論文

ディリクレ過程平均法のレートひずみ理論による解釈

小林真佐大^{†a)} 渡辺 一帆^{†b)}

A Rate-Distortion Theoretic View of Dirichlet Process Means Clustering Masahiro KOBAYASHI^{†a)} and Kazuho WATANABE^{†b)}

あらまし ディリクレ過程平均法はクラスタリングの代表的手法である *K*-平均法を拡張した手法であり,ク ラスタ数をデータから推定することができる.クラスタ数を指定する代わりに,ペナルティパラメータと呼ばれ るしきい値を指定する必要があるが,ペナルティパラメータの変化に対するクラスタ数の振る舞いは未だに明ら かにされていない.本研究では,ペナルティパラメータとクラスタ数の対数を次元で割った値との組がそれぞれ レートひずみ理論における最大ひずみとレートに対応することに着目し,データ数とデータの次元が無限大の極 限において,ペナルティパラメータに対応するクラスタ数の曲線がレートひずみ曲線に近づくことを示す.数値 実験により,学習データ数が有限であることの影響を受けにくいレートが0の近辺において,レートひずみ曲線 に近づくことを確認し,ペナルティパラメータと学習データ中の最大ひずみとの対応を示す.

キーワード クラスタリング、ディリクレ過程、レートひずみ曲線、ひずみ有りデータ圧縮

1. まえがき

クラスタリングはデータ集合を複数の部分集合クラ スタに分割するデータ解析の手法であり、画像処理、 データマイニングなど様々な分野で利用されている. とりわけよく利用される方法として、K-means 法が 挙げられる.K-means 法では事前にクラスタ数の指 定をする必要があるが、データ数や次元が膨大な場 合、クラスタ数の予想は立てづらく、何らかの発見的 手法や複数のクラスタ数での結果を吟味することなど が必要となる.クラスタ数の推定には、ノンパラメト リックベイズ法による混合正規分布の学習法が提案さ れ[1]、その分散0の極限において、クラスタ数をデー タから推定することができる K-means 法の拡張が得 られることが示された.この手法は、ディリクレ過程 平均法(以下、DP-means 法)[2]として知られている.

DP-means 法では,事前にクラスタ数を指定せず, アルゴリズム中でクラスタ数の推定を行う. *K*-means 法と同様にアルゴリズムが簡便であり,データが大規 模な場合に適用可能という利点をもつ.また,データ が二値や非負整数値などの特殊な型をもつ場合に適切 な距離尺度を導入するための指数型分布族を用いた拡 張[3],[4] が与えられている.計算時間削減のためのア プローチとして,楽観的並行性制御を取り入れた並列 化による方法[5] や,データを重み付きサブセットに 分割してクラスタリングを行うことで,若干の精度を 犠牲にして計算時間を大幅に短縮する方法[6] がある. 更に,外科手術用マニビュレータの位置制御への応用 において,オンライン DP-means 法が考案されてい る [7].

DP-means 法ではクラスタ数を指定する代わりに, クラスタ数を増やす指標として,ペナルティパラメー タと呼ばれるしきい値を指定する必要がある.ペナル ティパラメータを自動探索する方法[8]が試みられて いるが,ペナルティパラメータの変化に伴うクラスタ 数の振る舞いは未だに明らかにされておらず,ペナル ティパラメータの設定法は確立していない.

一方で、クラスタリングをひずみ有りデータ圧縮 とみなすと、クラスタ数の対数に対応するレートと、 データとクラスタ中心間の擬距離で与えられるひず みとの間のトレードオフは、情報理論の一分野である レートひずみ理論において研究されている[9].レー トひずみ理論では、ひずみの測り方として、一般的に

[†]豊橋技術科学大学,豊橋市

Toyohashi University of Technology, Toyohashi-shi, 441– 8580 Japan

a) E-mail: m143320@edu.tut.ac.jp

b) E-mail: wkazuho@cs.tut.ac.jp

扱われる平均ひずみの他に,最大ひずみも扱われてお り,対応するレートはデータ数とデータの次元が無限 大の極限でレートひずみ曲線に近づくことが示されて いる[9].

本研究では、DP-means 法のペナルティパラメータ はレートひずみ理論における最大ひずみと対応付けら れることを指摘し、ペナルティパラメータを変化させ たときのクラスタ数の曲線がデータ数及び次元が無限 大になる極限においてレートひずみ曲線に近づくこと を示す.

また、実際に数値実験を行い、DP-means 法のペナ ルティパラメータの振る舞いが、最大ひずみとほぼ同 様の軌跡を描くことを確認した。特にレートが低い領 域において、DP-means 法のペナルティパラメータが レートひずみ曲線の値に収束していく様子を確認し た。しかし、レートが一定であるときのペナルティパ ラメータと最大ひずみの間には多少の差異が存在した。 この差異を小さくすることを目的として、DP-means 法のアルゴリズムを改変したアルゴリズムを提案し実 験を行う。オリジナルの DP-means 法のアルゴリズム と改変後のアルゴリズムにおいてペナルティパラメー タと最大ひずみの差異を比較すると、改変後において 特にひずみが大きいときの差異が小さくなることが確 認できた.

2. DP-means法

DP-means 法は, データ $x^n = \{x_1, ..., x_n\}$ と, ペナルティパラメータ λ を入力として必要とする. なお, データの次元は L 次元とする, すなわち, $x_i = (x_i^{(1)}, ..., x_i^{(L)}) \in \mathbf{R}^L$. クラスタは一つから始 め,基本的には K-means 法と同様に, クラスタ中心 の計算とデータ点のクラスタへの割り当てを収束する まで実行する. $\{\theta_1, ..., \theta_K\}$ をクラスタ中心とすると, 新しいクラスタが追加されるのは, ペナルティパラ メータ λ より, データ点 x_i とクラスタ中心 $\theta_{c(i)}$ の擬 距離の値が大きい, すなわち (1) を満たすときである.

$$d_L\left(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)}\right) > \lambda \tag{1}$$

ここで, $c(i) \equiv \arg \min_k d_L(\mathbf{x}_i, \boldsymbol{\theta}_k)$ は \mathbf{x}_i のクラス タラベルを示す. DP-means 法のアルゴリズムを Algorithm 1 に示す. DP-means 法と *K*-means 法には 二つの違いがある. 一つ目は,初期化時のクラスタ数 である. DP-means 法では,クラスタ数は一つとして, クラスタ中心をデータ点全体の平均で初期化するが.

Α	lgorithm	1	DP-	means
_	12011011111		- L L -	means

$\overline{\text{Input: } \boldsymbol{x}^n = \left\{ \boldsymbol{x}_1,, \boldsymbol{x}_n \right\}, \lambda}$
Output: $l = \{l_1,, l_K\}, K$
K = 1
$\boldsymbol{l}_1 = \boldsymbol{x}^n$
$oldsymbol{ heta}_1 = rac{1}{n}\sum_{i=1}^n oldsymbol{x}_i$
$c(i) = 1 \ (i = 1,, n)$
repeat
for $i = 1$ to n do
$d_{ik} = d_L \left(\boldsymbol{x}_i, \boldsymbol{\theta}_k \right) \ (k = 1,, K)$
if $\min_{k} d_{ik} > \lambda$ then
$\tilde{K} = K + 1$
$c\left(i\right) = K$
$oldsymbol{ heta}_K = oldsymbol{x}_i$
else
$c\left(i\right) = \arg\min_{k} d_{ik}$
end if
end for
for $j = 1$ to K do
$\boldsymbol{l}_j = \{\boldsymbol{x}_i c(i) = j\}$
$oldsymbol{ heta}_j = rac{1}{ oldsymbol{l}_j }\sum_{oldsymbol{x}\inoldsymbol{l}_j}oldsymbol{x}$
end for
until $\sum_{i=1}^{n} d_L \left(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)} \right) + \lambda K$ converges

K-means 法では,事前に指定されたクラスタの数だ けクラスタを作り,クラスタ中心は何らかの方法(ラ ンダムなど)で初期化する.二つ目は,クラスタの追 加についてである.DP-means 法では,データ点のク ラスタへの割り当てを行うループ中において,(1)を 満たすかどうかの条件判定を行い,満たすときはクラ スタの追加をし,満たさないときはクラスタラベルの 更新をする.一方,K-means 法では,データ点のク ラスタへの割り当てを行うループ中において,クラス タラベルの更新をするのみである.

なお、本論文では、擬距離には2乗距離を一般化し たブレグマンダイバージェンスを仮定する.具体的に は、凸関数 φ から決まるブレグマンダイバージェンス d_φ から次元に関して加法的に定義される以下を擬距 離とする.

$$d_L\left(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)}\right) \equiv \frac{1}{L} \sum_{j=1}^{L} d_{\phi}\left(x_i^{(j)}, \theta_{c(i)}^{(j)}\right)$$

$$d_{\phi}(x,\theta) \equiv \phi(x) - \phi(\theta) - (x - \theta) \phi'(\theta)$$

ン分布のブレグマンダイバージェンスが用いられている [3], [4].

3. レートひずみ理論

3.1 平均ひずみと最大ひずみ

レートひずみ理論において,次元はブロック長に対応し,クラスタ数は符号語数に対応するため,レート は次元あたりのクラスタ数の対数として,(2)で定義 される.

$$r \equiv \frac{\ln K}{L} \tag{2}$$

また,レートに対応するひずみは平均ひずみ,最大ひ ずみの2種類を考え,それぞれ擬距離より(3),(4)で 定義される.

$$D_a \equiv \frac{1}{n} \sum_{i=1}^{n} d_L \left(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)} \right)$$
(3)

$$D_m \equiv \max_{1 \le i \le n} d_L \left(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)} \right)$$
(4)

ここで、データの経験分布に従う L次元確率ベクトル を X とし、 $c^*(X) \equiv \arg \min_k d_L(X, \theta_k)$ とすると、

 $D_{m} = \inf \left\{ \alpha \mid \Pr \left\{ d_{L} \left(\boldsymbol{X}, \boldsymbol{\theta}_{c^{*}(\boldsymbol{X})} \right) > \alpha \right\} = 0 \right\}$

と書き直すことができる. データの次元が無限大の極限 において,この値は確率変数列 $\left\{ d_L \left(\boldsymbol{X}, \boldsymbol{\theta}_{c^*(\boldsymbol{X})} \right) \right\}_{L=1}^{\infty}$ に対して,

$$\inf \left\{ \alpha \mid \lim_{L \to \infty} \Pr \left\{ d_L \left(\boldsymbol{X}, \boldsymbol{\theta}_{c^*(\boldsymbol{X})} \right) > \alpha \right\} = 0 \right\}$$

に収束すると考えられる. すなわち, 確率的上極限を 用いて,

$$p - \limsup_{L \to \infty} d_L \left(\boldsymbol{X}, \boldsymbol{\theta}_{c^*(\boldsymbol{X})} \right)$$

と表される [9]. (2) のレートについて同様の極限をと ると,

$$\limsup_{L \to \infty} \frac{\ln K}{L}$$

であり,これらは[9,定義5.3]における固定長符号化 の最大ひずみ基準とレートの定義にそれぞれ一致し, 最大ひずみが一定値 D のときの達成可能なレートの 下限値としてレートひずみ曲線が定義される.また, データが情報源の分布に従う場合,その経験分布は データ数無限大の極限で情報源の分布に近づくことか ら,上述のレートひずみ曲線は,情報源の分布に対す るレートひずみ曲線に近づくと考えられる[10].

情報源 $p(\mathbf{x})$ が i.i.d. のとき,すなわち,各次元 L に おいて $p(\mathbf{x}) = \prod_{j=1}^{L} p\left(x^{(j)}\right)$ で与えられるとき,分布 p(x) に従う確率変数を X,分布 $\int q(\theta|x) p(x) dx$ に 従う確率変数を Θ とすると,最大ひずみ基準のレート ひずみ曲線は,平均ひずみに対して $L \to \infty$, $n \to \infty$ の極限から同様に得られるレートひずみ曲線に一致し,

$$R(D) = \inf_{q(\theta|x): E_{X,\Theta} \left[d_{\phi}(X,\Theta) \right] \le D} I(X;\Theta)$$

により与えられることが知られている [9, 定理 5.8], [11]. ここで, $I(X; \Theta)$ は $X \ge \Theta$ の相互情報量, $E_{X,\Theta}$ は $q(\theta|x)p(x)$ に関する期待値を表す. なお, レートひ ずみ曲線の値が 0 となる最小のひずみを D_{\max} と表す. 一般のひずみ尺度 d に対し, D_{\max} は $\inf_{\theta} E_X[d(X,\theta)]$ で与えられ [12], ブレグマンダイバージェンスに対し ては, 一般に $\arg\min_{\theta} E_X[d_{\phi}(X, \theta)] = E_X[X]$ のた め, $D_{\max} = E_X[d_{\phi}(X, E_X[X])]$ である [3].

また,データの分布が二つの確率分布 p₁, p₂ の混 合によって与えられる混合情報源

$$p(x) = \alpha p_1(\boldsymbol{x}) + (1 - \alpha)p_2(\boldsymbol{x}) \tag{5}$$

 $(0 < \alpha < 1)$ では,それぞれの確率分布に対応した レートひずみ曲線が $R_1(D)$, $R_2(D)$ としたとき,最 大ひずみに対応したレートひずみ曲線は,それらの最 大で与えられる [9, 定理 5.10].

 $R(D) = \max \{ R_1(D), R_2(D) \}$ (6)

3.2 DP-means 法とレートひずみ曲線の関係

本節では、まず DP-means 法におけるペナルティパ ラメータと、そのときに与えられる最大ひずみが同様 の意味をもつことを示す(定理 1).そして、データ 数と次元数が無限大の極限において、ひずみを一定値 んとしたときに DP-means 法により決まるレートが レートひずみ曲線を達成することについて、情報源が 単一の i.i.d. 情報源の場合(定理 2)と混合情報源の 場合(定理 3) に分けて示す.

DP-means 法では,推定クラスタ数はデータの並び とクラスタ中心の初期値に依存する.ここでは,議論 を単純化するため,仮定1をおく.

[仮定 1] DP-means 法停止時の推定クラスタ数が最 小となり、そのときのクラスタ中心 $\{\theta_1, ..., \theta_K\}$ に対 する平均ひずみを最小とする最適解が得られるような、 データの並びとクラスタ中心の初期値を仮定する. [定義 1] 仮定 1 のもとで、クラスタ数 K とクラス タ中心 { $\theta_1, ..., \theta_K$ } から決まる、レート、平均ひずみ、 最大ひずみを (2)~(4) より、それぞれ $r(K), D_a(K),$ $D_m(K)$ と定義する. [仮定 2] $D_m(K)$ に対し、単調性

 $D_m(K) > D_m(K+1) \tag{7}$

が全ての $K \ge 1$ で成り立つとする.

次元数 L が大きいとき,チェビシェフの不等式よ り最大ひずみは平均ひずみに近づくため(後述 (12)), 仮定 2 の単調性は高い確率で成立すると考えられる. これらの仮定のもと,次の定理が成り立つ. [定理 1] DP-means 法実行時におけるクラスタ数が

Kになるペナルティパラメータ λ の下限を $\lambda(K)$ と すると,全ての K について (8) が成り立つ.

$$\lambda(K) = D_m(K) \tag{8}$$

[証明 1] データの平均 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ に対し,

$$\lambda(1) = D_m(1) = \max_{1 \le i \le n} d_L(\boldsymbol{x}_i, \bar{\boldsymbol{x}})$$

が成り立つ. $k \leq K - 1$ ($K \geq 2$) において $\lambda(k) = D_m(k)$ を仮定すると, $\lambda = D_m(K)$ とした DP-means 法は,全ての *i* で $d_L(\mathbf{x}_i, \boldsymbol{\theta}_{c(i)}) \leq \lambda$ が成り立つこと からクラスタ数 K 以下で停止するが,(7) より

 $\lambda = D_m(K) < D_m(K-1) = \lambda(K-1)$

となることから,クラスタ数は K 未満とはなら ないため,クラスタ数 K で停止する.また, $\lambda = D_m(K) - \varepsilon(\varepsilon > 0$ は任意の小さい定数)とすると, $i^* = \arg\max_i d_L(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)})$ に対し,

 $d_L\left(\boldsymbol{x}_{i^*}, \boldsymbol{\theta}_{c(i^*)}\right) = D_m(K) > \lambda$

が成立し、少なくとも K+1 個のクラスタが必要となる. 以上より、 $D_m(K) - \varepsilon \leq \lambda(K) \leq D_m(K)$ が全ての $\varepsilon > 0$ に対し成り立ち、(8) の成立が確かめられる. (証明終)

(8) は、ペナルティパラメータが最大ひずみと同様 の意味をもつということを意味する.なお、本論文で は、DP-means 法のペナルティパラメータを変化させ たときのクラスタ数から(2)で決まるレートの曲線の ことを「クラスタ数の曲線」と呼んでいる.

以降の議論では、仮定1、仮定2に加え以下の仮定

をおく.

[仮定 3] i.i.d. 情報源を表す確率変数 X が離散の場合は,有限集合上に値を取るとし,連続の場合は,その確率密度関数 p(x) が有界な台 S をもつとする^(注1). [仮定 4] ひずみ尺度に対し,

 $E_X\left[d_\phi(X, E_X[X])^2\right] < \infty$

とする.

[定理 2] i.i.d. 情報源に対して, $n \to \infty$ かつ $L \to \infty$ の極限において, ペナルティパラメータを λ とした DP-means 法により決まるレートは, ひずみを λ とし たレートひずみ曲線の値を達成する.

$$\lim_{L \to \infty} \lim_{n \to \infty} r(K) = R(\lambda) \tag{9}$$

[証明 2] レートrを固定すると (2) より、クラスタ 数は

 $K = \lceil \exp(Lr) \rceil$

で与えられる.このとき定義1より平均ひずみ $D_a(K)$ と最大ひずみ $D_m(K)$ が一意に決まる.更に仮定2と 定理1より、ペナルティパラメータ $\lambda(K)$ に対する単 調性を考慮すると、クラスタ数がKとなるペナルティ パラメータ λ の区間は次式で表される.

$$\lambda(K) \le \lambda < \lambda(K-1) \tag{10}$$

ここで,情報源の分布 $p(\mathbf{x})$ 及び,それに従う L 次元 確率ベクトル \mathbf{X} に対して,クラスタ数が K,クラス タ中心が $\{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_K\}$ であるときに与えられる平均ひ ずみと最大ひずみを

$$D_{a}^{*}(K) \equiv E_{\mathbf{X}} \left[d_{L} \left(\mathbf{X}, \boldsymbol{\theta}_{c^{*}(\mathbf{X})} \right) \right]$$
$$D_{m}^{*}(K) \equiv \max_{\mathbf{x} \in S^{L}} d_{L} \left(\mathbf{x}, \boldsymbol{\theta}_{c^{*}(\mathbf{x})} \right)$$

と定義する (S^L は $S \circ L$ 次の直積). すると, $n \to \infty$ の極限において, グリベンコ・カンテリの定理 [13, 定 理 17.3] より, データの経験分布は情報源の分布に収 束するため,

$$D_a^*(K) = \lim_{n \to \infty} D_a(K)$$
$$D_m^*(K) = \lim_{n \to \infty} D_m(K)$$
(11)

が成り立つ.更に、チェビシェフの不等式より、任意

(注1): $\{x: p(x) \neq 0\}$ の閉包を p(x)の台という.

の $\gamma > 0$ に対し,

$$\Pr\left\{ \left| d_{L}\left(\boldsymbol{X}, \boldsymbol{\theta}_{c^{*}(\boldsymbol{X})}\right) - D_{a}^{*}(K) \right| \geq \gamma \right\}$$
$$\leq \frac{1}{\gamma^{2}} V_{\boldsymbol{X}}\left[d_{L}\left(\boldsymbol{X}, \boldsymbol{\theta}_{c^{*}(\boldsymbol{X})}\right) \right] \leq O\left(\frac{1}{L}\right) \qquad (12)$$

が成り立つ.ここで、 V_X は X に関する分散を表し、 各次元の独立性より、

$$V_{\mathbf{X}} \left[d_L \left(\mathbf{X}, \boldsymbol{\theta}_{c^*(\mathbf{X})} \right) \right]$$

= $\frac{1}{L^2} \sum_{j=1}^L V_{X^{(j)}} \left[d_{\phi}(X^{(j)}, \theta_{c^*(X)}^{(j)}) \right]$

となること、及び仮定 4 から $E_X\left[d_{\phi}(X^{(j)}, \theta_{c^*(X)}^{(j)})^2\right]$ $\leq E_X\left[d_{\phi}(X, E_X[X])^2\right] < \infty$ となることを用いた. (12) より、 $L \to \infty$ の極限では、 $d_L\left(X, \theta_{c^*(X)}\right)$ は $D_a^*(K)$ に確率収束するため、最大ひずみは平均ひず みに近づく.

$$\lim_{L \to \infty} D_m^*(K) = \lim_{L \to \infty} D_a^*(K)$$
(13)

ここで, *K*-means 法は,大域的最適解が得られてい るとすれば,有限次元において一般のプレグマンダ イバージェンスに対し平均ひずみを最小化する最適 な手法であるため [3], $n \to \infty$ かつ $L \to \infty$ の極限 ではレートひずみ曲線を達成することが知られてい る [11, Section III]. したがって,レートひずみ曲線 R(D)の逆関数,ひずみレート曲線をD(R)と表した とき,次式が成り立つ.

$$\lim_{L \to \infty} D_a^*(K) = D(r) \tag{14}$$

(11), (13), (14) より,

$$\lim_{L \to \infty} \lim_{n \to \infty} m(K) = D(r)$$
(15)

となる.ここで、r = r(K)に対し、

$$r(K-1) = \frac{\ln(K-1)}{L} = \frac{\ln\{K(1-\frac{1}{K})\}}{L}$$
$$= \frac{\ln K}{L} + \frac{1}{L}\ln(1-\frac{1}{K})$$
$$\simeq r - \frac{1}{LK}$$

より, $L \to \infty$ の極限では, r(K-1)はrに近づく. こ のとき, $D_m(K-1) = \lambda(K-1)$ は $D_m(K) = \lambda(K)$ に近づき, (10)の区間の幅は0に近づく.よって,任 意の $\lambda \in [\lambda(K), \lambda(K-1))$ に対し, (15)より

$$\lim_{L \to \infty} \lim_{n \to \infty} r(K) = R(\lambda)$$

が成り立ち,(9)の成立が確かめられる.(証明終) [定理 3] i.i.d. 情報源により構成される混合情報源 (5)に対し, $n \to \infty$ かつ $L \to \infty$ の極限において,ペ ナルティパラメータを λ とした DP-means 法により 決まるレートは,ひずみを λ とした最大ひずみ基準の 混合情報源に対するレートひずみ曲線の値を達成する.

$$\lim_{L \to \infty} \lim_{n \to \infty} r(K) = \max\{R_1(\lambda), R_2(\lambda)\}$$
(16)

[証明 3] 学習データが混合情報源から生成されているとき, $p_1 \ge p_2$ のどちらから生成されたかにより, データを二つの部分集合に分割する. そのそれぞれに対し,ペナルティパラメータ λ を用いた DP-means 法 を適用したときのクラスタ数をそれぞれ K_1 , K_2 とする. 学習データ全体に対し同じ λ の値での DP-means 法の結果与えられるクラスタ数が K のときのレート の値は,

$$\frac{\ln K}{L} \le \frac{\ln(K_1 + K_2)}{L} \le \frac{\ln(2\max\{K_1, K_2\})}{L}$$

より、Lが十分大きいとき、 $\max\{\ln K_1/L, \ln K_2/L\}$ で上から評価することができる. 定理 2 より、この値 $\ln n \to \infty, L \to \infty$ の極限で、

 $\max\{R_1(\lambda), R_2(\lambda)\},\$

となり、(16)の成立が確かめられる.(証明終)

定理 2, 定理 3 より, 単一の i.i.d. 情報源と混合情 報源どちらの場合でも, $n \to \infty$ かつ $L \to \infty$ の極 限においては, クラスタ数の曲線は最大ひずみ基準の レートひずみ曲線を達成する.

ただし、データの並びやクラスタ中心の初期値など の DP-means 法の解に関する仮定は DP-means 法の 理想的な状況での振る舞いを調べるためのものであり、 実際の状況では一般には成り立たない.これらの仮定 の成り立つ条件を明らかにすることや、3.1 や本節で の次元及びデータ数に関する極限操作の正当性を厳密 に証明することは本論文の範疇を超える今後の課題で あるため、次章において数値実験による検証を行う.

4. 数值実験

本研究では,情報源として,N回の試行を行った ときの二項分布を仮定する.対応するブレグマンダイ バージェンスは (17) で与えられる.

$$d_{\phi}(x,\theta) = x \ln \frac{x}{\theta} + (N-x) \ln \frac{N-x}{N-\theta}$$
(17)

なお,凸関数 φ は (18) で与えられる.

$$\phi(\theta) = \theta \ln \frac{\theta}{N} + (N - \theta) \ln \frac{N - \theta}{N}$$
(18)

本章では、単一の二項分布から生成した乱数をデータ として与える場合と、混合情報源に対応した二つの二項 分布の混合より生成した乱数をデータとして与える場 合の2通りで実験を行った.生成するデータは*L*次元と して、単一の二項分布の場合は (19) においてパラメー タが $\mu = 0.3, N = 100$ の下で、混合二項分布の場合は (19) においてパラメータが $\mu \in \{0.3, 0.7\}, N = 100$ の下で生成した.

$$p(x) = \binom{N}{x} \mu^x (1-\mu)^{N-x}$$
(19)

なお,混合二項分布の場合はデータ1点に対して,一 様乱数から50%の確率でパラメータµが決まるよう にした.また,本章では,比較のためにレートひずみ 曲線を頻繁に図示する.(6)及び対称性から混合二項 分布の場合のレートひずみ曲線は,単一の二項分布の 場合と一致する.(17)の擬距離に対するレートひずみ 曲線は,

$$D_{\max} = N \left\{ h(\mu) - \sum_{x=0}^{N} p(x)h\left(\frac{x}{N}\right) \right\}$$
$$R(0) = -\sum_{x=0}^{N} p(x)\ln p(x)$$

による端点をもつ.ここで, h は二値エントロピー関 数である.これらの端点の間のレートひずみ曲線の値 は,数値的に計算することができる[3],[14].この方 法は,あらかじめ指定した数の混合数をもつ有限混合 分布の最適化を行う.混合数を一つずつ増やしながら 最適化を行い,目的関数値の変化が十分小さくなった 混合数を採用することで,レートひずみ曲線の計算を 行った.収束判定条件の影響から多少の誤差が見られ たが,本実験での比較には十分な精度といえる.

4.1 ペナルティパラメータに対するクラスタ数の曲線とレートひずみ曲線の関係

まず,学習データとして,単一の二項分布,混合二項 分布のそれぞれより,データ1点の次元を(2⁰,...,2⁵) と2のべき乗で変化させながら,各次元ごとに2048 点からなる学習データセットを100セット生成した. 同様に,単一の二項分布,混合二項分布より,データ の次元を変化させながら,次元ごとに16384 点から なるテストデータを1セット生成した.生成した学習 データそれぞれに対し、ペナルティパラメータを (20) で変化させ、クラスタ数が1になるまで、DP-means 法を実行し、学習データに対応する次元のテストデー タでテストを行った.

$$\lambda_i = \begin{cases} 0 & (i=1) \\ 0.01 & (i=2) \\ 1.01\lambda_{i-1} & (i\geq3) \end{cases}$$
(20)

そして,実行ごとに,ペナルティパラメータ,クラス タ数,学習データとテストデータのそれぞれに対する 平均ひずみと最大ひずみを記録した.

記録したデータそれぞれに対して、ペナルティパラ メータの値を昇順に見たとき、クラスタ数の値が減少 しており、なおかつ、同じクラスタ数の場合は、対応 するペナルティパラメータの値が最小となるクラスタ 数に対応するペナルティパラメータ、学習データとテ ストデータのそれぞれに対する平均ひずみと最大ひず みの値を次元ごとに対応するクラスタ数で平均をとっ たものを結果とした.この結果から、ペナルティパラ メータとクラスタ数の関係をレートひずみ曲線ととも に表したのが図1、学習データに対する平均ひずみと クラスタ数の関係をレートひずみ曲線とともに表した のが図2、テストデータに対する平均ひずみとクラス タ数の関係をレートひずみ曲線とともに表したのが 図3である.なお、図1~図3では横軸を対数スケー ルとした.

図1を見ると(a),(b)ともに次元が上がると、ペ ナルティパラメータに対応する曲線は、レートが低い 領域においてレートひずみ曲線に近づいていることが わかる.しかし.ひずみが0となる近辺においてデー タの次元が4次元以上(図の範囲では16次元以上) では、クラスタ数の曲線がレートひずみ曲線より下に きている.これは本来,L次元の二項分布のデータ空 間は $(N+1)^L$ であるが、学習データ数は有限であり、 二項分布のデータ空間と比べるとデータ数が少ないこ とが原因であると考えられる.実際,3.1 での議論の ように最大ひずみは $n \to \infty$ の極限においてレートひ ずみ曲線に近づくため,有限のデータ数では,曲線を 下回ることがあり得る.図2を見ると、図1と同様 に (a), (b) ともに次元が上がると、平均ひずみに対 応する曲線は下がり、レートひずみ曲線に近づいてい ることがわかる.4次元以上(図の範囲では8次元以 上)の場合でレートひずみ曲線の下にきていることも

Fig. 2 Rate against the average distortion for training data.

Fig. 3 Rate against the average distortion for test data.

図 4 データの次元に対する最大ひずみと D_{max} との差 (a) 単一の二項分布において, レートの値が 0 となるときの最大ひずみ (b) 混合二項分布において,レートの値が ln 2/L となるときの最大ひずみ

Fig. 4 The difference between maximum distortion and D_{\max} against the dimensionality of data.

図1と同じ理由だと考えられる.また,図2と図3を 比較すると,次元が増大するとともに,学習データに 対する平均ひずみとテストデータに対する平均ひずみ の差異は増大し,レートひずみ曲線に対して学習デー タに対する平均ひずみは下に,テストデータに対する 平均ひずみは上にきていることがわかる.混合情報源 では,レートが ln 2/L の値で二つの混合成分が検出 できるため,どの次元においても,そのレートでほぼ D_{max} 程度の平均ひずみの値となっている (図2(b), 図3(b)).

図1(a),図2(a)において、レートが0になると きのひずみに着目すると、平均ひずみはD_{max}へ収 束しているが、最大ひずみに相当するペナルティパラ メータは、32次元ではまだ収束しておらず、データ の次元を更に上げて実験を行う必要がある。しかし、 そのためには、データの次元を大きな値にし、なおか つデータ空間に空きが出ないような量のデータで実験 を行う必要があり、現実的には困難である。図1(b)、 図2(b)に関しても、レートがln2/Lとなるときの平 均ひずみと最大ひずみに関して同様のことがいえる。

4.2 データの次元増加に伴う最大ひずみの収束

4.1では、ペナルティパラメータに対応するクラス タ数の曲線が、次元を上げるとレートひずみ曲線に近 づくことが示唆された.ここでは、次元が十分大きい 場合に両者が限りなく近づくという様子を確認したい. しかし、データ数の影響を受けるため、データの次元 を更に上げることは困難である.そこで、データ数の 影響が少ないレートひずみ曲線のレートが0になる点 D_{max} に限定して実験を行った.まず,上限を2²⁰ 次 元として,4.1と同様の条件で,学習データセットを 生成する.次に,次元を2のべき乗で2²⁰ まで変化さ せながら,学習データセットごとに,データ点と真の クラスタ中心との最大ひずみを記録した.そして,単 一の二項分布と混合二項分布に対しそれぞれ,次元ご とに平均を取った値を結果とした.この結果を表した のが図4である.図4を見ると,(a),(b)ともに次元 が上がると,最大ひずみとD_{max}の差が0に限りなく 近づいていくことがわかる.このことから,データの 次元を大きくする極限において,ペナルティパラメー タに対応するクラスタ数の曲線がレートひずみ曲線に 収束することが示唆された.

4.3 最大ひずみの混合二項分布に対するレートひ ずみ曲線への収束

定理 3 では、学習データが混合情報源から生成さ れているとき、クラスタ数の曲線はデータ数と次元 数が無限大の極限で、(6)のレートひずみ曲線を達成 することが示された.すなわち、あるひずみ D に対 して、混合情報源を構成する i.i.d. 情報源に対応する レートが最大となる曲線である.ここでは、数値実験 でその確認を行う.実験はデータ数の影響を避けるた め、4.2 と同様の条件で行う.混合情報源を構成する i.i.d. 情報源に対するレートひずみ曲線に差を付けるた めに、単一の二項分布の場合は $\mu = 0.01$ と $\mu = 0.5$, 混合二項分布の場合は $\mu \in \{0.01, 0.5\}$ からなる情報

源よりデータの生成を行った.実験の結果を図5に 示す.図5では、単一の二項分布の場合はそれぞれ、 生成元の情報源に対応する D_{max} に近づいていること がわかる.そして、混合二項分布の場合には、レート が $\ln 2/L$ となるときの最大ひずみが二項分布のパラ メータが $\mu = 0.01$ であるときの D_{max} に近づいてい ることがわかる.つまり、学習データが混合二項分布 より生成されているとき、データ数と次元数が無限大 の極限で、混合二項分布を構成する二項分布に対応す るレートが大きい方の曲線に近づくことが確認できる.

4.4 ペナルティパラメータと最大ひずみの関係

4.1 及び4.2 では、ペナルティパラメータと最大ひ ずみは近似的に等しいという前提において、データの 次元を十分に大きくした場合,ペナルティパラメータ に対するクラスタ数の曲線がレートひずみ曲線に近づ くことを示した.しかし,4.1 でペナルティパラメー タに対応するクラスタ数の曲線と学習データに対する 最大ひずみに対応するクラスタ数の曲線を比較すると, 多少の差異があるとわかった.このことについては, 次に挙げる二つの理由が考えられる. 一つ目の理由と しては、データをクラスタに割り当てるループにおい て新しいクラスタが複数作られることがあるため,余 分なクラスタが生成される可能性があることである. 二つ目の理由としては、クラスタ中心の計算は全ての データ点をクラスタに割り当てた後に行うため、 クラ スタ中心が大雑把にしか動かないことである. そこで, クラスタが増えるのは、データをクラスタに割り当て るループ中につき1回、クラスタ中心はデータ1点の

Algorithm 2 modified DP-means for

maximum distortion
$\textbf{Input: } \boldsymbol{x}^n = \left\{ \boldsymbol{x}_1,, \boldsymbol{x}_n \right\}, \lambda$
Dutput: $l = \{l_1,, l_K\}, K$
K = 1
$\boldsymbol{l}_1 = \boldsymbol{x}^n$
$oldsymbol{ heta}_1 = rac{1}{n}\sum_{i=1}^n oldsymbol{x}_i$
c(i) = 1 $(i = 1,, n)$
repeat
once = true
for $i = 1$ to n do
$d_{ik} = d_L \left(\boldsymbol{x}_i, \boldsymbol{\theta}_k \right) \left(k = 1,, K \right)$
if $\min_{k} d_{ik} > \lambda$ && once then
$\tilde{K} = K + 1$
$c\left(i\right) = K$
$oldsymbol{ heta}_K = oldsymbol{x}_i$
once = false
else
$c\left(i\right) = \arg\min_{k} d_{ik}$
end if
for $j = 1$ to K do
$\boldsymbol{l}_j = \{\boldsymbol{x}_i c(i) = j\}$
$oldsymbol{ heta}_j = rac{1}{ oldsymbol{l}_j } \sum_{oldsymbol{x} \in oldsymbol{l}_j} oldsymbol{x}$
end for
end for
until $\sum_{i=1}^{n} d_L \left(\boldsymbol{x}_i, \boldsymbol{\theta}_{c(i)} \right) + \lambda K$ converges
$\sum_{i=1}^{n} u_L(x_i, v_c(i)) + \lambda H$ converges

割り当てを行うごとに計算するように変更したアルゴ リズムが Algorithm 2 である. この Algorithm 2 を 用いて 4.1 と同様の実験を行い,ペナルティパラメー タと学習データに対する最大ひずみの差異の大きさに ついて比較を行った. ただし,次元は (2⁰,...,2³)の範 囲とした. 結果から,1次元と8次元を例として,オ リジナルの DP-means 法による実行結果と改変した DP-means 法による実行結果と改変した DP-means 法による実行結果から,それぞれ,ペナル ティパラメータとクラスタ数の関係と学習データの最 大ひずみとクラスタ数の関係を図 6 に示す.図 6 から 次元及び二項分布が単一か混合かによらず,改変した DP-means 法による結果では,ペナルティパラメータ に対応するクラスタ数の曲線の特にひずみが 大きいときの差異が小さくなっていることがわかる.

5.考察

5.1 データの順序に対する依存性

ペナルティパラメータの値を増加させたとき,クラ スタ数の値は基本的に減少するが,稀に上昇すること がある.これは,DP-means 法がデータの並びに依存 して結果が局所解となるためであり,データの並びを 変更することで,ペナルティパラメータに対するクラ

スタ数は単調に減少すると考えられる.また,データ の並びを変更して、クラスタ数の値が減少したとき、 最適にクラスタリングされたと考えると、最大ひずみ の値はペナルティパラメータにより近づくと予想でき る.実際に、ペナルティパラメータ1点ごとにデータ の並びをランダムに1000回変更し、その中で、クラ スタ数が最小となり最大ひずみが最小となる値をペナ ルティパラメータごとに記録した.結果としては、ペ ナルティパラメータの増加に伴いクラスタ数は単調に 減少した.一方で、最大ひずみはペナルティパラメー タの値によっては、データの並びを変更する前よりも 両者の差異は増大した.これは、DP-means法は平均 ひずみ最小化を行っているが、そのときに必ずしも最 大ひずみが最小となるわけではないためだと考えられ る.また、ペナルティパラメータに対して最大ひずみ が最小となるデータの並びを調べようとすると,デー タ数の階乗通りを調べる必要があり,現実的な計算時 間では不可能である.ペナルティパラメータと最大ひ ずみの間の若干の差異は,4.4の結果から,データの 順序に対する依存性よりも,1ループ中に複数のクラ スタが生成されることやクラスタ中心の更新があま り頻繁に行われないことが原因であると考えられる. 3.2では,データの並びやクラスタ中心の初期値など の DP-means 法の解に関する理想的な仮定の下,ペ ナルティパラメータと最大ひずみが一致することを示 したが,4.4の数値実験の結果は仮定の成り立たない 実際の状況においても頻繁に一致することを示唆して いる.

5.2 学習データ数に対する依存性

また、4.では、データ数とデータの次元が大きい

場合にペナルティパラメータに対応するクラスタ数の 曲線はレートひずみ曲線に近づくことを示した.一方 で,有限の次元数において,学習データ数が大きいと きの最大ひずみの振る舞いは極値統計論により考察 することができる.ペナルティパラメータの最大ひず みとしての解釈から,ペナルティパラメータに対する DP-means 法のクラスタ数変化の学習データ数への依 存性を調べることができる.

簡単のため,各次元が独立に平均0分散σ²の正規 分布であるL次元等方的正規分布に従うデータを考え る.2乗距離をひずみ尺度とすると,クラスタ数が1 となるペナルティパラメータの下限は,近似的に,

$$\lambda(1) \simeq \max_{1 \le i \le n} d_L \left(\boldsymbol{x}_i, \boldsymbol{0} \right) = \frac{1}{L} \max_{1 \le i \le n} \| \boldsymbol{x}_i \|^2$$

で与えられる.極値統計論より,データ数nが十分大 きいとき,

$$\max_{1 \le i \le n} \|\boldsymbol{x}_i\|^2 \simeq 2\sigma^2 \ln n + O(\ln \ln n)$$

であることが示される[15]. このことから, 主要項の みを考えると,

$$\lambda(1) \simeq \frac{2\sigma^2}{L} \ln n$$

すなわち,ペナルティパラメータはデータ数の対数の オーダーで大きくなることがわかる.データ数nに対 し,クラスタ数Kが十分小さい場合に,各クラスタに 十分なデータが含まれると仮定すると,同様に $\lambda(K)$ も同じ主要項をもつことがわかる.このことは人工 データを用いてデータ数nを変えた数値実験により確 かめることができる[16].また,4.で用いた二項分布 (及びその混合)においても,Nが大きいとき,中心 極限定理から同様の考察が成り立ち,ペナルティパラ メータはデータ数nに対し $\ln n$ のオーダーでスケー ルすることを実験的に確かめることができる.

6. む す び

本研究では, DP-means 法におけるペナルティパラ メータはレートひずみ理論における最大ひずみと同様 の意味をもつことを明らかにした.これにより,最大 ひずみ基準のレートひずみ理論に対応して,データ数 とデータの次元数を上げたとき,クラスタ数の曲線は 最大ひずみ基準のレートひずみ曲線に近づくことを示 した.また,データ数が有限であるため,4.1の実験 方法では、ひずみが小さい領域では、この検証を行う ことは困難であることがわかった.ひずみが大きい部 分においては、DP-means 法のクラスタ数の曲線と最 大ひずみは、少し差異があるが、アルゴリズムを改変 することで、この差異を小さくすることができること を確認した.本研究の結果から、次元が十分に大きい データに対して DP-means 法を行う場合、データの 分布に対応する最大ひずみ基準のレートひずみ曲線か らペナルティパラメータを指定することが有効である と考えられる.実際のパラメータ設定法の構成には、 レートひずみ曲線の有限データ数での解析 [10] 及び有 限次元での解析 [17] を組み合わせることが重要である と考えられる.

謝辞 本研究の一部は科学研究費助成事業 25120014, 15K16050, 16H02825の助成を受けた.

献

文

- 持橋大地, "最近のベイズ理論の進展と応用 (III)—ノンパ ラメトリックベイズ," 信学誌, vol.93, no.1, pp.73-79, Jan. 2010.
- [2] B. Kulis and M.I. Jordan, "Revisiting k-means: New algorithms via Bayesian nonparametrics," Proc. International Conference on Machine Learning, pp.513-520, 2012.
- [3] A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh, "Clustering with Bregman divergences," J. Machine Learning Research, pp.1705–1749, 2005.
- [4] K. Jiang, B. Kulis, and M.I. Jordan, "Small-variance asymptotics for exponential family Dirichlet process mixture models," Advances in Neural Information Processing Systems, pp.3158–3166, 2012.
- [5] X. Pan, J. Gonzalez, S. Jegelka, T. Broderick, and M.I. Jordan, "Optimistic concurrency control for distributed unsupervised learning," Advances in Neural Information Processing Systems, pp.1403–1411, 2013.
- [6] O. Bachem, M. Lucic, and A. Krause, "Coresets for nonparametric estimation – the case of DP-means," Proc. International Conference on Machine Learning, pp.209–217, 2015.
- [7] D. Bruno, S. Calinon, and D.G. Caldwell, "Learning autonomous behaviours for the body of a flexible surgical robot," Autonomous Robots, vol.41, no.2, pp.333-347, 2017. 10.1007/s10514-016-9544-6
- [8] M. Comiter, M. Cha, H.T. Kung, and S. Teerapittayanon, "Lambda means clustering: automatic parameter search and distributed computing implementation," Proc. International Conference on Pattern Recognition, 2016.
- [9] 韓 太舜, 情報理論における情報スペクトル的方法, 培風 館, 1998.
- [10] T. Linder, "On the training distortion of vector

quantizers," IEEE Trans. Inf. Theory, vol.46, no.4, pp.1617–1623, 2000.

- [11] R.M. Gray and D.L. Neuhoff, "Quantization," IEEE Trans. Inf. Theory, vol.44, no.6, pp.2325–2383, 1998.
- [12] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, Prentice-Hall, Englewood Cliffs, NJ, 1971.
- [13] Ya.G. シナイ、シナイ確率論入門コース、丸善、2016.
- [14] A. Banerjee, I. Dhillon, J. Ghosh, and S. Merugu, "An information theoretic analysis of maximum likelihood mixture estimation for exponential families," Proc. International Conference on Machine Learning, pp.57–64, 2004.
- [15] M.R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, 1983.
- [16] 上遠野貴広,"ディリクレ過程平均法におけるクラスタ数 推定法と推定精度の解析,"電子情報通信学会東海支部卒 業研究発表会予稿集,2015.
- [17] V. Kostina and S. Verdú, "Fixed-length lossy compression in the finite blocklength regime," IEEE Trans. Inf. Theory, vol.58, no.6, pp.3309-3338, 2012. (平成 29 年 6 月 19 日受付)

小林真佐大 (学生員)

平 28 豊橋技科大工学部情報・知能工学課 程卒業.現在,同大大学院博士前期課程在 学中.統計的機械学習に関する研究に従事.

渡辺 一帆 (正員)

平18東工大大学院総合理工学研究科知 能システム科学専攻了.博士(工学).日 本学術振興会特別研究員,東大大学院学術 研究支援員・特任助教,奈良先端大助教を 経て現在,豊橋技科大情報・知能工学系講 師.統計的機械学習に関する研究に従事.