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Empirical Bayes Estimation for L; Regularization:
A Detailed Analysis in the One-Parameter Lasso Model

Tsukasa YOSHIDA ¥, Nonmember and Kazuho WATANABE ™, Member

SUMMARY  Lasso regression based on the L; regularization is one of
the most popular sparse estimation methods. It is often required to set
appropriately in advance the regularization parameter that determines the
degree of regularization. Although the empirical Bayes approach provides
an effective method to estimate the regularization parameter, its solution
has yet to be fully investigated in the lasso regression model. In this study,
we analyze the empirical Bayes estimator of the one-parameter model of
lasso regression and show its uniqueness and its properties. Furthermore,
we compare this estimator with that of the variational approximation, and
its accuracy is evaluated.

key words: lasso regression, empirical Bayes, Laplace prior, local varia-
tional approximation

1. Introduction

Regularization methods are often used in regression mod-
els for the purposes such as the suppression of overfitting
and sparse modeling. Lasso (least absolute shrinkage and
selection operator) regression is one of the most popular
method for sparse modeling. It introduces the regularization
term defined by L; norm of the regression coefficients, and
has widely been used for variable selection and compressed
sensing [1]-[3].

It is necessary for successful applications of regular-
ization methods to determine the regularization parameter
appropriately, which adjusts the degree of regularization.
The cross-validation is the most common approach to the
estimation of the regularization parameter. Since this ap-
proach generally requires huge computational costs, alter-
native approaches such as the empirical Bayes estimation
has been applied. The empirical Bayes approach in the
L, regularization, namely ridge regression, itself provides
a sparsity-inducing mechanism called automatic relevance
determination (ARD) [4], [5]. Furthermore, the empiri-
cal Bayes solution of the regularization parameter was fully
analyzed in the ridge regression model with the identity de-
sign matrix [6], [7]. For the L; regularization, however,
we no longer have the conjugacy between the Gauss model
and the Laplace prior corresponding to the L; regulariza-
tion. For non-conjugate models, the integral calculation of
the marginal likelihood in the empirical Bayes estimation is
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generally intractable. Hence, an approximation method such
as the local variational approximation (LVA) is required for
the empirical Bayes approach in lasso regression [8], [9]. Be-
cause such an approximate solution of the empirical Bayes
estimator is obtained by an iterative algorithm, the properties
of the approximate or exact empirical Bayes estimators are
yet to be fully investigated.

In this study, we analyze in detail the empirical Bayes
estimator of the regularization parameter in the simplest one-
parameter model of lasso regression. We prove the exact
solution of this model and its upper bound. This gives a
rare example where the empirical Bayes solution with a non-
conjugate model is analytically obtained. The property of
the marginal likelihood of this model such as unimodality is
demonstrated in the proof of the main theorem. The asymp-
totic behavior of the solution is also analyzed. Furthermore,
we compare the exact solution with the approximate solution
given by the LVA to examine its accuracy analytically.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the one-parameter lasso model. The exact
solution of the empirical Bayes estimator and its asymp-
totic expansions are given in Sect. 3 and Sect. 4, respectively.
Section 5 derives the algorithm of the LVA and analyzes its
solution. The exact and approximate solutions are numeri-
cally demonstrated in Sect. 6. The discussion and conclusion
follow in Sect. 7 and Sect. 8.

2. One-Parameter Lasso Model

Given the data set x" = {x1,...,x,} (x; e Ri=1,...,n),
we consider the following one-parameter Gauss model with
the parameter w € R and the prior distribution of w with the
hyperparameter 1 > 0*,

i) = — ex {_M}
p —m Y ) s

A
p(w|d) = 7 exp (=dwl).

ey

This likelihood corresponds to the linear regression model
with the intercept w and without any explanatory (input)
variables. The maximum a posteriori (MAP) estimation of
this model reduces to the (one-parameter) lasso regression

“This model turns out to be equivalent to the Gauss model

N (w, %) with the known variance o by the standardizing variable
transformations, ¥ = x/o-and 0 = w/o .
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with the regularization parameter A [1], which maximizes
the following posterior distribution of w,

p(x"w)p(w|a)

p(w|x", 1) = ZD ,

where the likelihood is given by p(x"|w) = [T, p(x;|lw)
under the i.i.d. assumption. Here,

Z(A) = p(x"|A) = fp(x"lw)p(wl/l)dw @

is the marginal likelihood also known as the evidence [10].
The empirical Bayes estimator of the regularization param-
eter A is defined by the maximizer of Z(A),

~

A = argmax Z(A4).
Pl

We analyze the empirical Bayes estimator A of the model

(D).
3. Empirical Bayes Estimator

In this section, we prove the main theorem on the empirical
Bayes estimator of the model (1). We use the following
special function in the theorem,

2 2 2 o0 2
erfex(x) = e¥ erfc(x) = — ¥ f e dt,
r x

which is also known as the Mills ratio of the Gaussian random
variable [11].

Theorem 1 (Main Result): Let x = % 2., x; be the sam-
ple average. The empirical Bayes estimate A for the model
(1) is unique and is given by

B (m < in)

where 1™ is the unique A satisfying
/12
(— - XA+ 1) erfcx {\/E(i —})}
n 2\n
2 A 2
+ (— +XxXA + 1) erfcx{\/g(— +E)} =24/—A
n 2\n nmw

and it is evaluated as

. 2
0< A" < ———. (®)]
X2

I |=

If 1 = oo, w is estimated to be 0. This is the effect
of ARD. Detailed results on the MAP estimator of w are
described in Sect. 7.2.

If the true data-generating distribution is the standard
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normal distribution N (0, 1), A =o0and A = 1* are se-
lected with probabilities (approximately) 0.68% and 0.32,
respectively since ynx follows N (0, 1).

(Proof of Theorem 1)
We have the following lemma.

Lemma 1: The marginal likelihood Z(A) of the model (1)
is expressed as follows,

S R

(6

— 1 _1yn 2
where C = poY =l exp( DN xt.).

(Proof of Lemma 1)
By putting (1) into (2), dividing the integration into two
parts, w € (—oo, 0) and [0, o0), we have

2
ZA) = ——— (I, + 1),
(A 2(27r)%( +1)

where I, and I_ are given by the following integration with
+ and — chosen from =+, respectively,

o 1 n )
Ii:f(; exp{—zi_zl(xiiw) —/lw}dw.

Completing the square with respect to w in the exponent of
the integrand yields that

L. =exp{g(%ix)2—%zn:x§}
e 5o (249))

Thus, we obtain (6) by applying the following formulas and
definitions of the error functions,

dw

erf(x) = % f i exp(—1%)dt,
0

P

erf(—x) = —erf(x), @)
* 1 |n

fo exp {-a(t - b)*} dr = 5\/;{1 +erf(vab)},

erfc(x) = 1 —erf(x), (8)

erfcx(x) = exzerfc(x). 9

O
Then, the theorem directly follows from the next lemma
by the transformations,

A n
A=—— and M = \/jf (10)
V2n 2

This lemma indicates that the marginal likelihood is always
unimodal.
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Lemma 2: The function
f(A) = Aferfex (A = M) + erfex (A + M)} (11)

is strictly monotonically increasing for A > 0if [M| < 1/V2,
and strictly monotonically increasing for A € [0, A*) and
strictly monotonically decreasing for A € (A*, oo) if |M| >
1/V2. Here, A* is the unique point satisfying

(2A% = 2MA + Derfex(A — M)

4
+ (2A2 +2MA + Derfex(A+ M) — —A =0, (12)
T

\/_

and is evaluated as

[ 2

The proof of this lemma is given in Appendix A. O
4. Asymptotic Expansion

In this section, we analyze the asymptotic behavior of the
empirical Bayes estimator obtained in Theorem 1. The next
theorem is proved in Appendix B. The following asymp-
totic expansion of erfcx(x) for large x, which is obtained
directly from that of erfc(x), is the key to the derivation of
the asymptotic expansion in this theorem,

1 1

erfex(x) = —+ 0| —= . 14
(0= = (x3) (14)
Theorem 2: A* in (3) has the asymptotic expansion as

Vx| — oo,

. 1 1 1

A —LS1+—=+0|—=];- 15
x| { nx? ((ﬂfz)z)} (1

The limit 4/n|x| — oo includes the two cases, n — oo
for fixed |x| and |X|] — oo for fixed n. In particular for the
former case, if the true data-generating distribution is the
normal distribution N (wp, 1) with wy # 0, the empirical
Bayes solution is given by this asymptotic expansion since
A* is selected with probablity 1 as n — oo.

The upper bound (5) has the asymptotic expansion as

Vnlx| — oo,

;~i{l+ ! +0( ! )} (16)
o1 [ 2 T\ @)

n

It follows from these asymptotic expansions that the upper
bound (5) is loose by a factor of 2 asymptotically as n|x| —
00,

5. Local Variational Approximation
The LVA is commonly used for approximating the posterior

distribution of the lasso regression model [8], [9]. The LVA
for the model (1) forms the following upper bound to the
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term |w| = ‘/ﬁ,
|m=%ﬁs2%wﬁf%+£§ an

which follows from the concavity of the square root. Here, &
is a parameter, called variational parameter, and is used for
optimizing the approximation.

Replacing |w| with the upper bound (17), we put

_ 2 1
pe(w|d) = 5 €Xp [—/l {2—\/?(102 -+ \/;H
< p(wl|Ad).

Thus, we obtain the following approximating posterior and
the lower bound of the marginal likelihood Z(2),

p(x"|w)pe(w|A)

pe(wlx™, 1) = 2.0 ,

Zgu)ifp(x"lw)ﬁg(wu)dw.

More specifically, the approximating posterior turns out to
be the Gaussian distribution with the mean and variance,

nx

Eppwixn, n[W] = \/L—2 e and
< (18)
Vel W] = — .
et

The lower bound of Z(1) is explicitly given by

I SN R B o B
Zf(/l)—z(zﬂ)%] exp( Zin)

A 1 X)?
exp |~ A€ - (/lnx)

2 —~= +n

'_§2 +n w/é:z

To maximize Z,(A) with respect to the variational pa-
rameter and the regularization parameter, we can use the
expectation-maximization (EM) algorithm, which updates &
and A so that

Ep g wlxn, 100 [10g Pe (W] )]

is maximized for the fixed current estimates, §°ld and 1°,
of £ and A [10], [12]. This update guarantees that Zg(l)
is increased. Let £"" and A" be the updated parameters.
Then, the update rules are explicitly given by

v (érev)? = \/Eﬁ.gold(wlx”,/l"ld) [W?]

qold

Aol ’

+n

+n+ (nx)?
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/lold +n
/lnew _ (fold)z
Aold — 2,
\/\/@UT)z +n + (nx)

which follows  from 2B, e, 100 B (WID] - =
,L‘szﬁNd(w,xwm)[ﬁf(wm)] = 0, and (18). Summa-

rizing these rules, we have

/lold 2 +
PLC N L S (19)

VAN 0+ (nx)?

The solution to this update rule of the LVA for the model (1) is
analyzed in the following theorem. Here, we put 1) = 2°d
and AU+ = 1"V for the estimates of A at the ¢th update of
(19), and let Apya = limy_e0 A9,

Theorem 3: For any initial value 10 > 0,

_ L’
O R
:

/—2_1
X n

That is, 2 grows unboundedly as t — oo if |X| <

otherwise, 1" converges to 1/, [x2 - ’11

(Proof of Theorem 3)
; (1 — A9 -
By the transformations, A" = o M =

were used also in the proof of Theorem 1, (19) is equivalent
to

L

v and

(/4% which

{200y + 1)

2 A(t+1) 2 —
A = Aoy s a2 1

and further to

AM?

ACD _AD = oM ———————
A +2M2 + 1

(21)
for A® = 2(AM)2.

Assume that A® is bounded by a constant U > 0 for
0 < |M| < 1/V2. Then, (21) implies that

4M?
A +2M2 +1
4M?
> >
U+2M?+1

A(l‘+1) _ A(t) >

]

which in turn implies that A®) grows unboundedly. This
contradicts our assumption that AW is bounded. Hence,
A® diverges to infinity if 0 < |M| < 1/V2.

It also follows from (21) that if [M| # 1/V2,

g _ 1
2M?% -1
AD 12

_ a0 _
AD +2M2 +1

2M2 - 1|
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Since —4°*2 _ < [ if and only if [M| > 1/V2,

A 2IM?2+1
1
o0 (|M| < —),
2

Y (|M|>%).

Expressing A?) and M by 1) and X, we obtain the theorem.

O

Compared to the asymptotic expansion (15) of the exact

empirical Bayes estimator, the approximate solution Apya

provides a lower bound of A asymptotically because (20)
yields that

. 1 1 1
Ava = — 91+ +0
BT { 232 ((n#)Z)}

as Vn|x| — oo.
The next corollary evaluates the approximation accu-
racy of the LVA, which directly follows from (5) and (20).

lim A® =

t—o0

Corollary 1: If [xX| > 1/y/n, A/A1va < 2.

6. Numerical Evaluation

We computed the exact solution of the empirical Bayes esti-
mator in (3) by Newton’s method for n = 100 (Fig. 1). We
also compared it with its upper bound (5) and the solution
of the LVA obtained by the update rule (19). Although we
adopt n = 100 here, under the transformations (10), we can
draw a similar figure for A and M with different scales of
horizontal and vertical axes. This means that we can obtain
the solutions for an arbitrary n only by changing the scales
of axes in Fig. 1.

We see that all the solutions diverge to infinity for
x| < 1/4/n = 107!, and that the LVA solution provides
a lower bound to the exact solution. We confirmed that the
LVA solution is equal to the one proved in Theorem 3. We

—-— upper bound
-=--LVA solution
—— exact solution

102<

101 4

1[)0 4

10 10° 10!
g
Fig.1  The empirical Bayes estimates of 1 against |X|, the exact solution

(solid line), its upper bound (dot-dashed line) and the solution of the LVA
(dashed line).
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also see that the upper bound is asymptotically tight in the
limit [X] — 107!+ while the LVA solution is asymptoti-
cally tight as |x| — oo. The latter asymptotic behavior is
explained by Theorem 2 and the discussion below it. The
former asymptotic behavior suggests that the accuracy of
LVA becomes worse as |X| approaches 1/+/n from above and
we have Aya ~ 0.5, the worst case proved in Corollary 1,
asymptotically.

7. Discussion

In this section, we compare the main result (Theorem 1)
with the case of the L, regularization studied in a previous
work [6], [7].

7.1 The Effect of ARD

If we replace the Laplace prior in (1) with the Gaussian prior,

A w?
p(w|d) = \/E exp (—/17),

then, we obtain the following empirical Bayes estimator of
4,

1
00 (rfls ———),
A, = | ~ ‘/f (22)
=L )

and the posterior mean estimator of w,

1
0 (|Y| < —),
b, (A A (23)

— (m > %)

which is also the MAP estimator since the posterior distri-
bution is Gaussian. Note that the condition, |X| < 1/+/n,
corresponds to the case where A goes to infinity and hence
w is estimated to be exactly zero by the mechanism of ARD.
The main theorem shows that this condition is identical be-
tween the L and L, regularization. This fact is suggested
to be true as n — oo by the following transformation of the
model (1) to the hierarchical model discussed in [6], [7],

1 o {_(x—ab)z}
NG p > .

pla) = 3 exp (~lal),

p(xla, b) =
24

where a = Aw and b = 1/A. This is because the effect of
the prior tends to vanish as n — co. The main theorem and
(22) mean that the effect of ARD appears identically in the
L and L; regularization not only for n — oo but also for all
n.

7.2 The MAP Estimator

Under the L regularization for a fixed regularization param-
eter A, the MAP estimator of the parameter w in (1) is given
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by

Theorem 1 shows that w is estimated to be 0 by the empirical
Bayes approch (ARD) if |x| < 1/v/n. As demonstrated
in Fig. 1, the empirical Bayes solution of 1 monotonically
decreases from oo to 0 as |x| grows from 1/+/n. This means
that there exists a unique X > 1/4/n such that A*/n = X holds.
Let this unique X be x.. For 1/4/n < |x| < x., ARD does
not imply w = 0 while the MAP estimate does imply w = 0
if A is set by ARD to a finite value. Therefore, the MAP
estimator with its regularization parameter estimated by the
empirical Bayes approach is

/l*

x-— (x>=x¢),
dmap(d) =4 0 (%] < xc), (25)
X+ 7 (} < —xc) .

In other words, the range of |x| for which Dmap(A) = 0 is
slightly extended compared to the case of the L, regulariza-
tion in (23) because of the L regularization.

Considering the intersection of 4 = nx and the upper
bound (5), the upper bound of x. is given. Equating the
upper bound to nx yields the following range of x,

1 < < 1+ V17
—<x .
\n ¢ 2n

(26)

7.3 More General Case

As discussed above, the empirical Bayes solution of L; reg-
ularization is close to the solution of L, regularization if n is
sufficiently large. Therefore, the behavior of the solution of
L, regularization provides useful insight into the extension
of the main result of this paper. Regarding L, regulariza-
tion, a detailed analysis has been given in the case of the
linear regression whose design matrix is identity [6], [7].
The detailed behavior of the solution in the case of a general
design matrix has yet to be clarified although it can be re-
duced to the case of a hierarchical model as in (24) by using
the pseudoinverse of the design matrix [13]. Our next task is
to analyze the empirical Bayes solution of L regularization
whose design matrix has a special structure such as identity.
As we have proved in Lemma 2, the marginal likelihood
is unimodal in the one-parameter case. The unimodality
implies the convergence of iterative algorithms optimizing
the hyperparameter to the global maximum. It is also an
important undertaking to investigate such a property of the
marginal likelihood in more complex practical cases.
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8. Conclusion

We analyzed the empirical Bayes estimator of the regulariza-
tion parameter in the one-parameter model of the L; regu-
larization. It was shown that the condition that the empirical
Bayes method yields the sparse solution is identical to the
case of the L, regularization. We also compared the exact
solution to the approximate solution given by the LVA and
its accuracy was analytically evaluated.
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Appendix A: Proof of Lemma 2

We can restrict ourselves to the domain A > Oand M > 0
without loss of generality. From

d 2
—erfcx(x) = 2xerfex(x) — —
dx

77

we have
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F'(A) = QA% = 2MA + Derfex(A — M)
4
+ (2A% + 2MA + Derfex(A + M) — —A.
N

By using the five polynomials of A,
Pi(A) = 2A% + 2MA + 1,
Pr(A) = 2A> —2MA + 1,
P3(A) = 2A% + (1 = 2M*)A? + 1,
P4(A) = 2MA3 + 2M*A* — 1,
Ps(A) = 2M? — 1)A> -2,

we define the following functions and calculate their deriva-
tives to analyze f(A),

f/(A) = Pierfcx(A + M) + Prerfex(A — M) — iA
\r

g1(N) - g2(N),

iP] e(A+M)2,

g1 (A) =
fd
(o] P (o)
g2(A) = f e dt + —26_4MAf e dr
A+M Py A-M
_ %e—(AJrM)Z
P ’
SMP e 4P
g5(A) = — 236_4MAf e dt+ —426_(A+M)2
(P1) A-M (P1)
= hi(A) - o (A),
SMP
hi(A) = — 3 e™4MA
(P1)?
l’lz(A) = f‘x’ e_tzd[ _ Py e—(A—M)Z,
A-M 2M P;
AP P
Hy(A) = L2 (A=M,
M(P3)?

where we have omitted the dependency of the polynomials
on A for notational simplicity. Since P;(A) > 0, all the
functions are continuous for all A > 0 and M > 0 except for
h, and hj, which have singularities at the zeros of P3(A).
IfO<M< % then we have Pi(A) > 0, P3(A) >
0, and Ps(A) < 0. This means that hé(A) < 0, and thus
h>(A) is monotonically decreasing. Furthermore, it follows
from the continuity of sy(A) and limp e 2(A) = O that
hy(A) > 0, and also from P;(A) > 0, and P3(A) > O that
hi(A) < 0. These facts imply g5 (A) = hi(A) - ha(A) < 0,
and hence g,(A) is monotonically decreasing. Combined
with the facts that g (A) is continuous and limp e g2(A) =
0, this proves that g (A) > 0. Since P1(A) > 0, g1(A) > 0.
It finally follows that f'(A) = g1(A) - g2(A) > 0 meaning
tlllat f(A) is strictly monotonically increasing if 0 < M <

\/—E.
1

Next, we turn to the case of M > In this case,

5l

Ps(A) has a unique zero at

2
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We further divide the discussion into the three cases, (i) % <

M < L+ V2,Gi) M = /L + V2, and (i) M > /1 + 2.
@) %<M<,/%+\/§

In this case, it holds that P3(A) > 0. Hence, the sign chart
of Ps yields that of hé, which combined with the continu-
ity, ima—eo 12(A) = 0 and the intermediate value theorem,
shows that A, has a unique zero. Let this zero be denoted by
sn. We have s, < s5. Similarly, we can prove that g, has a
unique zero by the fact lima_,. g2(A) = 0. Letting this zero
of g» be 54, we have s, < s, < s5. Because f’ changes its
sign from plus to minus around s,, f has the maximum at
A = s, satisfying f’(s4) = 0 and s, < s5, which yields the
upper bound (13).

I

In this case, also P3 has aunique zero at ss = 1 /2. Similarly
to the case (i), the sign charts of Pz and Ps combined with
the intermediate value theorem show that /s, has a unique
zero at A = s, < s5. Then, we know that A = s, is the
unique zero of g; with the special treatment of A = s5 to
prove g;(ss) > 0 due to the singularity of h}. Similarly,
it is proved that g, has a unique zero at A = s, satisfying
sy < sp < s5, which corresponds to the zero of f’ and hence
the maximum of f.

(i) M > 1+V2

In this case, P53 has two zeros,

1

S;” = E\/(2M2 —1)—+J@M2-1)2-8, and
1

s = E\/(2M2 1) ++/(2M2-1)2-38.

(2)
3

(i) M=

For sg]) < A < 577, P3(A) < 0. Then, we can prove that

sgl) <85 < sf), and A3 has a local minimum at A = s5. By
specifically proving that /,(ss) > 0, we know that A, has a

unique zero, s, between 0 and sgl). Similarly to (i) and (ii),

with the facts that gé(sgl)) > 0 and gé(sgz)) > 0, s, turns
out to be the unique zero of g;. The rest of the proof is same
as those of the cases (i) and (ii). O

Appendix B: Proof of Theorem 2
We can assume without loss of generality that X > O by the

symmetry. Under the transformations (10), we consider the
limit of large M. By the formulas of the error functions (7),

TFrom the proofs of the cases (ii) and (iii), we obtain a slightly
tighter upper bound of A* than (13),

1
A <D= E\/(211/12 — 1) —+J@M2-1)2 -8,
for M| > 1 + 2.
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(8), and (9), we have

erfex (A — M) = 2exp {(M — A)?} +erfex (M = A) .
Substituting this expression into (12) yields

2 (2/\2 —2MA + 1) exp {(M - A)Z}

+ (2A2 —2MA + 1) erfex (M — A)

+ (2/\2 +2MA + 1) erfex (M + A)
4

- —A=0. A1
N (A-1)

It follows from (13) that

A"=0 ! (A-2)
= ik

This implies that M — A and M + A are O(M) for A = A*.
Hence, by the asymptotic expansion of erfcx(x) in (14), the
left hand side of (A- 1) is expressed as

2 (207 = 2MA + 1) exp {(M = A)*} + 0O (%) .

This means that
202 -2MA+1+0(e™) =0 (A-3)

holds for A = A* since otherwise the left hand side of (A- 1)
is away from zero. Let the o (e‘M 2) term in this equation be
c. Then, the solution to (A- 3) satisfying (A-2) is

oM [ 20+0)
A—Z(l 1 MZ)

~L+L+O L
T2M  AM3 M3’

where we have used V1 +x = 1+ % — %‘2 + O(x?) for small

x. Expressing A and M by A and X yields (15). O
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