTX 3090 with a batch size of 20. The training log and the loss
weighting behavior are explained in Appendix A.1.

4.4 Experiment Setup

In this section, we define the task and explain several scenarios for evaluations.
Then, we explain some metrics used to measure model performance including other
models and their variants for conducting ablation and comparative studies.

4.4.1 Task and Scenario

We consider the point-to-point navigation task where an autopilot model is obli-
gated to drive an ego vehicle following a set of predefined routes and traffic regu-
lations. Following standard CARLA protocol, the routes are defined in the form of
sparse GNSS locations given by the global planner. The model drivability is evalu-
ated in a variety of areas with different characteristics (e.g., urban, rural, highway,
etc.) and various kinds of weather conditions. The main goal is to complete the
routes while safely reacting to any events whether in normal or adversarial situa-
tions. For example, the model must avoid a collision with a pedestrian that suddenly
crosses the street, or with another vehicle when there is a double green light error at
an intersection. To achieve convincing evidence, we consider several scenarios for
the experiments as follows.

• 1W-N: Clear noon-only with normal situations. In this scenario, we train the
model on all available maps and route sets excluding Town05 short and tiny
sets which are used for validation, and leave the Town05 long set (10 long
routes) for evaluation purposes. Town05 is chosen as it is large and has com-
plex characteristics. During the evaluation, all Non-Player Characters (NPC)
behave normally following the traffic rules. We run the experiment three times
and calculate the average performance and its standard deviation. The model
is expected to be able to drive the ego vehicle properly by not violating traffic
regulations or any other kind of infraction.

• 1W-A: Clear noon-only with adversarial situations. This scenario is similar to
1W-N, however, the NPC is behaving abnormally which can cause collisions
(e.g., the pedestrian or bicyclist is crossing the street suddenly). Intentionally,
we also make the traffic light manager create a state where double green lights
appear at an intersection. Thus, the ego vehicle may collide with another ve-
hicle coming from a different path. The purpose of this condition is to mimic
the event of an ambulance or firefighter truck skipping the traffic light due to
emergency situations. Besides driving the ego vehicle properly, the model is
expected to be able to safely react and avoid collisions.

50 Chapter 4. Simulation-based End-to-end Autonomous Driving

• AW-N: All weathers with normal situations. This scenario is similar to 1W-
N, however, the model is trained and validated with the dataset in which the
weather is changed dynamically. Then, the model is evaluated on Town05 long
set one time for each weather preset mentioned in Table 4.1. Thus, we calculate
the average and standard deviation of model performance over fourteen times
running as there are fourteen weather presets. The model is expected to be
able to adapt to various conditions.

• AW-A: All weathers with adversarial situations. This scenario is similar to AW-
N but with adversarial situations as described in 1W-A. This is the hardest
scenario in our experiments where model performance is justified based on
the robustness against various weather conditions and the ability to respond
to adversarial situations.

4.4.2 Performance Evaluation

In the evaluation process, there are several metrics used to justify model perfor-
mance in some aspects of driving. Following the CARLA leaderboard evaluation
setting (https://leaderboard.carla.org), we use the driving score (DS) as the main
metric where the higher the driving score means the better the model. The driving
score can be computed with (4.9).

DS =
1

Nr

Nr

∑
i=1

RCi IPi (4.9)

The DS for the ith route (DSi) is a simple multiplication between the percentage
of route completion of route i (RCi) and the infraction penalty of route i (IPi). Then,
the final driving score can be calculated by averaging over Nr, the number of routes
in the route set. RCi can be simply obtained by dividing the completed distance of
route i by the total length of route i. However, if the ego vehicle drives offroad (e.g.,
drives on the sidewalk), then the path where the ego vehicle drives offroad is not
counted and yields a reduced RCi. Meanwhile, IPi can be computed with (4.10).

IPi =
M

∏
j
(pj

i)
#infractionsj , (4.10)

where M is the set of infraction types considered for the evaluation process. The IPi
for each model starts with an ideal base score of 1.0 and is reduced if an infraction is
committed. Ordered by its severity, we consider the following types of infraction M
and penalty values pj as described in the CARLA leaderboard website.

• Collision with pedestrians: 0.50

• Collision with other vehicles: 0.60

• Collision with others (static elements): 0.65

• Red light violation: 0.70

• Stop sign violation: 0.80

The final RC and IP scores can be obtained by averaging over Nr similar to the
final DS calculation. To save computation costs, the evaluation process on route i will
be stopped if the ego vehicle deviates more than 30 meters from the assigned route

https://leaderboard.carla.org

4.4. Experiment Setup 51

TABLE 4.2: Model Specification

Model Total Parameters↓ GPU Usage ↓ Model Size ↓ Input/Sensor

CILRS 12693331 2143 MB 50.871 MB RGB camera, speedometer, high-level command
AIM 21470722 2217 MB 86.033 MB RGB camera, GNSS, speedometer
LF 32644098 2303 MB 130.808 MB RGB camera, LiDAR, GNSS, speedometer
GF 40919554 2367 MB 163.944 MB RGB camera, LiDAR, GNSS, speedometer
TF 66293634 2553 MB 265.617 MB RGB camera, LiDAR, GNSS, speedometer
DeepIPC 20985934 2197 MB 84.984 MB RGBD camera, GNSS, speedometer

GPU memory usage is measured by NVIDIA GeForce RTX 3090 driver while the model
size is measured based on Ubuntu 20 system. We assume that models with fewer trainable
parameters (number of neurons) and less GPU utilization will inference faster. We cannot
compute the inference speed fairly since we run multiple parallel experiments at the same
time so the GPU computation performance becomes very fluctuating. CILRS: Conditional
Imitation Learning-based model [144] (R: using ResNet [145], S: with Speed input), AIM:
Auto-regressive IMage-based model [80], LF: Late Fusion-based model [80], GF: Geometric
Fusion-based model [156] [157] [158], TF: TransFuser model [80].

or does not take any actions for 180 seconds. Thus, it will affect the performance
calculation, yielding a low RCi. Then, the evaluation process continues to the next
route for further performance calculation.

As mentioned in Subsection 4.4.1, we evaluate the model in several scenarios to
understand multiple aspects of driving. Furthermore, for a comparative study, we
pick CILRS [144] (Conditional Imitation Learning using ResNet [145] and Speed in-
put) as the representative of a model that needs high-level navigational commands
to drive the ego vehicle. Then, we replicate several models developed by Prakash et
al. [80] as the representative of a model that does not need high-level navigational
commands to drive the ego vehicle. To be more detailed, we replicate four models
namely AIM (Auto-regressive IMage), LF (Late Fusion), GF (Geometric Fusion), and
TF (TransFuser). These models have the same module that is responsible for de-
termining navigational controls, however, their perception modules are completely
different from one another. AIM only uses an RGB camera as the main source of in-
formation for its perception module. Meanwhile, the other models combine a front
RGB camera and LiDAR sensor but with different fusion strategies. TF uses trans-
formers to learn the relationship between two unique features. GF uses geometric
transformation inspired by Liang et al. [156] [157] [158] for fusing the extracted fea-
tures. Meanwhile, LF only uses element summation to fuse both features and let the
next layer learn its correlation. To ensure that the comparison is conducted fairly,
we use the same camera settings for all models and consider an ROI of 256× 256
described in Prakash et al.’s works [80]. The model specification details can be seen
in Table 4.2 in which DeepIPC has the second smallest number of parameters. Fur-
thermore, we conduct an ablation study by modifying the architecture of DeepIPC
and changing the control policy to understand their contribution.

To reflect the intuitive performance on each task independently, we also conduct
an inference test on the expert driving data and do a comparative study with some
recent task-specific models. We compare DeepIPC with CILRS for the navigational
controls estimation task. Then, we compare DeepIPC against AIM, LF, GF, and TF for
the waypoints prediction task. Meanwhile, for semantic segmentation comparison,
we train and evaluate the DeepLabV3+ segmentation model [159] with ResNet101
backbone [145] pre-trained on ImageNet [152]. Finally, for the performance compar-
ison of traffic light state and stop sign prediction, we train and evaluate a classifier
model based on Efficient Net B7 [151] pre-trained on ImageNet [152].

52 Chapter 4. Simulation-based End-to-end Autonomous Driving

TABLE 4.3: Driving Performance Score for Comparative Study

Scenario Model DS↑ RC↑ IP↑ Collision↓ Violation↓
Offroad↓

Pedestrian Vehicle Others Red Stop

CILRS 8.291 ± 0.571 11.149 0.819 0.000 1.060 0.019 0.207 0.000 1.042
AIM 41.191 ± 1.047 92.794 0.456 0.000 0.043 0.004 0.108 0.088 0.014

Normal LF 42.770 ± 2.334 73.836 0.457 0.000 0.032 0.004 0.043 0.072 0.055
Clear Noon GF 37.320 ± 7.150 82.592 0.480 0.000 0.056 0.000 0.089 0.123 0.052
(1W-N)† TF 35.273 ± 1.115 57.680 0.710 0.000 0.020 0.000 0.097 0.037 0.085

DeepIPC 48.428 ± 1.467 84.270 0.625 0.000 0.038 0.000 0.048 0.075 0.011

Expert 73.553 ± 5.086 100.000 0.735 0.000 0.051 0.000 0.019 0.000 0.000

CILRS 8.261 ± 0.924 13.237 0.657 0.119 0.512 0.095 0.258 0.000 1.012
AIM 25.541 ± 2.257 79.141 0.412 0.018 0.113 0.005 0.175 0.041 0.081

Adversarial LF 35.310 ± 2.510 58.744 0.658 0.012 0.049 0.000 0.102 0.018 0.031
Clear Noon GF 32.423 ± 1.042 65.291 0.602 0.012 0.148 0.000 0.049 0.023 0.094
(1W-A)† TF 24.740 ± 0.948 37.921 0.788 0.016 0.074 0.008 0.121 0.008 0.101

DeepIPC 35.982 ± 2.105 76.189 0.476 0.034 0.062 0.000 0.214 0.020 0.014

Expert 41.579 ± 1.576 68.225 0.696 0.000 0.086 0.000 0.081 0.000 0.000

CILRS 7.376 ± 0.996 9.569 0.869 0.000 0.849 0.020 0.071 0.000 0.964
AIM 39.613 ± 3.644 84.467 0.542 0.000 0.022 0.018 0.090 0.076 0.030

Normal LF 36.890 ± 7.067 48.747 0.805 0.000 0.063 0.001 0.023 0.050 0.041
All Weathers GF 20.446 ± 5.281 29.616 0.831 0.000 0.051 0.000 0.079 0.022 0.063
(AW-N)* TF 16.672 ± 4.175 26.425 0.843 0.000 0.011 0.014 0.082 0.010 0.427

DeepIPC 47.133 ± 5.276 77.427 0.653 0.000 0.069 0.021 0.031 0.056 0.080

Expert 75.815 ± 5.045 100.000 0.758 0.000 0.058 0.000 0.012 0.000 0.000

CILRS 5.234 ± 0.869 8.663 0.778 0.119 0.039 0.148 0.357 0.000 1.049
AIM 30.207 ± 5.857 76.399 0.471 0.013 0.066 0.028 0.147 0.041 0.047

Adversarial LF 22.592 ± 7.039 32.525 0.808 0.371 0.088 0.010 0.050 0.021 0.069
All Weathers GF 14.799 ± 3.860 20.113 0.865 0.007 0.120 0.007 0.036 0.008 0.069
(AW-A)* TF 11.167 ± 2.434 20.965 0.808 0.003 0.054 0.033 0.124 0.011 0.273

DeepIPC 31.055 ± 2.700 64.132 0.531 0.031 0.128 0.049 0.106 0.022 0.134

Expert 39.475 ± 6.792 71.474 0.643 0.002 0.108 0.001 0.078 0.000 0.000

The best performance is defined by the highest driving score (DS) in each scenario. CILRS:
Conditional Imitation Learning-based model [144] (R: using ResNet [145], S: with Speed
input), AIM: Auto-regressive IMage-based model [80], LF: Late Fusion-based model [80],
GF: Geometric Fusion-based model [156] [157] [158], TF: TransFuser model [80].
†The result is averaged over three experiment runs.
*The result is averaged over fourteen times of experiment run with one time running for
each weather preset mentioned in Table 4.1.

4.5 Result and Discussion

Be noted, the main evaluation metric used to determine the best model is the driv-
ing score (DS) which is the multiplication of route completion (RC) and infraction
penalty (IP). Keep in mind that having a higher RC or IP does not mean that the
model is better. The model may have a higher RC by disobeying the traffic rules
so it can keep going to achieve further route distance but drive terribly awful. The
model may also have small infraction counts (resulting in higher IP) due to the low
percentage of the completed route where any collisions or traffic violations can hap-
pen if it travels further. Therefore, the most appropriate metric is DS as it combines
both aspects of driving in RC and IP: drive as far as possible with small infractions
as little as possible. As mentioned in Subsection 4.4.1, we calculate the average and
the standard deviation of each model performance over three times of experiments
run in clear noon-only evaluation (1W-N and 1W-A) and over fourteen times exper-
iments run in all weathers evaluation (AW-N and AW-A). The evaluation score can
be seen in Table 4.3. In addition, we add several driving footage on various weather
conditions as shown in Fig. 4.4.

4.5. Result and Discussion 53

 15%Steering

 0%

RGB Depth Segmentation SDC

1

2

3

4

5

 0%

 100%

 0m/s

Steering

Throttle

Brake

Speed

Control

 0%

 0%

 100%

 0m/s

Steering

Throttle

Brake

Speed

 5%

 0%

 100%

Throttle

Brake

 74%Throttle

Steering

3.8m/sSpeed

 0%Brake

3.3m/sSpeed

 75%Throttle

 0%Steering

 0%Brake

6.2m/sSpeed

FIGURE 4.4: Driving footage.

1. Clear noon: DeepIPC manages to stop the ego vehicle as a pedestrian crosses suddenly.
Therefore, the pedestrian does not get hit by the vehicle.
2. Cloudy sunset: Even though there are some vacant spaces in front of the ego vehicle,
DeepIPC tends to stop behind any vehicles shown on the front camera at the intersection as
a result of behavior cloning from the expert driver.
3. Mid rainy noon: DeepIPC reacts properly and avoids collision by doing instant braking
when another vehicle driving ahead due to a double green light error at the intersection
(simulating an ambulance or a firefighter truck rushing for emergency situations).
4. Hard rain sunset: After the traffic light turns green, DeepIPC drives to the right get-
ting close to the given route (white hollow circle inside semantic depth cloud (SDC) map).
However, it drives offroad as the sidewalk is wrongly classified as a road.
5. Wet sunset: DeepIPC drives fast on a highway. Although it cannot segment the road
barrier properly, DeepIPC manages to stay on the lane thanks to the well-segmented road
lane and the information on vacant regions in the SDC map.

4.5.1 Drivability in Normal and Adversarial Situations

Normally, all road users, including pedestrians and other drivers, must obey traffic
regulations so that any kind of accident can be prevented. However, this condition
is nearly impossible in the real world, especially in a crowded urban area where

54 Chapter 4. Simulation-based End-to-end Autonomous Driving

plenty of vehicles and pedestrians are moving around. No one can guarantee that
the pedestrian will always walk only on the sidewalk or not cross the street sud-
denly. Moreover, there is also a possibility that the traffic light can err (e.g., double
green light) due to a certain cause. Therefore, we evaluate all models in both normal
situations (where everything is working as it should be) and adversarial situations
(where unexpected events can occur at any time). Specifically, in adversarial situa-
tions, we make abnormal events by spawning some pedestrians to cross the street
suddenly and making the traffic light error when the ego vehicle is approaching.
These events are used to mess up the traffic on purpose to simulate an ambulance
or a firefighter truck rushing for emergency situations. Besides driving the vehicle
properly, the model is expected to be able to react safely and avoid collisions with
pedestrians or other vehicles in these situations.

Based on Table 4.3, DeepIPC has the best drivability by achieving the highest
driving scores (DS) in all scenarios. Moreover, DeepIPC can be said to be more stable
compared to the second-best model, LF, as it achieves a smaller standard deviation
of DS in the clear noon-only evaluation (1W-N and 1W-A). Meanwhile, in all weath-
ers evaluation, DeepIPC stability is comparable to AIM as the standard deviation is
larger in AW-N but smaller in AW-A. This is caused by the variety of weather con-
ditions that challenge the capability of the perception module in extracting stable
features for the controller module. Based on the comparison of DS in normal sit-
uations and adversarial situations, all models suffer from such unexpected events.
The driving scores achieved by each model in 1W-A and AW-A scenarios are lower
than in the 1W-N and AW-N scenarios. The performance drop is as expected due to
abnormalities that occurred during driving. However, even with these adversarial
situations, DeepIPC still manages to achieve the best performance meaning that it
can react properly to prevent such kinds of infractions.

4.5.2 Adaptability to Various Weather Conditions

To evaluate all models further, we also change the weather condition in fourteen
weather presets provided in the CARLA simulator. The purpose of this evaluation
is to check the adaptability of the model when deployed in various conditions. In
the real world, it is obvious that we cannot expect that the weather will always be
sunny where everything is clearly visible. Therefore, conducting adaptability tests
in various weather conditions is necessary. Unlike in the clear noon-only test where
each model runs three times, we run each model only once for each weather. Then,
the average and standard deviation are calculated over fourteen sets of scores as
described in Subsection 4.4.1.

As shown in Table 4.3, all models get their driving score dropped in AW-N and
AW-A scenarios compared to their achievement in 1W-N and 1W-A scenarios. Be-
sides that, most of the models have a larger standard deviation on their scores. How-
ever, DeepIPC still manages to achieve the best performance. The phenomena of
performance drop and less stability mean that performing scene understanding to
perceive the surrounding is much harder in various weather conditions. The only
outlier of this result is the fact that the AIM performance on the adversarial situation
in all weathers evaluation is better than in clear noon-only evaluation where its DS
is getting improved from 25.541 to 30.207. An answer to this phenomenon lies in
the network architecture of AIM. As mentioned in Table 4.2, AIM uses a front RGB
image as the only input for its perception module. Therefore, in various weather
conditions, its capability in extracting informative and stable features can be drasti-
cally improved as the rest of the architecture only relies on it.

4.5. Result and Discussion 55

4.5.3 Models Behavior

The CILRS model which takes high-level navigational commands is completely far
behind the other models. The problem with the navigational command-based model
is the imbalance distribution of discrete navigational commands. It is obvious that
the command follow lane or go straight are more than turn left or turn right. As a
result, the model tends to fail to turn properly at the intersection. Judging from its
low percentage of RC, the model cannot drive any further due to a collision with a
pedestrian, another vehicle, or other objects. The model may have failed at the first
or second intersection in the given route.

The AIM model has the highest RC, however, it cannot achieve the highest DS
as it makes many infractions resulting in the lowest IP in all scenarios. The problem
with AIM is it only uses the front RGB image as the only input for its perception
module. The reason AIM can travel further compared to the other models in all
scenarios is due to its less awareness caused by limited information about the sur-
rounding. AIM tends to just keep going and makes a lot of infractions since the
only thing it knows about is the information in front of the ego vehicle. This kind
of driving behavior is resulting in the highest RC but with the smallest IP (many
infractions) in each scenario.

The RGB-LiDAR fusion-based models (LF, GF, and TF) are too careful which
results in smaller RC and higher IP (fewer infractions). During the evaluation pro-
cess, these models tend to wait for another vehicle to make the first move in an
intersection so that they can follow those vehicles. Unlike AIM, these models focus
on capturing the surrounding vehicle situation rather than recognizing the traffic
light state to decide whether to drive the vehicle or not. Therefore, if there are no
other vehicles around, then these models are not going to drive the vehicle any fur-
ther. In this case, these models may have a better understanding of the surrounding
area, however, the extracted features provided by the LiDAR encoder are biasing too
much and affecting its ability to recognize the state of the traffic light which cannot
be captured by LiDAR.

In DeepIPC, the information provided by LiDAR is replaced by the semantic
depth cloud (SDC) mapping function. In addition, we use a specific module to rec-
ognize the traffic light state and the appearance of stop signs that may disappear
during GRU looping. Furthermore, we also use two agents as the decision makers
to create more varying driving options. The first agent is the MLP network that de-
codes the final hidden state given by the GRU. Meanwhile, the second agent is two
PID controllers that translate predicted waypoints into navigational controls. As a
result, DeepIPC can maintain the trade-off between RC and IP which results in the
highest driving score as shown in Table 4.3. Moreover, DeepIPC is more efficient
compared to LF and AIM as it has fewer parameters and smaller GPU memory us-
age as described in Table 4.2.

4.5.4 The Importance of SDC and Multi-agent

We conduct an ablation study on the clear noon-only evaluation by removing the
semantic depth cloud (SDC) mapping function and changing the control policy to
understand how the SDC map and multi-agent can improve DeepIPC performance.

To understand how important SDC mapping is, we train and evaluate a vari-
ant of DeepIPC that does not have this function with the same experiment settings
for a fair comparison. As shown in Table 4.4, the No SDC variant achieves a lower
driving score with a higher standard deviation. This result is as expected since the

56 Chapter 4. Simulation-based End-to-end Autonomous Driving

TABLE 4.4: Driving Performance Score for Ablation Study

Scenario Variant DS↑ RC↑ IP↑ Collision↓ Violation↓
Offroad↓

Pedestrian Vehicle Others Red Stop

No SDC 39.579 ± 10.251 63.276 0.715 0.000 0.028 0.022 0.062 0.068 0.029
Proposed 48.428 ± 1.467 84.270 0.625 0.000 0.038 0.000 0.048 0.075 0.011

Normal MLP 43.210 ± 3.689 80.794 0.589 0.000 0.047 0.000 0.078 0.054 0.020
(1W-N) PID 46.351 ± 7.879 65.673 0.761 0.000 0.022 0.000 0.081 0.044 0.034

Both 42.927 ± 9.392 67.373 0.705 0.000 0.026 0.000 0.072 0.037 0.010

Expert 71.440 ± 5.855 100.000 0.714 0.000 0.061 0.000 0.011 0.000 0.000

No SDC 29.624 ± 7.006 56.430 0.606 0.030 0.043 0.006 0.256 0.026 0.013
Proposed 35.982 ± 2.105 76.189 0.476 0.034 0.062 0.000 0.214 0.020 0.014

Adversarial MLP 26.936 ± 3.773 59.178 0.511 0.090 0.109 0.000 0.207 0.015 0.004
(1W-A) PID 32.282 ± 1.899 58.748 0.635 0.004 0.112 0.010 0.181 0.026 0.017

Both 32.396 ± 4.531 58.367 0.622 0.004 0.108 0.000 0.227 0.012 0.028

Expert 41.579 ± 1.576 68.225 0.696 0.000 0.086 0.000 0.081 0.000 0.000

The result is averaged over three times in the experiment. The best performance is defined
by the highest driving score (DS) in each scenario. Proposed: the configuration as described
in Section 4.3, No SDC: there is no SDC map provided so that the controller module only
receives RGB features, MLP: DeepIPC only uses MLP agent on its controller module, PID:
DeepIPC only uses PID agent on its controller module, Both: DeepIPC drives the vehicle if
and only if both MLP and PID throttles are above the threshold of 0.2.

model loses its capability in performing robust scene understanding. Unlike raw
point clouds that only provide the height information, the SDC map holds semantic
information for each class on each layer. With this representation, the model can un-
derstand much useful information easily. Moreover, by doing concatenation rather
than element summation on RGB and SDC features, the fusion block can learn the
relation by itself to prevent information loss.

By default (Proposed variant), DeepIPC uses both MLP and PID agents in driving
the ego vehicle as described in Subsection 4.3.1. DeepIPC will stop the vehicle if and
only if both throttle values are below the threshold of 0.2. If only the MLP agent in
which the throttle value is higher than 0.2, then the vehicle is fully controlled by the
MLP agent, and so does for the PID agent. By using the same network architecture,
we create three more DeepIPC variants namely MLP, PID, and Both. In MLP and
PID variants, the vehicle is controlled by one agent only, MLP or PID. Meanwhile,
the Both variant uses both agents as similar to the Proposed variant. However, this
variant will drive the vehicle if and only if both throttle values are higher than 0.2.
This means that if one of the throttle values is below 0.2, the vehicle will stop.

Based on Table 4.4, the Proposed variant still achieves the best performance com-
pared to the other variants. With more driving options provided by two agents that
represent different aspects of driving, the model can drive the vehicle farther and
make a better trade-off between route completion (RC) percentage and infraction
penalty (IP). In normal situations, the Both variant achieves the lowest score as it is
too careful by considering both decisions made by MLP and PID agents. However,
this carefulness can make the Both variant surpasses the MLP and PID variants in
adversarial situations since being more careful is preferable in handling unexpected
abnormal events such as a pedestrian crosses suddenly. Meanwhile, the MLP vari-
ant achieves the second-best in RC which means that the MLP agent is less aware
compared to the PID agent and results in a lower IP (many infractions). On the other
hand, the PID agent can be said to be better than the MLP agent as it achieves higher
DS. This means that the PID variant is better than the MLP policy in managing the
trade-off between RC and IP.

4.5. Result and Discussion 57

4.5.5 Task-wise Evaluation

The purpose of this evaluation is to analyze model performance in handling multi-
ple perception and control tasks simultaneously. Hence, we conduct a comparative
study with some task-specific models to reflect the intuitive performance on each
task independently. In this experiment, we configure all models to perform infer-
ence on the expert’s driving data on the evaluation routes (Town05 long route set) in
four different scenarios (1W-N, 1W-A, AW-N, AW-A) which are completely unseen
in the training and validation datasets used for the imitation learning process. We
consider the expert’s trajectory and navigational controls (steering, throttle, brake)
record along with the segmentation map, traffic light state, and stop sign appearance
provided by CARLA as the ground truth for evaluation.

For metric scoring, we use intersection over union (4.11) to determine the perfor-
mance on the semantic segmentation task.

IoUSEG =
|ŷ ∩ y|
|ŷ ∪ y| , (4.11)

where ŷ and y are the prediction and ground truth respectively. Meanwhile, for the
traffic light state and stop sign predictions, we use a simple accuracy scoring (4.12)
as the metric function.

Acc.{TL,SS} =
TP + TN

TP + TN + FP + FN
, (4.12)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and
false negative predictions made by the model. Then, to justify model performance in
predicting waypoints and navigational controls, we use mean absolute error (MAE)
as the metric function which is the same function used for their loss calculation as
mentioned in Subsection 4.3.3 (known as L1 loss). Similar to Table 4.3, the results
shown in Table 4.5, 4.6, 4.7, and 4.8 are averaged over three inference results for
clear noon-only scenarios (1W-N and 1W-A) and averaged over fourteen inference
results for all weathers scenarios (AW-N and AW-A).

Semantic Segmentation

Based on Table 4.5, it can be said that performing semantic segmentation in vary-
ing weather conditions is harder than in a single weather condition. In the varying
weather scenarios (AW-N and AW-A), both DeepLabV3+ and DeepIPC have lower
IoU scores with larger standard deviations than in the clear noon-only scenarios
(1W-N and 1W-A). This result is in line with the slight degradation of the driving
score shown in Table 4.3 and discussed in Subsection 4.5.2 meaning that perform-
ing prediction in various kinds of weather is more challenging. In all scenarios, it is
expected that DeepLabV3+ has higher IoU scores with a smaller standard deviation
meaning that it has better performance and stability than DeepIPC. However, with
just a small gap difference in IoU score, DeepIPC is still preferable considering the
large number of neurons used in DeepLabV3+ architecture that can cause a huge
computational load.

TL State and Stop Sign Prediction

In the task of traffic light (TL) state and stop sign prediction, DeepIPC has compa-
rable accuracy scores in all scenarios as shown in Table 4.6. Unlike in the semantic
segmentation task, the model only deals with one specific object which is easier to

58 Chapter 4. Simulation-based End-to-end Autonomous Driving

TABLE 4.5: Semantic Segmentation Score

Model
IoUSEG ↑

1W-N 1W-A AW-N AW-A

DLV3+ 0.888 ± 0.001 0.885 ± 0.002 0.884 ± 0.003 0.883 ± 0.003
DeepIPC 0.883 ± 0.001 0.880 ± 0.003 0.878 ± 0.004 0.879 ± 0.004

IoUSEG: intersection over union score of semantic segmentation. DLV3+: DeepLabV3+ seg-
mentation model [159] with ResNet101 backbone [145].

TABLE 4.6: TL State and Stop Sign Prediction Score

Scenario Model Acc.TL ↑ Acc.SS ↑

1W-N
ENB7 0.967 ± 0.008 0.995 ± <0.001
DeepIPC 0.986 ± 0.003 0.996 ± <0.001

1W-A
ENB7 0.975 ± 0.004 0.996 ± <0.001
DeepIPC 0.982 ± 0.006 0.996 ± <0.001

AW-N
ENB7 0.980 ± 0.005 0.996 ± <0.001
DeepIPC 0.989 ± 0.004 0.996 ± <0.001

AW-A
ENB7 0.979 ± 0.003 0.996 ± 0.001
DeepIPC 0.979 ± 0.004 0.996 ± 0.001

Acc.TL: accuracy of traffic light (TL) state prediction, Acc.SS: accuracy of stop sign predic-
tion. ENB7: A classifier model based on Efficient Net B7 variant [151].

handle. Moreover, although DeepIPC uses a smaller Efficient Net version (Efficient
Net B3) as its RGB encoder, it manages to be better than a classifier model based
on Efficient Net B7 (the best and the biggest amongst Efficient Net model variants)
almost in all scenarios. DeepIPC only loses in the AW-A scenario where it has a
slightly larger standard deviation in the traffic light state prediction score. Thanks
to the end-to-end and multi-task learning strategy, DeepIPC can receive more super-
vision since its prediction is encoded further and used to bias a certain latent space
for other task predictions.

Waypoints Prediction

As mentioned in Section 4.5, we compare DeepIPC with AIM, LF, GF, and TF in the
waypoints prediction task. These models predict four waypoints, while DeepIPC
only predicts three waypoints. Yet, it is still considered a fair comparison since we
use MAE which averages the error on all predictions. Based on Table 4.7, DeepIPC
has the lowest MAE with the smallest standard deviation compared to the other
models in all scenarios. Thanks to the SDC map which lies on BEV space the same as
where the coordinates of the waypoint are located. This means that the SDC map is
proven to play an important role in giving the model a strong intuition in predicting
waypoints as it provides the information of free and occupied regions clearly in
BEV space. Besides that, performing waypoint prediction in adversarial driving is
harder than in normal driving. In a comparison between the result in 1W-N with
1W-A and AW-N with AW-A, the MAE constantly becomes larger. Furthermore, if
we compare the result in 1W-N with AW-N and 1W-A with AW-A, the MAE also
constantly becomes larger which means that performing waypoints prediction in

4.5. Result and Discussion 59

TABLE 4.7: Waypoints Prediction Score

Model
MAEWP ↓

1W-N 1W-A AW-N AW-A

AIM 0.233 ± 0.017 0.326 ± 0.042 0.221 ± 0.015 0.292 ± 0.028
LF 0.209 ± 0.011 0.307 ± 0.039 0.192 ± 0.014 0.294 ± 0.036
GF 0.231 ± 0.010 0.326 ± 0.038 0.196 ± 0.014 0.271 ± 0.025
TF 0.183 ± 0.009 0.286 ± 0.039 0.186 ± 0.009 0.249 ± 0.018
DeepIPC 0.114 ± 0.003 0.166 ± 0.023 0.120 ± 0.006 0.172 ± 0.015

MAEWP: mean absolute error of waypoints prediction. AIM: Auto-regressive IMage-based
model [80], LF: Late Fusion-based model [80], GF: Geometric Fusion-based model [156] [157]
[158], TF: TransFuser model [80].

TABLE 4.8: Navigational Controls Estimation Score

Scenario Model MAEST ↓ MAETH ↓ MAEBR ↓

1W-N
CILRS 0.022 ± 0.002 0.052 ± 0.002 0.053 ± 0.003
DeepIPC 0.025 ± 0.001 0.054 ± 0.001 0.044 ± 0.002

1W-A
CILRS 0.025 ± 0.005 0.097 ± 0.006 0.116 ± 0.011
DeepIPC 0.041 ± 0.008 0.117 ± 0.016 0.126 ± 0.018

AW-N
CILRS 0.024 ± 0.001 0.054 ± 0.008 0.057 ± 0.011
DeepIPC 0.029 ± 0.002 0.069 ± 0.005 0.044 ± 0.005

AW-A
CILRS 0.024 ± 0.003 0.088 ± 0.006 0.102 ± 0.007
DeepIPC 0.035 ± 0.006 0.120 ± 0.009 0.107 ± 0.008

MAEST : mean absolute error of steering prediction, MAETH : mean absolute error of throttle
prediction, MAEBR: mean absolute error of brake prediction. CILRS: Conditional Imitation
Learning-based model [144] (R: using ResNet [145], S: with Speed input).

varying weather is also harder than in one single weather. This result is in line
with the result shown in Table 4.3 and discussed in Subsection 4.5.1 and 4.5.2 where
all models are suffered from adversarial situations and varying weather conditions,
yielding a lower driving score.

Navigational Controls Estimation

Based on Table 4.8, especially in a comparison between the result in 1W-N with 1W-
A and AW-N with AW-A, both CILRS and DeepIPC have larger MAE scores in the
adversarial conditions. This means that both models have inferior performance due
to various unexpected situations such as predicting the navigational controls (steer-
ing, throttle, brake) when a pedestrian crosses the street suddenly. This phenomenon
also appears in the waypoints prediction performance evaluation meaning that ad-
versarial driving is a big challenge for all models, especially on their controller mod-
ule. Furthermore, DeepIPC loses to CILRS where it constantly has a larger MAE, es-
pecially on steering and throttle estimation. This result is as expected since CILRS is
fed with one-hot encoded high-level navigational commands that can boost its confi-
dence in estimating navigational controls level. However, this result is contradictive
to the result shown in Table 4.3 where CILRS cannot perform very well in the driving
task on the CARLA simulator. This is because it only performs inference on a set of

60 Chapter 4. Simulation-based End-to-end Autonomous Driving

recorded driving data and has nothing to do with the environment state. Therefore,
each prediction made by the model will not affect the future state of the environment
which critically affects the performance. Moreover, as explained in Subsection 4.2.2,
providing high-level commands is less reliable in real-world autonomous driving as
there is no sensor that can give high-level commands other than the command from
the driver itself. Therefore, although results in a larger MAE, providing GNSS lo-
cations along with global-to-local coordinate transformation is preferable since they
still can give an explicit intuition of navigational commands to the model which is
useful for navigational controls estimation.

4.6 Findings

In this Chapter, we present an end-to-end deep multi-task learning model called
DeepIPC to handle both perception and control tasks simultaneously for an au-
tonomous driving vehicle. We consider point-to-point navigation tasks where the
model is obligated to drive the ego vehicle by following a sequence of routes defined
by the global planner. CARLA simulator is used to simulate a driving environment
with four different scenarios for evaluating the model and understand several as-
pects of driving. A comparative study with some recent models is conducted to
justify the performance. Then, an ablation study is also conducted to understand
the behavior and roles of some modules inside the architecture of DeepIPC. Further-
more, an extensive evaluation with task-wise performance scoring is conducted to
analyze DeepIPC’s capability in handling multiple tasks simultaneously. Based on
the experiment result, we disclosed several findings as follows.

• All models suffer in adversarial situations and various weather conditions (ex-
cept the AIM model in the AW-A scenario).

• DeepIPC achieves the highest driving score (DS) as it can react properly to ab-
normalities thanks to the SDC map that provides stable features to the percep-
tion module. In addition, DeepIPC can maintain the trade-off between route
completion (RC) and infraction penalty (IP) as it understands different aspects
of driving supported by two agents. Moreover, DeepIPC is more efficient as it
has fewer trainable parameters and uses less GPU utilization compared to the
runner-up of each scenario.

• AIM has the highest RC, however, it cannot achieve the highest DS as it makes
many infractions due to its less awareness. Meanwhile, the fusion-based mod-
els are too careful to drive and result in low RC. The LiDAR features give too
much bias so the model loses important information.

• Based on the ablation study, the SDC map and multi-agent are proven to play
important roles in enhancing model drivability as they provide better percep-
tion and more control options.

• Based on the task-wise performance comparison, DeepIPC has better perfor-
mances in waypoint prediction, traffic light state prediction, and stop sign pre-
diction tasks. Although it loses in semantic segmentation and navigational
controls estimation tasks, DeepIPC is still preferable considering its size and
reliability.

61

Chapter 5

Vision-based End-to-end
Autonomous Driving

Following the success of DeepIPC (Deeply Integrated Perception and Control) in
driving a vehicle in a simulated environment as discussed in Chapter 4, we continue
to use this model and perform some improvements to make it suitable for driving a
robotic vehicle in real environments. In brief, DeepIPC is an end-to-end autonomous
driving model that handles both perception and control tasks simultaneously. The
model consists of two main parts which are the perception module and the con-
troller module. The perception module takes an RGBD image to perform semantic
segmentation and bird’s eye view (BEV) semantic mapping along with providing
their encoded features. Meanwhile, the controller module processes these features
with the measurement of GNSS locations and angular speed to estimate waypoints
that come with latent features. Then, two different agents are used to translate way-
points and latent features into a set of navigational controls to drive the vehicle. We
modify several parts of DeepIPC to address some real-world implementation chal-
lenges. Unlike in an ideal simulated environment, we have to deal with several
issues such as sensor inaccuracy and noise. We also need to think about the global
coordinate which is completely different from a simulation. The modified model is
evaluated by predicting driving records and performing automated driving under
various conditions in real environments. We define a different evaluation metric
where the best drivability is defined by the lowest driver intervention, not by the
lowest number of collisions. This is necessary to avoid any damage to the robotic
vehicle during evaluation. The experimental results show that DeepIPC achieves
the best drivability and multi-task performance even with fewer parameters com-
pared to the other models.

5.1 Real-world Imitation Learning

In order to achieve end-to-end autonomous driving, one approach is to proceed with
behavior cloning or imitation learning strategies which can be done easily in a su-
pervised learning manner [160] [161]. By using the end-to-end imitation learning
strategy, we can create a single deep learning model to imitate the behavior of an ex-
pert driver in manipulating controls or effectors for handling complicated situations
in the environment [162] [163]. This can be derived from publicly available datasets
or simulated with a simulator to enrich the driving experiences [164] [165]. There-
fore, the model will be able to perform human-like autonomous driving [166] [167].

Imitation learning has been widely used for real-world experiments. To be more
specific in the field of mobile robotics and autonomous vehicles, recent work is pro-
posed by Cai et. al. [168] where a vision-based model is employed for driving a

62 Chapter 5. Vision-based End-to-end Autonomous Driving

FIGURE 5.1: The inputs and outputs of the modified DeepIPC.

DeepIPC perceives the environment by performing semantic segmentation and BEV seman-
tic mapping. At the same time, it also estimates waypoints and navigational controls to drive
the vehicle. The detailed architecture of DeepIPC can be seen in Fig. 5.2.

toy-size autonomous race car in a fixed circuit. This work shows how the imita-
tion learning technique can be used to train a simple model to learn the mapping
function that transforms an RGB image into navigational controls. Not only simple
models, but this technique is also applicable to multi-input multi-output models that
process multiple data. A recent work by Chatty et. al. [169] demonstrates the use
case of imitation learning for cognitive map building used for navigating a mobile
robot. Then, Hoshino et. al. [170] also use the imitation-based end-to-end multi-task
learning technique for motion planning and controlling a mobile robot in a challeng-
ing environment. Another work is proposed by Yan et. al. [171] where an end-to-
end model is used to control a robotic shark. These complex models are supported
with multiple sensors and are used to control several end-effectors. Following the
success of these works in using end-to-end imitation learning for complex multi-
input multi-output models, we also use this approach to train DeepIPC for driv-
ing a robotic vehicle in real environments. However, although this method seems
promising, imitation learning sometimes causes an issue of generalization ability in
unknown environments. To overcome this problem, we employ two control agents
to manipulate the vehicle’s end-effectors. As there are more decision-makers in its
architecture, DeepIPC will be able to consider different aspects of drivability.

5.2 DeepIPC: Deeply Integrated Perception and Control

To deal with the implementation issues, the modified DeepIPC is forced to learn
how to compensate for noise and inaccuracy of sensor measurement implicitly by
mimicking expert behavior to achieve human-like autonomous driving [172] [173].
As shown in Fig. 5.1, the model must be able to safely avoid the obstacles by predict-
ing navigational controls and waypoints correctly in the traversable area although
the given route points (two white circles on the bottom-right image) are not located
accurately in the local coordinate. DeepIPC processes multi-modal data that contain

5.2. DeepIPC: Deeply Integrated Perception and Control 63

RGB
Encoder

Segmentation
Decoder

Semantic Map
Encoder

[,]
Fusion
Block

Linear

GNSS
Locations

Waypoints

MLP

PID

[,]

Projection

N
o

rm
alizatio

n

Steering
Throttle

Semantic Segmentation

Angular
Speed

GRU

(Δx,Δy)

+

◄

Control
Policy

Coordinate
Transformation

Init.
(0,0)

Skip Connections

Bearing
Angle

9-axis
IMU Data

Extended
Kalman Filter

RGB Image

Depth Map

★

★

Depth to Cloud

DRIVER
INTERVENTION

3x looping

BEV Semantic Map
Local

Route Points

Linear Speed

Dense
Point Clouds

FIGURE 5.2: The architecture of the modified DeepIPC.

Blue blocks are considered as part of the perception module, while green blocks are con-
sidered as part of the controller module. Light-colored blocks are not trainable, while the
darker ones are trainable.

several quantities needed to perceive the environment and drive the vehicle in one
forward pass. The perception parts take an RGBD image to perform semantic seg-
mentation and BEV semantic mapping. Simultaneously, the controller parts estimate
waypoints and navigational controls based on the extracted perception features, the
wheel’s angular speeds, and route points. Unlike in an ideal simulated environment,
DeepIPC must deal with real implementation issues. For example, it must compen-
sate for the issue of inaccurate route points positioning caused by the inaccuracy of
the GNSS receiver and IMU sensor. Then, there are also noises on the RGBD camera
that can affect the scene understanding capability.

5.2.1 Network Architecture

The architecture of DeepIPC is similar to our previous work [55] that is composed
of perception and controller parts. As shown in Fig. 5.2, the perception phase be-
gins with semantic segmentation on RGB image with a standard encoder-decoder
network enhanced with several skip connections [153]. The RGB encoder is made of
Efficient Net B3 [151] while the decoder is composed of multiple convolution blocks
where each block consists of (2×(3× 3 convolution + batch normalization [116] +
ReLU [117]) + bilinear interpolation) and a pointwise 1× 1 convolution followed
with sigmoid activation. Furthermore, we generate point clouds from the depth
map and make projections with the predicted segmentation map to obtain a BEV
semantic map with a coverage area of 24 meters to the front, left, and right from the
vehicle location. Thus, the vehicle is always positioned at the bottom center of the
BEV semantic map. Then, the BEV semantic map is encoded by an Efficient Net B1
encoder [151] to obtain its features. With this configuration, DeepIPC has both front
and top perspectives to perceive the surrounding area.

64 Chapter 5. Vision-based End-to-end Autonomous Driving

In the controller module, both RGB and BEV semantic features are processed by a
fusion block module which is composed of pointwise (1× 1) convolution, global av-
erage pooling, and linear layer. This module is responsible for learning the relation
between features from the front and top-view perspectives. Then, a gated recur-
rent unit (GRU) [83] is used to decode the latent features based on the measurement
of the left and right wheel’s angular speeds, predicted waypoints, and two route
points that have been transformed into local BEV coordinates. The decoded features
are processed further by a linear layer to predict ∆x and ∆y. Thus, the coordinate of
the next waypoint can be calculated with (5.1).

xi+1, yi+1 = (xi + ∆x), (yi + ∆y) (5.1)

To be noted, the waypoints prediction process is looped over three times as there
are three waypoints to be predicted. In the first loop, the waypoint is initialized with
the vehicle position in the local BEV coordinate which is always at (0,0). In the end,
the waypoints are translated into a set of navigational controls (steering and throttle)
by two PID controllers in which their Kp, Ki, Kd parameters are tuned empirically.
The final features used to predict the last waypoint are also processed by a multi-
layer perceptron (MLP) block to estimate the navigational controls directly. The final
action that actually drives the vehicle is made by a control policy that combines both
PID and MLP controls as shown in Algorithm 5.1. We set a confidence threshold
of 0.1 as a minimum requirement for an agent to be able to drive the vehicle. This
means that the prediction output on each navigational control must be greater than
or equal to 0.1. This mechanism allows an agent to take control completely over the
other agent and results in better maneuverability.

5.2.2 Model Improvement

Different from our previous work [55], DeepIPC is modified to improve its perfor-
mance and deal with real-world implementation issues. First, as the input to the
perception module, we consider a wider ROI of H×W = 512× 1024 at the center of
the RGBD image. Then, they are resized to H ×W = 256× 512 to reduce the com-
putational load. With a wider coverage area, the model is expected to have a better
scene understanding capability to perceive the environment. Second, as the input to
the controller module, we feed the left and right wheel’s angular speeds instead of
the vehicle’s linear speed. This information is expected to be helpful, especially dur-
ing turning as the angular speed will be different on each wheel. Third, two route
points are given instead of one route point at a time. Relying only on one route point
is very risky due to the possibility of mislocation caused by GNSS and IMU inaccu-
racies that affect the global-to-local coordinate transformation. If the route point is
mislocated, the model will likely fail to predict waypoints and navigational controls
correctly. Besides that, giving two route points that have been transformed into lo-
cal coordinates will give the model a better intuition in deciding whether the vehicle
should drive straight or turn depending on the location of the route points. Fourth,
we also modify the control policy by allowing an agent to take the steering control
completely over the other agent for better maneuverability.

We feed the model with GNSS and IMU data to measure several quantities needed
to perform global-to-local coordinate transformation precisely. To get the local BEV
coordinate for each route point i, the relative distance ∆xi and ∆yi between vehi-
cle location Ro and route point location Rpi must be known. The distance can be
estimated from the global longitude-latitude with (5.2) and (5.3).

5.2. DeepIPC: Deeply Integrated Perception and Control 65

Algorithm 5.1: Control Policy

Θ = W p1+W p2
2 ; θ = tan−1 (Θ[1]

Θ[0]

)
γ = 1.75× ||W p1 −W p2||F; ν = (ωl+ωr)

2 × r
PIDST = PIDLat(θ − 90); PIDTH = PIDLon(γ− ν)
. .

if MLPTH ≥ 0.1 and PIDTH ≥ 0.1 then
if |MLPST| ≥ 0.1 and |PIDST| < 0.1 then

steering = MLPST
if |MLPST| < 0.1 and |PIDST| ≥ 0.1 then

steering = PIDST
else

steering = β00MLPST + β10PIDST
throttle = β01MLPTH + β11PIDTH

else if MLPTH ≥ 0.1 and PIDTH < 0.1 then
steering = MLPST; throttle = MLPTH

else if MLPTH < 0.1 and PIDTH ≥ 0.1 then
steering = PIDST; throttle = PIDTH

else
steering = 0; throttle = 0

. .
W p{1,2}: first and second predicted waypoints
MLP{ST,TH}: steering and throttle estimated by MLP agent
ω{l,r}: left/right angular speed measured with rotary encoder
r: vehicle’s wheel radius, 0.15 m
Θ: aim point, a middle point between W p1 and W p2
θ: heading angle derived from the aim point Θ
γ: desired speed, 1.75 × Frobenius norm of W p1 and W p2
ν: linear speed, the average of ωl and ωr multiplied by r
β ∈ {0, ..., 1}2×2 is a set of control weights initialized with:
β00 = α2

α2+α1
; β10 = 1− β00; β01 = α3

α3+α1
; β11 = 1− β01

where α1, α2, α3 are loss weights tuned by MGN algorithm [54] (see Subsection 5.2.4)

∆xi = (RpLon
i − RoLon)× Ce × cos(RoLat)

360
, (5.2)

∆yi = (RpLat
i − RoLat)× Cm

360
, (5.3)

where Ce and Cm are earth’s equatorial and meridional circumferences which are
around 40,075 and 40,008 kilometers, respectively. Then, the route point coordinates
Rp(x,y)

i can be obtained by applying a rotation matrix as in (5.4).[
Rpx

i
Rpy

i

]
=

[
cos(θro) − sin(θro)
sin(θro) cos(θro)

]T [∆xi
∆yi

]
, (5.4)

where θro is the vehicle’s absolute orientation to the north pole (bearing angle). It
is estimated by a 9-axis IMU sensor’s built-in function based on Kalman filtering
on 3-axial acceleration, angular speed, and magnetic field. The global-to-local route
points transformation may not be so accurate due to sensor inaccuracy and noisy
measurement. Hence, the model is forced implicitly to learn how to compensate for
this issue by mimicking expert manipulation to navigational controls.

66 Chapter 5. Vision-based End-to-end Autonomous Driving

FIGURE 5.3: The area for experiments.

White circles are an example of a route that consists of start, finish, and route points. The
area can be viewed in more detail at https://goo.gl/maps/9rXobdhP3VYdjXn48.

5.2.3 Dataset

Considering the advantage of imitation learning or behavior cloning as mentioned
in Chapter 4, we adopt this approach and collect a considerable amount of expert
driving records for training and validation (train-val) purposes [174] [175]. To create
the dataset, we drive the vehicle at a speed of 1.25 m/s in a certain area inside our
university, Toyohashi University of Technology, Japan. As shown in Fig. 5.3, the
left region is used for the train-val, and the right region is used for the test. We
consider two different experiment times which are noon and evening to vary the
environmental conditions. For each condition, we record the driving data one time
for the train-val and three times for the test. There are 12 routes in the train-val
region and 6 routes in the test region. Each route is composed of several route points
with a gap of 12 meters between each other. The model must follow the route points
in driving the vehicle and completing the route. The observation is recorded at 4 Hz
where one set of observations contains an RGBD image, GNSS location, 9-axis IMU
measurement, the wheel’s angular speed, and the level of steering and throttle. The
devices used to retrieve the data are mentioned in Table 5.1, while their placement
can be seen in Fig. 5.4.

DeepIPC predicts waypoints, navigational controls, and semantic segmentation
maps. As for waypoints ground truth, we leverage the vehicle’s trajectory where
the vehicle’s location in one second, two seconds, and three seconds in the future
are considered as the waypoints to be predicted. Meanwhile, navigational controls
ground truth can be obtained from the record of steering and throttle levels. To
avoid time-consuming manual annotation, we use SegFormer [176] pre-trained on
the Cityscapes dataset [68] to perform segmentation on all RGB images in twenty
different classes as mentioned in Table 5.1. SegFormer is chosen for its awesome
performance in the semantic segmentation task.

https://goo.gl/maps/9rXobdhP3VYdjXn48

5.2. DeepIPC: Deeply Integrated Perception and Control 67

TABLE 5.1: Dataset Information

Conditions Noon and evening

Total routes 12 (train-val) and 6 (test)

N Samples* 10151 (train), 9679 (val), 18975 (test)

Devices WHILL C2 vehicle (+ rotary encoder)
Stereolabs Zed RGBD camera
U-blox Zed-F9P GNSS receiver
Witmotion HWT905 9-axis IMU sensor

Object classes None, road, sidewalk, building, wall, fence, pole, traffic
light, traffic sign, vegetation, terrain, sky, person, rider, car,
truck, bus, train, motorcycle, bicycle

*N Samples is the number of observation sets. Each consists of an RGBD image, GNSS lo-
cation, IMU measurement, the wheel’s angular speed, and the level of steering and throttle.

RGBD Camera

GNSS Receiver

IMU Sensor

Rotary Encoder

FIGURE 5.4: Sensor placement on a robotic vehicle.

5.2.4 Training Configuration

With using the multi-task learning paradigm, DeepIPC can be supervised by a com-
bination of weighted loss functions as in (5.5).

LMTL = α0LSEG + α1LWP + α2LST + α3LTH, (5.5)

where α0,1,2,3 are loss weights tuned adaptively by an algorithm called modified gra-
dient normalization (MGN) [54]. To learn semantic segmentation, we use a combi-
nation of pixel-wise cross entropy and dice loss as in (5.6).

68 Chapter 5. Vision-based End-to-end Autonomous Driving

LSEG =

(
1
N

N

∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi)

)
+

(
1− 2|ŷ ∩ y|
|ŷ|+ |y|

)
, (5.6)

where N is the total elements at the last layer of the segmentation decoder, while
yi and ŷi are ground truth and prediction of element i. Then, we use L1 loss to
supervise waypoints prediction as in (5.7).

LWP =
1
M

M

∑
i=1
|ŷi − yi|, (5.7)

where M is equal to 6 as there are three predicted waypoints that have x,y coor-
dinates for each. Similarly, we also use L1 loss to supervise navigational controls
prediction as in (5.8). However, averaging is not needed as there is only one element
for each output (steering and throttle).

L{ST,TH} = |ŷ− y| (5.8)

The model is implemented with PyTorch deep learning framework [122] and
trained on NVIDIA RTX 3090 with a batch size of 8. We use Adam optimizer [127]
with a decoupled weight decay of 0.001 [155] to train the model until convergence.
The initial learning rate is set to 0.0001 and divided by 2 if the validation loss LMTL
is not dropping in 5 epochs in a row. To avoid excessive computation, the training is
stopped if there is no improvement in 30 epochs in a row. We attach the training log
and its explanation in Appendix A.2.

5.3 Experiment and Analysis

In this section, we explain the evaluation and metrics used to justify the model per-
formance. Then, we provide the discussion and analysis of the experiment results.

5.3.1 Evaluation and Scoring

DeepIPC is evaluated under two conditions with varying cloud intensity with two
different tests namely offline and online tests. For each condition, the final score
is obtained by averaging the scores from three experimental results. In the offline
test, the model is deployed to predict driving records. Then, its performance on
each task is calculated by a specific metric function. To evaluate waypoints and
navigational controls, we use mean absolute error (MAE) or L1 loss as in (5.7) and
(5.8). Meanwhile, we compute intersection over union (IoU) as in (5.9) for evaluating
the segmentation performance.

IoUSEG =
|ŷ ∩ y|
|ŷ ∪ y| (5.9)

We define the best model by the lowest total metric (TM) score as formulated
with (5.10). This formula only combines semantic segmentation IoU and naviga-
tional controls estimation MAE. Depth MAE and waypoints MAE are excluded since
not every model has these outputs.

TM = (1− IoUSEG) + MAEST + MAETH (5.10)

5.3. Experiment and Analysis 69

Algorithm 5.2: Route points to Commands Conversion

if Rpx
1 ≤ −4m or Rpx

2 ≤ −8m then
command = turn left

else if Rpx
1 ≥ 4m or Rpx

2 ≥ 8m then
command = turn right

else
command = go straight

. .
Rpx
{1,2}: the route point’s x position in the local coordinate (BEV space)

TABLE 5.2: Model Specification

Model Total Parameters↓ Model Size ↓ Input/Sensor Output

Huang et al. [86] 74953258 300.196 MB RGBD, High-level commands Segmentation, Steering, Throttle
AIM-MT [72] 27967063 112.078 MB RGB, GNSS, 9-axis IMU, Rotary encoder Segmentation, Depth, Waypoints, Steering, Throttle
DeepIPC 20983128 84.972 MB RGBD, GNSS, 9-axis IMU, Rotary encoder Segmentation, BEV Semantic, Waypoints, Steering, Throttle

AIM-MT [72] is implemented based on the codes shared in the author’s repository at
https://github.com/autonomousvision/neat. Meanwhile, Huang et al.’s model [86] is im-
plemented based on the explanation written in the paper. All models are deployed on a
laptop powered with NVIDIA GTX 1650 GPU in performing real-world autonomous driv-
ing. As the models can run smoothly during evaluation, we believe that calculating their
inference speeds is not necessary.

In the online test, the model is deployed to drive a vehicle by following a set
of routes. Unlike in our previous work [55], the vehicle is prevented from collid-
ing with other objects to avoid unnecessary damage. Therefore, we determine the
drivability score by counting driver interventions needed to prevent collisions.

In addition, we conduct a comparative study with some recent models to get a
clearer performance justification. Table 5.2 shows the specification of the models for
comparison. DeepIPC is preferred for deployment as it has the smallest model as it
has the lowest number of parameters. We evaluate a model proposed by Huang et al.
[86] that also takes RGB images and depth maps but with a different fusion strategy.
This model uses high-level commands in selecting a command-specific controller.
Hence, we generate these commands automatically based on the route point position
in the local coordinate using a certain rule as described in Algorithm 5.2. We also
evaluate AIM-MT [72] which only takes RGB images and predicts multiple vision
tasks for extra supervision. By performing more vision tasks, the perception module
can provide better features for the controller. For a fair comparison, we slightly
modify both models to process the same data as provided to DeepIPC.

5.3.2 Offline Test

The offline test is used to evaluate the model’s performance in handling multi-
ple perception and control tasks simultaneously. All models are deployed to pre-
dict driving records and evaluated with multi-task and task-wise scoring. The test
dataset is recorded three times in a completely different area from the train-val
dataset. Each record is taken on different days to vary the conditions.

Table 5.3 shows that DeepIPC achieves the best performance by having the low-
est total metric score in all conditions. However, all models including DeepIPC have
performance degradation in the evening. This means that doing inference in the
low light condition is harder than in the normal condition. Specifically, in the seg-
mentation task, DeepIPC has a higher IoU than AIM-MT even though it does not

https://github.com/autonomousvision/neat

70 Chapter 5. Vision-based End-to-end Autonomous Driving

TABLE 5.3: Multi-task Performance Score

Condition Model Total Metric↓ IoUSEG ↑ MAEDE ↓ MAEWP ↓ MAEST ↓ MAETH ↓
Huang et al. [86] 0.4778 ± 0.0281 0.8300 - - 0.2422 0.0484

Noon AIM-MT [72] 0.2932 ± 0.0300 0.8863 0.0593 0.0983 0.1734 0.0061
DeepIPC 0.2807 ± 0.0335 0.8899 - 0.0683 0.1632 0.0074

Huang et al. [86] 0.4875 ± 0.0453 0.7952 - - 0.2384 0.0443
Evening AIM-MT [72] 0.3088 ± 0.0346 0.8578 0.0669 0.0931 0.1639 0.0026

DeepIPC 0.3030 ± 0.0369 0.8623 - 0.0645 0.1611 0.0041

perform depth estimation for extra supervision that can enhance the RGB encoder.
Thanks to the end-to-end learning strategy where the segmentation prediction can
be processed further through the encoding and decoding process of the BEV seman-
tic map. Therefore, the segmentation decoder receives a more useful gradient signal
to tune the network weights properly. Meanwhile, Huang et al.’s model has the
worst segmentation performance that is caused by conflicting features as its percep-
tion module fuses RGB images and depth maps from the early perception stage.

In the waypoints prediction task, DeepIPC has a lower MAE compared to AIM-
MT. Thanks to the BEV semantic features, DeepIPC can distinguish free and oc-
cupied areas easily from the top-view perspective. Thus, it can properly estimate
the waypoints which are also laid in BEV space. Although AIM-MT predicts four
waypoints and DeepIPC only predicts three waypoints, it is still considered a fair
comparison because the MAE formula averages the error across all predictions. The
reason the AIM-MT predicts four waypoints is to let its controller module have more
learning experiences in estimating the waypoints correctly. However, DeepIPC still
performs better as its controller module gets boosted by BEV semantic features and
fed with angular speed measurement which enhances its intuition.

In the navigational controls estimation task, DeepIPC also has the best perfor-
mance in line with the waypoints prediction result. The MLP agent can leverage
useful features encoded from both RGB and BEV semantic maps. Therefore, the
MLP agent can perform as well as the PID agent in estimating steering and throttle.
With two different agents considering various aspects of driving, more appropriate
action can be decided. Compared to AIM-MT, DeepIPC is better at estimating the
steering but worse at estimating the throttle. Yet, it can be said that DeepIPC is better
than AIM-MT considering that better steering control is more important than better
throttle control in low-speed driving. Meanwhile, Huang et al.’s model performs
the worst as its controller module gets stuck with certain behavior. Be noted that the
offline test results can be different from the online test results. This is because any
predictions will not affect the next states as they are prerecorded.

5.3.3 Online Test

The purpose of the online test is to evaluate the model’s drivability. The model must
drive the vehicle safely by following a set of route points while avoiding obstacles
(e.g., a vehicle stopped on the left side of the road). The experiment is conducted
three times for each condition. The experiment is conducted on different days to
vary the situations. The performance is evaluated based on the average interven-
tion count and intervention time. The less the driver does intervention means the
better the driving performance. For a fair comparison, the experiments for all mod-
els are monitored by the same driver. Thus, each intervention is based on the same
perspective of the degree of danger. Some driving records can be seen in Fig. 5.5.

5.3. Experiment and Analysis 71

Steering 18.0%Steering 7.6%

 99.9%Throttle

Steering 21.0%

 99.9%Throttle

Steering 1.9%

 99.9%Throttle 100.0%Throttle

Noon (sunny) Noon (cloudy) Evening (sunset) Evening (low light)

FIGURE 5.5: Driving footage.

See the driving record video at https://youtu.be/AiKotQ-lAzw for more details, including
failure cases where we intervene to avoid collisions. Sunny noon: DeepIPC makes a small
steering adjustment to the right as the vehicle is too close to the terrain. Cloudy noon: Al-
though DeepIPC cannot segment the car properly, it can avoid collision as it knows that the
left side is occupied. Sunset evening: DeepIPC makes a small steering adjustment to keep
on its lane. Low light evening: We intervene in DeepIPC to avoid driving off-road on the
vegetation as it keeps the throttle maximum and fails to make a right turn.

TABLE 5.4: Drivability Score

Condition Model
Intervention↓

Count Time (secs)

Huang et al. [86] 1.8889 ± 0.4157 5.6039 ± 1.7272
Noon AIM-MT [72] 2.2778 ± 0.3425 4.2161 ± 0.8380

DeepIPC 1.1111 ± 0.3928 2.3092 ± 0.9841

Huang et al. [86] 1.6111 ± 0.2079 4.5532 ± 0.2160
Evening AIM-MT [72] 2.6667 ± 0.1361 4.6736 ± 0.4293

DeepIPC 1.8889 ± 0.3928 4.2286 ± 0.6102

Table 5.4 shows that DeepIPC achieves the best drivability at noon where it has
the lowest intervention count and intervention time. Meanwhile, DeepIPC is compa-
rable to Huang et al.’s model in the evening where it achieves the lowest intervention
time but has a higher intervention count. Keep in mind that a model with a lower
intervention count can have a longer intervention time. For example, a model that
fails to make a turn and going to collide with terrain or sidewalk needs more cor-
rection time than a model that makes a small deviation on a straight path. Hence, it
depends on the degree of danger in which the collision is going to happen. Based on
the intervention time per intervention count, it is obvious that Huang et al.’s model
needs more correction time for each intervention which means that it has the highest
danger level compared to other models.

https://youtu.be/AiKotQ-lAzw

72 Chapter 5. Vision-based End-to-end Autonomous Driving

Furthermore, in a comparison of drivability in the evening, DeepIPC and AIM-
MT perform worse than Huang et al.’s model. In line with the offline result, the
model that mainly takes RGB images failed to perceive the environment in the evening
as the provided image is not as clearly visible as when driving at noon. On the con-
trary, Huang et al.’s model become better as it can leverage the information from
the depth map that is concatenated with the RGB image from the beginning of the
perception phase. This means that although the early fusion strategy causes con-
flicting features for semantic segmentation, it is useful for driving in low-light con-
ditions. Moreover, even though Huang et al.’s model shows inferior performance
on navigational controls estimation in the offline test, its drivability can be said good
enough for performing real-world automated driving in the evening with lower traf-
fic compared when driving at noon. Regardless of its comparable performance with
DeepIPC in the evening, this exposes the limitation of imitation learning for a model
that purely relies on human behavior (by directly predicting steering and throttle
levels) without considering another driving aspect that can be obtained from pre-
dicting future trajectories in the form of waypoints location in the local coordinate.

5.4 Findings

In this Chapter, we present a modified version of DeepIPC, an end-to-end model that
can drive a vehicle in real environments. The model is evaluated by predicting a set
of driving records and performing automated driving. Furthermore, a comparative
study with some recent models is conducted to justify its performance. Based on the
experimental results, we disclosed several findings as follows.

• In line with our previous work [55], the BEV semantic feature is proven can
improve the model performance in predicting waypoints and navigational
controls. With a better perception, the model can leverage useful information
which results in better drivability.

• Driving under low light conditions is harder than in the normal condition,
especially for DeepIPC and AIM-MT which only rely on RGB images at the
early perception stage. Meanwhile, Huang et al.’s model can tackle this issue
as it fuses RGB and depth features earlier.

• DeepIPC can be said as the best model considering its performance and the
number of parameters in its architecture.

• Since the experiments discussed in this Chapter are the real-world implemen-
tation of the works in Chapter 4, we also disclose that the end-to-end imitation
learning approach is also useful for real-world autonomous driving. Further-
more, this also exposes the usefulness of the end-to-end behavior cloning tech-
nique for multi-input multi-output models.

73

Chapter 6

LiDAR-based End-to-end
Autonomous Driving

As discussed in Chapter 5, DeepIPC can drive a robotic vehicle in real environ-
ments and achieve the best performance. However, its drivability get worsen in
the evening due to visibility issue. Although the RGBD camera can capture high-
resolution images, it fails to provide clear information caused by poor illumination
conditions. Therefore, we present DeepIPCv2, an improved version of DeepIPC that
perceives the environment using a LiDAR sensor for more robust scene understand-
ing. DeepIPCv2 takes a set of LiDAR point clouds for its main perception input. As
point clouds are not affected by illumination changes, they can provide a clear obser-
vation of the surroundings no matter what the condition is. This results in a better
scene understanding and stable features provided by the perception module to sup-
port the controller module in estimating navigational controls properly. To evaluate
its performance, we conduct several tests by deploying the model to predict a set
of driving records and perform real automated driving under three different condi-
tions, including driving at night. We also conduct ablation and comparative studies
with some recent models to justify its performance. Based on the experimental re-
sults, DeepIPCv2 shows a robust performance by achieving the best drivability in
all conditions, including when driving at night.

6.1 LiDAR-powered Perception

LiDAR is a sensor that is considered to be more robust than an RGB camera when
dealing with poor illumination conditions. Unlike RGB images, the point clouds
are not affected by the illumination changes since the LiDAR has its own lasers as
the light source to observe the environment [177] [178]. Furthermore, together with
plenty of point cloud segmentation models and projection techniques, many kinds
of data representations can be formed to provide meaningful information [179] [180].
Hence, we consider a point cloud segmentation model to support the perception.

To date, there are plenty of works in the development of point cloud segmen-
tation models. In the Semantic KITTI dataset [181], the current state-of-the-art in
the semantic point cloud segmentation task is achieved by a model named 2DPASS
[182]. However, its performance needs to be justified further in a very poor illumi-
nation condition as this model uses RGB images to assist the segmentation process.
A point cloud segmentation model that only uses a LiDAR is proposed by Hou et
al. [183] which is currently the runner-up in the semantic point cloud segmentation
challenge. Although this model has a great performance, its size and latency are
not suitable for performing real-time inference on a device with limited computa-
tion power. For deployment purposes, we need to consider the trade-off between

74 Chapter 6. LiDAR-based End-to-end Autonomous Driving

FIGURE 6.1: The inputs and outputs of DeepIPCv2.

DeepIPCv2 perceives the environment by encoding a set of segmented point clouds that
are projected into front and top-view perspectives. Then, the extracted features are used to
estimate waypoints (white dots) and navigational controls to drive the vehicle following the
route points (white hollow circles). Meanwhile, the RGBD image is only for record purposes.
It shows how the RGBD camera fails in capturing surrounding information as it cannot
provide a clearly visible set of RGB image and depth map. Instead, DeepIPCv2 employs a
LiDAR sensor to provide point clouds that are not affected by poor illumination conditions.
The detailed architecture of DeepIPCv2 can be seen in Fig. 6.2.

speed and performance. Therefore, a model with great performance but causing a
huge computation load is not preferable. Since we also seek robustness, the model
must only use LiDAR in performing point cloud segmentation. Hence, we select
PolarNet [111], a lightweight model that has an acceptable performance.

6.2 DeepIPCv2: Highly Robust Perception and Control

The improvisation of DeepIPCv2 architecture is intended to deal with poor illumi-
nation conditions. We modify the perception module by replacing RGBD encoders
with LiDAR encoders. As shown in Fig. 6.1, the RGBD camera fails to provide
a clearly visible set of RGB image and depth map. Hence, DeepIPCv2 uses a Li-
DAR sensor and employs a point cloud segmentation model to perceive the envi-
ronment. This enables better reasoning as the model can distinguish traversable and
non-traversable areas easily and avoid collision by knowing the existence of other

6.2. DeepIPCv2: Highly Robust Perception and Control 75

P
R

O
JE

C
T

IO
N

PolarNet
Segmented
Pt. clouds

Half-front BEV & 180° front view of segmentation & depth maps

★

★ Encoders
Feature Fusion

Module

GNSS
Locations

Waypoints

MLP

PID

[,]

Steering
Throttle

Angular
Speed

GRU

(Δx,Δy)

+

◄

Control
Policy

Coordinate
Transformation

Init.
(0,0)

Bearing
Angle

9-axis
IMU Data

Extended
Kalman Filter

DRIVER
INTERVENTION

3× repetition

Local
Route Points

Linear Speed

Rp-to-Cmd
Converter

Linear

FIGURE 6.2: The architecture of DeepIPCv2.

The blue and green blocks are the perception and controller modules respectively. Darker
blocks are trainable, while light-colored blocks are not. In the perception module, PolarNet
[111] is employed to support point cloud segmentation. Then, the architecture of encoders
and feature fusion modules can be seen in Fig. 6.3.

Feature Fusion
Module

1. Point-wise Conv.
2. Global Avg. Pooling
3. Flatten
4. Dense Layer

C × H × W = (20+1) × 128 × 256

 C × H × W = (20+1) × 64 × 512

Atrous Convolution Block

Standard Convolution Block

Convolution block:
2 × (Conv. + BatchNorm + ReLU)
+ Avg. pooling (atrous conv.)
+ Max pooling (standard conv.)

5×5 3×3 3×3 3×3

[,]

5×5 3×3 3×3 3×3

FIGURE 6.3: The encoders and the feature fusion module.

We use atrous convolution blocks [184] with different kernel sizes and dilation rates to cap-
ture low-level features from the projected point clouds that have vacant regions. Then, both
top and front features are fused and extracted further by the feature fusion module.

objects around the ego vehicle. Hence, the perception module can provide stable
and better features to the controller module for estimating waypoints and naviga-
tional control. Thus, DeepIPCv2 can maintain its drivability performance even when
driving at night. We also modify the controller module by adding a set of command-
specific multi-layer perceptrons (MLP) to improve its maneuverability.

6.2.1 Network Architecture

Similar to DeepIPC [56], DeepIPCv2 is also a model that handles perception and
control tasks simultaneously. However, unlike DeepIPC which takes an RGBD im-
age, DeepIPCv2 takes a set of LiDAR point clouds to perceive the environment.
Since LiDAR is not affected by poor illumination conditions, the perception mod-
ule becomes more robust and can provide stable features to the controller mod-
ule. Thus, the model can estimate waypoints and navigation control properly even

76 Chapter 6. LiDAR-based End-to-end Autonomous Driving

when driving at night. As shown in Fig. 6.2, DeepIPCv2 employs PolarNet [111],
a light-weight point cloud segmentation model pre-trained on the Semantic KITTI
dataset [181] to segment LiDAR point clouds into twenty object classes as mentioned
in Table 6.1. Based on our previous work [55], perceiving the environment from
more perspectives can improve perception and lead to better drivability. Hence,
we project segmented point clouds to form one hot-encoded image-like array that
shows front-view and bird’s eye-view (BEV) perspectives of the surrounding area.
Each array is expressed as R ∈ {0, 1}C×H×W , where H ×W is the spatial dimension
with H×W = 64× 512 for the front-view array and H×W = 128× 256 for the BEV
array. Meanwhile, C = 21 represents the number of channels that are responsible
for twenty object classes and a logarithmic depth of the point clouds. In forming
the BEV array, we consider an area of 16 meters to the front, left, and right of the
vehicle. Meanwhile, for the front-view array, we consider all point clouds in front of
the vehicle forming a 180-degree field of view.

To process these arrays, we use two different encoders that are made of atrous
and standard convolution blocks as shown in Fig. 6.3. Atrous convolution blocks
[184] are used to deal with some vacant regions in the projected point clouds at the
early encoding process. As the kernel sizes and dilation rates can be adjusted, an
atrous convolution layer is more suitable than a standard convolution layer for ex-
tracting the features. Then, we also configure the pooling size after each convolution
block to match the output size of both encoders. With this configuration, DeepIPCv2
has a better scene understanding capability as it can perceive from two different per-
spectives that clearly show traversable and non-traversable regions. Later, we con-
duct an ablation study by creating two additional model variants. The first variant
only takes the logarithmic depth point clouds, while the other one only takes the seg-
mented point clouds. After obtaining the best variant, we also conduct an extensive
ablation study by comparing it with another variant that perceives the surround-
ings with one perspective, front or BEV. This is necessary to justify the importance
of multi-view perception for better reasoning.

The control phase begins by fusing both high-level perceptions features to pro-
duce a latent space composed of 192 feature elements that encapsulate the informa-
tion of the surrounding based on two perspectives of view. This process is done by
the feature fusion module that consists of a point-wise convolution layer, a global
average pooling layer, and a dense layer. Then, we use the first and second route
points, the left and right wheel’s angular speed, and predicted waypoints to bias
the latent space in the gated recurrent unit (GRU) layer [83]. Finally, the biased la-
tent space is decoded further by a set of command-specific multi-layer perceptrons
(MLP) to estimate navigational control directly and by two linear layers to predict
waypoints that will be translated into navigational control by a set of two PID con-
trollers. To be noted, both MLP and PID controllers assume the model of the robotic
vehicle as a nonholonomic unicycle since it has motorized rear wheels and omnidi-
rectional front wheels. Thus, it cannot perform translational movement on the lateral
axis, but it can move only along its longitudinal axis (forward and backward) and
can rotate around a vertical axis passing through its center. As shown in Fig. 6.2,
the process inside the purple box is looped three times as DeepIPCv2 predicts three
waypoints. Two linear layers are used to predict ∆x and ∆y between the current
waypoint and the next waypoint. Thus, the exact coordinate of the next waypoint
can be calculated with (6.1).

xi+1, yi+1 = (xi + ∆x), (yi + ∆y) (6.1)

6.2. DeepIPCv2: Highly Robust Perception and Control 77

Algorithm 6.1: Control Policy

Θ = W p1+W p2
2 ; θ = tan−1 (Θ[1]

Θ[0]

)
γ = 1.75× ||W p1 −W p2||F; ν = (ωl+ωr)

2 × r
. .

if Rpx
1 ≤ −4m or Rpx

2 ≤ −8m then
Cmd = 2 (turn right)

else if Rpx
1 ≥ 4m or Rpx

2 ≥ 8m then
Cmd = 1 (turn left)

else
Cmd = 0 (go straight)

MLP{ST,TH} = MLPCmd(Z)
PIDST = PIDLat(θ − 90); PIDTH = PIDLon(γ− ν)
. .

if MLPTH ≥ 0.1 and PIDTH ≥ 0.1 then
if |MLPST| ≥ 0.1 and |PIDST| < 0.1 then

steering = MLPST
if |MLPST| < 0.1 and |PIDST| ≥ 0.1 then

steering = PIDST
else

steering = β00MLPST + β10PIDST
throttle = β01MLPTH + β11PIDTH

else if MLPTH ≥ 0.1 and PIDTH < 0.1 then
steering = MLPST; throttle = MLPTH

else if MLPTH < 0.1 and PIDTH ≥ 0.1 then
steering = PIDST; throttle = PIDTH

else
steering = 0; throttle = 0

. .
Rpx
{1,2}: route point’s x position in the local coordinate

W p{1,2}: first and second waypoints
Z : GRU’s latent space
ω{l,r}: left/right angular speed (rad/s)
r: vehicle’s rear wheel radius (0.15 m)
Θ: aim point, a middle point between W p1 and W p2
θ: heading angle derived from the aim point Θ
γ: desired speed, 1.75 × Frobenius norm of W p1 and W p2
ν: linear speed (m/s), the mean of ωl and ωr multiplied by r
β ∈ {0, ..., 1}2×2 is a set of control weights initialized with:
β00 = α1

α1+α0
; β10 = 1− β00; β01 = α2

α2+α0
; β11 = 1− β01

where α0, α1, α2 are loss weights tuned by MGN algorithm [54] (see Subsection 6.2.3)

To predict the first waypoint, the current waypoint is initialized with the vehicle
position in the local coordinate which is always at (0,0). Then, the waypoints are
processed by two PID controllers to produce a set of navigational control consist-
ing of steering and throttle levels. Besides using PID controllers, DeepIPCv2 also
predicts navigational control directly by decoding biased latent using MLP. How-
ever, unlike DeepIPC which employs only one MLP, DeepIPCv2 employs a set of
command-specific MLPs for better maneuverability as demonstrated by Huang et.
al [86]. Each of the command-specific MLPs act as a task-specific decoder that re-
ceives the same features from the same encoder. Then, since each decoder treats
each action (turn left, turn right, or go straight) independently, the model has better

78 Chapter 6. LiDAR-based End-to-end Autonomous Driving

maneuverability as it has more focus by deploying a dedicated MLP for each action.
Moreover, this configuration can also deal with the imbalance number of actions
in the driving records (e.g. the number of observation sets for go straight is larger
than turn left or turn right). Meanwhile, the commands are generated automatically
based on the route point’s x position. The rule that generates the command and the
policy which outputs the final action is summarized on Algorithm 6.1.

Furthermore, other measurement quantities and formulas are needed to trans-
form the route points from the global GNSS coordinate to the local coordinate where
the vehicle is always positioned at (0,0). To obtain the local coordinate for each route
point i, we need the relative distance ∆xi and ∆yi between vehicle location Ro and
route point location Rpi. Using the information of global longitude-latitude given
by the GNSS receiver, the relative distance can be calculated with (6.2) and (6.3).

∆xi = (RpLon
i − RoLon)× Ce × cos(RoLat)

360
, (6.2)

∆yi = (RpLat
i − RoLat)× Cm

360
, (6.3)

where Ce and Cm are earth’s equatorial and meridional circumferences which are
40,075 and 40,008 km, respectively. Then, the local coordinate of each route point
Rp(x,y)

i can be obtained by applying a rotation matrix as in (6.4).[
Rpx

i
Rpy

i

]
=

[
cos(θro) − sin(θro)
sin(θro) cos(θro)

]T [∆xi
∆yi

]
, (6.4)

where θro is the vehicle’s absolute orientation to the north pole (bearing angle). The
bearing angle is estimated by the extended Kalman filter (EKF) based on the mea-
surement of 3-axial acceleration, angular speed, and magnetic field retrieved from a
9-axis IMU sensor. To be noted, due to the GNSS inaccuracy and noisy IMU mea-
surements, the global-to-local transformation may not be perfect. Thus, the model is
expected to learn how to compensate for this issue during the training process.

6.2.2 Dataset

As explained in Chapter 4 and Chapter 5, a dataset that consists of expert driv-
ing records is needed for imitation learning or behavior cloning process [185] [186].
Similar to our experiment described in Chapter 5, we record the observation data
to create the dataset for training, validation, and testing (train-val-test). One set of
observations is composed of an RGBD image, GNSS location, 9-axis IMU measure-
ment, the wheel’s angular speed, and the level of steering and throttle. We collect
these data by driving a robotic vehicle at a speed of 1.25 m/s in an area inside our
university, Toyohashi University of Technology, Japan as shown in Fig. 6.4. In or-
der to vary the experiment conditions, we record the driving data at noon, in the
evening, and at night with different cloud intensities. In the train-val area, there are
12 different routes where the driving data is recorded one time for each condition.
Meanwhile, in the test area, there are 6 different routes where the driving data is
recorded three times for each condition. Each route has a set of route points with 12
meters gap that shows the path from the start point to the finish point. The model
must drive the vehicle by following this path to complete the route.

Recorded at a rate of 4 Hz, one sample of observation data is composed of a
set of LiDAR point clouds, GNSS latitude-longitude, 9-axis IMU measurement, left
and right wheel’s angular speeds, and the level of steering and throttle. We also

6.2. DeepIPCv2: Highly Robust Perception and Control 79

FIGURE 6.4: The area for experiments.

White hollow circles represent a route that consists of a start, finish, and route points. The
area can be viewed in more detail at https://goo.gl/maps/9rXobdhP3VYdjXn48.

record the RGB image which is used by another model for comparison. Then, as
the ground truth for the waypoints prediction task, we use the vehicle’s trajectory
location in one second, two seconds, and three seconds in the future (relative to
the vehicle’s current location). The trajectory is estimated by a built-in IMU-based
odometry algorithm embedded in the robotic vehicle. Meanwhile, as the ground
truth for the navigational control estimation task, we use the record of steering and
control levels at the time. The devices used to retrieve the data are mentioned in
Table 6.1. Meanwhile, how they are mounted on the vehicle can be seen in Fig. 6.5.

6.2.3 Training Configuration

A multi-task loss function used to supervise DeepIPCv2 is formulated with (6.5).

LMTL = α0LWP + α1LST + α2LTH, (6.5)

where α0,1,2 are loss weights tuned adaptively by an algorithm called modified gra-
dient normalization (MGN) [54] to ensure that all tasks can be learned at the same
pace. To supervise waypoints prediction, we use L1 loss as in (6.6).

LWP =
1
N

N

∑
i=1
|yi − ŷi|, (6.6)

where N is equal to 6 as there are three waypoints that have x,y elements in the
local coordinate. Meanwhile, yi and ŷi are the ground truth and the prediction of
component i respectively. Similarly, we also use L1 loss to supervise navigational
control estimation formulated with (6.7).

L{ST,TH} = |ŷ− y| (6.7)

https://goo.gl/maps/9rXobdhP3VYdjXn48

80 Chapter 6. LiDAR-based End-to-end Autonomous Driving

TABLE 6.1: Dataset Information

Conditions Noon, evening, and night

Total routes 12 (train-val) and 6 (test)

N Samples 19781 (train), 9695 (val), 29123 (test)

Devices WHILL model C2 (+ rotary encoder)
Velodyne LiDAR HDL-32e
Stereolabs Zed RGBD camera
U-blox Zed-F9P GNSS receiver
Witmotion HWT905 9-axis IMU sensor

Object classes None, car, bicycle, motorcycle, truck, other vehicle, person,
bicyclist, motorcyclist, road, parking, sidewalk, ground,
building, fence, vegetation, trunk, terrain, pole, traffic sign

*N Samples is the number of observation sets. Each consists of an RGBD image, GNSS lo-
cation, IMU measurement, the wheel’s angular speed, and the level of steering and throttle.

LiDAR

GNSS

Camera

IMU

Rotary

FIGURE 6.5: Sensor placement on a robotic vehicle.

Keep in mind that there is no averaging process as there is only one element for
each output (steering and throttle). The model is implemented with PyTorch frame-
work [122] and trained on NVIDIA RTX 3090 with a batch size of 10. We use Adam
optimizer [127] with decoupled weight decay of 0.001 [155]. The initial learning
rate is set to 0.0001 and reduced by half if the validation LMTL is not dropping in 5
epochs. Then, the train-val process is stopped if there is no drop on the validation
LMTL in 30 epochs. The learning curve is discussed in Appendix A.3.

6.3. Experiment and Analysis 81

TABLE 6.2: Model Specification

Model Variant Total Parameters↓ Input/Sensor Output

TransFuser [80] [82]
Late Fusion 32.64M LiDAR, RGB, GNSS, IMU, Rotary Waypoints, Steering, Throttle
Transformer 66.23M LiDAR, RGB, GNSS, IMU, Rotary Waypoints, Steering, Throttle

DeepIPCv2
Log. Depth 5.91M LiDAR, GNSS, IMU, Rotary Waypoints, Steering, Throttle
Segmentation 5.95M +14M LiDAR, GNSS, IMU, Rotary Segmentation, Waypoints, Steering, Throttle
Segmentation + Log. Depth 5.96M +14M LiDAR, GNSS, IMU, Rotary Segmentation, Waypoints, Steering, Throttle

Some DeepIPCv2 variants employ PolarNet [111] which has total parameters of around 14
million to perform point cloud segmentation. We replicate TransFuser [80] [82] based on
the codes shared by the authors at https://github.com/autonomousvision/transfuser. We
cannot compute the inference speed fairly due to fluctuating GPU computation, hence we
assume that smaller models will consume less GPU memory footprint and infer faster. Fur-
thermore, as we limit the maximum speed to only 1.25m/s (the same as the data collection
process), a high FPS rate is not necessary for driving the robotic vehicle.

6.3 Experiment and Analysis

In this section, we explain the functions used to justify the model’s performance.
For ablation and comparative studies between DeepIPCv2, TransFuser, and their
variants, first, we conduct an offline test by deploying all model variants to predict
several driving records. Then, we take the best variant of each model for the online
test by deploying them for real automated driving in real environments.

6.3.1 Evaluation and Scoring

The evaluation is conducted under three different conditions (noon, evening, and
night). We consider two different kinds of evaluations namely offline and online
tests. In the offline test, DeepIPCv2 is deployed to predict a set of expert driving
records on the test routes. The performance is defined by the total metric (TM) score
as in (6.8).

TM = MAEWP + MAEST + MAETH (6.8)

where MAE stands for mean absolute error (L1 loss) which can be computed with
(6.6) for MAEWP and (6.7) for MAEST and MAETH. The smaller the total metric score
means the better the model performance. Meanwhile, in the online test, DeepIPCv2
must drive the vehicle properly following a set of route points in six different routes.
We determine the drivability performance by counting the number of interventions
and intervention time needed to prevent any collisions. The smaller the number of
interventions and intervention time means the better the performance. To be noted,
the final score for both tests must be averaged as the evaluation is conducted three
times for each condition.

As mentioned in Subsection 6.2.1, we create two model variants for the ablation
study. The first variant only takes the logarithmic depth point clouds while the sec-
ond variant only takes the segmented point clouds. Furthermore, we also conduct
a comparative study by replicating TransFuser [80] [82] to compare with. Briefly,
TransFuser is a camera-LiDAR fusion model that takes an RGB image and a set of
point clouds. It perceives the environment from two different perspectives where
the front view information is given by the RGB camera and the BEV information is
given by the LiDAR. TransFuser fuses RGB and LiDAR features using several trans-
former modules. We also replicate its variant called late fusion, where the features
are fused with a simple element-wise summation. The specification of DeepIPCv2
and TransFuser variants can be seen in Table 6.2.

https://github.com/autonomousvision/transfuser

82 Chapter 6. LiDAR-based End-to-end Autonomous Driving

TABLE 6.3: Multi-task Performance Score 1

Condition Model Variant Total Metric↓ MAEWP ↓ MAEST ↓ MAETH ↓

Noon

TransFuser [80] [82]
Late Fusion 0.211 ± 0.007 0.087 0.097 0.027
Transformer 0.192 ± 0.006 0.073 0.093 0.026

DeepIPCv2
Log. Depth 0.276 ± 0.004 0.116 0.123 0.037
Segmentation 0.168 ± 0.005 0.059 0.085 0.024
Segmentation + Log. Depth 0.196 ± 0.007 0.074 0.095 0.026

Evening

TransFuser [80] [82]
Late Fusion 0.213 ± 0.006 0.089 0.097 0.027
Transformer 0.193 ± 0.008 0.073 0.094 0.026

DeepIPCv2
Log. Depth 0.281 ± 0.007 0.119 0.126 0.036
Segmentation 0.167 ± 0.006 0.059 0.084 0.023
Segmentation + Log. Depth 0.199 ± 0.008 0.076 0.097 0.026

Night

TransFuser [80] [82]
Late Fusion 0.218 ± 0.002 0.090 0.099 0.029
Transformer 0.197 ± 0.003 0.075 0.094 0.028

DeepIPCv2
Log. Depth 0.278 ± 0.005 0.115 0.125 0.038
Segmentation 0.170 ± 0.002 0.059 0.086 0.026
Segmentation + Log. Depth 0.198 ± 0.004 0.072 0.097 0.028

6.3.2 Offline Test

An offline test is used to measure how good the model is in mimicking an expert
manipulation in controlling vehicle actuators. The test is conducted by letting the
model predict several driving records made for testing purposes. We measure the
model performance by calculating the MAE on waypoints prediction and naviga-
tional control estimation together with the total metric (TM) score as explained in
Subsection 6.3.1. Since there are three driving records for each condition, the final
score is averaged from all inference results. Be noted that each driving record is
taken on different days to vary the situation and the cloud intensity.

Based on Table 6.3, the DeepIPCv2 variant that only takes segmented point clouds
achieves the best performance by having the lowest TM score in all conditions. The
other two DeepIPCv2 variants that take logarithmic depth point clouds fall behind
and the depth-only variant performs the worst. This pattern shows that processing
logarithmic depth reduces overall model performance due to conflicting features
between the segmentation map and the depth map extracted by the encoders. This
also means that the data representation given by the projected point clouds in the
segmentation map is more than enough and better than the combination with log-
arithmic depth. However, this hypothesis needs to be justified further by applying
different encoder architectures to process the projected point clouds. Meanwhile,
amongst TransFuser variants, the variant that employs transformer modules to fuse
image and point cloud features achieves a better performance than the variant that
only uses a simple element-wise summation. Although it costs a lot of parameters to
train, the transformer modules can improve the model’s reasoning as it understands
the relationship between the front view and BEV perspectives.

Across different conditions, the total metric scores for TransFuser variants con-
sistently become higher from noon to night. Although the gap is not too far from
one another, this pattern shows that TransFuser which relies on RGB images gets
a performance drop when the illumination condition is poor. This result is as ex-
pected since the RGB camera is sensitive to illumination changes. Unlike TransFuser,
DeepIPCv2 is more robust against poor illumination conditions as it only relies on
LiDAR to perceive the environment. However, there is no clear pattern amongst
DeepIPCv2 variants as their performance differs on every condition. DeepIPCv2
performance is more affected by road situations rather than illumination conditions.
This is supported by the fact that two DeepIPCv2 variants have the best performance
at night when there is not so much traffic on the road.

6.3. Experiment and Analysis 83

TABLE 6.4: Multi-task Performance Score 2

Condition Perspective Total Metric↓ MAEWP ↓ MAEST ↓ MAETH ↓

Noon
Front 0.258 ±0.006 0.062 0.173 0.023
BEV 0.171 ±0.006 0.063 0.084 0.024

Front + BEV 0.168 ±0.005 0.059 0.085 0.024

Evening
Front 0.258 ±0.014 0.063 0.173 0.022
BEV 0.171 ±0.005 0.062 0.085 0.023

Front + BEV 0.167 ±0.006 0.059 0.084 0.023

Night
Front 0.263 ±0.005 0.061 0.177 0.025
BEV 0.174 ±0.004 0.062 0.086 0.026

Front + BEV 0.170 ±0.002 0.059 0.086 0.026

To understand the importance of perceiving from multiple perspectives of view,
we also conduct an extensive ablation study by creating two more DeepIPCv2 vari-
ants that take one perspective of view. Hence, the model can only perceive the envi-
ronment based on the front-view perspective or the top-view/bird’s eye view (BEV)
perspective. We develop these variants based on DeepIPCv2 variant that takes the
point cloud segmentation map. Table 6.4 shows that the model variant that per-
ceives the environment from both front and BEV perspectives has the lowest total
metric score meaning that it achieves the best performance compared to the vari-
ants which only use one perspective. This result is in line with the findings in our
previous work [56] [55] and strengthens the importance of perceiving from multiple
perspectives of view.

To be more detailed, DeepIPCv2 variant that perceives from the front-view per-
spective has the worst performance as its steering estimation is heavily affected by
the absence of BEV perception features. Without these features, the controller mod-
ule faces difficulties in estimating the steering angle which lies in the BEV coordi-
nate. Meanwhile, DeepIPCv2 variant that perceives from the BEV perspective is
slightly behind the best variant. Although it has a comparable performance in steer-
ing angle and throttle level estimation, this variant fails to estimate waypoints prop-
erly as predicting future vehicle position needs the combination of both front and
BEV perception features that consider more aspects of driving. Therefore, judging
from this result and analysis, we pick the DeepIPCv2 variant that only takes seg-
mented point clouds and perceives the environment from multiple perspectives of
view for further comparison in the online test. Meanwhile, we pick TransFuser vari-
ant that employs transformer modules as the comparator to study the importance of
data modality and representation in performing real-world autonomous driving.

6.3.3 Online Test

An online test is made for evaluating the drivability performance of the model after
imitating expert behavior in driving a vehicle during the training process. In this
evaluation, we use the best variant of DeepIPCv2 and TransFuser to perform auto-
mated driving in real environments. Each model variant must be able to handle var-
ious situations and conditions when driving a vehicle from the starting point to the
finish point by following a set of route points. Similar to the offline test, we conduct
the evaluation three times on six different routes for each condition. However, the

84 Chapter 6. LiDAR-based End-to-end Autonomous Driving

Noon Evening Night

Steering 39.5% 61.1%Steering

 94.7%Throttle

Steering 2.4%

 99.9%Throttle 98.2%Throttle

FIGURE 6.6: Driving footage.

Noon: DeepIPCv2 makes a left turn following two route points located on the left side
of the vehicle. Evening: A moment when we are going to intervene in DeepIPCv2 as it
fails to make a hard left turn to compromise a narrowing path caused by a stopping truck.
Night: DeepIPCv2 makes a right turn following two route points while maintaining the
distance from the road boundaries. To be noted, the RGB images are only for record purposes
since DeepIPCv2 uses LiDAR point clouds to perceive the environment. We share some of
the driving records at https://youtu.be/IsZ1HP5QjWc which include the driving records of
TransFuser [80] [82] for comparison.

TABLE 6.5: Drivability Score

Condition Model
Intervention↓

Count Time (secs)

Noon
TransFuser [80] [82] 1.389 ± 0.208 3.537 ± 0.648
DeepIPCv2 1.000 ± 0.236 2.389 ± 0.831

Evening
TransFuser [80] [82] 1.222 ± 0.079 3.093 ± 0.457
DeepIPCv2 0.944 ± 0.157 2.407 ± 0.466

Night
TransFuser [80] [82] 1.889 ± 0.283 4.556 ± 0.181
DeepIPCv2 0.667 ± 0.136 1.870 ± 0.340

drivability performance is justified by the number of interventions and how long the
interventions are. Then, the best performance is determined by the lowest number
and the shortest time of interventions. Keep in mind that the result of the online test
may not be in line with the result of the offline test. This is because any decisions
made on every observation state in the online test will affect the next observation
state. Meanwhile, in the offline test, although the model makes a wrong prediction,
it will not affect anything as the observation is already fixed in the driving records.
Furthermore, we also provide some driving footage that can be seen in Fig. 6.6.

Table 6.5 shows a clear pattern for each model when driving under different con-
ditions. For DeepIPCv2 which is not affected by illumination conditions, the best
drivability is achieved at night when there is not so much traffic on the road. Then,
it has lower performance at noon and in the evening as it is affected by denser traffic
on the road. Meanwhile, as for TransFuser which relies on the RGB camera, better

https://youtu.be/IsZ1HP5QjWc

6.4. Findings 85

performance is achieved when the model drives at noon and in the evening. Thanks
to enough light illumination, the RGB camera can capture an image clearly so that
TransFuser can maintain its drivability. However, TransFuser performance is de-
graded when driving at night as it fails to capture the information in front of the
vehicle due to poor illumination conditions. Therefore, as the perception module
cannot extract useful features, the controller module also fails to estimate naviga-
tional control properly.

In all conditions, DeepIPCv2 has the best performance based on the lowest in-
tervention count and intervention time compared to TransFuser. This means that a
set of segmented point clouds projected into two different perspectives of view con-
tains more valuable information than a combination of a raw RGB image and a 2-bin
point cloud histogram. By projecting the segmented point clouds to form image-
like arrays that contain a unique class on each layer, the model has a better scene
understanding capability as it can distinguish traversable and non-traversable areas
clearly and lead to better driving performance. This also shows that data representa-
tion (e.g. segmented and projected point clouds) is matter and more meaningful than
a combination of some data modalities (e.g. RGB images and LiDAR point clouds)
but still in their raw form or improperly pre-processed. Aside from the perception
parts, DeepIPCv2 also has a better controller module that gives a higher degree of
maneuverability.

6.4 Findings

In this Chapter, we propose DeepIPCv2 which perceives the environment using
LiDAR for more robust drivability. DeepIPCv2 is evaluated by predicting driving
records and performing automated driving. To justify its performance, we conduct
ablation and comparative studies with other models under different conditions to
vary the situations. Based on the experimental results, we disclose several findings
as follows.

• Using LiDAR to perceive the environment increases the model’s robustness.
Unlike an RGB camera, LiDAR is not affected by poor illumination conditions.
Thus, the perception module can provide stable features to the controller mod-
ule in estimating navigational control properly. Therefore, the model can main-
tain its drivability even when driving at night. Meanwhile, the performance of
a camera-powered model drops as it fails to perceive the surrounding area.

• Perceiving the environment with segmented point clouds is better than loga-
rithmic depth and 2-bin histogram point clouds. This is because the model can
distinguish traversable and non-traversable areas easily. However, the selec-
tion of the point cloud segmentation model must be carried out carefully con-
sidering the trade-off between computational load, latency, and performance
for achieving a real-time inference.

87

Chapter 7

Summary

In this study, we develop a novel model called DeepIPC (Deeply Integrated Percep-
tion and Control) for end-to-end autonomous driving. This model can handle mul-
tiple perception and control tasks simultaneously in one forward pass. We conduct
the study gradually from the perception-only to the integrated perception-action,
from inference on driving records to deployment for automated driving, and from
simulation-based experiments to real-world experiments. The study begins with
the development of a loss weighting algorithm namely Modified Gradient Normal-
ization (MGN), which is used to balance the learning signal for a multi-task model
during the training process. Then, focusing on the point-to-point navigation task,
DeepIPC is employed to drive a vehicle safely in dynamic simulated environments
with various conditions and scenarios. Finally, as a proof-of-concept study, we also
conduct real-world demonstrations using a modified DeepIPC and DeepIPCv2, two
models that are improved specifically to deal with implementation issues and de-
ployed to drive a robotic vehicle in real environments. Our proposed models achieve
better performance in many criteria compared to other models.

7.1 Conclusion

Based on the experimental findings disclosed in the previous chapters, we draw
several conclusions that are summarized as follows.

• The MGN algorithm successfully balances the learning signal for a multi-task
model, improving its performance. Based on the results discussed in Chap-
ter 3, a model trained with the MGN algorithm performs better than a model
trained normally. This shows that the MGN algorithm can manage the trade-
off between multiple learning signals to ensure all tasks can be learned at the
same pace. Furthermore, as the multi-task model outperforms a combination
of single-task models, this also strengthens plenty of studies that leverage the
usefulness of the feature-sharing mechanism in a multi-task architecture.

• Perceiving the environment from different perspectives and employing multi-
agent to make decisions can improve the performance of an autonomous driv-
ing model. Based on the comparative and ablation studies discussed in Chap-
ter 4, our proposed model (DeepIPC) that performs semantic depth cloud map-
ping and employs two agents achieves the best driving performance in a sim-
ulated environment. This shows that having better scene understanding and
decision-making can boost drivability. However, the performance gets de-
creased as dynamic weather and adversarial scenarios put more challenges
to the model’s adaptability and maneuverability.

88 Chapter 7. Summary

• Imitation learning is also useful for real-world experiments. Based on the ex-
perimental results discussed in Chapter 5, some real implementation problems
such as sensor inaccuracies and noise can be solved with a strong behavior
cloning from a set of expert’s driving records. All models including DeepIPC
that are based on simulation can be brought to drive the vehicle seamlessly
in real environments by mimicking an expert driver. This also exposes the ef-
fectiveness of the end-to-end behavior cloning technique for a complex multi-
input multi-output model. Furthermore, the best performance is achieved by
DeepIPC, as it has a better architecture compared to the other models. How-
ever, its performance decreased when driving under low-light conditions as
the RGBD camera fails to provide stable information.

• Using LiDAR to perceive the environment can achieve higher robustness in
scene understanding and lead to better drivability. As discussed in Chapter
6, DeepIPCv2 which only uses LiDAR achieves better performance compared
to a camera-LiDAR fusion model, especially when driving at night. This is
because a LiDAR sensor is not affected by poor illumination conditions as it
has its own lasers to sense the environment. Moreover, since DeepIPCv2 is also
supported with a point cloud segmentation model, it can distinguish different
objects around the vehicle with ease.

7.2 Future Work

In the future, we consider developing a more advanced model that will be trained
with expert driving data recorded using a real car as described in Appendix B. As the
environment including traffic conditions becomes more complex and challenging,
an end-to-end model needs to be improved further in many aspects to achieve a
highly reliable navigation system for autonomous driving vehicles.

7.2.1 Future Research Direction

The following is the list of several key ideas that can be used as future research
directions in enhancing the model’s drivability to meet the standard or even a higher
degree of automation for deployment on a real car.

More Sensors with Better Fusion Technique

Perception holds an important role to achieve excellent drivability as understanding
the surrounding area before making any actions is a must. Be noted that with bet-
ter perception, the model is expected to have better drivability as the controller is
provided with more useful features for performing navigational controls. One way
to improve the perception part is by adding more sensors to collect more data that
contain rich information. For instance, we can use multiple cameras to support the
LiDAR sensor to cover a complete 360o view. In addition, we can also use an event
camera or dynamic vision sensor to detect local changes in brightness. This can be
helpful to recognize any objects that move relative to the vehicle. However, using
multiple sensors comes with plenty of different data modalities to handle. There-
fore, a better sensor fusion strategy is needed to process the data. To settle this issue,
we plan to adopt TransFuser [80] [82] and modify some of its parts to strengthen our
future model.

7.2. Future Work 89

FIGURE 7.1: The illustration of vehicle-to-everything communication
(V2X).

Vehicle-to-everything communication (V2X) incorporates many kinds of communication
systems such as vehicle-to-network (V2N), vehicle-to-vehicle (V2V), vehicle-to-pedestrian
(V2P), vehicle-to-infrastructure (V2I).

Better Reasoning for A Higher Degree of Understanding

Perception should not be done only by performing multiple vision tasks to distin-
guish different objects, estimate their distance, etc. Beyond that, we need a bet-
ter method to examine which object in a certain circumstance gives influence the
model in making decisions. This is because not all objects that appear in front of
the vehicle are always important. By selecting certain objects considered for the
decision-making process, we believe it can increase the reasoning capability of the
model, which lead to a higher degree of scene understanding and result in better
driving performance. To achieve better reasoning for our future model, we plan to
add object-level attention modules [187] [188] to allow the model to examine impor-
tant objects all by itself. Therefore, the learned policy and any decisions made by the
model are explainable.

Vehicle-to-Everything (V2X)

V2X communication can be an interesting future research direction to work on. Be-
sides focusing on the performance of the model that drives the vehicle itself, com-
munication is also an important factor to achieve reliable autonomous driving [189].
A smart vehicle needs to coordinate with any entities that may affect or may be
affected by the vehicle such as other vehicles, networks, infrastructure, and pedes-
trians as illustrated in Fig. 7.1. Coordination between these entities can lead to a
well-organized intelligent transportation system that incorporates many factors in
the environment. One interesting work to begin with is decentralized V2X (D-V2X)
using a blockchain approach that can be implemented on top of any communication
protocol and does not require any trusted authority [190].

90 Chapter 7. Summary

Imitation Learning and Reinforcement Learning

Based on the experimental results discussed in Chapter 5 and Chapter 6, imitation
learning has shown its usefulness for training an end-to-end model to drive a robotic
vehicle in real environments. However, there is always a possibility that the model
may fail under a certain adversarial scenario (e.g., pedestrians crossing the street
suddenly) that is not covered in the dataset. To explore plenty of unexpected scenar-
ios, reinforcement learning can be used to train the model. However, this technique
requires huge amounts of risky data that is unsuitable and irrelevant to real-world
autonomous driving, especially with a real car. To solve this problem, we plan to
adopt training algorithms namely Controllable Imitative Reinforcement Learning
(CIRL) [191] and/or Deep Imitative Reinforcement Learning (DIRL) [192] that com-
bines imitation learning and reinforcement learning. Concisely, these algorithms let
a model train with imitation learning first using a lot of driving records including
publicly available datasets to enrich its driving experience. After having a prior
knowledge of driving a vehicle, the model is refined with reinforcement learning
where any interventions the driver makes are used as the learning signals to train
the model.

91

Appendix A

Learning Curve and Task Balancing
Behavior

In this appendix, we provide the training log that shows the learning curve of our
models and the behavior of the modified gradient normalization (MGN) in tuning
the loss weights for balancing the learning process.

A.1 DeepIPC Training with Simulation Dataset

Fig. A.1 shows the learning curve of DeepIPC during the training process on CARLA
simulation datasets, 1W (one weather, clear noon) and AW (all weather). At the
time when the model convergence, the modified gradient normalization (MGN) al-
gorithm gives the lowest loss weight to the waypoints prediction task (WP) and
the highest loss weight to the stop sign prediction task (SS). Between these tasks,
the order from the second lowest loss weight to the second highest loss weight are
as follows: image segmentation task (SEG), navigational controls estimation task
(throttle (TH), brake (BR), and steering (ST)), and traffic light prediction task (TL).
This result is in line with the training loss trends where the waypoints prediction
loss is the highest and followed by the other tasks in the same order. On dataset AW,
only throttle estimation and image segmentation loss weights are placed differently.
However, they are swapped in the next epochs following the training loss trends.
These records strengthen the conclusion disclosed in Chapter 3 where the MGN al-
gorithm tends to give more loss weights to the tasks with smaller losses to prevent
the model from losing its focus.

A.2 DeepIPC Training with Real-world Dataset

Fig. A.2 shows the learning curve of DeepIPC during the training process on real-
world datasets. At the time when the model convergence, the modified gradient nor-
malization (MGN) algorithm gives the highest loss weight to the throttle estimation
task (TH) followed by the waypoints prediction task (WP), the image segmentation
task (SEG), and the steering estimation task (ST) respectively. The loss weighting
behavior is in line with the training loss trends where the throttle estimation loss
is the smallest followed by the waypoints prediction loss. This result strengthens
our findings stated in Appendix A.1. However, the loss weights for steering estima-
tion and image segmentation tasks are not in line due to the difficulty of estimating
the steering level with fewer data. This is because the number of frames when the
vehicle turns is less than when the vehicle goes straight.

92 Appendix A. Learning Curve and Task Balancing Behavior

(A) Training loss on dataset 1W (B) Loss weights update on dataset 1W

(C) Training loss on dataset AW (D) Loss weights update on dataset AW

FIGURE A.1: DeepIPC training log on simulation dataset.

The vertical black dashed line shows the exact epoch where the model convergence. The
vertical axis on each figure is the training loss and the loss weight while the horizontal axis
is the epoch.

(A) Training loss (B) Loss weights update

FIGURE A.2: DeepIPC training log on real-world dataset.

The vertical black dashed line shows the exact epoch where the model convergence. The
vertical axis on each figure is the training loss and the loss weight while the horizontal axis
is the epoch.

A.3. DeepIPCv2 Training with Real-world Dataset 93

(A) Training loss (B) Loss weights update

FIGURE A.3: DeepIPCv2 training log on real-world dataset.

The vertical black dashed line shows the exact epoch where the model convergence. The
vertical axis on each figure is the training loss and the loss weight while the horizontal axis
is the epoch.

A.3 DeepIPCv2 Training with Real-world Dataset

Fig. A.3 shows the learning curve of DeepIPCv2 during the training process on real-
world datasets. At the time when the model convergence, the modified gradient
normalization (MGN) algorithm gives the highest loss weight to the throttle esti-
mation task (TH) followed by the waypoints prediction task (WP) and the steering
estimation task (ST) respectively. The loss weighting behavior is in line with the
training loss trends where the throttle estimation loss is the smallest followed by the
waypoints prediction loss and the steering estimation loss. This result also strength-
ens our findings stated in Appendix A.1 Appendix A.2 where the MGN algorithm
tends to give a higher loss weight to the tasks with smaller losses to keep the model
focus.

95

Appendix B

Preliminary Experiments with a
Real Car

(A) Car (ego vehicle) (B) Sensors (C) RTK base station

FIGURE B.1: Devices and sensors placement.

In this appendix, we provide a detail of our preliminary experiments with a real
car. To be more specific, we briefly explain the devices used to retrieve the data and
the plan to improve our model to achieve better drivability.

B.1 Sensors and Observation Data

The sensors used for the experiments are the same as those installed on the robotic
vehicle mentioned in Chapter 5 and Chapter 6, with the addition of a dynamic vision
sensor (DVS) camera used to detect event changes at the front of the car. The DVS
camera is expected to give the model a better scene understanding as it can capture
moving objects faster than any conventional camera [193]. Furthermore, we use
a powerful edge device for data acquisition and ensure the data can be retrieved
synchronously. As shown in Fig. B.1, we mount all sensors on a metal plate and
place them on the top of the car. Additionally, we also make our own base station
for real-time kinematic (RTK) positioning to enable the mounted GNSS receiver to
measure the car’s relative position in real-time with better accuracy [194]. With this

96 Appendix B. Preliminary Experiments with a Real Car

(A) Daytime (B) Nighttime

FIGURE B.2: Sets of driving records.

kind of setup, we can retrieve a set of records composed of RGBD images, DVS
images, LiDAR point clouds, GNSS locations, and 9-axis IMU data as shown in Fig.
B.2. Meanwhile, the segmentation maps for RGB images and LiDAR point clouds are
provided by SegFormer [176] and PolarNet [111] respectively. In the future, a more
advanced sensor such as hemispherical LiDAR can be used to deal with blind spots.
Then, the GNSS receiver can be enhanced with an inertial navigation system (INS)
to solve the blocked signal issues when driving in a tunnel or near high buildings.

B.2 Addressing New Challenges

Applying our methods for autonomous driving with a real car comes with plenty of
new challenges. Aside from enhancing the model architecture itself, we also need
to think about how to eliminate some issues in the data-gathering process that will
be used for training the model. For instance, in generating the pseudo-labels for the
semantic segmentation task, we cannot rely on SegFormer [176] when dealing with
nighttime driving records. Thus, we apply domain adaptation techniques called Re-
fign [195] and HRDA [196] to enhance SegFormer. Hence, it can be used to provide

B.3. Transformer-powered Model 97

FIGURE B.3: The utilization of LeGO-LOAM to estimate trajectory.

proper segmentation maps based on the adaptation from the Cityscapes dataset [68]
to the ACDC dataset [197] that contains nighttime driving data.

Another challenge comes from the IMU-based trajectory estimation algorithm
used for generating the waypoints ground truth. The algorithm tends to drift quickly
when the vehicle moves faster. Meanwhile, we cannot rely on visual-inertial odom-
etry as it fails at night when everything is not clearly visible. Therefore, we use
LeGO-LOAM [198] (lightweight and ground-optimized LiDAR odometry and map-
ping [199]) to estimate the trajectory based on point clouds that are not affected by
poor illumination conditions. A set of driving records with LeGO-LOAM used to
estimate the vehicle’s trajectory can be seen in Fig. B.3.

B.3 Transformer-powered Model

Transformer has been widely used in many fields of research, including computer
vision [200] [201]. This kind of deep learning model is known for its powerful self-
attention mechanism, which allows the network to capture and learn contextual re-
lationships in the data [202]. Hence, to better process multiple data simultaneously,

98 Appendix B. Preliminary Experiments with a Real Car

Fusion
Block

GNSS
Locations

Waypoints

MLP

PID

[,]

Steering
Throttle

Velocity

GRU

(Δx,Δy)

+

◄

Control
Policy

Coordinate
Transformation

Init.
(0,0)

Bearing
Angle

Extended
Kalman Filter

DRIVER

INTERVENTION

3× repetition

Local
Route Points

Rp-to-Cmd
Converter

Linear

Enc

Enc

Enc

Enc

Dec

Dec

Dec

Dec

TRANSFORMERS

3-axial Acceleration

3-axial Angular Velocity

3-axial Magnetic Fields

FIGURE B.4: DeepIPC architecture with transformers.

The perception module of DeepIPC employs a set of transformers to learn the relationship
between features extracted by a set of CNN-based encoders.

+ + + +

[]

[]

To Decoder

To Fusion Block

+ + + +

[]

[]

To Decoder

To Fusion Block

+ + + + [] To Fusion Block

+ + + +

[]

[]

To Decoder

To Fusion Block

T1 T2 T3 T4

Transformer

Multi-head Self-attention Layers

FIGURE B.5: Encoder blocks and transformers.

Using its unique self-attention mechanism, each transformer is responsible for learning the
relationship between features extracted from each encoder’s convolution block.

we plan to enhance our model with a set of transformer modules to learn the re-
lationship between extracted features. Thus, the model will have better reasoning
and can provide more useful features for the controller module in making action
decisions. In brief, our future model can be illustrated in Fig. B.4 and Fig. B.5.

99

Bibliography

[1] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An
open approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68,
Dec. 2015.

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teich-
man, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems
and algorithms,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV),
Baden-Baden, Germany, Jun. 2011, pp. 163–168.

[3] E. Khatab, A. Onsy, M. Varley, and A. Abouelfarag, “Vulnerable objects detec-
tion for autonomous driving: A review,” Integration, vol. 78, pp. 36–48, May
2021.

[4] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor
fusion technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6,
p. 2140, Mar. 2021.

[5] Q. Liu, X. Li, S. Yuan, and Z. Li, “Decision-making technology for autonomous
vehicles: Learning-based methods, applications and future outlook,” in Pro-
ceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), Indi-
anapolis, USA, Sep. 2021, pp. 30–37.

[6] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou, and B. Boots,
“Imitation learning for agile autonomous driving,” The International Journal of
Robotics Research, vol. 39, no. 2-3, pp. 286–302, Oct. 2020.

[7] F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter, F. Gritschneder, A. Scheel,
M. Stübler, M. Bach, P. Hatzelmann, C. Wild, and K. Dietmayer, “Autonomous
driving at Ulm University: A modular, robust, and sensor-independent fusion
approach,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Seoul,
South Korea, Jun. 2015, pp. 666–673.

[8] J. Tang, L. Shaoshan, S. Pei, S. Zuckerman, L. Chen, W. Shi, and J.-L. Gaudiot,
“Teaching autonomous driving using a modular and integrated approach,”
in Proceedings of the IEEE Annual Computer Software and Applications Conference
(COMPSAC), Tokyo, Japan, Jul. 2018, pp. 361–366.

[9] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Toward autonomous driving:
The CMU navlab. part I: Perception,” IEEE Expert, vol. 6, no. 4, pp. 31–42, Aug.
1991.

[10] C. Thorpe, M. Herbert, T. Kanade, and S. Shafter, “Toward autonomous driv-
ing: The CMU navlab. II. architecture and systems,” IEEE Expert, vol. 6, no. 4,
pp. 44–52, 1991.

100 BIBLIOGRAPHY

[11] C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer, “Vision and naviga-
tion for the carnegie-mellon navlab,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 10, no. 3, p. 362–372, May 1988.

[12] D. Pomerleau, “ALVINN: An autonomous land vehicle in a neural network,”
in Proceedings of the International Conference on Neural Information Processing Sys-
tems (NIPS), Denver, USA, Jan. 1988, pp. 305 – 313.

[13] R. Behringer, S. Sundareswaran, B. Gregory, R. Elsley, B. Addison, W. Guth-
miller, R. Daily, and D. Bevly, “The DARPA grand challenge - development of
an autonomous vehicle,” in Proceedings of the IEEE Intelligent Vehicles Sympo-
sium (IV), Parma, Italy, Jun. 2004, pp. 226–231.

[14] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K. Hedrick,
“Learning a deep neural net policy for end-to-end control of autonomous ve-
hicles,” in Proceedings of the American Control Conference (ACC), Seattle, USA,
May 2017, pp. 4914–4919.

[15] D. Coelho and M. Oliveira, “A review of end-to-end autonomous driving in
urban environments,” IEEE Access, vol. 10, pp. 75 296–75 311, Jul. 2022.

[16] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for object
detection and scene perception in self-driving cars: Survey, challenges, and
open issues,” Array, vol. 10, p. 100057, Jul. 2021.

[17] J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Vision-based driver as-
sistance systems: Survey, taxonomy and advances,” in Proceedings of the IEEE
Intelligent Transportation Systems Conference (ITSC), Gran Canaria, Spain, Sep.
2015, pp. 2032–2039.

[18] G. Adam, V. Chitalia, N. Simha, A. Ismail, S. Kulkarni, V. Narayan, and
M. Schulze, “Robustness and deployability of deep object detectors in au-
tonomous driving,” in Proceedings of the IEEE Intelligent Transportation Systems
Conference (ITSC), Auckland, New Zealand, Oct. 2019, pp. 4128–4133.

[19] C. Wang and N. Aouf, “Fusion attention network for autonomous cars seman-
tic segmentation,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV),
Aachen, Germany, Jul. 2022, pp. 1525–1530.

[20] A. Gurram, A. F. Tuna, F. Shen, O. Urfalioglu, and A. M. López, “Monocular
depth estimation through virtual-world supervision and real-world SfM self-
supervision,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 8, pp. 12 738–12 751, Aug. 2022.

[21] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai, and
L. Van Gool, “Multi-task learning for dense prediction tasks: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3614–
3633, Jul. 2022.

[22] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos,
“Image segmentation using deep learning: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3523–3542, Jul. 2022.

[23] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586–5609, Dec. 2022.

BIBLIOGRAPHY 101

[24] T.-J. Song, J. Jeong, and J.-H. Kim, “End-to-end real-time obstacle detection
network for safe self-driving via multi-task learning,” IEEE Transactions on In-
telligent Transportation Systems, vol. 23, no. 9, pp. 16 318–16 329, Sep. 2022.

[25] E. Marti, M. A. de Miguel, F. Garcia, and J. Perez, “A review of sensor tech-
nologies for perception in automated driving,” IEEE Intelligent Transportation
Systems Magazine, vol. 11, no. 4, pp. 94–108, Sep. 2019.

[26] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE Access, vol. 8,
pp. 58 443–58 469, Mar. 2020.

[27] M. Berk, O. Schubert, H.-M. Kroll, B. Buschardt, and D. Straub, “Exploiting
redundancy for reliability analysis of sensor perception in automated driving
vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 12,
pp. 5073–5085, Dec. 2020.

[28] E. E. Aksoy, S. Baci, and S. Cavdar, “SalsaNet: Fast road and vehicle segmenta-
tion in LiDAR point clouds for autonomous driving,” in Proceedings of the IEEE
Intelligent Vehicles Symposium (IV), Las Vegas, USA, Oct. 2020, pp. 926–932.

[29] B. Shakibajahromi, A. Jabalameli, A. S. Krishnan, S. Kanzler, and
S. Shayestehmanesh, “Instantaneous velocity estimation for 360° perception
with multiple high quality radars: An experimental validation study,” in Pro-
ceedings of the IEEE Intelligent Vehicles Symposium (IV), Las Vegas, USA, Oct.
2020, pp. 789–794.

[30] Y. Hu, J. Binas, D. Neil, S.-C. Liu, and T. Delbruck, “DDD20 end-to-end event
camera driving dataset: Fusing frames and events with deep learning for im-
proved steering prediction,” in Proceedings of the IEEE Intelligent Transportation
Systems Conference (ITSC), Rhodes, Greece, Sep. 2020, pp. 1–6.

[31] F. Munir, S. Azam, M. Jeon, B.-G. Lee, and W. Pedrycz, “LDNet: End-to-end
lane marking detection approach using a dynamic vision sensor,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 9318–9334, Jul.
2022.

[32] A. Yousefzadeh, G. Orchard, T. S. Gotarredona, and B. L. Barranco, “Active
perception with dynamic vision sensors. minimum saccades with optimum
recognition,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 4,
pp. 927–939, Aug. 2018.

[33] L. Sun, K. Yang, X. Hu, W. Hu, and K. Wang, “Real-time fusion network for
RGB-D semantic segmentation incorporating unexpected obstacle detection
for road-driving images,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 5558–5565, Oct. 2020.

[34] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning sensor
fusion for autonomous vehicle perception and localization: A review,” Sensors,
vol. 20, no. 15, p. 4220, Jul. 2020.

[35] S. Xu, D. Zhou, J. Fang, J. Yin, Z. Bin, and L. Zhang, “FusionPainting: Multi-
modal fusion with adaptive attention for 3D object detection,” in Proceedings of
the IEEE Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA,
Oct. 2021, pp. 3047–3054.

102 BIBLIOGRAPHY

[36] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making
for autonomous vehicles,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 1, no. 1, pp. 187–210, May 2018.

[37] G. Velasco-Hernandez, D. J. Yeong, J. Barry, and J. Walsh, “Autonomous driv-
ing architectures, perception and data fusion: A review,” in Proceedings of the
IEEE International Conference on Intelligent Computer Communication and Process-
ing (ICCP), Cluj-Napoca, Romania, Sep. 2020, pp. 315–321.

[38] A. Best, S. Narang, D. Barber, and D. Manocha, “AutonoVi: Autonomous vehi-
cle planning with dynamic maneuvers and traffic constraints,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, Canada, Sep. 2017, pp. 2629–2636.

[39] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban au-
tonomous driving with latent deep reinforcement learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5068–5078, Jun. 2022.

[40] S. Chen, M. Wang, W. Song, Y. Yang, Y. Li, and M. Fu, “Stabilization ap-
proaches for reinforcement learning-based end-to-end autonomous driving,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 4740–4750, May
2020.

[41] Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-driving
cars,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Los Angeles,
USA, Jun. 2017, pp. 1856–1860.

[42] Y. Bicer, A. Alizadeh, N. K. Ure, A. Erdogan, and O. Kizilirmak, “Sample effi-
cient interactive end-to-end deep learning for self-driving cars with selective
multi-class safe dataset aggregation,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Macau, China, Nov.
2019, pp. 2629–2634.

[43] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad, “A sur-
vey of end-to-end driving: Architectures and training methods,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 33, no. 4, pp. 1364–1384,
Apr. 2022.

[44] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on imitation
learning techniques for end-to-end autonomous vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 128–14 147, Sep. 2022.

[45] S. Moten, F. Celiberti, M. Grottoli, A. van der Heide, and Y. Lemmens, “X-in-
the-loop advanced driving simulation platform for the design, development,
testing and validation of ADAS,” in Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), Changshu, China, Jun. 2018, pp. 1–6.

[46] T. Wu, A. Luo, R. Huang, H. Cheng, and Y. Zhao, “End-to-end driving
model for steering control of autonomous vehicles with future spatiotemporal
features,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China, Nov. 2019, pp. 950–955.

[47] D. Omeiza, H. Web, M. Jirotka, and L. Kunze, “Towards accountability: Pro-
viding intelligible explanations in autonomous driving,” in Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, Jul. 2021, pp. 231–237.

BIBLIOGRAPHY 103

[48] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Gläser, F. Timm,
W. Wiesbeck, and K. Dietmayer, “Deep multi-modal object detection and se-
mantic segmentation for autonomous driving: Datasets, methods, and chal-
lenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3,
pp. 1341–1360, Mar. 2021.

[49] A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman, and
D. Rus, “Learning robust control policies for end-to-end autonomous driv-
ing from data-driven simulation,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 1143–1150, Apr. 2020.

[50] A. Ngo, M. P. Bauer, and M. Resch, “A multi-layered approach for measuring
the simulation-to-reality gap of radar perception for autonomous driving,” in
Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), Indi-
anapolis, USA, Sep. 2021, pp. 4008–4014.

[51] J. Zhou, R. Wang, X. Liu, Y. Jiang, S. Jiang, J. Tao, J. Miao, and S. Song, “Explor-
ing imitation learning for autonomous driving with feedback synthesizer and
differentiable rasterization,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, Sep.
2021, pp. 1450–1457.

[52] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur,
S. Micklethwaite, N. Griffiths, A. Shah, and A. Kndall, “Urban driving with
conditional imitation learning,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), Paris, France, Aug. 2020, pp. 251–257.

[53] O. Natan and J. Miura, “Semantic segmentation and depth estimation with
RGB and DVS sensor fusion for multi-view driving perception,” in Proceedings
of the Asian Conference on Pattern Recognition (ACPR), Jeju Island, South Korea,
Nov. 2021, pp. 352–365.

[54] O. Natan and J. Miura, “Towards compact autonomous driving perception
with balanced learning and multi-sensor fusion,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 23, no. 9, pp. 16 249–16 266, Sep. 2022.

[55] O. Natan and J. Miura, “End-to-end autonomous driving with semantic depth
cloud mapping and multi-agent,” IEEE Transactions on Intelligent Vehicles,
vol. 8, no. 1, pp. 557–571, Jan. 2022.

[56] O. Natan and J. Miura, “DeepIPC: Deeply integrated perception and control
for an autonomous vehicle in real environments,” arXiv:2207.09934, 2022.
[Online]. Available: https://arxiv.org/abs/2207.09934

[57] O. Natan and J. Miura, “DeepIPCv2: LiDAR-powered robust envi-
ronmental perception and navigational control for autonomous vehicle,”
arXiv:2307.06647, 2023. [Online]. Available: https://arxiv.org/abs/2307.06647

[58] B. Ranft and C. Stiller, “The role of machine vision for intelligent vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 8–19, Mar. 2016.

[59] S. Matsuzaki, J. Miura, and H. Masuzawa, “Multi-source pseudo-label learn-
ing of semantic segmentation for the scene recognition of agricultural mobile
robots,” Advanced Robotics, vol. 36, no. 19, pp. 1011–1029, Aug. 2022.

https://arxiv.org/abs/2207.09934
https://arxiv.org/abs/2307.06647

104 BIBLIOGRAPHY

[60] H. Masuzawa and J. Miura, “Image-based recognition of green perilla leaves
using a deep neural network for robotic harvest support,” Advanced Robotics,
vol. 35, no. 6, pp. 359–367, Jan. 2021.

[61] M. Hahner, D. Dai, C. Sakaridis, J.-N. Zaech, and L. V. Gool, “Semantic under-
standing of foggy scenes with purely synthetic data,” in Proceedings of the IEEE
Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand,
Oct. 2019, pp. 3675–3681.

[62] R. N. Rajaram, E. Ohn-Bar, and M. M. Trivedi, “RefineNet: Refining object de-
tectors for autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 4, pp. 358–368, Dec. 2016.

[63] J. Wang, X. Wang, T. Shen, Y. Wang, L. Li, Y. Tian, H. Yu, L. Chen, J. Xin, X. Wu,
N. Zheng, and F.-Y. Wang, “Parallel vision for long-tail regularization: Initial
results from IVFC autonomous driving testing,” IEEE Transactions on Intelligent
Vehicles, vol. 7, no. 2, pp. 286–299, Jun. 2022.

[64] P. C. Ravoor and S. T.S.B., “Deep learning methods for multi-species animal
re-identification and tracking - a survey,” Computer Science Review, vol. 38, p.
100289, Nov. 2020.

[65] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and R. Urtasun, “MultiNet:
Real-time joint semantic reasoning for autonomous driving,” in Proceedings of
the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, Jun. 2018, pp.
1013–1020.

[66] J. Kocic, N. Jovicic, and V. Drndarevic, “An end-to-end deep neural network
for autonomous driving designed for embedded automotive platforms,” Sen-
sors, vol. 19, no. 9, p. 2064, Mar. 2019.

[67] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
USA, Jun. 2018, pp. 7482–7491.

[68] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, USA, Jun. 2016, pp. 3213–
3223.

[69] J. Yoo and R. Langari, “A predictive perception model and control strategy for
collision-free autonomous driving,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 20, no. 11, pp. 4078–4091, Nov. 2019.

[70] S. Teng, L. Chen, Y. Ai, Y. Zhou, Z. Xuanyuan, and X. Hu, “Hierarchical inter-
pretable imitation learning for end-to-end autonomous driving,” IEEE Trans-
actions on Intelligent Vehicles, vol. 8, no. 1, pp. 673–683, Jan. 2023.

[71] K. Ishihara, A. Kanervisto, J. Miura, and V. Hautamaki, “Multi-task learn-
ing with attention for end-to-end autonomous driving,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Nashville, USA, Jun. 2021, pp. 2896–2905.

BIBLIOGRAPHY 105

[72] K. Chitta, A. Prakash, and A. Geiger, “NEAT: Neural attention fields for end-
to-end autonomous driving,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), Montreal, Canada, Oct. 2021, pp. 15 773–
15 783.

[73] C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler, and M. Polle-
feys, “3D visual perception for self-driving cars using a multi-camera system:
Calibration, mapping, localization, and obstacle detection,” Image and Vision
Computing, vol. 68, pp. 14–27, Dec. 2017.

[74] T. Suzuki, K. Ohno, S. Kojima, N. Miyamoto, T. Suzuki, T. Komatsu, Y. Shibata,
K. Asano, and K. Nagatani, “Estimation of articulated angle in six-wheeled
dump trucks using multiple gnss receivers for autonomous driving,” Advanced
Robotics, vol. 35, no. 23, pp. 1376–1387, Sep. 2021.

[75] I. Alonso and A. C. Murillo, “EV-SegNet: Semantic segmentation for event-
based cameras,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Long Beach, USA, Jun. 2019, pp.
1624–1633.

[76] F. Nobis, M. Geisslinger, M. Weber, J. Betz, and M. Lienkamp, “A deep
learning-based radar and camera sensor fusion architecture for object detec-
tion,” in Proceedings of the Sensor Data Fusion: Trends, Solutions, Applications
(SDF), Bonn, Germany, Oct. 2019, pp. 1–7.

[77] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal dataset for au-
tonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Seattle, USA, Jun. 2020, pp. 11 618–11 628.

[78] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, Jul.
2017, pp. 936–944.

[79] U. Niesen and J. Unnikrishnan, “Camera-radar fusion for 3-D depth recon-
struction,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Las
Vegas, USA, Oct. 2020, pp. 265–271.

[80] A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fusion transformer for
end-to-end autonomous driving,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, USA, Jun. 2021, pp.
7073–7083.

[81] N. Rhinehart, R. Mcallister, K. Kitani, and S. Levine, “PRECOG: Prediction
conditioned on goals in visual multi-agent settings,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Ko-
rea, Nov. 2019, pp. 2821–2830.

[82] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “TransFuser:
Imitation with transformer-based sensor fusion for autonomous driving,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [Online].
Available: https://doi.org/10.1109/TPAMI.2022.3200245

https://doi.org/10.1109/TPAMI.2022.3200245

106 BIBLIOGRAPHY

[83] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches,” in Proceedings
of the Workshop Syntax, Semantics and Structure in Statistical Translation (SSST),
Doha, Qatar, Oct. 2014, pp. 103–111.

[84] H.-C. Shao, L. Wang, R. Chen, H. Li, and Y. T. Liu, “Safety-enhanced au-
tonomous driving using interpretable sensor fusion transformer,” in Pro-
ceedings of the Annual Conference on Robot Learning (CoRL), Auckland, New
Zealand, Dec. 2022, pp. 1–12.

[85] M. Shan, Y. Zou, M. Guan, C. Wen, and C.-L. Ng, “A leader-following ap-
proach based on probabilistic trajectory estimation and virtual train model,”
in Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC),
Yokohama, Japan, Oct. 2017, pp. 1–6.

[86] Z. Huang, C. Lv, Y. Xing, and J. Wu, “Multi-modal sensor fusion-based deep
neural network for end-to-end autonomous driving with scene understand-
ing,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 781–11 790, May 2021.

[87] J. V. Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Autonomous ve-
hicle perception: The technology of today and tomorrow,” Transportation Re-
search Part C: Emerging Technologies, vol. 89, pp. 384–406, Apr. 2018.

[88] Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving: A
survey,” IEEE Access, vol. 8, pp. 2847–2868, Dec. 2019.

[89] V. Ravi Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang, S. Milz, and
P. Mäder, “OmniDet: Surround view cameras based multi-task visual percep-
tion network for autonomous driving,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2830–2837, Apr. 2021.

[90] Y. Qian, J. M. Dolan, and M. Yang, “DLT-Net: Joint detection of drivable areas,
lane lines, and traffic objects,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 11, pp. 4670–4679, Nov. 2020.

[91] T. Gong, T. Lee, C. Stephenson, V. Renduchintala, S. Padhy, A. Ndirango,
G. Keskin, and O. H. Elibol, “A comparison of loss weighting strategies for
multi-task learning in deep neural networks,” IEEE Access, vol. 7, pp. 141 627–
141 632, Sep. 2019.

[92] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Venice, Italy, Oct. 2017, pp. 2070–2079.

[93] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with atten-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, USA, Jun. 2019, pp. 1871–1880.

[94] I. Leang, G. Sistu, F. Bürger, A. Bursuc, and S. Yogamani, “Dynamic task
weighting methods for multi-task networks in autonomous driving systems,”
in Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC),
Rhodes, Greece, Sep. 2020, pp. 1–8.

[95] H. Lv, C. Liu, X. Zhao, C. Xu, Z. Cui, and J. Yang, “Lane marking regression
from confidence area detection to field inference,” IEEE Transactions on Intelli-
gent Vehicles, vol. 6, no. 1, pp. 47–56, Mar. 2021.

BIBLIOGRAPHY 107

[96] L. Chen, Z. Yang, J. Ma, and Z. Luo, “Driving scene perception network: Real-
time joint detection, depth estimation and semantic segmentation,” in Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Lake Tahoe, USA, Mar. 2018, pp. 1283–1291.

[97] A. T. M. Nakamura, V. Grassi, and D. F. Wolf, “An effective combination of
loss gradients for multi-task learning applied on instance segmentation and
depth estimation,” Engineering Applications of Artificial Intelligence, vol. 100, p.
104205, Apr. 2021.

[98] F. Yan, K. Wang, B. Zou, L. Tang, W. Li, and C. Lv, “LiDAR-based multi-task
road perception network for autonomous vehicles,” IEEE Access, vol. 8, pp.
86 753–86 764, May 2020.

[99] M. P. Muresan and S. Nedevschi, “Multi-object tracking of 3D cuboids using
aggregated features,” in Proceedings of the IEEE International Conference on Intel-
ligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania,
Sep. 2019, pp. 11–18.

[100] N. Dawar and N. Kehtarnavaz, “Action detection and recognition in continu-
ous action streams by deep learning-based sensing fusion,” IEEE Sensors Jour-
nal, vol. 18, no. 23, pp. 9660–9668, Dec. 2018.

[101] J. Nie, J. Yan, H. Yin, L. Ren, and Q. Meng, “A multimodality fusion deep neu-
ral network and safety test strategy for intelligent vehicles,” IEEE Transactions
on Intelligent Vehicles, vol. 6, no. 2, pp. 310–322, Jun. 2021.

[102] L. Reiher, B. Lampe, and L. Eckstein, “A sim2real deep learning approach
for the transformation of images from multiple vehicle-mounted cameras to a
semantically segmented image in bird’s eye view,” in Proceedings of the IEEE
Intelligent Transportation Systems Conference (ITSC), Rhodes, Greece, Sep. 2020,
pp. 1–7.

[103] A. Palazzi, G. Borghi, D. Abati, S. Calderara, and R. Cucchiara, “Learning to
map vehicles into bird’s eye view,” in Proceedings of the International Conference
on Image Analysis and Processing (ICIAP), Catania, Italy, Sep. 2017, pp. 233–243.

[104] K. Mani, S. Daga, S. Garg, N. S. Shankar, J. K. Murthy, and K. M. Krishna,
“Mono lay out: Amodal scene layout from a single image,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Snow-
mass, USA, Mar. 2020, pp. 1678–1686.

[105] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point
sets for 3D classification and segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA,
Jul. 2017, pp. 77–85.

[106] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution on
X-transformed points,” in Proceedings of the International Conference on Neural
Information Processing Systems (NIPS), Montreal, Canada, Dec. 2018, pp. 828–
838.

[107] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convo-
lutional neural networks for 3D shape recognition,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Santiago, Chile,
Dec. 2015, pp. 945–953.

108 BIBLIOGRAPHY

[108] A. Kanezaki, Y. Matsushita, and Y. Nishida, “RotationNet for joint object cate-
gorization and unsupervised pose estimation from multi-view images,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 269–
283, Jan. 2021.

[109] M. Imad, O. Doukhi, and D.-J. Lee, “Transfer learning-based semantic seg-
mentation for 3D object detection from point cloud,” Sensors, vol. 21, no. 12, p.
3964, Jun. 2021.

[110] B. Yang, W. Luo, and R. Urtasun, “PIXOR: Real-time 3D object detection from
point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, USA, Jun. 2018, pp. 7652–7660.

[111] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh, “Polar-
Net: An improved grid representation for online LiDAR point clouds seman-
tic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, USA, Jun. 2020, pp. 9598–9607.

[112] J. Chen, Z. Xu, and M. Tomizuka, “End-to-end autonomous driving perception
with sequential latent representation learning,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
USA, Oct. 2020, pp. 1999–2006.

[113] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “GradNorm: Gra-
dient normalization for adaptive loss balancing in deep multi-task networks,”
in Proceedings of the International Conference on Machine Learning (ICML), Stock-
holm, Sweden, Jul. 2018, pp. 794–803.

[114] J. C. Ye and W. K. Sung, “Understanding geometry of encoder-decoder
CNNs,” in Proceedings of the International Conference on Machine Learning
(ICML), Long Beach, USA, Jun. 2019, pp. 7064–7073.

[115] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Mu-
nich, Germany, Oct. 2015, pp. 234–241.

[116] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the International
Conference on Machine Learning (ICML), Lille, France, Jul. 2015, pp. 448–456.

[117] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the International Conference on Machine Learning
(ICML), Haifa, Israel, Jun. 2010, pp. 807–814.

[118] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, Jun. 2014.

[119] A. Krogh and J. A. Hertz, “A simple weight decay can improve generaliza-
tion,” in Proceedings of the International Conference on Neural Information Process-
ing Systems (NIPS), Denver, USA, Dec. 1991, pp. 950–957.

[120] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in Proceedings of the

BIBLIOGRAPHY 109

IEEE/CVF International Conference on Computer Vision (ICCV), Santiago, Chile,
Dec. 2015, pp. 1026–1034.

[121] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of ini-
tialization and momentum in deep learning,” in Proceedings of the International
Conference on Machine Learning (ICML), Atlanta, USA, Jun. 2013, pp. 1139–1147.

[122] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “PyTorch: An imperative style, high performance deep learning library,”
in Proceedings of the International Conference on Neural Information Processing Sys-
tems (NIPS), Vancouver, Canada, Dec. 2019, pp. 8024–8035.

[123] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the Annual Conference on Robot
Learning (CoRL), Mountain View, USA, Nov. 2017, pp. 1–16.

[124] K. J. Cantrell., C. D. Miller., and C. W. Morato., “Practical depth estimation
with image segmentation and serial U-Nets,” in Proceedings of the International
Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), On-
line, May 2020, pp. 406–414.

[125] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, Dec.
2017.

[126] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in Proceedings of the International Conference on Learn-
ing Representations (ICLR), San Diego, USA, May 2015.

[127] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proceedings of the International Conference on Learning Representations (ICLR), San
Diego, USA, May 2015.

[128] W. Ren, K. Jiang, X. Chen, T. Wen, and D. Yang, “Adaptive sensor fusion
of camera, GNSS and IMU for autonomous driving navigation,” in Proceed-
ings of the International Conference on Vehicular Control and Intelligence (CVCI),
Hangzhou, China, Dec. 2020, pp. 113–118.

[129] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao, “Deep learning
for image and point cloud fusion in autonomous driving: A review,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 722–739,
Feb. 2022.

[130] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López, “Multimodal
end-to-end autonomous driving,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 1, pp. 537–547, Jan. 2022.

[131] S. Chowdhuri, T. Pankaj, and K. Zipser, “MultiNet: Multi-modal multi-task
learning for autonomous driving,” in Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), Waikoloa, USA, Jan. 2019,
pp. 1496–1504.

110 BIBLIOGRAPHY

[132] P. Palanisamy, “Multi-agent connected autonomous driving using deep rein-
forcement learning,” in Proceedings of the International Joint Conference on Neural
Networks (IJCNN), Glasgow, UK, Jul. 2020, pp. 1–7.

[133] K. Nagarajan and Z. Yi, “Lane changing using multi-agent DQN,” in Proceed-
ings of the IEEE International Conference on Autonomous Systems (ICAS), Mon-
treal, Canada, Aug. 2021, pp. 1–6.

[134] F. Salehi Rizi and M. Granitzer, “Multi-task network embedding with adaptive
loss weighting,” in Proceedings of the IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining (ASONAM), Hague, Netherlands,
Dec. 2020, pp. 1–5.

[135] T. Wang and S.-C. Chen, “Multi-label multi-task learning with dynamic task
weight balancing,” in Proceedings of the IEEE International Conference on Infor-
mation Reuse and Integration for Data Science (IRI), Las Vegas, USA, Aug. 2020,
pp. 245–252.

[136] R. Yamada, K. Yamamori, and T. Tasaki, “Pose estimation of a simple-shaped
object based on poseclass using RGBD camera,” in Proceedings of the IEEE/SICE
International Symposium System Integration (SII), Fukushima, Japan, Jan. 2021,
pp. 426–430.

[137] R. Pandey, A. Tkach, S. Yang, P. Pidlypenskyi, J. Taylor, R. Martin-Brualla,
A. Tagliasacchi, G. Papandreou, P. Davidson, C. Keskin, S. Izadi, and
S. Fanello, “Volumetric capture of humans with a single RGBD camera via
semi-parametric learning,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), Long Beach, USA, Jun. 2019, pp.
9701–9710.

[138] L. Xu, Z. Su, L. Han, T. Yu, Y. Liu, and L. Fang, “UnstructuredFusion: Realtime
4D geometry and texture reconstruction using commercial RGBD cameras,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 10,
pp. 2508–2522, Oct. 2020.

[139] K. Yousif, Y. Taguchi, and S. Ramalingam, “MonoRGBD-SLAM: Simultaneous
localization and mapping using both monocular and RGBD cameras,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Singapore, May 2017, pp. 4495–4502.

[140] J. Cao, S. Leng, and K. Zhang, “Multi-agent learning empowered collabo-
rative decision for autonomous driving vehicles,” in Proceedings of the Inter-
national Conference on UK-China Emerging Technologies (UCET), Glasgow, UK,
Aug. 2020, pp. 1–4.

[141] N. Ayache, A. Yahyaouy, and S. M. Abdelouahed, “An autonomous vehicular
system based on muli-agents control: Architecture and behavior simulation,”
in Proceedings of the Intelligent Systems and Computer Vision (ISCV), Fez, Mo-
rocco, Apr. 2017, pp. 1–7.

[142] J. Park, K. Min, and K. Huh, “Multi-agent deep reinforcement learning for
cooperative driving in crowded traffic scenarios,” in Proceedings of the Inter-
national Symposium Intelligent Signal Processing and Communication Systems (IS-
PACS), Taipei, Taiwan, Dec. 2019, pp. 1–2.

BIBLIOGRAPHY 111

[143] A. O. Ly and M. Akhloufi, “Learning to drive by imitation: An overview
of deep behavior cloning methods,” IEEE Transactions on Intelligent Vehicles,
vol. 6, no. 2, pp. 195–209, Jun. 2021.

[144] F. Codevilla, E. Santana, A. M. Lopez, and A. Gaidon, “Exploring the lim-
itations of behavior cloning for autonomous driving,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Ko-
rea, Nov. 2019, pp. 9328–9337.

[145] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, USA, Jun. 2016, pp. 770–778.

[146] D. Chen, B. Zhou, V. Koltun, and P. Krahenbuhl, “Learning by cheating,” in
Proceedings of the Annual Conference on Robot Learning (CoRL), Osaka, Japan,
Oct. 2019, pp. 1–10.

[147] A. Filos, P. Tigkas, R. Mcallister, N. Rhinehart, S. Levine, and Y. Gal, “Can au-
tonomous vehicles identify, recover from, and adapt to distribution shifts?” in
Proceedings of the International Conference on Machine Learning (ICML), Vienna,
Austria, Jul. 2020, pp. 3145–3153.

[148] C. Guo, K. Kidono, R. Terashima, and Y. Kojima, “Humanlike behavior genera-
tion in urban environment based on learning-based potentials with a low-cost
lane graph,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 1, pp. 46–60,
Mar. 2018.

[149] C. Guo, K. Kidono, T. Machida, R. Terashima, and Y. Kojima, “Human-like
behavior generation for intelligent vehicles in urban environment based on a
hybrid potential map,” in Proceedings of the IEEE Intelligent Vehicles Symposium
(IV), Los Angeles, USA, Jun. 2017, pp. 197–203.

[150] C. Guo, T. Owaki, K. Kidono, T. Machida, R. Terashima, and Y. Kojima,
“Toward human-like lane following behavior in urban environment with a
learning-based behavior-induction potential map,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Singapore, Jun.
2017, pp. 1409–1416.

[151] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” in Proceedings of the International Conference on Machine
Learning (ICML), Long Beach, USA, Jun. 2019, pp. 6105–6114.

[152] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Miami, USA, Jun. 2009, pp.
248–255.

[153] O. Natan, D. U. K. Putri, and A. Dharmawan, “Deep learning-based weld spot
segmentation using modified UNet with various convolutional blocks,” ICIC
Express Letters Part B: Applications, vol. 12, no. 12, pp. 1169–1176, Dec. 2021.

[154] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU neural network performance
comparison study: Taking yelp review dataset as an example,” in Proceedings
of the International Workshop Electronic Communication and Artificial Intelligence
(IWECAI), Shanghai, China, Jun. 2020, pp. 98–101.

112 BIBLIOGRAPHY

[155] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in Pro-
ceedings of the International Conference on Learning Representations (ICLR), New
Orleans, USA, May 2019.

[156] M. Liang, B. Yang, W. Zeng, Y. Chen, R. Hu, S. Casas, and R. Urtasun, “PnPNet:
End-to-end perception and prediction with tracking in the loop,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, USA, Jun. 2020, pp. 11 550–11 559.

[157] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task multi-sensor
fusion for 3D object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, Jun. 2019,
pp. 7337–7345.

[158] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion for
multi-sensor 3D object detection,” in Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, Sep. 2018, pp. 1–16.

[159] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and A. Hartwig, “Encoder-
decoder with atrous separable convolution for semantic image segmentation,”
in Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, Sep. 2018, pp. 833–851.

[160] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5,
pp. 469–483, May 2009.

[161] M. Teti, W. E. Hahn, S. Martin, C. Teti, and E. Barenholtz, “A controlled in-
vestigation of behaviorally-cloned deep neural network behaviors in an au-
tonomous steering task,” Robotics and Autonomous Systems, vol. 142, p. 103780,
Aug. 2021.

[162] F. Sasaki, T. Yohira, and A. Kawaguchi, “Adversarial behavioral cloning,” Ad-
vanced Robotics, vol. 34, no. 9, pp. 592–598, Feb. 2020.

[163] H. Shen, W. Wan, and H. Wang, “Learning category-level generalizable object
manipulation policy via generative adversarial self-imitation learning from
demonstrations,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 166–
11 173, Oct. 2022.

[164] D.-T. Pham, T.-N. Tran, S. Alam, and V. N. Duong, “A generative adversarial
imitation learning approach for realistic aircraft taxi-speed modeling,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2509–2522,
Mar. 2022.

[165] X. Fang, Q. Zhang, Y. Gao, and D. Zhao, “Offline reinforcement learning for
autonomous driving with real world driving data,” in Proceedings of the IEEE
Intelligent Transportation Systems Conference (ITSC), Macau, China, Oct. 2022,
pp. 3417–3422.

[166] R. Bhattacharyya, B. Wulfe, D. J. Phillips, A. Kuefler, J. Morton, R. Senanayake,
and M. J. Kochenderfer, “Modeling human driving behavior through genera-
tive adversarial imitation learning,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 24, no. 3, pp. 2874–2887, Mar. 2023.

BIBLIOGRAPHY 113

[167] P. M. Kebria, A. Khosravi, I. Hossain, N. Mohajer, H. D. Kabir, S. M. J. Jalali,
D. Nahavandi, S. M. Salaken, S. Nahavandi, A. Lagrandcourt, and N. Bhasin,
“Autonomous navigation via deep imitation and transfer learning: A compar-
ative study,” in Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Toronto, Canada, Oct. 2020, pp. 2907–2912.

[168] P. Cai, H. Wang, H. Huang, Y. Liu, and M. Liu, “Vision-based autonomous
car racing using deep imitative reinforcement learning,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 4, pp. 7262–7269, Oct. 2021.

[169] A. Chatty, P. Gaussier, S. K. Hasnain, I. Kallel, and A. M. Alimi, “The effect of
learning by imitation on a multi-robot system based on the coupling of low-
level imitation strategy and online learning for cognitive map building,” Ad-
vanced Robotics, vol. 28, no. 11, pp. 731–743, Feb. 2014.

[170] S. Hoshino and K. Unuma, “End-to-end motion planners through multi-task
learning for mobile robots with 2D LiDAR,” in Proceedings of the IEEE/SICE
International Symposium on System Integration (SII), Atlanta, USA, Jan. 2023, pp.
1–6.

[171] S. Yan, Z. Wu, J. Wang, Y. Huang, M. Tan, and J. Yu, “Real-world learning con-
trol for autonomous exploration of a biomimetic robotic shark,” IEEE Transac-
tions on Industrial Electronics, vol. 70, no. 4, pp. 3966–3974, Apr. 2023.

[172] D. Xu, Z. Ding, X. He, H. Zhao, M. Moze, F. Aioun, and F. Guillemard, “Learn-
ing from naturalistic driving data for human-like autonomous highway driv-
ing,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp.
7341–7354, Dec. 2021.

[173] H. Ma, Y. Wang, R. Xiong, S. Kodagoda, and L. Tang, “DeepGoal: Learning to
drive with driving intention from human control demonstration,” Robotics and
Autonomous Systems, vol. 127, p. 103477, May 2020.

[174] F. S. Acerbo, M. Alirczaei, H. Van Der Auweraer, and T. D. Son, “Safe imita-
tion learning on real-life highway data for human-like autonomous driving,”
in Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC),
Indianapolis, USA, Sep. 2021, pp. 3903–3908.

[175] H. Fujiishi, T. Kobayashi, and K. Sugimoto, “Safe and efficient imitation learn-
ing by clarification of experienced latent space,” Advanced Robotics, vol. 35,
no. 16, pp. 1012–1027, Jul. 2021.

[176] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Seg-
Former: Simple and efficient design for semantic segmentation with trans-
formers,” in Proceedings of the International Conference on Neural Information Pro-
cessing Systems (NIPS), Online, Dec. 2021, pp. 1–18.

[177] R. W. Wolcott and R. M. Eustice, “Robust LiDAR localization using multireso-
lution Gaussian mixture maps for autonomous driving,” The International Jour-
nal of Robotics Research, vol. 36, no. 3, pp. 292–319, Apr. 2017.

[178] S. McCrae and A. Zakhor, “3D object detection for autonomous driving using
temporal LiDAR data,” in Proceedings of the IEEE International Conference on
Image Processing (ICIP), Abu Dhabi, UAE, Oct. 2020, pp. 2661–2665.

114 BIBLIOGRAPHY

[179] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li, “Deep learning
for LiDAR point clouds in autonomous driving: A review,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 8, pp. 3412–3432, Aug.
2021.

[180] Y. Li and J. Ibanez-Guzman, “LiDAR for autonomous driving: The principles,
challenges, and trends for automotive LiDAR and perception systems,” IEEE
Signal Processing Magazine, vol. 37, no. 4, pp. 50–61, Jul. 2020.

[181] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and C. Stach-
niss, “Towards 3D LiDAR-based semantic scene understanding of 3D point
cloud sequences: The SemanticKITTI Dataset,” The International Journal of
Robotics Research, vol. 40, no. 8-9, pp. 959–967, Apr. 2021.

[182] X. Yan, J. Gao, C. Zheng, C. Zheng, R. Zhang, S. Cui, and Z. Li, “2DPASS: 2D
priors assisted semantic segmentation on LiDAR point clouds,” in Proceedings
of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, Oct. 2022,
pp. 677–695.

[183] Y. Hou, X. Zhu, Y. Ma, C. C. Loy, and Y. Li, “Point-to-voxel knowledge distil-
lation for LiDAR semantic segmentation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA,
Jun. 2022, pp. 8469–8478.

[184] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, Apr. 2018.

[185] D. Sun, Q. Liao, and A. Loutfi, “Type-2 fuzzy model-based movement prim-
itives for imitation learning,” IEEE Transactions on Robotics, vol. 38, no. 4, pp.
2462–2480, Aug. 2022.

[186] M. Alibeigi, M. N. Ahmadabadi, and B. N. Araabi, “A fast, robust, and incre-
mental model for learning high-level concepts from human motions by imita-
tion,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 153–168, Feb. 2017.

[187] D. Wang, C. Devin, Q.-Z. Cai, F. Yu, and T. Darrell, “Deep object-centric poli-
cies for autonomous driving,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Montreal, Canada, May 2019, pp. 8853–
8859.

[188] Y. Xu, X. Yang, L. Gong, H.-C. Lin, T.-Y. Wu, Y. Li, and N. Vasconcelos, “Ex-
plainable object-induced action decision for autonomous vehicles,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, USA, Jun. 2020, pp. 9520–9529.

[189] W. Viriyasitavat, M. Boban, H.-M. Tsai, and A. Vasilakos, “Vehicular commu-
nications: Survey and challenges of channel and propagation models,” IEEE
Vehicular Technology Magazine, vol. 10, no. 2, pp. 55–66, Jun. 2015.

[190] I. Agudo, M. Montenegro-Gómez, and J. Lopez, “A blockchain approach for
decentralized V2X (D-V2X),” IEEE Transactions on Vehicular Technology, vol. 70,
no. 5, pp. 4001–4010, May 2021.

BIBLIOGRAPHY 115

[191] X. Liang, T. Wang, L. Yang, and E. Xing, “CIRL: Controllable imitative rein-
forcement learning for vision-based self-driving,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), Munich, Germany, Sep. 2018, pp.
604–620.

[192] P. Cai, H. Wang, H. Huang, Y. Liu, and M. Liu, “Vision-based autonomous
car racing using deep imitative reinforcement learning,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 4, pp. 7262–7269, Oct. 2021.

[193] H. Blum, A. Dietmüller, M. Milde, J. Conradt, G. Indiveri, and Y. San-
damirskaya, “A neuromorphic controller for a robotic vehicle equipped with
a dynamic vision sensor,” in Proceedings of Robotics: Science and Systems Confer-
ence (RSS), Massachusetts, USA, Jul. 2017.

[194] T. Speth, A. Kamann, T. Brandmeier, and U. Jumar, “Precise relative ego-
positioning by stand-alone RTK-GPS,” in Proceedings of the Workshop on Posi-
tioning, Navigation and Communications (WPNC), Bremen, Germany, Oct. 2016,
pp. 1–6.

[195] D. Brüggemann, C. Sakaridis, P. Truong, and L. Van Gool, “Refign: Align and
refine for adaptation of semantic segmentation to adverse conditions,” in Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Waikoloa, USA, Jan. 2023, pp. 3173–3183.

[196] L. Hoyer, D. Dai, and L. Van Gool, “HRDA: Context-aware high-resolution
domain-adaptive semantic segmentation,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), Tel Aviv, Israel, Oct. 2022, pp. 1–31.

[197] C. Sakaridis, D. Dai, and L. Van Gool, “ACDC: The adverse conditions dataset
with correspondences for semantic driving scene understanding,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), Mon-
treal, Canada, Oct. 2021, pp. 10 745–10 755.

[198] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-optimized
LiDAR odometry and mapping on variable terrain,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, Oct. 2018, pp. 4758–4765.

[199] J. Zhang and S. Singh, “LOAM: LiDAR odometry and mapping in real-time,”
in Proceedings of Robotics: Science and Systems Conference (RSS), Berkeley, USA,
Jul. 2014.

[200] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, “An image is worth 16x16 words: Transformers for image recog-
nition at scale,” in Proceedings of the International Conference on Learning Repre-
sentations (ICLR), Vienna, Austria, May 2021.

[201] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense pre-
diction,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), Montreal, Canada, Oct. 2021, pp. 12 159–12 168.

[202] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the
International Conference on Neural Information Processing Systems (NIPS), Long
Beach, USA, Dec. 2017, pp. 6000–6010.

117

Publication

Journal

• O. Natan and J. Miura, "End-to-end Autonomous Driving with Semantic Depth
Cloud Mapping and Multi-agent," IEEE Transactions on Intelligent Vehicles, vol.
8, no. 1, pp. 557-571, Jan. 2023.

- Code: https://github.com/oskarnatan/end-to-end-driving

- Presented at IEEE Intelligent Vehicles Symposium (IV) 2023

• O. Natan and J. Miura, "Towards Compact Autonomous Driving Perception
with Balanced Learning and Multi-sensor Fusion," IEEE Transactions on Intelli-
gent Transportation Systems, vol. 23, no. 9, pp. 16249-16266, Sept. 2022.

- Code: https://github.com/oskarnatan/compact-perception

- Presented at IEEE Intelligent Vehicles Symposium (IV) 2023

Conference

• O. Natan and J. Miura, "Semantic Segmentation and Depth Estimation with
RGB and DVS Sensor Fusion for Multi-view Driving Perception," in Proceedings
of the Asian Conference on Pattern Recognition (ACPR), Jeju Island, South Korea,
Nov. 2021, pp. 352–365.

- Code: https://github.com/oskarnatan/RGBDVS-fusion

Preprint (under review)

• O. Natan and J. Miura, “DeepIPCv2: LiDAR-powered Robust Environmental
Perception and Navigational Control for Autonomous Vehicle,” arXiv:2307.06647,
2023.

- Code: https://github.com/oskarnatan/DeepIPCv2

• O. Natan and J. Miura, "DeepIPC: Deeply Integrated Perception and Control
for an Autonomous Vehicle in Real Environments," arXiv:2207.09934, 2022.

- Code: https://github.com/oskarnatan/DeepIPC

https://github.com/oskarnatan/end-to-end-driving
https://github.com/oskarnatan/compact-perception
https://github.com/oskarnatan/RGBDVS-fusion
https://github.com/oskarnatan/DeepIPCv2
https://github.com/oskarnatan/DeepIPC

119

Acknowledgement

I gratefully acknowledge everyone who gives me plenty of support, especially dur-
ing the past years of my study in Japan. Tough words are limited, but I would like
to express my sincere gratitude to:

• Professor Jun Miura, my sensei who gives me a lot of things. I would like
to thank him for everything, especially for boosting my research experience
including how he guides me in writing nice papers to be published and pre-
sented in prestigious journals and conferences. I really appreciate his expertise
and vast knowledge, especially in the field of deep learning and sensor fusion
for end-to-end autonomous driving. I am truly happy to be your student and
hopefully, we can always stay keep in touch in the future.

• Professor Shigeru Kuriyama and Professor Yohei Kakiuchi, the examining com-
mittee who kindly provide valuable comments and suggestions to improve the
presentation and contents of this thesis.

• Kazushige Yano, Atsuki Osanai, Yasuhiro Taniguchi, and other staff at Honda
RnD Co., Ltd. who accept me as a research intern and give me an opportunity
to join the autonomous driving project. I am really happy to be a part of the
team, I learn a lot.

• Mikiko Kobayashi and Asaha Murai, secretary of Active Intelligent Systems
Laboratory (AISL) who assist me in doing paperwork for many activities such
as attending international conferences, procuring sensors, etc. Thank you very
much.

• Edo, Santika, and Baskara, my best friends from Indonesia who also study at
TUT. I am really glad I have you all here, thank you for caring and helping me
in many ways. I wish you all success, ganbatte!

• All my labmates at AISL, especially those who stay in C2-501 (Matsuzaki,
Mano, Higashimoto, Liliana, Masuzawa, Sinem, Uzawa, Liu, Chandra, David,
Sano, Nakano, Tamiya, Baskara, Ørjan), members of the driving research group
(Baskara, Ørjan, Teo, Emil, Patrik, Yamagata, Ishihara), my student supporter
(Miake), and also Asst. Prof. Kotaro Hayashi who help me and discuss with
me about many things. They also show their strong progress that drives me to
be better day-by-day. Thanks guys!

• My beloved family in Indonesia (mom, dad, big bro and his little family), spe-
cial people and a whole support system that always be there for me. Thank
you so much!

• MEXT and TUT for providing me with generous financial support for my
study and living expenses.

	Title Page
	Abstract
	Contents
	Introduction
	Research Background
	Classical Autonomous Driving
	End-to-end Autonomous Driving
	Driving Perception
	Joined Perception and Control

	Goal and Contribution
	Thesis Structure

	Literature Review
	Perception-Action Coupling with Deep Learning
	Leveraging Sensor Fusion Technique

	Multi-sensor Driving Perception with Balanced Learning
	Motivation
	Related Work
	Handling Different Data Modalities
	Bird's Eye View and LiDAR Representation
	Balancing Multiple Vision Tasks

	Methodology
	Proposed Model 1
	Proposed Model 2
	Loss and Metric Formulation
	Adaptive Loss Weighting
	Training Configuration

	Experiment Setup
	Simulated Environment
	Real Environment
	Data Representation

	Result and Discussion
	Performance Gain by Feature Fusion
	1 Layer vs 15 Layers of LiDAR Representation
	Static vs Adaptive Loss Weighting
	Loss Weighting Behavior
	Single-task vs Multi-task Models

	Findings

	Simulation-based End-to-end Autonomous Driving
	Motivation
	Related Work
	End-to-end Multi-task Model
	Sensor Fusion Strategy

	Methodology
	Proposed Model
	Perception Module
	Controller Module

	Behavior Cloning
	Training Configuration

	Experiment Setup
	Task and Scenario
	Performance Evaluation

	Result and Discussion
	Drivability in Normal and Adversarial Situations
	Adaptability to Various Weather Conditions
	Models Behavior
	The Importance of SDC and Multi-agent
	Task-wise Evaluation
	Semantic Segmentation
	TL State and Stop Sign Prediction
	Waypoints Prediction
	Navigational Controls Estimation

	Findings

	Vision-based End-to-end Autonomous Driving
	Real-world Imitation Learning
	DeepIPC: Deeply Integrated Perception and Control
	Network Architecture
	Model Improvement
	Dataset
	Training Configuration

	Experiment and Analysis
	Evaluation and Scoring
	Offline Test
	Online Test

	Findings

	LiDAR-based End-to-end Autonomous Driving
	LiDAR-powered Perception
	DeepIPCv2: Highly Robust Perception and Control
	Network Architecture
	Dataset
	Training Configuration

	Experiment and Analysis
	Evaluation and Scoring
	Offline Test
	Online Test

	Findings

	Summary
	Conclusion
	Future Work
	Future Research Direction
	More Sensors with Better Fusion Technique
	Better Reasoning for A Higher Degree of Understanding
	Vehicle-to-Everything (V2X)
	Imitation Learning and Reinforcement Learning

	Learning Curve and Task Balancing Behavior
	DeepIPC Training with Simulation Dataset
	DeepIPC Training with Real-world Dataset
	DeepIPCv2 Training with Real-world Dataset

	Preliminary Experiments with a Real Car
	Sensors and Observation Data
	Addressing New Challenges
	Transformer-powered Model

	Bibliography
	Publication
	Acknowledgement

