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Iterative Learning Reference Trajectory Modification for Contouring

Performance Enhancement of Industrial Machine Tool Feed Drive Systems

by Yogi Muldani Hendrawan

In industrial applications, highly accurate mechanical components are generally re-

quired to produce advanced mechanical and mechatronic systems. Most of them are

produced by computer numerical control (CNC) machine tools. A fundamental mo-

tion in CNC machine tools is a drive axial movement to track a desired trajectory.

Not only are there tracking errors in each drive axis, but there are also contour errors,

which are directly related to the machined shape of a workpiece, and therefore must

be considered in controller design. Although most existing contouring controllers

are based on feedback control and estimated contour error, it is generally difficult

to replace the feedback controller in commercial CNC machine tools. In order to

improve the contouring performance for commercial CNC machine tools, this thesis

presents an iterative learning contouring controller (ILCC) design with two contour

error estimation approaches.

The proposed method is implemented in three types of CNC machine tool feed drive

systems. First, a laboratory biaxial feed drive system is used to prove the propo-

sed methods performance (Chapter 3) with an estimated contour error correction.

HTTPS://WWW.TUT.AC.JP
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Then, an ILCC is applied to a three-axis commercial CNC machine tool (Chapter 4)

to improve the contour error estimation. Last, a machine tool with a linear motor

mechanism is used as an example of an advanced machine tool (Chapter 5). Descrip-

tions of the physical system configurations and system parameters are presented in

Chapter 2.

An ILCC that considers both tracking and contour errors is proposed in Chapter

3. The proposed control iteratively modifies the reference trajectory of each drive

axis to reduce the contour error. The proposed controller can be directly applied to

commercial machines currently in use without requiring any modification of their

original controllers. The proposed method has been experimentally verified through

a biaxial feed drive system on a sharp-corner trajectory, which normally leads to a

large contour error around the corner due to the discontinuity. A comparison with

a conventional ILCC (CILCC) was done in order to evaluate its performance. The

experimental results show that the contour error converges within a few iterations,

and the maximum contour error can be reduced by 49.2 % in comparison with the

CILCC. The limitation is that this method is only effective for a low-curvature tra-

jectory. It requires more iterations to track a high-curvature trajectory.

An ILCC that considers the actual contour error compensation (ACEC) with linear

interpolation and the Bézier reposition trajectory (BRT) is proposed in Chapter 4

to improve upon the method presented in Chapter 3. The ACEC enhances tracking

performance for a high-curvature trajectory by correcting the reference input with

an actual contour error value, and the BRT enables smooth velocity transitions be-

tween discrete points in the reference trajectory. For the performance analysis, the

proposed controller was implemented in a commercial three-axis CNC machine tool

and several experiments were conducted on the basis of typical 3D sharp-corner and

half-circular trajectories. The experimental results show that the proposed control-

ler could reduce the maximum and mean contour errors by 45.11 % and 54.48 %

on average, compared with the ILCC with estimated contour error. In comparison
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with the ILCC with ACEC, the maximum and mean contour errors are reduced by

20.54 % and 26.92 %, respectively. However, this method is not effective for circu-

lar trajectories. It will be improved by the circular interpolation method in the next

chapter.

To improve the effectiveness of the proposed method in an advanced commercial

CNC machine tool system, circular interpolation is designed. It is implemented

in a CNC machine tool with a linear motor mechanism in Chapter 5. An ILCC

that considers ACEC with linear and circular interpolation enhances the contouring

performance of linear motor CNC machine tool feed drive systems. The proposed

control iteratively modifies the reference trajectory of each drive axis to reduce the

contour error. The proposed controller can be directly applied to a commercial CNC

machine tool with a linear motor mechanism currently in use without requiring any

modification of the original controller. The comparisons between linear and circular

interpolation were simulated in both “air-cutting” and machining conditions. The

simulation was conducted for non-smooth rhomboidal and circular trajectories. The

effectiveness of the proposed method has been experimentally verified with a rhom-

boidal trajectory. The results show that the proposed controller could reduce the

maximum and mean contour errors by 94.58 % and 88.67 % on average, compared

with the original controller. In addition, the proposed method improved the cont-

rol input variance by 37.9 %, and consequently, the consumed energy was reduced

by 11.7 % compared with the original NC program. Concluding remarks and future

works are described in Chapter 6.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background

In industrial applications, many processes exist to manufacture precision products.

Machining is one of the processes required for metal processing, especially in the

automotive, aerospace, energy, and medical industries. Many components such as

propellers [1], gears [2], and knee joints [3] require high quality standards in accu-

racy, surface quality, and geometry, as shown in Fig. 1.1; all of these requirements

FIGURE 1.1: Machining product sample.
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FIGURE 1.2: Five-axis CNC machine tools.

can be satisfied during the machining process in high-precision machine tool feed

drive systems.

The basic function of a machine tool (as shown in Fig. 1.2) for removal processes

is to move a cutting tool along a more or less complex trajectory with sufficient pre-

cision while withstanding the forces from the material removal process and still rea-

ching the required precision or material removal rate (MRR) [4]. This basic function

can be applied to produce a wide variety of product specifications, and the machine

tool can be designed in a way that satisfies many requirements. The machine tool

requirements are related to the following aspects:

• The maximum part size to be machined. Machining would be needed at each

point of the part, so the machine workspace must be larger than the workpiece

size.

• The main geometry of the workpiece. The global shape of the part is the key

consideration when selecting the type of machine tool.
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• The number and complexity of axes. If the features are few and simple, they

may not require the use of a highly complex machine. On the other hand, if

they are numerous or very complex, the required machine tool must be struc-

turally much more complex (e.g., a five-axis milling machine).

• MRR. In some applications, the purpose of the designed driver is precision,

but in others, it is mainly to achieve a high productivity via a high MRR.

• Precision. This is a commonly used word that actually involves two different

concepts: accuracy and repeatability. Accuracy is the capability of being on

target within a specification, quantified by the bias or difference between the

obtained and desired results. Repeatability is the ability to reach the same

objective over and over again.

• Kinematic behavior (i.e., speed and acceleration). This requirement represents

a fast movement (idle movements) between successive machining operations

and during tool changes.

• Batch size has an influence on the automation level of machine tools and the

use of auxiliary devices. Generally, a universal CNC machine is able to process

a wide range of different workpieces.

• Price. This is an important factor that tends to be linearly dependent on ma-

chine size and exponentially dependent on precision [4].

Accuracy and precision are the main objectives of machine tool construction. The

guidelines and methodologies for machine design and assembly, the machine element

manufacturing, the testing procedures, and the use of auxiliary systems are inspired

by this requirement [5], [6]. A description of precision in the machining process

is shown in Fig. 1.3. In the last decade, a precision of 1 µm has been achieved

for conventional machining, whereas in ultra-precision machining, a hundredth of a

micron has been achieved in some cases.
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There are many guiding principles to consider in the design and construction of pre-

cision machine tools. Some of the considerations include the machine tool structure,

the kinematic design principle and smooth motion, Abbe’s principle, the position

measurement, the principle of error correction, and machine tool position control

[8]. Generally, the guiding principles can be classified into either hardware side or

control side, the latter being related to error correction and machine tool position

control. However, in order to control high-precision motion, it is necessary to utilize

high-precision hardware, especially when it comes to machine tool structure, motion

equipment, and measurement devices. For example, an error correction technique

will work properly with a precise measurement instrument, but if a low-accuracy

measurement device is used on a machine tool, it will limit the potential for im-

provement in the tool’s performance or precision. This thesis proposes a method

to improve machine tool performance by two of the guiding principles of precision

machining, namely, error correction and machine position control, which will be

described in the following section.

FIGURE 1.3: Evolution of machine tool accuracy [7].
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1.1.2 Motion Control of Machine Tools

Machine tool performance can be improved by an error correction method. Many

measurement devices can be used to measure the current error, but a precision mea-

suring device can generate an accurate error value that can then be used to correct the

machine tool error. There are two types of error that can be corrected in machining

applications, tracking error and contour error, as shown in Fig. 1.4. The tracking er-

ror is defined as the difference between the desired and actual positions. The contour

error is the error components orthogonal to the desired contour curves [9]. Both the

tracking and contour errors can be addressed by error correction methods, although

each error will have a different effect on the machine tool controller design.

In machining applications, a contour error is directly related to the product shape

quality, so many researchers use contour error to correct machining error. However,

a contour error can be difficult to estimate accurately. Researchers have estimated

contour error by many different methods [10]–[17]. Most of the contour error ap-

proximation methods do not represent the actual contour error accurately, especially

for a high-curvature surface application. However, in real-time control, the actual

contour error cannot be obtained immediately for complex contour profiles. There-

fore, it requires a precise contour error estimation to obtain approximate values. This

thesis proposes two different types of contour error estimation for low- and high-

curvature trajectories. Both types of contour error estimation will be implemented in

machine position control, especially iterative learning control (ILC) for machine tool

position.

The next important factor on the control side is machine tool position control. It

must be designed under the filter effect principle, based on noise correction, in order

to obtain precise and smooth motion. One of the noise sources is the resulting linear

interpolations of complex curves. Computer-aided design (CAD) files are usually de-

fined with high-order NURB curves. These curves are defined with a relatively small
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FIGURE 1.4: Tracking and contour error.

number of points; nevertheless, the geometry is well defined because of the mechani-

cal definition of the shapes. However, the NC program generated by computer-aided

manufacturing (CAM) systems is usually based on small linear interpolations. As

a result, a double negative effect is introduced. First, the toolpath is not exact, alt-

hough the deviation between the toolpath and the exact curve can be controlled by

the CAM software. Second, the sequence of linear interpolations results in a non-

smooth toolpath which can result in drive axis instability and finally, in machining

vibration [8]. Many control techniques have been developed to solve this specific

problem in machine tool position control.

A cross-coupled controller was proposed to improve high-speed contouring accu-

racy independently of tracking accuracy and contouring performance in biaxial ma-

chine tool feed drive servomechanisms. This attribute of cross-coupled controllers

is particularly useful in applications such as machining where the reduction of the
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contour error is far more critical than the reduction of the tracking error [18]. Accor-

dingly, many cross-coupled methods have been developed to control the contouring

performance under high feed rates such as a cross-coupled adaptive feed rate, and

cross-coupled ILC (CCILC) [19]–[21].

During cross-coupled motion control, increasing the contour feed rate may result in

larger contour errors. In order to increase feed rate and productivity without sacri-

ficing the contouring performance, the cross-coupled adaptive feed rate based on a

linearly perturbed model was proposed [22]. CCILC takes this further by applying

the technique of ILC to a cross-coupled controller. It enables learning of the cross-

coupled error which leads to a modified control signal and subsequent improvements

in the contour trajectory tracking performance [23]. However, there are three major

limitations. First, the CCILC iteratively modifies the control input signal that requi-

res full access to the existing controller for redesigning or reprogramming, which

makes it difficult to implement to commercial CNC machines in which access to the

controller is generally not allowed. Second, the CCILC requires a greater number

of iterations to reduce contour error in higher curvature trajectories because the sim-

ple contour error estimation does not provide sufficient estimation performance of

the actual contour error. Third, commercial CNC machines are generally already

equipped with well-tuned feedback controllers, and hence, they should not need to

be replaced for machines currently in use. These three limitations will be addressed

by the proposed ILC in this thesis.

By applying an ILC, the convergence of the output error is guaranteed under certain

conditions even when the system parameters are not known exactly or are under the

existence of bounded unknown external disturbances [24], [25]. ILC research has

attracted many researchers in the machine tool community because it can be used to

effectively improve machine tool performance. This thesis proposes a new pattern of

ILC, which will be described in the next section.
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1.1.3 Iterative Learning Control

ILC is an approach to improving the transient response performance of systems that

operate repetitively over a fixed time interval. It is useful for problems in which

a system must be able to follow different types of inputs, in the face of design or

modeling uncertainty. The concept of learning control was motivated by observing

the behavior of systems that operate repetitively. Another motivation for the approach

of ILC arises from problems in which a system must have the capability to accurately

respond to several different types of inputs [26].

The concept of iterative learning for generating the optimal input to a system was

first introduced by Uchiyama [27]. The idea was later developed by Arimoto and

his co-workers [28]–[40]. Fig. 1.5 illustrates the basic idea. Each time the system

operates, its input and output signals (uk (t) and yk (t), respectively) are stored in

memory (some type of memory device is implicitly assumed in the block of Fig. 1.5

labeled “Learning Controller”). The learning control algorithm then evaluates the

performance error ek (t) = yd (t)− yk (t), where yd (t) is the desired output of the

system. On the basis of the error signal, the learning controller then computes a new

input signal uk+1 (t), which is stored for use during the next trial. The next input

command is chosen in such a way as to guarantee that the performance error will be

reduced on the next trial [26].

The important task in the design of a learning controller is to find an algorithm for

generating the next input in such a way that the performance error is reduced on

successive trials. This is usually quantified by saying that the error should converge,

with convergences measured in the sense of some norm. The learning control algo-

rithm causes convergence of the error without knowing the model plant under control

(or, at least, it should require minimal knowledge of the system parameters). Furt-

hermore, the algorithm should be independent of the functional form of the desired
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FIGURE 1.5: Learning control configuration [26].

response yd (t). Thus, the learning controller would “learn” the best possible cont-

rol signal for a particular desired output trajectory without any need to reconfigure

the algorithm. Then, if a new desired trajectory is introduced, the learning control-

ler would simply “learn” the new optimal input, without changing any of its own

algorithms, by using input–output data obtained during actual operation [26].

It is important to note that ILC differs from both optimal control and adaptive control.

In optimal control, a priori design is conducted, based on a model of the system. If

the plant changes relative to the model, then the controller will no longer be optimal

(although adaptive LQR/LQG control algorithms can be used). On the other hand,

if the plant changes in a learning control scheme, the learning controller adapts by

adjusting the input for the next trial based on the measured performance error of the

current trial. However, ILC is different from conventional adaptive control. Most

adaptive control schemes are on-line algorithms that adjust the controller’s parame-

ters until a steady-state equilibrium is reached. In a learning control scheme, it is the

commanded reference input that is varied (in an off-line fashion), at the end of each

trial or repetition of the system [26].

On the basis of the ILC principle, many researchers have developed ILC for effective

implementation in machine tools. One such ILC is based on an iterative estimation
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of the instantaneous curvature of the reference trajectory and coordinates transfor-

mation approach to reduce the estimated contour error in a high-curvature trajectory

[41]. In a different approach, the contour error can be significantly reduced by an

ILC that considers both the tracking and contour errors [42]. Another ILC improves

the accuracies of high speed, computer-controlled machining processes by conside-

ring uncertain dynamics such as high-frequency dynamics, actuator saturations, and

dry friction [43]. All of these various ILC methods utilize conventional ILC, which

assumes to have full access to the concerned system controller [43]–[48]. Normally,

commercial systems do not provide full access to the controller, only allowing the

adjustment of controller gains or other common parameters, along with operational

access. A cascade form is needed for implementing ILC in commercial CNC ma-

chine tools. This thesis proposes a special cascade ILC for commercial machine tool

applications. The principle cascade ILC will be explained in the next section.

Iterative learning controllers can be constructed in five different ways [49], as shown

in the figures below.

• Previous Cycle Learning (PCL)

FIGURE 1.6: The schematic of PCL [49].
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• Current Cycle Learning (CCL)

FIGURE 1.7: The schematic of CCL [49].

• Previous and Current Cycle Learning (PCCL)

FIGURE 1.8: The schematic of PCCL [49].

• Cascade ILC

FIGURE 1.9: The schematic of cascade ILC [49].
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• Incremental Cascade ILC

FIGURE 1.10: The schematic of incremental cascade ILC [49].

1.1.4 Cascade Iterative Learning Control

The three ILC schemes (Figs. 1.6, 1.7, and 1.8) need access to the existing control

system for redesigning the control system, with a new feed-forward component to the

system input channel. A new control block is embedded into the control loop. Such

an embedded structure is the common structure for most of the existing real-time

ILC schemes. Hence, when an ILC mechanism is to be incorporated into an existing

control system, either the core execution program needs to be rewritten or the micro-

controller chip needs to be replaced. In many real applications, the reconfiguration of

a commercial controller is unacceptable because of the cost, security, and intellectual

property constraints. For instance, a rapid thermo-processing device in the wafer

industry costs millions of dollars, and the only tunable part is a number of set points.

In such a circumstance, the cascade learning method is suitable as it modifies only

the reference trajectory iteratively to improve the control performance [49].

The schematic of such an ILC is demonstrated in Fig. 1.9. It can be seen that the ILC

block is “cascaded” to the existing control loop or performed as an outer feedback

loop in the iteration domain. The ILC with the cascade structure will use the modi-

fied reference signals and the actual system output of the previous cycle to generate
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the new reference signals for the current cycle. Owing to the cascade structure, the

ILC need not be embedded into the existing control loop, thus avoiding any recon-

figuration of the system hardware or the core execution program. What is needed is

essentially some reprogramming of reference signals, which can be easily carried out

in real applications [49].

As shown in Fig. 1.9, the learning control law can be expressed as follows:

Yi = GYr,i, (1.1)

Ei = Yr−Yi, (1.2)

Yr,i+1 = Yr,i +ClEi, (1.3)

Yr,0 = Yr, (1.4)

where G = PC/1(1+PC) denotes the closed-loop transfer function; Yr is the origi-

nal reference repeated over a fixed operation period; and Yr,i is the reference signal

modified via learning for the inner current cycle control loop. According to the lear-

ning control law (Eq. (1.3)), the convergence condition for the cascade ILC can be

derived as

Ei+1 = Yr−Yi+1, (1.5)

= Yr−GYr,i+1, (1.6)

= Yr−G(Yr,i +ClEi), (1.7)

= Yr−GYr,i−GClEi, (1.8)

= (1−GCl)Ei (1.9)

Ei+1

Ei
= 1−GCl , (1.10)∥∥∥∥Ei+1

Ei

∥∥∥∥ =

∥∥∥∥1− PCCl

1+PC

∥∥∥∥≤ γ < 1. (1.11)
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In most cases the cascade ILC is of the PCL type, because set points, once selected,

cannot be changed in the midst of a real-time operation process [49].

This thesis proposes ILC by considering contour error. It can be directly applied

in commercial machining by a cascade scheme without any modification of the ex-

isting controller in CNC machine tools. The principle of the proposed work is the

modification of the original trajectory as NC codes form iteratively by contour error

correction to improve tracking performance until no further significant reduction of

contour error occurs. To improve controller performance, two kinds of contour error

estimation, namely, approximated contour error estimation (Chapter 3) and actual

contour error estimation (Chapters 4 and 5), are used in the proposed ILC to improve

contour error in low- and high-curvature trajectories, respectively. In this study, the

proposed ILC is implemented in a laboratory biaxial feed drive system (Chapter 3),

a commercial three-axis CNC machine tool with a ball screw mechanical system

(Chapter 4), and a CNC machine tool with a linear motor mechanism (Chapter 5).

The proposed thesis has three main advantages. First, the proposed controller is de-

signed by a cascade scheme, which enables it to be implemented in commercial CNC

machines currently in use. Because the existing methods require the access to the em-

bedded controller for modifying control input, they cannot be applied in commercial

CNC machines. The feedback controller of an industrial machine is generally alre-

ady well-tuned. Second, the proposed contour error estimation can estimate precise

contour error for higher curvature trajectories. Most methods of contour error esti-

mation cannot represent the actual contour error. This proposed method can estimate

the actual contour error precisely. Third, a commercial CNC machine already has a

well-tuned controller, which has good stability and disturbance rejection properties;

unlike the feedback-based approach, the proposed approach is based on feed-forward

control by an iterative NC program/G-code modification, which is expected to im-

prove the tracking performance. In other words, this proposed controller can be

easily applied to commercial CNC machinery.
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The proposed research is suitable for mass production applications because it may

be desirable to provide dummy material in the beginning of production to reduce

the contour error in the iterative learning contouring controller (ILCC). However,

there was also a study on feed drive control that mentioned that feed drive motion

accuracy mostly affects the precision of products because typical industrial machines

have sufficient robustness to a disturbance such as cutting force. Therefore, once the

reference trajectory for feed drive motion is optimized, it may be still effective for

finishing the cutting process [50]. In typical heavy cutting cases, after rough cutting,

finishing cutting is conducted. In that case, the rough cutting does not need high

accuracy. Once the final reference trajectory is optimized by the proposed ILC in the

“air-cutting” process, the optimized trajectory can be applied for the finishing cutting

process, which enables the production of a high-precision product.

However, the proposed method has two inherent difficulties, those being learning

gain optimization and commercial CNC machine plant identification. The proposed

method requires well-tuned learning gain to achieve the best controller performance.

Convergence analysis is used to optimize learning gain by the “fmincon” function in

MATLAB R©. Convergence analysis requires precise plant transfer function informa-

tion for learning gain optimizing. All commercial CNC machine transfer functions

are unknown to the user. Thus, it will require accurate machine plant identification,

but the precise machine plant identification process is still challenging for many re-

searchers.

1.2 Motivation and Research Objectives

On the basis of the description of the problem and a review of the relevant literature,

the research objective is defined as follows. This research aims to develop an ILC for

a commercial CNC machine to improve machine performance. Many control techni-

ques have been proposed, most of them requiring either full access to the existing
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control system or the design of new control system. This is difficult to implement

in commercial CNC machine tools because almost all commercial CNC machine

tools do not provide full access to the original controller due to cost, security, and

intellectual property constraints. An ILC with a cascade schematic form is proposed

to improve machine performance by modifying the reference trajectory (NC code)

with contour error estimation. This ILC can be implemented in commercial CNC

machine tools without modification of the embedded controllers or existing machine

controllers. Finally, the proposed control system will be implemented in a biaxial

feed drive system, a commercial CNC machine with a ball screw mechanism, and a

CNC machine tool with a linear motor mechanism.

In order to increase the accuracy of machine tools, an error correction based on con-

tour error estimation and the PID principle is embedded in the proposed ILC. Most

contour error estimations do not well represent the actual contour error. They pro-

duce low accuracy contour error estimations that are then used for error correction.

An error correction with low accuracy estimation will not result in a significant im-

provement in machine performance. This research proposes a precise contour error

estimation that consists of two parts. First, the contour error is estimated by mul-

tiplying a tracking error by a rotational matrix; this can work properly for a low-

curvature trajectory but is not effective for high-curvature trajectories. Second, an

actual contour error is estimated by calculating the minimum distance between the

actual position and the reference trajectory to achieve the desired contour error pre-

cisely.

1.3 Thesis Contribution

This thesis presents advanced research about ILC with contour error estimation for

commercial CNC machine tools. The precise contour error estimation will also con-

tribute to improve machine tool accuracy or performance. The experimental results
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show the effectiveness in reducing contour error. By reducing a contour error, ma-

chine tool performance will be improved and a higher quality product can be produ-

ced. The main contributions are listed as follows:

(1) There are difficulties in implementation of many control techniques to com-

mercial CNC machinery due to cost, security, and intellectual property con-

straints. Most of the control techniques require full access to the existing con-

troller for redesigning, reprogramming, or modifying the current CNC con-

troller. It takes a substantial investment and a complicated production system

to manufacture a new CNC control system (software) in a new CNC machine

tool (hardware) for many of the already proposed control techniques. This the-

sis proposes ILC with cascade form to improve machine performance in CNC

machine tools. The proposed ILC modifies the reference trajectory based on

contour error estimation with a PID learning pattern without modifying the ex-

isting CNC controller. The modified reference trajectory is generated in a G-

code form, so it can be executed by the CNC machine tools directly. The PID

learning gain is defined by convergence analysis to guarantee that the contour

error reduces iteratively. Finally, the proposed ILC is implemented properly

to several machine tools: a biaxial feed drive system, a three-axis commer-

cial CNC machine tool with a ball screw mechanism, and a commercial CNC

machine tool with a linear motor mechanism.

(2) An iterative learning controller based on contour error estimation is proposed

to achieve precision machine tool motion. A contour error estimate is calcu-

lated by two algorithms. First, a contour error is calculated by multiplying

the tracking error by a rotational matrix to achieve a candidate contour error.

However, it can be used directly to modify a reference trajectory by ILC for

low-curvature trajectories. A high-curvature trajectory requires a more accu-

rate contour error estimation, which is developed in the next algorithm. Next,
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an actual contour error is estimated by calculating the minimum distance be-

tween an actual position and a desired trajectory. To increase the accuracy of

the contour error estimation, linear and circular interpolations are used bet-

ween an actual position, the closest point, and the neighborhood around the

closest point on the desired trajectory. The precise contour error estimation

is demonstrated by simulation and experiment in commercial CNC machine

tools.

(3) Overall, the ILCC can be effectively implemented on commercial CNC ma-

chine tools. Normally, machine tool performance declines over the life of the

equipment, but a used commercial CNC machine tool’s performance can be

enhanced by ILCC implementation without any modification of the existing

CNC controller. The transfer function of the machine tool is needed to cal-

culate the PID learning gain by convergence analysis to achieve the optimum

contour error correction. The required information can be obtained through

system identification.

1.4 Thesis Outline

The main research in this thesis is about iterative learning reference trajectory mo-

dification for contouring performance improvement of industrial CNC machine tool

feed drive systems. The rest of this thesis is organized as follows:

• Chapter 2 introduces the proposed model of ILCC for commercial CNC ma-

chine tools and experimental devices that are used in this research. There are

three types of feed drive systems: a biaxial feed drive system, a three-axis com-

mercial CNC machine tool with a ball screw mechanism, and a commercial

CNC machine tool with a linear motor mechanism. In addition, the physical

system configuration and system parameters are explained in this chapter.
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• Chapter 3 describes the ILCC-based trajectory generation with estimated con-

tour error for a biaxial feed drive system. A controller design is shown, which

implements the proposed method for a biaxial feed drive system. Convergence

analysis is explained also to define the PID learning gain. This method is de-

monstrated by simulation and experiment with a sharp-corner trajectory that

has always generated a high contour error in a feedback controller, normally.

• Chapter 4 improves upon the previous method by the actual contour error

estimation with linear interpolation and the Bézier reposition trajectory (BRT)

to further improve the contouring performance. This method is implemented

in a three-axis commercial CNC machine tool with a ball screw mechanism.

The simulation and results suggest that the proposed method works properly

to improve machine performance.

• Chapter 5 describes the implementation of the updated method in a commer-

cial CNC machine with a linear motor mechanism. Circular interpolation is

designed to improve the contouring performance. The system identification

of the experimental system and the convergence analysis are explained also to

define the PID learning gain. This system is demonstrated by simulation and

experiment with rhomboidal and circular trajectories.

• Chapter 6 summarizes the whole research and highlights the important points.

It also identifies important points that can be improved in order to provide

guidance for potential future works.

The general outline of all chapters is shown in Fig. 1.11. The research problem defi-

nition, research motivation, research objective, thesis contribution, and thesis struc-

ture are explained in Chapter 1. It is followed by Chapter 2, which describes the

proposed model and all of the experimental devices, including their physical proper-

ties and system parameters for implementation. Chapter 3 explains the first research

implementation. The proposed ILC and common contour error estimation are applied

to a simple biaxial feed drive system. The proposed method is proved by simulation
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and experimental processes to validate controller performance. The contour error

estimation is extended to precise actual contour error estimation in Chapter 4. For

performance analysis, the proposed controller and new contour error estimation are

implemented in a commercial three-axis CNC machine with a ball screw mechanism

(a common industrial CNC machine tool). The proposed method is challenged with

implementation in an advanced CNC machine tool with a linear motor servomecha-

nism in Chapter 5. Finally, the whole research and future works are summarized in

Chapter 6.
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Chapter 2

Preliminaries

2.1 Introduction

Due to flexibility in manufacturing, CAD/CAM/CNC system is developed. The two

advanced computer-aided technologies that have been extensively used to help com-

panies operate product design to product machining are CAD and CAM [51]. The

CAD is the technology concerned with the use of computer systems to assist in the

creation, modification, analysis, and optimization of design [52]. CAD software

are developed to design product in wide area. The output CAD software is product

design such as engineering drawing, product analysis, and simulation which are ma-

nufactured by production area. All of CAD output can be used for guide line in

manufacturing process. Many idea, concept, problem solution, or product demand

can be realized become product design with a detail specification. Some proving is

needed to examine a product design will work properly or solve the problem. It can

be analyzed by computer-aided engineering (CAE) to predict product performance

before production process. The CAM process is the next step after product design

which is done by CAD and CAE process as production preparation.

In manufacturing process applications of computer numerical control (CNC) ma-

chine tools, a product design is needed as a data source to generate the toolpath in
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the CAM software. CAM is the technology concerned with the use of computer sy-

stems to plan, manage, and control manufacturing operations through either a direct

or indirect computer interface with the plant’s production resources [52]. The ma-

chining conditions and operation are defined on the basis of product shape by the

CAM software. The output of CAM is a tool trajectory, including the machining

parameters, which is to be executed by the CNC machine tool(s). The tool trajectory

is converted to G-code form by a post-processor. A tool trajectory in G-code form is

ready to execute in CNC machining.

The last step is the machining process executed by the CNC machine. Many dif-

ferent activities may be required during the machining process, such as clamping

of the workpiece and cutting tool, cutting tool position reference setup, and pro-

gram preparation. The output of the machining process is the product itself. Many

factors are required to produce a high quality product in this step. The important

factor is the machining conditions, which have two aspects, the machining parame-

ters and a tool trajectory. Each of them can generate error in the product directly.

An abnormal cutting process can occur if the machining parameters are wrong, e.g.,

too rapid feeding or spindle rotation, not the right cutter type, and too deep a cut-

ter depth. A vibration during machining can occur under these conditions. A high

vibration during machining causes damage to the cutting tool or workpiece. The

other potential effects include an un-smooth product surface or an imperfect shape

of the product. Moreover, the tool trajectory can affect the product shape directly;

this problem is not controllable by the operator during machining because the small

defect will only be known after the machining process has been completed. Gene-

rally, the original CAD/CAM/CNC model is an open loop as shown in Fig. 2.1. The

original CAD/CAM/CNC system cannot guarantee a certain quality of product due

to the potential for some error during machining. This research proposes to apply

a closed-loop scheme in the original CAD/CAM/CNC system by the ILC principle.

This method is proven to reduce contour error by simulation and experiment. This
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FIGURE 2.1: General structure of ILCC.

chapter explains the general design of ILCC and experimental systems.

2.2 General Design of ILCC

This research proposes an ILCC as shown in Fig. 2.1. This structure provides a

closed-loop model on a global scope in the CAD/CAM/CNC system. The ILCC mo-

difies the original trajectory through a learning controller based on a contour error

compensation. A CNC machine executes the modified trajectory for better perfor-

mance than that under the original trajectory. The process is done iteratively until

no further significant reduction of the error is observed. The proposed controller can

be directly applied to commercial machines currently in use by modifying NC codes

without modification of the embedded controller.

Many contour error compensations can be applied to the proposed ILCC due to the

effectiveness of error reduction. This thesis proposes two types of contour error

compensations, an estimated error compensation and an actual error compensation,

which are explained in Chapters 3 and 4, respectively. Both types of error compensa-

tion require actual position data to calculate a final contour error, and measurement

devices with characteristics such as a linear scale, a rotary encoder, and non-contact

measurement are required in order to obtain actual trajectory information during the
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machining process. The accuracy of the measuring devices will affect the perfor-

mance of the ILCC system directly.

Because the research objective is to develop an iterative learning contouring control

for commercial CNC machine tools to improve machine performance, the proposed

method was implemented in three types of machine tools as experimental devices:

a biaxial feed drive system, a three-axis CNC machine tool with a ball screw me-

chanism, and a CNC machine tool with a linear motor mechanism. The physical

properties of these devices and the experimental design are explained in the next

section.

2.3 Experimental Systems

2.3.1 Biaxial Feed Drive System

Biaxial feed drive systems are commonly applied in commercial industrial machines

such as EDM wire cutting machines, water jet machines, laser cutting machines, and

CNC punching machines, as shown in Fig. 2.2. These machines have a fundamental

movement pattern based on X–Y axis movement, which is driven to track a certain

desired trajectory. The output of biaxial movement is a two-dimensional trajectory

without any specific vertical motion in the Z direction, so it usually produces a planar

product such as a plate with a hole or any form in the inner or outer sides.

All of the machines that are used in this research to represent biaxial feed drive

systems are shown in Fig. 2.3. An X–Y table with a feedback controller implemented

by C++ language on a personal computer (Windows OS) was used as shown in Fig.

2.4. The control input signal was applied to a biaxial feed drive system with two lead

screws driven by two DC servo motors via a DA board (CONTEC DA12-8 (PCL)).

The actual position of the X–Y table was measured by encoders with resolution 0.025

µm attached to each axis. The ILCC was programmed in MATLAB R© on a separate
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(a) EDM wire cutting machine.
http://www.alltek.com.au/

(b) Water jet machine.
http://www.flowwaterjet.com/

(c) Laser cutting machine.
http://www.goldenlaser.cc/

(d) CNC punching machine.
http://www.uk.trumpf.com/

FIGURE 2.2: Biaxial feed drive systems application.

FIGURE 2.3: Laboratory biaxial feed drive system.
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FIGURE 2.4: Controller interface of biaxial feed drive systems.

personal computer (Windows OS) and embedded to the biaxial feed drive system as

shown in Fig. 2.5. The physical specification and parameter systems are described

in Table 2.1.
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FIGURE 2.5: Biaxial feed drive system with ILCC system.
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TABLE 2.1: Physical specification and parameter system of biaxial
feed drive systems.

Specification Value

Travel
X-axis [mm] 240
Y-axis [mm] 210

Table
Table height [mm] 160
Table working surface [mm] 110 x 110

Max Feedrate
X-axis [m/min] 8.3
Y-axis [m/min] 8.3

Motor Power sources
X-axis [W] 34
Y-axis [W] 34

Machine size
length [mm] 800
width [mm] 700

Parameter

mi
X-axis [Vs2/mm] 0.055
Y-axis [Vs2/mm] 0.055

ci
X-axis [Vs/m] 0.21
Y-axis [Vs/m] 0.21

KP
X-axis [V/mm] 0.96
Y-axis [V/mm] 0.96

KI
X-axis [V/smm] 0.01
Y-axis [V/smm] 0.01

KD
X-axis [Vs/mm] 8
Y-axis [Vs/mm] 8

The tracking error is collected by the encoders. The ILCC converts tracking error to

contour error by contour error estimation (explained in Chapter 3). On the basis of

an estimated contour error, ILCC modifies the reference trajectory. After the post-

processor has converted the modified reference trajectory to a G-code program, the

program is executed by a biaxial feed drive system. This algorithm is conducted

iteratively until no further significant contour error reduction can be achieved.
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(a) Three axis CNC machine (b) CNC table mechanism.

FIGURE 2.6: Experimental machinery.

2.3.2 Three Axis CNC Machine Tools

A three-dimensional product is typically produced by a three-axis CNC machine tool.

Movement can occur on all three axes simultaneously to generate complex curvatu-

res. Generally, a 3D trajectory is provided by CAM software based on the product
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FIGURE 2.7: Experimental interface design.
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FIGURE 2.8: ILCC software interface.

design and machine conditions. In a three-axis CNC machine, all three axes can con-

tribute to the production of contour error. This condition makes it more difficult to

control error in machine tools. The ILCC can also be implemented in a commercial

three-axis CNC machine for reducing contour error.

A three-axis commercial CNC machine (Fig. 2.6) with a ball screw mechanism was

attached on a table with three servo motors. A Mitsubishi M70 controller was used

for the experiment to verify the effectiveness of the proposed controller. The actual

X–Y–Z position of the table was measured by linear encoders (Fig. 2.9 (a) and

Table 2.3) with a resolution 5 µm. A five-precision bearing system was used in the

head sliding of the linear scale. The linear scale grating system was a transmissive

and infrared optical measuring system. The linear scale pulse was counted by a

microcontroller ATMEGA 16 attached to each axis for the interface, as shown in

Fig. 2.9 (b) and Table 2.4. The ILCC was programmed in Microsoft visual basic

6 on a separate personal computer (Windows OS), as shown in Fig. 2.8 and was

implemented in the machine by a direct numerical control (DNC) system with an

RJ45 connection. The experimental interface design and physical system parameters

are shown in Fig. 2.7 and Table. 2.2, respectively.
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(a) Linear scale. (b) Microcontroller ATMega 16.

FIGURE 2.9: Measurement interface for the experiment.

The initial reference trajectory is executed by a CNC controller. The linear scale

that is attached on each axis measures the actual position by transmitting the pulse

count to the microcontroller as a pulse counter interface. Then, the ILCC software

on the personal computer modifies the reference trajectory based on the calculated

TABLE 2.2: Physical specification and parameter system of three axis
CNC machine tools.

Specification Value

Travel
X-axis [mm] 760
Y-axis [mm] 420
Z-axis [mm] 510

Table
Dimension [mm] 890 x 420
Max. Loading [kgs] 3000

Max Feedrate
X-axis [m/min] 36
Y-axis [m/min] 36
Z-axis [m/min] 36

Spindle
Speed [rpm] 10000
Power [kW] 7.5

Machine size
Length [mm] 2100
Width [mm] 2230
Height [mm] 2370

Parameter

mi

X-axis [×10−4kgm2] 9.62
Y-axis [×10−4kgm2] 13.99
Z-axis [×10−4kgm2] 11.3

ci

X-axis [kg/s] 0.24
Y-axis [kg/s] 0.24
Z-axis [kg/s] 0.24
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TABLE 2.3: Specification of linear scale.

Specification Value

Model DLS-W
Length [mm] 400
Zero Ref. point [mm] 50
Accuracy [µm] 5
Resolution [µm] 5
Working temperature [◦C]/[◦F] 20 / 68
Max working speed [m/min] 60
Voltage [V] 5
Infrared wave length [nm] 880
Sealing protection IP55
Output signal TTL
Head sliding 5 precision bearing system

contour error. The CNC controller then executes the modified trajectory via the DNC

system. The NC explorer software is used to support the DNC system by transferring

the G-code program from the personal computer to the CNC controller. This entire

process is conducted iteratively until no further significant contour error reduction

occurs. The research that is explained in Chapter 4 uses this experimental device to

demonstrate the effectiveness of the proposed method.

TABLE 2.4: Specification of microcontroller.

Specification Value

Model ATMega 16
Speed [MHz] 16
Operating voltage [V] 4.5-5.5
Operating range [◦C] -40 to 85
EEPROM [Bytes] 512
SRAM [Kbyte] 1
Cycle [Flash] 10000
I/O [I/O] 31
Power 1.1 mA

Features

Peripheral features
Two 8-bit timer/counter
One 16-bit timer/counter

RTC with separate oscillator
External & internal interrupt source

Programmable serial USART
USART serial communication
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FIGURE 2.10: CNC Machine DMG MORI NV1500.

2.3.3 CNC Machine Tool with Linear Motors

The current machine tool technology can achieve 1 µm accuracy in a linear motor

application. Many advantages are shown by linear motor performance in compari-

son with rotary motors. Many transmission errors can occur in a rotary motor such

as backlash and screw, gear, and coupling errors. In contrast, no mechanical trans-

mission is needed in a linear motor application, so higher accuracy can be achieved.

NC 
PC 

(Straight cable) HUB 
(Optical 

communication 
cable) 

  GOT  
 

 

FIGURE 2.11: Experimental interface design for NV1500 [53].
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FIGURE 2.12: Melsoft NC analyzer.

For idle movement, linear motor performs high acceleration and velocity. With high

velocity in machining applications, the machine tool must use a low feed rate and

high speed cutting (“baby cutting”) method because of the machine’s structural limi-

tations.

TABLE 2.5: Physical specification and parameter system of the CNC
machine tool DMG MORI NV1500.

Specification Value

Travel
X-axis [mm] 150
Y-axis [mm] 150
Z-axis [mm] 200

Table
Dimension [mm] 230 x 220
Max. Loading [kgs] 3000

Max Feedrate
X-axis [mm/min] 15000
Y-axis [mm/min] 15000
Z-axis [mm/min] 15000

Spindle
Speed [rpm] 24000
Power [kW] 5.5

Machine size
Length [mm] 1935
Width [mm] 850
Height [mm] 2092
Mass [kg] 2500

Input resolution [µm] 0.1
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The CNC machine tool DMG MORI NV1500 (Fig. 2.10) with a linear motor control-

led by the Mitsubishi M700V was used for the experiment to verify the effectiveness

of the proposed method, as described in Chapter 5. The actual position was measu-

red with Melsoft NC Analyzer 2 software (Fig. 2.12) with an RJ45 connection and a

resolution of 1 nm. The ILCC was programmed in MATLAB R© on a separate perso-

nal computer (Windows OS) and implemented in the machine by DNC with the NC

Analyzer 2 software. The experimental interface structure is shown in Fig. 2.11. The

sampling rate was 1.7 ms. The system’s physical specifications are listed in Table

2.5. The method described in Chapter 4 was extended to the CNC machine tool with

a linear mechanism application to achieve the best performance in advanced machine

tool technology.
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Chapter 3

Iterative Learning Based Motion

Trajectory Generation

In machine tool performance, a fundamental factor is an axial movement which is

driven to track a desired trajectory. Not only tracking errors in each drive axis but

also contour errors, which are directly related to the machined shape of a workpiece,

should be considered. Although most existing contouring controllers are based on

feedback control, this chapter proposes an iterative learning contouring controller

(ILCC) by considering both tracking and contour errors. The proposed control itera-

tively modifies the reference trajectory of each drive axis to reduce the contour error.

The proposed controller can be directly applied to commercial machines currently in

use without any modification of their original controllers. The proposed method has

been experimentally verified through a biaxial feed drive system on a sharp-corner

trajectory which normally leads to a large contour error around the corner due to the

discontinuity. Comparison with a conventional iterative learning contouring control-

ler (CILCC) was done so as to evaluate its performance. Experimental results have

shown that the contour error converges within a few iterations, and the maximum

contour error can be reduced by about 49.2 % as compared to the CILCC.
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3.1 Introduction

Feed drive systems such as biaxial feed drive systems are commonly applied in com-

mercial industrial machines such as water jet machines, laser cutting machines, CNC

punching machines, EDM wire cutting machines, etc. All have a fundamental mo-

vement based on X-Y axis movement which is driven to track a particular desired

trajectory. The tracking ability is generally not so perfect that it may result in po-

sition errors [54]. However, the error has to comply with an allowable tolerance

for producing required products. Achieving high precision in machining highly de-

pends on control performance of each axis as well [55]. The common approach is

to design an independent controller for each drive axis based on feedback control of

the tracking error. However, the motion contour to achieve the desired shape of the

workpiece is normally complex, whereby drive axes have to move in a synchronous

manner with one another to obtain the desired contour. Under independent axial con-

trollers, load disturbance or performance variance of either axis causes contour error

[56]. Many control techniques have been developed in the past few decades to reduce

both the tracking and contour errors.

Many cross-coupled methods are improved to control the contouring performance by

coupling the individual axis error under high-feed-rate such as cross-coupled adap-

tive feed rate, and a cross-coupled iterative learning control (ILC) [18]–[23]. Mo-

reover, the optimal contouring control deals with the evaluation of a cross-coupled

compensator aimed specifically at improving the contouring accuracy in multi-axial

feed drives by minimizing the weights of the contour error explicitly [57] and a novel

cross-coupling control design by adjusting reference trajectory [58]. By applying an

ILC, the convergence of the output error is guaranteed under certain conditions even

when the system parameters are not known exactly or under the existence of boun-

ded unknown external disturbances [24], [25]. Furthermore, an iterative contouring

controller minimizes the contour error through an iterative estimation of the instan-

taneous curvature of the reference trajectory and coordinates transformation [41]. In
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FIGURE 3.1: Proposed ILCC concept.

addition, the contour error can be significantly reduced by an ILC which considers

both the tracking and contour errors [42].

All of the above mentioned and other ILC methods consider conventional iterative

learning control (CILC) which assumes to have full access to the concerned system

controller [43]–[48]. Normally, commercial systems do not provide full access to the

controller except the adjustment of control gains. In addition, a few existing methods

based CILC consider either tracking or contour error [59], [60].

ILCC method is proposed by considering both the tracking and contour errors for ma-

chine tool feed drive system. The contour error is estimated from the tracking error

and a rotational matrix. Then, the original reference trajectory is iteratively modified

by the ILCC through a learning compensator. The modified trajectory is executed

by CNC machine for better performance than that under the original trajectory. The

process is done iteratively until when no significant reduction of the contour error

is observed. Referring to controller proposed in [42], the conventional iterative le-

arning contouring controller (CILCC) is used as baseline for comparison, and the

ILCC was proven to provide better performance than the CILCC by simulation [61].

This chapter explains convergence analysis using the contour error, simulation, and

experimental verification on a biaxial feed drive system. The proposed controller can

be directly applied to commercial machines currently in use by modifying NC codes

without modification of the embedded controllers as shown in Fig. 3.1. Furthermore,
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by using this new controller, the contour error, directly controlled and reduced.

The rest of this chapter is arranged as follows: Section 3.2 gives a brief description

of the dynamics of machine tool feed drive systems, tracking error and contour error

definition, the design of the proposed controller, and convergence analysis. Simula-

tion results which compare the proposed and conventional methods are described in

Section 3.3. Experimental results and discussion are given in Section 3.4 followed

by concluding remarks in Section 3.5.

3.2 ILCC for Biaxial Feed Drive Systems

3.2.1 Dynamic Model of Biaxial Feed Drive Systems

The dynamics of a biaxial feed drive system is represented as follows:

Mq̈+Cq̇ = u,

M = diag{mi}, C = diag{ci}, i = x, y,

q = [qx, qy]
T , u = [ux, uy]

T , (3.1)

where mi, ci, qi, and ui are the inertia, viscous friction coefficient, actual position,

control voltage for the axis i, respectively.

3.2.2 Contour Error Estimation

The tracking error in each axis is defined as the difference between the desired and

actual positions, while the contour error is the error components orthogonal to the

desired contour curves [9]. The description of both the tracking and contour errors

are shown in Fig. 3.2. The desired position of the feed drive system at time t in the

coordinate frame Σw are denoted as r, while the actual position is denoted as q. The



3.2. ILCC for Biaxial Feed Drive Systems 39

closest position of the desired contour to q is denoted by r̀. The tracking error in each

feed drive axis is defined as

ew = [ex, ey]
T = q− r. (3.2)

e = ‖ew‖ (3.3)

The tracking error vector el(t) with respect to ∑l can be expressed as

el = [et , en]
T =

 cosθ sinθ

−sinθ cosθ

ew, (3.4)

where θ is the inclination of the coordinate frame Σw to Σl . Based on Eq. (3.4) and

the assumption that desired trajectories are usually finely discretized with respect to

sampling time, such that the curvature between two discrete points are relatively very
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small. Hence, the proposed method is applicable to high curvature trajectories. The

contour error ec can be assumed to be equal to en and represented as

ec ≈ en = −ex sinθ + ey cosθ . (3.5)

The axial elements of the contour error èx and èy are given by

èw =

èx

èy

= Rew,

R =

 −sin2
θ sinθ cosθ

−sinθ cosθ cos2 θ

 . (3.6)

ec = ‖èw‖ (3.7)
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3.2.3 Controller Design

The proposed controller consists of a feedback controller (FBC) and an ILC compen-

sator. The input of the FBC is the modified reference trajectory which is compen-

sated by the ILC to form an ILCC as in Fig. 3.3. The transfer function of the plant

including the FBC is represented as follows:

Gi (s) =
Pi (s)Ki (s)

1+Pi (s)Ki (s)
, (3.8)

where Gi, Pi, Ki, and s are the system transfer function, plant (feed drive system),

feedback compensator, and variable of the Laplace transform for ith axis, respecti-

vely. The FBC is the traditional PID, therefore Ki(s) is as follows:

Ki (s) = KPi +
1
s

KIi + sKDi, (3.9)

where KPi, KIi, and KDi are the proportional, integral, and derivative gains for ith

axis, respectively.

The learning compensator Kli is designed in a similar manner as Ki,

Kli (s) = KPli +
1
s

KIli + sKDli, (3.10)

and for every iteration j, the reference trajectory is given as

ri j+1 (t) = ri j (t)+ uci j (t) , (3.11)

uci j (t) = Kli (s) èwi j (t) , (3.12)

uci j (t) = KPlièwi j (t)+KIli

∫ t

0
èwi j (τ)dτ +KDli ˙̀ewi j (t) , (3.13)



42 Chapter 3. Iterative Learning Based Motion Trajectory Generation

therefore,

ri j+1 (t) = ri1 (t)+
j

∑
n=0

uci j−n (t) , (3.14)

where KPli, KIli, and KDli are the proportional, integral, and derivative gains for the

learning compensator for ith axis, respectively. ri j+1 is the reference signal for the

j+1th iteration for ith axis. ri j is the reference signal for the jth iteration for ith axis.

èwi j is the contouring error in the jth iteration for ith axis. ri1 is the initial reference

trajectory. uci j−n is contouring compensated input from initial iteration n to the jth

iteration for ith axis. The FBC is assumed to be stable because it comes with the

commercial machine. Therefore, the focus is kept on the contour error convergence

of the ILCC system as explained in the following section.

3.2.4 Convergence Analysis

The convergence condition of the ILC is represented as

εi (t) =
eci j+1 (t)

eci j (t)
< 1, (3.15)

where εi (t), and eci j and eci j+1 are the convergence factor, and the contour errors

(ec) in the jth and j+1th iteration for ith axis, respectively. Based on the cascade ILC

[62], the convergence can be guaranteed if the error magnitude at time t in iteration

j + 1 is smaller than the error magnitude in iteration j. The convergence condition

can be derived for each axis by considering the components of the contour error in

each axis. Substituting tanβ = ey/ex to Eq. (3.6), leads to

èw = R̀ew, (3.16)
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where

R̀ =

tanβ sinθ cosθ − sin2
θ 0

0 cos2 θ − sinθ cosθ

tanβ

=

R̀x 0

0 R̀y

 ,

tanβ =
ey

ex
=

ry−qy

rx−qx
,

=
ry−Gy (s) ry

rx−Gx (s) rx
,

=
ry (1−Gy (s))
rx (1−Gx (s))

,

=
‖r‖cosθ (1−Gy (s))
‖r‖sinθ (1−Gx (s))

,

=
(1−Gy (s))cosθ

(1−Gx (s)) sinθ
. (3.17)

where R̀ and β are rotation matrix for convergence analysis and the inclination of the

trajectory error vector e to the X-axis. By using R̀i, (i = x,y), we can deal with each

axis dynamics separately hereafter.

ew j+1 = r−q j+1. (3.18)

where ew j+1 and q j+1 are tracking error and actual position in the j+ 1th iteration,

respectively. r is desired position unchanged for iteration. We have the following
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relation for each axis :

R̀−1èw j+1 = r−G (s) r j+1,

èw j+1 = R̀
(
r−G (s)

{
r j + èw jKli (s)

})
,

= R̀
{

r− r jG (s)−Kl (s) èw jGi (s)
}

,

= R̀
{

ew j−Kl (s) èw jGi (s)
}

,

= R̀
{

R̀−1èw j−Kl (s) èw jGi (s)
}

,

= èw j−Kl (s) R̀èw jG (s) ,

=
{

1− R̀Kl (s)G (s)
}

èw j,

=

{
1− R̀

P (s)K (s)Kl (s)
1+P (s)K (s)

}
èw j,

èw j+1

èw j
=

{
1− R̀

P (s)K (s)Kl (s)
1+P (s)K (s)

}
. (3.19)

where Kl , K, and P are the learning compensator, feedback compensator, and plant,

respectively. èw j and èw j+1 are contour error in the jth and j+1th iteration, respecti-

vely. Then, by substituting Eq. (3.7) to (3.15), we have

ε (t) =
∥∥∥∥ èw j+1 (t)

èw j (t)

∥∥∥∥< 1 (3.20)

Substituting Eq. (3.19) to (3.20) leads to

ε (s) =
∥∥∥∥1− R̀

P (s)K (s)Kl (s)
1+P (s)K (s)

∥∥∥∥< 1. (3.21)

Considering a discrete-time form for implementation, P(s) is represented as follows:

P (z) =
1

m
(

z−1
Tsz

)2
+ c z−1

Tsz

, z = e jωTs , (3.22)
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where Ts and ω are the sampling time and the angular frequency, respectively. The

feedback and learning compensator in the z-domain are represented as,

K (z) = KP +KI

(
Tsz

z−1

)
+KD

(
z−1
Tsz

)
, (3.23)

Kl (z) = KPl +KIl

(
Tsz

z−1

)
+KDl

(
z−1
Tsz

)
. (3.24)

The convergence speed depends on the parameter ε which should be kept as mini-

mum as possible for fast convergence with a delay factor γ due to the system delay.

Considering Eq. (3.21) and the delay, the following objective function for minimiza-

tion is considered:

J = min
KPl , KIl , KDl

∥∥∥∥∥1− R̀
z−γP

(
z−1)K

(
z−1)Kl

(
z−1)

1+P (z−1)K (z−1)

∥∥∥∥∥
∞

(3.25)

∀ω ∈Ω and ∀θ ∈Θ

where z−1 is a delay operator. Ω and Θ are the considered domains of the operational

frequency and θ for a specific trajectory. KPl , KIl , and KDl are the proportional,

integral, and derivative learning compensator gains, respectively. Eq. (3.25) is solved

by “fmincon” function in MATLAB R© to find learning compensator gains.

3.3 Simulation

3.3.1 Simulation Condition

A typical biaxial feed drive system (Fig. 2.5) with mi = 0.055 Vs2/mm and ci =

0.21 Vs/mm was considered for the simulation (Table 3.1). The simulation was done

by the MATLAB R© software under Windows OS, whereby the considered sampling

rate was 5 ms. The initial reference trajectory was defined in a G-code form to create
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TABLE 3.1: Plant and control parameters.

Parameter X-Axis Y-Axis

mi [Vs2/mm] 0.055 0.055
ci [Vs/m] 0.21 0.21
KP [V/mm] 0.96 0.96
KI [V/smm] 0.01 0.01
KD [Vs/mm] 8 8

CILCC X-Axis Y-Axis

KPl [V/mm] 0.4 0.4
KIl [V/smm] 0.01 0.01
KDl [Vs/mm] 0.1 0.1

ILCC X-Axis Y-Axis

KPl 0.3 0.3
KIl [1/s] 0.02 0.02
KDl [s] 0.5 0.5

a typical sharp-corner trajectory with an angle of 28◦ as shown in Fig. 3.4. The con-

sidered domain was−76◦ ≤Θ≤ 76◦ with a discretization of 1◦ and 0≤Ω≤ 100Hz

with a discretization of 1Hz. The feedback compensator gains were chosen as shown

in Table 3.1. Optimal gains for the learning compensator (KPl , KIl , and KDl) were

obtained as shown in Table 3.1 by solving Eq. (3.25), which led to a convergence

factor εi = 0.603.

The estimated contour error is calculated by Eqs. (3.2) - (3.7). According to the

optimized learning gain and contour error estimation, contour error compensation is

conducted by Eq. (3.13) to modify the reference trajectory as in Eq. (3.11). The

modified reference trajectory is applied to the original feedback controller which is

modeled by Runge-Kutta method with Couloumb friction as disturbance. The above

process is done iteratively until no significant contour error reduction is observed.

3.3.2 Simulation Results

In order to evaluate the performance of the proposed controller, comparisons with

the FBC and the CILCC were considered. The evaluation was done based on the
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FIGURE 3.4: G-code form for initial trajectory.

actual contour error as per its definition (not the approximated one in Eq. (3.4)).

The simulation was conducted in 12 iterations for both the CILCC and the ILCC.

Results are shown in Figs. 3.5-3.10, where Fig. 3.5 shows the convergence profiles

of the maximum contour errors. Convergence of the contour error in ILCC is faster

than that of CILCC, and there is no significant error reduction after the 9th iteration.

Fig. 3.6 shows that the ILCC reduction ratio for each iteration increases continu-

ously from the theoretical convergence factor, and the ILCC mean reduction ratio is

0.742, which is better than that of CILCC (ε = 0.853). Figs. 3.7 (a) and (b) show the

actual trajectories for CILCC and ILCC, respectively. Figs. 3.10 (a) and (b) show the

contour errors for CILCC and ILCC, respectively. In each figure, the first iteration

refers to the FBC which has the largest contour error of 0.1212 mm. By applying
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FIGURE 3.5: Simulation comparison for 12 iterations.
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FIGURE 3.6: Convergence ratios in simulation and comparison to the-
oretical value.
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FIGURE 3.7: Simulation result of actual trajectory .
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FIGURE 3.8: CILCC simulation result of time-series trajectory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time [s]

0

1

2

3

4

5

X
 [

m
m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time [s]

0

2

4

6

8

10
10.5

Y
 [

m
m

]

0 0.04 0.08
0

0.1

0.2

0.3

Ref Trajectory

1
st

 Iteration

2
nd

 Iteration

3
rd

 Iteration

4
th

 Iteration

5
th

 Iteration

6
th

 Iteration

7
th

 Iteration

8
th

 Iteration

9
th

 Iteration

10
th

 Iteration

11
th

 Iteration

12
th

 Iteration 0.8 0.85 0.9
9.4

9.6

9.8

10

A

B

B

A

FIGURE 3.9: ILCC simulation result of time-series trajectory.

the CILCC, the maximum contour error was reduced to 0.0318 mm, which is equiva-

lent to a reduction of 73.76 %. The proposed controller provides better performance

as it reduced the maximum contour error to 0.0111 mm. This is equivalent to a re-

duction of 65.09 % and 90.84 % as compared to the CILCC and FBC, respectively.

For clarity, simulation results are summarized in Table 3.2.

TABLE 3.2: Summary of simulation results [mm].

Controller etrmax ecmax
X-Axis Y-Axis

FBC 0.0252 0.1185 0.1212
CILCC 0.0066 0.0311 0.0318
ILCC 0.0023 0.0108 0.0111
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FIGURE 3.10: Simulation result of contour error.

3.4 Experiment

3.4.1 Experimental Condition

In order to verify the effectiveness of the proposed controller, an X-Y table with a

feedback controller implemented by C++ language in a personal computer (Windows

OS) was used. The control input signal was applied to a biaxial feed drive system
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with two lead screws driven by two DC servo motors via DA board (CONTEC DA12-

8(PCI)) as shown in Fig. 2.3. The actual position of X-Y table was measured by en-

coders with resolution 0.025 µm attached to each axis. The ILCC was programmed

in MATLAB R© in a separate personal computer (Windows OS) and embedded to the

biaxial feed drive system as shown in Fig. 2.5. The same reference trajectory and

parameters in Table 3.1 with simulation were employed.

3.4.2 Experiment Results

Five times experiments with 12 iterations for each were conducted and the minimum

contour error was reached after 9 iterations as shown in Figs. 3.11-3.16. Fig. 3.11

(a) and (b) show the contour errors based on the CILCC and ILCC, respectively,

around the sharp-corner area (0.8 - 1.4 second). In both controllers, the first iteration

TABLE 3.3: Summary of experimental results: emr (%) is the error
magnitude ratio to FBC.

Experiment Number

ec max

FBC
CILCC ILCC

[mm] emr (%) [mm] emr (%)

1st 0.128 0.0768 60.0 0.0544 42.5
2nd 0.1247 0.0957 76.7 0.0362 29.0
3rd 0.1304 0.1003 76.9 0.0584 44.8
4th 0.1281 0.0948 74.0 0.0363 28.3
5th 0.1238 0.0932 75.3 0.0485 39.2

Mean 0.127 0.0921 72.6 0.0468 36.8

Experiment Number

ec mean

FBC
CILCC ILCC

[mm] emr (%) [mm] emr (%)

1st 0.0222 0.0098 44.1 0.009 40.5
2nd 0.0203 0.0131 64.5 0.0082 40.4
3rd 0.021 0.0147 70.0 0.01 47.6
4th 0.0202 0.0133 65.8 0.0082 40.6
5th 0.0196 0.0126 64.3 0.0097 49.5

Mean 0.0207 0.0127 61.5 0.009 43.7
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was controlled only by the FBC. Under the CILCC, the initial largest contour error

was 0.128 mm which was reduced to 0.0768 mm in the 9th iteration and no further

significant error reduction was observed thereafter. On the other hand, under the

ILCC, the final maximum contour error was 0.0485 mm in the 9th iteration. This is

equivalent to the error reduction of 60.8 % from the initial maximum contour error.

Fig. 3.12 shows modified reference trajectories iteratively and real trajectories based

on the ILCC. Fig. 3.14 shows the contour error convergence properties for both

controllers whereby, although the ILCC converges relatively slower than the CILCC,

it has minimum final contour error. The experimental reduction ratio is greater than
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FIGURE 3.11: Experiment results for the contour error.
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TABLE 3.4: Average convergence ratios until the 9th iteration.

CILCC ILCC

Calculated 0.509 0.603
Simulation 0.854 0.742
Experiment 0.96 0.922

the theoretical convergence factor (εi = 0.603) because of uncertain disturbance in

the experimental machine.

For clarity, all the experimental results are summarized in Fig. 3.15 and Table 3.3,

and comparisons with simulation results are shown in Fig. 3.16 and Table 3.4. It

can be seen that similar error reduction tendency is observed between simulation and

experiment. This concludes that the proposed controller is effective for performance

improvement in feed drive systems.
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FIGURE 3.12: ILCC experimental results of trajectory profiles.
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3.4.3 Discussion

Sharp corners are generally difficult to be tracked by feed drive systems under conti-

nuous motion because of infinite acceleration due to a trajectory discontinuity at the

corner. Considering the reference trajectory in Fig. 3.12 as an example, both the X

and Y drive axes move in the same direction before the sharp corner. After the corner,

drive axis X continues with the same motion direction whereas drive axis Y reverses

its direction. This requires an instant deceleration and acceleration in drive axis Y in

order to track the desired motion, it is practically impossible. If normal-PID control

is used, an overshoot will occur at the corner point [63]. On the other hand, since
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FIGURE 3.14: Experimental convergence profiles.
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FIGURE 3.15: Summary of experimental result.

the CILCC iteratively modifies the control input, it can perform effectively. Howe-

ver, there are two major limitations. It may result in saturation of the control input,

and cannot be applied to commercial machines due to limited access of embedded

controllers.

The proposed ILCC overcomes the mentioned limitations since it deals with only
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the reference trajectory. In this case, the reference trajectory is iteratively modified

as shown in Fig. 3.12 (a). The modified reference trajectory is executed by a CNC

machine as an input trajectory to achieve better tracking performance as shown in

Fig. 3.12 (b). Therefore, the proposed ILCC can be easily implemented in both

existing and developing machines without any access or information of the embedded

controller.

3.5 Conclusion

An ILCC is proposed for biaxial feed drive systems, and the performance has been

demonstrated by simulation and experimental results. The proposed method can

modify the reference trajectory iteratively to enhance the tracking performance. Ex-

perimental results have shown that the maximum contour error can be reduced by

63.1 % or 49.2 % when the ILCC is added to the conventional feedback controllers

or compared to the CILCC, respectively. However, it needs more iteration to reach a

minimum contour error for high curvature trajectory because of the assumption that

linear connection between two discrete points on trajectory as shown in Fig. 3.2.

And, this method generates non-uniform trajectory points along the reference path

as explained later in Chapter 4 and Fig. 4.4, which may produce un-smooth velocity

profiles. In the next chapter, the contour error estimation will be improved for high

curvature trajectory and smoothing algorithm is needed to obtain smooth velocity

profiles. Then, ILCC will be implemented in a commercial three-axis CNC machine

tools.
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Chapter 4

ILCC Based on Motion Trajectory

Generation with Actual Contour

Error Estimation and Bézier

Reposition Trajectory

In industrial applications, highly accurate mechanical components are generally re-

quired to produce advanced mechanical and mechatronic systems. In machining

mechanical components, contour error represents the product shape quality directly,

and therefore it must be considered in controller design. Although most existing

contouring controllers are based on feedback control and estimated contour error, it

is generally difficult to replace the feedback controller in commercial computerized

numerical control (CNC) machines. This paper proposes an iterative learning contou-

ring controller (ILCC) by considering the actual contour error compensation (ACEC)

and Bézier reposition trajectory (BRT), which can be applied in CNC machines cur-

rently in use without any modification of their original feedback controllers. While

the ACEC enhances tracking performance by compensating the reference input with

an actual value, the BRT enables smooth velocity transitions between discrete points
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in the reference trajectory. For performance analysis, the proposed controller was im-

plemented in a commercial three-axis CNC machine and several experiments were

conducted based on typical 3D sharp-corner and half-circular trajectories. Experi-

mental results showed that the proposed controller could reduce the maximum and

mean contour errors by 45.11 % and 54.48 % on average, compared to ILCC with

estimated contour error. By comparing to ILCC with ACEC, the maximum and mean

contour errors are reduced to 20.54 % and 26.92 %, respectively.

4.1 Introduction

Highly accurate mechanical components with high-curvature surface are widely re-

quired in the fields of aerospace, energy, power, medical, and automobile, such as

propellers [1], gears [2], knee joints [3], impellers with small splitter blades [65]–

[67], ship structural components [68], and so on. To produce such components, many

engineers choose CNC machining process, which has advantages of high production

efficiency, high machining precision, and stable product quality. Five-axis CNC ma-

chining further improves the flexibility, precision, and efficiency [69], [70]. Due

to the above objective, two or more axes on these machines have to simultaneously

move and their motions must be controlled accurately in order to produce precise ma-

chined parts [71]. Achieving high precision in machining, highly depends on control

performance of each individual feed drive axis [55]. Under independent drive axial
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control, load disturbance or performance variance of either axis causes contour error

[56]. Efforts to reduce or eliminate contour errors have been made through either the

design of advanced feedback controllers for each feed drive or modifying the refe-

rence axial positions [71]. This issue has attracted many researchers in the machine

tool community because it is directly related to the product quality.

A cross-coupled control system was proposed for biaxial manufacturing systems

to improve the contour accuracy by coupling the individual axial errors [19]. A

new structure of cross-coupling controller with a simpler design process for precise

tracking in motion control was proposed [58], which can be implemented easily on

most motion systems via reprogramming the reference position command subrou-

tine. Many cross-coupled methods improved to enhance the contouring performance

by coupling axial errors under high feed-rates such as adaptive feed rate and cross-

coupled iterative learning control (CCILC) [18], [20]–[23]. In ILC, a machining

error is reduced iteratively through modification of the control input or the reference

trajectory. In linear-type ILCs, the convergence of the output error is guaranteed

under a certain condition even when system parameters are not known exactly and

periodic disturbances exist [24], [25]. Besides, ILCs with contouring controller or

an iterative contouring controller minimizes the contour error through an iterative

estimation of the instantaneous curvature of the reference trajectory and coordinate

transformation [41]. Furthermore, the contour error can be significantly reduced by

an ILC which considers both tracking and contour errors [42]. An ILCC with contour

error approximation by coordinate transformation was proposed in [61], [64], which

could be applied to a commercial machine without any modification in the existing

controller.

All of the methods mentioned above use approximated contour errors instead of ac-

tual ones to design contouring controllers or modify reference trajectories [41], [44].

Most of the error approximation methods do not represent the contour error accura-

tely, especially for a high-curvature surface application. However, contouring control
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with actual contour errors is difficult to be implemented in real-time control systems

because the actual contour error cannot be obtained immediately for complex con-

tour profiles. Therefore, it requires contour error estimation to obtain approximated

values. On the other hand, with an embedded iterative control system, it is possible

to obtain actual contour errors by offline calculation. However, this method generates

non-uniform trajectory points along the reference path as explained later in Section

4.4, which may produce un-smooth velocity profiles. Therefore, smoothing algo-

rithm is needed to obtain smooth velocity profiles. Parametric splines, particularly

Bézier curves have been widely used for trajectory smoothing by interpolating linear

trajectory points for both mobile robots and feed drive systems [72], [73]. Thus, they

can be applied for the above mentioned matter as well.

This study proposes an ILCC with ACEC and BRT to generate uniform trajectory

points as shown in Fig. 4.1. By calculating the minimum distance between the

actual position and the reference trajectory, the ACEC is used to achieve the desired

contour precisely. The ILCC modifies the original trajectory (NC program) through

an ACEC as a learning controller. The modified reference trajectory is smoothed by

quintic Bézier curves through interpolation of the reference trajectory with uniformly

distanced reference points to obtain a BRT. The BRT is executed by a CNC machine

to reduce the contour error, iteratively. The proposed method is proven to provide

better performance than the ILCC either with or without ACEC.

The rest of this chapter is organized as follows: Sections 4.2 - 4.6 gives a description

of the dynamic model of three-axis machine tools, definition of the contour error,

ACEC, BRT, controller design, and convergence analysis, respectively. Simulation

results, which compare ILCC and ILCC with ACEC in 2D sharp corner trajectories,

are presented in Section 4.7. Experimental results, which compare ILCC, ILCC with

ACEC, and ILCC with ACEC and BRT in 3D sharp corner and 3D half-circular

trajectories, are presented in Section 4.8, followed by concluding remarks in Section

4.9.
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4.2 Dynamic Model of Three Axis CNC Machine Tools

The dynamics of a three-axis machine tools is represented as follows:

Mq̈+Cq̇ = u,

M = diag{mi}, C = diag{ci}, i = x, y, z,

q = [qx, qy, qz]
T , u = [ux, uy, uz]

T , (4.1)

where mi, ci, qi, and ui are the inertia, viscous friction coefficient, actual position,

and control voltage for the axis i, respectively.

4.3 Actual Contour Error Compensation

4.3.1 Definition of Contour Error

The contour error is defined as the shortest distance between the actual and desired

contours. The difference between tracking error and contour error in machine tools

is shown in Fig. 4.2. The tracking error in each axis is the difference between the

reference and actual positions. The reference position from the starting position of

the machine tool system at time t in the coordinate frame Σw is denoted by r =[
rx ry rz

]T

. The tracking error in each axis is defined as

ew =

[
ex ey ez

]T

= r−q, (4.2)

e = ‖ew‖ . (4.3)

The coordinate frame Σl is attached at r and its axial directional vectors are T, N, and

B, respectively. The axis T is in the tangential direction of the reference trajectory at
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FIGURE 4.2: 3D tracking and contour errors.

r, the direction of N is perpendicular to T, and the B-axis is the bi-normal component

to T and N. The axial directions of frame Σl are calculated as follows:

T=

[
tx ty tz

]T

=
ṙ
‖ṙ‖

, (4.4)

N=

[
nx ny nz

]T

=
Ṫ∥∥Ṫ∥∥ , (4.5)

B=

[
bx by bz

]T

= T×N. (4.6)

The tracking error vector el with respect to Σl can be expressed as

el =

[
et en eb

]
= LT ew, (4.7)
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L =


tx nx bx

ty ny by

tz nz bz


T

. (4.8)

The closest position of the desired contour to q is denoted by rc =

[
rcx rcy rcz

]T

.

The actual contour error, which is the shortest distance between the actual position q

and the reference trajectory is calculated as follows:

ec =

[
ecx ecy ecz

]T

= rc−q, (4.9)

è = ‖ec‖ . (4.10)

4.3.2 Actual Contour Error Compensation (ACEC)

ACEC is a direct method to compensate for the actual contour error by finding the

closest position between the actual position and the reference trajectory as shown

in Fig. 4.3. Here we assume that the reference trajectory is represented by discrete

points as r̀c, r̀c+1 ... in the figure and rn denotes the current reference position core-

sponding to the position q. q̀ is a candidate position, which is defined in the same

manner with contour error estimation by a rotation matrix to estimate projected con-

tour error in tangential direction on coordinate frame Σl as in [64] and is represented

as follows:

q̀ = q+L−1


0

en

eb

 . (4.11)

The shortest distance d̀ between q̀ and the reference trajectory is calculated as fol-

lows:

d̀ = min
0<m<n

‖rn−m− q̀‖ , (4.12)
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where rn−m is the closest candidate reference position in (n−m)th point, and m is

determined to find shortest distance d̀. The approximated closest position of the

desired contour to q is denoted by r̀c, which is obtained by finding the minimum

distance d̀c between the actual position q and a part of reference trajectory from

(n−m− k)th to (n−m+ k)th discrete positions, where (n−m)th is calculated by

Eq. (4.12) and k is determined to avoid high computation process. r̀c is calculated as

follows

r̀c = q+ d̀c, (4.13)

d̀c = min
−k<h<k

‖ec‖ , (4.14)

where

ec = rn−m+h−q

The actual position rc is defined by linear interpolation of the neighborhood points

as shown in Fig. 4.3 with equations below:
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rc = r̀c +
(r̀c+1− r̀c)D1

D2
, (4.15)

D1 =
d̀2

c − d̀2
c+1 + ‖r̀c+1− r̀c‖2

2‖r̀c+1− r̀c‖
, (4.16)

D2 = ‖r̀c+1− r̀c‖−D1, (4.17)

where r̀c+1, d̀c+1, D1, and D2 are the discrete position next to the approximated dis-

crete position r̀c, the shortest distance from r̀c+1 to the actual position q, the distance

between r̀c and rc, and the distance from rc to r̀c+1, respectively.

4.4 Bézier reposition trajectory

Herein, BRT refers to the modified reference trajectory that has been smoothed by

quintic Bézier curves through interpolation of the ILCC-modified reference trajec-

tory with uniformly distanced discrete points as shown in Fig 4.4. Bézier curve is

a parametric curve defined by several control points depending on its order, and it

always passes through the starting and ending control points [72]. A Bézier curve of

order w can be represented mathematically as follows [74]:

B (ψ) =
w

∑
v=0

bw
v (ψ)Pv, 0≤ ψ ≤ 1, (4.18)

where bw
v , Pv, v, and ψ are the wth order Bernstein polynomial, the control points,

control points number, and the Bézier parameterization variable. The Bernstein po-

lynomial is represented as follows:

bw
v (ψ) =

w!
v! (w− v)!

ψ
v (1−ψ)w−v ,

v = 0, 1, 2, 3, 4, 5. (4.19)
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FIGURE 4.4: Bézier reposition trajectory concept.
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The BRT has two main parts; Bézier curve generation and reposition of the trajectory

points. Bézier curve generation considers parameterization of a linear segment by

a Bézier curve (BC) and corner smoothing by an inserted Bézier curve (IBC) as

detailed in [73].

From Eqs. (4.18) and (4.19), the BC and the IBC with 5th order Bernstein polynomi-

als for nth segments are represented as follows:

Bn (ψ) =(1−ψ)5 P0n + 5ψ (1−ψ)4 P1n + 10ψ
2 (1−ψ)3 P2n

(4.20)

and

B̀n (ψ) =(1−ψ)5 P̀0n + 5ψ (1−ψ)4 P̀1n + 10ψ
2 (1−ψ)3 P̀2n

(4.21)

where B̀n and P̀in, i = 0, ...,5 are the inserted Bézier curve, and its control points. The

control points for the BC and the IBC are defined by the following equations:

P0n = rn−1 + ln−1µn,

P1n = rn−1 + ln−1µn (2−αn) ,

P2n = rn−1 + ln−1µn (βn−4αn + 4) ,

P3n = rn− lnµn (βn−4αn + 4) ,

P4n = rn− lnµn (2−αn) ,

P5n = rn− lnµn, (4.22)
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and

P̀0n = rn− lnµn,

P̀1n = rn− lnαnµn,

P̀2n = rn− lnβnµn,

P̀3n = rn + lnβnµn+1,

P̀4n = rn + lnαnµn+1,

P̀5n = rn + lnµn+1, (4.23)

where ln, µn, αn, and βn are the length, tangential vector, and the fractions of the

length ln for nth trajectory segment. Because a geometrical error γ is induced at the

corners by the smoothing process, the smoothing algorithm must guarantee that γ is

within the predefined tolerance of the contour error [75]. The maximum geometry

error occurs at the middle point of the IBC, i.e., at ψ = 0.5 as follows:

γ =
∥∥rn− B̀n (0.5)

∥∥ . (4.24)

From Eqs. (4.21) and (4.23), the point B̀ (0.5) is found by

B̀n (0.5) = rn +
ln
32

(1+ 5αn + 10βn) (µn+1−µn) . (4.25)

From Eqs. (4.24) and (4.25), the length ln is calculated as

ln =
32γ

(1+ 5αn + 10βn)‖µn−µn+1‖
. (4.26)

Because µn and µn+1 are unit vectors, Eq. (4.26) can be written as

ln =
32γ

(1+ 5αn + 10βn)
√

2−2cosθn
, (4.27)

where θn is the inclination between the corresponding linear segments.
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The generated BRT has higher number of discrete points than the original reference

trajectory, which directly affect the velocity profile. Therefore, the number of points

is re-calculated based on the sampling time and the desired velocity as follows:

ns =
∑

n
k=1 ‖Bk (ψ)−Bk−1 (ψ)‖

ls
, (4.28)

ls = ts f , (4.29)

where ns, ls, ts, and f are the re-calculated number of discrete points, length bet-

ween the points, sampling time, and velocity, respectively. The BRT is re-defined by

considering the following condition:

rBn = Bn (ψ) , if
n

∑
k=1
‖Bk (ψ)−Bk−1 (ψ)‖= lsn, (4.30)

1≤ n≤ ns.
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4.5 Controller Design

The proposed controller for the three-axis machine tool consists of a feedback con-

troller (FBC) and an ILCC with ACEC and BRT. The input of the FBC is the modified

reference trajectory BRT generated from the ILC with ACEC as shown in Fig. 4.5,

where mem uc, q, and r are the memories of learning compensation value, actual

position, and reference trajectory for the x, y, and z axes. The transfer function of the

plant including the FBC is represented as follows:

Gi (s) =
Mi (s)Ki (s)

1+Mi (s)Ki (s)
, (4.31)

where Gi, Mi, Ki, and s are the transfer function from the reference command to

the actual position, the machine plant, the feedback compensator, and the variable of

the Laplace transform for the ith axis, respectively. The FBC compensator Ki (s) is

defined as a PID compensator as follows:

Ki (s) = KPi +
1
s

KIi + sKDi, (4.32)

where KPi, KIi, and KDi are the proportional, integral, and derivative gains for the ith

axis, respectively. The BRT for the j+ 1 iteration is represented as follows:

rBi j+1 (t) = B (ψ) ri j+1 , (4.33)

where B, t, ψ , rBi j+1 , and ri j+1 are three dimensional Bézier curve, sampling instant,

control points, Bézier modified trajectory, and reference signal for j + 1th and ith

axis, respectively. Reference signal ri j+1 (t) is compensated by an iterative learning

compensator Kl with ACEC approximation which is represented as follows:

ri j+1 (t) = ri j (t)+ uci j (t) , (4.34)
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with

uci j (t) = Kli (s)eci j (t) ,

Kli (s) = KPli +
1
s

KIli + sKDli,

where ri j, uci j, eci j, KPli, KIli, and KDli are reference signal, contouring compensated

input, contour error for the jth iteration, and the proportional, integral, and derivative

learning compensator gain Kl for ith axis, respectively. Therefore,

uci j (t) = KPlieci j (t)+KIli

∫ t

0
eci j (τ)dτ +KDliėci j (t) . (4.35)

substituting Eq. (4.34) to Eq. (4.33), leads to

rBi j+1 (t) = B (ψ)

(
ri1 (t)+

j

∑
n=0

uci j−n (t)

)
, (4.36)

4.6 Convergence Analysis

Performance of the ILCC with ACEC and BRT can be guaranteed through conver-

gence analysis to ensure that the contour error is iteratively reduced. The conver-

gence condition of ILC is represented as

εi (t) =
∥∥∥∥eci j+1 (t)

eci j (t)

∥∥∥∥< 1, (4.37)

where εi (t) is the convergence factor for the ith axis. Based on the cascade ILC [62],

the convergence can be guaranteed if the error magnitude at time t in iteration j+ 1

is smaller than the error magnitude in iteration j. From Eqs. (4.9) and (4.14) and the
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assumption that rBi j+1 is equal to ri j+1, convergence factor is derived as follows:

eci j+1 = min
(
ri−Gi (s) rBi j+1

)
, rBi j+1 ≈ ri j+1,

= min (ri−Gi (s) ri j+1) ,

= min (ri−Gi (s) (ri j + uci j)) ,

= min (ri−Gi (s) ri j−Gi (s)Kli (s)eci j) ,

= min (ri−Gi (s) ri j)−Gi (s)Kli (s)eci j,

= eci j−Gi (s)Kli (s)eci j,

= (1−Gi (s)Kli (s))eci j,

eci j+1

eci j
= 1−Mi (s)Ki (s)Kli (s)

1+Mi (s)Ki (s)
, (4.38)

substituting Eq. (4.38) to Eq. (4.37) leads to

εi (s) =
∥∥∥∥1−Mi (s)Ki (s)Kli (s)

1+Mi (s)Ki (s)

∥∥∥∥< 1. (4.39)

Considering the discrete-time form for the implementation, Mi (s) is represented as

follows:

Mi
(
z−1)= 1

mi

(
z−1−1
tsz−1

)2
+ ci

z−1−1
tsz−1

, z = e jωts , (4.40)

where z−1, ω , and z are the delay operator, the angular frequency and the z-domain

variable, respectively. The feedback and learning compensator in the z-domain are

represented as

Ki
(
z−1)= KPi +KIi

(
tsz−1

z−1−1

)
+KDi

(
z−1−1
tsz−1

)
, (4.41)

Kli
(
z−1)= KPli +KIli

(
tsz−1

z−1−1

)
+KDli

(
z−1−1
tsz−1

)
. (4.42)

The convergence speed depends on the parameter ε , which should be kept as mini-

mum as possible for fast convergence with a delay factor η due to the system delay.
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Considering Eq. (4.39) and the delay, the following objective function for minimiza-

tion is considered:

Ji = min
KPli, KIli, KDli

∥∥∥∥∥1−
zηMi

(
z−1)Ki

(
z−1)Kli

(
z−1)

1+Mi (z−1)Ki (z−1)

∥∥∥∥∥
∞

, (4.43)

∀ω ∈Ω,

where Ω is the considered domain of the operational frequency. Eq. (4.43) is solved

by “fmincon” function in MATLAB R© to find learning compensator gains.

4.7 Simulation

4.7.1 Simulation Condition

A three axis machine tools system (Fig. 2.6) with mi = [0.45 0.65 0.65] Vs2/mm

and ci = [0.144 0.24 0.24] Vs/mm were chosen for the simulation. Its table and

ball screws in each axis are driven by AC servo motors. The simulation for a biaxial

table (X-Y axis) was done by the MATLAB R© software. The initial reference trajec-

tory was defined in a G-code form to generate a right-angled sharp-corner trajectory.

The feedback controller gains were chosen from default gains of the existing ma-

chine as [KP KI KD] = [0.96 V/mm 0.01 V/smm 8 Vs/mm]. The optimal le-

arning compensator gains were calculated from Eq. (4.43) as [KPl KIl KDl ] =

[0.468 0.044 1/s 0.443 s]. Based on the defined feedback and learning control-

ler gains, the convergence factor εi = 0.6025 for 0 < Ω < 100 Hz is obtained. The

actual contour error Eq. (4.9) is calculated by Eqs. (4.11) - (4.17). According to the

optimized learning gain and the ACEC, contour error compensation is conducted by

Eq. (4.35) to modify the reference trajectory as in Eq. (4.34). The modified refe-

rence trajectory is applied to the original feedback controller which is modeled by
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Runge-Kutta method with Couloumb friction as disturbance. Above process is done

iteratively until no significant contour error reduction is observed.

4.7.2 Simulation Results

The simulation was conducted in 4 times iterations for ILCC to compare the per-

formance with/without ACEC (with only estimated contour error in Eq. (3.5)). Si-

mulation results are shown in Fig. 4.6 and Table 4.1 where in Figs. 4.6 (a) and (b)

show the real trajectory for the ILCC without/with ACEC, respectively. Figs. 4.6

(c) and (d) show the contour error for the ILCC without/with ACEC, respectively. In

all figures, the first iteration refers to the only feedback controller result. The feed-

back controller without any embedded system produces the largest contour error of

0.1082 mm. By applying the ILCC, contour error was reduced to 0.0214 mm which

is equivalent to the error reduction of 80.22 %. The proposed controller exhibits the

best performance as it has reduced the contour error to 0.0198 mm which is equiva-

lent to an error reduction of 81.7 % and 7.5 % as compared to the feedback controller
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FIGURE 4.6: Simulation results: (a) and (b) are real trajectory profi-
les; (c) and (d) are contour errors.
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TABLE 4.1: Simulation results.

Controller
Contour Error [mm]

Max Mean

Feedback controller 0.1082 0.0149
ILCC without ACEC 0.0214 0.013
ILCC with ACEC 0.0198 0.012

TABLE 4.2: Plant and control parameters.

Parameter X-Axis Y-Axis Z-Axis

mi [×10−4kgm2] 9.62 13.99 11.3
ci [kg/s] 0.24 0.24 0.24

and the ILCC, respectively.

4.8 Experiment

4.8.1 Experimental Condition

A three-axis commercial CNC machine (Fig. 2.6) with a ball-screw mechanism,

which is attached on table and three servo motors. It is controlled by Mitsubishi

M70 controller was used for the experiment to verify the effectiveness of the propo-

sed controller. The actual position of X-Y-Z table was measured by linear encoders

with resolution of 5 µm and a microcontroller ATMega16 attached to each axis for

FIGURE 4.7: 3D Sharp-corner trajectory G-code.
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interface. The ILCC was programmed in Microsoft visual basic 6 in a separate per-

sonal computer (Windows OS) and embedded to the machine by direct numerical

control (DNC) system with an RJ45 connection. The experimental interface design

and system parameters are shown in Fig. 2.7 and Table. 4.2, respectively. The sam-

pling rate was 5 ms and the considered operational frequency 0 < ω < 100 Hz with

a discretization of 1 Hz. The optimal control gains [KP KI KD KPl KIl KDl ] =

[0.96 V/mm 0.01 V/smm 8 Vs/mm 0.468 0.044 1/s 0.443 s].

The following three types of controllers were considered for the experiment:

1. ILCC (with estimated contour error),

2. ILCC with ACEC, and

3. ILCC with ACEC and BRT.

For each controller, two types of reference trajectories were executed, 3D sharp-

corner trajectory and 3D half-circular trajectory, which were implemented in G-code

form.

4.8.2 Experimental Results for 3D Sharp-Corner Trajectory

The 3D sharp-corner trajectory is represented in G-code form as shown in Fig. 4.7.

For each controller, five-times experiment was conducted until the minimum contour
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FIGURE 4.8: Experimental results for 3D sharp-corner trajectory by
ILCC.
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FIGURE 4.9: Experimental results for 3D sharp-corner trajectory by
ILCC with ACEC.
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FIGURE 4.10: Experimental results for 3D sharp-corner trajectory by
ILCC with ACEC and BRT.

error was reached as shown in Figs. 4.8 - 4.11. Figs. 4.8 (a), 4.9 (a), and 4.10 (a) and

Figs. 4.8 (b), 4.9 (b), and 4.10 (b) show the trajectory tracking profiles for the 3D

sharp-corner trajectory and the contour errors based on the ILCC, ILCC with ACEC,

and ILCC with ACEC and BRT, respectively. In each case, results of the first iteration
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FIGURE 4.11: Contour error experimental result for 3D sharp-corner
trajectory.
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TABLE 4.3: Summary of experimental results:
sharp-corner trajectory.

3D sharp-corner trajectory

Experiment
Number

ec max [mm]

FBC ILCC
ILCC +
ACEC

ILCC +
ACEC + BRT

1 0.093 0.008 0.008 0.006
2 0.111 0.029 0.019 0.016
3 0.148 0.045 0.023 0.02
4 0.132 0.032 0.028 0.022
5 0.102 0.019 0.012 0.009

Mean 0.1172 0.0266 0.018 0.0146

Reduction Ratio 0% 77.3% 84.64% 87.54%

Experiment
Number

ec mean [mm]

FBC ILCC
ILCC +
ACEC

ILCC +
ACEC + BRT

1 0.025 0.009 0.007 0.004
2 0.035 0.013 0.011 0.009
3 0.017 0.013 0.013 0.012
4 0.037 0.011 0.006 0.005
5 0.049 0.024 0.015 0.008

Mean 0.0326 0.014 0.0104 0.0076

Reduction Ratio 0% 57.06% 68.10% 76.69%

refers to the FBC only. Under ILCC, the initial largest contour error was 0.1172mm

on average, which was reduced to 0.0266 mm in the 5th iteration as shown in Fig.

4.8 (b). On the other hand, under ILCC with ACEC, the final average maximum

contour error was 0.018mm in the 4th iteration, which is equivalent to the reduction

of 32.33% of the maximum contour error from that of ILCC. In the last controller,

ILCC with ACEC and BRT, the smallest maximum contour error of 0.0146mm on

average was achieved as show in Fig. 4.10 (b). This is equivalent to the reduction

of 45.11% and 18.89% of the maximum contour error compared to the ILCC and

the ILCC with ACEC. The experimental maximum contour error is greater than the

simulation result because of uncertain disturbance in the experimental machine.

Figs. 4.11 (a) and (b) respectively show the comparisons of the maximum and mean
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contour errors for the five-times experiments of the three controllers. It can be noted

that the proposed controller, ILCC with ACEC and BRT yielded smallest values

of the maximum and mean contour errors. Details of the experimental results are

summarized in Table 4.3.

4.8.3 3D Half-Circular Trajectory Experiment Result

The 3D half-circular trajectory in G-code form was generated by the following equa-

tion:

qx = 5cos
(

π

12
t
)

mm, qy = qz = 5sin
(

π

12
t
)

mm. (4.44)

Similar to the 3D sharp-corner trajectory, five-times experiment was conducted for

each controller until the minimum contour error was reached as shown in Figs. 4.12

- 4.15. Figs. 4.12 (a), 4.13 (a), and 4.14 (a) show the trajectory tracking profiles

while Figs. 4.12 (b), 4.13 (b), and 4.14 (b) show the contour error based on the

ILCC, ILCC with ACEC, and ILCC with ACEC and BRT, respectively. Here also,

results of the first iteration refers to the FBC only. Under ILCC, the initial maximum

contour error was 0.1814mm on average and was reduced to 0.0618mm in the 5th

iteration as shown in Fig. 4.12 (b). By using ILCC with ACEC, the final average

maximum contour error was 0.0516mm in the 4th iteration, which is equivalent to

the reduction 16.5% of the maximum contour error compared to that of ILCC. On

the other hand, by using ILCC with ACEC and BRT, the smallest maximum contour

error of 0.041mm obtained on average as show in Fig. 4.14 (b). This is equivalent

to the reduction of the maximum contour error by 33.66% and 20.54% compare to

ILCC and ILCC with ACEC, respectively. All of experiments show that all of ILCC

generates oscillated contour error profile and reaches zero contour error slowly after

contour error peak appeared as shown in Fig. 4.14, because ILCC does not modify

control input voltage directly but enforce the reference trajectory only. Hence, oscil-

lated profile may increase the mean of contour error, although the maximum contour
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error is more reduced.

Comparison of the maximum and mean contour errors of the three controllers in five-

times experiments are shown by Figs. 4.15 (a) and (b), respectively. The average

mean and maximum contour errors based on ILCC with ACEC and BRT were re-

spectively reduced by 65.54% and 77.4% compared to FBC. The rest of the expe-

rimental results are summarized in Table 4.4, where the tendency of error reduction

is similar in both the 3D sharp-corner and half-circular trajectories. However, maxi-

mum contour error in half-circular trajectory is greater than maximum contour error

in 3D sharp-corner. Because an ACEC with linear interpolation estimates insufficient

contour error on circular trajectory so this method is not effective for circular or free-

form trajectories. It will be improved by circular interpolation which is proposed in

the next chapter.

4.9 Conclusion

This study proposed a method to enhance the tracking performance of machine tool

feed drive systems using ILCC with ACEC and BRT. Its performance was verified

experimentally through 3D sharp-corner and half-circular trajectories in a commer-

cial three-axis CNC machine. By comparing to the traditional FBC, proposed method
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FIGURE 4.12: Experimental results for 3D half-circular trajectory by
ILCC.
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FIGURE 4.13: Experimental results for 3D half-circular trajectory by
ILCC with ACEC.
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FIGURE 4.14: Experimental results for 3D half-circular trajectory by
ILCC with ACEC and BRT.
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FIGURE 4.15: Contour error experimental result for 3D half-circular
trajectory.

performance can be reduced maximum and mean contour error by up to 87.54 % and

76.69 % on average, respectively. The experimental results of the proposed control-

ler was compared to the ILCC with estimated contour error, and ILCC with ACEC,

where the proposed controller revealed that the maximum and mean contour errors
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TABLE 4.4: Summary of experimental results:
half-circular trajectory.

3D half-circular trajectory

Experiment
Number

ec max [mm]

FBC ILCC
ILCC +
ACEC

ILCC +
ACEC + BRT

1 0.181 0.045 0.025 0.007
2 0.207 0.052 0.041 0.04
3 0.181 0.062 0.052 0.033
4 0.178 0.067 0.063 0.051
5 0.16 0.083 0.077 0.074

Mean 0.1814 0.0618 0.0516 0.041

Reduction Ratio* 0% 65.93% 71.55% 77.40%

Experiment
Number

ec mean [mm]

FBC ILCC
ILCC +
ACEC

ILCC +
ACEC + BRT

1 0.031 0.018 0.015 0.014
2 0.039 0.033 0.011 0.009
3 0.029 0.026 0.016 0.013
4 0.034 0.027 0.018 0.015
5 0.044 0.03 0.017 0.01

Mean 0.0354 0.0268 0.0154 0.0122

Reduction Ratio* 0% 24.29% 56.5% 65.54%

can be reduced by up to 45.11 % and 54.48 % and 20.54 % and 26.92 % on average

compared to ILCC with approximated contour error and ILCC with ACEC respecti-

vely. However, the ACEC with linear interpolation is not effective for circular tra-

jectory and the performance BRT smoothing algorithm improves ILCC with ACEC

only is not significantly. The ILCC with ACEC with circular interpolation and wit-

hout BRT will be designed and implemented to an advanced machine tool technology

such as a CNC machine tool with a linear motor mechanism in the next chapter.
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Application of ILCC to a CNC

Machine Tool with Linear Motors

This chapter proposes a design of an iterative learning contouring controller (ILCC)

by considering actual contour error compensation (ACEC) to enhance the contouring

performance of CNC machine tool feed drive systems with linear motors. The ACEC

with linear and circular interpolation is designed to estimates contour errors preci-

sely. The proposed control iteratively modifies the numerical control (NC) programs

for each drive axis to reduce contour errors. Hence, the proposed approach can be

directly applied for a commercial CNC machine tool with linear motors currently in

use without any modification of their original controllers. Both linear and circular in-

terpolation are verified by simulation in both “air-cutting” and machining conditions.

The simulation is conducted for a non-smooth rhombus and circular trajectory. The

effectiveness of the proposed methods have been experimentally verified through a

CNC machine tool with linear motors for a non-smooth rhombus trajectory. Expe-

rimental results show that the proposed controller could reduce the maximum and

mean contour errors by 94.58 % and 88.67 % on average, respectively. The propo-

sed method improved the control input variance by 37.9 %, and consequently energy

consumption was reduced by 11.7 % compared to the original NC program.
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5.1 Introduction

Highly accurate mechanical components are widely required in many applicable

fields. The CNC machining process has advantages of high production efficiency,

high machining precision, and stable product quality. Achieving a high precision

motion in machining largely depends on the control performance of each individual

feed drive axis [55]. Under independent drive axial control, load disturbance or per-

formance variance of either axis causes an increase of contour error [56]. Much

efforts to reduce contour errors have been undertaken through either the design of

advanced feedback controllers for each feed drive or by modifying the reference ax-

ial positions [71]. This modification has attracted many researchers in the machine

tool community because it is directly related to product quality.

Two typical servo drives are used in CNC machine tools; linear servo motors and

rotary motors with ball-screws. Accuracy and deviation with linear servo motors are

much better than those with conventional rotary drives, especially at high feed rates

and around points where feed direction is changed [76]. It is recognized that ma-

chine tools with direct linear drives claim noteworthy advantages over conventional

ball-screw machines in speed, consumption, and accuracy [77], [78]. Hence, further

research of control techniques for linear motors are highly required.

To improve the machine performance of a CNC machine with linear servo motors,

many control researches were proposed. The implementation of H∞ optimal feedback

controller for large stiffness and closed-loop tracking performance was introduced to

reduce the effect of machining forces on the tool position in a linear servo drive [79].

The minimum-time path optimization (MTPO) and minimum-time tracking control

(MTTC) are applied for linear motors to accommodate the dominating saturation

effect in high-speed machine tools [80]. The motion behaviour of the direct linear

drive is improved by compensation of disturbances like the friction and cogging for-

ces [81]. A virtual friction compensator and a design method for control systems is
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proposed to improve the response characteristics of linear motor feed drive systems.

It ables to cancel the real nonlinear friction of feed drive systems by using the non-

linear friction model [82]. The periodic tracking error is eliminated by the proposed

repetitive control. It increases the stabilizing range and enhances performance by

adopting the prototype repetitive controller design principle [83]. The cross-coupled

iterative learning control (CCILC) improved the motion control performance of a

linear motor experimental system by combining individual axial iterative learning

control (ILC) and a cross-coupled controller which modifies the control signals and

improves contour trajectory tracking performance [23]. By applying the ILC, the

convergence of the output error is guaranteed under certain conditions even when the

system parameters are not known exactly or under the existence of bounded unknown

external disturbances [25]. Furthermore, the contour error can be significantly redu-

ced by the ILC which considers both tracking and contour errors [42].

The ILC with contour error approximation base coordinate transformation was pro-

posed in [64], which could be applied to a commercial machine without any modifi-

cation of the existing controller. The above method uses approximated contour errors

instead of actual ones to design contouring controllers or modify reference trajecto-

ries, so the error approximation methods do not represent the contour error accu-

rately, especially for a high-curvature trajectory application. However, contouring

control with actual control error is difficult to be implemented in real-time control

systems because the actual contour error cannot be immediately obtained for com-

plex contour profiles. Actual contour error compensation (ACEC) is proposed for the

ILCC application by calculating the minimum distance between the actual position

and the reference trajectory, where it is used to achieve the desired contour precisely

by linear interpolation [84]. However, the contour error estimation is not effective for

circular or free-form trajectories and this method requires an additional measurement

device to implement in commercial CNC machine tools and precision plant dynamics

information to achieve higher performance. The plant dynamics identification part
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is not included in the previous study. The novelty of this study is that the proposed

approach studied in [84] is extended for a CNC machine tool with linear motors, and

ACEC with quadratic estimation, system identification method and consumed energy

evaluation are presented. The proposed method modifies the original trajectory (NC

program) through the ACEC as a learning controller. The proposed method is proven

by simulation and experiment to enhance machine tool control performance.

5.2 Literature Review

Because the contour error is caused by single axial tracking errors [85], many rese-

archers improve contouring performance indirectly by reducing tracking error. For

example, a zero-phase error-tracking controller (ZPETC) is proposed by canceling

all the closed-loop poles and assuring zero phase shift for all dominant frequencies,

and thus the tracking-error can be effectively reduced to a large degree [86]. Ho-

wever, the gain error is increased due to the higher frequency, which also degrades

tracking accuracy, especially for a high feed rate. The feed-forward terms are added

to compensate for gain errors. The ZPETC is extremely sensitive to plant parame-

ter variance because the feedforward algorithm is typically an inverse of the control

system [87]. There are also other methods to improve tracking performance such

as model-based control [88], adaptive controller-parameter adjustment [89], iterative

learning control [90], disturbance-observer based control [91], and metaheuristic al-

gorithms for gain tuning [92]. Although the axial tracking error causes the contour

error, an improvement of the tracking error does not lead to efficient reduction of the

contour error [85].

To reduce the contour error directly, many cross-coupling control (CCC) methods

have been proposed. The first one is proposed to improve the contouring performance

by coupling the individual axis error based on contouring error estimation [19]. Then,

the CCC is designed as a proportional compensator in a biaxial feed drive application
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[18]. Many studies have been made to reduce the contour error based on combination

of the CCC with several control algorithms [23], [58], [93]–[96]. All the above CCC

methods are designed to reduce the contouring error in a feedback manner. Pre-

compensation methods with contouring error prediction are proposed to control the

contouring error before it occurs [97].

Another strategy suggested to reduce contour error is an interpolator design. The

functions of CNC interpolators are based on feed rate scheduling and reference com-

mand generation. The feed rate scheduling for continuous short-line segment tool-

paths with contour error constraints is proposed [98]. The contour error is normally

varied and the maximum error exceeds error constraint values because the feed drive

system model is simplified as a first-order model. To reduce modeling error effects,

high order models with a feedforward controller, a dynamic-based NURBS interpo-

lator, and a NURBS interpolator with a constant feed rate are proposed [99]. Because

the system model and NURBS formula are not simplified, it may be difficult to im-

plement in a real time manner.

All the above-mentioned methods require access to a CNC controller for implemen-

tation. The control approach that reduces resultant contour errors in real time, cannot

be implemented for existing commercial CNC machines generally. For this reason,

offline contour error reduction methods are proposed. Zhang et al. reduced the con-

tour error based on a spline trajectory generation technique under jerk constraints

[100]. However, the feed rate typically needs to be decreased. In order to address

this, iterative tracking error pre-compensation was presented to reduce the contour

error indirectly without reducing the feed rate [101]. Many feed rate scheduling

strategies have been proposed to reduce the contour error under contour error con-

straints such as the curvature evaluation based feed rate program, feed drive inverse

dynamics, and feed rate offline prediction [102]–[105]. Therefore, once the axial

dynamic models are not matched, the feed rate scheduling becomes an ineffective

method to reduce the contour error.
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The embedded iterative learning contouring controller (EILCC) with contour error

approximation can iteratively modify the reference trajectory to improve contouring

performance [61], [64]. Contour error estimation is a key aspect to achieve higher

contour error reduction. The precise contour error estimation with linear interpola-

tion has been developed and implemented by previous ILC principle on three axis

commercial CNC machine tools [84]. However, the above ILC performance can

not reach optimum performance because of an imprecise plant dynamic model and

imprecise error estimation for a typical circular trajectory. Precise plant dynamic

models and contour error estimation are required to improve control performance,

so that the ILC can be enhanced by adding a precise plant dynamics model and an

ACEC with circular interpolation. This study proposes ILC by modifying the NC

program iteratively with precise contour error estimation (ACEC) and a precise plant

dynamic model for a CNC machine tool feed drive system with linear motors. To

prove the proposed method’s performance, simulation was carried out with two desi-

red trajectories; rhombus and circle. Then, experiment was conducted for a rhombus

trajectory with sharp corners which produces a large contour error in each corner.

5.3 Methodology

In order to improve the contouring performance of commercial CNC machines, in

which their controllers can not be accessed, the ILC by NC program modification is

considered. The details of the proposed ILC are explained in Section 5.4. The NC

program is modified by using the actual contour error with a PID structure to achieve

smooth and fast contour error reduction. The actual contour error is estimated by mi-

nimizing the distance between actual and reference feed drive positions. However,

the closest actual position with minimum distance to a reference contour is not in the

orthogonal direction exactly. Hence, accurate motion cannot be achieved, especially

for higher curvature contours. For this reason, the linear and circular interpolations
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are designed to calculate the contour error precisely. The reference position is descri-

bed by the NC program, and the actual position is measured by a linear scale encoder

and NC Analyzer 2 software [53].

In order to perform fast contour error reduction, the PID learning gain must be op-

timized by a suitable gain tuning method. Many gain tuning methods have been

proposed currently. For example, artificial neural networks are used by simulating

the structure or functional aspects of biological neural networks to construct a self-

tuning PID controller [106]. However, the number of layers and the number of neu-

rons per layer are often hard to be determined. The ant colony optimization is a

solution of optimization problems based on the working behavior of an ant colony

which searches for the shortest path to the food or solution. It was used to minimize a

multi-objective function for PID tuning [107]. A simple genetic algorithm is applied

for tuning PID controllers with the cascade control systems. The sum of integral ab-

solute error values of the regulatory response is used as the objective function [108].

The convergence analysis provides PID learning compensator gains by guaranteeing

contour error reduction in a cascade ILC system [62]. To reach fast convergence

of the contour error in this study, the PID learning compensator gain is optimized

by a contour error convergence analysis. It is solved by using “fmincon” function

in MATLAB R©. The convergence analysis requires a precise plant dynamic model

which is obtained by control system identification. The reference command (NC

progam) input and output signals are collected to identify the plant transfer function

using system identification toolbox in MATLAB R©. The control system identifica-

tion procedure is shown in Section 5.5.

The reference trajectory is compensated by actual contour error compensation ite-

ratively until convergence. The proposed method is proven by simulation and ex-

periment in a commercial CNC machine with linear motors, which is explained in

Sections 5.6 and 5.7, respectively. The performance of the ILC combined with linear

and circular interpolations are compared under rhombus sharp corner and circular
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FIGURE 5.1: Tracking and contour errors.

trajectories. The experimental results are analyzed with the mean, maximum, and

the root mean square (RMS) error values to confirm the effectiveness of the propo-

sed approach. A similar analysis is done for energy consumption.

5.4 Control Design of ILCC with ACEC

This section modifies original ACEC [84] for implementation to a biaxial machine

tools feed drive system with linear motors.

5.4.1 Definition of Contour Error

The tracking error in each axis is recognized as the difference between the reference

and actual positions, while the contour error is defined as the shortest distance bet-

ween the actual and desired contours. The tracking error and contour error in a feed
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drive system are illustrated in Fig. 5.1. The reference position at time t is denoted

by r =
[

rx ry

]T

with respect to the fixed coordinate frame ∑w. The tracking error e

and its magnitude are defined as

ew =

[
ex ey

]T

= r−q, (5.1)

e = ‖ew‖ . (5.2)

The closest position of the desired contour to q is denoted by rc =

[
rcx rcy

]T

, and

the actual contour error è, which is the shortest distance between the actual position

q and the reference trajectory, is calculated as follows:

ec =

[
ecx ecy

]T

= rc−q, (5.3)

è = ‖ec‖ . (5.4)

5.4.2 Actual Contour Error Compensation

This section modifies the original ACEC [84] for implementation to a biaxial feed

drive system with linear motors. ACEC is a direct method to compensate for the

actual contour error searching about the closest position rc in the reference trajectory

to q as shown in Fig. 5.2. The reference trajectory is represented by discrete points at

each sampling period as r̀c, r̀c+1, ... . First, the closest reference position among these

points to q denoted by r̀c, is obtained by finding the minimum distance d̀c between

the actual position q and reference positions from nth to (n−m)th ones, where m is

predefined (0≤ m≤ n) and n is the current reference position number.

d̀c = min
0<m<n

‖ecm‖ , (5.5)
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where

ecm = r̀n−m−q. (5.6)

In this study, the closest position rc is determined using linear or circular interpolati-

ons to generalize the proposed approach.

Linear Interpolation

The closest position rc is determined by linear interpolation of the neighborhood

points as shown in Fig. 5.2 with equation below:

rc = r̀c +
(r̀c+1− r̀c)D1

D2
, (5.7)

D1 =
d̀2

c − d̀2
c+1 + ‖r̀c+1− r̀c‖2

2‖r̀c+1− r̀c‖
, (5.8)

D2 = ‖r̀c+1− r̀c‖−D1, (5.9)
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FIGURE 5.2: Contour error interpolation.
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where r̀c+1, d̀c+1, D1, and D2 are the discrete positions next to the approximated dis-

crete position r̀c, the shortest distance from r̀c+1 to the actual position q, the distance

between r̀c and rc, and the distance from rc to r̀c+1, respectively. In this estimation,

d̀c+1 is assumed shorter than d̀c−1. If d̀c−1 is shorter than d̀c+1, d̀c+1 and r̀c+1 is

replaced by d̀c−1 and r̀c−1 in Eqs. (5.7)-(5.9).

Circular Interpolation

The circular interpolation of neighborhood points is generated from the discrete

reference position r̀c, the point before, and one after discrete reference position

r̀c, r̀c−1, and r̀c+1, respectively. The circular interpolation is shown in Fig. 5.3.

The circular center is defined by C =

[
Cx Cy

]
and calculated as follows:

Cy =
A1A3−A2A4

2 (A2A5−A1A6)
, (5.10)

Cx =
A4 + 2CyA5

2A1
, (5.11)

FIGURE 5.3: Contour error estimation by circular interpolation.
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where

A1 = r̀cx− r̀c−1x, A5 = r̀c−1y− r̀cy,

A2 = r̀c+1x− r̀c−1x, A6 = r̀c−1y + r̀c+1y,

A3 = r̀2
c+1x− r̀2

c−1x + r̀2
c+1y− r̀2

c−1y,

A4 = r̀2
cx− r̀2

c−1x + r̀2
cy− r̀2

c−1y.

The radius of curvature R is calculated as follows:

R = ‖C− r̀c‖ . (5.12)

So the contour error magnitude is

è = R−‖q−C‖ , (5.13)

The axial elements of contour error ecx and ecy are given by

ecx

ecy

=

cosα

sinα

ec, (5.14)

where

α = arctan
(

qy−Cy

qx−Cx

)
. (5.15)

5.4.3 Determination of Number of Discrete Points

The modified trajectory has a higher number of discrete points than the original refe-

rence trajectory considering the sampling time and actual velocity. The high number

of discrete points increases the operation time because of acceleration and decelera-

tion between each point. Therefore, the number of points is re-calculated based on

the desired distance ls for discretization considering input resolution in NC codes as



5.4. Control Design of ILCC with ACEC 95

Kx Px

Mem
q

rx(t) qxj+1

FIGURE 5.4: Proposed control system design.

follows:

ns =
∑

N
M=1 ‖rM− rM−1‖

ls
, (5.16)

r̂n = rN , if
N

∑
M=1
‖rM− rM−1‖= lsn, (5.17)

1≤ n≤ ns.

where ns, N, and r̂n are re-defined number of discrete points, original number of

discrete points, re-defined trajectory position.

5.4.4 Proposed Controller Design

The proposed controller consists of a feedback controller (FBC) and an iterative le-

arning contouring controller with ACEC. The reference input of the FBC is the re-

ference trajectory modified by the ILCC with ACEC as shown in Fig. 5.4, where

mem uc, q, and, r are the memories of learning compensation values, actual posi-

tion, and reference trajectory, respectively. The closed loop transfer function of the
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system plant in s-domain is represented as follows:

Gi (s) =
Pi (s)Ki (s)

1+Pi (s)Ki (s)
, (5.18)

where Gi and Ki are the machine plant and the feedback compensator for the ith axis,

respectively. In this study, Ki (s) is assumed to be a PID compensator as follows:

Ki (s) = KPi +
1
s

KIi + sKDi, (5.19)

where KPi, KIi, and KDi are the proportional, integral, and derivative gains for the

ith axis, respectively. ri j+1 (t) is the modified reference trajectory for the ( j+ 1)th

iteration in the ith axis using an iterative learning compensator Kl with ACEC as

follows:

ri j+1 (t) = ri j (t)+ uci j (t) , (5.20)

uci j (t) = Kli (s)eci j (t) ,

Kli (s) = KPli +
1
s

KIli + sKDli,

where ri j, uci j, eci j, KPli, KIli, and KDli are reference signal, control input, contour

error for the jth iteration, the proportional, integral, and derivative learning compen-

sator gain Kl for the ith axis, respectively. Therefore,

uci j (t) = KPlieci j (t)+KIli

∫ t

0
eci j (τ)dτ +KDliėci j (t) . (5.21)

leads to

ri j+1 (t) = ri1 (t)+
j

∑
n=0

ucin (t) . (5.22)
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5.4.5 Convergence Analysis

The ILCC performance with ACEC can be guaranteed through convergence analy-

sis to ensure reduction of the contour error. The convergence condition of ILC is

represented as

εi (t) =
∥∥∥∥eci j+1 (t)

eci j (t)

∥∥∥∥< 1, (5.23)

where εi (t) is the convergence factor for the ith axis. Based on the cascade ILC [62],

the convergence can be confirmed when the error magnitude of the ( j+ 1)th iteration

is smaller than one of the jth iteration. From Eqs. (5.3) and (5.5), the convergence

factor is derived as follows:

eci j+1 = min
0≤m≤n

[rmi−qi j+1] ,

= min
0≤m≤n

[rmi−Gi (s) (rmi j + uci j)] ,

= min
0≤m≤n

[rmi−Gi (s) rmi j+1] ,

= min
0≤m≤n

[rmi−Gi (s) (rmi j + uci j)] ,

= min
0≤m≤n

[rmi−Gi (s) rmi j−Gi (s)Kli (s)eci j] ,

= min
0≤m≤n

[rmi−Gi (s) rmi j]−Gi (s)Kli (s)eci j,

= eci j−Gi (s)Kli (s)eci j,

= [1−Gi (s)Kli (s)]eci j,

eci j+1

eci j
= 1− Pi (s)Ki (s)Kli (s)

1+Pi (s)Ki (s)
, (5.24)

substituting Eq. (5.24) into Eq. (5.23) leads to

εi (s) =
∥∥∥∥1− Pi (s)Ki (s)Kli (s)

1+Pi (s)Ki (s)

∥∥∥∥< 1. (5.25)

Considering the discrete-time form for the implementation, Pi (s) is represented as

follows:

Pi
(
z−1)= 1

mi

(
z−1−1
tsz−1

)2
+ ci

z−1−1
tsz−1

, z = e jωts , (5.26)
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where ω , z, and z−1 are the angular frequency, the z-domain variable, and the delay

operator, respectively. The feedback and learning compensation in the z-domain is

represented as, follows:

Ki
(
z−1)= KPi +KIi

(
tsz−1

z−1−1

)
+KDi

(
z−1−1
tsz−1

)
, (5.27)

Kli
(
z−1)= KPli +KIli

(
tsz−1

z−1−1

)
+KDli

(
z−1−1
tsz−1

)
. (5.28)

The convergence speed depends on the parameter ε , which has to be kept as mi-

nimum as possible to obtain the fast convergence with a delay factor η due to the

system delay. Considering Eq. (5.25) and the delay period, the following objective

function is considered:

Ji = min
KPli, KIli, KDli

∥∥∥∥∥1−
zηPi

(
z−1)Ki

(
z−1)Kli

(
z−1)

1+Pi (z−1)Ki (z−1)

∥∥∥∥∥
∞

, (5.29)

∀ω ∈Ω,

In order to find the learning compensator gains, the previous equation (3.25) has been

solved using “fmincon” function in the MATLAB R© toolbox.

5.5 Control System Identification for a CNC Machine

In this study, control system identification is conducted to obtain the transfer function

Eq. (5.18) of a CNC machine tool from reference trajectory to actual trajectory. The

transfer function is used to calculate the learning compensator gain in Eq. (5.29).

Fig. 5.5 shows the linear motor CNC machine tool DMG MORI NV1500 used for

the experimental setup. Based on the dynamics model of a CNC machine tool with

the linear motors as shown in Fig. 5.6, the dynamics model is represented as follows:
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mi
d2qi

dt
+ ci

dqi

dt
+ kiqi = fi, i = x, y. (5.30)

where mi, qi, ci, ki, and fi are the total mass, position, viscous friction coefficient,

stiffness, and the driving force in the ith axis, respectively. The transfer function from

driving force to position is derived as follows

Qi (s)
Fi (s)

=
1

mis2 + cis+ ki
, (5.31)

mx = Mt +Mx, my = mx +My.

where Qi and Fi are the actual position and the driving force, respectively. Mt , Mx,

and My are table mass, motor mass in the x and y axis, respectively. Based on Fig. 5.7,

transfer function Pi (s) from control input Ui (s) to actual position Qi (s) is obtained

by multiplying motor and amplifier gains to the driving force transfer function as

follows:

Pi (s) =
Qi (s)
Ui (s)

=
KaKt

mis2 + cis+ ki
. (5.32)

FIGURE 5.5: Experimental CNC machine tool (DMG MORI
NV1500).
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FIGURE 5.6: Dynamic model of CNC machine tool with linear motor.

FIGURE 5.7: Assumed existing feedback controller scheme.

where Ka and Kt are amplifier and motor gains, respectively. Because the details of

the existing controller is unknown, we assume that the general PID feedback control-

ler shown in Fig. 5.7 is implemented in the CNC machine tool. By substituting Eqs.

(5.19) and (5.32) to Eq. (5.18), the transfer function Gi is obtained as follows:

Gi (s) =
B1s2 +B2s+B3

B4s3 +B5s2 +B6s+B7
. (5.33)

where

B1 = KaKtKDi, B5 = KaKtKDici,

B2 = KaKtKPi, B6 = KaKtKPiki,

B3 = KaKtKIi, B7 = A3,

B4 = mi,

The CNC controller Mitsubishi M700V provides 1 nm input resolution for the refe-

rence trajectory. The measurement results provided through Melsoft NC Analyzer 2
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software [53] are used to identify the system model. After collecting reference com-

mand inputs and actual position output signals, the system identification toolbox in

MATLAB R© is used to estimate the plant transfer function in Eq. (5.33). The transfer

functions from the reference command input to the actual position for x and y axes

are obtained as follows:

Gx (s) =
122.2s2 + 4.745s+ 2.296×104

s3 + 122.5s2 + 194.1s+ 2.294×104 . (5.34)

Gy (s) =
195.7s2 + 186.6s+ 3.868×104

s3 + 198s2 + 384.1s+ 3.883×104 . (5.35)

Based on Eqs. (5.34) and (5.35), the bode diagrams of x and y axis are plotted in

Figs. 5.8 and 5.9, respectively. Applying the zero-order hold and sampling rate of

1.7 ms, the pulse transfer functions are obtained as follows:

Gx
(
z−1)= 0.1875z−1−0.3749z−2 + 0.1875z−3

1−2.811z−1 + 2.623z−2−0.812z−3 . (5.36)

Gy
(
z−1)= 0.2827z−1−0.5648z−2 + 0.2822z−3

1−2.713z−1 + 2.427z−2−0.7141z−3 . (5.37)

5.6 Simulation

5.6.1 Simulation Condition

In order to confirm the proposed method, the rhombus and circular trajectories have

been conducted in addition to estimate the cutting force in simulation for each tra-

jectory as shown in Figs. 5.10 and 5.12. The simulation of a bi-axial table was

done by Matlab R© software under a Windows OS. The considered operational fre-

quency 0 ≤ ω ≤ 100 rad/s with a discretization of 1 rad/s due to each axial bode
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FIGURE 5.8: Bode plot for closed-loop system of x axial drive.
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FIGURE 5.9: Bode plot for closed-loop system of y axial drive.

diagram (Figs. 5.8 and 5.9). The optimal learning control gains [KPl KIl KDl ] =

[0.079 0.05 1/s 0.452 s] were obtained, which led to a convergence factor εi to be

0.752. The performance under linear and circular interpolations are compared for

both rhombus and circular trajectories. Simulation is also performed under a cutting

force condition to confirm the effectiveness of the proposed approach under machi-

ning conditions.



5.6. Simulation 103

5.6.2 Simulation Results

Rhombus Trajectory

In order to evaluate the performance of the ACEC with linear interpolation in ILCC

implementation. The rhombus with a typical sharp corner trajectory in Fig. 5.10 is

designed as a reference trajectory because it is difficult for feed drive systems gene-

rally to track a sharp corner trajectory. The circular interpolation can not be applied

for the rhombus motion trajectory because of its infinity radius properties. The simu-

lation is conducted in 20 iterations. Simulation results are shown in Figs. 5.11 and

5.14, where Fig. 5.11 shows the contour error profile for all iterations. It has three

peaks of contour error values on each corner area. Fig. 5.14 shows the convergence

profiles of the maximum and mean contour errors. In each figure, the first iteration

refers to the original control which has the largest contour error of 4.535 µm and the

mean contour error of 0.398 µm, respectively. By applying ACEC with linear inter-

polation, the maximum contour error was reduced to 0.398 µm and 0.003 µm for

the mean contour error, which is equivalent to a reduction by 91.22 % and 95.95 %,

respectively. There is no significant error reduction after the 9th iteration. All of the

simulation results are summarized in Table 5.1.

(a) G-code for initial trajectory.

0 4 8 12 16 20 24 28 32 36 40
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(b) Rhombus reference trajectory.

FIGURE 5.10: Reference trajectory in experiment. (a) G-code for
initial trajectory. (b) Rhombus reference trajectory.
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FIGURE 5.11: Simulation result of contour error with linear interpo-
lation.

Circular Trajectory

The circular motion shown in Fig. 5.12, is performed in simulation. The simulation

was conducted 20 iterations for ILCC with ACEC, and their performance was com-

pared under both linear and circular interpolations. Simulation results are shows in

Figs. 5.13, 5.14, and Table 5.1. Figs. 5.13 (a) and (b) show the contour error profiles

for linear and circular interpolations, respectively. Fig. 5.14 shows the convergence

profiles of the maximum and mean contour error. In all figures, the first iteration

refers to the original controller which produces the largest contour error of 0.903 µm

FIGURE 5.12: Circle reference trajectory.
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with a mean contour error of 0.616 µm. By applying linear interpolation, the maxi-

mum contour error was increased to 1 µm. It shows that the linear interpolation is not

effective for the circular motion trajectory. In contrast, the proposed circular interpo-

lation improves the maximum and mean contour errors to 0.004 µm and 0.002 µm,

respectively. This is equivalent to a contour error reduction of 99.56 % and 99.08 %,

respectively, and there is no significant error reduction after the 8th iteration. All of

the simulation results are summarized in Table 5.1.

(a) Linear interpolation.

(b) Circular interpolation.

FIGURE 5.13: Simulation results of contour error for circular trajec-
tory. (a) Linear interpolation. (b) Circular interpolation.
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FIGURE 5.14: Contour error convergence profiles in simulation. (a)
Max. contour error convergence profile. (b) Mean. contour error

convergence profile.

Simulation with Cutting Force

The cutting force is estimated in simulation to verify the effectiveness of the proposed

method under a machining condition. An aluminum alloy material and an end-mill

cutter diameter with D = 12 mm, two flutes, and a helixal angle of 45o are chosen to

simulate the cutting process. The cutting scenario is simulated using the following

conditions: depth of cut doc = 0.1 mm, width of cut / side step woc = 0.2 mm,

feed rate vc = 60 mm/minute, spindle rotation speed 1600 rpm, and feed st = 0.07
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mm/teeth. The estimated cutting force was calculated as follows [109]:

dFt, j (φ j,z) = KtedS (z)+Ktcst sinφ jdz, (5.38)

dFr, j (φ j,z) = KredS (z)+Krcst sinφ jdz, (5.39)

dFa, j (φ j,z) = KaedS (z)+Kacst sinφ jdz, (5.40)

where dFt , dFr, dFa, j, φ , and, dS are the differential tangential, radial, and axial

cutting force, the flute number, the immersion angle, and the edge length, respecti-

vely.

The specific cutting force coefficients for tangential, radial, and axial direction are

[Ktc Krc Kac] = [1843.9 513 1118.6] N/mm2.

The specific edge force coefficients for tangential, radial, and axial direction are

[Kte Kre Kae] = [24.0 43.0 −3.0] N/mm2. Both of X-Y axial cutting forces

are calculated by the transformation below:

dFx, j (φ j)

dFy, j (φ j)

=

−cosφ j −sinκ sinφ j

sinφ j −sinκ cosφ j

×
dFt, j (φ j)

dFr, j (φ j)

 (5.41)

where κ is the radial lag angle. Both of the X-Y estimated cutting force for both

rhombus and circular trajectories are shown in Fig. 5.15. Detail of the cutting force

estimation procedure is described in [109].

Simulation of ILCC was conducted in 20 iterations with and without cutting force

under rhombus and circular motion trajectories. Simulation results are shown in

Figs. 5.16, 5.17 and Table 5.2. Fig. 5.16 (a) shows the contour error profile under

cutting force in the rhombus trajectory. The peak of contour error appears in each

sharp corner where the initial maximum and average contour error are 22 µm and
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(a) Cutting force profile for rhombus trajectory.
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(b) Cutting force profile for circular trajectory.
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(c) Cutting force profile in one rotation.

FIGURE 5.15: Simulation results of cutting force.
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TABLE 5.1: Simulation results of contour error.

Trajectory Interpolation
Max. Contour Error [µm] Mean Contour Error [µm]

Initial Final Reduction Initial Final Reduction

Rhombus Linear 4.535 0.398 91.22 % 0.074 0.003 95.95 %

Circle
Linear 0.903 1 -10.74 % 0.616 0.647 -5.03 %

Circular 0.903 0.004 99.56 % 0.616 0.002 99.68 %

TABLE 5.2: Simulation results of contour error under cutting force.

Trajectory Cutting Force
Max. Contour Error [µm] Mean Contour Error [µm]

Initial Final Reduction Initial Final Reduction

Rhombus
without 4.535 0.398 91.22 % 0.074 0.003 95.95 %

with 22 18 18.18 % 1.469 0.099 93.26 %

Circle
without 0.903 0.004 99.56 % 0.616 0.002 99.68 %

with 6.11 0.35 94.27 % 3.737 0.015 99.60 %

1.469 µm, respectively. Fig. 5.16 (b) shows the contour error profile under cutting

force for a circular trajectory with the initial maximum and average contour error are

0.903 µm and 0.616 µm, respectively. By applying the ILCC, the contour error is

reduced in both cases as shown in Fig. 5.17. However, the proposed method is still

effective for reducing contour error under the machining condition. By applying the

proposed method in the rhombus trajectory case, the ILCC with ACEC reduces the

maximum and mean contour errors to 18 µm and 0.1 µm which are equivalent to

18.2 % and 93.3 %, respectively. In the circular trajectory, the proposed method im-

proves the maximum and mean contour errors effectively to 0.35 µm and 0.015 µm,

respectively. For clarity, all of the simulation results are summarized in Table 5.1.
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(a) Rhombus trajectory.

(b) Circle trajectory.

FIGURE 5.16: Simulation results of contour error under cutting force.
(a) Rhombus trajectory. (b) Circle trajectory.

5.7 Experiment

5.7.1 Experimental Condition

As described in the previous sections, a CNC machine tool DMG MORI NV1500

(5.5) with linear motors controlled by a Mitsubishi M700V was used for experi-

ment to verify the effectiveness of the proposed approach. The actual position of

the feed drive system was obtained through Melsoft NC Analyzer 2 software with

an RJ45 connection. The ILCC was programmed in MATLAB R© in a separate per-

sonal computer (Windows OS) and embedded to the machine by direct numerical
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FIGURE 5.17: Simulation results of error convergence profiles under
cutting force. (a) Max. contour error convergence profile. (b) Mean.

contour error convergence profile.

control (DNC) with the NC Analyzer 2 software. The sampling rate was 1.7 ms and

the considered operational frequency 0 ≤ ω ≤ 100 rad/s with a discretization of 1

rad/s due to each axial bode diagram (Figs. 5.8 and 5.9). The experimental inter-

face structure is shown in Figs. 5.5 and 2.11. The optimal learning control gains

[KPl KIl KDl ] = [0.079 0.05 1/s 0.452 s] were obtained, which led to a conver-

gence factor εi to be 0.752. According to simulation results, the circular motion

trajectory provides a better contouring performance than the rhombus one because of

the difficulty of tracking a sharp corner trajectory. If the proposed method is proven

in rhombus trajectory by experiment, it will also work for a circular trajectory. The
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FIGURE 5.18: Finally generated modified G-code program.

initial reference trajectory was defined in a G-code program to create a typical rhom-

bus sharp corner trajectory with velocity of 8000 mm/min as shown in Figs. 5.10 (a)

and (b), respectively.

First, the initial reference trajectory is executed by the CNC machine which is con-

nected to a PC. Then, the actual position data measured by linear scales with 1 nm

accuracy are obtained by NC Analyzer 2 software [53]. Third, the ILCC is implemen-

ted to modify the NC program based on the resultant contour error after executing the

NC program by CNC machine. All of the above procedures are conducted iteratively

until no significant contour error reductions are seen. Based on simulation, 20 itera-

tions are decided to show the convergence of contour error reduction. To guarantee

the repetitiveness of the proposed approach, experiments are repeated 5 times under

the same condition.
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5.7.2 Performance Evaluation

To evaluate the performance, the experimental results are analyzed by calculating the

mean, maximum, and root mean square (RMS) of contour errors which are represen-

ted as follows:

ec =
∑

N
M=1 ecM

N
(5.42)

ecmax = max
0<M≤N

|ecM| (5.43)

ecrms =

√
∑

N
M=1 e2

cM
N

(5.44)

where ec, ecmax, ecrms, N, and M are the mean, maximum, and RMS of contour

error, total discrete points, and number point, respectively. The maximum contour

error ecmax usually appears in the critical section such as a sharp corner section.

5.7.3 Experiment Results

Five times experiments with 20 iterations with a rhombus reference trajectory shown

in Fig. 5.10 have been conducted, and the minimum contour error was obtained after

0 0.5 1.0 1.5 2.0

Time [s]

-4

-2

0

2

4

M
a
x
. 
c
o
n
to

u
r 

e
rr

o
r 

[m
m

]

10
-3

0

5

10

15

20

Iteration

Number

FIGURE 5.19: Contour error: x axial component.
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FIGURE 5.20: Contour error: y axial component.
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FIGURE 5.21: Contour error magnitude.

12 iterations or after 25.8 second as shown in Figs. 5.19 - 5.24, and Table 5.3. Fig.

5.18 shows a part of the finally generated G-code program. Figs. 5.19 and 5.20 show

the resulted contour errors in x and y components. Fig. 5.21 shows the contour error

profiles based on ILCC with ACEC. The first iteration was conducted only by the

originally equipped controller with initial contour error 4.25 µm on average. Under

the proposed method, the contour error was reduced to 0.23 µm on average of each

iteration in the 12th iteration and no further significant error reduction was observed

thereafter. This is equivalent to the error reduction of 94.58 % from the initial max-

imum contour error. Fig. 5.22 shows real trajectories based on ILCC with ACEC.

Fig. 5.24 shows the contour error convergences properties for the proposed method.
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The experimental convergence ratio (εi = 0.829) is greater than the theoretical fac-

tor (εi = 0.752) because of uncertain disturbance in the experimental machine. For

clarity, all the experimental results are summarized in Fig. 5.24 and Tables 5.3 -

5.4. It can be seen that an almost monotonically contour error reduction tendency is

observed in all experimental results. This concludes that the proposed controller is

practically effective for performance improvement in CNC machine tool feed drive

systems.
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FIGURE 5.24: Experimental convergence profiles.

5.7.4 Energy Evaluation

The same experiments with Fig. 5.22 were repeated 5 times to evaluate energy con-

sumption. The energy evaluation results are shown as Figs. 5.25-5.26. The consumed

energy was evaluated by measuring electric current through NC Analyzer 2 software

FIGURE 5.25: Experimental energy results.
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TABLE 5.3: Contour error results in experiment [µm].

Iteration ( j)
Experiment Number

Average ∑
j
i=0 t i [s]1 2 3 4 5

1 4.087 4.290 4.334 4.254 4.284 4.250 1.6
2 4.087 1.002 0.883 0.922 0.918 1.562 3.8
3 3.653 2.007 2.121 2.035 2.115 2.386 6.0
4 3.800 1.328 1.282 1.289 1.264 1.793 8.2
5 2.046 1.186 1.083 1.058 1.064 1.288 10.4
6 1.846 0.765 1.203 0.845 0.803 1.093 12.6
7 1.274 0.424 0.507 0.333 0.328 0.573 14.8
8 0.516 0.299 0.521 0.409 0.424 0.434 17.0
9 0.861 0.434 0.531 0.389 0.339 0.511 19.2

10 0.467 0.546 0.362 0.352 0.328 0.411 21.4
11 0.338 0.241 0.451 0.289 0.244 0.313 23.6
12 0.386 0.247 0.303 0.261 0.175 0.275 25.8
13 0.347 0.619 0.532 0.150 0.175 0.365 28.0
14 0.319 0.160 0.399 0.138 0.164 0.236 30.2
15 0.191 0.444 0.274 0.547 0.158 0.323 32.4
16 0.336 0.152 0.195 0.300 0.538 0.304 34.6
17 0.213 0.599 0.367 0.539 0.483 0.440 36.8
18 0.245 0.096 0.146 0.187 0.477 0.230 39.0
19 0.239 0.262 0.337 0.310 0.508 0.331 41.2
20 0.164 0.229 0.423 0.157 0.432 0.281 43.4

Max 4.087 4.290 4.334 4.254 4.284 4.250
Min 0.164 0.096 0.146 0.138 0.158 0.230
Reduction 95.98% 97.76% 96.63% 96.75% 96.31% 94.58%

[53]. Energy consumption is calculated by the following equations.

E =
∫ N

0
P (t)dt =

∫ N

0

√
3λV Idt =

√
3λR

∫ N

0
I2dt

'
√

3λRts
N

∑
n=1

I2
n (5.45)

where λ , R, V , ts, and In are the power factor, resistance, electric voltage, sampling

time, and current at the nth sampling instant. N is the total number of sampling

instants (n = 1,2, ...,N). The power factor λ is set to 0.7 which is obtained by ob-

serving the phase difference between V (t) and I (t). This observation was done in

the previous study [110] which used the same experimental system. The resistance

R and sampling time ts are equal 4.05 Ω and 1.7 ms, respectively. The control input
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TABLE 5.4: Summary of experimental results.

Contour Error
Experiment Number

Average1 2 3 4 5

Max. Contour Error [µm]

Initial 4.087 4.29 4.334 4.254 4.284 4.25
Final 0.164 0.096 0.146 0.138 0.158 0.23
Reduction 95.99% 97.76% 96.63% 96.76% 96.31% 94.59%

Mean Contour Error [µm]

Initial 0.267 0.290 0.274 0.259 0.266 0.271
Final 0.034 0.025 0.030 0.031 0.033 0.031
Reduction 87.31% 91.20% 89.01% 88.14% 87.46% 88.67%

RMS Contour Error [µm]

Initial 0.428 0.454 0.442 0.421 0.433 0.436
Final 0.044 0.032 0.038 0.04 0.044 0.040
Reduction 89.72% 92.95% 91.40% 90.50% 89.84% 90.91%

variance was determined using the following equation:

σi =

√
∑

N
n=1 ( fin−Θi)

2

N
, i = x,y. (5.46)

where Θi and fin are the mean of all control signals and the control signal value at

the nth sampling instant of the ith axis, respectively.

FIGURE 5.26: Consumed energy evaluation results.
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FIGURE 5.27: Control input variance. (a) X axis. (b) Y axis.

Fig. 5.25, Tables 5.5 and 5.6 shows an energy consumption for 20 iteration. The

energy reduction appeared in the 2nd iteration as similar with contour error reduction

in Fig. 5.24. Because the desired trajectory is smoothed around the corner in the

first iteration, there is no significant reduction after the second iteration in Fig. 5.25.

The consumed energy and control input variance of the original controller and the

ILCC are compared for each feed drive axis as shown in Figs. 5.26-5.27. Fig. 5.26

show consumed energy evaluation results for x, y, and total magnitude of axis. The

initial trajectory was conducted only by the originally equipped controller with initial

energy consumption 77.4 kJ and 106.2 kJ for x and y axis on average, respectively.
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(a) X axis.

(b) Y axis.

FIGURE 5.28: Control input profiles. (a) X axis. (b) Y axis.

Under the proposed method, they were reduced to 58.2 kJ and 90.3 kJ, respecti-

vely. This is equivalent to energy reduction of 24.9 % and 14.7 %, respectively. Fig.

5.26 shows the total energy reduction from 173.2 kJ to 153.2 kJ or 11.7 % energy

reduction on average. The proposed method achieved a reduction of control input

variance by 20.7 % and 17.2 % for x and y axis, respectively as well as consumed

energy reduction because the trajectory is already smoothed in the modified trajec-

tory. Fig. 5.28 shows improved control input current profiles which are slightly

reduced around the start and corner positions.
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TABLE 5.5: Energy consumption results.

Iteration Number
Trial [kJoule]

Average1 2 3 4 5

1 169.7 164.9 168.7 183.1 179.8 173.2
2 163.5 138.3 145.2 167.2 161.9 155.2
3 165.2 140.1 143.7 169.8 163.5 156.4
4 159.3 142.2 146.3 169.3 166.2 156.7
5 163.7 133.8 145.1 170.1 165.7 155.7
6 163.2 134.1 150.2 171.5 162.3 156.3
7 164.2 136.6 145.1 170.4 165.4 156.3
8 159.9 143.3 146.2 173.0 165.0 157.5
9 160.3 140.1 146.6 173.6 164.9 157.1

10 165.2 142.4 148.5 175.6 164.2 159.2
11 166.2 135.1 146.4 175.1 172.7 159.1
12 165.1 138.8 150.3 177.8 165.0 159.4
13 163.5 139.1 147.1 180.7 166.5 159.4
14 163.7 138.1 148.0 174.6 169.9 158.8
15 161.4 141.3 151.0 176.1 177.7 161.5
16 161.5 140.3 161.2 180.1 172.0 163.0
17 163.6 141.8 161.0 180.2 171.7 163.7
18 163.9 143.4 162.8 182.9 171.0 164.8
19 160.2 144.0 164.3 178.4 177.1 164.8
20 164.7 140.3 156.3 179.3 172.4 162.6

Initial 169.7 164.9 168.7 183.1 179.8 173.2
Min 159.3 133.8 143.7 167.2 161.9 155.2
Reduction 6.2% 18.8% 14.9% 8.7% 9.9% 10.4%

5.8 Discussion

The contour error estimation of ILCC is a key factor to achieve higher contouring per-

formance. ACEC with a linear interpolation is an effective way to track a rhombus

sharp corner trajectory, which is typically difficult to be tracked because of the infi-

nite acceleration occurred by trajectory discontinuity. In the corner area, drive axis

X or Y reverses suddenly to track the desired motion. It requires an instant decele-

ration and acceleration which needs higher energy consumption, and such tracking

is practically impossible for a typical-PID control which normally produces overs-

hoot [63]. The ACEC with linear interpolation modifies a reference trajectory or NC

program, and it modifies sharp corner to be smooth. By this modification, contour
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TABLE 5.6: Summary of energy evaluation results.

Energy Consumption
Experiment Number

Average1 2 3 4 5

X-Axis [kJoule]

Initial 80.5 76.8 80.8 76.7 72.1 77.4
Final 71.9 51.1 50.7 67.1 50.1 58.2
Reduction 10.7% 33.4% 37.2% 12.5% 30.5% 24.9%

Y-Axis [kJoule]

Initial 92.0 91.7 109.6 111.9 126.0 106.2
Final 81.8 81.1 87.9 93.1 107.7 90.3
Reduction 11.0% 11.5% 19.7% 16.8% 14.5% 14.7%

Total [kJoule]

Initial 169.7 164.9 168.7 183.1 179.8 173.2
Final 159.3 133.8 143.7 167.2 161.9 153.2
Reduction 6.2% 18.8% 14.9% 8.7% 9.9% 11.7%

error and energy consumption reduce [111]. The ACEC with linear interpolation

is not suitable to track typical circular or free-form trajectories. It exhibits lower

contouring performance because linear interpolation can not estimate contour error

precisely in higher curvature trajectories.

ACEC with circular interpolation is designed to estimate contour error precisely for

a circular motion trajectory. It requires three discrete points to interpolate circular

curvature and estimates contour error from actual position and circular radius. This

method provides higher contouring ability for a circular trajectory. However, it can

not be applied to a linear path because of infinite radius properties. Both linear and

circular trajectories are required to be combined for considering a general trajectories

that include both.

Machining process is simulated to evaluate the proposed method under cutting force.

Cutting force is estimated and applied for both rhombus and circular trajectories. Ge-

nerally, the proposed method reduces the contour errors. However, it is not effective

for rhombus trajectory especially in sharp corner areas, because the cutting force di-

rection changes to be opposite suddenly. Simulation shows that rhombus trajectory
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with a sharp corner exhibits the largest contour error. To prove the proposed method

experimentally, the rhombus trajectory is chosen. Once the proposed method redu-

ces contour error for a difficult trajectory such as a rhombus trajectory, it can work

also for other trajectories properly. Both simulation and experiment show a simi-

lar error reduction trend. This concludes that the proposed method is effective for

performance improvement in CNC machine tools.

5.9 Conclusion

The CNC machine tool with linear motors is an advanced technology. The ILCC

with ACEC under linear and circular interpolations are implemented with rhombus

and circular motion trajectories, and the performance has been demonstrated by si-

mulation and experimental results. The proposed method modifies the NC program

considering the previous actual contour error iteratively to enhance tracking perfor-

mance. Simulation results show that the linear interpolation can reduce the maximum

and mean contour errors by 91.22 % and 95.95 %, respectively for a rhombus motion

trajectory. However, it was not effective for a circular trajectory as circular interpo-

lation was designed so that the maximum and mean contour errors were reduced by

99.55 % and 99.68 %, respectively. The ILCC with ACEC under a machining con-

dition was also simulated to evaluate the proposed method under such conditions.

The linear interpolation with the rhombus trajectory reduces the maximum and mean

contour errors by 18.18 % and 93.26 %, respectively. The circular interpolation for a

circular motion trajectory provides a better result reducing the maximum and mean

errors by to 94.27 % and 99.6 %, respectively.

The rhombus motion trajectory provides the largest initial contour error. For this

reason, this trajectory is chosen to conduct the experiment. Experimental results

have shown that the maximum and mean contour errors can be reduced by 94.58 %
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and 88.67 % on average, respectively. The proposed method improves the contou-

ring performance from normal machining (> 1 µm accuracy) to precision machining

(< 1 µm accuracy). In addition, consumed energy is improved under the proposed

method. Energy consumption of x, y, and combined axis in machine tools can be

reduced by 24.9 %, 14.7 % ,and 11.7 % on average from original energy consump-

tion, respectively. One advantage of the proposed approach is that it can be directly

implemented in CNC machine tools currently in use throughout the world, because

only an NC program modification is required.

In future work, a hybrid interpolation which combines circular and linear interpola-

tions will be developed to machine a free-form surface. The ILCC with ACEC under

linear, circular, and hybrid interpolations will be compared by experiment. The ma-

chining process will be conducted under cutting force. Modifying the NC program

based on “G01” program is done in this study. To improve the proposed method,

modifying the NC program based on “G02” code for a typical circular trajectory will

be interesting to be implemented.
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Chapter 6

Conclusions

6.1 Summary

In industrial applications, many processes are required to manufacture precision pro-

ducts. High-precision machining is one of the methods utilized for metal proces-

sing, especially for applications that require a high-precision product. To construct a

high-precision machine, hardware and control improvements are required, especially

when it comes to the machine tool structure, motion equipment, and measurement

devices. However, the hardware machine condition can change over the life of the

equipment due to wear, long working hours, and high production loads. In order

to adapt to these changes, a CNC machine needs a control technique that has the

ability to learn about disturbances or changes to the actual hardware condition du-

ring production. Many control techniques have been developed, but most of them

require open access to a commercial CNC machine control. For this reason, ILCC

with a cascade design has been proposed in this study to improve the performance

of existing machine tools. The error compensation is also expected to increase the

ILCC performance. In addition, the proposed method has been implemented in a

biaxial feed drive machine tool, a three-axis CNC machine tool with a ball screw

mechanism, and a CNC machine tool with a linear motor mechanism, the latter as an

advanced technology in machine tool applications. This dissertation consists of three
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parts.

In the first part, an ILCC considering estimated contour error was proposed for bi-

axial feed drive systems, and the performance has been demonstrated by simulation

and experimental results. The proposed method can modify the reference trajectory

of each drive axis iteratively to enhance the tracking performance. The proposed

controller can be directly applied to commercial machines currently in use without

any modification of their original controllers. The estimated contour error is calcula-

ted by multiplying the tracking error by a rotational matrix. The experimental results

show that the maximum contour error can be reduced by 63.1 % when the ILCC

is added to the conventional feedback controllers or by 49.2 % compared with the

CILCC. However, it requires additional iterations to reach the minimum contour er-

ror for a higher curvature trajectory because of the assumption of a linear connection

between two discrete points on the trajectory, as shown in Fig. 3.2. Furthermore,

this method generates non-uniform trajectory points along the reference path, as ex-

plained in Chapter 4 and Fig. 4.4, which may produce erratic velocity profiles. The

contour error estimation can be improved for high-curvature trajectories by using a

smoothing algorithm to obtain smooth velocity profiles.

The second part considered the actual contour error compensation (ACEC) in order to

estimate the contour error more accurately. This study proposed a method to enhance

the tracking performance of machine tool feed drive systems using ILCC with ACEC

and BRT. Its performance was verified experimentally through 3D sharp-corner and

half-circular trajectories in a commercial three-axis CNC machine. In comparison

with the traditional FBC, the proposed method’s performance exhibits average re-

ductions in the maximum and mean contour errors by up to 87.54 % and 76.69 %,

respectively. The experimental results of the proposed controller were also compa-

red with the ILCC with estimated contour error and with ILCC with ACEC, demon-

strating reductions in the maximum and mean contour errors by up to 45.11 % and

54.48 %, respectively. Furthermore, average reductions of 20.54 % and 26.92 % were
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demonstrated compared with ILCC with approximated contour error and ILCC with

ACEC, respectively. However, the ACEC with linear interpolation is not effective for

circular trajectories and the BRT smoothing algorithm does not significantly improve

the performance of the ILCC with ACEC system. Therefore, an ILCC with ACEC

that includes circular interpolation and not BRT will be designed and implemented in

advanced machine tool technologies such as a CNC machine tool with a linear motor

mechanism.

The third part of this research showed the implementation of the proposed method

to CNC machine tool feed drive systems with a linear motor, and the performance

has been demonstrated by simulation and experimental results. The proposed met-

hod modifies the reference trajectory by considering the previous actual contour error

iteratively to enhance the tracking performance. The experimental results show that

the maximum and mean contour error can be reduced by 94.58 % and 88.67 % on

average, respectively, when the ILCC with ACEC is added to the existing machine.

The implementation of the proposed method to the CNC machine tool with a linear

motor mechanism improves the CNC machine tool performance from normal machi-

ning (> 1 µm) to precision machining (< 1 µm). In addition, energy consumption is

improved under the proposed method. The average energy consumption of the x, y,

and combined axes in machine tools can be reduced by 24.9 %, 14.7 %, and 11.7 %,

respectively.

6.2 Future Work

• A hybrid interpolation that combines circular and linear interpolations will be

developed to machine a free-form surface. The ILCC with ACEC systems un-

der linear, circular, and hybrid interpolations will be compared experimentally.

• The machining process is a nonlinear phenomenon. The current ILC research

assumes that the machine plant is a linear model. A nonlinear model can be
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used to improve the ILCC performance. The machining process will be con-

ducted under a cutting force.

• In this study, the NC program was based on a “G01” program. To improve the

proposed method, an interesting approach would be to modify the NC program

based on “G02” code for a typical circular trajectory.

• The automation of industrial applications is still a challenging topic, especi-

ally in regard to the machining process. The ILCC makes it possible to de-

velop closed-loop machining (CLM). The iterative process is conducted for

machining raw material to the target product shape. The CLM algorithm has

several steps. First, the reference trajectory is defined on the basis of the pro-

duct shape. Then, an initial trajectory is defined on the basis of scaling up the

reference trajectory to the outer side of the raw material; the rest of the ma-

terial is calculated as actual contour error estimation. Next, the contour error

compensation is defined by considering the standard MRR of machine tools;

the CLM then modifies an initial trajectory and executes a modified trajec-

tory in the CNC machine tool. Finally, an actual contour error is calculated

as the difference between the current actual position and the final reference

trajectory. This entire process is repeated iteratively until the actual contour

error is within the tolerance range. In this future work, we will combine the

CAD/CAM and CNC processes into one smart CLM system. Normally, the

CAD/CAM process is external to the CNC machine.
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