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Abstract

A remarkable technological advancement in mechatronics, the synergistic application
of electrical, electronic, computer and control engineering, which has evolved over the past
three decades, has led to a novel stage of life. In response to the rapid growth of technology
and the demand for precise products, the industrial community continues to require higher-
accuracy and higher-speed manufacturing systems. The precision of mechatronic systems
depends mostly on the ability to overcome nonlinear uncertainties, which are common
and unavoidable. They result either from disturbance signals or system modelling errors.
Normally, when a system is approximated by a mathematical model, non-fundamental
factors such as systemic high-frequency dynamics and mechanical vibrations are ignored.

The primary reasons for the existence ofmechanical vibrations inmechatronic systems
are the highly-dynamic motion trajectories in the drive systems and elasticities of mechan-
ical systems due to lightweight elements, such as gears and lead screws. Highly-dynamic
motion trajectories contain a wide range of frequencies that can excite resonance frequen-
cies of a mechatronic system. In machining complex parts or traversing complex paths,
reference trajectories may include high curvatures that cause rapid changes in acceleration
profiles. The motion must stop, change direction and restart at every corner to avoid this.
Such a motion profile causes discontinuity, consumes time and power, introduces delay
and leads to unnecessary wear in mechatronic systems. Reference trajectories should
describe paths accurately, be kinematically smooth and satisfy physical limitations of
mechatronic systems to guarantee smooth motion profiles. Moreover, trajectories should
observe important criteria depending on specific applications.

Although many trajectory-generation approaches have been discussed in the litera-
ture, several problems persist. For example, many studies involving mobile robots have
considered only the fundamental criteria for generating reference trajectories, such as
travelling distance and expected arrival time. Other important criteria, for instance, local
controllability, such that any changes in the trajectory affect only a limited region and the
ability to arbitrarily set the first and second derivatives of positions at the starting and
ending points of a path or path segment are usually ignored. These two criteria allow
smooth update of the trajectory and are important for obstacle-avoidance motion planning
through which the trajectory must be re-planned whenever an obstacle is encountered.
In addition, in the case of numerical control systems, many studies have focused on
smoothing linear interpolated tool-path points by using a parametric spline curve-fitting
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technique. However, the curve-fitting technique leads to oscillations in trajectories dense
in tool-path points.

In addition to smooth motion profiles, mechatronic systems require precise mo-
tion controllers that achieve high-tracking bandwidth with disturbance rejection. High-
tracking bandwidth increases flexibility when tracking different trajectory profiles. Al-
though traditional feedback controllers with high gains can achieve disturbance rejections,
high gains may destabilise control systems and may impose several limitations owing to
hardware properties. Because most industrial mechatronic systems perform repetitive
operations over a fixed time interval, Iterative Learning Control (ILC) can be used as an
effective tool for improving transient response and tracking performance. Although ILC
has been widely applied to mechatronic systems, particularly feed drive systems, many
studies have considered only tracking errors. However, tracking error-based controllers’
exhibit poorer tracking capability for contours with high curvatures and show higher input
variance than contouring controllers. Therefore, it is indispensable to further enhance
system performance by considering contouring control.

Methods to generate smooth trajectories and ILC design to enhance the precision
of industrial mechatronic systems are described in this thesis as follows: Introductory
remarks are presented in chapter 1 followed by a review of related works and their
shortcomings in chapter 2. Chapter 3 describes a method to generate smooth motion
trajectories for autonomous mobile robots for both real-time and off-line applications.
The method is based on piecewise quintic Bézier curves, where the Bézier subdivision
technique is adopted to improve curvatures at sharp corners. The generated trajectories are
controllable locally and can arbitrarily set the first and the second derivatives at the starting
and the ending points. A method to generate vision-based smooth obstacle-avoidance
trajectories for mobile robots is presented in chapter 4. A smooth and distance-optimal
trajectory is generated in real time from an environmental top-view image, where a fisheye
lens is used to capture a wide area from a low height. Chapter 5 describes a method to
generate smoothmotion trajectories for feed drive systems for a specified error tolerance in
a reference contour. The generated trajectory considers fundamental criteria, for example,
velocity, acceleration and jerk limits. This trajectory can be tracked easily by a feed drive
system and renders a lower maximum contour error compared to conventional trajectories
that are interpolated linearly. A novel contour error-based ILC for feed drive systems is
presented in chapter 6. Experimental results verified that with the proposed controller,
the maximum contour error of feed drive systems could be reduced by about 47.8% on
average compared to conventional controllers. Lastly, chapter 7 presents the concluding
remarks of this thesis and prospective future works.
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Chapter 1

Introduction

1.1 Motivation

The remarkable technological advancement in mechatronics, which is the synergistic

application of electrical, electronic, computer and control engineering and has evolved

over the past three decades, has led to a novel stage of life. By integrating advanced

design methods and industrial mechatronic systems, manufacturing industries can realise

high-quality products, while simultaneously guaranteeing a substantial reduction in the

and cost of manufacturing. In response to the rapid growth of technology and demand

for precise products, the industrial community requires higher-accuracy and higher-speed

manufacturing systems. Therefore, industrial mechatronic systems, such as mobile robots

and Computer Numerical Control (CNC)machine tools, must operate at high speedswhile

maintaining high positioning accuracy.

For high-speed performance, mechatronic systems need high-velocity/ high-feed-rate

capabilities, fast controllers under time-optimal trajectories, and lightweight mechanical

systems. On the contrary, to ensure high positioning accuracy, one requires stiff systems

with accurate motion controllers under slow trajectories. Furthermore, trajectories are

required to describe paths accurately, be smooth kinematically and satisfy the physical

limitations of mechatronic systems. Contrariwise, lightweight mechanical operating at

high speeds may suffer from significant vibration problems, thus degrading positioning

accuracy and exhibiting large settling times.

The growing demand for solutions to achieve higher-speed operations while main-

taining precision in mechatronic systems has attracted the attention of many researchers

from the academic and the industrial communities and is the key driver of the contents of

this thesis.
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1.2 Problem Statement

The precision of mechatronic systems depends mostly on their ability to overcome nonlin-

ear uncertainties which are common and unavoidable. They result from either disturbance

signals or due to system modelling errors [1, 2]. When a system is approximated by a

mathematical model, non-fundamental factors such as systemic high-frequency dynamics

and mechanical vibrations are ignored.

The primary reasons for the existence of mechanical vibration in mechatronic systems

are highly-dynamic motion trajectories in the drive systems and elasticities of mechanical

systems due to lightweight elements, such as gears and lead screws [3, 4]. Highly-

dynamic motion trajectories contain a wide range of frequencies that can excite resonance

frequencies of mechatronic systems. In machining complex parts or traversing complex

paths, reference trajectories may include steep curvatures that would cause rapid changes

in acceleration profiles. The motion must stop, change direction and restart at every

corner to avoid this. Such a motion profile causes discontinuity, consumes time and

power, introduces delay and causes unnecessary wear on mechatronic systems [5].

Many researchers have drawn attention to enhancing the precision of mechatronic

systems through different approaches. Common approaches include speed reduction at

corners andmodification of reference trajectories. Regarding trajectories, the fundamental

idea is to generate at least a second-order trajectory for continuous acceleration. However,

in applications such as mobile robots, the following additional criteria are necessary:

i Local controllability, such that any changes in trajectory affect only a limited region.

ii Ability to arbitrarily set the first and the second derivatives at the starting and

ending points; together with (i), this allows for smooth update of the trajectory and

is important for obstacle-avoidance motion planning, through which the trajectory

must be re-planned whenever an obstacle is encountered.

Although many studies have proposed methods that devise up to first or second order

differentiable trajectories, the important criteria mentioned in (i)-(ii) are usually not

considered.
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In addition to smooth motion profiles, mechatronic systems require precise mo-

tion controllers that achieve high-tracking bandwidth with disturbance rejection. High-

tracking bandwidth increases flexibility when tracking different trajectory profiles. Al-

though traditional feedback controllers with high gains can achieve disturbance rejec-

tions, high gains can destabilise control systems and have several limitations owing to

the hardware properties. Because it is not always possible to achieve the desired tracking

performance based on general control theory due to the presence of unmodelled dynamics

and nonlinear uncertainties, intelligent controllers are required to enhance the tracking

performance. Because most industrial mechatronic systems perform repetitive operations

over a fixed time interval, Iterative Learning Control (ILC) can be used as an effective

tool to improve transient response and tracking performance. ILC is among the intel-

ligent controllers that imitate the human learning process and is proven to enhance the

performance of uncertain dynamic systems. Although ILC has been widely applied to

mechatronic systems, especially, feed drive systems, many studies have considered only

tracking errors [6–8]. However, tracking error-based controllers’ exhibit poorer tracking

capability for contours with high curvatures and show higher input variance compared

to contouring controllers [9]. Therefore, it is indispensable to further enhance system

performance by considering contouring control.

Methods to generate smooth trajectories and ILC design to enhance the precision of

industrial mechatronic systems are described in this thesis. The mechatronic systems

under consideration are the typical differential-drive mobile robots and multi-axis feed

drive systems because they are widely used in industrial applications.

1.3 Contribution

The main contributions of this thesis are as follows:

• A method to generate smooth motion trajectories for autonomous mobile robots

for both real-time and off-line applications. The method is based on piecewise

quintic Bézier curves, where the Bézier subdivision technique is adopted to enhance

curvatures at sharp corners. The trajectory is proven to have desired properties that

satisfy the kinematics of nonholonomic mobile robots. These include second-order

derivatives of the trajectory for curvature continuity, localism, correlation, and

distance optimality. This approach relieves a human operator from the tedious

work of controlling the robot manually by using a joystick or operating multiple
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robots in a clouded environment. The operator’s chief task is simplified, whereby

he/she only needs to assign a goal location and, if necessary, a desired safety

distance between the robot and any obstacle. Hence, even an unskilled operator

can control multiple robots at a time. The proposed method can be extended and

applied to three-dimensional space navigation easily with slight modifications.

• A method to generate smooth motion trajectories for feed drive systems for a

specified error tolerance in a reference contour. The generated trajectory considers

fundamental criteria, namely, velocity, acceleration and jerk limits. This trajectory

can be tracked easily by a feed drive system and renders a smaller maximum contour

error compared to conventional linearly interpolated trajectories.

• A novel iterative learning contouring controller for feed drive systems. By incorpo-

rating the traditional proportional-integral-derivative feedback controller, friction

compensator, disturbance observer and ILC algorithm, tracking performance can

be improved dramatically.

1.4 Thesis Organisation

The rest of this thesis is organised as follows:

• Chapter 2 provides a reviewof the relatedworks and their shortcomings. It describes

different path planning and trajectory-generation techniques applied to mechatronic

systems. Both classical and modern techniques are surveyed and their strengths and

limitations are highlighted. This chapter also describes classical control algorithms

and ILC for feed drive systems.

• Chapter 3 describes amethod to generate smoothmotion trajectories for autonomous

mobile robots for both real-time and off-line applications. The method is based on

piecewise quintic Bézier curves, where the Bézier subdivision technique is adopted

to improve curvatures at sharp corners. This chapter is divided into six sections,

where section 3.1 provides a general introduction. Section 3.2 provides a brief intro-

duction of the kinematics of a mobile robot, defines a Bézier curve and describes its

properties. The subdivision technique based on the de Casteljau algorithm is intro-

duced as well. Section 3.3 proposes the trajectory-generation algorithm, including

parameterisation and subdivision in high-curvature areas. Section 3.4 describes the
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designed trajectory tracking controller. The simulation and experimental results

are presented in section 3.5, followed by a summary in section 3.6. This chapter

relates to publications J.4 and C.6.

• Chapter 4 describes an obstacle-avoidance trajectory generation method that pro-

vides a smooth trajectory in real time. The trajectory is generated from an en-

vironmental top-view image, where a fisheye lens is used to capture a wide area

from a low height. The visibility path-planning algorithm is applied based on the

detected top-surface corners of obstacles. A distance-optimal path is computed

and replaced by a smooth trajectory generated based on piecewise quintic Bézier

curves as described in chapter 2. This chapter has five sections, as follows: Section

4.1 contains introductory remarks. Section 4.2 addresses the steps involved in the

extraction of corners by using a fisheye lens. A brief description of lens distortion

and calibration is provided, and the log-polar transform used to correct the corner

coordinates is discussed. In section 4.3, the configuration space based on corrected

corners is generated, visibility graph is constructed and shortest path is found. The

conversion of linear paths into a smooth trajectory is explained as well. Experi-

mental results are presented in section 4.4, followed by a summary in section 4.5.

This chapter relates to publications J.3 and C.5.

• Chapter 5 presents a method to generate smooth motion trajectories for feed drive

systems for a specified error tolerance on a reference contour. It comprises six

sections, where section 5.1 contains opening remarks, followed by a description of

the proposed trajectory smoothing algorithm in section 5.2. A method to generate

smooth velocity transitions is presented in section 5.3. Section 5.4 explains con-

touring controller design with friction compensator. The experimental results and

closing remarks are presented in sections 5.5 and 5.6, respectively. This chapter

relates to publication C.1.

• Chapter 6 describes a novel iterative learning contouring controller for feed drive

systems. It is composed of five sections, where section 6.1 provides an introduction.

Section 6.2 defines the contour error and explains the dynamics of biaxial feed drive

systems. Section 6.3 provides the design of the proposed contouring controller,

including a nonlinear friction model. Simulation and experimental results are

given in section 6.4, followed by concluding remarks in section 6.5. This chapter

relates to publications J.1, C.4 and C.2.
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• Chapter 7 provides the concluding remarks of this thesis and an outline of future

work.
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Chapter 2

Literature Review

2.1 Motion Planning: Path and Trajectory

Motion planning can be categorised into path planning and trajectory planning/generation.

The former tends to ignore dynamics and differential constraints and focuses on finding

the feasible path from the start to the goal location and optimising it based on the selected

criteria. By contrast, trajectory planning involves finding the control inputs yielding a

trajectory that avoids obstacles, takes the system to the desired goal state and possibly,

optimises a few objective functions [10].

For feed drive systems, particularly machine tools, motion planning or tool-path

planning is typically performed off-line using computer-aided manufacturing systems.

For mobile robots, motion planning is categorised as global (off-line) or local (online)

motion planning. In global motion planning, the environment is static and is known in

advance, and therefore, a complete trajectory from the start to the goal configurations can

be generated before the robot starts moving [11]. On the contrary, local motion planning

is applied if the environment is dynamic and unstructured. In this case, as the robot

moves, sensors gather environmental information, and the control laws are consequently

updated in real time. However, even for online motion planning, the robot initiates its

motion based on off-line knowledge and switches to the online motion planning algorithm

as it moves.

2.2 Path-Planning Techniques

Because path-planning methods for mobile robots are very different from those for feed

drive systems, specifically, machine tools, a brief review of the methods used in both

cases is provided in this section.
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2.2.1 Path Planning for Mobile Robots

One of the most significant challenges in the case of autonomous robots is automatic

motion planning. The prototypical task is to find a geometrical path for a mobile robot

from one configuration to another while avoiding obstacles. Automatic motion planning

is more complicated when it involves some constraints or specific optimisation criteria

such as shortest path, minimum time, or minimum energy [11]. However, owing to the

nature of mobile robot applications, it is necessary to plan an optimal, collision-free path

while minimising travel distance, time, and energy.

Both off-line and online path-planning techniques can be further classified into clas-

sical and modern path-planning methods as in the following section [12].

2.2.2 Off-line Path-Planning Methods

Classical Path-Planning Methods

The fundamental approach to solving the path-planning problem is the configuration

space, termed the C-space [13]. The C-space of a robot system is a complete specification

of the position of every point in that system, that is, the space of all possible system

configurations. Its dimension is equal to the degree of freedom of the robot, that is, the

minimum number of parameters needed to specify the C-space. Based on the C-space

as the fundamental concept, many classic path-planning techniques can be grouped into

roadmap and cell decomposition [10].

Roadmaps: The basic idea of roadmap methods is to create a roadmap that reflects the

connectivity of the set of the configurations in which the robot does not intersect any

obstacle. That is, to draw all line segments that connect a vertex of one obstacle to a

vertex of another without entering the interior of any polygonal obstacle. If a continuous

path can be found in the free space of the roadmap, the initial and the goal points are

then connected to this path to arrive at the final solution (a free path). If more than one

continuous path can be found, algorithms such as A∗ or Dijkstra’s shortest path algorithm

are often used to find the best path.

The most common types of roadmaps include the Visibility graph and the Voronoi

diagram. In the visibility graph, the path of the robot is close to the obstacles, resulting

in the shortest path from the start to the goal locations. The standard visibility graph

is defined in a two-dimensional polygonal C-space where its nodes include the start and

the goal positions, and the vertices of all polygonal obstacles. The nodes are joined by
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straight lines if there is a line of sight between them and the task of a path planner is

to find the shortest distance from the start to the goal positions [13], [10]. Visibility

graphs are popular in robotics partly because they are simple to implement. However, this

method is only efficient in sparse environments because the number of roads depends on

the number of polygonal obstacles and their edges [14, 15]. However, by decomposing

the configuration space, the visibility graph method is efficient for real-time path planning

in large planar environments. Moreover, its implementation is simple, and the resulting

path is always optimal regarding Euclidean distance and has certain advantages over other

classical methods such as cell decomposition and the Voronoi diagram [16].

In contrast to the visibility graph method, the Voronoi diagram is an approach that

tends to maximise the distance between the robot and the obstacles [14, 17]. It is

constructed through the via points that are equidistant from the obstacles. Because this

method maximises the distance from the robot to the obstacles, in sparse environments,

the resulting path is always far from optimal; moreover, under limited range localisation

sensors, the robot might fail to sense its surroundings [14, 18, 19].

Cell Decomposition: The basic idea behind cell decomposition is to decompose the free

C-space into smaller regions called cells and search for the connected route in the free

space cell graph [20]. The cell decomposition method is normally classified as exact

or approximate. The major difference in methodology is that, an exact decomposition

of the free C-space is generated, whereas the approximate method yields a variable cell

size. The cell decomposition method has been used for decades because it is simple to

implement [21–25]. The difficult part of this method is obtaining a good path: if the

number of cells is small, and hence, cells are large, one needs a strategy to find a path

inside them: in contrast, if cells are small, a path can be constructed easily by passing

through their centres. However, as the number of cells increases, the process becomes

inefficient owing to exponential rises regarding memory requirements and search range

[26].

Modern Path-Planning Methods

Classical path-planning approaches have several drawbacks that make them incompetent

in complex environments, such as the tendency to get locked in an optimal local solution

that may be far from the global optimal one and being Non-deterministic Polynomial time

hard (NP-hard) under the presence ofmultiple obstacles [27, 28]. Severalmodernmethods

such as the Visibility-Voronoi diagram for clearance c (VVc), Genetic Algorithm (GA),
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Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO) and Simulated

Annealing (SA) have been proposed in the literature to solve path-planning problems

more effectively than the classical approaches.

VVc is a hybrid between the visibility graph and the Voronoi diagram of polygons

in the plane [29]. It evolves from the visibility graph to the Voronoi diagram as the

parameter c grows from zero to infinity. This method can be used to for panning natural-

looking paths for robots translating in a plane. Although the resulting path is short and

smooth with clearance c, this method has a few drawbacks that are relatively similar to the

drawbacks of the classical approaches, such as it is NP-hard in the presence of multiple

obstacles.

GA is a randomised search method and optimisation tool inspired by the mechanics

of natural genetics and selection [30, 31]. In path planning, the first step is to generate

a population of candidate solutions called a generation, that is, a population containing

alternative paths. In each generation, the fitness of every individual in the population is

evaluated based on the optimisation criteria (fitness). The selected generation of candidate

solutions is then used in the next iteration of the algorithm.The process continues until

either the maximum number of generations has been produced or a satisfactory optimal

condition has been reached.

Although GA has been used widely, it has several drawbacks. A fixed-length path with

binary strings that yields a quick solution in a sparse environment was used in [27, 32–

34]. However, with this approach, it takes several hours to evolve a solution in a complex

environment. For solving path-planning problems in complex environments, a variable

binary coded GA was presented in [35]. Its main drawback is that it may output wrong

paths that do not reach the desired target location. Furthermore, in [36], an approach that

initially considers all paths, even those that collide with obstacles and subjects them to

a penalty function was proposed. The inclusion of invalid paths in the penalty function

increases the computation time [37].

ACO, also called Artificial Ant Colony System, is an agent-based system that simu-

lates the natural behaviour of ants and develops mechanisms of cooperation and learning

[38]. This algorithm has been applied to many combinatorial optimisation problems,

ranging from quadratic assignment to protein folding or routing vehicles, and many

derived methods have been adapted to dynamic problems in real variables, stochastic

problems, multi-targets and parallel implementations [39–42]. In mobile robots, an im-

proved method for path planning based on the Dijkstra algorithm and ACO was proposed
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in [43], where the Dijkstra algorithm generates sub-optimal paths and the ACO algorithm

is used to find the best solution. By contrast, SA is a probabilistic technique for ap-

proximating the global optimum of a given function and has been used for path planning

too. For example, in [44], an SA-based approach was proposed to determine optimal or

near-optimal paths quickly for a mobile robot in dynamic environments with static and

dynamic obstacles. However, both ACO and SA are rarely used as optimisation tools in

path planning owing to a few drawbacks, such as difficulties in theoretical analysis and

longer time for uncertainty convergence [19, 45].

PSO is originally attributed to and was first intended for simulating social behaviour as

a stylised representation of the movement of organisms in a bird flock or fish school, and it

later came to be used as an optimisation method [46–49]. Compared to GA for example,

PSO is easier to implement, and there are fewer parameters to adjust [46]. Moreover, it is

among the widely used algorithms in path planning. Reference [50] is among the recent

researches that use PSO for path planning for mobile robots in complex environments.

2.2.3 Online Path-Planning Methods

In manufacturing industries, the environment is usually highly controlled, such that

mobile robots can be programmed to work based on predefined actions. On the contrary,

autonomous mobile robots, which are used in applications ranging from space exploration

to domestic applications, such as cleaning, operate in partially unknown or unpredictable

environments. In addition, the environment might have dynamic characteristics that

require continuous online modification of the robot behaviour. For this reason, since

the last decade, many studies have explored novel methods for online path planning for

autonomous robot navigation [51].

Artificial Potential Field (APF) and Collision Cone (CC) approaches are classical

methods that have been used widely. Other methods include vector field histogram and

dynamic window approaches. In modern practice, novel methods along with classical

ones are usually applied to enhance navigation performance [12].

Classical Path-Planning Methods

TheATFmethod gained popularity in robotics since its initiation in [52]. In this approach,

a robot navigates under the influence of imaginary forces called artificiality potential

field in which obstacles and the target exert repulsive and attractive forces on the robot,
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respectively. The resultant force determines the direction of themobile robot by generating

an obstacle avoidance path [53]. This method is simple to implement and the desired path

can be found with little mathematical computation.

The major drawback of this approach is that the robot may be trapped in local minima

owing to cancellation of the potential field under an equal magnitude of repulsive and

attractive forces. Furthermore, when the robot is very far from the target, the attractive

force becomes very large such that it can cause the robot to move too close to the obstacles.

Because the target is always assumed to be far from obstacles, if the target is very close,

it cannot be reached [54]. Several approaches have been proposed in the literature to

overcome these problems, such as complementing influential algorithms and adaptive

virtual target algorithm to escape from traps [55, 56], modification of attractive potential

functions to avoid large potential fields when the robot is very far from the target, and

modification of repulsive potential functions by considering the relative distance from the

robot to the target to reach targets that are close to obstacles [57].

The CC approach is another widely used method for online mobile robot navigation,

and it was proposed in [58]. A collision between a robot and an obstacle can be avoided

if the relative velocity of the robot relative to an obstacle falls outside to the CC. This

concept is sometimes called forbidden velocity map as proposed in [59]. Similarly, a

velocity obstacle approach was proposed in [60], where the set of all velocities of a robot

that will result in a collision with an obstacle at somemoment in time is defined, assuming

that the obstacle maintains its current velocity.

Modern Path-Planning Methods

Despite the effectiveness of the classic approaches, it is indispensable to enhance the

navigation performance of mobile robots. In most cases, classical approaches such as

PSO, ACO, and GA are often combined with modern methods. In [61], an Evolutionary

Artificial Potential Field (EAPF) was proposed for real-time robot path planning, where

the APF method was combined with GA to derive optimal potential field functions. The

EAPF approach can help robots navigate in environments with moving obstacles. An

algorithm called escape-force is applied to avoid local minima associated with EAPF.

An enhanced SA approach, which integrates two additional mathematical operators

and initial path selection heuristics into the standard SA was proposed in [62] for robot

path planning in dynamic environments with both static and dynamic obstacles. The

enhanced SA can provide an optimal or near-optimal path solution in various dynamic
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environments and requires considerably less processing time than the standard SA, SA

with two additional operators and SA with heuristic initial path selection.

Another approach using the classic APF based on the consideration of a dynamic

model of velocity potential field obtained by a variant of PSO was proposed in [63].

Furthermore, a combination of ACO and APF was proposed in [64] to obtain quicker

solution convergence compared to the standard ACO approach.

2.2.4 Path Planning for Feed Drive System

Path planning for feed drive systems, especially, machine tools have been addressed in

several studies with a focus on significant areas, such as selection of tool orientation and

geometry and tool-path planning. Tool-path planning has been studied based mainly on

traditional techniques, such as iso-parametric and iso-planar approaches [65–68]. Most

of these planning methods are limited regarding accuracy and surface characteristics and

are not optimal with respect to production time. Considering the iso-planar approach as

an example, it treats the intersections between parallel planes and a surface as a tool path

[66].

For the improving the traditional-based approaches, several methods have been pro-

posed in the literature, in particular, conformal-parameterisation-based approaches for

meshes [69] and the iso-scallop approach, which produces a constant scallop height on a

machined surface [70, 71].

The advancement of five-axis machining and machining of nonparametric surfaces

has resulted in the development of new approaches to resolve specific five-axis problems

and to reduce machining time. As detailed in [72], these methods can be classified

as curvature-matched machining [73–75], isophote-based methods [76–78], configura-

tion space methods [79, 80], region-based tool-path generation [76], compound surface

machining [81, 82] and methods for polyhedral models and cloud of points [83, 84].

2.3 Trajectory-Generation Approaches

The generation of smooth trajectories is crucial for motion control of mechatronics sys-

tems. It refers to the process of describing the time history of position, velocity, accel-

eration, and if necessary, jerk for each degree of freedom. The generated trajectories

must describe the desired path accurately and obey the system’s kinematic and dynamic
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constrains to maintain high-tracking accuracy and avoid exciting the natural modes of the

mechanical structure or the servo control system.

Standard geometric path-planning approaches yield a set of via points as described in

[55]. Through traditional trajectory generation methods, via points are connected linearly,

resulting in a piecewise linear path. Piecewise linear paths require a mechatronic system

to stop and restart frequently, and therefore, it causes discontinuity, consumes time and

power, introduces delay and leads to unnecessary wear of system parts [5].

In recent approaches, trajectory generation is usually performed using special func-

tions, such as polynomial, trigonometric, exponential Fourier series expansion [85].

Using these approaches, many researchers have modelled motion trajectories as piece-

wise quadratic or cubic curves [86–91]. Although both quadratic and cubic curves satisfy

the second derivative requirement, composite trajectories constructed using quadratic or

cubic curves, for instance Bézier curves, are limited to the first derivative. Some studies

have adopted higher-order curves, such as seventh-order Bézier curves in [92]. However,

higher-order Bézier curves are complex to calculate and are numerically unstable, leading

to oscillations in the resulting trajectory [93].

By contrast, parametric spline curves are used to interpolate the linear tool-path

points or blending corners smoothly and have proven to provide sufficiently smooth

trajectories for mechatronic systems [94, 95]. The main challenges associated with using

parametric spline curves include, automatically generating a smooth trajectory using

limited information and dealing with geometrical errors induced by the spline curves.

2.4 Control of Feed Drive Systems

Feed drive systems have a wide range of applications in the industrial community, in-

cluding CNC machine tools and assembly robots. In machine tools, feed drives control

the position and velocity of axes according to input commands to track a given reference

trajectory. Tracking errors, the axial difference between the actual and the reference

trajectories, occur in many industrial mechatronic systems. However, in machining appli-

cations, contour errors, the orthogonal differences between actual positions and reference

trajectories or contours are the best indicators of machining precision because they af-

fect the geometrical shape of the machined workpiece directly[96]. Both tracking-error

and contour-error based controllers are applied to enhance the performance of feed drive

systems. In the tracking error approach, each axis is controlled independently such that
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the load disturbance or performance variance on either axis is compensated for in indi-

vidual axial control loops. However, because motion trajectories are usually complex,

where axes move synchronously with respect to one another to track the desired trajectory,

performance deviation in either axis leads to contour error [97]. On the contrary, under

contour-error based approach, the contour error is evaluated in real-time and compensated

for through the corresponding control loops.

Different control approaches have been studied in the literature to enhance the perfor-

mance of feed drive systems. In this section, a brief review of basic control algorithms

and iterative learning control for feed drive systems is addressed.

2.4.1 Feedback Control

Feedback control refers to a controller that considers the output signal in the control

loop to adjust the system performance to meet a desired output. In machine tools, all

controllers have a feedback loop [98]. Proportional-Integral-Derivative (PID) feedback

controllers are widely used in industrial applications owing to their simplicity in design

and implementation, and good performs in most cases. Although PID control can be

applied in many control problems, it has several limitations that leads to undesirable

performance. Since gains are constant and there is no direct process knowledge to the

controller, PID control may lead to overshoot. Moreover, PID control tracks corners and

nonlinear contours poorly owing to sudden changes in the direction of motion.

2.4.2 Feedforward Control

Feedforward controllers are customarily added to the control loop to enhance the tracking

performance. A practical feedforward controller for continuous path control of a CNC

machine tool was proposed in [99] to reduce trajectory error parameters, specifically,

radial reduction, edge unsharpness, asymmetric error, and vibration amplitude. A feed-

forward motion control design was developed in [100] for improving both the tracking and

the contouring accuracies of motion control systems in CNC machine tools. By applying

stable pole-zero cancellation to individual axes and by employing complementary zeros

for all uncancelled zeros, the feedforward motion control design led to matched dynamics

among all motion axes and thereby achieved highly accurate contouring and tracking
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Figure 2.1: Definition of the contour error.

results. The main limitation of feedforward controllers is the requirement of exact knowl-

edge of the model for controller design. In practice this knowledge is not known to the

control designer, therefore the designed model may introduce position errors.

2.4.3 Cross-Coupling Control

Cross-coupling control considers a contour error based on feedback information from

all axes and interpolates to find the best compensating law [98]. The altered signal is

fed to the individual axes in real time. It was first introduced in [101] and extended to

other approaches, especially contouring control [9, 96, 101–104]. The principle of this

control algorithm is to directly reduce the contour error ec rather than the axial errors

ex1 and ex2, that is, to position the tool at point x? instead of xd . Contouring control

is an effective approach in machining because it provides performance comparable to

that of non-contouring controllers with less input variance [9]. In addition, contouring

control has better sharp-corners tracking and disturbance rejection capabilities than non-

contouring controllers [98].
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2.4.4 Iterative Learning Control

Iterative Learning Control is a particular form of feedforward control and an effective

tool for improving the transient response and the tracking performance of uncertain dy-

namic systems performing repetitive operations over a fixed time interval [105]. Such

systems include machine tools performing batch machining and robotic manipulators in

manufacturing industries. Since it is not always possible to achieve the desired tracking

performance based on general control theory owing to the presence of unmodelled dy-

namics and nonlinear uncertainties, ILC can be used to enhance the tracking performance

of repetitive systems. In using ILC, tracking or contour errors from one iteration are used

to compensate for the errors in the next iteration. Note that ILC is not independently

applied because it is a feedforward controller and its application starts from the second

iteration.

Although ILC has been applied widely to feed drive systems, many studies have con-

sidered only tracking error, and simulations or experiments were performed on straight,

circular and non-circular trajectories [6, 7, 106, 107], and only a few studies consid-

ered cross-coupling control [8, 102]. However, as highlighted in the previous section,

tracking-error-based controllers have poor sharp-corner tracking capability and higher in-

put variance compared with contouring controllers. For this reason, it is indispensable to

further enhance system performance by considering contouring control and sharp-corner

trajectories.
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Chapter 3

Real-Time Smooth Trajectory
Generation for Mobile Robots

This chapter focuses on generating smooth trajectories for a wheeled mobile robot by

using piecewise Bézier curves with properties ideally suited for this purpose. The de-

veloped algorithm generates smooth motion trajectories with C2 continuous curvature.

A teleoperated wheeled mobile robot in an indoor environment with ceiling cameras for

operator visibility is considered. The motion trajectory is constrained by the operator-

specified via points and path width. A method to automatically generate a trajectory

based only on these two inputs is proposed and demonstrated. The Bézier subdivision

method is adopted, and a quintic Bézier segment is inserted into high-curvature areas to

improve the trackability of the mobile robot. The proposed algorithm can be used for

real-time obstacle-avoidance trajectory generation because it allows for trajectory subdi-

vision and arbitrary setting of the first and second derivatives at the starting and ending

points. Simulation and experimental results demonstrate the effectiveness of the proposed

method.

3.1 Introduction

Autonomous trajectory generation is crucial for both mobile robots and industrial ma-

chines such as cranes, CNC machines, and robot manipulators [108–110]. Autonomous

mobile robots, especially, wheeled robots are potentially integrated into human envi-

ronment and industries to assist or replace human workers, especially for tedious or

hazardous works. Thus, intelligent wheeled robots have drawn the attention of many

researchers regarding motion trajectory generation, obstacle avoidance, position control,

and localisation and navigation [111–117]. Intelligent robots should be able to perform
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self-localisation, mapping, trajectory planning and detection of obstacles in the workspace

[118]. Real-time trajectory generation/planning is among the challenging tasks in mobile

robotics; it is even more cumbersome when some objective functions and constraints

such as nonholonomic constraints are involved. An ideal trajectory satisfies the following

important criteria:

i Continuity, whereby the trajectory should be at least second-order differentiable at

every point.

ii Local controllability, such that any changes in the trajectory affect only its limited

region.

iii Ability to arbitrarily set the first and second derivatives at the starting and ending

points points; together with (ii), this facilitates the smooth update of the trajec-

tory and is necessary for obstacle avoidance motion planning, through which the

trajectory must be re-planned whenever an obstacle is encountered.

Although many trajectory-generation methods have been discussed in the literature,

several problems persist. One of the fundamental functions is to generate motion trajec-

tories for robots considering several criteria and constraints such as travelling distance

and expected arrival time [119]. The important criteria mentioned in (i)-(iii) are usually

unconsidered and hence the resulting trajectory is typically a piecewise linear path or

even a sharp path [120]. This requires a mobile robot to frequently stop, rotate and restart

which causes discontinuity, leads to additional consumption of time and power, introduces

delay and causes unnecessary wear on the robot parts [5].

To overcome this problem, many researchers have modelled robot trajectories as

piecewise quadratic or cubic Bézier curves [86–89, 121, 122]. However, piecewise

quadratic and cubic Bézier curves do not offer a continuous curvature or arbitrary setting

of the second derivative at the starting and ending points of a trajectory. Although Neto et

al. adopted seventh-order Bézier curves [92], higher-order Bézier curves are complex to

calculate and are numerically unstable, leading to oscillations in the resulting trajectory

[93].

In this chapter, a quintic Bézier curve-based algorithm that generates real-time trajec-

tories for mobile robots is developed. This algorithm offers all the three essential criteria

mentioned in (i)-(iii). It is considered that the trajectory is planned in real time by an

operator, who inserts new via points by using a mouse-like device or a touch screen de-

vice. Also, the mobile robot operates in an indoor environment in which ceiling cameras
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are installed; the operator uses these cameras to assigns the via points. Furthermore, a

Lyapunov-theorem-based nonlinear trajectory tracking controller is designed to verify the

effectiveness of the developed algorithm by conducting both simulation and experiment.

The rest of this chapter is arranged as follows: Section 3.2 provides a brief introduction

to the kinematics of amobile robot, defines aBézier curve and describes its properties. The

subdivision technique using the de Casteljau algorithm is introduced as well. Section 3.3

proposes the trajectory generation algorithm, including parameterisation and subdivision

in high-curvature areas. Section 3.4 describes the designed trajectory tracking controller.

The simulation and experimental results are presented in section 3.5, followed by a

summary in section 3.6.

3.2 Preliminaries

3.2.1 Mobile Robot and Motion Trajectory

A typical two-wheeled differential mobile robot in a global coordinate frame, as shown

in Fig. 3.1, is considered, because such robots are widely used in many applications. The

linear and angular velocities are given by


Ûx

Ûy

Ûθ

 =
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cosθ 0

sinθ 0

0 1



v

ω

 , (3.1)

where x and y are the two dimensional coordinate variables, θ is the orientation angle,

and v and ω are the linear and angular velocities of the robot, respectively. The following

nonholonomic constraint must be fulfilled in controller design or trajectory generation,

assuming no slip in wheel motion.

Ûx sinθ − Ûy cosθ = 0. (3.2)

In addition, given the maximum possible angular velocity Ûφ of the wheels (motors),

velocity constraints are imposed. The velocity bounds are expressed as

|v | =
r
2

(
ÛφR+ ÛφL

)
, |ω| =

r
2L

(
ÛφR− ÛφL

)
, (3.3)
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Figure 3.1: Mobile robot in a global coordinate frame.

where r is the wheel radius, L is the distance from the robot centre to the wheels and ÛφR

and ÛφL are the angular velocities of the right and left wheels, respectively. The reference

trajectory Sr of the robot is given as a function of time as follows:

Sr =
[
xr(t) yr(t) θr(t) vr(t) ωr(t)

]T
, (3.4)

where xr and yr are the reference positions in the global coordinate frame, and θr , vr and

ωr are the reference angle, linear velocity and angular velocity, respectively.

θr(t) = arctan2( Ûyr(t), Ûxr(t)), (3.5)

vr(t) =
√
Ûy2
r (t)+ Ûx2

r (t), (3.6)

ωr(t) =
Ûxr(t) Üyr(t)− Ûyr(t) Üxr(t)
Ûy2
r (t)+ Ûx2

r (t)
. (3.7)

The curvature Cr(t) of a reference trajectory at time t is given by

Cr(t) =
ωr(t)
vr(t)

=
Ûxr(t) Üyr(t)− Ûyr(t) Üxr(t)(
Ûx2
r (t)+ Ûy2

r (t)
)3/2 . (3.8)
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3.2.2 Bézier Curves

A Bézier curve is a parametric curve frequently used in graphical applications and related

fields. It is defined by several control points and always passes through the initial and

the final control points. Its shape can be altered by moving the control points. A

two-dimensional Bézier curve of order n is represented as

P(t) =
∑n

i=0

(
n!

i! (n− i)!

)
ti(1− t)n−iPi, t ∈ [0,1], (3.9)

where P(t) = [x(t), y(t)]T and Pi are the two-dimensional Bézier curve and the control

points, respectively. The following properties of Bézier curves render them particularly

suitable for trajectory generation:

1. Bézier curves start at P0 and end at Pn.

2. They are contained completely in the convex hull of the control points.

3. They are infinitely differentiable everywhere, and are therefore continuous at any

degree (Cn-continuous, ∀n).

4. The vector tangential to the Bézier curve at the start (end) is parallel to the line

connecting the first two (last two) control points.

The second property guarantees that, by setting all the control points within a motion area,

the trajectory will always lie inside the motion area. A Bézier curve can be evaluated

at a specific parameter value t and can be split at that value by using the de Casteljau

algorithm [123]; new control points can be determined by the recursive application of

(3.10).

Pm
i (t) = (1− t)Pm−1

i−1 + tPm−1
i m = 1,2, ..., n, i = 0, ..., n−m. (3.10)

The de Casteljau algorithm illustrated in Fig. 3.2, generates a cubic Bézier curve, which

can be extended to any degree. This algorithm has the following properties:

1. The points P0
i are the original control points of the curve.

2. The value of the curve at t is Pn
n .

3. When the curve is split at t, it is represented as two curves with control points

(P0
0, P1

1, ..., Pn
n ) and (Pn

n, Pn−1
n , ..., P0

n), respectively.
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Figure 3.2: de Casteljau algorithm.

A Bézier curve constructed using numerous control points is numerically unstable, that

is, moving one control point can alter the global shape of the curve. To overcome this

problem, the entire Bézier curve is constructed from smoothly connected piecewise Bézier

curves [120].

Although Bézier curves are differentiable infinitely and are therefore continuous to

any degree, the continuity of long paths compiled from piecewise Bézier curves is limited

by the number of control points. In this case, the continuity of the curve depends on the

continuity at the intersection of the Bézier segments forming the composite Bézier curve.

Furthermore, the complexity of the technique used to obtain Cn continuity is proportional

to the order n. Herein, a C2 continuity at the intersection of sequential Bézier curves,

which ensures continuity of the entire trajectory, is considered.

3.2.3 Problem Statement

A teleoperated mobile robot in an indoor environment equipped with ceiling cameras

for operator visibility is conceived. In this environment, the operator interacts with the

robot via a wireless connection (as shown in Fig. 3.3). The physical dimensions of

the objects in the environment are evaluated from the images captured using the ceiling

cameras. The operator’s task is to assign via points by clicking a mouse or using a touch

screen device. Our objective is to develop and implement control algorithms based on

corridor constraints and via points assigned by an operator in real time. The algorithm

may generate off-line trajectories as well given a static map of the environment. The

trajectory, which is generated automatically from the given via points and the corridor
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Figure 3.3: Teleoperated mobile robot in an indoor environment.

width, should be sufficiently smooth so that the mobile robot can track it. Simulation and

experiment verify the smoothness.

3.3 Trajectory Generation

3.3.1 Trajectory-Generation Algorithm

As shown in Fig. 3.4, the trajectory is defined by two-dimensional via points W j, j =

0, 1, ..., f and corridor width dl, l = 0,1, ..., f −1, where f is the final via point (goal

position). Two orthogonal unit vectors, ûl and v̂l , pointing in the motion direction and

inside the bisector of W j−1, W j and W j+1, respectively, are represented as follows:

ûl =
Rβj

[
W j+1−W j

]

W j+1−W j


 , (3.11)

û0 =
Rθ0 [W1−W0]

‖W1−W0‖
, (3.12)

û f =
Rθ f

[
W j −W j−1

]

W j −W j−1


 , (3.13)

v̂l =
Rγj

2

[
W j+1−W j

]

W j+1−W j


 , (3.14)

Rα =

cosα −sinα

sinα cosα

 , (3.15)
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Figure 3.4: Robot course defined by five via points.

where û0 and û f are unit vectors indicating the initial and the desired final robot ori-

entations, respectively, and γ j is the inner angle of the bisector inscribed by W j−1, W j

and W j+1 as shown in Fig. 3.4. Rα is the rotation matrix, θ0 and θ f are the initial and

the desired final orientations of the robot, respectively, and β j is given by (π − γ j)/2.

Bézier curves are inserted between each segment defined by two consecutive via points

and connected smoothly to obtain a C2 continuous trajectory. From (5.1), the quintic

Bézier curve of the k th segment, k = 1, 2, ..., f is given by

P(t)k =(1− t)5P0k +5t(1− t)4P1k +10t2(1− t)3P2k

+10t3(1− t)2P3k +5t4(1− t)P4k + t5P5k, (3.16)

where P(t)k , Pik , for i = 0, 1, 2, ..., 5, and t are the two-dimensional Bézier curve, control

points and the parameterisation variable, respectively. The first and the last points of each

Bézier segment, P0k j and P5k , are operator-specified via points. The four inner points,

P1k-P4k , are calculated from the initial and the final tangents (first derivatives) and the

curvatures (second derivatives) of the curve. The first and the second derivatives of (5.2)

at the start and the end points of each Bézier segment are given by (3.17)-(3.20), where

rl =
1
2 min{dl, dl+1}.

P
′

(0)k = 5(P1k −P0k) = ûlrl . (3.17)
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P
′

(1)k = 5(P5k −P4k) = ûl+1rl . (3.18)

P
′′

(0)k = 20(P0k −2P1k +P2k). (3.19)

P
′′

(1)k = 20(P3k −2P4k +P5k). (3.20)

Equations (3.17) and (3.18) are solved directly from the initial and the final tangents of the

curve. The second derivatives, which determine the curvature in (3.19) and (3.20), require

an additional technique for their solution. Here the curvatures of the quintic Bézier curve

are generated using a cubic Bézier curve. However, because the cubic Bézier is not C2

continuous, it is not applied directly; instead, the quintic Bézier curve is transformed into

a cubic Bézier curve while preserving its continuity property. The cubic Bézier curve is

represented as

Q(t) = (1− t)3b0+3t(1− t)2b1+3t2(1− t)b2+ t3b3, (3.21)

whereQ(t) and bi are two-dimensional cubic Bézier curve and control points, respectively.

The first and the second derivatives of (3.21) at the start and the end of the curve are given

by

b
′

(0) = 3(b1− b0), (3.22)

b
′

(1) = 3(b3− b2), (3.23)

b
′′

(0) = 6(b0−2b1+ b2), (3.24)

b
′′

(1) = 6(b1−2b2+ b3). (3.25)

As shown in (3.22)-(3.25), if the initial and the final tangents are computed by (3.17)

and (3.18), respectively, four equations and four unknowns are deduced, and the second

derivative of the cubic Bézier curve is obtained easily. This idea is extended to quintic

Bézier curves. Assuming zero curvature at the first and last via points, only the curvatures

at the intersection of the consecutive Bézier segments Sk and Sk+1 are considered. The
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quintic Bézier segments are formulated in terms of the cubic Bézier curve by redefining

the control points cp as follows:

cp =


W j−1, W j−1+
1
3 ûl−1rl, W j −

1
3 ûlrl, W j, for Q(t)k

W j, W j +
1
3 ûlrl, W j+1−

1
3 ûl+1rl, W j+1, for Q(t)k+1,

(3.26)

where Q(t)k and Q(t)k+1 are the Bézier curves of the segments Sk , and Sk+1, respectively.

Therefore, the two consecutive Bézier segments are given by

Q(t)k = (1− t)3W j−1+3t(1− t)2
(
W j−1+

1
3

ûl−1rl

)
+3t2(1− t)

(
W j −

1
3

ûlrl

)
+ t3W j, (3.27)

Q(t)k+1 = (1− t)3W j +3t(1− t)2
(
W j +

1
3

ûlrl

)
+

3t2(1− t)
(
W j+1−

1
3

ûl+1rl

)
+ t3W j+1. (3.28)

By substituting (3.27) and (3.28) into (3.22)-(3.25),

P
′′

(1)k = P
′′

(0)k+1 =
(A+B)

2
(3.29)

is obtained, where

A = 6W j +2P
′

(0)k +4P
′

(1)k −6W j+1,

B = −6W j+1−2P
′

(0)k+1−4P
′

(1)k+1+6W j+2.
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From the designated via points and by substituting (3.29) into (3.19) and (3.20), the six

required control points for the quintic Bézier segments are obtained as follows:

P0k =W j,

P1k =
ûlrl

5
+W j,

P2k =
P
′′

(0) j
20

+2P1 j −P0 j,

P3k =
P
′′

(1) j
20

+2P4 j −W j+1,

P4k =W j+1−
ûl+1rl

5
,

P5k =W j+1. (3.30)

3.3.2 Subdivision for Curvature Improvement

This subdivision technique recognises that the curve can be approximated by the control

polygon of a Bézier curve. As the curve is subdivided, the approximation improves.

Especially, if a Bézier curve is subdivided into several segments, the arc length of the

original curve exceeds the sum of the chord lengths of the segments and is less than the

sum of their polygon lengths [124]. As explained in section 3.2, the robot velocities

are bounded, and thus the curvature, due to the boundedness of wheel angular velocities.

While generating the reference trajectory, it is important to consider a traversable curvature

in 3.8. If it is above the upper bound of the robot’s curvature, the robot cannot traverse

smoothly and continuously. Instead, it must stop, rotate, and continue moving. These

manoeuvres are time-consuming and should be avoided wherever possible. Thus, in high-

curvature areas, if there is room for trajectory optimisation, the Bézier curve is subdivided

and a quintic Bézier segment is inserted as explained below. Based on the curvature Cr(t)

in (3.8), the curve is subdivided as follows (Fig. 3.5):

If Cr(t) > C(t)max and d j > d jmin , then

W∗j =W j + µv̂l

where C(t)max , d jmin and W∗j are the bounded curvature, the minimum required width of

the trajectory, and the reallocated via point, respectively. µ is the reallocation parameter

along the unit vector v̂l and is defined as µ ≤ 1
2
(
d j − d jmin

)
A subdivision point is introduced at t = t∗ in (3.10). To this end, first, the via point W j

is reallocated to W∗j at the intersection of the two Bézier segments defining the curvature

of interest with the minimum allowable corridor width (Fig. 3.5). Then, the subdivision
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Figure 3.5: Subdivision and curvature improvement.

points are defined by drawing a line ab orthogonal to unit vector v̂l . The segments W j−1

and W j and W j and W j+1 are subdivided at points a and b, and a new quintic Bézier

segment is inserted between a and b to ensure continuity at the junctions. Although the

implementation of this step could be simplified by inserting a cubicBézier curve, curvature

discontinuity will occur because cubic curves do not provide C2 continuity. The benefits

of this technique include reduction of trajectory length and curvature improvement. If

the curvature is too high, that is, at very sharp corners, the inserted segment will not

respect the bounded curvature. Thus, the robot would have to stop, rotate and restart, as

in conventional approaches.

3.3.3 Parameterisation for Velocity Improvement

The principal problem of interpolating path reference points using piecewise Bézier

curves is the irregular temporal spacing of the reference points. Curves are com-

monly approximated by many short-distance segments assuming a predefined number

of points/increments. The disadvantage of this approach is that points are spaced sparsely

when the paths are long or overcrowded on short paths. Hence, if each segment of the

curve is parameterised from 0 to 1, the parameterisation concerning the overall time

parameter is not constant, and the tangent continuity ensured by Bézier’s construction is

lost [125]. Some studies have adopted arc length parameterisation to resolve this issue.

In this approach, equidistant knots are inserted into each Bézier segment and are used to

formulate a B-spline curve. Although the resulting curve is parameterised by arc length,

it lacks two important properties; strong correlation and arbitrary setting of the second
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Figure 3.6: Trajectory tracking error of mobile robot in global coordinate
frame.

derivative at the start position. Therefore, the number of points is calculated based on

the length of each segment. First, the arc lengths of each segment are calculated, and the

points are distributed in predefined intervals. The arc length of each segment is given by

S(t) =
∫ 1

0




P
′

(t)



dt. (3.31)

The re-parameterisation parameter τ is calculated from the desired velocity vd ≤ vr in

(3.6), and the arc length S(t) is given as follows:

τ =
vd

S(t)
, τ = [0,1]. (3.32)

3.4 Controller Design

A Lyapunov-theorem-based nonlinear controller for trajectory tracking is designed to

verify the effectiveness of the proposed algorithm. Nonlinear controllers are preferred

owing to their efficiency and wide application in nonlinear dynamic systems [126–129].

The function of this controller is to provide the mapping between the reference trajectory

and the actuator commands so that the robot can achieve the tracking task. The reference

position qr and velocity Ûqr are determined using the above method (trajectory-generation

algorithm).

The design of this controller was proposed in [130], where a linear (PID) controller

was used. The idea was referred to by many researchers and extended into other control



32 Chapter 3. Real-Time Smooth Trajectory Generation for Mobile Robots

techniques, including feedback linearisation and nonlinear controller design [131, 132].

Nonlinear control approaches take advantage of the given nonlinear system dynamics

to generate high-performance controllers. In this chapter, a simple nonlinear controller

is designed by selecting new control inputs, and its stability is guaranteed by Lyapunov

analysis as in [130]. The tracking problem is formulated by introducing a virtual reference

robot as shown in Fig. 3.6. The position-tracking error between the actual and the

reference robots is expressed as


e1

e2

e3

 =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1




xr − x

yr − y

θr − θ

 . (3.33)

The error dynamics is obtained by taking the time derivative of (3.33) as

Ûe1 = vr cos e3− v+ωe2, (3.34)

Ûe2 = vr sin e3−ωe1,

Ûe3 = ωr −ω.

The nonlinear transformation of the velocity inputs is introduced in (3.35) and substituted

into (3.34) to obtain the error dynamics in (3.36).


u1

u2

 =

vr cos e3− v

ωr −ω

 . (3.35)

Ûe1 = ωe2+u1, (3.36)

Ûe2 = vr sin e3−ωe1,

Ûe3 = u2.

An asymptotically stable controller is designed based on the Lyapunov method [133].

The following lower-bounded Lyapunov function is introduced as proposed in [130].

V =
e2

1
2
+

e2
2

2
+ (1− cos e3). (3.37)
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Control inputs u1 and u2 are selected so that the derivative of the Lyapunov function

in (6.12) becomes negative semi-definite as follows:

u1 = −k1e1, (3.38)

u2 = −k2vr e2−
k3e2

2
max(sin e3, ε)

− k4vr sin e3,

where k1, k2, k3 and k4 are positive constants, and ε is a small constant, for example, 10−5

to avoid zero division. The function ÛV becomes

ÛV = −k1e2
1 − k3e2

2 − k4 sin2 e3 ≤ 0. (3.39)

According to Barbalat’s lemma for stability analysis [133], the system is concluded to be

asymptotically stable.

3.5 Simulation and Experiment

The objective of conducting simulation and experiment is to verify the smoothness of

the trajectory generated by the proposed algorithm, as well as the tracking ability of the

designed controller. A comparison with the conventional trajectory is made to evaluate its

effectiveness. In this context, the word conventional refers to linear interpolation methods

that offer position continuity for trajectories with several segments but neither velocity nor

curvature continuity. Although many methods have been proposed in the literature, such

as quadratic and cubic piecewise Bézier curves, they do not offer curvature continuity

[86–89, 121, 122]. To describe, velocity profiles of the cubic and the quintic Bézier

curves in section 3.5.1 are considered.

3.5.1 Comparison with Cubic Bézier Trajectories

Although a single Bézier curve is infinitely differentiable within itself, it cannot be used

to generate a long trajectory; otherwise, it will be complex to calculate and numerically

unstable, leading to oscillations in the resulting trajectory [93]. Alternatively, piecewise

Bézier curves are connected smoothly; therefore, the derivative property depends on the

order of the affiliated curves. Cubic Bézier curves are among the curves used commonly

for generating parametric trajectories. Their implementation is simple because, for a

given set of via points, only the first derivatives at the start and end points of the Bézier
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(a) Linear Velocity. (b) Angular Velocity.

Figure 3.7: Simulated velocity profiles of quintic and cubic Bézier curves.

curve are required to obtain all control points (equations (3.21) to (3.23)). Quintic

Bézier curves require both the first and the second derivatives (equations (5.2) to (3.20)).

However, the trajectories generated using piecewise cubic Bézier curves lack curvature

continuity. For further elaboration, a simulation based on both the quintic and cubic

Bézier curves is conducted on the same course and under the same conditions. The

results pertaining to both the linear and the angular velocities are shown in Figure 4.10.

Although the linear velocity profiles are relatively the same (Figure 4.10(a)), a major

difference can be observed in the angular velocities (Figure 4.10(b)). The proposed

method provides a smooth profile throughout the course, whereas the conventionalmethod

shows discontinuities at corners around 1 s, 2 s and 3 s. In practical situations, the robot

is constrained by hardware limitations that bound the velocity as well as the acceleration.

The discontinuities in angular velocity may deteriorate the tracking performance of the

robot.

3.5.2 Experimental Setup

A simple differential-drive mobile robot (Fig. 3.8(a)) designed in our laboratory was used

in this research. A crank course of width 0.7 m was planned such that the robot clearance

would be 12 cm on both sides, and the reallocation parameter µ was set to 14 cm (Fig.

3.8(b)). Because the Bézier subdivision algorithm was applied to the proposed reference

trajectory to improve curvatures at all corners, the trajectory slightly deviates from centre

positions at corners. The simulation and experiment were both conducted at themaximum
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(a) Mobile Robot. (b) Crank course.

Figure 3.8: Experimental setup: Mobile robot and trajectories used in the
experiment.

linear velocity bound as shown in Table. 3.1. The aim was to verify the effectiveness of

the proposed algorithm under the highest velocity condition.

The controller gains were chosen as k1 = 91 Vm−1, k2 = 35 Vsm−2, k3 = 30 Vs2 m−2

and k4 = 25 Vsm−1 for the simulation of both algorithms. The same gains were used

in the experiment based on the proposed algorithm, whereas for the conventional one,

they were set to k1 = 70 Vm−1, k2 = 35 Vsm−2, k3 = 30 Vs2 m−2 and k4 = 65 Vsm−1.

The differences in k1 and k4 can be described to the fact that the conventional method

has higher curvature than the proposed algorithm. Therefore, k1 is reduced while k4 is

increased to achieve the best tracking performance.

Table 3.1: Robot specifications.

Robot Specification Value Actuator Specification Value

Weight (kg) 17.9 Voltage (V) 24
Radius (cm) 23 Peak current (A) 5.4
Wheel Radius (cm) 5 Output power (W) 20.3
Moment of inertia 1.12 Speed (rpm) 3000
Linear velocity (ms−1) 3.14 Gear ratio 50
Angular velocity (rads−1) 1.365 Output torque (Nm) 3.2
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3.5.3 Simulation and Experimental Results

The simulated velocity profiles and tracking performance based on both methods are

shown in Fig. 3.9, where (a) and (b), and (c) and (d) are the linear and angular velocities,

and the tracking performances for the conventional and the proposed methods, respec-

tively. Tracking performance is significantly equivalent in both cases; however, there is

a major difference in velocity profiles. The conventional case has a higher magnitude of

angular velocity owing to discontinuities at corners.

The experimental results are shown in Figs. 3.10 and 3.11, and the video captures

in Fig. 3.12. The running times are 34.38 s and 31.98 s for the conventional and the

proposed methods, respectively. Figure. 3.10 shows the trajectory tracking results.

Figure. 3.11(a) shows the velocity profiles of both algorithms, where in the case of the

proposed algorithm, it is always non-zero, while for the conventional method, it is zero

at corners (at t = 7.38 s, 14.1 s, 20.88 s and 20.54 s). Although the linear velocity bounds

are the same in both cases, the angular velocity reaches its upper and lower bounds with

the conventional method, whereas in the case of the proposed algorithm, it is nearly half

the value of (b). It is observed that the proposed velocity profiles are relatively the same

in the simulation (Fig. 3.9 (a) and (b) and the experimental results (Fig. 3.11 (a) and (b)),

with a slight difference at corners (at t = 8.3 s, 14.5 s, 21 s and 27.2 s). The difference

in velocity profiles is mainly due to unmodelled friction. The trajectory tracking result

proves that the proposed controller achieves a sufficiently good tracking performance as

shown in Fig. 3.9. Compared to the simulation result in Figs. 3.9 (c) and (d), the proposed

method achieves equivalent performance, whereas the conventional yields poor practical

performance. These results show that the proposed method generates a trajectory smooth

enough to be tracked by the mobile robot.

Wheel velocities of the left and the right wheels are shown in Figs. 3.11 (c) and

(d), respectively. In the proposed algorithm, the wheels always spin along the motion

direction, while in the conventional method, one wheel must turn in reverse to achieve a

complete turn at corners. Acceleration results obtained using the proposed algorithm are

relatively smoother and lower than those obtained using the conventional method, as in

Figs. 3.11 (e) and (f).
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3.5.4 Discussion

The trajectory of a nonholonomic mobile robot must observe important criteria such as

continuous curvature and local controllability. The interesting properties of Bézier curves

have drawn the attention of many researchers for trajectory generation. Quadratic and

cubic piecewise Béziers are widely used in this area because their implementation is

relatively simple compared to those of higher-order [86–89, 121, 122]. Some researchers

have considered the application of quartic Bézier curves [134]; if used in a single form,

it is infinitely differentiable akin to any nth-order Bézier curve. However, a single Bézier

curve cannot be used to generate long or complex trajectories. Instead, composite curves

are used; henceforth, the trajectory continuity depends on their orders. At the very least,

quintic curves (six control points) are required to guarantee a continuous curvature. For

each continuity, that is, position, velocity and curvature, two control points are used at

the junction of the consecutive curves. The simulation results in Fig. 4.10 show that

composite low-order Bézier curves do not offer continuous curvature. In this light, a

simple and efficient algorithm based on quintic Bézier curves with the adoption of Bézier

subdivision for curvature improvement is proposed. The effectiveness was validated by

simulation and experimental results.

3.6 Summary

In this chapter,a simple and efficient algorithm for generating smooth trajectories by using

piecewise quintic Bézier curves is demonstrated. The generated trajectory observes all the

basic criteria that guarantee the smooth motion of a mobile robot. The adoption of Bézier

subdivision led to a significant improvement of the curvature at sharp corners. Moreover,

the proposed method allows for setting the first and the second derivatives arbitrarily at

the starting and ending points of the trajectory. The combination of this feature and Bézier

subdivision is suitable for trajectory generation for obstacle-avoidance. When the robot

encounters an obstacle, the trajectory is subdivided and a new Bézier curve that avoids

obstacles is connected smoothly. The implementation of this part is left as future work.
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(a) Linear velocity. (b) Angular velocity.

(c) Trajectory tracking based on proposed method. (d) Trajectory tracking based on conventional
method.

Figure 3.9: Simulation results based on the proposed and conventional
methods.
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(a) Proposed method. (b) Conventional method.

Figure 3.10: Experimental results showing the trajectory tracking per-
formance using the designed controller and based on the proposed and

conventional trajectories.
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(a) Linear velocity. (b) Angular velocity.

(c) Velocity of the left wheels. (d) Velocity of the right wheels.

(e) Linear acceleration. (f) Angular acceleration.

Figure 3.11: Experimental results showing velocity and acceleration pro-
files based on the proposed and conventional trajectories.



3.6. Summary 41

Figure 3.12: Experimental video capture based on the proposed controller
and trajectory.
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Chapter 4

Vision-Based Smooth
Obstacle-Avoidance Trajectory
Generation for Mobile Robots

This chapter proposes an obstacle-avoidance trajectory-generation method that provides

a smooth trajectory in real time. The trajectory is generated from an environmental

top-view image, where a fisheye lens is used to capture a wide area from a low height.

Corners of obstacles are detected and corrected using the log-polar transform and are

used to generate a simple configuration space that reduces the computation time. An

optimal path is computed by using the A∗ algorithm and replaced by a smooth trajectory

generated based on piecewise quintic Bézier curves. Based on the established goal and

visual information, a method for generating the first and second derivatives at the start

and the end points of each Bézier segment is proposed to generate a continuous curvature

trajectory. The method is simple and easy to implement and has an average computation

time of 1.17 s on a PC (CPU: 1.4 GHz) for a workspace containing five to six obstacles.

Experimental results verify that the proposed method is effective for real-time motion

planning of autonomous mobile robots.

4.1 Introduction

Because mobile robots normally operate in environments occupied by obstacles, they

must be able to avoid obstacles. Moreover, some obstacles may move or change over

time, requiring the algorithm to be updated continuously. Therefore, automatic motion

planning is one of the most significant and important challenges in robotics research.
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As mentioned in the previous chapter, although many path-planning methods have

been discussed in the literature, several problems remain unresolved. Most studies have

considered the fundamental criteria and constraints such as time delay, travelling distance,

and expected arrival time. However, smoothness in terms of curvature (C2) continuity has

typically been neglected. Therefore, the resulting trajectory is usually a piecewise linear

path or even a sharp path, requiring the mobile robot to stop, rotate and restart frequently

[120]. Such discretised translations and rotations cause discontinuity, consume time and

power, introduce delay and cause unnecessary wear of robot parts [5]. To guarantee

smooth motion, many researchers have modelled robot trajectories as quadratic or cubic

Bézier curves [87–89, 121, 135]. However, both quadratic and cubic piecewise Bézier

curves offer neither curvature continuity nor do they allow for arbitrarily setting of a

second derivatives at the starting and ending positions of the trajectory.

Chandak et al. introduced path planning for mobile robot navigation by using image

processing [136]. Their method generates only the feasible path regardless of its geome-

try. In addition, the authors used a single normal ceiling camera whose vision was limited

to a small area. To expand the operation area, they suggested the use of multiple cameras;

however, they mentioned that the use of multiple cameras would increase the computation

time, which would hinder real-time applications. On the other hand, Maron and Pérez

showed that by decomposing the configuration space, the visibility graph method could

be used efficiently for real-time path planning in large planar environments. Moreover, its

implementation is simple, and the resulting path is always optimal regarding Euclidean

distance and has certain advantages over other classical methods such as cell decompo-

sition and the Voronoi diagram [16]. Furthermore, Masehian and Amin showed that the

visibility graph produces a shorter path than the Voronoi diagram and the potential fields

methods [137].

The objective of this study is to overcome the stated drawbacks by generating a

trajectory with the shortest possible distance, without any sharp turn and with adequate

safety distance from obstacles. In addition, the computation time should be minimised

as much as possible to allow for real-time applications. Furthermore, the method should

be autonomous to reduce the operator’s input so that his/her main task becomes to assign

the goal position and, if needed, the safety distance between obstacles and the robot. To

this end, the visibility graph method and Bézier curves are used in this research. Image

processing is employed to extract corners of obstacles from a workspace captured using a

fisheye lens attached to a webcam. A top-surface image of the obstacles is obtained based
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on colour filtration, and their corners are detected to match the corresponding lower-

surface corners. The lower-surface corners are used to calculate the actual distances

between the obstacles and robot. From these corners, the visibility graph is generated,

and the shortest path is searched for, which is then transformed into a smooth trajectory

by using quintic Bézier curves as proposed in chapter 3.

The main contribution of this chapter is the generation of smooth and obstacle-

avoidance trajectories by using Bézier curves constrained by via points and path-widths

(safety margins). An algorithm is proposed for generating the first and second derivatives

at the start and end points of each path segment based on only the defined safety margins

and the via points resulting from the visibility graph. This algorithm guarantees that

the entire trajectory would be second-order differentiable. In addition, this chapter

demonstrates a new approach using the Log-Polar Transform (LPT) to distinguish the

top and bottom object surfaces in indoor environments captured by ceiling cameras. The

LPT remaps the objects according to the distance from the centre of the environmental

image. Therefore, the heights of the objects in the log-polar domain are represented

equally, regardless of the objects’ distribution in the environment.

The remainder of this chapter is organised as follows: Section 4.2 addresses the steps

involved in the extraction of corners by using a fisheye lens. A brief description of lens

distortion and calibration is provided, and the LPT used to correct the corner coordinates

is discussed. In section 4.3, the configuration space based on the corrected corners is

generated, visibility graph is constructed and shortest path is found. The conversion of

linear paths into a smooth trajectory is explained as well. The experimental results are

presented in section 4.4, followed by a summary in section 4.5.

4.2 Workspace Representation

4.2.1 Strategy Specification

Image processing has become closely associated with robotic systems, in which it is

commonly used to help a robot navigate to the desired position [138–140]. Navigation

information can be obtained using either a camera installed on a robot to capture the

workspace concerning the current location of the robot or by using ceiling camera that

captures a fixed view of the environment through which the robot is to navigate. The
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(a) Conventional camera. (b) Fisheye camera.

Figure 4.1: Camera structure.

latter strategy is considered in this study, whereby the camera is used to capture the top

view of the workspace from a fixed height Λ.

4.2.2 Fisheye Distortions and Calibration Process

Conventional cameras are equipped with spherical lenses, as shown in Fig. 4.1(a), due

to the complexity of manufacturing flat lenses. The angle of view is proportional to the

height or distance from the area of interest; hence, at a low height of approximately 2-3

metres, the captured area is very limited. To make the proposed method applicable to

various tasks, a fisheye lens is attached to the camera because its optical structure covers

a wide angle of view [141]. Nevertheless, the fisheye lens causes radial and tangential

distortions, which can be eliminated from an image through calibration. The radial

distortion is produced by the lens shape and appears as barrel effect in an image. The

tangential distortion arises due to differences in centralising the lens and the electronic

chip (imager), and it appears as a tangential displacement of pixels that depends on the

distance from the lens centre ρ. Equation (4.1) re-scales the pixel at the coordinates (x, y)

by using the two radial distortion parameters k1 and k2, whereas (4.2) characterises the

tangential distortion by two additional parameters ξ1 and ξ2 [142]. [x, y] and [xc, yc] are

the two-dimensional coordinates for the fisheye lens and the projected image, respectively.


xc

yc

 =

1+ k1ρ

2+ k2ρ
4 0

0 1+ k1ρ
2+ k2ρ

4



x

y

 . (4.1)
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(a) Image by fisheye lens. (b) Undistorted image.

Figure 4.2: Calibration result.


xc

yc

 =

x+2ξ1y+ ξ2(ρ

2+2x2)

y+2ξ2x+ ξ1(ρ
2+2y2)

 . (4.2)

Figure 4.1(b) shows a typical fisheye lens whose spherical shape is used to cover a

wide angle of view. A particular point q =
[
qx qy qz

]T on the lens surface is projected

onto the imager according to (4.3), and the distance from the centre is proportional to the

angle from the viewing direction. Consequently, one can deduce that the view captured

via this lens is circularly projected onto the imager as shown in Fig. 4.2(a).


qx

qy

 =
1
2


1+ ρcosϑ 0

0 1+ ρsinϑ



cx

cy

 , (4.3)

where ϑ = arctan2(qy,qx) ρ = 2ϕ/π and ϕ = arctan2(
√

q2
x + q2

y,qz). A calibration process

is conducted to remove the distortions caused by the conventional camera as well as those

caused by the attached fisheye lens [143]. In Fig. 4.2(a), the circular surface of the robot

is changed into an elliptical shape due to fisheye lens distortions, and the obstacles closer

to the lens edge appear to be smaller. Figure 4.2(b) shows the corresponding undistorted

image after calibration; the figure shows that the obstacles are approximately normal in

size regardless of their distance from the image centre and the circular shape of the robot’s

surface is perfectly formed.
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(a) Red channel. (b) Top-surface image.

Figure 4.3: Top surface extraction.

4.2.3 Corner Detection

The present work analyses the feasibility of the proposed method and represents a fun-

damental study; thus, all the obstacles are assumed to have the same height and their top

surfaces have sharp corners. The top surfaces are coloured red, whereas the sides are

shown in green to facilitate detection of the surface corners, thus allowing for themeasure-

ment of the distance between the obstacles and the generation of the configuration space.

In general applications, although the obstacles have different shapes and heights, their

top surfaces can be approximated as polygons and detected and distinguished based on a

depth map generated by a stereo camera or a Microsoft Kinect. Moreover, higher-level

image processing techniques should be used to address different lighting conditions.

An obstacle in the workspace can be represented by the corners of its top surface.

To detect these corners, the undistorted image is decomposed into three colour channels

(red, green and blue). In the red channel, the obstacles’ top surfaces have bright pixels,

whereas the sides and the ground are rendered in greyscale, as shown in Fig. 4.3(a). The

top-surface image (Fig. 4.3(b)) can be filtered out by comparing the red channel with a

threshold Ω, whereas the sides and the ground are represented by black pixels. Provided

that the top surfaces are assumed to have sharp corners, it has been observed that the

Harris corner detector based on eigenvalues is the best corner detection method to use

[144]. A window measuring a x b is shifted along the top-surface image, and a 2 x 2

gradient variation matrix of the pixel values contained in the window is calculated. The

two eigenvalues of this matrix are then computed, and the corner is found if and only if

the eigenvalue is larger than a threshold δ, as shown in Fig. 4.4(a) (white points).
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(a) Corner extraction. (b) Lower surface image.

Figure 4.4: Corner detection.

4.2.4 Corner Correction using Log-Polar Transform

Intuitively, the corners extracted from the top-surface image cannot be used to generate the

configuration space because the height representation is altered radially, as shown in Fig.

4.4(a). Figure 4.4(b) highlights this issue by demonstrating the obstacles’ lower surfaces,

whose corners can be used to generate the configuration space. Thus, the top-surface

corners must be matched with the corresponding lower corners. If perfect calibration

were achieved, the height effect would vary proportionally with the distance from the

centre regardless of the angular position. Hence, the matching process would displace

only the corners towards the centre, making the log-polar transform the most appropriate

approach for correcting the corner coordinates [145, 146].

The log-polar transform has been used for various applications in image processing.

An image in a Cartesian coordinate system is exponentially sampled by a number of

circular rings, which in turn are sampled by a fixed number of sectors. The coordinates

of each sector are transformed into log-polar coordinates based on the angle ϑ and the

radius ρ of the ith circular ring. Thus, a set of pixels I = [x, y]T in the Cartesian image

plane is transformed into a set of pixels Í = [ρ,ϑ]T in the log-polar image, as shown in

Fig. 4.5(a), by the following equation:

Íρ,ϑ =

log

√
(x2+ y2)

arctan y
x

 . (4.4)

The obstacle height Λ is assumed to be fixed so consequently, the log ρ coordinates of

the top-surface corners are displaced by a fixed number of pixels λ. The displaced log ρ
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(a) Log-polar image. (b) Corrected corners.

Figure 4.5: Corner-matching process.

coordinates are transformed inversely into a Cartesian coordinate system to obtain the

corrected corners, as highlighted by black points in Fig. 4.5(b), where corrected points

nearly match the obstacles’ lower surfaces. This relationship can be proved by focusing

on the boundaries between the side surfaces (green areas) and the ground.

4.3 Trajectory Planning

4.3.1 Visibility Graph Construction

In this section, a description on how to process an input set of polygonal obstacles and

construct a visibility graph is provided. A method to generate the configuration space,

visibility graph and search for the shortest path from the start to goal positions is explained

first. The next step is to replace the linear shortest path with piecewise Bézier curves to

obtain a smooth trajectory.

Given a workspace with polygonal obstacles Ok , k = 1, ...,m, where m is the number

of obstacles, r is robot radius and the desired safety distance from the robot to an obstacle

is defined as dc,let vhk and ehk be the hth vertex and the hth edge of an obstacle Ok ,

respectively, as shown in Fig. 4.6, where h = 1. All edges are offset by a distance d = r +

dc and extended on both sides to find an intersection point v
′

hk . For each convex vertex, a

line segment ahk bhk orthogonal to a normal vector −−−−−→vhkchk of magnitude d is constructed.
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Figure 4.6: Configuration space construction.

Points ahk and bhk are then used as nodes of Ok in the configuration space, whereas v ′hk

is used for the concave vertex. The visibility graph is then constructed using a standard

method as shown in Fig. 4.7(a).

The next step is to find the optimal path from the given start and goal positions. In this

chapter, the word ‘optimal’ refers to the shortest Euclidean distance; however, one may

apply other criteria such as minimum energy or traversal time. The A? algorithm, which

features a heuristic function that makes it more efficient for node to node queries than

other graph search algorithms is employed to find the shortest path [14]. The shortest

path obtained here is normally a straight line with sharp turns (Fig. 4.7(b)); therefore, a

smoothing algorithm is developed later in this study.

4.3.2 Smooth Trajectory Generation by Quintic Bézier Curves

Although the resulting path after smoothing is slightly longer than the one connected by

straight lines, it is preferable for the actual mobile robot. Therefore, a smooth trajectory-

generation algorithm using Bézier curves, as presented in chapter 3, is employed. The

method is straightforward, easy to implement, and generates a smooth trajectory that can

be tracked by autonomous mobile robots.

From the given visibility graph (Fig. 4.8), the nodes constructing the shortest path

are first defined as the via points W j, j = 0, 1 ..., g, where g is the final via point (goal
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(a) Visibility graph. (b) Shortest path.

Figure 4.7: Example of visibility graph and shortest linear path.

position). The objective is to ensure that the trajectory passes through these nodes while

improving curvatures to ensure smooth turning of the mobile robot. A unit vector ûl ,

pointing in the direction of motion is introduced as follows:

ûl =
Rβj

[
W j+1−W j

]

W j+1−W j


 , (4.5)

û0 =
Rθ0 [W1−W0]

‖W1−W0‖
, (4.6)

ûg =
Rθg

[
W j −W j−1

]

W j −W j−1


 , (4.7)

Rα =

cosα −sinα

sinα cosα

 , (4.8)

where û0 and ûg are unit vectors indicating the orientations of the robot at the start and

goal positions, respectively, and γ j is the inner angle of the bisector inscribed byW j−1, W j

and W j+1 as shown in Fig. 4.8. Rα is the rotation matrix; θ0 and θg are the orientations

of the robot at the start and goal positions, respectively; and β j is given by
π−γj

2 .

A quintic Bézier curve is inserted between two consecutive via points while ensuring

C2 continuity at the connecting point, thereby preserving the continuity of the entire
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Figure 4.8: Variables for Bézier curve construction.

trajectory. From the definition of a Bézier curve, the quintic Bézier curve of the jth

segment is given by

P(t) j = (1− t)5P0 j +5t(1− t)4P1 j +10t2(1− t)3P2 j

+10t3(1− t)2P3 j +5t4(1− t)P4 j + t5P5 j . (4.9)

The start and the end points of each Bézier segment, P0 j and P5 j , are the via points W j

and W j+1, respectively. The four inner points, P1 j-P4 j , are calculated from the initial and

the final tangents (first derivatives), and the curvatures (second derivatives) of the curve.

The first and the second derivatives of (4.9) at the start and end points of each Bézier

segment are given by (4.10)-(4.13).

P
′

(0) j = 5(P1 j −P0 j) = ûl dc. (4.10)

P
′

(1) j = 5(P5 j −P4 j) = ûl+1dc. (4.11)

P
′′

(0) j = 20(P0 j −2P1 j +P2 j). (4.12)
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P
′′

(1) j = 20(P3 j −2P4 j +P5 j). (4.13)

Equations (4.10) and (4.11) are solved directly from the initial and final tangents of the

curve. Here, the initial and the final tangential vectors are chosen to be equal to ûl dc and

ûl+1dc, respectively, to ensure that the path is within the specified region because a Bézier

curve is always in its convex hull.

The second derivatives, which determine the curvature in (4.12) and (4.13), require a

further technique for their solution. Therefore, the curvatures of the quintic Bézier curve

are generated using a cubic Bézier curve. Because the cubic Bézier is notC2 continuous, it

is not applied directly. Instead, the quintic Bézier curve is transformed into a cubic Bézier

curve while preserving its continuity property. The cubic Bézier curve is represented as

Q(t) = (1− t)3b0+3t(1− t)2b1+3t2(1− t)b2+ t3b3, (4.14)

whereQ(t) and bi are two-dimensional cubic Bézier curve and control points, respectively.

The first and the second derivatives of (4.14) at the start and end points of the curve are

given by

b
′

(0) = 3(b1− b0), (4.15)

b
′

(1) = 3(b3− b2), (4.16)

b
′′

(0) = 6(b0−2b1+ b2), (4.17)

b
′′

(1) = 6(b1−2b2+ b3), (4.18)

As demonstrated by (4.15) to (4.18), if the initial and final tangents are computed using

(4.10) and (4.11), respectively, there are four and four unknowns, and the second derivative

of the cubic Bézier curve is obtained easily. Here, this idea is extended to quintic Bézier

curves. Assuming zero curvature at the first and the last via points, the curvature at the

intersection of two Bézier segments W jW j+1 and W j+1W j+2 is considered. The quintic

Bézier segments are formulated regarding the cubic Bézier curve by redefining the control
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points cp as follows:

cp =


W j−1, W j−1+
1
3 ûl−1dc, W j −

1
3 ûl dc, W j, for Q(t) j

W j, W j +
1
3 ûl dc, W j+1−

1
3 ûl+1dc, W j+1, for Q(t) j+1

, (4.19)

where Q(t) j and Q(t) j+1 are Bézier curves of the segments W jW j+1 and W j+1W j+2,

respectively. Therefore, the two consecutive Bézier segments are given by

Q(t) j = (1− t)3W j−1+3t(1− t)2
(
W j−1+

1
3

ûl−1dc

)
+3t2(1− t)

(
W j −

1
3

ûl dc

)
+ t3W j, (4.20)

Q(t) j+1 = (1− t)3W j +3t(1− t)2
(
W j +

1
3

ûl dc

)
+

3t2(1− t)
(
W j+1−

1
3

ûl+1dc

)
+ t3W j+1. (4.21)

By substituting (4.20) and (4.21) into (4.15)-(4.18),

P
′′

(1) j = P
′′

(0) j+1 =
(A+B)

2
(4.22)

is obtained, where

A = 6W j +2P
′

(0) j +4P
′

(1) j −6W j+1,

B = −6W j+1−2P
′

(0) j+1−4P
′

(1) j+1+6W j+2.

From the via points of the shortest path and by substituting (4.22) into (4.12) and (4.13),

the six control points required for the quintic Bézier segment are obtained as

P0 j =W j, P1 j =
ûl dc

5
+W j,

P2 j =
P
′′

(0) j
20

+2P1 j −P0 j, P3 j =
P
′′

(1) j
20

+2P4 j −W j+1,

P4 j =W j+1−
ûl+1rl

5
, P5 j =W j+1. (4.23)

Equation (4.23) is substituted into (4.9) to obtain the of each path segment from the start

to the goal positions. This method produces a smooth trajectory, as shown in Fig. 4.9,
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Figure 4.9: Smooth Trajectory and Linear Path.

which is a magnified portion of the workspace.

4.3.3 Comparison with Cubic Bézier Trajectories

Although a single Bézier curve is infinitely differentiable, a long trajectory requires higher-

order Bézier curves. These curves are complex to calculate and numerically unstable,

leading to oscillations in the resulting trajectory [93]. Instead, piecewise Bézier curves

are used, and therefore, the continuity of the generated trajectory depends on the order

of the Bézier curves. Cubic Bézier curves are among the most commonly used curves to

generate parametric trajectories. Implementation is simple because, for given via points,

only the first derivatives at the start and the end points of the Bézier curve are required to

obtain all control points ((4.14) to (4.16)). Quintic Bézier curves require both the first and

the second derivatives ((4.9) to (4.13)). However, the trajectory generated by the piecewise

cubic Bézier curves lacks the curvature continuity required for mobile robots. For further

elaboration, a simulation based on both the quintic and the cubic Bézier curve methods is

conducted on the same course and and under the same conditions. The results of both the

linear and angular velocities are shown in Fig. 4.10; although the linear velocity profiles

are relatively the same (Fig. 4.10(a)), major differences can be observed in the angular

velocities (Fig. 4.10(b)). The proposed method provides a smooth profile throughout the

course, whereas the conventional one shows discontinuities at corners around 1 s, 2 s and
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(a) Linear Velocity. (b) Angular Velocity.

Figure 4.10: Velocity profiles of quintic and cubic Bézier curves.

3 s. In practical situations, the robot is constrained by hardware limitations that bind the

velocity and the acceleration. Therefore, the discontinuities in the angular velocity may

deteriorate the tracking performance of the robot.

4.4 Experimental Setup and Results

4.4.1 Experimental Setup

Aworkspacemeasuring 2.5 x 2.5 m2 was used to evaluate the performance of the proposed

method. A fisheye lens with an 180 deg viewing angle was attached to a webcam fixed

at the height of 1.58 m and positioned at the centre of the workspace. All obstacles had

the same height of 19 cm, and their top surfaces were coloured red, while their sides

were coloured green, as shown in Fig. 4.2. The robot was placed in each environment

at different start positions, whereas the operator assigned the goal positions. A laptop

computer equipped with an Intel Core 2 Duo Processor (1.40 GHz) and 4GB RAM and

running the 32-bit version of the Microsoft Windows 7 operating system was used for the

experiment.

Calibration was performed to obtain an accurate representation of the obstacles,

especially at the lens edges. An equivalent representation of the obstacles’ lower surfaces

was obtained for each workspace (as in Fig. 4.4(b)) to evaluate the accuracy of the corner

correction method based on the log-polar transform. The top-surface image was extracted

at a thresholdΩ of 200-pixel intensity and scanned in a window measuring 5 x 5 pixels to

detect the corners. By using the Harris corner detector [144], the threshold of eigenvalues
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(δ) to determine whether the window contains a corner was found to be 0.00342. The

log ρ coordinates of the corners were displaced in 3 pixels, whereas the robot top-surface

was displaced in 8 pixels.

4.4.2 Experimental Results

Figures 4.11 to 4.13 demonstrate three workspaces constructed with different obstacle

distributions. Each figure has four sub-figures. Sub-figure i shows the obstacle corners

detected using the corresponding top-surface image, whereas sub-figure ii shows the

lower-surface image created to observe the output of the corner-matching operation. The

corrected angles and the robot position are represented by black points and a black circle,

respectively. Sub-figure iii shows a visibility graph of the workspace, where black,

magenta/grey and cyan/light grey represent the obstacles, area equivalent to the robot’s

radius and safety distance, respectively. The marks o and ∗ represent the start and the

goal positions, respectively. Sub-figure iv shows the smooth optimal trajectory generated

using the proposed method.

The log-polar transform successfully and sufficiently corrected the obstacles and the

robot centre coordinates. Regardless of the angular position, the height representation is

related to the distance from the image centre. Sub-figure ii shows the corrected corners

extracted from the top-surface images of each workspace in sub-figure i, where very high

matching accuracy was achieved. Moreover, the obstacles whose side surfaces do not

appear in the middle of the image were corrected as well. As shown in sub-figure iv,

smooth optimal trajectories were generated using the proposed method. In workspace 3

(Fig. 4.13), the obstacles were so close to the robot that no feasible path was found. The

resulting trajectory was optimal and smooth enough to be tracked by the mobile robot, as

shown in Fig. 4.10. In each case, the average computation time was 1.17 s, as given in

Table 4.1. This computation time is faster than, for example, that indicated in [147], in

which the computation times were reported to be 1.74 s and 1.09 s for 2 and 3 obstacles,

respectively, by using a personal computer (CPU: 1.83 GHz).

Table 4.1: Computation time for generating trajectory.

Fig. 4.11 Fig. 4.12 Fig. 4.13 Average

Computation time (s) 1.174 1.171 1.165 1.170
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Figure 4.11: Experimental results for workspace 1.

Figure 4.12: Experimental results for workspace 2.
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Figure 4.13: Experimental results for workspace 3.

4.4.3 Discussion

Because the actual representation of the obstacles’ lower surfaces is required to find the

shortest path, the calibration must be done perfectly. Furthermore, the corners of the

obstacles’ lower surfaces must be extracted accurately to calculate the shortest path. One

approach is to detect the side surfaces and then shift the corners accordingly. However,

this requires an additional colour detection technique because the image might be affected

by noise. Moreover, because the matching process is applied independently to each top-

surface corner, an independent error will occur accordingly. Therefore, the obstacles’

lower surfaces will not adopt an actual geometrical shape. Although one may suggest

applying the log-polar transform to the top-surface image and then detecting the corners,

this approach may introduce additional distortions into the transformed image. These

distortions may change the obstacles’ shapes, making the detection of corners more

challenging and inaccurate. The proposed method has proved to be sufficient to correct

obstacles and the robot centre coordinates.

As shown in Figs. 4.11-4.13 (sub-figures iii and iv), the classical approach to con-

structing a configuration space was not applied. In the classical approach, the config-

uration space of a circular robot is constructed by enlarging polygonal obstacles by a

constant width equal to the radius of the robot plus a specific safety margin. Likewise,
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the configuration space of a non-circular robot that performs translation and rotation is

normally constructed in a similar manner to reduce complexities. To obtain a visibility

graph, arcs are approximated by many straight line segments or critical points, which lead

to a large number of nodes and, in turn, a longer computation time. Therefore, the method

is not effective for real-time applications.

The proposed method generates a configuration space by modifying the classical

method. At corners, the configuration space of an obstacle is approximated by one

line segment, as shown in Fig. 4.6. The resulting configuration space has fewer nodes

compared to that in the classical method, and hence, the computation time is reduced

significantly. Although there aremanymethods for generating smooth trajectories off-line,

in real-time applications, environmental information is limited; thus, suchmethods cannot

be applied directly. The proposed method generates smooth and optimal trajectories

based on the goal position, safety margin and via points, which are calculated from the

environmental top-view image.

Although the proposed algorithm offers the benefits described above, as stated in

section 4.2.3, the currentwork is considered a fundamental study, inwhich implementation

of the proposed algorithm is limited to obstacles of the same height and colour and uniform

lighting conditions. In general applications, although obstacles have different shapes and

heights, their top surfaces can be approximated as polygons and detected and distinguished

by using the depth map generated by a stereo camera or a Microsoft Kinect. Moreover,

higher-level image processing techniques should be used to address different lighting

conditions.

4.5 Summary

A method for generating smooth and obstacle-avoidance motion trajectories for wheeled

mobile robots is proposed. A ceiling camera equipped with a fisheye lens is used to

capture a wide view of a given workspace. Significant use of the log-polar transform

has been proven to be effective in eliminating the height effect of obstacles regardless of

their distances from the centre of the workspace. The configuration space is simplified to

reduce the number of nodes, and hence, the computation time is reduced significantly to

allow for real-time applications. The searched optimal path is replaced by quintic Bézier

curves, which are connected smoothly to obtain a curvature-continuous trajectory. The

method is relatively simple and easy to implement, and its average computation time is
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1.17 s on a PC (CPU: 1.4 GHz), which makes it feasible for real-time applications. The

experimental results demonstrate the effectiveness of the proposed method.
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Chapter 5

Smooth Trajectory Generation and
Nonlinear Friction Compensation for
Feed Drive Contouring Control

Generation of motion trajectories is a crucial task in feed drive control for efficient

manufacturing and energy saving. They have to be smooth enough to be traversable

without violating systems constraints. Literary, a number of methods, such as spline

parametric trajectories have been suggested for smooth trajectories generation. However,

there are still many challenges left, for example, in order to smoothly track a spline

parameterised trajectory, the reference velocity as well as position have to be optimally

planned, such that low-velocity should be used at the start and the end of the motion,

as well as in all areas with high curvature. Additionally, mechanical systems experience

friction forces which vary nonlinearly with velocities. Therefore, on implementing a

smooth velocity profile, an appropriate friction compensator has to be considered to

cancel out the effect of friction forces. In this study, methods for generating smooth

motion trajectories using quintic Bézier curves and smooth velocity profiles based on the

altered bang-bang approach are proposed. A contouring controller with a feed forward

friction compensator is applied in order to smoothly track the designed trajectory by

cancelling out the effect of friction forces. The performance of the proposed method was

experimentally evaluated by comparing it with a conventional approach. Results have

shown that the tracking performance can be greatly increased by reducing the average

contour error by about 48 % without violating systems constraints.
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5.1 Introduction

Due to the rapid growth of science and technology and the demand of precise products,

computer numerical control (CNC) machines are widely used to manufacture complex

components [148, 149]. In order to achieve a desired manufacturing quality, motion

trajectories must be traversable without violation of the systems constraints such as a

permissible acceleration and jerk. Generally, the trajectories have to be at least second

order differentiable in order to achieve a continuous velocity and acceleration [150, 151].

Although linear trajectory interpolation is commonly used, the motion has to stop between

each segment, otherwise, the system must undergo an infinite acceleration of which is

practically impossible. However, motion stops consume time and power, and bring

unnecessary wear on the system parts [5].

For improvement of motion trajectories, a number of methods have been proposed in

the literature and most of them focus on smoothing the linear interpolated tool-path points

using curve fitting technique. In this case, cubic, quadratic, and quintic spline curves are

widely utilized [90, 91, 152]. For densely tool-path points, curve fitting technique exhibit

oscillations in the trajectory because high-order spline curves are numerically unstable

[93]. On the other hand, parametric spline curves are used to smoothly interpolate the

linear tool-path points or blending corners and have proven to provide sufficiently smooth

trajectories for CNC machining [94, 95].

In order to smoothly track a spline parameterised trajectory, reference velocity has to

be smoothly planned, such that low-velocity values can be used during themotion start and

end, and in all areas with high curvatures. Since it is well known that mechanical systems

cannot instantly accelerate to high velocities and that the velocity is inversely proportional

to the curvature, smooth reference velocity ensures that the motion acceleration and jerk

are within the permissible range.

In addition to the velocity profile matter, mechanical systems experience friction

forces which vary nonlinearly with velocities. Therefore, on implementing a smooth

velocity profile, an appropriate friction compensator has to be considered to cancel out

the effect of friction forces. There are abundant studies on friction compensation which

aim to improve the motion performance of feed drive systems, particularly machine

tools [153–155]. In [153], it was assumed that friction in feed drives of machine tool

comes from many friction sources with complex nonlinear properties. The main focus

was particularly on the property of the lead screw drive under insufficient lubrication
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condition. The proposed nonlinear friction model includes the typical Coulomb-viscous

friction and a nonlinear sinusoidal friction term for describing the lead screw property.

The proposed model was experimentally verified and showed a satisfactory improvement

compared to the conventional friction model.

In this study, a method for generating smooth motion trajectories using quintic Bézier

curves and smooth velocity profiles based on the altered bang-bang approach is proposed.

A contouring controller with a feed forward friction compensator is applied in order

to smoothly track the designed trajectory by cancelling out the effect of friction forces.

Finally, experiments are conducted to verify the effectiveness of the proposed method.

5.2 Bézier Smoothing Algorithm

A three-dimensional Bézier Curve (BC) of order n is represented as

P(τ) =
∑n

k=0

(
n!

k! (n− k)!

)
τk(1− τ)n−k Pk, τ ∈ [0,1],

k = 0,1,2, ...,5, (5.1)

where P(τ) = [x(τ), y(τ), z(τ)]T and Pk are the three-dimensional Bézier curve and

the control points, respectively. As shown in Fig. 5.1, the initial reference trajectory is

defined inG-code fashion and smoothened byBCs, where theG-code pointsGi, i = 1, 2, ...

become the inputs of the smoothing algorithm. A quintic BC is inserted between the two

consecutive segments at positions B0i and B5i while ensuring curvature continuity. γ

and µi are the tolerance in the contour error and tangential unit vectors corresponding to

the motion direction, respectively. In order to satisfy the C2 continuous condition, the

ending tangent and curvature of the ith segment must be similar to the starting tangent and

curvature of the ith Inserted Bézier Curve (IBC), respectively. Therefore, each segment

is transformed into a quintic BC and smoothly connected with the inserted curve.

From (5.1), the BC of the ith segment and the ith IBC are as follows:

P(τ)i = (1− τ)5P0i +5τ(1− τ)4P1i +10τ2(1− τ)3P2i

+10τ3(1− τ)2P3i +5τ4(1− τ)P4i + τ
5P5i,

B(τ)i = (1− τ)5B0i +5τ(1− τ)4B1i +10τ2(1− τ)3B2i

+10τ3(1− τ)2B3i +5τ4(1− τ)B4i + τ
5B5i, (5.2)
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Figure 5.1: Proposed trajectory smoothing strategy.

where P(τ)i and B(τ)i, Pki and Bki , and τ are the three-dimensional BC for the ith segment

and the ith IBC, control points, and the parameterisation variable, respectively. The first

and second derivatives with respect to τ for each BC in (5.2) are respectively given by

P
′

(0)i = 5(P1i −P0i), P
′

(1)i = 5(P5i −P4i),

P
′′

(0)i = 20(P0i −2P1i +P2i),

P
′′

(1)i = 20(P3i −2P4i +P5i), (5.3)

and

B
′

(0)i = 5(B1i −B0i), B
′

(1)i = 5(B5i −B4i),

B
′′

(0)i = 20(B0i −2B1i +B2i),

B
′′

(1)i = 20(B3i −2B4i +B5i). (5.4)

To satisfy the required continuity, the following must be satisfied:

P5i = B0i, P
′

(1)i = B
′

(0)i, P
′′

(1)i = B
′′

(0)i . (5.5)

Allocation of the control points P0i to P5i and B0i to B5i is done based on the altered

concept in [94] such that, for the IBC they are placed as

B0i = Gi − liµi, B1i = Gi −αiliµi,

B2i = Gi − βiliµi, B3i = Gi + βiliµi+1,

B4i = Gi +αiliµi+1, B1i = Gi + liµi+1, (5.6)

where αi and βi are the fractions of the length li, and they are used to design the curvature
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of the IBC. Note that if the curvature is zero at the initial or final control points of the

IBC, i. e. , if 2αi − βi = 1, the corresponding segments can be linearly interpolated. From

(5.3) to (5.6), the control points for each segment become

P0i = Gi−1+ li−1µi, P1i = Gi−1+ li−1µi (2−αi),

P2i = Gi−1+ li−1µi (βi −4αi +4),

P3i = Gi − liµi (βi −4αi +4),

P4i = Gi − liµi (2−αi), P5i = Gi − liµi . (5.7)

Since the proposed trajectory generation algorithm induces a geometrical error γ at the

corner, the algorithm must guarantee that γ is within the predefined tolerance of the

contour error [94]. Due to the symmetrical nature of the IBC, the maximum geometrical

error occurs at the middle point of the curve, i. e. at τ = 0.5 as follows:

γ = ‖Gi −B(0.5)i‖ . (5.8)

From (5.2) and (5.6), the point B(0.5)i is found by

B(0.5)i = Gi +
li
32
(1+5αi +10βi) (µi+1− µi) . (5.9)

From (5.8) and (5.9), the length li is calculated as

li =
32γ

(1+5αi +10βi) ‖µi − µi+1‖
. (5.10)

Since µi and µi+1 are unit vectors, (5.10) can be written as

li =
32γ

(1+5αi +10βi)
√

2−2cosθi
, (5.11)

where θi is the inclination between the corresponding linear segments. The values of αi

and βi are found by considering the optimal condition of the following curvature κi of the

IBC:

κi =



B
′

(τ)i B
′′

(τ)i




‖B′(τ)i‖
3 . (5.12)

The objective is to minimize the curvature extrema so as to achieve the maximum possible

cornering speed.
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5.3 Smooth Velocity Transition

For velocity planing, in many cases a piecewise constant velocity can be assumed. In

order to ensure a continuous overall velocity, a smooth transition between the sections

with constant velocity has to be implemented. Due to physical limitations of the system

and/or comfort reasons, limits on the acceleration a and the jerk j have to be met. In the

following section, a bang-bang approach for the jerk with acceleration limits is explained.

It is assumed that the jerk is limited to the area j ∈ (− jmax, jmax) and the acceleration

to a ∈ (−amax,amax). As stated above, a bang-bang approach for the jerk is introduced

which means that the jerk either takes its maximum or minimum value. This leads

to a time optimal velocity transition under the jerk constraint. However an additional

acceleration constraint might be violated in the bang-bang approach for higher changes in

velocity. Therefore, a second approach is proposed, where the acceleration is limited and

therefore the jerk is set to zero after reaching the acceleration limit and before reducing

the acceleration again. This is called bang-bang approach with acceleration limit form

here on. Note that here a velocity v greater or equal to zero at all times t is assumed.

5.3.1 Bang-Bang Approach Without Acceleration Limitation

As stated above this approach is characterized by switching the jerk only between the

minimum value − jmax and the maximum value jmax. Since (here) only the velocity

transition from v(t0) to v(tf) is considered, the following two sections are considered:

j(t) =


jmax, ∀t0 ≤ t < tf−t0
2 ,

− jmax, ∀ tf−t0
2 ≤ t < tf.

(5.13)

Using the Heaviside function H(t), (5.13) can be written in closed form

j(t) =H(t − t0) jmax−2H
(
t −

tf− t0
2

)
jmax,

∀t ∈
[
t0, t f

]
. (5.14)

Note that the last term only ensures that the jerk returns to zero for t > tf and does not

contribute to the equation, if only t ∈ [t0, tf] is considered. From here on it is assumed that
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t0 = 0 and tf = 2∆T , leading to

j(t) = H(t) jmax−2H(t −∆T) jmax. (5.15)

The acceleration a, velocity v and position s can be derived by integration:

a(t) = jmax {H(t)t −2H(t −∆T)(t −∆T)} , (5.16)

v(t) = v(t0)+
1
2

jmax
{
H(t)t2−2H(t −∆T)(t −∆T)2

}
, (5.17)

s(t) = s(t0)+ v(t0)t

+
1
6

jmax

(
H(t)t3−2H(t −∆T)(t −∆T)3

)
. (5.18)

As can be seen from (5.16–5.18), a(t0) = a(tf) = 0 holds. The final velocity v(tf) = vf of

the velocity transition is known in advance and leads to

∆v = vf− v(t0) = jmax∆T2. (5.19)

From this ∆T and the actual time of the transition duration tf− t0 are calculated by

∆T =

√
∆v

jmax
, (5.20)

tf− t0 = 2∆T = 2

√
∆v

jmax
. (5.21)

The maximum acceleration is reached at t = ∆T :

maxa(t) = a(∆T) = jmax∆T = jmax

√
∆v

jmax
=

√
∆v jmax. (5.22)

The path ∆s = s(tf)− s(t0) travelled during transition is

∆s = v(t0)(2∆T)+
1
6

jmax{
H(2∆T)(2∆T)3−2H(2∆T −∆T)(2∆T −∆T)3

}
,

= 2v(t0)

√
∆v

jmax
+∆v

√
∆v

jmax
. (5.23)

An example for the values given in table 5.1 (a) is shown in Fig. 5.2. As can be seen from
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Table 5.1: Values for exemplary transitions.

(a) Example 1. (b) Example 2.
Variable Value Variable Value

v(t0) 0 mms−1 v(t0) 0 mms−1

v(tf) 8 mms−1 v(tf) 10 mms−1

jmax 1 mms−3 jmax 2 mms−3

amax 3 mms−2 amax 3 mms−2
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Figure 5.2: Velocity transition calculated by the bang-bang approach for
table 5.1 (a).
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Figure 5.3: Velocity transition calculated by the bang-bang approach for
table 5.1 (b).
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this figure, the velocity transition is achieved, while obeying the jerk and acceleration

limits. However in an example with higher maximum jerk, as given in table 5.1 (b),

the maximum acceleration is not obeyed anymore, as shown in Fig. 5.3. Although

the velocity is reached considerably faster, the acceleration peak is at 4 mms−2 which is

higher then the 3 mms−2 maximum value defined in table 5.1 (b). To effectively limit the

acceleration, another necessary approach is shown in the next section. The achievable

final velocity depending on the maximum jerk and the available distance can be calculated

by solving the following cubic equation which follows directly from (5.23):

0 =v3
f + v

2
f v(t0)−3vfv2(t0)+ v3(t0)−∆s2 jmax. (5.24)

5.3.2 Bang-Bang Approach with Acceleration Limitation

In this approach the third section with j = 0mms−3 is introduced between the maximum

and minimum jerk sections leading to

j(t) =


jmax, ∀t0 ≤ t < t1,

− jmax, ∀t2 ≤ t < tf,

0, otherwise,

(5.25)

where

t0 < t1 < t2 < tf,

t1− t0 = ∆T1,

t2− t1 = ∆T2,

tf− t2 = ∆T1, (5.26)

hold. Again using Heaviside functions and ignoring the last term, and setting the jerk to

zero as well as assuming t0 = 0 leads to

j(t) = jmax {H(t)−H(t −∆T1)−H(t −∆T1−∆T2)} . (5.27)
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Integration gives

a(t) = jmax{H(t)t −H(t −∆T1)(t −∆T1)

−H(t −∆T1−∆T2)(t −∆T1−∆T2)}, (5.28)

v(t) = v(t0)+
1
2

jmax{H(t)t2−H(t −∆T1)(t −∆T1)
2

−H(t −∆T1−∆T2)(t −∆T1−∆T2)
2}, (5.29)

s(t) = s(t0)+ v(t0)t +
1
6

jmax{H(t)t3−H(t −∆T1)

(t −∆T1)
3−H(t −∆T1−∆T2)(t −∆T1−∆T2)

3}. (5.30)

Since maxa(t) = a(∆T1) = amax, the time ∆T1 for increasing and decreasing the accelera-

tion is calculated from (5.28):

∆T1 =
amax
jmax

. (5.31)

The velocity difference ∆v = v(tf)− v(t0) is given by

∆v =
1
2

jmax{H(2∆T1+∆T2)(2∆T1+∆T2)
2

−H(∆T1+∆T2)(∆T1+∆T2)
2−H(∆T1)(∆T1)

2},

=
1
2

jmax(2∆T1+2∆T1∆T2). (5.32)

Substitution by (5.31) leads to

∆v = jmax(
a2
max

j2
max
+

amax
jmax
∆T2),

=
a2
max

jmax
+ amax∆T2. (5.33)

Since v(tf) = vf is assumed to be known for the transition,

∆T2 =
∆v

amax
−

amax
jmax

. (5.34)

The overall duration of the transition tf− t0 is then calculated as

tf− t0 = 2∆T1+∆T2 =
∆v

amax
+

amax
jmax

. (5.35)
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Figure 5.4: Velocity transition calculated by the bang-bang approach with
acceleration limit for table 5.1 (b).

This is used to calculate the travelled distance ∆s = s(tf)− s(t0):

∆s = v(t0)
(
2∆T1+∆T2

)
+

1
6

jmax

{(
2∆T1+∆T2

)3

−
(
∆T1+∆T2

)3
−

(
∆T1

)3
}
,

=
1
2
(v(t0)+ vf)

(
∆v

amax
+

amax
jmax

)
. (5.36)

The result for table 5.1 (b) is shown in Fig. 5.4. Here the acceleration limit is satisfied.

Note that this approach is only applicable if (5.31) and ∆T2 ≥ 0 hold. For ∆T2 = 0 the

equations reduce to the equations in section 5.3.1. The necessary acceleration to com-

plete the transition within a certain distance can be determined by solving the following

quadratic equation which is derived from (5.36):

0 = a2
max

(
1
2
(v(t0)+ vf)

)
− amax∆s jmax

+
1
2
(v(t0)+ vf)∆v jmax. (5.37)

5.3.3 Approach Selection for Smooth Velocity Transition

Since the approach in section 5.3.1 does not guarantee the acceleration limits and the

approach in section 5.3.2 can only be used if the acceleration limit is actually reached, the
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appropriate approach has to be selected for all velocity transitions during planning. The

easiest way is to check (5.22) as follows:

• if maxa(t) from (5.22) exceeds the prescribed limit, use the approach in section

5.3.2,

• otherwise, use the approach in section 5.3.1.

Note that negative velocity transitions work in the same way by setting jmax and amax to

negative values.

5.4 Contouring Controller Design with Friction Com-

pensator

5.4.1 Modelling of Friction Compensator

As described in [153], friction force in lead-screw systems is composed of linear and

nonlinear terms, where the nonlinear term is assumed to be the eccentricity between a

lead screw and a nut as shown in Fig. 5.5. In precise machine tool systems, under

longtime use, an infinitesimal gap between a lead-screw and a nut results in an uncertain

friction value. Based on this assumption, a spring-like model to describe the friction

behaviour inside the screw-nut system is proposed. The normal force N varies when the

screw rotates, and the friction caused by this normal force varies depending on the angular

position θ of the screw. This variation of the normal force results in a sinusoidal friction

term which is described as follows:

fec(θ) = ksin(θ − θ0), (5.38)

where fec, k, θ, and θ0 are the eccentric friction, the maximum absolute value (amplitude)

of the eccentric friction in a lead screw, current angular position, and initial angular

position, respectively. From the relationship between θ and x as θ = 2πx/L, (5.38)

becomes:
fec(x) = η2sin(2πx/L−η3),

η2 = k, η3 = θ0.
(5.39)

From the assumption about the eccentric friction part, a nonlinear friction model that

includes the Coulomb-viscous friction and nonlinear friction term fec was proposed as
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Figure 5.5: Modeling of eccentric phenomenon between lead screw and
nut.

follows:

fr(v) = f f li + f f le = η0sgn(v)+η1v+ fec(x), (5.40)

where fr(v), f f li, and f f le, η0(> 0), and η1(> 0) are the total friction force, effect of

friction in the linear guide-ways and the ball screw, Coulomb force, and the viscous

coefficient of the feed drive, respectively. Equation (5.40) does not include the Stribeck

effect, since it only affects the low velocity region. Therefore, the eccentric friction part

to precisely describe the friction behavior of a lead screw on the high velocity region is

added. Eccentric friction is concerned with a part of lead screw friction f f le.

5.4.2 Contouring Controller Design

In machining, the contour error is an important criterion for the quality of machining

surface. Fig. 5.6 schematically explains the relationship between the tracking and contour

errors. The coordinate frame Σw, whose axes x, y, and z correspond to the feed drive

axes, is a fixed frame. The blue contour represents the desired path of the feed drive of a

three-axis machine tool. The symbol qd = [xd, yd, zd]
T denotes the desired position at time

t, and is defined in Σw. The real position of the feed drive is assumed to be q = [x, y, z]T,

which is also defined in Σw. The contour error is defined as the shortest distance from q

to the desired path, and it is represented by the symbol ec. The contouring controller is

concerned with reducing this error. The tracking error vector ew, which consists of the
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tracking errors in three feed drive axes, is defined as follows:

ew =
[
ewx ewy ewz

]T
= q− qd . (5.41)

The approximated contour error is defined in a local coordinate frame Σl . Its origin

is at the desired position qd and with three axes T ,N,B, as shown in the figure. The

axis T is in the tangential direction of desired path at qd , the direction of the axis N is

perpendicular to T at qd and the axis B is the bi-normal component normal to T andN .

For the parametric trajectory, the tangential, normal, and bi-normal vectors are denoted

as T , N , and B, respectively, and are calculated at a time t as follows:

Ntemp =

{
Üqd

‖ Üqd‖
, ∀ Üqd , 0

}
or

{ (
1 0 0

)
, Üqd = 0,

∀T ,
(
1 0 0

) }
or

{(
1 0 0

)
, Üqd = 0, for T =

(
1 0 0

)}
,

T =
Ûqd

‖ Ûqd‖
, B = T ×Ntemp, N = B×T , (5.42)

where Ntemp is the vector to find a plane that contains vectors T and N . The normal

vectorN is calculated from vectors B and T . The error between the real position and the

Figure 5.6: Definition of the contour error.
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desired position can be expressed with respect to Σl as follows:

el =
[
elt eln elb

]T
= RTew,

R =
[
T N B

]
,

ec ≈

√
e2

ln+ e2
lb,

(5.43)

where (.)t, (.)n and (.)b respectively correspond to T , N , and B, hereinafter, RTR = I and

I is the identity matrix. The contour error ec is used in the contouring controller design.

If the controller gain with respect to eln and elb is set to be greater than that for elt , the

contour error can be reduced faster than the tracking error tangential to the desired path.

Therefore, the following improved contouring controller where a feed forward friction

compensation is included in the controller is applied [9, 156]:

fu = M
{
Üqd −R

(
Kvl Ûel +Kplel + ÜRTew +2 ÛRT Ûew

)}
+ fr

fu =
[

fux fuy fuz

]T
, M = diag

{
mx my mz

}
,

fr =
[

fr x fry frz

]T
, Kvl = diag

{
kvlt kvln kvlb

}
,

Kpl = diag
{
kplt kpln kplb

}
,

(5.44)

where fu, M and Üqd are the driving force vector, table mass matrix and the reference

acceleration vector of the desired contour, respectively. The symbols Kvl and Kpl are

the velocity and position feedback gain matrices, respectively. They are assumed to be

diagonal matrices with positive constant elements.

5.5 Experiment

5.5.1 Experimental Setup

An experiment was conducted on a typical three axis feed drive system as shown in Fig.

5.7. It consists of a table coupled by three lead screws which are driven by DC servo

motors. The position of the table was measured based on a 0.025 µm resolution rotary

encoder attached to each servo motor, and the velocity was calculated by numerical dif-

ferentiation of the position measurements. Without loss of generality, a two dimensional

space was considered for the experiment. As shown in Fig. 5.8, a sharp-corner trajec-

tory with an angle of 45° was defined in G-code fashion and smoothed by the proposed
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Figure 5.7: Experimental system.

algorithm, where the maximum contour error tolerance around the corner was limited to

80 µm. For performance evaluation, the trajectory was linearly interpolated (conventional

approach) with a constant velocity of 10 mms−1, while for the proposed trajectory, a

smooth velocity profile was applied as proposed in section 5.3. A feedback contouring

controller (FB) and the FB with a feed forward friction compensator (FBFC) were applied

to both the conventional and the proposed trajectories so as to evaluate the contribution

of the friction compensator (FC).
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Figure 5.8: Zoomed portion of the designed reference trajectories.
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5.5.2 Experimental Results

Figures 5.9 (a) and 5.10 (a) show position tracking results for the conventional and

proposed trajectories, respectively. It is shown that the FC has enhanced the tracking

performance in both cases except around 1.6 s in Fig. 5.9 (a) due to high acceleration at

the corner. Velocity profiles for each drive axis as well as the overall system velocities for

both the conventional and proposed trajectories are respectively shown in Figs. 5.9 (b)

and 5.10 (b). It can be seen that for the proposed method, the maximum velocity is within

the desired range (10 mms−1). However, in the conventional case, the maximum velocity

of 13.4 mms−1, which is beyond the desired range, occurred at the corner (around 1.6 s)

due to the infinite curvature. The contour error results are respectively represented by

Figs. 5.9 (c) and 5.10 (c), for the conventional and proposed methods, where ecx and

ecy refer to components of the contour error in each drive axis. In the conventional case,

although the FC shows satisfactory performance in major parts, a large contour error of

about 0.259 mm occurred around the corner. Yet it is slightly less than the maximum

contour error based on the FB controller only (0.262 mm). On the other hand, under the

proposed method (Fig. 5.10 (c)), the maximum contour error is about 0.065 mm which

is equivalent to a reduction of 75 % of the maximum contour error as compared to the

conventional approach.

5.6 Summary

A novel approach for smooth trajectory generation and friction compensating for feed

drive contouring control is proposed in this chapter. Its performance has been experimen-

tally evaluated by comparing to the conventional approach, i. e., a linearly interpolated

trajectory with a constant velocity. The proposed method has shown that, the contour

error can be greatly reduced while satisfying systems constraints.
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Figure 5.9: Experimental results for the conventional approach.
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Figure 5.10: Experimental results for the proposed approach.
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Chapter 6

Iterative Learning Contouring
Controller for Feed Drive Systems

In feed drive systems, particularly, machine tools, contour error is more significant than

the individual axis tracking errors from the view point of enhancing precision in man-

ufacturing and production systems. The contour error must be within the permissible

tolerance of given product. In machining complex or sharp-corner products, large con-

tour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear

uncertainties. Therefore, it is indispensable to design robust controllers that can enhance

the tracking ability of feed drive systems. In this study, an iterative learning contouring

controller consisting of a classical Proportional-Derivative (PD) controller, disturbance

observer and nonlinear friction compensator is proposed. The proposed controller was

evaluated experimentally by using a typical sharp-corner trajectory, and its performance

was compared with that of conventional controllers. The results revealed that the maxi-

mum contour error can be reduced by about 47.8 % on average.

6.1 Introduction

The rapid growth of technology and demand for precise products have created a need

for high-speed and precise production and manufacturing systems. Computer Numerical

Control (CNC) machine tools are being used globally for the production of different parts

ranging from pinhole sized ones such as parts of watches, cameras and computers, to

larger ones such as automotive and infrastructure parts. Precision is crucial for ensuring

the quality of these products of different sizes.

Nonlinear uncertainties in real control systems result from either disturbance signals

or due to system modelling errors [1, 2]. These uncertainties are common and cannot be
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avoided in practical settings. When a system is approximated by a mathematical model,

non-fundamental factors are ignored such as high-frequency dynamics and uncertainties.

These uncertainties are crucial in undermining the performance of a dynamical system.

In machine tools, which deal with discontinuous trajectories programmed in G-code

fashion, some uncertainties may arise at junctions, especially in sharp-corners or raster

trajectories. Thus, large contour errors may occur in these areas.

Usually, products are manufactured in batches; therefore, the nature of machine tool

operation is repetitive. This repetitive nature allows the design of controllers that learn

from previous inputs and modify subsequent inputs to improve system performance in

real time. This type of control is called Iterative Learning Control (ILC), and it has

been proven to provide superior system performance [6, 102, 148, 157]. The common

approach is to design independent controllers for each drive axis by feeding back the

tracking errors and updating the control inputs accordingly. Given that motion trajectory

profiles are normally complex, multiple axes must be moved synchronously to obtain the

desired profile. Under independent axial controllers, load disturbance or performance

variance of either drive axis leads to contour errors [97]. In light of this, major current

approaches for improving the control performance of feed drive systems are based on

contouring control [9, 96, 101–104], while a few of them are based on the tracking error

of each drive axis [158].

Despite the achievements of a few previous studies, it is indispensable to further

enhance system performance by considering contour errors. An ILC that considers both

tracking and contour errors was designed in [159], and its feasibility was verified by

simulation. Meanwhile, in [160], a friction model that considers a number of friction

sources with complex nonlinear properties was proposed. The proposed model could

consider nonlinearities in high-speed motion, and it was proven experimentally to be

superior to existing models such as the one in [161].

In the present study, a Variable-gain Iterative Learning Contouring controller with

Friction compensator and Disturbance observer (VILCFD) is proposed. compared to

conventional ILCs such as the one in [159], the proposed controller achieves better

performance by reducing the maximum contour error by about 47.8 % on average.

The remainder of this chapter is organised as follows: Section 6.2 defines contour

error and explains the dynamics of biaxial feed drive systems. Section 6.3 describes the

design of the proposed contouring controller, which includes a nonlinear friction model.

Simulation and experimental results are given in section 6.4, followed by concluding
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Figure 6.1: Definition of tracking and contour errors.

remarks in section 6.5.

6.2 Preliminaries

6.2.1 Definition of Contour Error

Here, the contour error is derived simply from the tracking error in each drive axis, as

shown in Fig. 6.1. It is the perpendicular distance from the actual position to the reference

contour. In contrast, the tracking error refers to the difference between the desired and

actual positions of each drive axis. The desired position of a point on a machined part at

sampling instant t in coordinate frame Σw is denoted by xd , while x represents the actual

position of the feed drive system in Σw. The tracking error in each drive axis is defined

as

ew = [ew1 ew2]
T = xd − x. (6.1)

The coordinate frame Σl is attached at xd and its axis directional vectors are T and N ,

which are tangential and orthogonal to the reference position xd , respectively. Thus, the

tracking error vector ew can be expressed with respect to Σl as

el =
[
et en

]T
= RTew, R =


cosθ −sinθ

sinθ cosθ

 , (6.2)
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where θ is the inclination of Σl to Σw.

6.2.2 Dynamics of Feed Drive Systems

The dynamics of a typical feed drive system is represented by the following decoupled

second order system:

M f Üx+ fr + d = f ,

M f = diag
{
m f i

}
, i = 1,2,

x =
[
x1 x2

]T
, fr =

[
fr1 fr2

]T
,

d =
[
d1 d2

]T
, f =

[
f1 f2

]T
, (6.3)

where m f i, xi, fri, di and fi are the mass of the table, the position of the table, friction

force, bounded disturbance and driving force on the drive axis i, respectively. Each drive

axis is driven by a typical servo motor, whose dynamics is represented as follows:

H Üϑ+Cm Ûϑ+ τ = Kvu,

H = diag {hi} , Cm = diag {cmi} , Kv = diag {kvi} ,

ϑ =
[
ϑ1 ϑ2

]T
, τ =

[
τ1 τ2

]T
, u =

[
u1 u2

]T
, (6.4)

where hi, ϑi, cmi, τi, kvi and ui are the motor inertia, the rotational angle of the motor

for the drive axis i, viscous friction coefficient, feed drive driving torque, torque–voltage

conversion ratio, and the input voltage to the ith motor, respectively. From (6.3) and (6.4),

the system dynamics is described as follows:

M Üx+C Ûx+ fr + d = Kµu,

M = diag

{
m f iρ

2
i +4π2hi

ρ2
i

}
,

C = diag

{
4π2cmi

ρ2
i

}
, (6.5)

Kµ = diag
{

2πkvi

ρi

}
,

where ρi is the pitch of the ith lead screw.
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6.3 Contouring Controller Design

6.3.1 Friction Force Modelling

The friction force is among the dominating components that hinder the performance of

machine tools from the viewpoints of motion accuracy and system stability. Generally,

controllers with friction compensator achieve a better performance than those without it.

The friction model in (6.6), which considers that friction forces in feed drive machine

tools originate from multiple sources with complicated and nonlinear properties, was

proposed in [160]. That it performs satisfactorily was proved experimentally, and hence,

it has been employed in this study.

fri = η0isgn( Ûxi)+η1i Ûxi +

n∑
σ=1

gσai exp

[
−

(
Ûxi −gσbi

gσci

)2
]
, (6.6)

where η0i and η1i are the nominal Coulomb force and the viscous friction coefficient of

the ith drive axis, respectively. The nonlinear properties of friction are defined by the sum

of n Gaussian equations in which gσai, gσbi and gσci denote the height of the Gaussian

curve’s peak, the position of the centre of the peak and the width of the curve for the ith

drive axis, respectively.

6.3.2 Feedback Controller Design

Although the dynamics of the concerned feed drive is ideally a second-order linear sys-

tem, practically it has several nonlinear parameters as shown in (6.6). Thus, a nonlinear

controller is required; the system dynamics is transformed into linear by selecting a suit-

able control input. The system is transformed as follows to take advantage of PD or

Proportional-Integral-Derivative (PID) controllers typically used in industrial applica-

tions:

z1 = x,

z2 = Ûz1,

Ûz2 = M−1 (
Kµu−Cz2− fr − d

)
. (6.7)

The control input

u = K−1
µ (Mv+Cz2+ fr), (6.8)
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leads to

Ûz2 = v−γ,

γ = M−1d. (6.9)

The variable v = [v1 v2]
T is the virtual input designed as

v = Üxd +R (KPel +KD Ûel)+ ÜθΞew − Ûθ2ew +2 ÛθΞ Ûew,

KP = diag{kPi}, KD = diag{kDi},

Ξ =


0 1

−1 0

 , (6.10)

for contouring control [9], where kPi and kDi are position and velocity feedback (FB)

gains, respectively.

6.3.3 Disturbance Observer Design and Stability Analysis

Observer Design

The unknown disturbance in (6.9) is estimated as γ̂ based on the altered disturbance

observer in [162] as follows:

Û̂z2 = v− γ̂+Kev (z̃1+ z̃2),

Û̂γ = Ked (z̃1+ z̃2),

z̃1 = z1d − z1, z̃2 = z2d − z2,

Kev = diag{kevi}, Ked = diag{kedi}, (6.11)

where Û̂z2, and kevi and kedi are the estimated acceleration of the table and disturbance

observer gains, respectively.
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Stability Proof

Consider the following Lyapunov functionVi for each drive axis i:

Vi =
1
2

z̃Ti Ai z̃i +
1
2
γ̃2

i ,

z̃i = [z̃1i z̃2i],

Ai =


2kedi kevi kedi

kedi kedi

 . (6.12)

From (6.9) and (6.11), the derivative ofVi is as follows:

ÛVi = Û̃zTi Ai z̃i + γ̃i Û̃γi,

=
(
2kedi kevi Û̃z1i + kedi Û̃z2i

)
z̃1i

+
(
kedi Û̃z1i + kedi Û̃z2i

)
z̃2i + γ̃i Û̃γi,

=
[
2kedi kevi z̃2i + kedi

(
Ûz2di − Û̂z2i

) ]
z̃1i

+
[
kedi z̃2i + kedi

(
Ûz2di − Û̂z2i

) ]
z̃2i + γ̃i Û̃γi,

= [2kedi kevi z̃2i − kedi (γ̃i + kevi z̃1i + kevi z̃2i)] z̃1i

+ [kedi z̃2i − kedi (γ̃i + kevi z̃1i + kevi z̃2i)] z̃2i

+ kedi γ̃i (z̃1i + z̃2i),

= −z̃i
TBi z̃i,

Bi =


kedi kevi 0

0 kedi (kevi −1)

 . (6.13)

Choosing kevi > 1 leads to ÛVi ≤ 0, and from Barbalat’s lemma [133], system stability is

guaranteed.

6.3.4 Application of Iterative Learning Control

A linear time-invariant Single Input Single Output (SISO) ILC system is considered to

obtain insights into ILC. Considering a single axis i, its input-output relationship in a

discrete-time form is represented as [163]

xi j(t) = Pi(b−1)vi j(t)+λi(t), (6.14)
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where t, j, Pi, b−1, xi j and vi j and λi are the time index, iteration number, plant model

that is assumed to be stable, delay operator defined as b−1xi(t) ≡ xi(t −1), system output

and control input at an iteration j and exogenous signal that is time-varying but iteratively

constant, respectively. The delay operator is introduced because this is a sampled data

system in which there is a delay between the control input and the system output. In

most cases of sampled data system, the delay is one; thus, an assumption is made here

accordingly. The general update law is represented as [164]

vi j+1(t) = qi(b−1)
[
vi j(t)+ Li(b−1)ewi j(t +1)

]
, (6.15)

where qi and Li are the Q-filter and the learning function, respectively. While the learning

function improves the system tracking ability by improving the control input [165], the

Q-filter is used to improve the system stability under the presence of high-frequency

uncertainties.

The proposed control system, as shown in Fig. 6.2, includes the FB to form a control

loop with previous and current signal cycles. The axes are coupled by the rotation matrix

R, which transforms the tracking error of each drive axis into the contour error. Although

both the tangential and the normal components of the error et and en, respectively, are

used in the FB, only the normal component is used in the iterative learning function Li.

This is because Li aims to converge the actual contour with the desired one. Elements of

the normal error en regarding each drive axis can be represented as

evn = Rnew,

Rn =


−sin2 θ sinθ cosθ

−sinθ cosθ cos2 θ

 . (6.16)

Because of the FB controller and the use of contour error instead of tracking error and from

the single axis update law in (6.15), the general update law for both axes is represented

follows:

v j+1(t) =Q(b−1)
[
v j(t)+ L(b−1)evnj(t)

]
+Kel j+1(t),

Q = diag{qi}, L = diag{Li}, K = diag{Ki}, (6.17)
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Figure 6.2: Block diagram for proposed control system: NPi, NCi, MEM
vi and MEM eli and qi are the nonlinear plant, nonlinear controller, mem-
ories of control inputs and contour errors and the input filter, respectively.

where Ki and v j are the FB gain matrix for axis i and the system control input in the j th

iteration. The corresponding error terms evnj(t) and el j+1(t) are given by

evnj(t) = Rn
(
xd(t)− x j(t)

)
,

el j+1(t) = RT (
xd(t)− x j+1(t)

)
, (6.18)

where the reference trajectory xd remains unchanged iteratively. A variable PID learning

function is proposed so that, the update law at sampling instant t can be written as follows:

v j+1(t) =Q(b−1)v j(t)+KPel j+1(t)+KD Ûel j+1(t)

+Q(b−1)ΨP jKPLevnj(t)+Q(b−1)ΨI jKIL

T∑
t=1

evnj(t −1)

+Q(b−1)ΨD jKDL
{
evnj(t)− evnj(t −1)

}
,

KmL = diag{kmLi}, Ψmj = diag{ψmi j}, m = P, I, D,

ψmi j = 1−
1
αmi

sat
(

evni j

βmi

)
, 0 ≤ t ≤ T −1, (6.19)

where kmLi and T are gains of the learning function Li and the total number of sampling

instants, respectively. ψmi j is an error-dependent function with constants αmi > 0 and

βmi > 0.
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6.3.5 Convergence Analysis

Stability in control systems is described as a property of the system to converge to an

equilibrium point as time goes to infinity, for any arbitrarily small perturbation of the

initial state from the equilibrium point [166]. This statement satisfies the condition of

continuous-time systems; however, in the iteration domain, convergence is considered

[167–169]. An ILC system is asymptotically stable in the iteration domain if and only

if the control signal converges to equilibrium [170]. The point of interest is monotonic

error convergence because it also implies system stability [167].

Stability analysis of ILC is carried out in the frequency domain based on a system’s

response to a sinusoidal input [164, 171]. Consequently, the convergence analysis of a

SISO ILC system can be carried out considering its z transformation, and the monotonic

error convergence condition is represented as follows:



ewi j+1(t)
ewi j(t)





 < 1, ∀t ∈ T, (6.20)

where ewi j and ewi j+1(t) are the tracking errors of the drive axis i in iterations j and j +1,

respectively. Owing to the contouring controller that includes a time-varying parameter

(θ), the criteria in (6.20) cannot be applied directly. Instead, the focus is on the lifted

matrix analysis, a technique that can be used for stability analysis in the time-domain

approach.

Lifted Matrix

A lifted system enables one to perform convergence and stability analysis of a system in

the iteration domain through matrix representation of the time-domain system dynamics

[163]. By applying an impulse input to the system dynamics, the lifted system can be

formed. Considering a two-dimensional system in (6.14) that evolves in both iteration
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and time, the lifted form can be represented as follows [167]:



xi j(1)

xi j(2)
...

xi j(T +1)

︸        ︷︷        ︸
X̂i j

=



pi(0) 0 · · · 0

pi(1) pi(0) · · · 0
...

. . .
. . . 0

pi(T) · · · pi(1) pi(0)

︸                               ︷︷                               ︸
P̂i



vi j(0)

vi j(1)
...

vi j(T)

︸   ︷︷   ︸
V̂i j

+



λi j(1)

λi j(2)
...

λi j(T +1)

︸        ︷︷        ︸
λ̂i j

, (6.21)

where ˆ(.) represents the lifted form of (.). By using the lifted matrix technique, the input

update law in (6.17) becomes

V̂j+1 = Q̂
(
V̂j + L̂Êvnj

)
+ K̂ Ê j+1. (6.22)

Likewise, the corresponding lifted contour errors are represented as

Êvnj = R̂n

(
X̂d − X̂ j

)
= R̂n

{
X̂d −

(
P̂V̂j + λ̂

)}
,

Ê j+1 = RT
(
X̂d − X̂ j+1

)
= R̂T

{
X̂d −

(
P̂V̂j+1+ λ̂

)}
. (6.23)

Substituting (6.23) into (6.22) leads to a lifted representation of the update control input

and exogenous signal as follows:

V̂j+1 =
[
I + K̂ R̂TP̂

]−1
Q̂

[
I − L̂ R̂nP̂

]
V̂j + D̂,

D̂ =
(
K̂ R̂T+ Q̂L̂ R̂n

) (
X̂d − λ̂

)
, (6.24)

where I is the identity matrix. The term D̂ is constant and bounded because the exogenous

signal λ̂ and the reference trajectory X̂d remain unchanged iteratively. Thus, the control

input converges if 


[I + K̂ R̂TP̂
]−1

Q̂
[
I − L̂ R̂nP̂

]



2
= ε < 1. (6.25)
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Because the input converges, the convergence of x j and el j follows from (6.14) and (6.18),

respectively. Therefore, the condition in (6.25) guarantees system stability and monotonic

convergence. The convergence speed depends on the parameter ε which should be kept

as low as possible to increase the tracking performance within a few iterations. The FB

gains, KP and KD, are selected by considering the best performance before application of

the ILC, and the Q-filter is designed depending on the desired cut-off frequency. The ILC

gains (KPL, KIL, KDL) are determined by solving the following minimisation problem in

a prescribed domain of θ by using the fmincon function in MATLAB:

J = min
KPL, KIL, KDL

ε(t), ∀0 ≤ t ≤ T,

s.t. ε(t) < 1. (6.26)

6.4 Simulation and Experiment

Simulation and experiment were performed to verify the effectiveness of the proposed

controller. A comparison with the work in [159] was made to evaluate its performance.

In this context, the compared work is referred to as a conventional method. The proposed

ILC includes and an FB controller, a friction compensator and disturbance observer.

Therefore, the following scenarios were considered to understand the contribution of each

component:

i FB controller only.

ii FB controller with Disturbance observer (FBD).

iii FB controller with Friction compensator (FBF).

iv FB controller with Friction compensator and Disturbance observer (FBFD).

v FB controller with friction compensator, disturbance observer and ILC (FILC).

vi VILCFD.

6.4.1 Experimental Setup

A typical biaxial feed drive system (Fig. 6.3) was used for the analysis. It consisted of

a table coupled by two lead screws driven by DC servo motors. The table position was
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Figure 6.3: Biaxial feed drive system for experiment.

Table 6.1: System parameters.

m f 1 8.0 kg h1, h2 0.05 kgm2

m f 2 2.5 kg cm1, cm2 0.31 Nmsrad−1

ρ1, ρ2 0.005 m kv1, kv2 1.42 NmV−1

measured using a rotary encoder (0.025 µm resolution) attached to each servo motor, and

the velocitywas calculated by numerical differentiation of the positionmeasurements. The

system was controlled by a C++ language programme on a personal computer equipped

with a 1 GHz CPU, and 512MB RAM, and running Windows OS. A counter board

with four channels of 24-bit up/down counters was used to provide a fixed sampling

rate of 5 ms; thus, the considered operational Nyquist frequency (ω0) was 100 rads−1.

The Q-filter was considered as unity, and the rest of parameters are given in Tables 6.1

and 6.2. The reference trajectory was defined in G-code fashion to create a typical linear

interpolated sharp-corner trajectorywith an angle of 90 deg. These types of trajectories are

difficult to track owing to their discontinuous nature, which requires infinite acceleration

at the corner. The proposed controller aims to improve tracking performance minimising

of this error.
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Table 6.2: Controller parameters.

kP1, kP2 5280 Vmm−1 kPL1, kPL2 281 Vmm−1

kD1, kD2 40000 Vsmm−1 kIL1, kIL2 0.31 Vs−1 mm−1

βm1, βm2 0.0035 mm kDL1, kDL2 100 Vsmm−1

αm1, αm2 30 ked1, ked2 20 kgs−3

q1, q2 1 kev1, kev2 40 s−1

Filtered disturbance
Estimated disturbance

Nonlinear friction model
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Figure 6.4: Measured and estimated frictions.

6.4.2 Identification of Friction Parameters

Before simulation and experiment, the friction parameters were identified using a si-

nusoidal reference trajectory based on the PD controller and disturbance observer, as

detailed in [160]. Figure 6.4 shows the measured and the estimated friction forces in

the X1 drive axis, where the dotted, dashed and solid lines represent the disturbance

measured using the disturbance observer, disturbance after applying a low-pass filter and

disturbance computed using the nonlinear friction model in (6.6). The corresponding

identified parameters are given in Table 6.3.

6.4.3 Simulation Results

The simulationwas performed overmultiple iterations until therewas no further significant

error reduction, and a comparison with the FB and FILC approaches was made for

performance evaluation. FILC refers to the combination of the FB and constant gain ILC

to form a control loop with previous and current signal cycles without application of the

disturbance observer and the friction model in (6.6). In both controllers, the first iteration

is represented as FB so that both FILC and VILCFD start from the second iteration.
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Table 6.3: Identified friction model parameters.

Var.
Unit

X1 drive axis X2 drive axis
Ûx1 ≥ 0 Ûx1 < 0 Ûx2 ≥ 0 Ûx2 < 0

η0 N 768.60 -768.60 640.50 640.90
η1 Nsmm−1 102.48 102.40 140.90 140.90
n 3.00 3.00 3.00 3.00
g1a N 517.40 -378.20 518.00 -371.34
g1b mms−1 1.76 -2.16 1.76 -1.96
g1c mms−1 3.09 2.26 1.98 2.99
g2a N 509.30 -547.50 852.00 -236.10
g2b mms−1 5.80 -5.91 5.87 -5.80
g2c mms−1 1.82 1.76 2.73 1.22
g3a N 1995.90 -4472.00 1059.10 -354.97
g3b mms−1 10.66 -13.90 10.20 -9.31
g3c mms−1 1.87 3.65 1.74 0.47
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Figure 6.5: Simulated iterative trajectory tracking profiles for proposed
controller (VILCFD).
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Figure 6.6: Simulation results of trajectory tracking.
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Figure 6.7: Simulation results of contour error.
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Figure 6.8: Simulation results of tracking errors in individual drive axes.
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Figure 6.9: Simulation results of maximum contour error in each iteration.

Table 6.4: Summary of simulation results (µm).

Controller Max. Tracking error Max. Contour error
X1-axis X2-axis

FB 51.0 35.2 61.3
FBILC 10.4 7.3 12.5
VILCFD 2.2 2.2 3.1

Figure 6.5 shows the trajectory tracking profiles based on the proposed controller

(VILCFD), and Fig. 6.6 shows the first and the final trajectory tracking profiles for three

methods. It can be observed that the FB profile is the furthest from the reference, followed

by FILC and VILCFD in series. The maximum contour errors results are shown in Fig.

6.7, where the maximum contour errors for the FB, FILC and VILCFD at around 2.4 s

were 61.3 µm, 12.5 µm and 3.1 µm, respectively. VILCFD reduced the maximum contour

error by 79.6 % and 75.2 % compared to the FB and FILC, respectively. An equivalent

result was obtained for the individual drive axis tracking errors as shown in Fig. 6.8 (a)

and (b). Furthermore, VILCFD showed a relatively higher convergence rate than FILC

and achieved a minimal maximum contour error, as shown in Fig. 6.9. For clarity, the

simulation results are summarised in Table 6.4.

6.4.4 Experimental Results

Similar to the simulation, an experiment was conducted over multiple iterations until there

was no significant further convergence in the contour error. For performance evaluation,

the six scenarios highlighted in section 6.4 were compared. The experimental results are

shown in Figs. 6.10 - 6.14, where Fig. 6.10 shows the trajectory tracking profiles of
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Figure 6.10: Experimental results of trajectory tracking.

each controller. Note that only the final results are shown for the ILCs. It can be seen

that the FB controller has the worst performance, while the proposed VILCFD achieves

the best performance. As shown in Fig. 6.11, the maximum contour error based on the

FB controller is 95.2 µm, which decreases gradually with other controllers to 20.9 µm

under VILCFD. Figure 6.12 shows the individual axial trajectory tracking errors for both

axes. In the X1 drive axis, FB has the best performance, whereas VILCFD has the worst

performance. On the contrary, VILCFD has the best performance in the X2 drive axis.

This result is obvious because based on the considered trajectory, the X1 drive axis always

move along the forward direction, while the X2 drive axis reverses its motion after the

corner. However, this is not the main concern because contour error is more significant

in machine tools than individual axes tracking errors [9, 172]. Although both FILC and

VILCFD have relatively similar convergence rates, VILCFD achieves the smallest contour

error, as shown in Fig. 6.13. Also, the results in Fig. 6.13 differ from those in Fig. 6.9

owing to the existence of time-variant uncertainties that could not be included in the

minimisation problem in (6.26). The repeatability of the proposed controller (VILCFD)

was verified by conducting 10 trials, and the results of maximum contour error obtained in

each trial are shown in Fig. 6.14. For limpidity, the experimental results are summarised

in Table 6.5.

6.4.5 Discussion

Precise machine tools are required to improve manufacturing and production systems.

Because contour error is related directly to precision of workpieces, it must be as low as

possible. The experimental system used here was assembled in our laboratory; therefore,
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Figure 6.11: Experimental results of contour error.
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Figure 6.12: Experimental results of tracking errors along individual drive
axes.
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Table 6.5: Summary of experimental results (µm).

Controller Max. Tracking error Maximum STD
X1-axis X2-axis Contour error

FB -2.0 135.5 95.2 3.6
FBD -3.8 126.6 92.8 3.3
FBF 1.0 113.9 87.8 3.0
FBFD -13.3 112.5 80.4 2.5
FILC -16.9 71.9 40.0 3.5
VILCFD 13.5 36.5 20.9 0.8

it has many uncertainties like other industrial systems. Furthermore, a rapid change in

motion direction at corners poses additional uncertainties that are difficult to model. From

the experimental results, it can be realised that the traditional PD controller is insufficient

from the precision viewpoint. Likewise, ILC without consideration of nonlinear time-

variant uncertainties cannot guarantee satisfactory performance. The disturbance observer

in the proposed controller is used to estimate unknown uncertainties, such as those

resulting from a sudden change in the direction of motion at the corners, in addition to

other time-variant parameters [153]. In this light, it is evident that the proposed controller

has superior performance, as demonstrated by the experimental results.

6.5 Summary

In this chapter, a robust iterative contouring controller is proposed for feed drive systems,

and its effectiveness was demonstrated by using simulation and experimental results. It

includes a traditional PD controller, nonlinear friction compensator, disturbance observer

and an iterative learning controller. The proposed method showed a substantial improve-

ment in performance by reducing the maximum contour error by 47.8 % on average. In

future work, optimisation methods will be employed to increase system performance.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Owing to the strong demand for solutions to achieve high-speedmotion while maintaining

high precision in industrial mechatronic systems, this thesis aimed to find novel solutions

for generating smoothmotion trajectories and control design, specifically formobile robots

and feed drive systems. These mechatronic systems are used widely in manufacturing

industries. Herein, a smooth trajectory refers to a trajectory that not only describe

paths accurately but is also kinematically smooth and within the physical limitations of

mechatronic systems. Also, for mobile robot applications, the trajectory should be able

to set the first and the second derivatives at the starting and the ending points arbitrarily,

as well as local controllability, such that any changes in the trajectory affect only limited

regions.

In this thesis, methods to generate smooth trajectories are proposed for industrial

mechatronic systems. The generated trajectories are smooth enough to be tracked by

these systems and have all the important features stated above. The generated trajectories

were evaluated experimentally by using a typical differential mobile robot and a feed

drive system. Comparisons with conventional methods were made for performance

evaluation. It was found that the generated trajectory rendered lower maximum velocities

and accelerations at corners, shorter travel times and better tracking performance starting

with the mobile robot. For feed drive systems, the generated trajectory enhanced tracking

performance and decreased the maximum contour error.

Furthermore, because industrial feed drive systems operate in a repetitive fashion

given that they are used for batch manufacturing, contour error-based ILC has been used

to enhance the tracking performance. In fact, ILC is categorised as one of the intelligent

control approaches that can guarantee the desired performance of a repetitive system.
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Thus, a controller that incorporates the traditional PID controller, a friction compensator,

disturbance observer and ILC, was proposed. Experimental results verified that by using

the proposed controller, the maximum contour error could be reduced by about 47.8 %

on average compared to conventional controllers.

7.2 Future Works

7.2.1 Energy Saving in Mechatronic Systems

Energy saving in mechatronic systems has become a major concern from the viewpoint of

developing energy-efficient production systemswith lower CO2 emissions. Control theory

can be used as an effective tool for reducing the energy consumption of industrial systems

through software upgrades. This thesis focused on enhancing the motion precision of

industrial mechatronic systems without consideration of energy consequences. Future

works will include energy consumption analyses based on the proposed methods and use

of optimisation techniques for saving energy.

7.2.2 Implementation of Bézier Subdivision for Obstacle Avoidance

In chapter 3 it was concluded that the proposed method for generating smooth motion

trajectories for mobile robots allows for setting the first and the second derivatives arbi-

trarily at the starting and ending points of the trajectory. The combination of this feature

and the Bézier subdivision is suitable for obstacle-avoidance trajectory generation. When

a robot encounters an obstacle, the trajectory can be subdivided and a new Bézier curve

that avoids obstacles can be smoothly connected. It would be beneficial to develop and

analyse this concept through actual implementation.
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[24] M. Weigl, B. Siemiȧatkowska, K. Sikorski, and A. Borkowski, “Grid-based map-

ping for autonomous mobile robot,” Robotics and Autonomous Systems, vol. 11,

no. 1, pp. 13 – 21, 1993.

[25] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient hierarchical path

planning,” IEEE Transactions on Robotics and Automation, vol. 7, no. 1, pp. 9 –

20, 1991.

[26] G.-Z. TAN, H. HE, and A. SLOMAN, “Ant colony system algorithm for real-time

globally optimal path planning of mobile robots,” Acta Automatica Sinica, vol. 33,

no. 3, pp. 279 – 285, 2007.

[27] K. Sugihara and J. Smith, “Genetic algorithms for adaptive motion planning of

an autonomous mobile robot,” IEEE International Symposium on Computational

Intelligence in Robotics and Automation, pp. 138 – 143, 1997.

[28] J. Canny and J. Reif, “New lower bound techniques for robot motion planning

problems,” 28th Annual Symposium on Foundations of Computer Science, pp. 49

– 60, 1987.

[29] R. Wein, J. P. van den Berg, and D. Halperin, “The visibility–voronoi complex and

its applications,” Computational Geometry, vol. 36, no. 1, pp. 66 – 87, 2007.

[30] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Anal-

ysis with Applications to Biology, Control and Artificial Intelligence. Cambridge,

MA, USA: MIT Press, 1992.



114 BIBLIOGRAPHY

[31] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed.,

1989.

[32] D. Gallardo, O. Colomina, F. Flórez, and R. Rizo, “A genetic algorithm for robust

motion planning,” Tasks and Methods in Applied Artificial Intelligence, (Berlin,

Heidelberg), pp. 115 – 121, Springer Berlin Heidelberg, 1998.

[33] G. Nagib and W. Gharieb, “Path planning for a mobile robot using genetic algo-

rithms,” International Conference on Electrical, Electronic and Computer Engi-

neering, pp. 185 – 189, 2004.

[34] A. Ismail, A. Sheta, and M. Al-Weshah, “A mobile robot path planning using

genetic algorithm in static environment,” Journal of Computer Science, vol. 4,

no. 4, pp. 341 – 344, 2008.

[35] J. Tu and S. X. Yang, “Genetic algorithm based path planning for a mobile robot,”

IEEE International Conference on Robotics and Automation, vol. 1, pp. 1221 –

1226, 2003.

[36] Y. Wang, D. Mulvaney, and I. Sillitoe, “Genetic-based mobile robot path planning

using vertex heuristics,” IEEE Conference on Cybernetics and Intelligent Systems,

pp. 1 – 6, 2006.

[37] P. Raja and S. Pugazhenthi, “Path planning for a mobile robot in dynamic envi-

ronments,” International Journal of Physical Sciences, vol. 6, no. 20, pp. 4721 –

4731, 2011.

[38] C. Alberto, D. Marco, and M. Vittorio, “Distributed optimization by ant colonies,”

Toward a practice of autonomous systems: proceedings of the First European

Conference on Artificial Life, pp. 134 – 142, 1992.

[39] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens,

“Classification with ant colony optimization,” IEEE Transactions on Evolutionary

Computation, vol. 11, no. 5, pp. 651 – 665, 2007.

[40] H. Nezamabadi-pour, S. Saryazdi, and E. Rashedi, “Edge detection using ant

algorithms,” Soft Computing, vol. 10, no. 7, pp. 623 – 628, 2006.



BIBLIOGRAPHY 115

[41] R. A. Russell and W.-C. Chiang, “Scatter search for the vehicle routing problem

with time windows,” European Journal of Operational Research, vol. 169, no. 2,

pp. 606 – 622, 2006.

[42] Y. C. Liang and A. E. Smith, “An ant colony optimization algorithm for the

redundancy allocation problem (RAP),” IEEE Transactions on Reliability, vol. 53,

no. 3, pp. 417 – 423, 2004.

[43] G. Z. Tan, H. He, and S. Aaron, “Global optimal path planning for mobile robot

based on improved dijkstra algorithm and ant system algorithm,” Journal of Central

South University of Technology, vol. 13, no. 1, pp. 80 – 86, 2006.

[44] H. Miao and Y. C. Tian, “Robot path planning in dynamic environments using

a simulated annealing based approach,” 2008 10th International Conference on

Control, Automation, Robotics and Vision, pp. 1253 – 1258, 2008.

[45] V. Selvi and D. R. Umarani, “Comparative analysis of ant colony and particle

swarm optimization techniques,” International Journal of Computer Applications,

vol. 5, no. 4, pp. 1 – 6, 2010.

[46] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE International

Conference on Neural Networks, vol. 4, pp. 1942 – 1948, 1995.

[47] Y. Shi and R. Eberhart, “Amodified particle swarm optimizer,” IEEE International

Conference on Evolutionary Computation, pp. 69 – 73, 1998.

[48] J. F. Kennedy, J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence. Morgan

Kaufmann, 2001.

[49] J. Kennedy, “The particle swarm: social adaptation of knowledge,” IEEE Interna-

tional Conference on Evolutionary Computation, pp. 303 – 308, 1997.

[50] B. Tang, Z. Zhanxia, and J. Luo, “A convergence-guaranteed particle swarm op-

timization method for mobile robot global path planning,” Assembly Automation,

vol. 37, no. 1, pp. 114 – 129, 2017.

[51] D. Floreano, J. Godjevac, A. Martinoli, F. Mondada, and J. D. Nicoud, “Design,

control, and applications of autonomous mobile robots,” Advances in Intelligent

Autonomous Systems, (Dordrecht), pp. 159 – 186, Springer Netherlands, 1999.



116 BIBLIOGRAPHY

[52] O. Khatib, “Real-time obstacle avoidance for manipulators andmobile robots,” The

International Journal of Robotics Research, vol. 5, no. 1, pp. 90 – 98, 1986.

[53] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations

for mobile robot navigation,” IEEE International Conference on Robotics and

Automation, pp. 1398 – 1404, 1991.

[54] J. H. Chuang and N. Ahuja, “An analytically tractable potential field model of free

space and its application in obstacle avoidance,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 5, pp. 729 – 736, 1998.

[55] J.-C. Latombe, Robot motion planning, vol. 124. Springer Science & Business

Media, 2012.

[56] G. C. Luh and W. W. Liu, “Motion planning for mobile robots in dynamic envi-

ronments using a potential field immune network,” Proceedings of the Institution

of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,

vol. 221, no. 7, pp. 1033 – 1045, 2007.

[57] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,”

IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 615 – 620,

2000.

[58] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic environment: a

collision cone approach,” IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, vol. 28, no. 5, pp. 562 – 574, 1998.

[59] B. Damas and J. Santos-Victor, “Avoiding moving obstacles: the forbidden veloc-

ity map,” IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 4393 – 4398, 2009.

[60] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity

obstacles,” The International Journal of Robotics Research, vol. 17, no. 7, pp. 760

– 772, 1998.

[61] P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial potential

fields and their application in real time robot path planning,” Proceedings of the

Congress on Evolutionary Computation, vol. 1, pp. 256 – 263, 2000.



BIBLIOGRAPHY 117

[62] H.Miao andY.C. Tian, “Dynamic robot path planning using an enhanced simulated

annealing approach,” Applied Mathematics and Computation, vol. 222, pp. 420 –

437, 2013.

[63] Z. Hong, Y. Liu, G. Zhongguo, and C. Yi, “The dynamic path planning research

for mobile robot based on artificial potential field,” International Conference on

Consumer Electronics, Communications and Networks, pp. 2736 – 2739, 2011.

[64] J. W. Lee, J. J. Kim, B.-S. Choi, and J. J. Lee, “Improved ant colony optimiza-

tion algorithm by potential field concept for optimal path planning,” IEEE-RAS

International Conference on Humanoid Robots, pp. 662 – 667, 2008.

[65] J. E. Bobrow, “NC machine tool path generation from CSG part representations,”

Computer-Aided Design, vol. 17, no. 2, pp. 69 – 76, 1985.

[66] S. Ding, M. Mannan, A. Poo, D. Yang, and Z. Han, “The implementation of

adaptive isoplanar tool path generation for the machining of free-form surfaces,”

The International Journal of Advanced Manufacturing Technology, vol. 26, no. 7,

pp. 852 – 860, 2005.

[67] J. Hwang, “Interference-free tool-path generation in the NCmachining of paramet-

ric compound surfaces,” Computer-Aided Design, vol. 24, no. 12, pp. 667 – 676,

1992.

[68] S. X. Li and R. B. Jerard, “5-axis machining of sculptured surfaces with a flat-end

cutter,” Computer-Aided Design, vol. 26, no. 3, pp. 165 – 178, 1994.

[69] J. Zhao, Q. Zou, L. Li, and B. Zhou, “Tool path planning based on conformal

parameterization for meshes,” Chinese Journal of Aeronautics, vol. 28, no. 5,

pp. 1555 – 1563, 2015.

[70] Y. Koren and R. Lin, “Efficient tool-path planning for machining free-form sur-

faces,” Ann Arbor, vol. 1050, pp. 48109 – 2125, 1996.

[71] K. Suresh and D. Yang, “Constant scallop-height machining of free-form surfaces,”

Journal of engineering for industry, vol. 116, no. 2, pp. 253 – 259, 1994.

[72] A. Lasemi, D. Xue, and P. Gu, “Recent development in CNCmachining of freeform

surfaces: A state-of-the-art review,”Computer-AidedDesign, vol. 42, no. 7, pp. 641

– 654, 2010.



118 BIBLIOGRAPHY

[73] V. Giri, D. Bezbaruah, P. Bubna, and A. R. Choudhury, “Selection of master

cutter paths in sculptured surface machining by employing curvature principle,”

International Journal of Machine Tools and Manufacture, vol. 45, no. 10, pp. 1202

– 1209, 2005.

[74] B. Lauwers, G. Kiswanto, and J. P. Kruth, “Development of a five-axis milling tool

path generation algorithm based on faceted models,”CIRP Annals - Manufacturing

Technology, vol. 52, no. 1, pp. 85 – 88, 2003.

[75] Y. S. Lee and H. Ji, “Surface interrogation and machining strip evaluation for 5-

axis CNC die andmold machining,” International Journal of Production Research,

vol. 35, no. 1, pp. 225 – 252, 1997.

[76] Z. Han and D. C. Yang, “Iso-phote based tool-path generation for machining free-

form surfaces,” Transactions-American Society of Mechanical Engineers Journal

of Manufacturing Science and Engineering, vol. 121, pp. 656 – 664, 1999.

[77] D. Yang and Z. Han, “Interference detection and optimal tool selection in 3-axis

NC machining of free-form surfaces,” Computer-Aided Design, vol. 31, no. 5,

pp. 303 – 315, 1999.

[78] S. Ding, M. Mannan, A. Poo, D. Yang, and Z. Han, “Adaptive iso-planar tool path

generation for machining of free-form surfaces,” Computer-Aided Design, vol. 35,

no. 2, pp. 141 – 153, 2003.

[79] K. Morishige, K. Kase, and Y. Takeuchi, “Collision-free tool path generation using

2-dimensional c-space for 5-axis control machining,” The International Journal of

Advanced Manufacturing Technology, vol. 13, no. 6, pp. 393 – 400, 1997.

[80] B. K. Choi, D. H. Kim, and R. B. Jerard, “C-space approach to tool-path generation

for die and mould machining,” Computer-Aided Design, vol. 29, no. 9, pp. 657 –

669, 1997.

[81] D. Yang, J. J. Chuang, and T. OuLee, “Boundary-conformed toolpath generation

for trimmed free-form surfaces,” Computer-Aided Design, vol. 35, no. 2, pp. 127 –

139, 2003.



BIBLIOGRAPHY 119

[82] D. C. Yang, J. Chuang, Z. Han, and S. Ding, “Boundary-conformed toolpath

generation for trimmed free-form surfaces via coons reparametrization,” Journal

of Materials Processing Technology, vol. 138, no. 1, pp. 138 – 144, 2003.

[83] W. Sun, C. Bradley, Y. Zhang, and H. Loh, “Cloud data modelling employing a

unified, non-redundant triangular mesh,” Computer-Aided Design, vol. 33, no. 2,

pp. 183 – 193, 2001.

[84] Y. Ren, H. T. Yau, and Y.-S. Lee, “Clean-up tool path generation by contraction

tool method for machining complex polyhedral models,” Computers in Industry,

vol. 54, no. 1, pp. 17 – 33, 2004.

[85] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic Machines and

Robots. Springer Publishing Company, Incorporated, 1st ed., 2008.

[86] J. W. Choi and G. H. Elkaim, “Bézier curve for trajectory guidance,” Proceedings

of the World Congress on Engineering and Computer Science, pp. 625 – 630, 2008.

[87] J. wung Choi, R. Curry, and G. Elkaim, “Path planning based on Bézier curve for

autonomous ground vehicles,” Advances in Electrical and Electronics Engineering

- IAENG Special Edition of the World Congress on Engineering and Computer

Science, pp. 158 – 166, 2008.

[88] S. Wang, L. Chen, H. Hu, and K. McDonald-Maier, “Doorway passing of an

intelligent wheelchair by dynamically generating Bézier curve trajectory,” IEEE

International Conference on Robotics and Biomimetics, pp. 1206 – 1211, 2012.

[89] K. Yang and S. Sukkarieh, “An analytical continuous-curvature path-smoothing

algorithm,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 561 – 568, 2010.

[90] M. Zhang, W. Yan, C. Yuan, D. Wang, and X. Gao, “Curve fitting and optimal

interpolation on CNC machines based on quadratic B-splines,” Science China

Information Sciences, vol. 54, no. 7, pp. 1407 – 1418, 2011.

[91] Z. Yang, L.-Y. Shen, C.-M. Yuan, and X.-S. Gao, “Curve fitting and optimal

interpolation for CNC machining under confined error using quadratic B-splines,”

Computer-Aided Design, vol. 66, pp. 62 – 72, 2015.



120 BIBLIOGRAPHY

[92] A. Neto, D. Macharet, and M. Campos, “Feasible RRT-based path planning using

seventh order Bézier curves,” IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 1445 – 1450, 2010.

[93] T. Theoharis, G. Papaioannou, N. Platis, and N. M. Patrikalakis, Graphics and

Visualization: Principles & Algorithms. Natick, MA, USA: A. K. Peters, Ltd.,

2007.

[94] B. Sencer, K. Ishizaki, and E. Shamoto, “A curvature optimal sharp corner smooth-

ing algorithm for high-speed feed motion generation of NC systems along linear

tool paths,” The International Journal of Advanced Manufacturing Technology,

vol. 76, no. 9-12, pp. 1977 – 1992, 2015.

[95] M. Chen, W.-S. Zhao, and X.-C. Xi, “Augmented taylor’s expansion method for

B-spline curve interpolation for CNC machine tools,” International Journal of

Machine Tools and Manufacture, vol. 94, pp. 109 – 119, 2015.

[96] A. E. K. Mohammad and N. Uchiyama, “Estimation of tool orientation contour

errors for five-axis machining,” Robotics and Computer-Integrated Manufacturing,

vol. 29, no. 5, pp. 271 – 277, 2013.

[97] H.-C. Ho, J.-Y. Yen, and S.-S. Lu, “A decoupled path-following control algorithm

based upon the decomposed trajectory error,” International Journal of Machine

Tools and Manufacture, vol. 39, no. 10, pp. 1619–1630, 1999.

[98] Y. Koren and C. Lo, “Advanced controllers for feed drives,” CIRP Annals - Manu-

facturing Technology, vol. 41, no. 2, pp. 689 – 698, 1992.

[99] K. Nagaoka and T. Sato, “Feedforward controller for continuous path control

of CNC machine tools,” Advanced Technology R&D Center, Mitsubishi Electric

Corporation, vol. 7, no. 8, pp. 39 – 46, 2006.

[100] S.-S. Yeh and J.-T. Sun, “Feedforward motion control design for improving con-

touring accuracy of CNC machine tools,” Proceedings of the International Multi-

Conference of Engineers and Computer Scientists, vol. 1, pp. 111 – 116, 2013.

[101] Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems,”

Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 265–272,

1980.



BIBLIOGRAPHY 121

[102] K. Barton and A. Alleyne, “A cross-coupled iterative learning control design for

precision motion control,” IEEE Transactions on Control Systems Technology,

vol. 16, no. 6, pp. 1218 – 1231, 2008.

[103] R. Ramesh, M. Mannan, and A. Poo, “Tracking and contour error control in CNC

servo systems,” International Journal of Machine Tools and Manufacture, vol. 45,

no. 3, pp. 301–326, 2005.

[104] S.-S. Yeh and P.-L. Hsu, “A new approach to bi-axial cross-coupled control,”

Proceedings of the IEEE InternationalConference onControl Applications, pp. 168

– 173, 2000.

[105] H.-S. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey

and categorization,” IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 37, no. 6, pp. 1099 – 1121, 2007.

[106] Y. Liangliang, S. Weimin, and P. Laihu, “Research on feedforward parameter op-

timization of linear servo system based on iterative learning of orthogonal projec-

tion,” International Conference on Information Science and Control Engineering,

pp. 889 – 892, 2015.

[107] T. Haas, N. Lanz, R. Keller, S. Weikert, and K. Wegener, “Iterative learning for

machine tools using a convex optimisation approach,” Procedia CIRP, vol. 46,

pp. 391 – 395, 2016.

[108] B. Zi, J. Lin, and S. Qian, “Localization, obstacle avoidance planning and control

of a cooperative cable parallel robot for multiple mobile cranes,” Robotics and

Computer-Integrated Manufacturing, vol. 34, pp. 105 – 123, 2015.

[109] K. Kaltsoukalas, S. Makris, and G. Chryssolouris, “On generating the motion of

industrial robot manipulators,” Robotics and Computer-Integrated Manufacturing,

vol. 32, pp. 65 – 71, 2015.

[110] T. Martinec, J. Mlýnek, and M. Petru, “Calculation of the robot trajectory for the

optimum directional orientation of fibre placement in themanufacture of composite

profile frames,” Robotics and Computer-Integrated Manufacturing, vol. 35, pp. 42

– 54, 2015.



122 BIBLIOGRAPHY

[111] N. Uchiyama, T. Hashimoto, S. Sano, and S. Takagi, “Obstacle avoidance con-

trol for a human-operated mobile robot,” 10th IEEE International Workshop on

Advanced Motion Control, pp. 468 – 473, 2008.

[112] N. Uchiyama, T. Hashimoto, S. Sano, and S. Takagi, “Model-reference control

approach to obstacle avoidance for a human-operated mobile robot,” IEEE Trans-

actions on Industrial Electronics, vol. 56, no. 10, pp. 3892 – 3896, 2009.

[113] N. Uchiyama, T. Dewi, and S. Sano, “Collision avoidance control for a human-

operated four-wheeled mobile robot,” Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering Science, vol. 228, no. 13,

pp. 2278 – 2284, 2014.

[114] N. Uchiyama, S. Sano, and A. Yamamoto, “Sound source tracking considering

obstacle avoidance for a mobile robot,” Robotica, vol. 28, pp. 1057 – 1064, 2010.

[115] S. Liu, D. Sun, and C. Zhu, “A dynamic priority based path planning for coop-

eration of multiple mobile robots in formation forming,” Robotics and Computer-

Integrated Manufacturing, vol. 30, no. 6, pp. 589 – 596, 2014.

[116] M. Deng, A. Inoue, K. Sekiguchi, and L. Jiang, “Two-wheeledmobile robot motion

control in dynamic environments,” Robotics and Computer-Integrated Manufac-

turing, vol. 26, no. 3, pp. 268 – 272, 2010.

[117] J. M. Toibero, F. Roberti, R. Carelli, and P. Fiorini, “Switching control approach

for stable navigation of mobile robots in unknown environments,” Robotics and

Computer-Integrated Manufacturing, vol. 27, no. 3, pp. 558 – 568, 2011.

[118] R. Luo and C. C. Lai, “Multisensor fusion-based concurrent environment mapping

and moving object detection for intelligent service robotics,” IEEE Transactions

on Industrial Electronics, vol. 61, no. 8, pp. 4043 – 4051, 2014.

[119] I. škrjanc and G. Klančar, “Optimal cooperative collision avoidance between mul-

tiple robots based on bernstein–Bézier curves,” Robotics and Autonomous Systems,

vol. 58, no. 1, pp. 1 – 9, 2010.

[120] Y. J. Ho and J. Liu, “Collision-free curvature-bounded smooth path planning using

composite Bézier curve based on voronoi diagram,” IEEE International Symposium



BIBLIOGRAPHY 123

on Computational Intelligence in Robotics and Automation (CIRA), pp. 463 – 468,

2009.

[121] J. Perez, J. Godoy, J. Villagra, and E. Onieva, “Trajectory generator for autonomous

vehicles in urban environments,” IEEE International Conference on Robotics and

Automation, pp. 409 – 414, 2013.

[122] K. Petrinec and Z. Kovacic, “The application of spline functions and Bézier curves

to agv path planning,” Proceedings of the IEEE International Symposium on In-

dustrial Electronics, vol. 4, pp. 1453 – 1458, 2005.

[123] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design.

Natick, MA, USA: A. K. Peters, Ltd., 1993.

[124] J. Gravesen, “Adaptive subdivision and the length and energy of Bézier curves,”

Computational Geometry, vol. 8, no. 1, pp. 13 – 31, 1997.

[125] P. Bézier, Numerical control : mathematics and applications. London ; New York

: J. Wiley, 1972.

[126] T. Do, T. Tjahjowidodo, M. Lau, and S. Phee, “Real-time enhancement of tracking

performances for cable-conduit mechanisms-driven flexible robots,” Robotics and

Computer-Integrated Manufacturing, vol. 37, pp. 197 – 207, 2016.

[127] D. Hegels, T. Wiederkehr, and H. Müller, “Simulation based iterative post-

optimization of paths of robot guided thermal spraying,” Robotics and Computer-

Integrated Manufacturing, vol. 35, pp. 1 – 15, 2015.

[128] C. Wang, Y. Zhao, Y. Chen, and M. Tomizuka, “Nonparametric statistical learning

control of robot manipulators for trajectory or contour tracking,” Robotics and

Computer-Integrated Manufacturing, vol. 35, pp. 96 – 103, 2015.

[129] Y. Singh, V. Vinoth, Y. R. Kiran, J. K. Mohanta, and S. Mohan, “Inverse dynamics

and control of a 3-DOF planar parallel (u-shaped 3-PPR) manipulator,” Robotics

and Computer-Integrated Manufacturing, vol. 34, pp. 164 – 179, 2015.

[130] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control

method for an autonomous mobile robot,” Proceedings of the IEEE International

Conference on Robotics and Automation, vol. 1, pp. 384 – 389, 1990.



124 BIBLIOGRAPHY

[131] G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic feedback

linearization: design, implementation, and experimental validation,” IEEE Trans-

actions on Control Systems Technology, vol. 10, no. 6, pp. 835 – 852, 2002.

[132] A. De Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile robots: An

experimental overview,” Ramsete (S. Nicosia, B. Siciliano, A. Bicchi, and P. Valigi,

eds.), vol. 270 of Lecture Notes in Control and Information Sciences, pp. 181 –

226, Springer Berlin Heidelberg, 2001.

[133] J. J. E. Slotine and W. Li, Applied nonlinear control, vol. 199. Prentice-hall

Englewood Cliffs, NJ, 1991.

[134] C. Chen, Y. He, C. Bu, J. Han, andX. Zhang, “Quartic Bézier curve based trajectory

generation for autonomous vehicles with curvature and velocity constraints,” IEEE

International Conference on Robotics and Automation, pp. 6108 – 6113, 2014.

[135] L. Moctezuma, A. Lobov, and J. Lastra, “Free shape paths in industrial robots,”

38th Annual Conference on IEEE Industrial Electronics Society, pp. 3739 – 3743,

2012.

[136] A. Chandak, K. Gosavi, S. Giri, S. Agrawal, and M. P. Kulkarni, “Path planning

for mobile robot navigation using image processing,” International Journal of

Scientific and Engineering Research, vol. 4, no. 6, pp. 1490 – 1496, June.

[137] E.Masehian andM.R.Amin-Naseri, “A voronoi diagram-visibility graph-potential

field compound algorithm for robot path planning,” Journal of Robotic Systems,

vol. 21, no. 6, pp. 275 – 300, 2004.

[138] E. Garcia-Fidalgo and A. Ortiz, “Vision-based topological mapping and localiza-

tion methods: A survey,” Robotics and Autonomous Systems, vol. 64, pp. 1 – 20,

2015.

[139] Y. Petillot, I. Ruiz, D. Lane, Y.Wang, E. Trucco, andN. Pican, “Underwater vehicle

path planning using a multi-beam forward looking sonar,” OCEANS Conference

Proceedings, vol. 2, pp. 1194 – 1199, 1998.

[140] J. Kim and Y. Do, “Moving obstacle avoidance of a mobile robot using a single

camera,” Procedia Engineering, vol. 41, pp. 911 – 916, 2012.



BIBLIOGRAPHY 125

[141] J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative perfor-

mance,” Current Developments in Lens Design and Optical Systems Engineering

(R. E. Fischer, R. B. Johnson, W. J. Smith, and W. H. Swantner, eds.), vol. 4093,

pp. 360 – 369, 2000.

[142] J. G. Fryer and D. C. Brown, “Lens distortion for close-range photogrammetry,”

Photogrammetric Engineering and Remote Sensing, vol. 52, pp. 51 – 58, 1986.

[143] O. Faugeras, Three-dimensional Computer Vision: A Geometric Viewpoint. Cam-

bridge, MA, USA: MIT Press, 1993.

[144] K. G. Derpanis, “The harris corner detector,” 2004.

[145] H. Araujo and J. Dias, “An introduction to the log-polar mapping [image sam-

pling],” Proceedings of Second Workshop on Cybernetic Vision, pp. 139 – 144,

1996.

[146] W. Pan, K. Qin, and Y. Chen, “An adaptable-multilayer fractional fourier trans-

form approach for image registration,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 31, no. 3, pp. 400–414, 2009.

[147] A. Saudi and J. Sulaiman, “Red-black strategy for mobile robot path planning,”

Proceedings of the International MultiConference of Engineers and Computer

Scientists, vol. 3, pp. 2215 – 2220.

[148] Y. M. Hendrawan, K. R. Simba, and N. Uchiyama, “Embedded iterative learning

contouring controller design for biaxial feed drive systems,” International Elec-

tronics Symposium, pp. 37–41, 2016.

[149] M. R. Msukwa, N. Uchiyama, and B. D. Bui, “Adaptive nonlinear sliding mode

control with a nonlinear sliding surface for feed drive systems,” IEEE International

Conference on Industrial Technology, pp. 732 – 737, 2017.

[150] A. Affouard, C. Tournier, S. Lavernhe, and C. Lartigue, “Description formats of

tool trajectory suited toHigh-SpeedMachining,” International Conference onHigh

Speed Machining, (Nanjing, China), 2004.

[151] G. Cong and W. Yuhou, “An interpolation method based on tool orientation fitting

in five-axis CNC machining,” IEEE 14th International Conference on Industrial

Informatics, pp. 213 – 218, 2016.



126 BIBLIOGRAPHY

[152] M. T. Lin,M.C. Lee, J. C. Lee, C.Y. Lee, and Z.W. Jian, “A look-ahead interpolator

with curve fitting algorithm for five-axis tool path,” IEEE International Conference

on Advanced Intelligent Mechatronics, pp. 189 – 194, 2016.

[153] B. D. Bui, N. Uchiyama, and K. R. Simba, “Contouring control for three-axis ma-

chine tools based on nonlinear friction compensation for lead screws,” International

Journal of Machine Tools and Manufacture, vol. 108, pp. 95 – 105, 2016.

[154] B. Armstrong-Hélouvry, P. Dupont, and C. C. D. Wit, “A survey of models,

analysis tools and compensationmethods for the control of machines with friction,”

Automatica, vol. 30, no. 7, pp. 1083 – 1138, 1994.

[155] K. Zhang, A. Yuen, and Y. Altintas, “Pre-compensation of contour errors in five-

axis CNC machine tools,” International Journal of Machine Tools and Manufac-

ture, vol. 74, pp. 1 – 11, 2013.

[156] A. E. Khalick and N. Uchiyama, “Contouring controller design based on iter-

ative contour error estimation for three-dimensional machining,” Robotics and

Computer-Integrated Manufacturing, vol. 27, no. 4, pp. 802 – 807, 2011.

[157] D. Wang and Y. Ye, “Design and experiments of anticipatory learning control:

frequency-domain approach,” IEEE/ASME Transactions on Mechatronics, vol. 10,

no. 3, pp. 305 – 313, 2005.

[158] D. Prévost, S. Lavernhe, C. Lartigue, and D. Dumur, “Feed drive modelling for

the simulation of tool path tracking in multi-axis high speed machining,” CoRR,

vol. abs/1107.3229, 2011.

[159] K. R. Simba, N. Uchiyama, and S. Sano, “Iterative contouring controller design for

biaxial feed drive systems,” 20th Conference on Emerging Technologies & Factory

Automation, pp. 1 – 5, 2015.

[160] B. D. Bui, N. Uchiyama, and S. Sano, “Nonlinear friction modeling and com-

pensation for precision control of a mechanical feed-drive system,” Sensors and

Materials, vol. 27, no. 10, pp. 971 – 984, 2015.

[161] F. Al-Bender, V. Lampaert, and J. Swevers, “The generalized maxwell-slip model:

a novel model for friction simulation and compensation,” IEEE Transactions on

Automatic Control, vol. 50, no. 11, pp. 1883 – 1887, 2005.



BIBLIOGRAPHY 127

[162] Y. Li, Q. Zheng, and L. Yang, “Design of robust sliding mode control with distur-

bance observer for multi-axis coordinated traveling system,” Computers & Mathe-

matics with Applications, vol. 64, no. 5, pp. 759 – 765, 2012.

[163] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning

control,” IEEE Control Systems, vol. 26, no. 3, pp. 96 – 114, 2006.

[164] M. Norrlöf and S. Gunnarsson, “Time and frequency domain convergence proper-

ties in iterative learning control,” International Journal of Control, vol. 75, no. 14,

pp. 1114 – 1126, 2002.

[165] F. Padieu and R. Su, “An H∞ approach to learning control systems,” International

Journal of Adaptive Control and Signal Processing, vol. 4, no. 6, pp. 465 – 474,

1990.

[166] H. K. Khalil, “Nonlinear systems, 3rd,” New Jewsey, Prentice Hall, vol. 9, 2002.

[167] D. A. Bristow and A. G. Alleyne, “Monotonic convergence of iterative learning

control for uncertain systems using a time-varying q-filter,” Proceedings of the

American Control Conference,, pp. 171 – 177, 2005.

[168] T. Hashikawa andY. Fujisaki, “Convergence conditions of iterative learning control

revisited: A unified viewpoint to continuous-time and discrete-time cases,” IEEE

International Symposium on Intelligent Control, pp. 31 – 34, 2013.

[169] L. Hladowski, K. Galkowski, Z. Cai, E. Rogers, C. T. Freeman, and P. L. Lewin,

“Experimentally supported 2d systems based iterative learning control law design

for error convergence and performance,” Control Engineering Practice, vol. 18,

no. 4, pp. 339–348, 2010.

[170] K. L. Moore, Iterative learning control for deterministic systems. Springer Science

& Business Media, 2012.

[171] R. W. Longman, “Iterative learning control and repetitive control for engineering

practice,” International journal of control, vol. 73, no. 10, pp. 930 – 954, 2000.

[172] A. E. K.Mohammad, N. Uchiyama, and S. Sano, “Sliding mode contouring control

design using nonlinear sliding surface for three-dimensional machining,” Interna-

tional Journal of Machine Tools and Manufacture, vol. 65, pp. 8 – 14, 2013.


	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Contribution
	Thesis Organisation

	Literature Review
	Motion Planning: Path and Trajectory
	Path-Planning Techniques
	Path Planning for Mobile Robots
	Off-line Path-Planning Methods
	Classical Path-Planning Methods
	Modern Path-Planning Methods

	Online Path-Planning Methods
	Classical Path-Planning Methods
	Modern Path-Planning Methods

	Path Planning for Feed Drive System

	Trajectory-Generation Approaches
	Control of Feed Drive Systems
	Feedback Control
	Feedforward Control
	Cross-Coupling Control
	Iterative Learning Control


	Real-Time Smooth Trajectory Generation for Mobile Robots
	Introduction
	Preliminaries
	Mobile Robot and Motion Trajectory
	Bézier Curves
	Problem Statement

	Trajectory Generation
	Trajectory-Generation Algorithm
	Subdivision for Curvature Improvement
	Parameterisation for Velocity Improvement 

	Controller Design
	Simulation and Experiment
	Comparison with Cubic Bézier Trajectories
	Experimental Setup
	Simulation and Experimental Results
	Discussion

	Summary

	Vision-Based Smooth Obstacle-Avoidance Trajectory Generation for Mobile Robots
	Introduction
	Workspace Representation
	Strategy Specification
	Fisheye Distortions and Calibration Process
	Corner Detection
	Corner Correction using Log-Polar Transform

	Trajectory Planning
	Visibility Graph Construction
	Smooth Trajectory Generation by Quintic Bézier Curves
	Comparison with Cubic Bézier Trajectories

	Experimental Setup and Results
	Experimental Setup
	Experimental Results
	Discussion

	Summary

	Smooth Trajectory Generation and Nonlinear Friction Compensation for Feed Drive Contouring Control
	Introduction
	Bézier Smoothing Algorithm
	Smooth Velocity Transition
	Bang-Bang Approach Without Acceleration Limitation
	Bang-Bang Approach with Acceleration Limitation
	Approach Selection for Smooth Velocity Transition

	Contouring Controller Design with Friction Compensator
	Modelling of Friction Compensator
	Contouring Controller Design

	Experiment
	Experimental Setup
	Experimental Results

	Summary

	Iterative Learning Contouring Controller for Feed Drive Systems
	Introduction
	Preliminaries
	Definition of Contour Error
	Dynamics of Feed Drive Systems

	Contouring Controller Design
	Friction Force Modelling 
	Feedback Controller Design
	Disturbance Observer Design and Stability Analysis
	Observer Design
	Stability Proof

	Application of Iterative Learning Control
	Convergence Analysis
	Lifted Matrix


	Simulation and Experiment
	Experimental Setup
	Identification of Friction Parameters
	Simulation Results
	Experimental Results
	Discussion

	Summary

	Conclusions and Future Work
	Conclusions
	Future Works
	Energy Saving in Mechatronic Systems
	Implementation of Bézier Subdivision for Obstacle Avoidance


	List of Publications
	List of Awards



