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Abstract 

Currently, the decision-making response to an earthquake is limited by the time it takes to identify the 

extent of damage to buildings. This limitation and accuracy rely on various factors, including on-site 

inspections by professionals, structural analysis from engineering offices, and limited information due to 

logistical resources. It has been observed in past earthquakes that structural engineering professionals are 

insufficient to cover the needs of all the affected buildings. Therefore, new technologies such as structural 

health monitoring and machine learning (ML) can be employed to decrease response time. This research 

proposes several methodologies to use ML methods and ground and roof sensors to predict damage 

conditions represented by the maximum ductility ratio, inter-story drift ratio, and absolute acceleration on 

each floor under earthquake conditions. 

Moreover, Incremental Dynamic Analyses of the structures for each case study are carried out to cover 

elastic and inelastic behavior. Initially, a Lumped Mass Model was used to represent the buildings, and 

their damage condition was obtained using wavelet spectra as images in the Convolutional Neural Network 

method. Subsequently, the methodology was improved using Wavelet Power Spectra and a proposed 

selection of records to increase accuracy. The procedure was applied to three-dimensional frame models of 

two actual instrumented buildings in Japan and an artificial RC building in order to consider distinct 

materials, lateral force-resisting systems, and structural configurations. Even though the high accuracy of 

the previous methodology, it was updated to predict new earthquakes of different characteristics (without 

a selection methodology), obtain information on the main predicting features, and reduce the bias from 

splitting training and validation records by using seven ML methods and 27 Intensity Measures (IM) and 

applied to the two buildings in Japan. Later, a new methodology based on the previous ML and IMs is 

proposed to predict new buildings and earthquakes. It was applied to 600 buildings of a moment-resisting 

frame system archetype. The archetype is designed using the virtual work method. For all the 

methodologies, high accuracy with low splitting dispersion of the predictions is obtained, and the building’s 

post-earthquake condition is possible to detect immediately since the ML is trained and validated 

beforehand. 

The results will be helpful for countermeasures after an earthquake, such as evacuating buildings, resuming 

economic and social activities, and mitigating future damage by aftershocks. 
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Chapter 1. Introduction 

1.1 Research background 

Earthquakes in the proximity of structurally vulnerable buildings could cause damage of varying intensities. 

Making decisions, such as evacuating buildings, resuming economic and social activities, and mitigating 

future damage by aftershocks, is one of the most critical necessities for government, owners, and 

stakeholders after an earthquake. If damage to a building caused by an earthquake is not detected 

immediately, the opportunity to decide on quick action is lost. However, damage of different risk levels 

(see Figure 1.1) is often difficult to classify rapidly, making it difficult to determine the structural safety of 

a building accurately. For instance, the current conventional post-earthquake actions report the usability of 

the buildings related to protecting their occupants in days or even weeks after the event, depending on the 

post-earthquake evaluation methods and the technicians' expertise [1]. Also, if a deep behavioral 

understanding of the structure is requested, it is obtained after months [2]. According to the National 

Institute of Civil Defense of Peru, during the Pisco earthquake on 15 August 2007, in the five central regions 

of Peru (Lima included, which is the capital of Peru), 136,149 dwellings, 1,278 educational buildings, and 

126 health buildings collapsed or were damaged, where their use was classified as restricted or unsafe [3]. 

However, this report was released almost two months after the earthquake, during which time, all activities 

in the affected areas of the main regions had to be suspended, including the construction of temporary 

dwellings (see Figure 1.1 and Figure 1.2). For this reason, it is necessary to develop new technologies that 

can rapidly obtain buildings' post-earthquake structural safety conditions. 

Resilient cities are goals that countries are building towards to increase the capacity for learning from past 

disasters for better future protection and to improve risk reduction measures[1]. In particular, as part of this 

concept, modern structures need to be developed to quickly obtain structural safety information after an 

earthquake to minimize social and economic disruption and mitigate future earthquake effects [4]. For 

example, in order to promote and disseminate knowledge to increase social resilience and reduce 

earthquake risk, experts from academia and industry gathered in 2019 for a workshop focused on state-of-

the-art risk-reduction strategies. It identified a need for structural health monitoring (SHM) research to 

assess the integrity and performance of engineering structures to detect post-earthquake damage and quick 

decision-making [5]. The general process of SHM is shown in Figure 1.3. 

SHM is a field where it is possible to obtain real-time structural responses and successful post-earthquake 

damage detection of monitored buildings, bridges, cultural heritage structures, dams, base-isolated 

buildings, and others. [6,7]. Acceleration or displacement recordings from instrumented buildings during 

earthquakes offer valuable information to identify and monitor their damage extent. Thus, structural health 

monitoring is an expanding field that allows for establishing procedures to screen the structural status of 

buildings. Moreover, various methods for estimating the lateral strength of buildings using the sensors' 

information have been proposed. For example, Quispe et al. [8] obtained the capacity curve and the inter-

story drift ratios of the Edgardo Rebagliati Martins hospital in Peru using a sparse number of sensors, the 

wavelet transform method, and the spline shape function. Also, Schanze et al. [9] compared the effect of 

different underground story modeling approaches on Chile's instrumented Alcazar building office. For this 

reason, the implementation of instrumented buildings has been increasing recently [10-12]. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 1.1. Pisco, Peru, earthquake of August 15, 2007: Damage of different risk levels. (a) No damage; (b) 

Minor damage; (c) Significant damage; (d) Severe damage; (e) Collapse [13]. 
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Figure 1.2. Pisco, Peru, earthquake of August 15, 2007: Temporary dwellings [13]. 
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Figure 1.3. General SHM process. 

In the field of SHM, there are several types of sensors to measure and diagnose the static and dynamic 

properties of the monitored buildings. Antunez et al. demonstrated that optical fiber sensors could be helpful 

in the static and dynamic monitoring of large raw earth masonry structures common in cultural, historical, 

and architecturally recognized buildings worldwide [14]. Piezoelectric sensors are another type of 

monitoring device, and Roghaei et al. proposed a method to identify stress and deformation using an array 

of sensors mounted in certain locations [15]. They verified the proposed method using a three-story steel 

building and confirmed that continuous monitoring and analysis of sensor signals could help the building 
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manager to apply warning alarms and call for evacuation. However, the most common monitoring control 

sensor is the accelerometer which will be used herein. 

Structural responses such as ductility, maximum inter-story drift, and acceleration can be used in order to 

determine structural integrity. Hazus is a geographic information system-based natural hazard analysis tool 

used by the Federal Emergency Management Agency of the USA, and the Hazus earthquake model 

evaluates the damage probability of buildings and infrastructures considering inter-story drift and 

acceleration limits to establish the structural and nonstructural damage states [16]. The Japan Structural 

Consultants Association (JSCA), an organization of building structural engineers in Japan, uses three 

parameters of safety criteria used to assess a building in its performance-based guidelines: absolute 

acceleration, maximum ductility ratio, and maximum inter-story drift ratio [17]. Acceleration is related to 

damage in nonstructural components, and ductility and story drift ratio to damage in structural components. 

This study uses this criterion in order to classify the damage condition of buildings. 

The maximum ductility ratio (ductility ratio from now on) indicates the amount of inelastic deformation 

over the yielding threshold, as defined in Figure 1.4. Damage identification is based on JSCA [17] as 

follows: a ductility ratio <1.0 means no damage, a ductility ratio ≥1.0 but <2.0 means minor damage, a 

ductility ratio ≥2.0 but <3.0 means significant damage, a ductility ratio ≥3.0 but <4.0 means severe damage, 

and a ductility ratio ≥4.0 means collapse. These values are defined in Table 1.1. Even though the ductility 

ratio is greater than 1, in this study, lower ratios are obtained to differentiate between elastic and inelastic 

behavior. 

 

Figure 1.4. Definition of ductility ratio. 

The maximum inter-story drift ratio (story drift ratio from now on) represents the maximum relative 

displacement that a particular story reaches, as defined in Figure 1.5. A larger story drift ratio after the 

yielding stage corresponds to a larger extent of the damage. Damage identification is based on JSCA [17], 

as follows: a story drift ratio <1/300 means no damage, a story drift ratio ≥1/300 but <1/150 means minor 

damage, a story drift ratio ≥1/150 but <1/100 means significant damage, a story drift ratio ≥1/100 but <1/75 

is severe damage, and a story drift ratio ≥1/75 means collapse. These values are defined in Table 1.1. 

   

Figure 1.5. Definition of story drift ratio. 
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The maximum absolute acceleration (acceleration from now on) indicates the intensity that a particular 

story is subjected to. Damage identification is based on JSCA [17], as follows: an acceleration <250 gal 

means no damage, acceleration ≥250 gal but <500 gal means minor damage, acceleration ≥500 gal but 

<1000 gal means significant damage, an acceleration ≥1000 gal but <1500 gal means severe damage, and 

an acceleration ≥1500 gal means collapse. These values are defined in Table 1.1. 

Table 1.1. Damage condition and usability according to the structural response for damage identification. 

Usability of building Safe Use Restricted Use Unsafe Use 

Damage Condition  No Damage Minor Damage Significant Damage Severe Damage Collapse 

Ductility ratio <1 ≥1.0 but <2.0 ≥2.0 but <3.0 ≥3.0 but <4.0 ≥4.0 

Inter-story drift ratio <1/300 ≥1/300 but <1/150 ≥1/150 but <1/100 ≥1/100 but < 1/75 ≥1/75 

Acceleration (gal) <250 ≥250 but <500 ≥500 but <1000 ≥1000 but < 1500 ≥1500 

 

In all cases, the damage condition after severe damage is considered a collapse condition. Besides, no 

damage and minor damage represent a building that is safe for use, significant damage represents a building 

that can have restricted use, and severe damage represents a building that is unsafe for use, that is, a value 

greater than minor damage is a restricted or unsafe condition, which is a parameter used for evacuating the 

building. Even though these parameters and their values are considered in this study, it is known that the 

damage condition depends on each building. For this reason, it is recommended to obtain it for future 

studies. 

Even though SHM helps detect buildings' damaged state, the reporting time depends on the analysis detail. 

For this reason, it is necessary to use modern techniques to prepare a model beforehand to predict the post-

earthquake damage immediately. According to study [18], there are two approaches for damage 

identification: model-driven methods and data-driven methods. In a model-driven approach, usually, a 

high-fidelity physical model of the structure is used to establish a comparison metric between the model 

and the measured data from the real structure to distinguish the damage condition from the normal 

condition. In a data-driven approach, a structural model is used as a statistical representation of the system, 

and the main algorithms developed for this purpose are those in the field of pattern recognition or, more 

broadly, machine learning (ML). ML is the part of artificial intelligence that uses statistical methods to 

obtain experience (learning process) from main features to predict future actions or responses. Recently, 

ML has been studied to assess damage without response analysis of structures. The ML methods may 

provide higher accuracy by updating the model after each earthquake or if the number of features increases 

[19]. ML methods are currently used to predict structures' damage states [20,21]. For example, Cardellicchio 

et al. proposed a methodology to interpret defect detection results using Class Activation Maps and 

eXplainable Artificial Intelligence techniques applied to Reinforced Concrete (RC) bridges in Southern 

Italy [22]. It is, likewise, detecting the damage condition of buildings after an earthquake is obtained for 

instrumented buildings [23-25]. For instance, Yongjia et al. used IMs to train ML models to classify the 

damage state of buildings [26]. Also, Sajedi et al. proposed a framework for building damage diagnosis 

using the Support Vector Machines method for damage classification and the Bayesian method for the input 

features and hyperparameters optimization. 

In this study, the ML methods use the building's structural features as input data and the structural responses 

as output data. As shown in Figure 1.6, the ML methods have a training and testing process. The input and 

output data are used to train the ML model in the training process. The trained ML model is used to get 

new predictions in the testing process, and its accuracy is evaluated using reference results. 
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Figure 1.6. Machine learning method. 

Finally, ML methods are used in the SHM field to rapidly detect the post-earthquake damage state of 

buildings. The general process of SHM is shown in Figure 1.7.  
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Figure 1.7. General SHM process using ML methods. 
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1.2 Problem statement 

Nowadays, the action response after an earthquake is limited by the time taken to detect the damaged state 

of buildings. It depends on the post-inspection of buildings carried out by professionals in-situ, structural 

analysis developed in engineering offices, or the minimum information not allowed by the logistic 

resources. The experience of past earthquakes shows there are not enough structural engineering experts to 

cover the demand for all affected buildings. For this reason, new technologies such as structural health 

monitoring combined with machine learning methods are feasible options to reduce the response time. 

1.3 Research objectives 

The research aim is to propose methodologies based on machine learning applied to SHM for rapid post-

earthquake damage detection of buildings which derives from the following objectives: 

• Propose a methodology based on convolutional neural networks (CNN) for detecting lumped mass 

model building damage using structural feature images of roof sensors. 

• Propose a methodology based on CNN for detecting three-dimensional frame model building 

damage by proposing a selection of ground motion records and using structural feature images of 

roof sensors. 

• Propose a methodology based on ML methods for detecting three-dimensional frame model 

building damage using intensity measures of ground and roof sensors. 

• Propose a methodology based on ML methods for detecting new three-dimensional frame model 

buildings damage by proposing a selection of ground motion records and using intensity measures 

of ground and roof sensors. 

1.4 Research outline 

0 presents an overview of the current situation of the damage state detection of buildings after an earthquake 

occurs and describes the SHM and ML fields as alternatives to improve the time response for immediate 

actions. 

Chapter 2 presents a methodologic proposal based on CNN using wavelet spectra as structural feature 

images applied to lumped mass model buildings to detect their post-earthquake damage condition. 

Chapter 3 presents a methodologic proposal based on CNN using power wavelet spectra as structural feature 

images applied to three-dimensional frame model buildings to detect their post-earthquake damage 

condition. A selection of ground motion records is proposed in order to increase prediction accuracy. 

Chapter 4 presents a methodologic proposal based on ML methods using IMs as structural features applied 

to three-dimensional frame model buildings to detect their post-earthquake damage condition. A prediction 

accuracy comparison with the methodology presented in Chapter 3 is carried out. 

Chapter 5 presents a methodologic proposal based on ML methods using IMs as structural features applied 

to a proposed archetype moment-resisting three-dimensional frame model buildings to detect their post-

earthquake damage condition. A structural design methodology of the archetype members based on the 

virtual work method is proposed. The bias of the selection of buildings and ground motion records is 

evaluated. 

Chapter 6 presents conclusions and recommendations based on the proposed methodologies for future 

research. 
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Chapter 2. CNN–Based Damage Detection using Wavelet Spectra for LMM Buildings 

2.1  Introduction 

This study proposes a methodology to use machine learning methods and roof sensors to predict damage 

conditions (represented by ductility ratio, story drift ratio, and acceleration, as defined in section 1.1) on 

each building floor (represented by a lumped mass model) under earthquake conditions. In the beginning, 

the earthquake responses of a model building are calculated under the scaled earthquake records with 

several intensities (scale factors). The level of intensity is established to obtain a range of elastic and 

inelastic behavior of the building. Then, wavelet spectra are developed from the structural response 

accelerations on the upper floor of the building. The wavelet spectra are the input data of a CNN model to 

predict the absolute acceleration, ductility ratio, and story drift ratio on each floor, which correspond to the 

damage to the nonstructural and structural components of the building. This study was published by the 

author in [27]. 

This chapter contains sections as follows: In Section 2.2, a review of relevant literature is presented. Section 

2.3 and 2.4 discusses the research methodology, which defines the structural model and responses, wavelet 

spectrum, and Convolutional Neural Network used in this study. Section 2.5 presents the case study, input 

ground motion, and scale factor of records. The Machine learning methodology is described in section 2.6. 

The results and the comparison of the prediction and reference values of the case study are shown in Section 

2.7. Section 2.8 presents a summary and discussion of the research results. 

2.2 Literature review 

Goulet et al. proposed a methodology that updates the prediction of the damage state of uninspected 

monitored buildings as the model learns from collected data of the damage state of inspected buildings [25]. 

This proposal was validated in a city with 1000 buildings. Furthermore, Sivasuriyan et al. reviewed a large 

number of studies on the practical implementation and operations of SHM in multi-story buildings, as well 

as damage evaluation of monitored buildings, and discussed the structural response by considering static 

and dynamic analysis using numerical simulations such as finite element analysis [10]. Wang et al. 

developed a method to evaluate the story damage index based on the modal frequency and mode shape 

obtained from the records of the earthquake response of a building [28]. Furthermore, an approximate story 

damage index was developed without considering the information on the floor mass to identify the extent 

of damage to the story. Although it was possible to verify the damage index by some numerical simulations 

and the experimental data analysis established previously, it was necessary to calculate the modal frequency 

and mode shapes from the post-earthquake structural responses of each story and to compare with the values 

of the building before the earthquake. It is worth pointing out that a large number of sensors will require a 

high investment. For this reason, Xu et al. estimated the maximum drift and time histories of relative 

displacement in all stories of multi-degree-of-freedom structures considering only one accelerometer, 

verifying the method's effectiveness by considering the robustness, installation location, and truncation 

error [29]. 

Deep Learning (DL) is a subset of ML inspired by the work of neurons in a brain. DL makes a multi-layer 

neural network computation to perform this task [30]. CNN is a part of DL that works by analyzing visual 

imagery. CNN is the ML method used in this study. CNN is a tool for solving the problem of pattern 

recognition related to image and video recognition, classification, natural language processing, and others. 

An overview of CNN as a subset of AI, ML, and DL is shown in Figure 2.1. 
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Figure 2.1. Overview of CNN as a subset of AI, ML and DL. 

Oh et al. studied a method of predicting the time histories of displacement of building structures from the 

measured acceleration responses on each floor based on a CNN, considering that the time series of structural 

acceleration response is similar to pixel-based image data (every acceleration value corresponds to one 

pixel), which is the basic input data in CNN [31]. Their proposed method was validated from a numerical 

process using the ASCE benchmark model and an experimental test on a reinforced concrete frame 

structure. However, the structural model and dynamic responses used in the studies exhibited linear 

behavior. Tsuchimoto et al. proposed a rapid safety evaluation of multi-story buildings using sparse 

acceleration measurements [23]. Their proposed method predicts the maximum story drift ratio. It ultimately 

classifies the damage into three classes, namely “Safe”, “Restricted Use”, and “Unsafe” from a damage-

sensitive feature (comparison between linear and nonlinear acceleration measurement responses) and 

ground acceleration as input data. Subsequently, Tsuchimoto et al. modified the previous method for high-

rise buildings and validated considering an experimental test of a large-scale structure (1/3-scale 18-story 

steel building tested on the shaking table at E-Defense in Japan) [32]. Since CNN can manage a large amount 

of data through the pixels of the images, its accuracy is commonly higher than that of other ML methods. 

For example, Hasan et al. developed a comparative analysis to classify vegetation species using three ML 

methods: the support vector machine (SVM), artificial neural network (ANN), and CNN, and the accuracy 

obtained was 91%, 94%, and 99%, respectively [33]. Keeling et al. compared CNN with ML methods for 

text classification, including Logistic Regression, SVM, and Random Forest. The precision rate of 75% 

showed that CNN performs slightly better than others on average [34]. Jiang et al. compared the 

performance in image classification of capsule network (CapsNet), CNN, and fully convolutional network 

(FCN) methods, concluding in general that the CNN and FCN models obtained a better performance than 

CapsNet [35]. 

There are two main characteristics observed on the ground motion records due to earthquakes. The first is 

the non-stationary characteristics in which the intensity of the ground motion varies with time; they are 

represented by the acceleration, velocity, and displacement. The second is the non-stationary characteristics 

in which the frequency content of the ground motion varies with time; they depend on several parameters 

such as magnitude, source and path effects, local site conditions, etc. [36]. Time–frequency distribution 

analysis is a method of obtaining a two-dimensional spectral function (there are several types of functions 

according to resources and needs) from a one-dimensional signal (ground motion or time–history structural 

response) that reflects the time and frequency of the original signal and is suitable to analyze the changes 

in the linear and non-linear structural responses with only one function. For instance, Tao et al. used the 
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matching pursuit decomposition algorithm to analyze the time–frequency distribution of the ground motion 

and verify the effect on the dynamic response of a nonlinear structure, and finally, this method reveals the 

effect of the ground motion on the nonlinear structural response [37]. Moreover, Cao et al. demonstrated 

the effect of energy concentration on the structural nonlinear response by using the wavelet transform to 

obtain a local spectrum and change the energy distribution over time for several earthquake records [38]. 

Spanos et al. analyzed the undamaged and damaged condition of a 20-story steel frame building using the 

harmonic wavelet transform applied to structural responses to obtain the variation of the effective natural 

frequencies due to the influence of the nonlinearity developed during the seismic event [39]. Balafas and 

Kiremidjian used the continuous wavelet transform of the input and output acceleration measurements to 

extract damage sensitive features for seismic damage estimation in civil structures [40]. Noh et al. proposed 

an ex-traction method of three damage-sensitive features using wavelet transform spectrum for structural 

damage diagnosis and applied them to experimental data of a reinforced concrete bridge column and a four-

story steel moment-resisting frame structure [41]. In general, time–frequency distributions are two-

dimensional spectral functions that can be used as input data for a CNN to predict dynamic issues related 

to structural engineering. For example, Xu et al. proposed a methodology to recognize and classify different 

types of vibrational events (digging, walking, vehicles passing, and damaging) [42]. First, they de-noise the 

unknown signal and use the short-time Fourier transform (STFT) to obtain the time–frequency spectra and 

input them to the CNN for automatic feature extraction and classification. The proposed method used the 

support vector machine method to compare the obtained recognition rates of vibration events over 90% 

with the previous soft-max classifier. Dokht et al. used a CNN and STFT to consider a dataset of over 4900 

earthquakes recorded over 3 years in Canada to classify between earthquake and noise signals. They also 

used another CNN and wavelet spectrum to classify and separate P from S waves and estimate their 

approximate arrival times [43]. Their results achieved an average accuracy of nearly 99% for both networks. 

Mousavi et al. proposed a detector based on a deep neural network (CNN belongs to this field) called CNN-

RNN Earthquake Detector, which is a network that combines a CNN and a recurrent neural network, 

specifically the bidirectional long-short-term-memory method, to learn the time-frequency characteristics 

of the dominant phases in an earthquake signal from three-component data recorded at a single station, 

having an accuracy of 99.95% [44]. 

Recently, studies have been conducted in the field of structural engineering to develop CNN models that 

use the time domain responses as input data. For instance, Ghahremani B. et al. used the fast S-transform 

from the structural acceleration response as an input map of a CNN model [45]. Similarly, Wang X. et al. 

applied the Hilbert–Huang time–frequency spectrum in a 2D CNN model to identify damage conditions of 

a benchmark structure [45]. Furthermore, Lu X. et al. developed a CNN-based rapid post-event seismic 

damage evaluation methodology using the continuous wavelet transform (CWT) to extract the time and 

frequency features of the ground motion acceleration [24]. Zhang et al. developed a physics-guided 

convolutional neural network (PhyCNN) for data-driven structural seismic response modeling. The 

proposed PhyCNN considers the ground motion as input and the structural responses as output data to learn 

the feature mapping between them [46]. Moreover, Teng S. et al. used the acceleration response in a one-

dimensional (1D) CNN followed by a decision-level fusion strategy to improve the accuracy of structural 

damage detection [47]. Other studies considered more than one structural parameter to increase the features 

of the input data. Park H. et al. established a CNN-based strain prediction technique that enables structural 

safety evaluations in cases of the absence or defect of strain sensors. The CNN model used dynamic 

acceleration and displacement responses as input data to predict the strains of structural members [48]. Xu 

Y. et al. used 48 intensity measures to represent ground motion characteristics as input data to indicate the 

damage state of structures [26]. 

On the other hand, studies have been conducted using frequency domain responses to improve the accuracy 

of CNN prediction. For example, Oh B.K. et al. built a CNN model using the displacement response, 

displacement frequency, and the wind speed frequency of tall buildings as input maps to estimate the safety 

of instrumented columns from their maximum and minimum strains [49]. Additionally, Liu T. et al. used 

the transmissibility function (ratio of the cross-spectral density and the auto-spectral density of the 
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response) as input data for a 1D CNN to identify structural damage [50]. In addition, Liao et al. proposed 

an identification method for a structural seismic response using a wavelet spectrum as input data in a CNN 

to distinguish the responses during an earthquake event under serviceability conditions [51]. Linear and 

nonlinear behaviors are considered in the research. 

According to previous studies, the CNN method in the SHM field has advantages over other methods in 

terms of higher accuracy by updating the model after each earthquake, flexibility to combine different 

methodologies, wide application areas, etc., however, it requires a large database of known data to train the 

model. 

2.3 Research methodology 

Figure 2.2 shows two processes for obtaining the trained and validated ML (CNN) model in this 

methodology. They are called the training process (TP) and the validation process (VP). The records are 

divided into two parts for each process. 80% of the records are used for the TP and 20% for the VP. 

 

Figure 2.2. Methodology flowchart to obtain the trained and validated CNN model using WS. 

The TP has two subprocesses: the data preparation process and the training of the model process. The input 

data (WS) and the output reference (ductility ratio, story drift ratio, or acceleration on each floor) are 

obtained from the IDA in the data preparation process. The trained CNN model is obtained in TP and used 

in the VP. 
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In the VP, the data preparation process is used in order to predict new input data and output references. 

Subsequently, the trained CNN model (from the TP) is validated when the highest accuracy is found by 

comparing it to structural damage identification. 

2.4 Structural model, wavelet spectrum, and CNN 

2.4.1 Structural model and responses for damage identification 

In this study, a lumped mass model (LMM) is considered as the structural model of the building, which 

takes into account the concentrated mass and the hysteresis model in each story of a low- to mid-rise 

building as shown in Figure 2.3(a). The structural responses (displacement and acceleration) of each story 

of the LMM under the ground motion acceleration are obtained by a time history response analysis using 

the STERA_3D software [52]. The process is shown in Figure 2.3(b). 

 

 
(a) (b) 

Figure 2.3. Structural model. (a) Lumped mass model; (b) Structural responses from and inelastic time-

history structural analysis. 

This study identifies the damage condition from each story's ductility, inter-story drift ratio, and 

acceleration, as shown in Table 1.1. 

2.4.2 Wavelet spectrum 

Various transformation functions are used to extract the characteristics of a signal. For example, the Fourier 

transform can be used to obtain the frequency components of a signal, but it cannot capture the changes 

over time. On the other hand, if the frequency component varies with time, there are methods such as using 

the instantaneous frequency or the short-time Fourier transform, both of which have the property that the 

resolution of time and frequency is constant. However, in actual analysis, it is often the case that low 

frequency components change slowly over time, while high frequency components change rapidly over 

time. In the wavelet transform, the optimal time and frequency resolution for each component can be 

obtained by changing the time resolution according to the frequency of the signal component (see Figure 

2.4 and Figure 2.5, respectively). 
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Figure 2.4. Types of dilation of the mother wavelet function. 

 

Figure 2.5. Translation of wavelets over time. 

Wavelet functions convolute the original signal into a space and scale field. The scale decomposition 

(related to the frequency domain) is obtained by dilating and shortening the wavelet. On the other hand, 

space decomposition comes from their variability in time (position) [53,54]. 

The wavelet signal is called the mother wavelet. The wavelet used in this study is the Morlet wavelet 

(complex-valued wavelet), which is the product of a sine (complex exponential) wave and a Gaussian 

envelope, as defined by Equation 2-1[54]: 

𝜓0(𝑥) = 𝜋
−
1
4 ∙ 𝑒−

𝑥2

2 ∙ 𝑒−𝑖𝜔0𝑥  Equation 2-1 

where 𝜔0 is the nondimensional frequency. In this study, ω0 is taken to be 6 in order to accomplish the 

admissibility property, according to [53]. Subsequently, 𝜓0 will be normalized to keep constant the total 

energy when it is scaled. Furthermore, the parameters “𝑎” and “𝑏” are included in the Morlet wavelet in 

order to modify the scale and space (translation), respectively. The normalized Morlet wavelet is defined 

by Equation 2-2. 

𝜓 [
(𝑡 − 𝑏)𝛿𝑡

𝑎
] = (

𝛿𝑡

𝑎
)
1/2

∙ 𝜓0 [
(𝑡 − 𝑏)𝛿𝑡

𝑎
] Equation 2-2 

 

The continuous wavelet transform (CWT) of a discrete signal s(t) is defined by Equation 2-3: 

𝑊(𝑎, 𝑏) = ∑ 𝑠(𝑡)𝜓
∗ [
(𝑡 − 𝑏)𝛿𝑡

𝑎
]

𝑁−1

𝑡=0

 Equation 2-3 

where “𝑁” is the number of samples of the signal and the asterisk symbol (*) indicates the complex 

conjugate of the wavelet. 
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The continuous wavelet transform (CWT) of a signal s(t) is given by Equation 2-4: 

𝑊(𝑎, 𝑏) =
1

√𝑎
∫ 𝑠(𝑡)𝜓∗
∞

−∞

(
𝑡 − 𝑏

𝑎
) 𝑑𝑡 Equation 2-4 

CWT is a complex function because of the Morlet wavelet. Therefore, the module of CWT is the wavelet 

spectrum (𝑊𝑆), defined by Equation 2-5: 

𝑊𝑆(𝑡, 𝑓) = |𝑊(𝑎, 𝑏)| = √𝑊𝑟𝑒𝑎𝑙
2 +𝑊𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

2  Equation 2-5 

Therefore, the wavelet transformation permits transformation from a signal to a spectrum (wavelet 

spectrum) in two dimensions (time and frequency) with coefficients (scales) that represent the intensity of 

the signal, in the time-domain and frequency-domain. The wavelet spectrum shows the highest intensity of 

the wave on the time-domain and frequency-domain only in one graph (Figure 2.6b). As a reference, Figure 

2.6a shows the acceleration wave, and Figure 2.6c shows a 3D graph of the wavelet spectrum. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.6. Wavelet spectrum (a) Acceleration wave; (b) 2D spectrum; (c) 3D spectrum. 

This is a powerful tool for extracting the characteristics of the waveform signals such as response 

acceleration, velocity, and displacement. Thus, the wavelet spectrum of the acceleration response waveform 

obtained from the accelerometer installed in the building is computed in this study and used as an input to 

the CNN model. 

2.4.3 Convolutional neural network 

An image is processed by a computer as a grayscale image (image from now on) represented by an 

arrangement of numbers. For example, in Figure 2.7, the right matrix contains numbers between 0 and 255, 

each of which corresponds to the pixel brightness in the left image [55]. 
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Figure 2.7. Digital image by an arrangement of pixels represented as numbers. 

The convolution of the input image is performed by applying a set of weights, also known as a kernel or 

filter, as shown in Figure 2.8 [56]. 

 

Figure 2.8. Convolution process of a part of an image by matrix multiplication (the symbol (*) means the 

convolution operator.) 

A convolutional process is a mathematical operation of two functions. The functions used in CNN are 

arrays of data. The set of images is the first array, and the second is a set of filters used to extract and learn 

the main features of the first one. They are called kernels (K) or feature detectors. Since CNN is part of the 

ANN, a kernel is a set of updatable weights for the training process of the CNN model. 

According to the prediction project, CNN uses one-, two-, or three-dimensional space. This study used a 

two-dimensional space. Equation 2-6 defines the convolutional operation in CNN [57]: 

𝐹𝑀(𝑎,𝑏) = (𝐼𝑚𝑔 ∗ 𝐾)(𝑎,𝑏) =∑∑𝐾(𝑐,𝑑) ∙ 𝐼𝑚𝑔(𝑎−𝑐,𝑏−𝑑)
𝑑𝑐

 Equation 2-6 

where FM is the feature map, 𝐼𝑚𝑔 is the image used as input data, and 𝐾 is the kernel array. In this study, 

CNN uses the images obtained from the WS. 

In the CNN method, images are used as input data, and for every input data set, the features of the input 

data are extracted by the convolution of the kernels. However, this convolution step loses information that 

might exist on the border of the image because they are only captured when the kernel slides (the kernel 

must start and finish its process on the image borders) [58]. For this reason, the size of the input image is 

reduced as shown in Figure 2.8 (from input size: 3 × 3 to output size: 2 × 2). In order to obtain the same 

size as the original input, it is possible to apply the “same padding”, also called “zero-padding”, method 

(used in this study), which means the input is filled with zeros along its border as shown in Figure 2.9. 

 



Chapter 2: CNN–Based Damage Detection using Wavelet Spectra for LMM Buildings 

16 
 

 

Figure 2.9. Same padding method. 

Then, every resultant matrix is evaluated by a nonlinear activation function to allow for the learning of 

more complex models. The nonlinear activation function (activation function from now on) used in this 

study is the rectified linear unit (ReLU), defined as the function Y = max(X, 0) [57], defined by Equation 

2-7 and shown in Figure 2.10: 

𝑦 = {
0,   𝑖𝑓 𝑥 < 0
𝑥,   𝑖𝑓 𝑥 ≥ 0

 Equation 2-7 

 

 

Figure 2.10. ReLU activation function. 

Finally, the new input data, the feature maps, are obtained. The process from the input data to the feature 

maps using the previous definitions is called the typical convolutional layer and is formed from the 

convolutional process, padding, and activation function methods, as shown in Figure 2.11. and Figure 2.12. 

 

Figure 2.11. Typical convolutional layer. 
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Figure 2.12. Typical convolutional layer. 

The typical convolutional layer is followed by a pooling layer to reduce the number of operations since the 

number of parameters increases as the network processes more kernels. A type of pooling layer is the 

“maximum pooling” or “max pooling” process, which takes the maximum value sliding along the feature 

map [55], as shown in Figure 2.13 . 

 

Figure 2.13. Maximum pooling process. 

The pooling layer is required for image classification. It adjusts the features’ robust-ness to noise and 

disorder by reducing the resolution of the previous feature maps [57]. Since the pooling layer reduces the 

resolution and sizes of the feature maps, it results in a lower computational cost. Moreover, a hierarchical 

architecture is used in advance to propose the number of convolutional layers for the CNN architecture 

model [59]. 

Subsequently, the last convolutional layer is fully connected to the 1D layer or the flattening layer [57] 

(matrix of one column) as shown in Figure 2.15. This layer is connected to the dense layer, which provides 

the predicting results. In order to optimize the convergence and measure the error between the predicted 

and reference output, “Adam” [60] and mean squared error (𝑀𝑆𝐸) are used as the optimizer function and 

the loss function. Equation 2-8 defines 𝑀𝑆𝐸, where 𝑦𝑝𝑟𝑒𝑑 is the prediction output, 𝑦𝑟𝑒𝑓 is the reference 

output, and N is the number of samples, in an iterative process. 
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𝑀𝑆𝐸 = 
1

𝑁
∙ ∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑟𝑒𝑓)

2𝑁
𝑖=1 , Equation 2-8 

The criteria of the error measure could be modified in order to improve the forecasting accuracy [61]. The 

predicted results are the structural responses of each story of the target building. As mentioned, the 

structural responses are used as damage indicators. 

Figure 2.14 shows a general CNN model. The input, convolutional, pooling, and fully connected layers 

compose the architecture of the CNN model. Each target building has a particular CNN model architecture, 

which depends on its accuracy after evaluation. 

 

Figure 2.14. A general CNN model. 

In this study, after several trainings, 17 convolutional layers are finally used in the proposed CNN model. 

Moreover, the models with and without the maximum pooling layer were trained, and the model without 

the maximum pooling layer converged on the output prediction more effectively. Therefore, the pooling 

layer is not used in the proposed CNN model. Also, the flattening matrix contains structural responses for 

the damage identification, which can be the ductility ratio, story drift ratio, and acceleration. Figure 2.15 

shows the CNN scheme used in this research. 

 

Figure 2.15. Convolutional neural network scheme. Structural response: ductility ratio, story drift ratio, or 

acceleration. 

Table 2.1 shows the architecture of the CNN for the structural response prediction method. This was 

finalized by extensive analysis of trained CNNs in advance. In Table 2.1, “N° kernels” is the number of 

filters or kernels assigned in each layer. Ten different kernels are used for the first layer and eight kernels 

are used for the other layers. Two types of kernel initializer are used in this study. “He_Normal” is used for 

the first four convolutional layers and “glorot_uniform” is used for the rest of the others. The kernel size is 

10 x 10 for the first convolutional layer and 3 × 3 for the rest. The “same padding” and ReLU activation 

function are used in all convolutional layers. 
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Table 2.1. CNN architecture for the structural response prediction method. 

N° of Layer 
N° 

Kernels 
Kernel Size Padding Kernel Initializer 

Activation 

Function 

Convolutional Layer 01 10 10 × 10 Same He Normal ReLU 

Convolutional Layer 02 8 3 × 3 Same He Normal ReLU 

Convolutional Layer 03 8 3 × 3 Same He Normal ReLU 

Convolutional Layer 04 8 3 × 3 Same He Normal ReLU 

Convolutional Layer 05 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 06 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 07 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 08 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 09 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 10 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 11 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 12 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 13 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 14 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 15 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 16 8 3 × 3 Same glorot_uniform ReLU 

Convolutional Layer 17 8 3 × 3 Same glorot_uniform ReLU 

 

Figure 2.16 shows the convergence curve of the CNN model using the CNN architecture shown in Table 

2.1, where “Loss” is the value of the loss function, and “Number of epochs” is the number of training 

iterations over the input data [56]. 

 

Figure 2.16. Converge curve of the trained CNN. 

Firstly, the CNN model is trained with known input and output data. This is called the “training process”. 

Subsequently, new unknown input data are used to validate the trained CNN model by comparing the output 

data (structural responses for damage identification) with the reference structural responses. This process 

is called the “validation process” and the MSE function is used to evaluate the error. 

2.5 Case study and input ground motion 

2.5.1 Case study 

The case study is a building of five stories with the following considerations (see Table 2.2 for more details): 

• The fundamental period is considered the following: T1 = 0.025 H (H: total height of the building). 

The height of each story (h) is 4.0 m, then, H is 20 m and T1 is 0.5 s. 
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• LMM is used for the model of the building, and the bilinear hysteresis model (see Figure 2.17) is 

used to represent the nonlinear relationship between shear force and story drift for each story. 

• The structural responses for damage identification (ductility ratio, story drift ratio, and acceleration) 

under earthquake ground motions are calculated by STERA 3D software [52]. 

Table 2.2. Structural configuration of the case study. 

Description Nomenclature (Units) Value 

Number of stories N 5 

Story height h (m) 4 

Building height H (m) = h × N 20 

Width B (m) 30 

Area of floor A = B2 (m2) 900 

Weight per floor area w (kN/m2) 12 

Weight of floor W (kN) 1080 

Fundamental Period T1 (s) 0.5 

 

In order to build the bilinear hysteresis model, the yielding shear force (Qi) is calculated to be equal to the 

design shear force under the horizontal seismic load according to Japanese code. Moreover, the story 

stiffness (ki) is calculated so that the first mode shape becomes a triangular shape. Table 2.3 shows the 

parameters used in this study to define the bilinear hysteresis model in each story. The post-yield stiffness 

ratio (k2/k1, see Figure 2.17) is 0.1 for each story. 

 

Figure 2.17. Bilinear hysteresis model for each story. 

Table 2.3. Parameters of the bilinear hysteresis model used in the case study. 

Story ki (kN/mm) Qi (kN) 

5 87 587.87 

4 157 954.15 

3 209 1240.66 

2 244 1460.87 

1 261 1620.00 

2.5.2 Input ground motion 

Table 2.4 shows the 25 earthquake ground motions considered in this study. Every earthquake contains two 

directions (E–W and N–S). Consequently, the total number of records used is 50. As mentioned, there are 

two processes in the CNN method—the training and the validation processes. For this reason, the records 

are subdivided into two groups. The number of records for the training is 40 (20 earthquakes) and the 

number of records for the validation is 10 (5 earthquakes). This obeys the split ratio recommended for 

typical CNN procedures (80% training records and 20% validation records). The earthquakes are selected 
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randomly to avoid extracting the same characteristics between different records. Figure 2.18 shows the 

acceleration response spectrum of the 50 records scaled to have the same values at the fundamental period 

of the structure (T1 = 0.5 s) as Sa (T1) = 100 gal. 

Table 2.4. Earthquake ground motions. 

N°  Name  Location Station Reference Magnitude Date 

 Training Process *     

01 Anza_01 USA 
33.706N, 116.235W/Ground Floor: South 

Wing 
Mw = 5.2 12/06/2005 

02 Anza_02 USA 
33.706N, 116.235W/Roof: Center Hallway 

of S. Wing 
Mw = 5.2 12/06/2005 

03 El Centro 1940 USA Imperial Valley Earthquake Mw = 6.9 18/05/1940 

04 Kobe 1995 Japan 
Great Hanshin Earthquake/Kobe Marine 

Observatory 
Mw = 6.9 17/01/1995 

05 Loma Prieta_01 USA 
36.974N, 121.952W/Capitola—Fire 

Station 
Ms = 7.1 18/10/1989 

06 Loma Prieta_02 USA 
36.973N, 121.572W/Gilroy #1—Gavilan 

College 
Ms = 7.1 18/10/1989 

07 Loma Prieta_03 USA 
36.987N, 121.536W/Gilroy #3—Gilroy 

Sewage Plant 
Ms = 7.1 18/10/1989 

08 Loma Prieta_04 USA 
37.046N, 121.803W/Corralitos—Eureka 

Canyon Rd. 
Ms = 7.1 18/10/1989 

09 Loma Prieta_05 USA 37.118N, 121.550W/Coyote Lake Dam Ms = 7.1 18/10/1989 

10 Loma Prieta_06 USA 
37.255N, 122.031W/Saratoga—Aloha 

Ave. 
Ms = 7.1 18/10/1989 

11 Northridge_01 USA 
34.068N, 118.439W/Los Angeles—UCLA 

Grounds 
Mw = 6.7 17/01/1994 

12 Northridge_02 USA 
34.236N, 118.439W/Arleta—NordHoff 

Ave. Fire Station  
Mw = 6.7 17/01/1994 

13 Northridge_03 USA 
34.387N, 118.530W/Newhall—LA County 

Fire Station 
Mw = 6.7 17/01/1994 

14 Petrolia_01 USA 40.325N, 124.287W/Petrolia Mw = 7.0 25/04/1992 

15 Petrolia_02 USA 
40.503N, 124.100W/Rio Dell—

101/Painter St. Overpass 
Mw = 7.0 25/04/1992 

16 Petrolia Aftershock_01  USA 
40.325N, 124.287W/Petrolia/04/26/92, 

07:41:40 UTC 
Ms = 6.6 26/04/1992 

17 Petrolia Aftershock_02  USA 
40.325N, 124.287W/Petrolia/04/26/92, 

11:18:25 UTC 
Ms = 6.6 26/04/1992 

18 Petrolia Aftershock_03  USA 
40.026N, 124.069W/Shelter Cove—

Airport 
Ms = 6.6 26/04/1992 

19 Whittier_01 USA 
34.037N, 118.178W/Los Angeles—

Obregon Park 
Ml = 6.1 01/10/1987 

20 Whittier_02 USA 
34.160N, 118.534W/Tarzana—Cedar Hill 

Nursery 
Ml = 6.1 01/10/1987 

 Validation Process *     

21 Palm Springs USA 33.962N, 116.509W/Desert Hot Springs Ml = 6.1 08/07/1986 

22 Petrolia California USA 40.325N, 124.287W/Petrolia Ml = 5.9 17/08/1991 

23 Taft 1952 USA Kern County, California Earthquake Mw = 7.3 21/07/1952 

24 Tohoku 1978 Japan 
Miyagi Earthquake/Recorded at Tohoku 

University 
Ms = 7.7 12/06/1978 

25 Westmorland USA 33.037N, 115.623W/Westmorland Ml = 6.0 26/04/1981 
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Figure 2.18. Acceleration response spectrum of 50 records scaled to have the same values at the fundamental 

period T1 = 0.5 s. 

2.5.2.1 Scale factor of records 

The linear and nonlinear behavior of the structure is obtained by using different in-tensities of earthquake 

ground motions. Thus, the records are scaled to include a wide range of earthquake intensity. In order to 

evaluate the range of the scale factors, an incremental dynamic analysis with the structural responses for 

damage identification is conducted by taking into account the variation of the Peak Ground Acceleration 

(PGA), and the ordinate of the response acceleration spectrum evaluated on the fundamental period of the 

structure (Sa(T1)). 

Figure 2.19 presents the incremental structural responses for damage identification (ductility ratio, story 

drift ratio, and acceleration) in each story for the input ground motion “El Centro 1940” (Figure 2.19a) and 

“Northridge” (Figure 2.19b) using the same scale factor applied to Sa(T1) such that the minimum scale 

factor produces Sa(T1) = 100 gals and the maximum scale factor produces Sa(T1) = 1500 gals. Figure 2.19a 

shows the structural response under the maximum PGA of El Centro up to 500 gals. As shown in Figure 

2.19b, the maximum PGA of Northridge must be around 1000 gals to achieve the same degree of response. 

Furthermore, the PGA of the threshold of the nonlinear behavior is around 150 gals in Figure 2.19a (El 

Centro) and 250 gals in Figure 2.19b (Northridge). On the other hand, the relationship between the 

responses and Sa(T1) is roughly the same in Figure 2.19a (El Centro 1940) and Figure 2.19b (Northridge). 

Therefore, the Sa(T1) is more stable for characterizing the structural response of the structure. For this 

reason, the scale factor is based on Sa(T1) such that the minimum scale factor produces Sa(T1) = 100 gals, 

and the maximum scale factor produces Sa(T1) = 1500 gals and Sa(T1) = 1000 gals to train and validate 

the CNN model, respectively. Figure 2.20 shows the Acceleration Response Spectra of the “Loma Prieta” 

input ground motion considering the minimum and maximum scale factor and the original value. 
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Figure 2.19. Incremental structural responses for damage identification in each story (a) “El Centro 1940” 

input ground motion; (b) “Northridge” input ground motion. 

 

 

(a) 

 

 

(b) 
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Figure 2.20. Acceleration response spectra of the “Loma Prieta” input ground motion (the red line is with the 

maximum scale factor such that it produces Sa(T1) = 1500 gal, the green line is with the minimum scale 

factor such that it produces Sa(T1) = 100 gal, and the black dashed line considers the original input ground 

motion.) 

2.6 Machine learning methodology 

The methodology for predicting the structural responses for damage identification was as follows: 

• The wavelet spectrum was obtained from the time–history acceleration response on the upper floor 

of the building. The frequency range was from 0.1/T1 to 5/T1, where T1 is the fundamental period 

of the case study structure (T1 = 0.5s), which is from 0.2 Hz to 10 Hz. This covered the high and 

low frequencies produced during high mode vibrations and nonlinear frequencies. 

• There were two sets of scale factors for the training and validation of CNN processes. 

• The training scale factor set was the minimum scale factor, which produces Sa(T1) = 100 gal, to 

the maximum, which produces Sa(T1) = 1500 gal, at increments of 50 gal. 

• The validation scale factor set was the minimum scale factor, which produces Sa(T1) = 100 gal, to 

the maximum, which produces Sa(T1) = 1000 gal, at increments of 25 gal. 

• There were 1160 structural analyses conducted for the training process by considering 40 records 

with 29 scale factors, while there were 370 structural analyses conducted for the validation process 

by considering 10 new records with 37 scale factors. Therefore, 1530 structural analyses carried 

out were used in this study. 

The application of the methodology to predict the structural responses for damage identification was 

conducted as follows: 

TRAINING PROCESS 

• STEP 01: 40 training records are scaled with 29 scale factors per record. As a result, 1160 scaled 

records are generated. 

• STEP 02: 1160 structural analyses are carried out for the structural model of the case study. As a 

result, 1160 absolute acceleration data on the upper floor are obtained. Additionally, the responses 

for damage identification (ductility ratio, story drift, and acceleration) are computed from the 

structural analyses for validating and calibrating the CNN model. 

• STEP 03: 1160 wavelet spectra are obtained from the absolute acceleration of the previous step. 

The wavelet spectra are the input data for training the CNN model. 

• STEP 04: The CNN model is trained for each structural response for damage identification 

(ductility ratio, story drift ratio, and acceleration). 
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VALIDATION PROCESS 

• STEP 01: 10 validation records are scaled with 37 scale factors per record. As a result, 570 scaled 

records are generated. 

• STEP 02: 370 structural analyses are carried out for the structural model of the case study. As a 

result, 370 absolute acceleration data on the upper floor are obtained. Additionally, the responses 

for damage identification (ductility ratio, story drift, and acceleration) are computed as reference 

outputs to validate the prediction. 

• STEP 03: 370 wavelet spectra are obtained from the absolute acceleration of the previous step. The 

wavelet spectra are the input data for predicting the structural response for the damage 

identification using the trained CNN model. 

• STEP 04: Prediction outputs are calculated using the CNN model for each structural response for 

damage identification (ductility ratio, story drift ratio, and acceleration). 

• STEP 05: The reference and prediction outputs are compared. 

2.7 Prediction and validation of the case study 

An example of the analysis results is shown in Figure 2.21. Figure 2.21a shows the ductility ratio results 

under the scaled Petrolia California E–W records, comparing the prediction (horizontal axis) and the 

reference (vertical axis). In the figure, the straight line represents the perfect prediction. The points represent 

the results of each story and scale factor defined in Sections 2.1 and 2.4. Additionally, Figure 2.21a shows 

the regions that define the damage condition. The green, yellow, orange, and red regions represent the no 

damage, minor damage, significant damage, and severe damage conditions, respectively. The collapse 

condition is considered for any value greater than the severe damage condition. The dashed red rectangle 

encloses the region for any value that is greater than the minor damage condition and means that the use of 

the building is restricted or unsafe (condition for evacuating the building). Figure 2.21b shows an example 

of the prediction and reference values of each story for a scale factor that produces Sa(T1) = 900 gal. 

 

 
 

(a) (b) 

Figure 2.21. Example of the ductility ratio results (Petrolia California E–W record); (a) Comparison between 

prediction and reference values (points) and damage condition regions; (b) Prediction and reference ductility 

ratio of each story for a scale factor that produces Sa(T1) = 900 gal. 

Figure 2.22 shows the results of the ductility ratio, story drift ratio, and acceleration for the validation 

process under the scaled Petrolia California N–S records. The regions that define the damage condition are 

also shown in the figure. As seen in Figure 2.22b, the story drift ratios do not reach the significant damage, 

severe damage, and collapse condition. Likewise, the restricted or unsafe use condition is not reached. 
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Figure 2.23 shows the prediction and reference values of the ductility ratio, story drift ratio, and acceleration 

on each floor considered under the same record for a scale factor that produces Sa(T1) = 875 gal. 

  
(a) (b) 

 
(c) 

Figure 2.22. Comparison between reference and prediction of the Petrolia California N–S record for the 

validation process of (a) Ductility ratio; (b) Story drift ratio, and (c) Acceleration. 

   

(a) (b) (c) 

Figure 2.23. Prediction and reference values on each floor of the Petrolia California N–S record and scale 

factor that produces Sa(T1) = 875 gal for the validation process of (a) Ductility ratio; (b) Story drift ratio, and 

(c) Acceleration. 

The coefficient of correlation (r) is used to measure the accuracy of the CNN model in this study, and it is 

defined as shown in Equation 2-9: 

𝑟 =

1
𝑁
∙ ∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)(𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅̅ )𝑁

𝑖

√1
𝑁
∙ ∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖 ∙ √
1
𝑁
∙ ∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅̅ )2𝑁

𝑖

 Equation 2-9 

where 𝑦𝑝𝑟𝑒𝑑 is the prediction output by the CNN model, 𝑦𝑟𝑒𝑓 is the reference output by the structural 

analysis, (𝑦𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅) and (𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅̅  ) are the mean of 𝑦𝑝𝑟𝑒𝑑 and 𝑦𝑟𝑒𝑓, respectively, and N is the number of samples. 

Table 2.5 shows the r-values for the validation process. The average values of the r-values of the ductility 

ratio, story drift ratio, and acceleration are 0.905, 0.846, and 0.829, respectively. In particular, the accuracy 

of the estimation of the ductility ratio is the highest. 
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Table 2.5. Coefficient of correlation for the validation process. 

N° Record Ductility Ratio Story Drift Ratio Acceleration 

01 Palm Springs E–W 0.953 0.947 0.928 

02 Palm Springs N–S 0.895 0.917 0.951 

03 Petrolia California E–W 0.933 0.845 0.873 

04 Petrolia California N–S 0.972 0.926 0.956 

05 Taft 1952 E–W 0.872 0.771 0.417 

06 Taft 1952 N–S 0.806 0.848 0.870 

07 Tohoku 1978 E–W 0.833 0.466 0.562 

08 Tohoku 1978 N–S 0.943 0.890 0.797 

09 Westmorland E–W 0.925 0.969 0.985 

10 Westmorland N–S 0.916 0.883 0.950 

 Average 0.905 0.846 0.829 

 

2.8 Conclusions and discussion 

In this study, a methodology is proposed to estimate the damage of a building by applying a machine 

learning method from the acceleration response on the upper floor of the building. The results of this 

research are summarized as follows: 

• The maximum ductility factor, inter-story drift ratio, and maximum response acceleration of each 

floor were predicted via a CNN model using the acceleration record at the upper floor of the 

building. 

• The wavelet spectrum of the acceleration record of the upper floor of the building was used as the 

input of the CNN model to account for the non-stationarity of both the amplitude and frequency of 

the building response. 

• A CNN model was trained for the linear to the nonlinear response of a building by in-putting two 

horizontal components of 20 different earthquake ground motions with varying scales. The trained 

CNN model was then validated by inputting the two-directional horizontal components of five 

different earthquake motions to the building with different scales. 

• The correlation coefficients between the predicted values and the reference values by the CNN 

model exceeded 0.8 for all response values, confirming the high accuracy of the model.  

The methodology using only the time– and frequency–domain of the sensor response represented by the 

wavelet spectrum obtains high accuracy for predicting damage conditions. Moreover, the damage condition 

of the building is possible to detect immediately after the earthquake occurs because the ML is trained and 

validated beforehand. However, nonlinear structural analysis of Lumped Mass Models does not consume 

high computation time. Then, evaluating the methodology on three-dimensional frame models where 

irregularity configurations effects are present is recommended, which will be studied in the next chapter. 
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Chapter 3. CNN–Based Damage Detection using Wavelet Power Spectra for Three-Dimensional 

Buildings 

3.1 Introduction 

Damage condition of buildings immediately after an earthquake is one of the most critical indicators for 

future government, owners, and stakeholders' decision-making. For example, in order to tackle federal 

buildings, Mehmet Çelebi from the United States Geological Survey (USGS) reported guidelines for the 

seismic instrumentation of structures as part of a USA project in 2002 [62]. However, the accuracy of the 

structural responses depends mainly on the adopted structural model and the type of structural analysis. For 

example, an LMM is less accurate than a three-dimensional frame model (3D-FM) of high-rise or irregular 

structural configuration buildings. Nevertheless, the computation time with an LMM is much shorter. To 

improve the convergence and computational speed of building structural analyses, Koh et al. proposed an 

improved condensation-based method for 3D-FM. Besides this, Yoon et al. proposed a methodology to 

determine the LMM parameters via non-linear analyses of 3D-FM and applied it to an irregular structural 

configuration and high-rise building [63].  

Chapter 2 developed a framework in which a 2D CNN model predicts the ductility ratio, story drift, and 

the acceleration of each story of the LMM using the acceleration record of a single sensor located on the 

top floor of the building, where the wavelet spectra were obtained from the absolute acceleration of this 

sensor and used as images for the input maps. In this study, the damage identification method proposed is 

updated and improved as follows: 

• The structural models are 3D-FM. This allows all buildings to have different lateral force-resisting 

systems, structural configurations, material types, and elastic and inelastic behavior of their 

members; 

• The structural responses used as damage identifiers are the maximum inter-story drift (SD) and the 

maximum absolute acceleration (AA) of each story of the target buildings; 

• A methodology to select records for each damage identifier is introduced using the Incremental 

Dynamic Analysis (IDA) responses of each target building, where the ground motions are scaled 

in order to cover the elastic and inelastic behavior of the target building; 

• The input map data for the training CNN model uses the Wavelet Power Spectrum (WPS) computed 

from the absolute acceleration response measured by the sensor located on the top floor of each 

target building. 

• The validation of the CNN model is applied to two instrumented buildings in Japan. Additionally, 

an artificial building is validated in both orthogonal directions in order to consider distinct lateral 

force-resisting systems; 

The accuracy of the results is evaluated by comparing the damage condition of the building with the 

reference values. Although training and validating the CNN model is computationally intensive, once the 

CNN model is developed, the CNN algorithm trained for the target building can automatically predict the 

elastic and inelastic structural responses and detect the damage condition immediately after the earthquake. 

This study was published by the author in [64]. 

This chapter contains sections as follows: Section 3.2 presents the methodology, including an overview of 

the proposed research procedure. Section 3.3 shows the general information about the target buildings,  the 

nonlinear structural models used for the target buildings, damage levels based on the story drift ratio and 

acceleration as damage identifiers, and the methodology used to select records from the database to reduce 

the variability of structural responses. Section 3.4 specifies the wavelet power spectrum used as input data 

for the CNN model, and its procedure and characteristics are described. Additionally, it defines the training 
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and validation process used to obtain a trained CNN model. It is applied to the target buildings, and their 

prediction results are shown in Section 3.5. Finally, Section 3.6 presents a summary of conclusions and a 

discussion of the research results. 

3.2 Research methodology 

Figure 3.1 shows the methodology flowchart to obtain the trained CNN model. As mentioned, this study 

uses 3D-FM to cover the most complex buildings and increases the accuracy by selecting spectrum-matched 

records and using WPS. 

 

Figure 3.1. Methodology flowchart to obtain the trained CNN model using WPS. 
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3.3 Case study and input ground motion 

3.3.1 Target buildings 

Three target buildings are considered to validate a CNN model. Two instrumented buildings in Japan are 

Tahara City Hall (steel structural system) and Toyohashi Fire Station (steel-reinforced concrete structural 

system). In addition, one artificial building is considered in order to validate two different RC structural 

systems (both orthogonal directions). 

3.3.1.1 Tahara City Hall building 

The Tahara City Hall is a local government office building located in Toyohashi city of Aichi prefecture in 

Japan (see Figure 3.2). This building is an instrumented building, and the location of the sensor is shown 

in Figure 3.3. The main structural characteristics are as follows: 

• The structural system of the building is a moment-resisting frame in steel; 

• The number of floors is six, and the story heights are 1st story = 4.45 m, 2nd to 4th story = 4.10 m, 

5th story = 4.40 m, and 6th story = 4.35 m; 

• The story weights are 1st story = 15,068 kN, 2nd story = 13,422 kN, 3rd story = 15,290 kN, 4th 

story = 9899 kN, 5th story = 10,387 kN, and 6th story = 11,853 kN; 

• I cross-section and box cross-section for beams and columns, respectively; 

• The X-direction presents an irregular configuration in its elevation (see Figure 3). On-ly the X-

direction is analyzed in this study; 

• The natural period (T1) of the building in the X-direction is 0.681 s (1.468 Hz) with an effective 

modal mass ratio of 0.77. The second mode period (T2) is 0.264 s (3.788 Hz) with an effective 

modal mass ratio of 0.145. The values are obtained from numerical simulations of the structural 

model according to Section 4. 

 

Figure 3.2. Tahara City Hall building. 
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(a) (b) 

 
 

(c) (d) 

Figure 3.3. General drawings of Tahara City Hall building. (a) Plan of 1st story view. (b) Plan of 2nd and 3rd 

stories’ views. (c) Plan from 4th to 6th story view. (d) Elevation of X-direction view. 

3.3.1.2 Toyohashi Fire Station building 

The Toyohashi Fire Station is a fire station located in Toyohashi city of Aichi prefecture in Japan (see 

Figure 3.4). This building is an instrumented building, and the location of the sensor is shown in Figure 5. 

The main structural characteristics are as follows: 

• The structural system of the building is a moment-resisting frame in steel-reinforced concrete 

(SRC); 

• The number of floors is six with a basement, and the typical story height is 4.00 m; 

• The story weights are basement = 18,019 kN, 1st story = 14,570 kN, 2nd story = 12,483 kN, 3rd 

story = 12,470 kN, 4th story = 13,043 kN, 5th story = 12,412 kN, 6th story = 11,834 kN, and 7th 

story = 10,588 kN; 

• The steel I cross-sections are embedded in RC rectangular beams and columns; 

• Both the X- and Y-directions are regular configurations, as shown in Figure 3.5. Only the X-

direction is analyzed in this study; 

• The natural period (T1) of the building in the X-direction is 0.748 s (1.337 Hz), with an effective 

modal mass ratio of 0.62. The second mode period (T2) is 0.277 s (3.610 Hz) with an effective 

modal mass ratio of 0.12. 

Sensor Sensor 
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Figure 3.4. Toyohashi Fire Station building. 

 

  

(a) 
(b) 

 

 
(c) (d) 

Figure 3.5. General drawings of Toyohashi Fire Station building. (a) Plan of basement view. (b) Plan from 1st 

to 6th story view. (c) Plan of 7th story view. (d) Elevation of X-direction view. 

 

 

 

Sensor 

Sensor 
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3.3.1.3 RC building 

The RC building is an artificial structure in order to evaluate the accuracy of the methodology with different 

lateral force-resisting systems. This building is assumed as an instrumented building, and the location of 

the sensor is shown in Figure 3.6. The main structural characteristics are as follows: 

• The structural system of the building is a moment-resisting frame in RC; 

• The number of floors is seven, and the typical story height is 4.00 m; 

• The typical story weight is 7,200 kN; 

• RC rectangle and square cross-section for beams and columns, respectively; 

• Both the X- and Y-directions are regular configurations, as shown in Figure 3.6. Both directions 

are analyzed in this study; 

• The natural X-direction (T1) period is 0.46 s (2.174 Hz) with an effective modal mass ratio of 0.705. 

The second mode period (T2) is 0.121 s (8.264 Hz) with an effective modal mass ratio of 0.18. 

• The natural Y-direction (T1) period is 0.751 s (1.332 Hz) with an effective modal mass ratio of 

0.788. The second mode period (T2) is 0.254 s (3.937 Hz) with an effective modal mass ratio of 

0.104. 

•  
(a) 

  
(b) (c) 

Figure 3.6. General drawings view of RC building. (a) Typical plan view; (a) Elevation of X-direction; (b) 

Elevation of Y-direction. 

Sensor 

Sensor 
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In this study, the signals of the sensors have been simulated from the 3D structural models, which were 

constructed element by element based on the structural drawings. After the earthquake, the sensors will be 

activated and read the acceleration when a threshold is reached. Subsequently, all data are automatically 

stored on the network cloud and can be used to assess the damage. However, for future research, it is 

recommended to use other methods in order to reconstruct the missing data due to anomalies and other 

factors [65,66]. 

3.3.2 Nonlinear structural models for the target buildings 

The structural models for the target buildings consist of three-dimensional elements with elastic and 

inelastic behavior. The software STERA_3D [52] was used, wherein the frame beam elements were 

modeled using nonlinear flexural springs at their ends and a nonlinear shear spring in the middle, as shown 

in Figure 3.7. The structural analysis computation time was optimized by running 16 models in parallel. 

 

Figure 3.7. Beam model with nonlinear flexural and shear springs [52]. 

Figure 3.8 shows the hysteresis models of flexural springs. Figure 3.8a shows the degrading trilinear slip 

model for the RC sections. Figure 3.8b shows the bilinear model for steel sections. 

 

 
 

(a) (b) 

Figure 3.8. Hysteresis model. (a) Degrading trilinear slip model for RC sections; (b) Bilinear model for steel 

sections [52]. 

Likewise, the frame column elements are modeled as multi-spring models considering a nonlinear 

interaction between the bidirectional–flexural and axial effects (Mx-My-Nz, as shown in Figure 3.9a). The 

springs are distributed in the RC and steel cross-sections, as shown in Figure 3.9b. Moreover, Figure 3.9c 

shows the hysteresis model for steel and concrete springs. The nonlinear shear springs in the X- and Y-

directions are de-fined independently. 
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(b) 

 
(a) (c) 

Figure 3.9. Column structural model. (a) Multi-springs to consider Nz-Mx-My nonlinear interaction; (b) 

Concrete and steel springs; (c) Hysteresis model for steel and concrete springs [52]. 

For wall elements (wall panel + end components), the nonlinear interaction between the bidirectional-

flexural and axial effects is considered (Mip - Mop - N, as shown in Figure 3.10). The wall cross-section 

assumes a plane section, representing a linear strain distribution. The in-plane wall moment (Mip) is from 

the end components and wall panel. On the other hand, the out-plane wall moment (Mop) is only from the 

end components. Besides, the wall element is divided into different parts among steel and concrete areas in 

order to use the multi-spring method, as shown in Figure 3.10b. Figure 3.9c shows the hysteresis model for 

each subdivided part, either concrete or steel area, to obtain the nonlinear behavior of the wall element. 

 

 

(a) (b) 

Figure 3.10. RC wall structural model. (a) Mip - Mop - N; (b) Wall (concrete and steel) subdivision; (c) 

Hysteresis models. [52] 
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3.3.3 Damage identification of the target buildings 

The inelastic 3D-FMs for the target buildings are made to obtain detailed structural responses. This study 

identifies the damage condition from the maximum structural responses SD and AA on each story. 

The usability of the building is defined in order to evaluate the habitability of the building. It is represented 

by safe use, restricted use, and unsafe use, as shown in Table 1.1.  

3.3.4 Selection of ground motion records 

A record database was generated from the records obtained in the Center for Engineering Strong Motion 

Data by USGS and the California Geological Survey. This center receives worldwide records from the 

cooperation of international strong-motion seismic networks [67]. 

In order to consider the ground motion records with high intensity and reduce the number of samples (less 

than 3000), the records with a PGA greater than 400 gal and a time range from 5% to 95% of the Arias 

intensity have been selected [64,68,69]. Finally, 183 ground motion records have been selected in this study 

for the database. 

3.3.4.1 Incremental dynamic analyses 

In the structural analysis, the variability of the structural responses of the building depends mainly on the 

ground motion used. On the other hand, the prediction accuracy of ML is improved when the output 

variability is reduced. Therefore, a methodology to select the records from structural responses has been 

developed using the IDA of each target building. Figure 3.11 shows the procedure for determining the 

ground motion records from the database. 

For the IDA, the demand measure is either the SD or AA (on the vertical axis) and the intensity measure is 

the 5% damped spectral acceleration matched at the fundamental period (Sa(T1, 5%) on the horizontal 

axis). Sa(T1, 5%) is selected to represent the seismic intensity, where the main modal mass contribution is 

obtained. Besides this, a normal distribution is considered to represent the variability of the structural 

responses along Sa(T1, 5%). Thus, 68% of the structural responses are represented within ±1σ (one standard 

deviation) of the mean, resulting in a confidence interval from 16% to 84% fractile. 

Therefore, in order to cover elastic and inelastic behavior ranges, the IDA curves use a confidence interval 

from 0% to 84% fractile of the structural responses. Besides this, 1/50 has been established as the story 

drift ratio limit. The selected records and Sa(T1, 5%) have been derived from accomplishing both previous 

conditions for SD. The IDA scale factors are such that the resultant spectral acceleration (ΔSa) is 25 gal if 

Sa(T1, 5%) max is less than 1000 gal, and 50 gal if Sa(T1, 5%) max is greater than 1000 gal. The IDA 

curves for AA, the same confidence interval, scale factors, and maximum Sa(T1, 5%) have been used to 

find their selected ground motion records. These criteria were developed after several structural analyses 

in this research. 
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Figure 3.11. Selection of ground motion records for inter-story drift and acceleration flowchart. 

Figure 3.12, Figure 3.13, Figure 3.14, and Figure 3.15 show the IDA curves for SD and AA of the database 

and selected records. The black dashed lines are the 0%, 50%, and 84% fractiles. Besides this, the green, 

yellow, orange, and red dashed lines depict the damage condition threshold limits. 
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(a) (b) 

  
(c) (d) 

Figure 3.12. IDA Curves of Tahara City Hall building. (a) IDA curves of the database for SD; (b) IDA curves 

of selected records for SD; (c) IDA curves of the database for AA; (d) IDA curves of selected records for AA. 
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(a) (b) 

  
(c) (d) 

Figure 3.13. IDA Curves of Toyohashi Fire Station building. (a) IDA curves of the database for SD; (b) IDA 

curves of selected records for SD; (c) IDA curves of the database for AA; (d) IDA curves of selected records 

for AA. 
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(a) (b) 

  
(c) (d) 

Figure 3.14. IDA Curves of RC building – X direction (a) IDA curves of the database for SD; (b) IDA curves 

of selected records for SD (c) IDA curves of the database for AA; (d) IDA curves of selected records for AA 

analyses. 
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(a) (b) 

  
(c) (d) 

Figure 3.15. IDA Curves of RC building – Y direction (a) IDA curves of the database for SD; (b) IDA curves 

of selected records for SD (c) IDA curves of the database for AA; (d) IDA curves of selected records for AA. 

Figure 3.16, Figure 3.17, Figure 3.18, and Figure 3.19 show the acceleration response spectra (Sa) of the 

selected records subdivided into training and validation records used for the CNN models for SD and AA 

analyses. Besides this, the validation records for the SD and AA analyses are the same in order to consider 

the same earthquake events. Additionally, Sa is 100 gal at the fundamental period of each target building. 
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(a) (b) 

 
(c) 

Figure 3.16. Acceleration response spectrum of Tahara City Hall building at T1 = 0.681 s and Sa(T1) = 100 

gal. (a) Training records for SD; (b) Training records for AA; (c) Validation records for SD and AA analyses. 

  
(a) (b) 

 
(c) 

Figure 3.17. Acceleration response spectrum of Toyohashi Fire Station building at T1 = 0.748 s and Sa(T1) = 

100 gal. (a) Training records for SD; (b) training records for AA; (c) Validation records for SD and AA 

analyses. 
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(a) (b) 

 
(c) 

Figure 3.18. Acceleration response spectrum of RC building – X direction at T1 = 0.460 s and Sa(T1) = 100 gal 

(a) Training records for SD; (b) Training records for AA (c) Validation records for SD and AA. 

  

(a) (b) 

 
(c) 

Figure 3.19. Acceleration response spectrum of RC building – Y direction at T1 = 0.751 s and Sa(T1) = 100 gal 

(a) Training records for SD; (b) Training records for AA (c) Validation records for SD and AA analyses. 
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3.3.4.2 Selection of records for Tahara City Hall building 

After selecting the records, 130 and 142 records were chosen for SD and AA, respectively, shown in Figure 

3.12b and Figure 3.12d. 

The selected records are split into 120 and 132 for training CNN models for SD and AA. Besides this, ten 

records have been used for the validation process in both analyses. 

3.3.4.3 Selection of records for Toyohashi Fire Station building 

After selecting the records, 115 and 144 records have been chosen for CNN models for SD and AA, 

respectively, shown in Figure 3.13b and Figure 3.13d. 

The selected records have been split into 99 and 126 for training CNN models for SD and AA. Besides this, 

16 records are used for the validation process for both analyses. 

3.3.4.4 Selection of records for RC building 

X – Direction: 

After selecting the records, 83 and 60 records have been chosen for CNN models for SD and AA, 

respectively, shown in Figure 3.14b and Figure 3.14d. 

The selected records have been split into 73 and 50 for training CNN models for SD and AA. Besides this, 

ten records are used for the validation process for both analyses. 

Y – Direction: 

After selecting the records, 94 and 135 records have been chosen for CNN models for SD and AA, 

respectively, shown in Figure 3.15b and Figure 3.15d. 

The selected records have been split into 81 and 122 for training CNN models for SD and AA. Besides this, 

13 records are used for the validation process for both analyses. 

3.4 Machine learning methodology 

3.4.1 Wavelet power spectrum as input data of CNN 

The acceleration record of the upper floor is obtained from the sensor installed on the target building. Since 

these records are non-stationary signals, they are transformed in order to capture their characteristics in the 

time and frequency domains. In this study, the wavelet transform is used. 

The wavelet spectrum is defined by Equation 2-5, and the square of the module is the wavelet power 

spectrum (𝑊𝑃𝑆), defined by Equation 3-1. 

𝑊𝑃𝑆(𝑡, 𝑓) = 𝑊𝑆2 Equation 3-1 

𝑊𝑆 was used in Chapter 2 for the maximum absolute acceleration response on the upper floor. These results 

were used as images for the input data of the CNN model. However, since WPS increases the coefficients 

of WS exponentially, the signal's main characteristics are intensified to train the CNN model. For example, 

Figure 3.20 shows a random acceleration response, WS, and WPS in 2D and 3D. Notice that WPS depicts 

the main frequencies more evidently than WS. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 3.20. Wavelet spectrum and wavelet power spectrum. (a) Acceleration wave; (b) 2D WS; (c) 2D WPS; 

(d) 3D WPS; (e) 3D WPS. 

3.4.2 Convolutional neural network model 

In this study, CNN uses the images obtained from the WPS. In order to keep the size of the original image 

of the feature map, the same-padding or zero-padding method and ReLU function are used in this study. 

The CNN model without the max-pooling of the Chapter 2 converged more effectively. Nonetheless, the 

CNN model used for this study converged more efficiently using max-pooling layers because of the more 

significant amount of data. The number of the convolutional or max-pooling layer depends on the 

architecture of the CNN model (see Table 3.1). After the convolutional and max-pooling layers, the outputs 

are connected to a one-dimensional array, the fully connected layer. This iterative process is performed 

until finding the lowest Mean Squared Error (MSE) using 50 epochs. The hyperparameters used in this 

study are shown in Table 3.1. They were obtained after several processes of training and validation. 

However, methods are recommended to optimize the hyperparameters [70,71]. 
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Table 3.1. Hyperparameters of CNN models. 

Layer Type Hyperparameter 

Tahara City Hall 

Building 

Toyohashi Fire Station 

Building 

SD AA SD AA 

01 Convolutional 
Number of kernels 8 8 8 8 

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3 

02 Pooling Size of pooling filter 2 × 2 2 × 2 2 × 2 2 × 2 

03 Convolution 
Number of kernels 8 8 8 8 

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3 

04 Pooling Size of pooling filter 2 × 2 2 × 2 --- 2 × 2 

05 Convolution 
Number of kernels 8 8 8 8 

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3 

06 Pooling Size of pooling filter 2 × 2 2 × 2 --- 2 × 2 

07 Convolution 
Number of kernels 8 8 8 8 

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3 

08 Pooling Size of pooling filter 2 × 2 2 × 2 2 × 2 2 × 2 

09 Fully connected Output 6 6 7 7 

3.4.3 Training and validation processes 

As mentioned in the methodology, there are two processes used to obtain a trained CNN model, the training 

process (TP) and the validation process (VP). 

In the TP, the CNN model is trained using the WPS of absolute acceleration on the top floor of the target 

building. Then, the prediction results of the CNN model are compared to the SD and AA of each floor of 

the target building. The IDA numerical procedure is called the data preparation process in the methodology 

and obtains the SD and AA. The TP provides a prepared model to make predictions; however, its accuracy 

should be checked in the validation process. 

In the VP, new input data are obtained by the data preparation process. The new WPS is used in the trained 

CNN model and automatically predicts the results (SD or AA). The following results are compared to 

reference data: 

• The usability of the building, in which the availability of the building occupancy is evaluated after 

an earthquake, 

• The total damage condition, in which it is possible to identify the damage state of the target 

building, 

• Story damage condition, in which it is possible to identify the damage state of each floor of the 

target building, 

• Total comparison of the SD or AA. 

In general, one of the most potent advantages of the ML method in SHM is the rapid prediction result when 

an earthquake occurs. In other words, even though the TP and VP take a long time to obtain the final CNN 

model, it is carried out before the earthquake, but the prediction is obtained automatically. Therefore, it is 

possible to identify the damage states of actual buildings (3D regular or irregular structural configurations) 

immediately after the earthquake. 
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3.5 Prediction and validation of the target buildings 

The results of predicting the responses and damage levels of the target buildings are summarized as follows: 

• Figure 3.21 and Figure 3.22 show SD and AA results of the Tahara City Hall building, respectively; 

• Figure 3.23 and Figure 3.24 show SD and AA results of the Toyohashi Fire Station building, 

respectively; 

• Figure 3.25, Figure 3.26, Figure 3.27, and Figure 3.28 show SD and AA results of the RC building, 

respectively; 

• Figure 3.21a, Figure 3.22a, Figure 3.23a, Figure 3.24a,  Figure 3.25a, Figure 3.26a, Figure 3.27a, 

and Figure 3.28a show the training loss using MSE, which decreases with the epochs increasing in 

TP; 

• A confusion matrix is used to evaluate the prediction accuracy of the total and story damage 

condition (see Figure 3.21b,c, Figure 3.22b,c, Figure 3.23b,c, Figure 3.24b,c, Figure 3.25b,c, 

Figure 3.26b,c, Figure 3.27b,c, and Figure 3.28b,c). The confusion matrix represents the correct 

and incorrect predictions through the number of coincidences with the reference data. The rows 

and columns of the matrix are tagged as the predicted and the true label, respectively. Therefore, 

the number of well-matched predictions is located diagonally of the matrix; 

• Figure 3.21d, Figure 3.22d, Figure 3.23d, Figure 3.24d, Figure 3.25d, Figure 3.26d, Figure 3.27d, 

and Figure 3.28d show the accuracy of the damage condition of each floor; 

• e, Figure 3.22e, Figure 3.23e, Figure 3.24e, Figure 3.25e, Figure 3.26e, Figure 3.27e, and Figure 

3.28e  show the comparison of the prediction results using the coefficient of determination or R-

squared as defined by Equation 3-2: 

 

𝑅2 = 1 −
∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖

∑ (𝑦𝑟𝑒𝑓,𝑖 − 𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅̅ )2𝑁
𝑖

 Equation 3-2 
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Figure 3.21. SD results of the TP and VP for Tahara City Hall building: (a) Convergence curve – Loss in the 

TP; (b) Confusion matrix – Usability of the building by VP; (c) Confusion matrix – Total damage condition 

by VP; (d) Confusion matrix – Story damage condition by VP; (e) Total comparison of SD. 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3.22. AA results of the TP and VP for Tahara City Hall building: (a) Convergence curve – Loss in the 

TP; (b) Confusion matrix – Usability of the building by VP; (c) Confusion matrix – Total damage condition 

by VP; (d) Confusion matrix – Story damage condition by VP; (e) Total comparison of AA. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3.23. AA results of the TP and VP for Toyohashi Fire Station building: (a) Convergence curve – Loss 

in the TP; (b) Confusion matrix – Usability of the building by VP; (c) Confusion matrix – Total damage 

condition by VP; (d) Confusion matrix – Story damage condition by VP; (e) Total comparison of AA. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3.24. AA results of the TP and VP for Toyohashi Fire Station building: (a) Convergence curve – Loss 

in the TP; (b) Confusion matrix – Usability of the building by VP; (c) Confusion matrix – Total damage 

condition by VP; (d) Confusion matrix – Story damage condition by VP; (e) Total comparison of AA. 
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(a) (b) 

 
 

(c) (d) 

 
(e) 

Figure 3.25. SD results of the TP and VP for RC building X-direction: (a) Convergence curve – Loss in the 

TP; (b) Confusion Matrix – Usability of the building by VP; (c) Confusion Matrix – Total damage condition 

by VP; (d) Confusion Matrix – Story damage condition by VP; (e) Total comparison of SD  
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(a) (b) 

  
(c) (d) 

 
 

(e) 

Figure 3.26. AA results of the TP and VP for RC building X-direction: (a) Convergence curve – Loss in the 

TP; (b) Confusion Matrix – Usability of the building by VP; (c) Confusion Matrix – Total damage condition 

by VP; (d) Confusion Matrix – Story damage condition by VP; (e) Total comparison of AA  
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3.27. SD results of the TP and VP for RC building Y-direction: (a) Convergence curve – Loss in the 

TP; (b) Confusion Matrix – Usability of the building by VP; (c) Confusion Matrix – Total damage condition 

by VP; (d) Confusion Matrix – Story damage condition by VP; (e) Total comparison of SD  

 

 

 

 



Chapter 3: CNN–Based Damage Detection using Wavelet Power Spectra for Three-Dimensional Buildings  

55 
 

 

 
 

(a) 
(b) 

  
(c) (d) 

 
(e) 

Figure 3.28. AA results of the TP and VP for RC building Y-direction: (a) Convergence curve – Loss in the 

TP; (b) Confusion Matrix – Usability of the building by VP; (c) Confusion Matrix – Total damage condition 

by VP; (d) Confusion Matrix – Story damage condition by VP; (e) Total comparison of AA. 

Table 3.2 shows the evaluation accuracy of the target buildings in the VP. The results are summarized 

below: 

• For the Tahara City Hall building, the maximum accuracy and R2 are 90.0% (usability of the 

building) and 0.825, respectively; 

• For the Toyohashi Fire Station building, the maximum accuracy and R are 100% (damage condition 

of the basement) and 0.909, respectively; 



Chapter 3: CNN–Based Damage Detection using Wavelet Power Spectra for Three-Dimensional Buildings  

56 
 

• For the RC building in the X-direction, the maximum accuracy and R² are 89.8% (usability of the 

building) and 0.835, respectively; 

• For the RC building in the Y-direction, the maximum accuracy and R² are 89.1% (usability 

of the building) and 0.871, respectively; 

• In general, the accuracy of the estimation of SD is the highest. 

Table 3.2. Evaluation accuracy of target buildings. 

Accuracy evaluation 

Tahara City Hall 

building 

Toyohashi Fire Station 

building 

RC Building 

X - Direction Y - Direction 

SD AA SD AA SD AA SD AA 

Usability of the 

Building (Accuracy) 
90.0% 84.2% 94.1% 88.1% 89.8% 85.9% 88.7% 89.1% 

Total damage condition 

(Accuracy) 
76.1% 74.5% 82.2% 71.2% 79.3% 73.2% 77.1% 76.7% 

Story 

damage 

condition 

(Story 

accuracy) 

Basement -- -- 100% 60.0% -- -- -- -- 

Story 1 76.8% 58.7% 96.9% 63.6% 82.2% 65.1% 87.6% 71.4% 

Story 2 76.9% 64.4% 94.1% 65.3% 79.8% 65.7% 81.0% 76.3% 

Story 3 76.3% 69.2% 92.4% 65.8% 79.5% 68.9% 78.9% 79.1% 

Story 4 74.8% 71.3% 91.1% 65.2% 80.3% 69.1% 78.7% 79.4% 

Story 5 74.4% 71.4% 89.9% 63.0% 80.5% 68.6% 79.3% 78.5% 

Story 6 75.3% 71.9% 88.8% 62.7% 80.5% 71.1% 79.7% 79.5% 

Story 7 -- -- 87.8% 62.7% 80.8% 71.9% 80.0% 80.0% 

Total comparison (R²) 0.825 0.817 0.909 0.732 0.835 0.830 0.871 0.799 

 

3.6 Conclusions and discussion 

In this research article, a previous methodology proposed by the authors has been improved and applied to 

two instrumented buildings in Aichi Prefecture in Japan, called Tahara City hall and Toyohashi Fire Station. 

Also, it is applied to a third artificial structure called RC building in both directions. The summary of the 

proposed methodology is as follows: 

• CNN models are trained per target building using the WPS of the absolute acceleration of the top 

floor record as input data to predict the SD and AA values. SD and AA are used as indicators to 

detect the damage state of the structures; 

• A methodology to select records in order to reduce the variability of the structural responses using 

IDA is proposed, wherein the confidence interval between the 0% and 84% fractiles is adopted; 

• The evaluation accuracy is discussed on the usability of the building, total damage condition, story 

damage condition, and total comparison of the damage indicator; 

• The maximum accuracy and R² for the Tahara City Hall building are 90.0% (usability of the 

building) and 0.825, respectively; 

• The maximum accuracy and R² for the Toyohashi Fire Station building are 100% (damage 

condition of the basement) and 0.909, respectively; 

• The maximum accuracy and R² for the RC building in the X-direction are 89.8% (usability of the 

building) and 0.835, respectively.  

• The maximum accuracy and R² for the RC building in the Y-direction are 89.1% (usability of the 

building) and 0.871, respectively. 

• In general, the accuracy of the estimation of SD is the highest. 
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Finally, the improved methodology based on CNN immediately detects the structural damage condition of 

buildings, considering only one sensor on the top floor. Since the training and validation processes are 

computed before, a prediction can be obtained immediately after an earthquake. However, it is necessary 

to select records to improve the accuracy, and the ML model does not provide information on the feature 

importance (black box). Additionally, uncertainty is introduced from only one random selection of records 

for training and validation processes. So, selecting the training and testing records randomly several times 

is recommended. 
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Chapter 4. Machine Learning–Based Damage Detection using Intensity Measures for Three-

Dimensional Buildings 

4.1 Introduction 

Chapter 3 proposed a methodology using only the time– and frequency–domain of the sensor response 

represented by the wavelet power spectrum obtains high accuracy for predicting damage conditions. 

However, CNN models do not reveal feature importance and require record selection for accuracy. 

Additionally, randomly selecting training and testing records multiple times can reduce uncertainty caused 

by only one selection. 

This study updates and improves the damage identification method proposed in Chapter 3, as follows: 

• The structural response used as a damage identifier is the story drift ratio. 

• The methodology is applied to all database records (without selection). 

• Seven ML methods are used and compared to CNN results. 

• The input data for the ML models use Intensity Measures (IM) computed from the ground and roof 

sensor response. 

• Several random record selections and statistical analyses are carried out in order to reduce its bias. 

• The validation of the ML models is applied to two instrumented buildings in Japan. 

This study was published by the author in [72]. This chapter contains sections as follows: In Section 4.2, a 

review of relevant literature is presented. In this study, the research methodology utilized is discussed in 

Section 4.3. It is validated in Section 4.4 through a case study and the Input Ground Motion utilized, and 

the results are shown in Section 4.5 of the target buildings. Finally, Section 4.6 presents the conclusion and 

discussion of the results. 

4.2 Literature review 

Currently, seismic instrumentation by acceleration sensors is used worldwide because it allows for 

characterizing the structure's performance before, during, and after an earthquake occurrence. For example, 

according to earthquake-resistance design standards, a minimum of 12 sensors are required for buildings 

with a number of stories from 6 to 10 above the ground for evaluating all structural directions [73,74]. 

However, researchers have developed methodologies with a sparse number of sensors to predict the 

performance of buildings immediately after an earthquake occurs. For instance, Xu and Mita [75] presented 

a method that estimates the maximum story drift ratio and time histories of the relative story displacements 

of buildings using one acceleration sensor on the roof level. Also, studies on optimal sensor placement for 

damage detection were developed by researchers [76-78]. 

This study presents a methodology to obtain the structural damage condition of buildings (represented by 

the maximum story drift ratio) and the optimum location of a sparse number of sensors using Intensity 

Measures (IMs) and ML methods. 

The IMs represent the structural characteristic of signals based on acceleration, velocity, displacement, or 

a combination among them (hybrid) [79]. They are obtained from the sensor's signals and used as features 

for training seven ML models. In order to establish the optimum ML method and sensor's location, the 

accuracy and dispersion (represented by the determination coefficient and the standard deviation of the 

maximum story drift ratios) are compared by applying them to the Tahara City Hall and Toyohashi Fire 

Station buildings (target buildings). Also, the results are compared to the methodology using wavelet power 

spectra and the convolutional neural network method to predict the damage condition. 
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4.3 Research methodology 

This research studies three sensor locations: Ground, Roof floor, and Rooftop sensor locations, as defined 

in Figure 4.1. 

 

Figure 4.1. Definition of the sensor's location on the target building. 

From the location of the sensors, five cases are studied for the target buildings: 

Table 4.1. Sensor location cases. 

Abbreviation Case according to the sensor location usability 

G 
Only using the Ground sensor 

RF Only using the Roof floor sensor 

Rt Only using the Rooftop sensor 

G + RF Using the Ground and Roof floor sensor 

G + Rt Using the Ground and Rooftop sensor 

 

The procedure to obtain the damage condition of buildings is as follows and its scheme is shown in Figure 

4.2: 

• Obtain the signal acceleration by the sensors. 

• Obtain the Intensity Measures. 

• Use the IMs as features for the ML models. 

• Predict the maximum story drift ratio with the ML models. 

• Classify the predicted maximum story drift ratio to obtain the damage condition of the building. 
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Figure 4.2. Procedure scheme of the study. 

4.3.1 Intensity measures (IMs) 

The IMs can be obtained based on either acceleration (A), velocity (V), displacement (D), or combining 

them (H: hybrid IM). They have been studied over the years to characterize the structural building responses 

using only the ground motion acceleration [26]. Table 4.2 shows the IMs used in this study. 

Since the acceleration sensors were considered in this study, the double integration process was used to 

obtain the velocity and displacement signals. 
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Table 4.2. Intensity measures 

N° Name 
Abbrevia

tion 

Based 

on 
Definition 

Referen

ce 

1 Peak Ground Acceleration PGA A 𝑃𝐺𝐴 = 𝑚𝑎𝑥
0≤𝑡≤𝑡𝑓

|𝑢̈| [80] 

2 
5% damped first-mode 

Spectral Acceleration 

Sa(T1, 

5%) 
A 𝑆𝑎(𝑇1, 5%) = |𝑚𝑎𝑥 (𝑢̈(𝑇1,5%) + 𝑢̈𝑔)| [80,81] 

3 
Average Spectral 

Acceleration 
Saavg A 𝑆𝑎𝑎𝑣𝑔 = (∏𝑆𝑎(𝑇𝑖)

𝑛

𝑖=1

)

1
𝑛⁄

 [82] 

4 Effective Peak Acceleration EPA A 𝐸𝑃𝐴 =
1

2.5
∗ ∫ 𝑆𝑎(𝑇,ℎ=5%)𝑑𝑇

0.5

0.1

 [83] 

5 SR Power-law form IM IMSR A 𝐼𝑀𝑆𝑅 = 𝑆𝑎(𝑇1)
1−𝛼𝑆𝑎(√𝑅𝑇1)

𝛼
 [84] 

6 CR Power-law form IM IMCR A 𝐼𝑀𝐶𝑅 = 𝑆𝑎(𝑇1)
1−𝛼𝑆𝑎(√𝑅

3
𝑇1)

𝛼
 [84] 

7 Earthquake Power Index EPI A 𝐸𝑃𝐼 =
1

𝑡
∗ ∫ 𝑎(𝜏)

2 𝑑𝜏
𝑡

0

 [85] 

8 Root Mean Square Acc. RMS A 𝑅𝑀𝑆 = √𝐸𝑃𝐼 [85] 

9 Bojórquez & Iervolino IM INp A 𝐼𝑁𝑃 = 𝑆𝑎(𝑇1, 5%) ∙ (
𝑆𝑎𝑎𝑣𝑔

𝑆𝑎(𝑇1, 5%)
)
𝛼

 [86] 

10 Arias Intensity AI A 𝐴𝐼 =
𝜋

2𝑔
∗ ∫ 𝑎(𝜏)

2 𝑑𝜏
𝑡

0

 [69] 

11 Sarma & Yang IM A95 A 𝐴95 = 0.05 ∙ ∫ 𝑎(𝜏)
2 𝑑𝜏

𝑡

0

 [87] 

12 Characteristic Intensity IC A 𝐼𝑐 = 𝑅𝑀𝑆
1.5 ∙ 𝑡95_𝑡050.5 [88] 

13 
Riddell & Garcia 

Acceleration IM 
Ia A 𝐼𝑎 = 𝑎𝑚𝑎𝑥 ∙ 𝑡95_𝑡05

1/3 [89] 

14 
Cumulative Absolute 

Velocity 
CAV A 𝐶𝐴𝑉 = ∫ |𝑎(𝜏)| 𝑑𝜏

𝑡

0

 [90] 

15 
Standardized Cumulative 

Absolute Velocity 
S-CAV A 𝑆 − 𝐶𝐴𝑉 =∑(𝐻(𝑃𝐺𝐴𝑖−0.025)∫ |𝑎(𝑡)|𝑑𝑡

𝑖

𝑖−1

)

𝑁

𝑖=1

 [91] 

16 Two-parameter hazard IM TPH A 
𝑅𝑆𝑎 =

𝑆𝑎(𝑇𝑓)
𝑆𝑎(𝑇1)
⁄  

𝑇𝑃𝐻 = 𝑆𝑎(𝑇1) ∙ 𝑅𝑆𝑎
𝛼

 

[92] 

17 Peak Ground Velocity PGV V 𝑃𝐺𝑉 = 𝑚𝑎𝑥
0≤𝑡≤𝑡𝑓

|𝑣(𝑡)| [80,93] 

18 Squared Velocity Vsq V 𝑉𝑠𝑞 = ∫ 𝑣(𝜏)
2 𝑑𝜏

𝑡

0

 [79] 

19 Root Squared Velocity Vrms V 𝑉𝑟𝑚𝑠 = √𝑉𝑠𝑞 [79] 

20 Fajfar et al. IM IF V 𝐼𝐹 = 𝑃𝐺𝑉 ∙ 𝑡95_𝑡05
0.25 [94] 

21 
Riddell & Garcia Velocity 

IM 
Iv V 𝐼𝑣 = 𝑃𝐺𝑉

2/3 ∙ 𝑡95_𝑡051/3 [89] 

22 
5% damped first-mode 

Spectral Velocity 

Sv(T1, 

5%) 
V 𝑆𝑣(𝑇1, 5%) = 𝑆𝑣(𝑇1,ℎ) [80,81] 

23 Housner Spectrum Intensity SIH V 𝑆𝐼𝐻 = ∫ 𝑆𝑉 𝑑𝜏
2.5

0.1

 [95] 

24 Peak Ground Disp. PGD D 𝑃𝐺𝐷 = 𝑚𝑎𝑥
0≤𝑡≤𝑡𝑓

|𝑢(𝑡)| [80] 

25 
5% damped first-mode 

Spectral Displacement 

Sd(T1, 

5%) 
D 𝑆𝑑(𝑇1, 5%) = 𝑆𝑑(𝑇1,ℎ) [80,81] 

26 
Riddell & Garcia Velocity 

IM 
Id D 𝐼𝑑 = 𝑃𝐺𝐷 ∙ 𝑡95_𝑡05

1/3 [89] 

27 Cosenza & Manfredi IM Iz H 𝐼𝑍 =
(∫ 𝑎(𝑡)

2 𝑑𝑡
𝑡

0
)
(𝑃𝐺𝐴 ∙ 𝑃𝐺𝑉)
⁄  [96] 
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4.3.2 Machine learning methods 

The following seven ML methods are used, and their parameters are calibrated after several runs (training 

process) in order to optimize the prediction. The optimum IMs are obtained from the feature importance 

level (from 0 to 1), which was obtained using the Gini importance technique [59,97] of the regression tree 

methods (no for Linear regression and Multilayer perception). 

4.3.2.1 Linear Regression 

This method assumes the output (prediction) is linearly dependent on the features. The coefficients 

(weights) are updated in order to minimize the prediction error obtained from the reference and predicted 

values [98,99]. 

The procedure is as follows: For “n” observations: 

𝑦𝑖 = 𝑤0 + 𝑤1𝑥1
𝑖+𝑤2𝑥2

𝑖+⋯+𝑤𝑚𝑥𝑚
𝑖 +∈ Equation 4-1 

where: 

✓ i: observation case 

✓ 𝑦𝑖: dependent variable 

✓ 𝑥𝑗
𝑖: independent or explanatory variables 

✓ 𝑤0 : y-intercept (constant term) 

✓ 𝑤𝑚: slope coefficients for each explanatory variable 

✓ 𝑚: number of independent variables 

✓ ∈: the model’s error term or the residuals 

If ∈= 0, then Equation 4-1 can be expressed as: 

𝑦𝑖 ≈ 𝑤0 +∑𝑤𝑗𝑥𝑗
𝑖

𝑚

𝑗=1

=∑𝑤𝑗𝑥𝑗
𝑖

𝑚

𝑗=0

= 𝑤⃗⃗ ∙ 𝑥  Equation 4-2 

where: 

𝑤⃗⃗ = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚] 

𝑥𝑖⃗⃗  ⃗ = [1, 𝑥1
𝑖 , 𝑥2

𝑖 , ⋯ 𝑥𝑚
𝑖 ] 

In the least-squares setting, the optimum parameter is defined as such that minimizes the sum of mean 

squared loss: 

𝑤⃗⃗̂ = 𝑚𝑖𝑛
𝑤
‖𝑋𝑤 − 𝑦‖2

2 Equation 4-3 

 

If the independent and dependent variables are expressed in matrices X and Y, respectively, then the loss 

function can be rewritten as: 

‖𝑋𝑤 − 𝑦‖2
2 = (𝑋𝑤⃗⃗ − 𝑌)𝑇(𝑋𝑤⃗⃗ − 𝑌) = 𝐿(𝐷, 𝑤⃗⃗ ) Equation 4-4 

As the loss is convex, the optimum solution lies at gradient zero. The gradient of the loss function is: 
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𝑤⃗⃗̂ =
𝜕𝐿(𝐷, 𝑤⃗⃗ )

𝜕𝑤⃗⃗ 
→ 0 Equation 4-5 

4.3.2.2 Decision Tree 

This method builds the best decision-making tree by splitting and selecting the order of the roots and leaves. 

The leaves are chosen when it is not possible for more optimization below those nodes [100,101]. There are 

two types of Decision Trees methods: classification and regression. The method scheme is shown in Figure 

4.3. 

 

Figure 4.3. Decision Tree scheme. 

Tree Impurity: The tree with less impurity will predict better than trees with more impurity. An example 

of tree impurity is shown in Figure 4.4. 

 

Figure 4.4. Tree impurity example. 
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The methods to quantify the “impurity” are the criteria to measure the quality of a split. They are Gini 

Impurity and Entropy. Additionally, it is possible to limit how trees grow—for example, by defining the 

impurity, setting the minimum number of samples required at a leaf node, or setting the maximum depth of 

the tree. 

Gini Impurity: If Gini Impurity for a leaf = GI, it can be expressed as: 

𝐺𝐼 = 1 − (𝑃[𝑋 = ′𝑌𝑒𝑠′|𝑙𝑒𝑎𝑓])2 − (𝑃[𝑋 = ′𝑁𝑜′|𝑙𝑒𝑎𝑓])2 Equation 4-6 

𝑇𝑜𝑡𝑎𝑙𝐺𝐼 = 𝑤𝑡𝑟𝑢𝑒 ∙ 𝐺𝐼𝑡𝑟𝑢𝑒 + 𝑤𝑓𝑎𝑙𝑠𝑒 ∙ 𝐺𝐼𝑓𝑎𝑙𝑠𝑒  Equation 4-7 

where: 

✓ 𝑤𝑡𝑟𝑢𝑒 =
𝑁𝐶𝑡𝑟𝑢𝑒

𝑁𝐶𝑡𝑜𝑡𝑎𝑙
  

✓ 𝑤𝑓𝑎𝑙𝑠𝑒 =
𝑁𝐶𝑓𝑎𝑙𝑠𝑒

𝑁𝐶𝑡𝑜𝑡𝑎𝑙
 

If a statement comes from a numerical feature, first, sorting it from the lowest to the highest value is 

necessary. The GI is calculated for the average of all adjacent values. The final GI is the lowest. The lowest 

GI is generally used to choose the best Root node and internal roots. When the GI is 0, it becomes to leaf. 

Entropy: Measures the similarities and differences of a set of variables. The entropy is the highest when 

we have the same probability of a set of variables. On the other hand, it is the lowest when there are no 

differences in a set of variables. The Entropy is the Expected value of the surprise. 

𝐸 =∑𝑃(𝑋 = 𝑥) ∙ 𝑥 =∑𝑝(𝑥) ∙ 𝑙𝑜𝑔 (
1

𝑝(𝑥)
) Equation 4-8 

where: 

✓ Probability of surprise = 𝑃(𝑋 = 𝑥) 

✓ Surprise = 𝑥 

Tree Splitting: The criterion to select the best split is according to the 𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙. The scheme of the tree 

splitting is shown in Figure 4.5. 

 

Figure 4.5. Tree splitting scheme. 
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The total MSE is obtained from the sum of MSE on the left and right sides. 

𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑆𝐸𝑙𝑒𝑓𝑡 +𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡  Equation 4-9 

The 𝑥̅𝑖 that provides the minimum 𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 is the selected split value. The data is split into two groups by 

finding the minor MSE threshold. MAE could replace MSE. 

Cost Complexity Pruning: In order to avoid overfitting, the pruning method is carried out. The three 

running scheme is shown in Figure 4.6. 

 

Figure 4.6. Tree pruning scheme. 

The score of the tree in each case (𝑇𝑟𝑒𝑒 𝑆𝑐𝑜𝑟𝑒𝑖) can be expressed as: 

𝑇𝑟𝑒𝑒 𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠_𝑖 + (𝛼 ∙ 𝑇𝑖) Equation 4-10 

where: 

✓ 𝛼 is a tuning parameter 

✓ 𝑇𝑖 is the total number of leaves 

✓ (𝛼 ∙ 𝑇𝑖) is the tree complexity penalty 

In order to obtain the best accuracy, different 𝛼 is evaluated using the total data (training and test data). 

Later, the smallest Tree Score is obtained using de 𝛼 found previously by evaluating new training and test 

data in order to get a newly pruned tree. This last process is repeated by shifting the training and test data. 

Figure 4.7 shows an example of the accuracy obtained by varying , and Figure 4.8 shows an example of 

the maximum depth of the tree. 

 

Figure 4.7. Example of accuracy vs.  for training and testing sets. 
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Figure 4.8. Example of the maximum depth of the tree. 

Decision Tree Advantages: 

✓ Understandable and interpretable. 

✓ Normalization is not required. 

✓ For classification and regression. 

✓ White box model. 

Decision Tree Disadvantages: 

✓ Overfitting is possible but avoided by pruning, setting the minimum number of samples 

required at a leaf node, or setting the maximum depth of the tree. 

✓ Decision trees can be unstable but avoided by using decision trees within an ensemble 

(Random Forest). 

✓ The decision tree is not good at extrapolation because the prediction is not a continuous or 

smooth function. 

The parameters used in this study are shown in Table 4.3. 

 

Table 4.3. Decision Tree parameters 

Parameters Value 

Function to measure the quality of a split 𝑀𝑆𝐸 

Maximum depth of the tree No-limit 

Minimum number of samples to split 2 

Minimum number of leaf nodes 1 

Maximum number of leaf nodes No-limit 

 

4.3.2.3 Random Forest 

This method builds several decision trees (forest) from bootstrapped datasets (a new random dataset with 

the same size as the original one), increasing its accuracy in this way. The new data to predict is evaluated 

in the forest [59,102]. 
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Bootstrapped dataset: It is a dataset that has the same size as the original. The samples are selected 

randomly from the original dataset. The samples can be chosen more than once. Bootstrapping the data and 

using the aggregate to decide is called “Bagging.” The Bootstrapped datasets scheme for the random forest 

method is shown in Figure 4.9. 

 

Figure 4.9. Random Forest scheme. 

Accuracy: In order to measure the accuracy, the Out-Of-Bag dataset is evaluated in the random forest. The 

proportion of Out-Of-Bag samples incorrectly classified is the “Out-Of-Bag Error.” The Out-Of-Bag 

dataset scheme is shown in Figure 4.10. 
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Figure 4.10. Out-Of-Bag dataset scheme. 

The parameters used in this study are shown in Table 4.4. 

Table 4.4. Random Forest parameters 

Parameters Value 

Number of trees in the forest 100 

Function to measure the quality of a split 𝑀𝑆𝐸 

Maximum depth of the tree No-limit 

Minimum number of samples to split 2 

Minimum number of leaf nodes 1 

Maximum number of leaf nodes No-limit 

 

4.3.2.4 Gradient Boosting (Gradient Boost) 

This method makes a tree to obtain residuals instead of predictions. Then, a new predictor is built using the 

previous predictor (the first one predicts the same value for all and then is updated) and adds the residuals 

predictor (a learning rate scales it). Therefore, the new predictor is based on the previous tree's errors [59]. 

Figure 4.12 shows the scheme of the new predictor, and Figure 4.13 shows the scheme to obtain the 

residuals using the new prediction. 

It starts by making a single leaf instead of a tree or stump. This leaf represents an initial guess for the 

samples’ weights. For this continuous value, the first guess is the average value. Like AdaBoost, Gradient 

Boost builds fixed-sized trees based on the previous tree’s errors, but unlike AdaBoost, each tree can be 

larger than a stump. Also, like AdaBoost, Gradient Boost scales the trees. However, Gradient Boost scales 

all trees by the same amount (learning rate). Then Gradient Boost builds another tree based on the previous 

tree’s errors and then scales the tree. The scheme to obtain the residuals using the average prediction is 

shown in Figure 4.11. 
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Figure 4.11. Residuals using the prediction average. 

If two or more rows of data (features) predict the same residual leaf, the result taken is the average value. 

Make a tree considering a maximum depth (8-32) in order to predict residuals instead of predictions. 

𝑁𝑒𝑤𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒)(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) Equation 4-11 

  

 

Figure 4.12. New predictor in Gradient Boost. 

 

Figure 4.13. Residuals using the new prediction. 

This process is repeated several times in order to reduce the residual by making trees until the maximum 

specified (number of estimators) or adding additional trees does not significantly reduce the size of the 

residuals.  
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The parameters used in this study are shown in Table 4.5. 

Table 4.5. Gradient Boost parameters 

Parameters Value 

Number of estimators 100 

Learning rate 0.1 

Function to measure the quality of a split 𝑀𝑆𝐸 

Maximum depth of the tree No-limit 

Minimum number of samples to split 2 

Minimum number of leaf nodes 1 

Maximum number of leaf nodes No-limit 

 

4.3.2.5 AdaBoost 

It is a meta-estimator (an estimator which takes another estimator as a parameter, Decision Tree in this 

case) that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor 

on the same dataset, but where the weights of instances are adjusted according to the error of the current 

prediction. As such, subsequent regressors focus more on complex cases. [59] 

Stumps: AdaBoost creates a forest of stumps rather than trees. However, stumps are not great at making 

accurate predictions (weak learners). For this reason, it uses weights in order to vote for the final prediction. 

Figure 4.14 shows the scheme of a stump. 

 

Figure 4.14. Stump scheme. 

Some stumps get more influence in the classifications than others. The previous stump's error influences 

how the following stump is made. Figure 4.15 shows the scheme of stumps with different weights (depicted 

by size). 

 

Figure 4.15. Scheme of stumps with different weights (depicted by size). 

Figure 4.16 shows the methodology used in the AdaBoost method. The stump with the minimum Gini Index 

is the first in the forest. 
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Figure 4.16. AdaBoost methodology. 

Total weighted error (𝑻𝑾𝑬): For a stump is the sum of the weights associated with the incorrectly 

classified samples. It will always be between 0 for a perfect stump and 1 for a non-perfect stump prediction. 

 

Figure 4.17. Total weighted error vs 𝜶𝒎 

𝑇𝑊𝐸 =∑𝑤𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  Equation 4-12 

𝛼𝑚 =
1

2
∙ 𝑙𝑜𝑔 (

1 − 𝑇𝑊𝐸

𝑇𝑊𝐸
) Equation 4-13 

where: 

𝛼𝑚: Amount of say 
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Obtaining new sample weights: 

𝑤𝑖
∗ = 𝑤𝑜𝑙𝑑

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∙ 𝑒𝛼𝑚  

𝑤𝑖
∗ = 𝑤𝑜𝑙𝑑

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∙ 𝑒−𝛼𝑚  

𝑤𝑛𝑒𝑤 =
𝑤𝑖
∗

∑𝑤𝑖
∗ 

Weighted Gini Indexes (WGI): The New sample weights are used to determine which variable should 

split the next stump. The WGI takes into account the misclassified samples (larger sample weight). 

 

Figure 4.18. New sample weight scheme. 

The parameters used in this study are shown in Table 4.6. 

Table 4.6. AdaBoost parameters 

Parameter Value 

Number of estimators 50 

Maximum depth of the tree 3 

Minimum number of samples to split 2 

Minimum number of leaf nodes 1 

Maximum number of leaf nodes No-limit 

Loss function to update the weights linear 

 

4.3.2.6 Extreme Gradient Boosting (XGBoost) 

This ML method is called extreme because it is built with several parts. Like Gradient Boost, the regression 

tree is obtained using residuals instead of predictions by the similarities and gain values method for splitting 

and getting the thresholds. The pruning method is used to reduce this tree. Also, this method uses the 

Regularization parameter to minimize the prediction's sensitivity to individual observations. Finally, it uses 

the original previous predictor and learning rate to obtain a new predictor [103]. The parameters used in this 

study are shown in Table 4.7. 

Table 4.7. XGBoost parameters 

Parameter Value 

Number of estimators 100 

Learning rate 0.1 

Function to measure the quality of a split 𝑀𝑆𝐸 

Maximum depth of the tree No-limit 

Minimum number of samples to split 2 

Minimum number of leaf nodes 1 

Maximum number of leaf nodes No-limit 
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4.3.2.7 Multilayer Perceptron 

It interconnects a group of units or nodes and transmits signals (information) to other “neurons” inspired 

by the biological neural networks that constitute animal brains. Each connection has weights that are 

adjusted to reduce the error. [100,104]. 

 

Figure 4.19. Multilayer Perceptron network scheme. 

The parameters used in this study are shown in Table 4.8. 

Table 4.8. Multilayer Perceptron parameters 

Parameter Value 

Hidden layer size 100 

Maximum number of iterations 100 

Learning rate 0.001 

Batch size 2 

Activation function ReLU 

 

4.4 Case study and input ground motion 

4.4.1 Target buildings 

The Tahara City Hall (TCH) and Toyohashi Fire Station (TFS) buildings located in Japan are studied in 

this research (shown in Figure 3.2 and Figure 3.4, respectively). They are instrumented with two sensors in 

G and the RF locations. However, this research also evaluates the case of the sensor on the rooftop (Rt 

location). 

4.4.2 Nonlinear structural models for the target buildings 

The buildings used in this chapter are the same as modeled in section 3.3.2. 

4.4.3 Ground motion records 

The selection of records procedure proposed in Chapter 3 is not considered in order to include the variability 

of the records. For this reason, the original 183 ground motion acceleration records are used in this chapter. 

4.4.4 Incremental dynamic analyses 

The Incremental Dynamic Analysis (IDA) obtains the structural responses (maximum story drift ratio), 

increasing the ground motion intensity by a representative IM. The scale factors are selected in order to 

cover the elastic and inelastic behavior. Sa(T1, 5%) is used as IM for developing the incremental analysis 
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[105]. Also, all the records were scaled in order to obtain the same Sa(T1, 5%). The minimum, maximum 

and incremental steps of Sa(T1, 5%) were 25, 2000, and 25 gal, respectively. Since the TCH building has 

an irregular structural configuration, the incremental step of Sa(T1, 5%) over 250 gal was each 5 gal. 

Therefore, 65 880 and 14 640 nonlinear time-history analyses were carried out for TCH and TFS buildings.  

4.4.5 Structural damage condition of buildings 

The damage condition is obtained only using the story drift ratio from Chapter 2 and shown in Table 1.1. 

Since the collapse state is greater than 1/75 (0.0133), results greater than 0.02 were not considered in order 

to increase and reduce the accuracy and dispersion of the ML models, respectively. 

4.5 Prediction and validation of the target buildings 

4.5.1 Training and testing process 

For the training and testing process, 146 (80%) records and 37 (20%) new records were randomly selected, 

respectively. In order to increase the number of results for each ML model (to reduce a biased process), 50 

random records selection were carried out. Therefore, 50 prediction results are obtained. 

The prediction accuracy of the ML models is evaluated by the coefficient of determination (R²) (an example 

result is shown in Fig. 4.20(a)). A normal distribution function of the R² from the 50 prediction results is 

assumed (see Fig. 4.20(b)). The maximum (Max.), mean, and standard deviation () of the R² are computed 

to compare the effectiveness and the dispersion among the ML models and sensor locations. Besides, the 

importance level of the features (IMs) for predicting is obtained for each case, as shown in Fig. 4.20(c). 

Table 4.9 and Table 4.10 show the ML method results for the Tahara City Hall and Toyohashi Fire Station 

buildings. The IMs are ordered descending from left to right (collected from the feature importance levels 

greater than 0.05).  

  
(a) (b) 

 

(c) 

Fig. 4.20. Results example (a) Story drift prediction and reference (R² = 0.94). (b) Normal distribution 

function of the R² from the 50 records selection cases (mean = 0.931;  = 0.009). (c) Importance levels of the 

features (IMs). 
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Table 4.9. Tahara City Hall building results. 

Coefficient of determination (R²) and Intensity Measures 

Sensor 

Location 

Linear Regression Decision Tree Regressor 

Maximum Mean  IM Maximum Mean  IM 

G 0.912 0.867 0.035 --- 0.847 0.76 0.038 SaT1, EPA 

Rt 0.913 0.831 0.046 --- 0.801 0.71 0.041 
PGA, TPH, 

SIH, PGV 

RF 0.906 0.794 0.092 --- 0.82 0.751 0.034 PGA 

G + Rt 0.91 0.745 0.663 --- 0.857 0.8 0.034 

G_SaT1, 

R_EPA, 

R_PGA 

G + RF 0.925 0.768 0.135 --- 0.824 0.765 0.039 R_PGA 

Sensor 

Location 

Random Forest Regressor Gradient Boosting Regressor 

Maximum Mean  IM Maximum Mean  IM 

G 0.905 0.849 0.027 SaT1, EPA 0.908 0.865 0.024 SaT1, EPA 

Rt 0.876 0.817 0.032 PGA, PGV, SIH 0.897 0.857 0.021 PGA, PGV 

RF 0.906 0.826 0.033 PGA 0.904 0.845 0.031 PGA 

G + Rt 0.915 0.867 0.026 
G_SaT1, R_EPA, 

R_PGA 
0.926 0.892 0.021 

G_SaT1, 

R_PGA, 

R_EPA, 

G_INp 

G + RF 0.898 0.859 0.025 R_PGA 0.914 0.875 0.02 
R_PGA, 

G_SaT1 

Sensor 

Location 

AdaBoost Regressor XGBoost Regressor 

Maximum Mean  IM Maximum Mean  IM 

G 0.877 0.824 0.03 SaT1, Inp, EPA 0.88 0.831 0.032 
INp, SaT1, 

EPA 

Rt 0.842 0.798 0.023 

PGA, PGV, TPH, 

EPI, RMS, A95, 

SIH, Iz 

0.88 0.827 0.033 
PGV, PGA, 

EPI 

RF 0.855 0.82 0.021 

PGA, SaT1, EPA, 

TPH, PGV, A95, 

RMS 

0.88 0.822 0.038 
PGA, EPA, 

PGV, SIH 

G + Rt 0.891 0.845 0.024 
G_SaT1, R_PGA, 

G_INp,G_PGV 
0.913 0.865 0.023 

R_PGA, 

G_INp 

G + RF 0.89 0.845 0.025 
G_SaT1, R_PGA, 

R_SaT1 
0.903 0.855 0.029 

R_PGA, 

G_INp, 

G_SaT1 

Sensor 

Location 

Multilayer Perceptron Regressor Convolutional Neural Network 

Maximum Mean  IM 
Maximum 

G 0.889 0.805 0.056 --- 
--- 

Rt 0.866 0.78 0.057 --- 
0.825 

RF 0.881 0.804 0.05 --- 
--- 

G + Rt 0.895 0.79 0.124 --- 
--- 

G + RF 0.882 0.801 0.064 --- 
--- 
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Table 4.10. Toyohashi Fire Station building results. 

Coefficient of determination (R²) and Intensity Measures 

Sensor 

Location 

Linear Regression Decision Tree Regressor 

Maximum Mean  IM Maximum Mean  IM 

G 0.927 0.877 0.062 --- 0.832 0.777 0.031 SIH, RMS 

Rt 0.958 0.935 0.013 --- 0.903 0.866 0.017 PGV, RMS 

RF 0.9 0.837 0.041 --- 0.801 0.812 0.024 PGV, PGA, Ic 

G + Rt 0.958 0.914 0.054 --- 0.899 0.862 0.022 R_PGV, R_Ic 

G + RF 0.951 0.84 0.126 --- 0.884 0.812 0.024 R_SIH, R_PGV 

Sensor 

Location 

Random Forest Regressor Gradient Boosting Regressor 

Maximum Mean  IM Maximum Mean  IM 

G 0.916 0.877 0.018 SIH 0.915 0.873 0.022 SIH, EPA 

Rt 0.949 0.927 0.018 PGV 0.951 0.931 0.009 
PGV, PGA, 

RMS 

RF 0.907 0.855 0.022 PGV, Ic 0.908 0.865 0.02 

PGV, Ic, EPA, 

EPI, RMS, 

PGA 

G + Rt 0.95 0.928 0.012 R_PGV 0.95 0.928 0.012 

R_PGV, 

R_RMS, 

G_SaT1 

G + RF 0.929 0.899 0.019 G_SIH 0.925 0.893 0.016 

G_SIH, 

G_PGV, 

R_RMS 

Sensor 

Location 

AdaBoost Regressor XGBoost Regressor 

Maximum Mean  IM Maximum Mean  IM 

G 0.884 0.836 0.023 
SIH, EPA, 

TPH, SaT1 
0.916 0.864 0.027 SIH, Ic 

Rt 0.922 0.901 0.012 
PGV, PGA, 

SaT1 
0.94 0.923 0.01 

PGV, INp, EPI, 

Ic 

RF 0.843 0.8 0.02 
EPA, PGV, 

TPH, INp 
0.899 0.85 0.027 PGV, EPI, TPH 

G + Rt 0.922 0.897 0.015 
R_PGV, 

R_PGA, R_INp 
0.942 0.918 0.013 

R_PGV, R_Ic, 

R_EPI, G_SaT1 

G + RF 0.886 0.849 0.02 

G_EPA, 

G_SaT1, 

G_SIH, R_SIH 

0.92 0.884 0.019 

G_SIH, 

G_PGV, 

R_EPI, G_SaT1 

Sensor 

Location 

Multilayer Perceptron Regressor Convolutional Neural Network 

Maximum Mean  IM Maximum 

G 0.897 0.799 0.052 --- --- 

Rt 0.936 0.889 0.037 --- 0.909 

RF 0.876 0.756 0.198 --- --- 

G + Rt 0.936 0.875 0.036 --- --- 

G + RF 0.905 0.816 0.063 --- --- 

 

For the CNN method [64], only the maximum R² was obtained from Rt location, which is 0.825 and 0.909 

for Tahara City Hall and Toyohashi Fire Station buildings, respectively. Notice that the Gradient Boosting 

method provides better results than the CNN method. 
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4.6 Conclusions and discussion 

In this research, a proposed methodology is proposed to obtain the structural damage condition of buildings 

and the optimum location of a sparse number of sensors using Intensity Measures and Machine Learning 

methods. This methodology is applied to two actual buildings, Tahara City Hall and Toyohashi Fire Station 

buildings, and the results are summarized as follows: 

• For the Tahara City Hall building, the Gradient Boost is the ML method that gives the best 

maximum, mean, and  of the R² results, which are 0.926, 0.892, and 0.021, respectively. They are 

obtained using the G + Rt sensor location. They are greater than the given by the CNN method [64]. 

• For the Toyohashi Fire Station building, the Gradient Boost is the ML method that gives the 

optimum maximum, mean, and  of the R² results, which are 0.951, 0.931, and 0.009, respectively. 

They are obtained using the Rt sensor location. They are greater than the given by the CNN method 

[64]. 

• The optimum sensor location is when the Ground and Rooftop sensors work simultaneously or only 

the Rooftop sensor. 

• The acceleration intensity measures are the main features for predicting the Tahara City Hall 

building's damage condition.  

• The velocity intensity measures are the main intensity measures for Toyohashi Fire Station. 

The methodology using several Intensity measures from the sensor response obtains high accuracy for 

predicting damage conditions of buildings’ three-dimensional frame models without selecting records. The 

building's damage condition and feature importance are possible to detect immediately after the earthquake 

occurs because the ML is trained and validated beforehand. Additionally, the uncertainty is studied by 

randomly selecting the training and testing records, obtaining a low dispersion with high accuracy. This 

process helps to decide the best sensor’s location and IMs for prediction. However, only new records are 

predicted for instrumented buildings. Then, it is recommended to propose a methodology to predict new 

buildings, which will be studied in the next chapter.
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Chapter 5. Rapid Post-Earthquake Damage Detection of Buildings based on Machine Learning 

5.1 Introduction 

It is possible to predict the damage condition of buildings using information from other buildings with 

similar features. For example, the fundamental vibration period of buildings, which is obtained 

approximately using the number of stories or their height [106], is one of the most used parameters to 

estimate the global stiffness of a structure. Likewise, the lateral load-resisting system can be estimated from 

the plastic deformation mechanism of the structure. [107,108]. On the other hand, the structural acceleration, 

velocity, or displacement response of a building is influenced by its structural properties and earthquake 

input characteristics [109]. For example, intensity measures (IM) based on the earthquake ground 

acceleration have the greatest impact on short-period structures [79]. Therefore, it is possible to establish 

an archetype (parametric model) of the buildings built by their main structural characteristics and select the 

best and minimum set of buildings to be the reference to accurately predict the damage condition of the rest 

of the buildings under various intensity measures. This process is possible using ML methods which capture 

the main features of input data in order to predict particular output data [18,98]. 

This study proposes ML methods to predict the damage condition of RC resisting-moment frame buildings 

based on the building configurations and IMs of input earthquakes and roof sensor acceleration responses. 

IDA are carried out to cover the elastic and inelastic behavior of the building. The ML models are trained 

using a different number of stories and spans in X and Y directions to predict the damage condition of the 

building expressed by inter-story drift ratios. The proposed ML model can be used to detect post-earthquake 

damage in many other buildings without sensors, based on earthquake acceleration data observed by sensors 

installed on the ground or on the roof of the building. This study was published by the author in [110]. 

This chapter contains sections as follows: In section 5.2 presents the methodology and provides an overview 

of the proposed research procedure. Section 5.3 shows the information to obtain the structural responses 

from the design of the archetype buildings using the virtual work method, selections of records, and the 

IDAs presenting several intensity measures. Section 5.4 presents the ML methodology to predict the 

damage condition of buildings, the case study results, and their discussion. Finally, section 5.5 presents a 

summary of the conclusions of the research. 

5.2 Research methodology 

Figure 5.1 shows the procedure to obtain the structural responses used in the ML methods. An archetype 

of buildings is developed, designed using the virtual work method, and verified using nonlinear static 

analysis. On the other hand, ten records are selected using the uniform hazard spectrum and used as input 

ground accelerations for Incremental Dynamic Analyses. The result is 60000 structural linear and nonlinear 

responses. 

In this study, the ML methods use IMs, the number of stories, and the number of spans in X and Y directions 

as input data and the maximum inter-story drift ratio as output data. Additionally, the ground motion records 

are split randomly to obtain the data in the training process (80% of records) and the testing process (10% 

of records). Likewise, the buildings are split randomly to obtain the data in the training process (10% of 

buildings) and the testing data (90% of buildings). In order to reduce the bias due to the random splitting, 

this process is carried out several times. 
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Figure 5.1. Procedure to obtain structural responses. 

 

5.3 Structural design and input ground motions 

5.3.1 Archetype of buildings 

5.3.1.1 Structural distribution 

RC moment-resisting frame system is used for the archetype of buildings. Figure 5.2 shows the plan and 

elevation view of the archetype of buildings.  

  
(a) (b) 

Figure 5.2. Archetype of buildings: (a) Plan view; (b) Elevation view. 

Table 5.1 shows the key design variables of the archetype of buildings. Six hundred buildings are generated. 
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Table 5.1. The key design variables of the archetype. 

Variable Name Values 

Ns Number of stories 2 to 7 

Nx Number of spans in the x-direction 1 to 10 

Ny Number of spans in the y-direction 1 to 10 

H  Story height [mm] 3500 

Lx  Span length [mm] 6500 

Ly  Span length [mm] 6500 

w  Story weight [kN/m²] 10 

 

5.3.1.2 Structural design criterion 

The virtual work method was used to determine the lateral strength and design the members of the buildings. 

According to the principle of virtual work, a plastic mechanism of the building is assumed under horizontal 

seismic forces, as shown in Figure 5.3. From the principle of energy conservation, the external work is 

equal to the internal work, as defined by Equation 5-1 [111]: 

𝑊𝐸 = 𝑊𝐼 Equation 5-1 

where 𝑊𝐸 is the external work by the external forces, and 𝑊𝐼 is the internal work by the internal force of 

the structural members. Using this formula, the member capacity of the building can be determined from 

the horizontal force corresponding to the required base shear. The following assumptions are considered in 

order to obtain the rebar detailing of beams and columns, as shown in Figure 5.3: 

• The cross-section of columns is square. 

• Only plastic hinges are at the base of the columns. 

• Plastic hinges at the ends of all beams except roof beams. 

• The beam and column rotations are equal to the roof drift ratio. 

• The yielding moment of the columns is 1.5 times the yielding moment of the beams. 

 

Figure 5.3. Collapse mechanism and vertical distribution load assumed. 

From the assumptions, the internal and external work are defined by the Equation 5-2 and Equation 5-3: 

𝑊𝐼 =∑𝑀𝑦𝑐𝑜𝑙𝑢𝑚𝑛 ∙ 𝜃 +∑𝑀𝑦𝑏𝑒𝑎𝑚 ∙ 𝜃 Equation 5-2 
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𝑊𝐸 =∑𝑃𝑖 ∙ 𝛿𝑖  Equation 5-3 

where 𝑀𝑦𝑐𝑜𝑙𝑢𝑚𝑛 is the yield moment of the column, 𝑀𝑦𝑏𝑒𝑎𝑚 is the yield moment of the beam, 𝜃 is the 

yield rotation of the members, 𝑃𝑖 is the external load (triangular distribution) and 𝛿𝑖 is the absolute 

displacement of the building (triangular distribution). 

The base shear coefficient used in this criterion is 0.3 based on the Japanese design standard [112]. Then, 

the base shear force is defined by Equation 5-4: 

𝑉𝑏𝑎𝑠𝑒 = 0.3 ∙ 𝑊𝑡𝑜𝑡𝑎𝑙 =∑𝑃𝑖 =
𝑛 ∙ (𝑛 + 1)

2
∙ 𝑃 Equation 5-4 

where 𝑉𝑏𝑎𝑠𝑒 is the base shear force, 𝑊𝑡𝑜𝑡𝑎𝑙 is the total weight of the building, 𝑛 is the number of stories of 

the building, and 𝑃 is the external force of the first floor which is obtained from Equation 4. For this plastic 

mechanism and assuming a triangular deformation distribution, 𝜃 is equal to the roof drift ratio, as Equation 

5-5 shows: 

𝜃 =
𝛿𝑟𝑜𝑜𝑓

𝐻
=
𝑛 ∙ 𝛿

𝐻
 Equation 5-5 

where 𝛿𝑟𝑜𝑜𝑓 is the absolute displacement of the roof level, 𝛿 is the displacement of the first floor, and H is 

the total height. 

The cross-section size of the columns in order to avoid the axial and shear failure is obtained by Equation 

5-6: 

𝐵2 ≥
𝑁

0.3 ∙ 𝑓𝑐
 𝑎𝑛𝑑 𝐵 ≤

ℎ𝑐
3
⁄  Equation 5-6 

where 𝐵 is the size of the column, 𝑁 is the axial force at the column, 𝑓𝑐 is the compressive strength of the 

concrete, and ℎ𝑐 is the clear height of the column. The cross-section height range of the beams in order to 

avoid shear failure is obtained by Equation (7): 

ℎ𝑏 = ⌊
𝐿

12
;
𝐿

10
⌋  𝑎𝑛𝑑 𝑏 =

ℎ𝑏
2

 Equation 5-7 

where 𝐿 is the length of the beam, and its width is 𝑏. The yield moment of the column is calculated by 

Equation (8) [113]: 

𝑀𝑦𝑐𝑜𝑙𝑢𝑚𝑛

=

{
 

 0.8 ∙ 𝑎𝑡𝑐 ∙ 𝑓𝑦𝑐 ∙ 𝐵 + 0.5 ∙ 𝑁 ∙ 𝐵 ∙ (1 −
𝑁

𝐵2 ∙ 𝑓𝑐
) , 𝑖𝑓 0 < 𝑁 ≤ 𝑁𝑏

(0.8 ∙ 𝑎𝑡𝑐 ∙ 𝑓𝑦𝑐 ∙ 𝐵 + 0.12 ∙ 𝐵
3 ∙ 𝑓𝑐) ∙ (

𝑁𝑚𝑎𝑥 − 𝑁

𝑁𝑚𝑎𝑥 − 𝑁𝑏
) , 𝑖𝑓 𝑁𝑏 < 𝑁 ≤ 𝑁𝑚𝑎𝑥

 
Equation 5-8 

where 𝑎𝑡𝑐 is the rebar area in the tension side of the column section, 𝑓𝑦𝑐 is the steel-yielding strength used 

for the column, 𝑁𝑏 and 𝑁𝑚𝑎𝑥 are the balance and maximum axial force, respectively, which can be 

approximated by Equations (9) and (10): 

𝑁𝑏 = 0.4 ∙ 𝐵
2 ∙ 𝑓𝑐 Equation 5-9 

𝑁𝑚𝑎𝑥 = 𝐵
2 ∙ (𝑓𝑐 +

𝑓𝑦

1.2
) Equation 5-10 
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The yield moment of the beam is calculated by Equation (11) [113]: 

𝑀𝑦𝑏𝑒𝑎𝑚 = 0.9 ∙ 𝑎𝑡𝑏 ∙ 𝑓𝑦𝑏 ∙ (ℎ𝑏 − 𝑟) Equation 5-11 

where 𝑎𝑡𝑏 is the rebar area in the tension side of the beam section, 𝑓𝑦𝑏 is the steel-yielding strength used 

for the beam, ℎ𝑏 is the height of the beam, and r is the minimum distance of the center of tension rebars to 

the external fiber of the beam. 

5.3.1.3 Nonlinear structural models for the target buildings 

The buildings are modeled as the section 3.3.2. 

5.3.1.4 Verification of the structural design 

The structural design of buildings is verified by the nonlinear static analysis (pushover), comparing the base 

shear force coefficient at the inter-story drift greater or equal to 1/100 with the minimum value of 0.3. Note 

that the member sizes, rebar distribution, and the minimum and maximum rebar ratio satisfy the 

recommendations of the Architectural Institute of Japan Standard [113]. Figure 5.4 shows the box plot of 

the base shear coefficient of 600 buildings by stories for the inter-story drift 1/150, 1/100, 1/75, and 1/50. 

Almost all buildings have a base shear force coefficient of more than 0.3 when the inter-story drift exceeds 

1/75. 

  
(a) (b) 

  
(c) (d) 

Figure 5.4. Box plot of base shear coefficient of buildings by the number of stories: (a) Inter-story drift = 

1/150; (b) Inter-story drift = 1/100; (c) Inter-story drift = 1/75; (d) Inter-story drift = 1/50. 
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Table 2 shows the member sizes of columns and beams of each story. 

Table 5.2. Member size of each number of stories. 

Number of stories 2 3 4 5 6 7 

Column size [mm] 500x500 600x600 700x700 800x800 900x900 900x900 

Beam size (𝑏×ℎ𝑏) [mm] 300x600 300x600 350x650 350x650 350x700 400x700 

5.3.2 Ground motion records 

5.3.2.1 Target response spectrum 

The Uniform Hazard Spectrum (UHS) is a response spectrum with an equal probability of exceedance of a 

particular hazard in all structural periods. This paper uses Nagoya's 2500-year return period Uniform 

Hazard Spectrum (UHS) [112] as the target response spectrum of input earthquakes. This UHS is the 

acceleration response spectrum of a 5% damping ratio on reference ground (the shear wave velocity in the 

first 30m of soil is 292m/s), corresponding to an exceedance probability of 2% in 50 years. 

5.3.2.2 Records selection criterion 

Moscoso et al. [64] created a database of 183 records from the ground motion records obtained in the Center 

of Engineering Strong Motion Data by the USGS and the California Geological Survey [67]. It consists of 

records with less than 3000 samples and PGA greater than 400 gals. Also, the record data are cut off 

between 5% to 95% of the Aries Intensity, where the main energy is released in this time range [68]. 

Then, the records are further selected in order to obtain the minimum Mean Squared Error (𝑀𝑆𝐸) defined 

by Equation (12) against the target acceleration response spectra: 

𝑀𝑆𝐸 = 
1

𝑁
∙ ∑ (𝑆𝐹1 ∙ 𝑆𝑎𝑟𝑒𝑐 − 𝑆𝑎𝑡𝑎𝑟𝑔𝑒𝑡)

2𝑁
𝑖=1 , Equation 5-12 

where 𝑆𝐹1 is the scaling factor in obtaining the minimum 𝑀𝑆𝐸 for the evaluated record, 𝑆𝑎𝑟𝑒𝑐 is the 

unscaled response spectrum of the evaluated record, and 𝑆𝑎𝑡𝑎𝑟𝑔𝑒𝑡 is the target response spectrum. 

Finally, a set of 10 ground motion records and their scaling factors are selected as shown in Table 5.3. 

Table 5.3. List of selected records and the scaling factor. 

Record name Scaling factor (𝑺𝑭𝟏) 

Kumamoto2016_EW 1.58 

Hokkaido2018_EW 2.24 

Northridge1994_360 3.55 

Northridge1994_90 3.12 

Petrolia1992_270 2.82 

LomaPrieta1989_90 2.67 

Chuetsu2004_EW 1.36 

Hokkaido2003_NS 2.64 

LomaPrieta1989_0 2.85 

Westmorland1981_90 2.61 

 

Figure 5.5 shows the target spectrum, the spectrum of the selected records, and the fundamental period 

range of studied buildings (between 0.237 and 0.609 seconds). 



Chapter 5: Rapid Post-Earthquake Damage Detection of Buildings Based on Machine Learning   

84 
 

 

Figure 5.5. Target Spectrum, selected records, and fundamental period range of studied buildings. 

5.3.3 Incremental dynamic analysis 

The IDA has been used to obtain buildings' linear and nonlinear responses. IDA requires performing a 

series of nonlinear time-history analyses in which the scale factors of ground motions are gradually 

increased until the collapse capacity of the structure is reached [114]. 𝑆𝐹2 are applied to the records after 

matching to the target spectrum. 𝑆𝐹2 are from 0.10 to 0.30 each 0.10 and from 0.50 to 2.00 each 0.25 in 

this study. 

The IDA curve represents the relationship between Intensity Measure (IM) and Damage Measure (DM). 

The IMs can be obtained based on either acceleration (A), velocity (V), displacement (D), or combining 

them (H: hybrid IM). In this study, 27 IMs are selected as shown in  

Table 4.2. The maximum inter-story drift ratio (story drift) is selected as DM. 

Ten scaling factors of input ground motions are selected for all buildings to capture the linear and nonlinear 

behavior. As an example, the IDA curve of the three-story (Ns) building with two spans in the x-direction 

(Nx) and five spans in the y-direction (Ny) is shown in Figure 5.6. 

 

 

Figure 5.6. IDA curve for the building of Ns = 3, Nx = 2, and Ny = 5. 

 

 



Chapter 5: Rapid Post-Earthquake Damage Detection of Buildings Based on Machine Learning   

85 
 

5.4 ML methodology to predict the damage condition of the building 

5.4.1 Damage condition state 

The scaling factors of ground motions are determined regarding the damage conditions in Table 1.1 so that 

the story drift could range from No Damage to Collapse condition.  

5.4.2 Input and output data for the ML models 

The input data are Intensity Measures (from the ground and/or roof response acceleration), the number of 

spans in X and Y directions (Nx and Ny), and the number of stories (Ns). The output data are the story 

drifts. 

5.4.3 Case studies with different input data 

In determining the IM from the sensor record, two cases are considered in this study. The record is obtained 

from the ground motion sensor in the first case, as shown in Figure 5.7. 

 

Figure 5.7. 1st case: Damage detection using only ground sensors of the buildings (red dot represents the 

location of the sensor). 

In the second case, the records are taken from the ground and roof sensor, and IMs are calculated by both 

records, as shown in Figure 5.8. 

 

 

Figure 5.8. 2nd case: Damage detection using ground and roof sensors of the buildings (red dots represents the 

location of the sensors). 
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5.4.4 Random selection of records and buildings for the ML models 

80% and 20% of the records are used for the training and testing processes, respectively. Random record 

selections are carried out ten times in order to reduce bias. The ML model is trained and tested for each set 

of records. The accuracy of the ML prediction is evaluated using the coefficient of determination (R²), and 

its mean (R²_mean) and standard deviation (in order to evaluate the dispersion) of R² values come from the 

ten iterations. Figure 5.9 shows the procedure of the record selections of the ML model. 

 

Figure 5.9. Procedure of the record selection of the ML model. 

On the other hand, this study randomly selects 10% and 90% of the 600 buildings for training and testing 

processes, respectively, as shown in Figure 5.10. 

 

 

Figure 5.10. Splitting of buildings. 

Random building selections are carried out 200 times to reduce bias. The ML model is trained and tested 

for each set of buildings. The maximum R²_mean and its standard deviation of the iterations determine the 

best training buildings. Figure 5.11 shows the procedure of the building selection of the ML model. 
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Figure 5.11. Procedure of the building selection of the ML model. 

5.4.5 Machine learning methods 

The ML method used are the defined in the section 4.3.2. 

5.4.6 Case study results 

5.4.6.1 1st case study using the ground sensor data. 

Table 5.4 shows the ML results for the 1st case, where the IMs are ordered descending from left to right 

(collected from the feature importance levels greater than 0.05). Even though the difference between R² 

and the standard deviation for all the ML methods is generally insignificant, the main results are as follows: 

• The maximum R² obtained by the Random Forest method is 0.942: A95, IMcr, AI, and Ic. 

• The maximum R²_mean obtained by the Gradient Boost method is 0.870: A95, AI, Ic, and IMcr. 

• The minimum standard deviation obtained by the Decision Tree method is 0.047: A95 and AI. 

• The IM present in all the ML methods is A95. 

Figure 5.12 shows the results of the Random Forest method of the 1st case. Figure 5.12a compares the 

predicted and reference story drift for the maximum R² which is 0.942. Figure 5.12b shows the normal 

distribution function of the R² where its mean and standard deviation are 0.867 and 0.054, respectively. 

Figure 5.12c shows the importance levels of the features (IMs, Ns, Nx, and Ny) in which A95, IMcr, AI, 

and Ic have contributions greater than 0.05. 
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Table 5.4. The results of the 1st case study. 

Coefficient of determination (R²) and Intensity Measures 

Linear Regression Decision Tree 

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
Maximum Mean 

Standard 

deviation 

Intensity 

Measure 

0.912 0.820 0.062 --- 0.914 0.857 0.047 A95, AI 

Random Forest Gradient Boost 

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
Maximum Mean 

Standard 

deviation 

Intensity 

Measure 

0.942 0.867 0.054 A95, IMcr, AI, Ic 0.937 0.870 0.068 A95, AI, Ic, IMcr 

AdaBoost XGBoost 

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
Maximum Mean 

Standard 

deviation 

Intensity 

Measure 

0.899 0.857 0.048 
SdT1, A95, IMcr, SIH, Ic, 

IMsr 
0.919 0.818 0.089 

A95, IF, Sa_Avg, 

EPA 

Multilayer Perceptron  

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
    

0.931 0.820 0.065 ---     

 

  
(a) (b) 

  
(c) 

Figure 5.12. Random forest results – 1st case: (a) Story drift prediction and reference (R² = 0.942); (b) Normal 

distribution function of the R² (mean = 0.867; standard deviation = 0.054); (c) Importance levels of the 

features. 

 

A95 

AI 

IMcr 

Ic 
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5.4.6.2 2nd case study using both the ground and roof sensor data. 

Table 5.5 shows the ML results for the 2nd case, where the IMs are ordered descending from left to right 

(collected from the feature importance levels greater than 0.05). Even though the difference between R² 

and the standard deviation for all the ML methods is generally insignificant, the main results are as follows: 

• The maximum R² obtained by the Gradient Boost method is 0.942: R_PGA and R_PGV. 

• The maximum R²_mean obtained by the Gradient Boost method is 0.902: R_PGA and R_PGV. 

• The minimum standard deviation obtained by the Linear Regression method is 0.016. 

• The IM present in all the ML methods is R_PGA. 

Table 5.5. The results of the 2nd case study. 

Coefficient of determination (R²) and Intensity Measures 

Linear Regression Decision Tree 

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
Maximum Mean 

Standard 

deviation 

Intensity 

Measure 

0.927 0.897 0.016 --- 0.884 0.776 0.075 R_PGA, R_PGV 

Random Forest Gradient Boost 

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
Maximum Mean 

Standard 

deviation 

Intensity 

Measure 

0.934 0.893 0.038 R_PGA 0.942 0.902 0.037 R_PGA, R_PGV 

AdaBoost XGBoost 

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
Maximum Mean 

Standard 

deviation 

Intensity 

Measure 

0.917 0.896 0.024 
R_PGA, R_SIH, 

R_Sa_Avg, G_Ic, G_CAV 
0.93 0.862 0.038 

R_PGA, R_PGV, 

R_IF 

Multilayer Perceptron  

Maximum Mean 
Standard 

deviation 

Intensity 

Measure 
    

0.930 0.881 0.054 ---     

 

Figure 5.13 shows the results of the Gradient Boost method of the 2nd case. Figure 5.13a compares the 

predicted and reference story drift for the maximum R² which is 0.942. Figure 5.13b shows the normal 

distribution function of the R² where its mean and standard deviation are 0.909 and 0.037, respectively. 

Figure 5.13c shows the importance levels of the features (IMs, Ns, Nx, and Ny) in which R_PGA and 

R_PGV have contributions greater than 0.05. 
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(a) (b) 

 
(c) 

Figure 5.13. Gradient Boost results – 2nd case (a) Story drift prediction and reference (R² = 0.942); (b) Normal 

distribution function of the R² (mean = 0.902; standard deviation = 0.037); (c) Importance levels of the 

features (IMs). 

5.4.6.3 Computation time 

The structural analyses and the ML methodology process are carried out on a computer with 20 Intel® 

Xeon® W-2255 CPUs @3.70 GHz, 256Gb of RAM, and 1 NVIDIA RTX A5000 GPU card. The ML 

algorithms are developed using the Scikit learn library [115] under Python 3.8.3. 

The number of structural models is 10000 per story, considering: ten earthquakes, ten scaling factors, ten 

spans in the X-direction, and ten spans in the Y-direction. Table 5.6 shows the computation time of the 

structural analyses per story. The consumed computation time was optimized by running 16 structural 

models in parallel. 

Table 5.6. Computation time of the structural analyses per story. 

Story 

Total time 

(10 000 structural models per story) 

(h) 

2 5.95 

3 9.82 

4 16.37 

5 25.20 

6 35.83 

7 26.68 

 

The number of models is 2000 per ML method, considering: 10 selections of earthquakes and 200 sets of 

buildings. Table 5.7 and Table 5.8 show the computation time for the 1st and 2nd cases, respectively. 

 

R_PGA 

R_PGV 
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Table 5.7. Computation time for 1st case. 

ML method 
Training time 

per model (s) 

Testing time 

per model (s) 

Total time 

(2000 models per ML method) 

(s) 

Linear Regression 0.0011 0.0008 3.8 

Decision Tree 0.0211 0.0010 44.2 

Random Forest 1.3454 0.0435 2777.8 

Gradient boost 0.5960 0.0047 1201.5 

AdaBoost 0.2381 0.0243 524.7 

XGboost 0.0929 0.0028 191.5 

Multilayer Perceptron 5.3261 0.0153 10682.9 

Table 5.8. Computation time for 2nd case. 

ML method 
Training time 

per model (s) 

Testing time 

per model (s) 

Total time 

(2000 models per ML method) 

(s) 

Linear Regression 0.0015 0.0010 4.9 

Decision Tree 0.0617 0.0015 126.3 

Random Forest 3.6086 0.0439 7304.9 

Gradient boost 1.8039 0.0074 3622.7 

AdaBoost 0.5831 0.0479 1262.0 

XGboost 0.1187 0.0029 243.2 

Multilayer Perceptron 7.1770 0.0363 14426.6 

5.4.6.4 Discussion of results 

As shown in Figure 5.12c and Figure 5.13c, the importance levels of IMs are higher than the structural 

features of the buildings (Nx, Ny, and Ns). Even though the total number of buildings is 600, the number 

of record features comes from 27 IMs of 10 results (scaling factors) per building. Then, the results depend 

mainly on the records variability, establishing the model's accuracy. For this reason, it is recommended to 

increase the number of records in future studies to cover more earthquake features. 

Although the accuracy and dispersion for both cases are similar, the main result difference comes from the 

influence of the building response features. Table 5.4 shows that the main IMs for the 1st case come from 

the ground sensors against the 2nd from the roof sensors, as shown in Table 5.5. Moreover, the main IMs 

for the 1st case are based on acceleration and, for the 2nd case, on acceleration and velocity. In addition, for 

all the ML methods except Decision Tree, the R²_mean and the standard deviation are the highest and 

lowest for the 2nd case, concluding that the 2nd case provides the best high-accuracy and low-dispersion. 

However, the inclusion of roof sensors is not feasible easily. Therefore, it is recommended to include roof 

sensors to increase accuracy and decrease dispersion progressively. 

For both cases, Linear Regression and Multilayer Perceptron are the fastest and slowest ML methods, as 

shown in Table 5.7 and Table 5.8. It is because of the complexity of their algorithms measured by the 

number of trainable parameters involved. Even though the training and validation could be computationally 

intensive, once the ML model is developed, it can automatically predict the elastic and inelastic structural 

responses and detect the damage condition immediately after the earthquake. For this reason, the Gradient 

boost (the lowest R²_mean) is considered the most effective ML method in both cases of this study. 

5.5 Conclusions 

This study proposes a methodology to predict the damage condition of RC resisting-moment frame 

buildings using ML methods. The methodology is applied to 600 buildings, and the results are summarized 

as follows: 



Chapter 5: Rapid Post-Earthquake Damage Detection of Buildings Based on Machine Learning   

92 
 

• The virtual work method is used to design RC moment-resisting frame system models considering 

a plastic mechanism, external load, and deformation distribution. The rebar area, distribution of 

rebars, and realistic member sizes of beams and columns are calibrated using the recommendations 

of the Japanese standard. The static nonlinear analysis is used to verify the design by comparing 

the base shear coefficient at the inter-story drift ratio greater or equal to 1/100 with the target value 

of 0.3. 

• The ground motion records are selected for PGA greater than 400 gals, 5%-95% of Arias intensity 

time range, and its response spectrum matches the Uniform Hazard Spectrum of Nagoya – Japan 

(target spectrum) of the exceedance probability of 2% in 50 years; 

• Incremental Dynamic Analyses are carried out of the target buildings in order to obtain the 

responses covering the linear and nonlinear behavior; 

• Two cases are considered to obtain the Intensity Measures from the sensor records: the 1st case 

considers the ground sensors, and the 2nd case considers the ground and roof sensors; 

• Seven Machine learning methods are used to predict the damage condition of the buildings 

represented by the inter-story drift ratio. The training process uses 27 Intensity measures obtained 

from the ground and/or roof sensor responses, the number of stories, and the number of spans in X 

and Y directions as input data; 

• In order to reduce the bias of random selection of records and buildings for the training and testing 

processes, 10 and 200 selections are considered, respectively. An R² mean and standard deviation 

are obtained for each records selection to evaluate the accuracy of the ML model, and the maximum 

R² mean and its standard deviation to obtain the best training buildings. 

• For the 1st case, the maximum R² obtained by the Random Forest method is 0.942, the maximum 

R² mean obtained by the Gradient Boost method is 0.870, and the minimum standard deviation 

obtained by the Decision Tree method is 0.047. The IM present in all the ML methods is A95. 

• For the 2nd case, the maximum R² obtained by the Gradient Boost method is 0.942, the maximum 

R² mean obtained by the Gradient Boost method is 0.902, and the minimum standard deviation 

obtained by the Linear Regression method is 0.016. The IM present in all the ML methods is 

R_PGA. 

• The Gradient boost is considered the most effective ML method in both cases considering that it 

has the lowest R²_mean. 

• Although the 2nd case presents the highest and lowest R²_mean and standard deviation, their 

inclusion is not easily feasible. Then, it is recommended to include them progressively. 

• It is recommended to increase the number of records in future studies to cover more earthquake 

features. 

Finally, the methodology applied to the RC archetype accurately detects the structural damage condition of 

buildings for all the ML methods, where the Random Forest and the Gradient Boosting methods are the 

most accurate, and the main IMs are those based on acceleration. 
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Chapter 6. Conclusions and recommendations 

This research proposed several methodologies based on machine learning in combination with structural 

health monitoring for rapid post-earthquake damage detection of buildings. The conclusions are as follows: 

• Chapter 2 proposes a methodology based on the CNN method for detecting LMM building damage 

(represented by the maximum ductility, story drift ratio, and absolute acceleration) using roof 

sensors' structural feature images (wavelet spectra). The correlation coefficients among the 

predicted and the reference values confirm the high accuracy of the methodology.  

• Chapter 3 proposes a methodology based on the CNN method for detecting three-dimensional 

frame model building damage (represented by the maximum inter-story drift ratio and absolute 

acceleration) by selecting ground motion records (using IDA responses and a confidence interval 

between the 0% and 84% fractiles) and using structural feature images (power wavelet spectra) of 

roof sensors to increase its accuracy. The accuracy evaluation by the usability of the buildings, the 

damage condition, and the total comparison (determination coefficients) confirm the high accuracy 

of the methodology. 

• Chapter 4 proposes a methodology based on seven ML methods for detecting three-dimensional 

frame model building damage (represented by the maximum inter-story drift ratio) using ground 

and roof sensors' intensity measures (based on acceleration, velocity, and displacement). The 

determination coefficients among the predicted and the reference values confirm the high accuracy 

of the methodology. 

• Chapter 5 proposes a methodology based on ML methods for detecting new three-dimensional 

frame building damage conditions using ground and roof sensors' intensity measures (based on 

acceleration, velocity, and displacement). The determination coefficients among the predicted and 

the reference values confirm the high accuracy of the methodology. 

• The building’s post-earthquake condition can be detected immediately for all the methodologies 

since the ML is trained and validated beforehand. 

• The results will be helpful for countermeasures after an earthquake, such as evacuating buildings, 

resuming economic and social activities, and mitigating future damage by aftershocks. 

The recommendations for future works are as follows: 

• This study considers fixed ductility ratio, inter-story drift ratio, and acceleration ranges to obtain 

the buildings’ damage condition (see Table 1.1). It is recommended to compute the actual damage 

state per building. 

• In Chapter 2, it is recommended to use other types of Hysteretic models, such as Stiffness 

Degrading [116,117] and Strength and Stiffness Degrading [118], for representing the story inelastic 

behavior of the buildings. 

• In Chapter 3 and Chapter 4, it is recommended to apply to buildings of different structural 

configurations, lateral force-resisting systems, and materials. 

• In Chapter 5, it is recommended to increase the ML methods, earthquakes of different 

characteristics (without selection methodology), materials, and lateral force-resisting systems such 

as confined masonry buildings. 
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Appendix A: IDA and WS per story results (Chapter 2) 

 

 

Fig.Appx. 1. IDA per story results – Record: El Centro 1940-EW 

 

 

Fig.Appx. 2. IDA per story results – Record: El Centro 1940-NS 
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Fig.Appx. 3. IDA per story results – Record: Taft 1952-EW 

 

 

 

Fig.Appx. 4. IDA per story results – Record: Taft 1952-NS 
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Fig.Appx. 5. IDA per story results – Record: Tohoku 1978-EW 

 

 

 

Fig.Appx. 6. IDA per story results – Record: Tohoku 1978-NS 
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Fig.Appx. 7. IDA per story results – Record: Kobe 1995-EW 

 

 

 

Fig.Appx. 8. IDA per story results – Record: Kobe 1995-NS 
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Fig.Appx. 9. WS per story results – Elastic behavior – Record: El Centro 1940-EW 
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Fig.Appx. 10. WS per story results – Inelastic behavior – Record: El Centro 1940-EW 
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Fig.Appx. 11. WS per story results – Elastic behavior – Record: El Centro 1940-NS 
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Fig.Appx. 12. WS per story results – Inelastic behavior – Record: El Centro 1940-NS 
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Fig.Appx. 13. WS per story results – Elastic behavior – Record: Taft 1952-EW 
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Fig.Appx. 14. WS per story results – Inelastic behavior – Record: Taft 1952-EW 
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Fig.Appx. 15. WS per story results – Elastic behavior – Record: Taft 1952-NS 
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Fig.Appx. 16. WS per story results – Inelastic behavior – Record: Taft 1952-NS 
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Fig.Appx. 17. WS per story results – Elastic behavior – Record: Tohoku 1978-EW 
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Fig.Appx. 18. WS per story results – Inelastic behavior – Record: Tohoku 1978-EW 
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Fig.Appx. 19. WS per story results – Elastic behavior – Record: Tohoku 1978-NS 
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Fig.Appx. 20. WS per story results – Inelastic behavior – Record: Tohoku 1978-NS 
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Fig.Appx. 21. WS per story results – Elastic behavior – Record: Kobe 1995-EW 
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Fig.Appx. 22. WS per story results – Inelastic behavior – Record: Kobe 1995-EW 

 

 

A
cc

el
er

at
io

n
 (

g
al

) 
F

re
cu

en
cy

 (
H

z)
 

A
cc

el
er

at
io

n
 (

g
al

) 
F

re
cu

en
cy

 (
H

z)
 

A
cc

el
er

at
io

n
 (

g
al

) 
F

re
cu

en
cy

 (
H

z)
 

A
cc

el
er

at
io

n
 (

g
al

) 
F

re
cu

en
cy

 (
H

z)
 

A
cc

el
er

at
io

n
 (

g
al

) 
F

re
cu

en
cy

 (
H

z)
 

Time (s) 



Appendix A 

119 

  

  

  

  

 
 

 

Fig.Appx. 23. WS per story results – Elastic behavior – Record: Kobe 1995-NS 
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Fig.Appx. 24. WS per story results – Inelastic behavior – Record: Kobe 1995-NS 
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Appendix B: Prediction per record results for TCH, TFS, and RC buidlings (Chapter 3) 

 

  

  

  

  

  

Fig.Appx. 25. Tahara City Hall Building – Story Drift ratio results – Records from left-to-right and top-to-

bottom: 01_JP_Chuetsu2004_EW, 02_US_Northrigde1994_360, 05_JP_Miyagi2011_NS, 

01_US_PetroliaAft1992_360, 03_TX_ChiChi1999_360, 06_TW_ChiChi1999_360, 

02_JP_Fukushima2011_EW, 03_US_LomaPrieta1989_90, 08_TW_ChiChi1999_90, 02_JP_Noto2007_EW. 
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Fig.Appx. 26. Tahara City Hall Building – Acceleration results – Records from left-to-right and top-to-

bottom: 01_JP_Chuetsu2004_EW, 02_JP_Noto2007_EW, 03_US_LomaPrieta1989_90, 

01_US_PetroliaAft1992_360, 02_US_Northrigde1994_360, 05_JP_Miyagi2011_NS, 06_TW_ChiChi1999_360, 

02_JP_Fukushima2011_EW, 03_TX_ChiChi1999_360, 08_TW_ChiChi1999_90,. 
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Fig.Appx. 27. Toyohashi Fire Station Building – Story Drift ratio results – Records from left-to-right and top-

to-bottom: 01_JP_Miyagi2011_NS, 02_US_Petrolia1992_360, 04_JP_Chuetsu2004_NS, 

07_JP_Kumamoto2016_NS, 01_US_PetroliaAft1992_90, 03_JP_Fukushima2021_NS, 

04_JP_Hokkaido2018_NS, 10_JP_Fukushima2021_NS, 02_JP_Noto2007_EW, 03_TX_ChiChi1999_90, 

05_JP_Hokkaido2018_NS, JP_2019FEB21_EW. 
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Fig.Appx. 28. Toyohashi Fire Station Building – Acceleration results – Records from left-to-right and top-to-

bottom: 01_JP_Miyagi2011_NS, 02_US_Petrolia1992_360, 04_JP_Chuetsu2004_NS, 

07_JP_Kumamoto2016_NS, 01_US_PetroliaAft1992_90, 03_JP_Fukushima2021_NS, 

04_JP_Hokkaido2018_NS, 10_JP_Fukushima2021_NS, 02_JP_Noto2007_EW, 03_TX_ChiChi1999_90, 

05_JP_Hokkaido2018_NS, JP_2019FEB21_EW. 

 



Appendix B 

125 

  

  

  

  

  
 

Fig.Appx. 29. RC Building – X-Direction – Story Drift ratio results – Records from left-to-right and top-to-

bottom: 01_JP_Kumamoto2016_EW, 01_TX_ChiChi1999_360, 04_JP_Kumamoto2016_EW, 

JP_1996DEC21_EW, 04_JP_Fukushima2021_EW, 07_JP_Hokkaido2018_NS, JP_1996DEC21_NS, 

04_JP_Hokkaido2018_NS, 09_TX_ChiChi1999_90, US_SierraMadre1991_90. 
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Fig.Appx. 30. RC Building – X-Direction – Acceleration results – Records from left-to-right and top-to-

bottom: 01_JP_Kumamoto2016_EW, 04_JP_Kumamoto2016_EW, JP_1996DEC21_EW, 

01_TX_ChiChi1999_360, 07_JP_Hokkaido2018_NS, JP_1996DEC21_NS, 04_JP_Fukushima2021_EW, 

04_JP_Hokkaido2018_NS, 09_TX_ChiChi1999_90, US_SierraMadre1991_90. 
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Fig.Appx. 31. RC Building – Y-Direction – Story Drift ratio results – Records from left-to-right and top-to-

bottom: 10_TX_ChiChi1999_90, 07_JP_Kumamoto2016_NS, 06_TX_ChiChi1999_90, 

04_US_LomaPrieta1989_90, 04_US_LomaPrieta1989_0, 01_JP_Chuetsu2004_EW, 03_JP_Miyagi2011_EW, 

02_US_Anza2005_360, 03_JP_Kumamoto2016_NS, 02_US_Petrolia1992_270, 03_JP_Hokkaido2018_NS, 

02_US_PetroliaAft1992_90. 
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Fig.Appx. 32. RC Building – Y-Direction – Acceleration results – Records from left-to-right and top-to-

bottom: 07_JP_Kumamoto2016_NS, 06_TX_ChiChi1999_90, 10_TX_ChiChi1999_90, 

05_JP_Totori2000_EW, 04_US_LomaPrieta1989_90, 04_US_LomaPrieta1989_0, 02_US_PetroliaAft1992_90, 

03_JP_Miyagi2011_EW, 02_US_Petrolia1992_270, 03_JP_Kumamoto2016_NS, 03_JP_Hokkaido2018_NS, 

01_JP_Chuetsu2004_EW.
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Appendix C:  ML methods results (Chapter 4) 

  

  

  

  

Fig.Appx. 33. Tahara City Hall building – Linear Regression 
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Fig.Appx. 34. Tahara City Hall building – Decision Tree 
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Fig.Appx. 35. Tahara City Hall building – Random Forest 
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Fig.Appx. 36. Tahara City Hall building – Gradient Boost 
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Fig.Appx. 37. Tahara City Hall building – AdaBoost 
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Fig.Appx. 38. Tahara City Hall building – XGBoost 
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Fig.Appx. 39. Tahara City Hall building – Multilayer Perceptron 
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Fig.Appx. 40. Toyohashi Fire Station building – Linear Regression 
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Fig.Appx. 41. Toyohashi Fire Station building – Decision Tree 
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Fig.Appx. 42. Toyohashi Fire Station building – Random Forest 
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Fig.Appx. 43. Toyohashi Fire Station building – Gradient Boost 
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Fig.Appx. 44. Toyohashi Fire Station building – AdaBoost 
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Fig.Appx. 45. Toyohashi Fire Station building – XGBoost 
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Fig.Appx. 46. Toyohashi Fire Station building – Multilayer Perceptron 
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Appendix D: ML methods results (Chapter 5) 

  

  

Fig.Appx. 47. Linear Regression. 

   

   

Fig.Appx. 48. Decision Tree. 
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Fig.Appx. 49. Random Forest. 

 

   

   

Fig.Appx. 50. Gradient Boost. 

 



Appendix D 

145 

   

   

Fig.Appx. 51. AdaBoost. 

   

   

Fig.Appx. 52. XGBoost. 
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Fig.Appx. 53. Multilayer Perceptron. 
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Appendix E: Arias Intensity and Husid plot 

Arias’s Intensity (𝐼𝐴) is proportional to the released energy of each record. Husid plot uses a Normalized 

Arias Intensity (concerning its maximum value) in the Y-Y axis (𝐻(𝑡)). It is recommended to cut off 

between 5% to 95% Normalized Arias Intensity of records considering that in this time range is the primary 

energy released. 

 

 

where: 

✓ 𝑎: Acceleration 

✓ 𝑇𝑑: Total time of record 

 

 

Fig.Appx. 54. Example of reduction of the number of samples by using Arias Intensity 

𝐼𝐴 =
𝜋

2𝑔
∫ 𝑎2𝑑𝑡
𝑇𝑑

0

 

𝐻(𝑡) =
∫ 𝑎2𝑑𝑡
𝑡

0

∫ 𝑎2𝑑𝑡
𝑇𝑑
0

 


